

RE: 22030222 DRB GROUP - 126 FaNC Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 22030222 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 14 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	150955705	A01	3/24/2022
2	150955706	A02	3/24/2022
3	150955707	A03	3/24/2022
4	150955708	A04	3/24/2022
5	150955709	B01	3/24/2022
6	150955710	B02	3/24/2022
7	150955711	C01	3/24/2022
8	150955712	C02	3/24/2022
9	150955713	D01	3/24/2022
10	150955714	D02	3/24/2022
11	150955715	F01	3/24/2022
12	150955716	F02	3/24/2022
13	150955717	G01	3/24/2022
14	150955718	G02	3/24/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A01	Common	4	1	Job Reference (optional)	150955705

WEBS

NOTES

this design.

BOT CHORD

12-13=0/20

12-14=-130/2136

4-17=-296/201, 7-14=-236/1197,

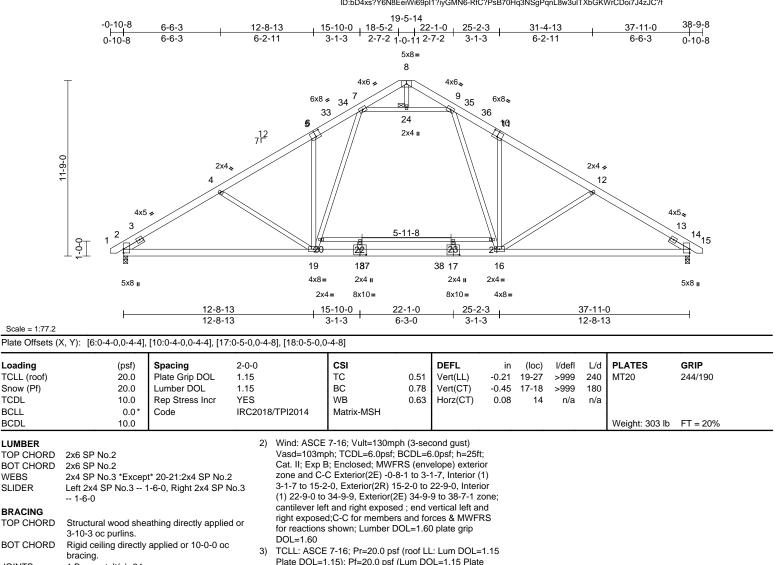
9-14=-477/248, 10-14=-297/202

1) Unbalanced roof live loads have been considered for

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 23 16:52:20

arter Components (Sanfo	rd), Sanford, N	C - 27332,					Dec 6 2021 MiTe 2?PsB70Hq3NSຄູ			d Mar 23 16:52:20 /rCDoi7J4zJC?f	Page: 1
	-0-10-8	6-6-3	12-8-13	18-5-2	19-5-14	25-2-3	3	1-4-13	1	37-11-0	38-9-8
	0-10-8	6-6-3	6-2-11	5-8-5	1-0-11	5-8-5	6	6-2-11	I	6-6-3	0-10-8
1-9-0	4x5 1 2 1	2x4 4	7 ¹² 5	⁸ ²⁷ ²⁶	5x8= 7		6x8 x 29 8		2x4 = 10		^{1x5} × 11 1213
	⊠ 5x8 ∎		17 4x			15 31 4x8=	14 4x8=				⊠ 5x8 ∎
		12-8-1	3		25-2-3				37-11-(h	
le = 1:76.6		12-8-1			12-5-5				12-8-13		——-
e Offsets (X, Y): [6]	:0-4-0,0-4-4],	, [8:0-4-0,0-4-4]									
ding L (roof) w (Pf) DL L DL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.83 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loo -0.31 14-1 -0.47 14-1 0.07 1	7 >999	L/d 240 180 n/a	PLATES MT20 Weight: 282 lb	GRIP 244/190 FT = 20%
DER Left 2x4 1-6-0 ACING P CHORD Structu 4-1-11 T CHORD Rigid cu bracing BS 1 Row i ACTIONS (lb/size) Max Hori Max Upli Max Gra	No.2 No.3 *Except \$ SP No.3	.C 14), 12=-151 (LC _C 24), 12=1783 (LC ppression/Maximum	Vasd=103 Cat. II; Exp No.2 zone and 0 (1) 22-9-0 cantilever right expos for reaction DDL=1.60 DOL=1.60 DOL=1.5 Cs=1.00; (4) Unbalance t5) design. 2 25) 5) This truss load of 12.	E 7-16; Vult=13/ mph; TCDL=6.0p b B; Enclosed; M C-C Exterior(2E) -2-0, Exterior(2F to 34-9-9, Exterior left and right exp sed;C-C for merm hs shown; Lumbe CE 7-16; Pr=20.0 =1.15); Pf=20.0 p ; Is=1.0; Rough Ct=1.10 d snow loads ha has been design 0 psf or 1.00 tim- non-concurrent	estifies and for the second se	6.0psf; h=25ft elope) exterior 1-7, Interior (22-9-0, Interi 9 to 38-7-1 z vertical left ar rcces & MWFF 0 plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool coad of 20.0 p	or 1) or one; dd RS 1.15 e 9; his f live				

- 9-10=-2321/228, 10-12=-2589/259, 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2-17=-297/2334, 14-17=-16/1512, 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5-17=-477/249, 7-17=-236/1197, One H2.5A Simpson Strong-Tie connectors 8)
 - recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
 - 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A02	Common	6	1	Job Reference (optional)	150955706

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Wed Mar 23 16:52:22 ID:bD4xs?Y6N8EeiWi69pI1?iyGMN6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

JOINTS 1 Brace at Jt(s): 24 REACTIONS 2=1658/0-3-8, 14=1655/0-3-8 (lb/size) Max Horiz 2=-265 (LC 12) Max Uplift 2=-50 (LC 14), 14=-53 (LC 15) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/20, 2-4=-2495/62, 4-5=-2200/20, 5-7=-2238/155. 7-8=-480/113. 8-9=-483/111. 9-11=-2227/164, 11-12=-2194/26, 12-14=-2490/68, 14-15=0/20 BOT CHORD 2-19=-177/2063. 16-19=0/1501. 14-16=-23/2051 WEBS 5-19=-538/282, 19-20=-150/1044, 7-20=-134/1052, 4-19=-293/238, 9-21=-151/1034, 16-21=-165/1028, 11-16=-530/288, 12-16=-295/238, 20-22=-3/73, 22-23=-3/73, 21-23=-3/73, 18-22=0/36, 17-23=0/33, 7-24=-1230/77, 9-24=-1230/77, 8-24=-11/182

NOTES

TCDL

BCLL

BCDL

WEBS

SLIDER

1) Unbalanced roof live loads have been considered for this design.

