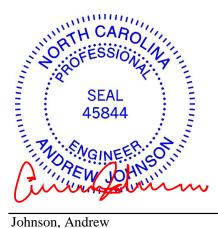


Trenco 818 Soundside Rd Edenton, NC 27932

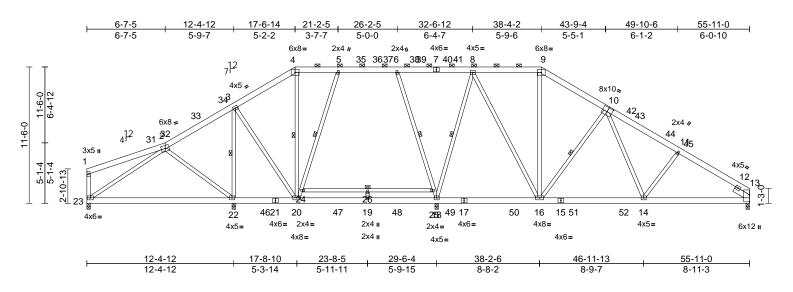

Re: 22020129 DRB - 106 FARM AT NEILLS CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I51868717 thru I51868749

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844


May 11,2022

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	A01	Piggyback Base	6	1	Job Reference (optional)	151868717

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:40 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

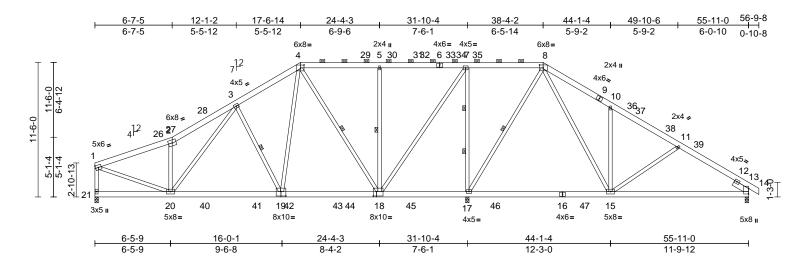
Page: 1

Scale = 1:97.2

Plate Offsets (X, Y): [10:0-5-0,0-4-8]