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 4) Unbalanced snow loads have been considered for this
- desian. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) 200.0lb AC unit load placed on the bottom chord, 18-8-0 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A03	Common Structural Gable	1	1	Job Reference (optional)	150955707

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

JOINTS

FORCES

Structural wood sheathing directly applied or

2=113/5-3-8, 26=76/4-5-8,

28=145/4-5-8, 29=1302/0-3-8,

36=1393/5-3-8, 37=85/5-3-8,

29=-99 (LC 15), 36=-150 (LC 14),

28=182 (LC 29), 29=1539 (LC 25),

36=1670 (LC 24), 37=143 (LC 24),

50=142 (LC 25), 54=83 (LC 35)

37=-88 (LC 14), 50=-63 (LC 10)

50=113/5-3-8, 54=76/4-5-8

Max Horiz 2=266 (LC 13), 50=266 (LC 13)

Max Uplift 2=-63 (LC 10), 28=-88 (LC 15),

Max Grav 2=142 (LC 25), 26=83 (LC 35),

(lb) - Maximum Compression/Maximum

Rigid ceiling directly applied or 6-0-0 oc

6-0-0 oc purlins.

1 Brace at Jt(s): 38,

39, 40, 41, 42, 44,

bracing.

45, 46, 47

Tension

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:23 ID:9knqKob6Z3XfTU7aZoqfMLyGMKT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-0-10-8	6-6-3	12-8-13	18-5-2	19-5-14	25-2-3	1	31-4-13	37-11-0	38-9-8
	0-10-8	6-6-3	6-2-11	5-8-5	1-0-11	5-8-5	1	6-2-11	6-6-3	0-10-8
					8x12=					
					14					
		4x5 = 5	7^{12} 9 4x5 = 8 5 7 43 346 II 42 41	13 6x8 = 12 58 0 58 58 58 58 58 58 58 58 58 58	<u>В</u> 38 8 н	15 596 4 5x8 45	18			4x5 × 25 26 27
	X	37 36	35	34 61 33		32 62	31	3	30 <u>29</u> 28	\times
	4x5		-	4x8= 4x8=		4x8=	4x8=		29 20	4x5 I
	F	<u>4-11-8</u> 5-1-12 4-11-8 0-2-4	2 12-8-13		25-2-3			33-7-4	37-11-	
Scale = 1:77.2	i	4-11-8 0-2-4	7-7-1	ļ.	12-5-5			8-5-1	4-3-12	
	X, Y): [11:0-4-0,0-	4-4], [14:0-6-0,0-2-4	4], [17:0-4-0,0-4-4]							
					-					
Loading TCLL (roof)	(psf) 20.0		2-0-0 L 1.15	CSI TC	0.21	DEFL Vert(LL)		(loc) l/defl 1-34 >999	L/d PLATES 240 MT20	GRIP 244/190
Snow (Pf)	20.0		1.15	BC	0.21	Vert(CT)			180	244/190
TCDL	10.0			WB	0.59	Horz(CT)	0.02	29 n/a	n/a	
BCLL	0.0	* Code	IRC2018/TPI201	4 Matrix-MSH						
BCDL	10.0)							Weight: 376 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SUDER	D 1-2=0/20, 2-4=-138/261, 4-5=-94/238, 5-6=-89/203, 6-7=-1166/103, 7-8=-1196/123, 8-9=-1149/140, 9-10=-1087/155, 10-12=-1187/239, 12-13=-1141/256, 13-14=-1141/311, 14-15=-1206/323, 15-16=-1255/290, 16-18=-1291/271, 18-19=-1160/160, 19-20=-1216/146, 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-11-8, Interior (1) 2-11-8 to 14-11-8, Exterior(2R) 14-11-8 to 22-6-11, Interior (1) 22-6-11 to 34-9-9, Exterior(2E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed ; end					DL=6.0psf; h=25ft; (envelope) exterior to 2-11-8, Interior (1) -11-8 to 22-6-11, erior(2E) 34-9-9 to				
BRACING	SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING				29, 21-22=-		207,	vertical left a forces & MW	Ind right exposed;C-C /FRS for reactions shi late grip DOL=1.60	for members and

26-28=-134/87

2-37=-189/149, 36-37=-189/149,

10-34=-438/209, 34-40=-126/450,

39-40=-137/486, 14-39=-204/586,

44-45=-163/633, 31-45=-150/590,

24-28=-281/110, 6-36=-1235/143,

38-39=-94/46, 38-44=-92/45

Unbalanced roof live loads have been considered for

22-49=-1426/127. 29-49=-1324/113

34-41=0/844, 14-44=-215/652,

6-43=0/812, 42-43=0/833, 41-42=0/822,

18-31=-410/205, 31-46=0/638, 46-47=0/626,

47-48=0/634, 22-48=0/612, 14-38=-12/27,

13-39=-170/89, 12-40=-41/13, 9-41=0/42,

8-42=-27/17, 7-43=-108/22, 35-43=-161/48,

5-36=-145/1, 4-37=-144/112, 15-44=-89/66,

21-48=-34/27. 30-48=-89/41. 23-49=-15/114.

16-45=-49/15, 19-46=0/30, 20-47=-27/17,

35-36=-94/383, 34-35=-94/383, 31-34=0/858,

30-31=0/510, 29-30=0/510, 28-29=-134/87,

BOT CHORD

WEBS

NOTES

this design.

1)

DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.

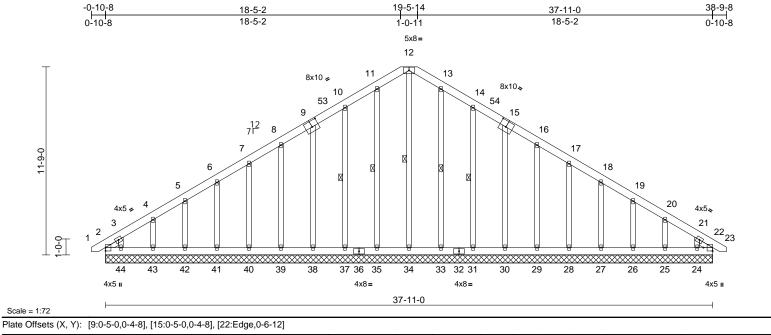
Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A03	Common Structural Gable	1	1	Job Reference (optional)	150955707

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 6) overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:23 ID:9knqKob6Z3XfTU7aZoqfMLyGMKT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A04	Common Supported Gable	1	1	Job Reference (optional)	150955708

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:25 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15	CSI TC	0.05	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.03	Vert(LL)	n/a	-	n/a	999 999	101120	244/190
TCDL		10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.01	22	n/a	n/a		
BCLL		0.0*	Code	IRC2018/TPI2014	Matrix-N		11012(01)	0.01		n/a	n/a		
BCDL		10.0	0000		Matrix							Weight: 358 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x6 SP N 2x4 SP N Left 2x4 S No.3 0- Structura 6-0-0 oc	lo.2 lo.3 *Excep SP No.3 (11-6 I wood she purlins.	t* 34-12:2x4 SP No.2)-11-6, Right 2x4 SP athing directly applied	2		2=233 (LC 14), ; 24=154 (LC 25), 26=161 (LC 25), 30=164 (LC 22), 33=232 (LC 22), 35=232 (LC 21), 38=164 (LC 21), 40=162 (LC 24), 42=161 (LC 24),	25=165 (LC 27=161 (LC 29=154 (LC 31=228 (LC 37=228 (LC 39=154 (LC 39=154 (LC 41=161 (LC	25), 25), 25), 22), 22), 27), 21), 24), 24),	WEBS		10-37 7-40= 4-43= 13-33 15-30 17-28 19-26	,	125/73, 8-39=-115/ 23/72, 5-42=-122/7 14/129, =-189/86, =-115/66, =-123/72,
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc			44=186 (LC 24),	45=233 (LC	,,		balanced		ive loads have be	een considered for
WEBS	1 Row at		12-34, 11-35, 10-37, 13-33, 14-31	FORCES		49=172 (LC 15) mum Compressi		ı	this	design.			
REACTIONS	Max Horiz	$\begin{array}{c} 24 = 109/3\\ 26 = 155/3\\ 28 = 156/3\\ 30 = 155/3\\ 33 = 155/3\\ 35 = 155/3\\ 35 = 155/3\\ 38 = 154/3\\ 40 = 156/3\\ 40 = 156/3\\ 41 = 156/3\\ 41 = 109/3\\ 49 = 91/37\\ 2 = -260 (L\\ 24 = -132 (L\\ 28 = -49 (L\\ 30 = -50 (L\\ 33 = -15 (L\\ 39 = -43 (L\\ 43 = -50 ($	$\begin{array}{l} 1-0,\ 22=91/37-11-0,\\ 7-11-0,\ 22=158/37-17\\ 7-11-0,\ 27=155/37-17\\ 7-11-0,\ 37=162/37-17\\ 7-11-0,\ 37=162/37-17\\ 7-11-0,\ 37=162/37-17\\ 7-11-0,\ 39=148/37-17\\ 7-11-0,\ 43=158/37-17\\ 7-11-0,\ 43=161/37-17\\ 7-11-0,\ 43=158/37-17\\ 7-11-0,\ 43=156/$	I-0, I-0, I-0, I-0, I-0, I-0, I-0, BOT CHORD 0, 2) 3), 5), 5), 5), i), i), i), i), 4),	4-5=-187/ 7-8=-136/ 10-11=-13 12-13=-14 14-16=-10 17-18=-72 20-21=-15 2-44=-88/ 42-43=-88 40-41=-88 38-39=-88 35-37=-88 33-34=-88 30-31=-88 28-29=-86 26-27=-86	2-3=-182/142, 3 167, 5-6=-163/15 140, 8-10=-122/1 15/252, 11-12=-1 15/165, 16-17=-6 19/49, 18-19=-82/5 183, 43-44=-88/1 1/183, 41-42=-88 1/183, 37-38=-88 1/184, 34-35=-88 1/184, 29-30=-86 1/182, 27-28=-86 1/182, 22-24=-86	50, 6-7=-149, 93, 49/245, 35/216, 2/78, 55, 19-20=-11 8/77, 22-23= 83, (183, (183, (183, (184, (184, (184, (184, (184, (182, (182,	(139, 08/72,				SEA 0363	22 EER X

ENGINEERING BY EREPACED A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	A04	Common Supported Gable	1	1	Job Reference (optional)	150955708

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-1 to 2-11-8, Exterior(2N) 2-11-8 to 14-11-8, Corner(3R) 14-11-8 to 22-11-8, Exterior(2N) 22-11-8 to 34-9-9, Corner(3E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:25 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	B01	Common	3	1	Job Reference (optional)	150955709