							-						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.68	Vert(LL)	-0.17	22-23	>861	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.35	22-23	>422	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.04	13	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 476 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 18-6,18-8,16-8,16-9 No.2	ot* ,20-4,20-5,24-25:2x4			2-22=-394/225, 3-2 6-25=-521/143, 18- 8-18=-1042/321, 8- 10-16=-825/247, 10 11-14=-240/191, 2- 4-20=-244/60, 20-2	25=-53 16=-15)-14=-4 23=-37	3/130, 4/951, 9-16=0 2/531, ′313, 3-20=0/	,	rec UP upli 10) This	ommend LIFT at ji ift only ai s truss is	ed to o (s) 22 nd doe desig	, 18, 23, and 13. s not consider la ned in accordance	bearing walls due to This connection is for teral forces.
SLIDER	Right 2x6 SP No.2 -	- 1-6-0			5-24=-334/129, 24-							erenced standard	
BRACING	Nght 2x0 01 N0.2 -	- 1-0-0			19-26=0/45		,,						es not depict the size
TOP CHORD	Structural wood abo	athing directly applied	lor N	OTES								of the purlin along	
TOP CHORD		cept end verticals, an	101		roof live loads have	e been o	considered fo	r		tom chor			
	2-0-0 oc purlins (6-0		u -,	this design.					LOAD	CASE(S	Sta	ndard	
BOT CHORD		applied or 10-0-0 oc	2)	Wind: ASCE	7-16; Vult=130mph	n (3-sec	cond qust)						
201 0110112	bracing, Except:			Vasd=103m	oh; TCDL=6.0psf; B	SCDL=6	.0psf; h=25ft;						
	6-0-0 oc bracing: 22	-23,20-22.		Cat. II; Exp E	3; Enclosed; MWFR	RS (env	elope) exterio	or					
WEBS	1 Row at midpt	3-22, 6-18, 8-18, 10-	16,		C Exterior(2E) 5-7-0								
		4-20, 5-20, 24-25			-5-0, Exterior(2R) 1			ior					
REACTIONS	· · ·	0-3-8, 18=1697/0-3-8 0-3-8, 23=258/0-3-8	,	Interior (1) 4 61-4-4 zone;	38-0-0, Exterior(2F 9-5-6 to 55-9-2, Ext cantilever left and	érior(21 right ex	E) 55-9-2 to posed ; end						
	Max Uplift 13=-103	,		forces & MW	nd right exposed;C /FRS for reactions s late grip DOL=1.60							70111	ш.
	Max Grav 13=1266 22=1874	(LC 52), 18=1961 (LC (LC 34), 23=419 (LC		TCLL: ASCE	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (L					~		TH CA	RO
FORCES	(lb) - Maximum Com Tension	pression/Maximum			Is=1.0; Rough Cat I							ORTH CA	in and
TOP CHORD	,	2/484, 3-4=-346/158,	4)		snow loads have b	een cor	nsidered for th	nis					
	,	302/218, 6-8=-157/17	6,	design.									
	8-9=-673/331, 9-11=		5)		init load placed on t			-8-8			:	SEA	L : =
BOT CHORD	11-13=-1745/332, 1 22-23=-264/121, 20				, supported at two					=		4584	14 E
BOTCHORD	19-20=-109/380, 18	,	6)		quate drainage to p			j .				+50-	T (S)
	16-18=-55/487, 14-1	,	7)		s been designed fo			مام			1		1. 2
	13-14=-183/1417		8)		ad nonconcurrent w						-7	1. En	CR: SS
			8)		nas been designed m chord in all areas			psi			1	SEA 4584 Songini	E.F. GUN
					by 2-00-00 wide will			m			1	REIAL	OHN
					ny other members,							TIL VV J	Ulin
					,							Thurn I	11 2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	A02	Piggyback Base	1	1	Job Reference (optional)	151868718

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:42 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