Loading

TCDL

BCLL

BCDL

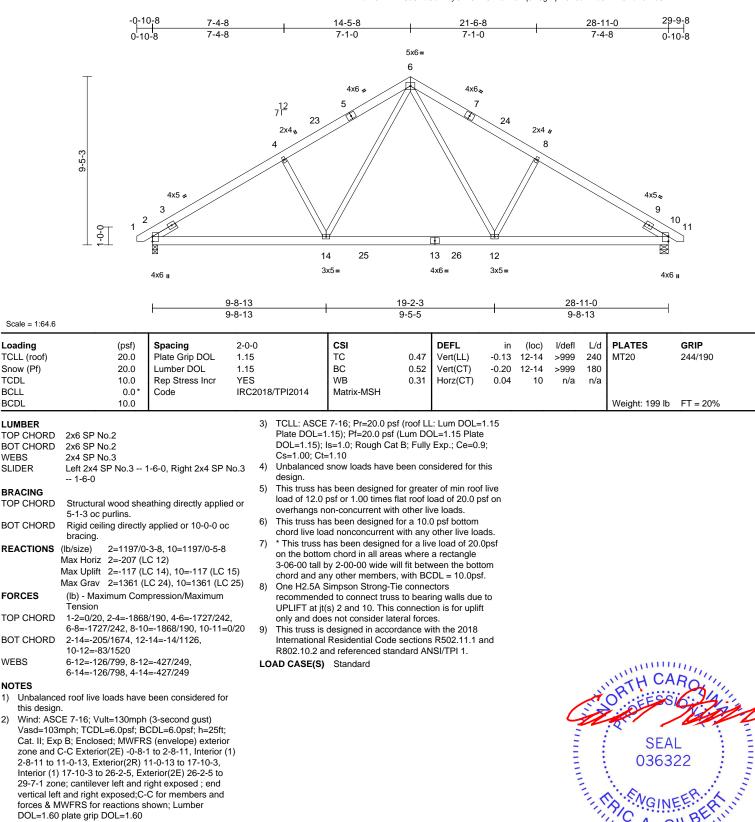
WEBS

SLIDER

FORCES

WFBS

NOTES


1)

2)

LUMBER

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:26 ID:tZ4bPv91BhnMSJUNdOev4YyGMIS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-8-11 to 11-0-13, Exterior(2R) 11-0-13 to 17-10-3, Interior (1) 17-10-3 to 26-2-5, Exterior(2E) 26-2-5 to 29-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mmm March 24,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	B02	Common Structural Gable	1	1	Job Reference (optional)	150955710

14-5-8

7-1-0

Carter Components (Sanford), Sanford, NC - 27332

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

SLIDER

JOINTS

FORCES

-0<u>-</u>10-8

0-10-8

7-4-8

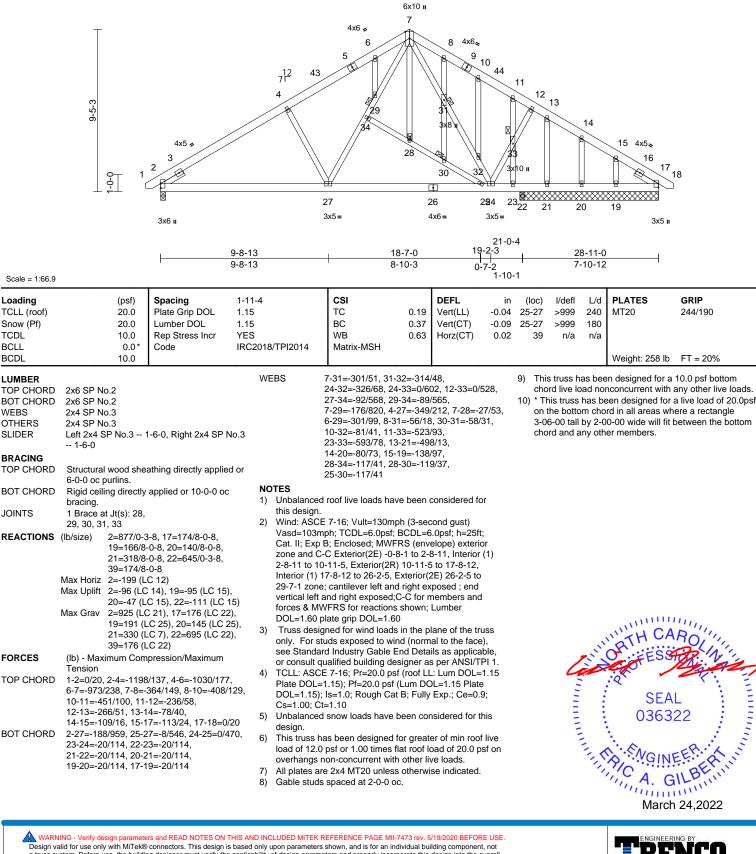
7-4-8

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 23 16:52:26 ID:NGVW_pqHvvls4QS2d0dz4MyGMF_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-6-8

7-1-0

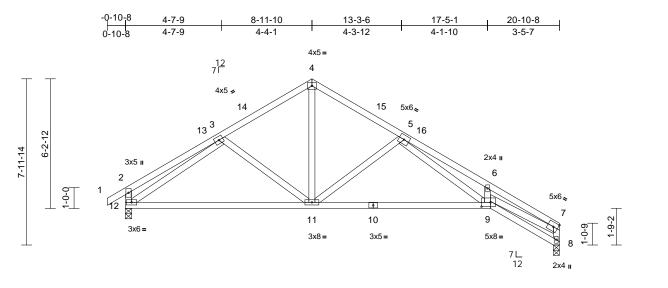
Page: 1


29-9-8

0-10-8

818 Soundside Road Edenton, NC 27932

28-11-0


7-4-8

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	C01	Roof Special	4	1	Job Reference (optional)	150955711

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:29 ID:EvevzESfZUuPvgppuvhwMjyGMOW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	8-11-10	17-6-13	20-7-0 20-10-8
	8-11-10	8-7-3	3-0-3 0-3-8

Plate Offsets (X, Y): [9:0-5-4,0-2-8]

Scale = 1:55.4

		-											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.86 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.41 0.17	(loc) 9-11 9-11 8	l/defl >999 >607 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 *Except Structural wood she 2-11-9 oc purlins, e Rigid ceiling directly bracing. (Ib/size) 8=822/0-3 Max Horiz 12=182 (I Max Uplift 8=-87 (LC Max Grav 8=873 (LC (Ib) - Maximum Com Tension 1-2=0/31, 2-3=-284/ 4-5=-1006/134, 5-6= 6-7=-2956/242, 7-8= 11-12=-76/913, 9-11	athing directly applie except end verticals. ^a applied or 10-0-0 oc 3-8, 12=886/0-3-8 LC 13) C 15), 12=-83 (LC 14) C 22), 12=923 (LC 2 ⁻¹) apression/Maximum 167, 3-4=-945/134, =-902/112, 2-12=-303 1=-36/624, 5-11=-673 =-356/624, 5-11=-673 =-155/142,	5) 6) 7) 1) 8) 3/96 9) 160 3/199,	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI/ designer sho One H2.5A \$ recommende UPLIFT at jt(only and doe 0) This truss is	snow loads have b as been designed for psf or 1.00 times fla on-concurrent with his been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. int(s) 8 considers p FPI 1 angle to grain uid verify capacity Simpson Strong-Tie ad to connect truss (s) 8 and 12. This c is not consider late designed in accord	Lum DC B; Fully een cor or great at roof k other li or a 10. //ith any for a liv where l fit betw barallel i formul of bear conne to bear connecti ral force kance w	DL=1.15 Plat Exp.; Ce=0. Insidered for the er of min roo bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bot to grain value a. Building ing surface. ctors ing walls due on is for uplii ss.	e 9; this if live psf on ads. .0psf tom e to				ORTH CA	1111111 RO ¹¹ 11
this design 2) Wind: ASO Vasd=103 Cat. II; Ex	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B rp B; Enclosed; MWFR	n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior	Lu r		Residential Code s nd referenced stand Standard			and		4	C. S.	OR FESS SEA	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-11-10, Exterior(2R) 5-11-10 to 11-11-10, Interior (1) 11-11-10 to 17-8-12, Exterior(2E) 17-8-12 to 20-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	C02	Roof Special Supported Gable	1	1	Job Reference (optional)	150955712

4x5=

Carter Components (Sanford), Sanford, NC - 27332

6-2-12

7-11-14

Scale = 1:58.4

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

-0-10-8

0-10-8

8-11-10

8-11-10

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 23 16:52:30 ID:sph12DtEfKafPe1af4A8ZVyGMDe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-10-8

11-10-14

7 12 7 6 8 5 9 27 28 Λ 10 26 3 11 29 ę ᡛ᠋ᢩᡛ 12 21 1514 24 23 22 20 19 1716 18 6-0-13 3x5= 3x5= 7 L 12 <u>20-7-0</u> 20-10-8 17-6-13 17-6-13 3-0-3 0-3-8 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.16 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 0.08 Vert(CT) 1 15 n/a n/a 999 Rep Stress Incr YES WB 0.14 Horz(CT) 0.00 13 n/a n/a Code IRC2018/TPI2014 Matrix-MR Weight: 113 lb FT = 20%24-25=-25/49, 23-24=-25/49, 22-23=-25/49, BOT CHORD 11) This truss has been designed for a 10.0 psf bottom 21-22=-25/49, 20-21=-25/49, 19-20=-25/49, chord live load nonconcurrent with any other live loads. 18-19=-25/49, 16-18=-25/49, 15-16=-25/49, * This truss has been designed for a live load of 20.0psf 14-15=-25/49, 13-14=-37/71 on the bottom chord in all areas where a rectangle WEBS 7-20=-215/85, 6-21=-206/72, 5-22=-179/77, 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. N/A 4-23=-128/82, 3-24=-105/94, 8-19=-203/68, 9-18=-190/86, 10-16=-85/44, 11-15=-226/157 13) Structural wood sheathing directly applied or NOTES

TOP CHORD 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 13=126/20-10-8, 14=70/20-10-8, 15=219/20-10-8, 16=120/20-10-8,

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

18=162/20-10-8, 19=159/20-10-8, 20=110/20-10-8, 21=161/20-10-8, 22=152/20-10-8, 23=165/20-10-8, 24=51/20-10-8, 25=159/20-10-8 Max Horiz 25=176 (LC 13)

Max Uplift 13=-21 (LC 15), 15=-119 (LC 15), 16=-20 (LC 15), 18=-58 (LC 15), 19=-44 (LC 15), 20=-17 (LC 13), 21=-48 (LC 14), 22=-51 (LC 14), 23=-47 (LC 14), 24=-145 (LC 11), 25=-194 (LC 10) Max Grav 13=132 (LC 25), 14=110 (LC 7),

15=230 (LC 25), 16=126 (LC 22), 18=228 (LC 22), 19=242 (LC 22), 20=205 (LC 15), 21=245 (LC 21), 22=217 (LC 21), 23=170 (LC 21), 24=196 (LC 12), 25=271 (LC 25)

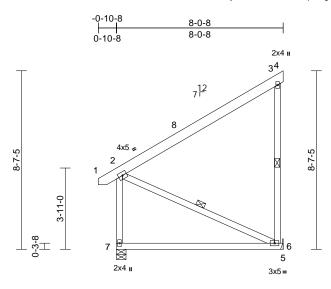
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-25=-199/136, 1-2=0/30, 2-3=-198/177, 3-4=-150/146, 4-5=-142/177, 5-6=-145/227, 6-7=-171/274, 7-8=-171/274, 8-9=-146/228, 9-10=-115/173, 10-11=-105/141,

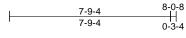
11-12=-87/50, 12-13=-117/68

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-11-10, Corner(3R) 5-11-10 to 11-11-10, Exterior(2N) 11-11-10 to 17-8-12, Corner(3E) 17-8-12 to 20-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.

- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 25, 14, 20, 21, 22, 23, 24. 19. 18. 16. 15.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	D01	Monopitch	4	1	Job Reference (optional)	150955713

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:31 ID:duDvsaOamEtiR5Ee7uw_GLyGMD_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.6

TCLL (roof) 2 Snow (Pf) 2 TCDL 6 BCLL	Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-MP	0.73 0.38 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 -0.28 0.00	(loc) 6-7 6-7 6	l/defl >277 >323 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural wor 6-0-0 oc purli BOT CHORD Rigid ceiling of bracing. WEBS 1 Row at mid REACTIONS (lb/size) 6=3 Max Horiz 7=2 Max Uplift 6=- Max Grav 6=4 FORCES (lb) - Maximut Tension	Except* 3-6:2x4 SP No.2 od sheathing directly applie is, except end verticals. irectly applied or 10-0-0 oc ot 3-6, 2-6 24/ Mechanical, 7=356/0-5	5) 7 d or 6) * 7) F 5-8 8) F 5-8 5 9 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	oad of 12.0 j poverhangs no This truss ha chord live loa ' This truss h con the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate oint 6. Dne H2.5A S recommende JPLIFT at jt(does not con	s been designed ps for 1.00 times on-concurrent wi s been designed ad nonconcurrent nas been designed ad sonconcurren in chord in all are y 2-00-00 wide 'n y 2-00-00 wide 'n	s flat roof lc ith other liv d for a 10.0 twith any ed for a liv. eas where will fit betw. rs. truss conn ion (by othe standing 1 Tie connect iss to beari cction is for ces.	and of 20.0 p re loads. 0 psf bottom other live load e load of 20. a rectangle veen the bott rections. ers) of truss 42 lb uplift a ctors ng walls due uplift only a	osf on ads. .0psf tom to tt to					

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and

BOT CHORD WFBS

NOTES

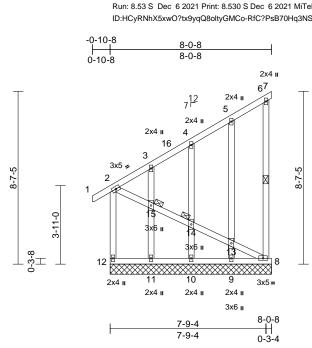
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 5-1-3 to 8-1-3, Interior (1) 8-1-3 to 10-9-12, Exterior(2E) 10-9-12 to 13-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3-6=-377/110, 2-7=-335/129

6-7=-277/191, 5-6=0/0

2-6=-160/218

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	D02	Monopitch Structural Gable	1	1	Job Reference (optional)	150955714

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:31 ID:HCyRNhX5xwO?tx9yqQ8oltyGMCo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	-									Weight: 81 lb	FT = 20%
	1) Wind: ASCE 7-16: Vult=130mph (3-second gust) 13) This truss is designed in accordance with							e with the 2018				

LUMBER								
TOP CHORD	2x4 SP N	0.2						
BOT CHORD	2x4 SP N	0.2						
WEBS	2x4 SP N	o.3 *Except* 6-8:2x4 SP No.2						
OTHERS	2x4 SP N	0.3						
BRACING								
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.							
WEBS	1 Row at	midpt 6-8						
JOINTS	1 Brace a	it Jt(s): 14,						
	15							
REACTIONS	(lb/size)	8=69/8-0-8, 9=157/8-0-8, 10=157/8-0-8, 11=148/8-0-8, 12=133/8-0-8						
	Max Horiz	12=288 (LC 13)						
	Max Uplift	8=-140 (LC 11), 9=-43 (LC 14),						
	·	10=-53 (LC 14), 11=-40 (LC 14), 12=-82 (LC 10)						
	Max Grav	8=141 (LC 24), 9=234 (LC 21), 10=223 (LC 21), 11=154 (LC 24), 12=215 (LC 29)						
FORCES	(lb) - Max Tension	imum Compression/Maximum						
TOP CHORD	4-5=-148/	2-3=-170/108, 3-4=-161/104, (101, 5-6=-147/144, 6-7=-13/0, (4, 2-12=-200/90						
BOT CHORD	11-12=-2	72/187, 10-11=-272/187,						
	9-10=-272	2/187, 8-9=-272/187						
WEBS	2-15=-15	8/215, 14-15=-158/215,						
	13-14=-1	58/215, 8-13=-161/219,						
	5-13=-193	3/101, 9-13=-194/94,						
		6/109, 10-14=-185/109,						
	3-15=-123	3/82, 11-15=-122/82						
NOTES								

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 4-11-4 to 7-9-12, Interior (1) 7-9-12 to 10-9-12, Exterior(2E) 10-9-12 to 13-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) N/A

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	F01	Monopitch	2	1	l Job Reference (optional)	50955715

5-9-4 5-9-4

-0-10-8

4-2-9

Spacing

Code

Structural wood sheathing directly applied or

2=276/0-3-8, 6=238/ Mechanical

5-9-4 oc purlins, except end verticals.

Max Uplift 2=-30 (LC 14), 6=-77 (LC 11)

Max Grav 2=352 (LC 21), 6=352 (LC 21)

(Ib) - Maximum Compression/Maximum

1-2=0/26, 2-3=-154/195, 3-4=-13/0,

Rigid ceiling directly applied or 10-0-0 oc

Plate Grip DOL

Rep Stress Incr

Lumber DOL

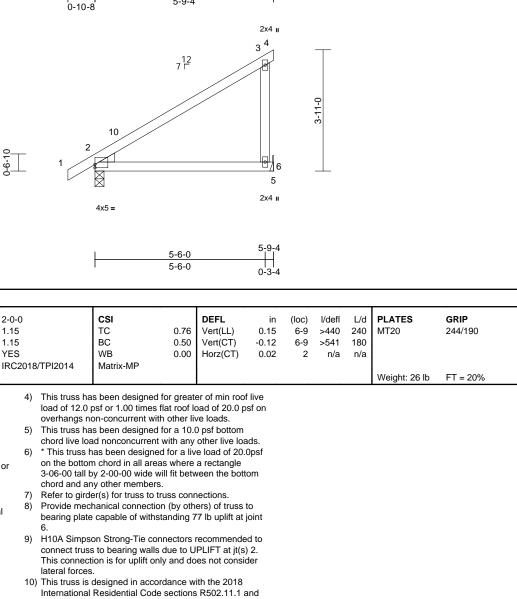
(psf)

20.0

20.0

10.0

0.0


10.0

0-6-10

Carter Components (Sanford), Sanford, NC - 27332

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Wed Mar 23 16:52:32 ID:a5wx_i1pHWYAIEoqkXNQwXyGMC9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BOT CHORD NOTES

TOP CHORD

FORCES

Scale = 1:37.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

Plate Offsets (X, Y): [2:Edge,0-1-5]

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Tension

3-6=-263/130

Left: 2x4 SP No.3

Max Horiz 2=131 (LC 13)

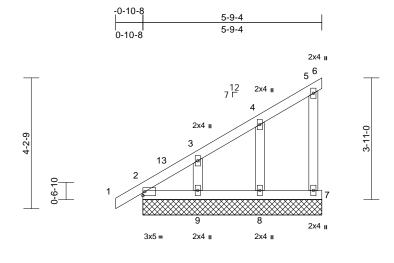
Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-9-4, Exterior(2E) 2-9-4 to 5-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown;

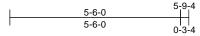
2-6=-187/230, 5-6=0/0

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 3) desian.

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




818 Soundside Road Edenton, NC 27932

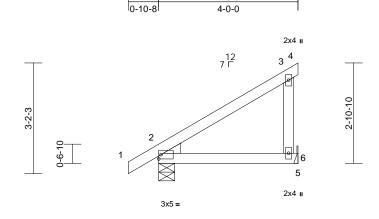
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	F02	Monopitch Supported Gable	1	1	Job Reference (optional)	150955716

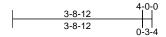
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:32 ID:a5wx_i1pHWYAIEoqkXNQwXyGMC9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.1

Scale = 1:37.1														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and 2-1-8 to 5 end vertic exposed;(2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-9-4 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 2=123/5-6 7=75/5-9- 9=149/5-3 Max Horiz 2=130 (LC Max Uplift 2=-10 (LC 7=-22 (LC 9=-66 (LC Max Grav 2=129 (LC Max Grav 2=129 (LC (LC 21), 8 21), 10=1 (lb) - Maximum Com Tension 1-2=0/26, 2-3=-119/ 4-5=-69/43, 5-6=-17 2-9=-98/64, 8-9=-59 4-8=-202/125, 3-9=- CE 7-16; Vult=130mph gamph; TCDL=6.0psf; B qb B; Enclosed; MWFR C-C Exterior(2E) -0-10 -9-4 zone; cantilever le cal left and right expose C-C for members and f shown; Lumber DOL=	applied or 10-0-0 oc 9-4, 6=-4/5-9-4, 4, 8=165/5-9-4, 9-4, 10=123/5-9-4 C 13), 10=130 (LC 13), C 14), 8=-45 (LC 14), C 14), 10=-10 (LC 10) C 25), 6=9 (LC 14), 7 3=244 (LC 21), 9=219 29 (LC 25) npression/Maximum 73, 3-4=-82/59, /9, 5-7=-102/46 /64, 7-8=-59/64 180/126 (G-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 1-8 to 2-1-8, Interior (ad; porch left and right orces & MWFRS for	3) d or 4) 5) 3) (115 9) (LC 10) r 1) ;	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec	ned for wind load dis exposed to w d Industry Gable Jalified building di 7-16; Pr=20.0 ps I.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed ps for 1.00 times on-concurrent wit es continuous bo spaced at 2-0-0 d as been designed ad nonconcurrent mas been designed n chord in all are- by 2-00-00 wide v ay other members hanical connection a capable of withs	ind (norm End Deta esigner a: sf (roof LL ((Lum DC at B; Fully been cor l for great flat roof ld th other liv too. I for a 10.0 t with any ed for a liv as where vill fit betv s. on (by oth	al to the face ils as applical s per ANSI/TF $J_{L}=1.15$ Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t), ole, PI 1. 1.15); live of on ds. opsf om				SEA 0363	EER.	
												March	24,2022 ו	


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC	
22030222	G01	Monopitch	10	1	I50 Job Reference (optional)	0955717


-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:32 ID:ppzLtn8T9Hhvtd_Zlw1XnQyGMC0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

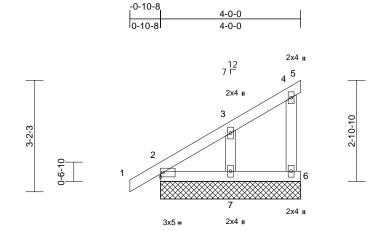
4-0-0

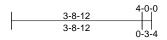
Scale = 1:33.1

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.31 BC 0.18 WB 0.00 Matrix-MP		in -0.01 -0.02 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
4-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc 5-8, 6=165/ Mechanical 13) 2 14), 6=-41 (LC 14) 2 21), 6=-41 (LC 21) apression/Maximum 123, 3-4=-13/0,	on the bottor 3-06-00 tall b chord and ar 7) Refer to gird 8) Provide mec bearing plate 6. 9) H10A Simps connect truss This connect lateral forces 10) This truss is International	designed in accordance w Residential Code sections nd referenced standard Al	a rectangle ween the bottor nections. ers) of truss to 41 Ib uplift at joi recommended JPLIFT at jt(s) 2 bes not conside vith the 2018 s R502.11.1 an	m int to 2. er					

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



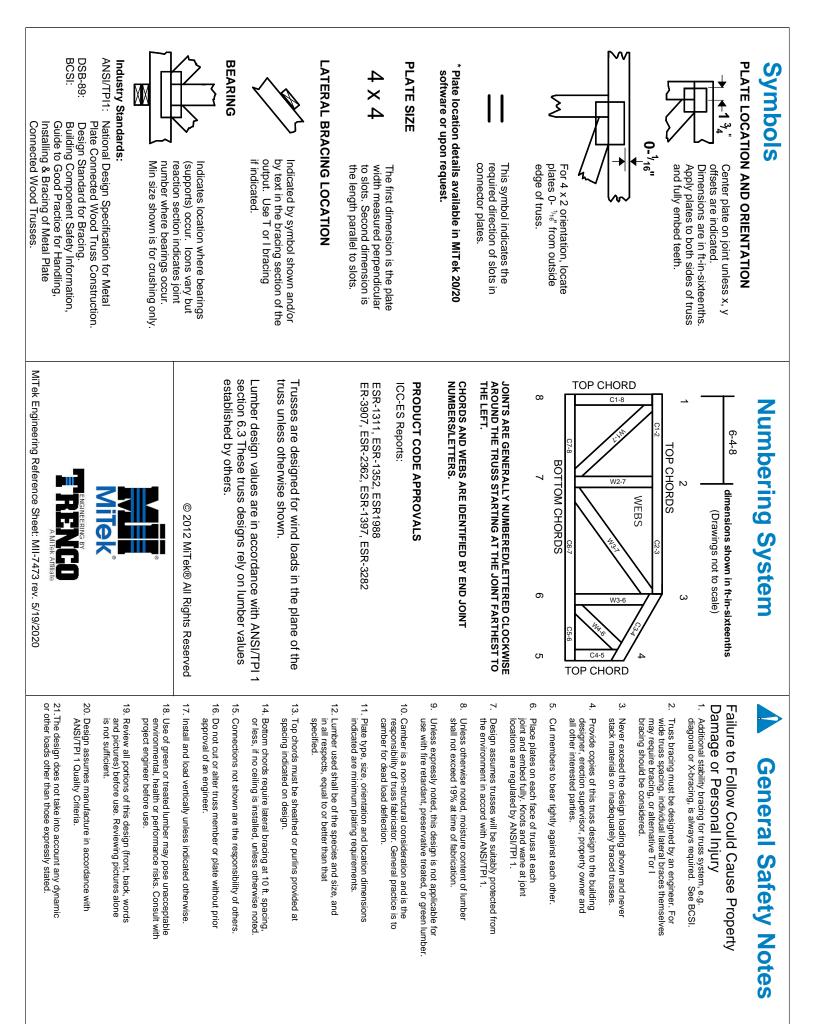


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 126 FaNC		
22030222	G02	Monopitch Supported Gable	2	1	Job Reference (optional)	150955718	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:52:33 ID:IC56HT9jhuxc7w7ytL4?sryGMC_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.9


Loading	(psf		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)	20.0		1.15	TC	0.12		n/a	-	n/a	999	MT20	244/190				
Snow (Pf)	20.0		1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999						
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	5	n/a	n/a						
BCLL	0.0	* Code	IRC2018/TPI2	014 Matrix-MP												
BCDL	10.0										Weight: 20 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 3x4 SP No.3 Structural wood s 4-0-0 oc purlins, Rigid ceiling dire bracing. (lb/size) 2=130 6=82/4 8=130 Max Horiz 2=94 (Max Uplift 5=-17 7=-61 Max Grav 2=203	theathing directly applie except end verticals. tty applied or 10-0 or (4-0-0, 5=-10/4-0-0, -0-0, 7=165/4-0-0, (4-0-0) LC 13), 8=94 (LC 13) (LC 21), 6=-23 (LC 14) (LC 21), 5=8 (LC 14), ((LC 21), 5=8 (LC 14), 8=20	Plate DOL Cs=1 4) Unba desig bed or 5) This load overl 7) Gabl 7) Gabl 7) Gabl 8) This chor 9) * Thi 3-06 6) Gart 9) * Thi 0 of th 3-00 prov	.: ASCE 7-16; Pr=20.0 : DOL=1.15); Pf=20.0 p =1.15); Is=1.0; Rough C .00; Ct=1.10 lanced snow loads hav gn. truss has been designe of 12.0 psf or 1.00 time hangs non-concurrent w e requires continuous b e studs spaced at 2-0-C truss has been designe d live load nonconcurrer s truss has been designe truss has been designe d live load nonconcurrer s truss has been designe to total by 2-00-00 wide d and any other membe ide mechanical connect ing plate capable of witt	sf (Lum DC Cat B; Fully re been co d for great s flat roof I with other li vottom cho) oc. d for a 10. nt with any hed for a 10. nt with any hed for a line eas where will fit betw rs.	DL=1.15 Plate r Exp.; Ce=0.5 nsidered for the rer of min roof oad of 20.0 ps ve loads. rd bearing. 0 psf bottom r other live loa re load of 20.0 a rectangle ween the bottom ter s) of truss to	e 9; f live sf on ds. 0psf om									
FORCES	Tension	ompression/Maximum	11) N/A													
TOP CHORD	1-2=0/43, 2-3=-1 4-5=-22/9, 4-6=-7	10/70, 3-4=-57/36, 15/57									TH CA	11111				
BOT CHORD	,	42/56	12) Beve	eled plate or shim requir	ed to provi	ide full bearing	g				OR FES	ROUL				
WEBS	3-7=-194/172			ce with truss chord at jo					_	~	ONIEC	into Instr				
NOTES				truss is designed in acc					6	1.2	ADFE .	Philad				
Vasd=10		; BCDL=6.0psf; h=25ft;	R802	national Residential Co 2.10.2 and referenced s			and		2	A	A le	L 22 EER A				
	xp B; Enclosed; MW		R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard SEAL 036322								L E					
		10-8 to 2-0-0, Exterior(0202					
		r left and right exposed									0363	22 : 2				
end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber																
	0 plate grip DOL=1.			E A A								airis				
		s in the plane of the tru	ee	E CA MOINFERMAN								EELAN				
		ind (normal to the face)								11	710	OF N				
		End Details as applical									11, A. C	allerin				

DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

mmm

March 24,2022