22 MiTek Industries, Inc. Tue May 10 15:10:42 Page: 1 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:98.5

Plate Offsets ((X, Y): [4:0-3-12,0-3-1	2], [8:0-3-12,0-3-0],	18:0-3-4,0)-4-8], [19:0-5-0),0-4-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.55 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 467 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS WEBS	2x6 SP 2400F 2.0E No.2 2x4 SP No.3 *Excep 17-7,17-8,18-7,19-4, No.2 Right 2x6 SP No.2 Structural wood she 5-1-1 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 18-4,18-5,15-8:2x4 - 1-6-0 athing directly applie cept end verticals, ar -0 max.): 4-8. applied or 6-0-0 oc 8-17, 3-19, 4-18, 5-1	1) SP 2) SP d or nd	this design. Wind: ASCE Vasd=103mg Cat. II; Exp E zone and C-(11-2-2 to 17- (1) 28-7-3 to Interior (1) 48 62-2-12 zone vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; 5; Enclosed; MWF C Exterior(2E) 5-7 5-0, Exterior(2R) 38-2-5, Exterior(2 9-6-8 to 56-7-10, E c, cantilever left ar nd right exposed; FRS for reactions ate grip DOL=1.60 7-16; Pr=20.0 ps .15); Pf=20.0 ps	h (3-sec BCDL=6 RS (env 0 to 11- 17-5-0 to R) 38-2- Exterior(2 d right e C-C for n shown;) f (roof LL Lum DC	cond gust) .0psf; h=25fi elope) exterior 2-2, Interior 28-7-3, Inte 5 to 49-6-8, 22) 56-7-10 t xposed; enc nembers anc Lumber .: Lum DOL= DL=1.15 Plate	t; or (1) rior d d 1 s 1.15 e	Inte R80 12) Gra or t	ernationa 02.10.2 a phical p he orien tom cho	al Resid and ref ourlin re tation o rd.	erenced standard presentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size
	(lb/size) 13=758/0 21=1158// Max Horiz 21=259 (L Max Uplift 13=-133 (Max Grav 13=943 (L 21=1331	_C 13) LC 15), 21=-34 (LC _C 53), 17=3220 (LC	4) 14) 5)	Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	s=1.0; Rough Cat =1.10 snow loads have l s been designed f psf or 1.00 times f pn-concurrent with	oeen cor or great at roof le	nsidered for t er of min roo bad of 20.0 p	his f live					inn.
FORCES	(lb) - Maximum Com	· · · ·	6)	200.0lb AC u	nit load placed on	the bott	om chord, 18	8-3-8		(1.5	ATHCA	ROLIN
TOP CHORD BOT CHORD WEBS	Tension 1-2=-1707/177, 2-3= 3-4=-1374/217, 4-5= 7-8=-0/615, 8-10=-88 11-13=-1125/244, 13 1-21=-1239/181 20-21=-236/202, 17- 15-17=-89/199, 13-1 1-20=-58/1668, 7-17 8-17=-1252/249, 7-1 2-20=-694/259, 3-20 3-19=-704/280, 4-19 5-18=-593/193, 10-1	499/196, 5-7=-499/ 3-14=0/26, -20=-679/1352, (5=-82/901 *=-1881/285, 18=-119/1701, >=-172/588, 9=0/1170, 4-18=-986,	97, 9) 9) 10	Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar)) One H2.5A S recommende UPLIFT at jt(supported at two juate drainage to j s been designed to a conconcurrent to as been designed n chord in all area by 2-00-00 wide wi y other members, simpson Strong-TT ad to connect truss s) 21 and 13. This s not consider late	or a 10.0 with any for a liv s where Il fit betw with BC connecto bear connecto	water pondin o psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ctors ng walls due tion is for up	ads. Opsf tom .f. e to		C	AND	SEA 4584	L EFR. ONUM

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151868719

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:43 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.2

Plate Offsets (X, Y): [11:0-3-0,0-	3-12], [24:0-3-0,0-3-12]	, [27:0-2-1,Edge], [43	:0-5-0,0-4-8]	, [47:0-4-0,0-1-4],	[56:0-5-0,0-	-4-8]				-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf 20.0 20.0 10.0 0.0 10.0	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.29 0.07 0.22 MR	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 35	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 587	GRIP 244/190 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *Ex 55-12,54-13,53-1 47-20,46-21,45-2	4,52-15,51-16,50-17,49 2,44-23:2x4 SP No.2		Max Uplift	35=-212 (LC 11), 37=-28 (LC 15), 39=-48 (LC 15), 41=-49 (LC 15), 43=-18 (LC 15), 46=-29 (LC 11), 51=-24 (LC 10), 51=-24 (LC 10), 53=-28 (LC 11),	38=-53 (LC 40=-49 (LC 42=-57 (LC 45=-23 (LC 47=-25 (LC 50=-25 (LC 52=-25 (LC	15), 15), 15), 10), 11), 10), 11),	TOP CH	IORD	3-4=-5 6-7=-9 9-10= 11-12 13-14 15-16 17-19	56/82, 4-5=-69	-13=-150/384, -15=-150/384, -17=-150/384, -20=-150/384,	9,
TOP CHORD	6-0-0 oc purlins, 2-0-0 oc purlins (sheathing directly applie except end verticals, a 6-0-0 max.): 11-24.		57=-61 (LC 14), 59=-48 (LC 14), 61=-46 (LC 14),	60=-51 (LC	14),			24-25	=-150/384, 23 =-163/400, 25 =-132/270, 28	-26=-154/352,		
BOT CHORD	Rigid ceiling dire bracing.	ctly applied or 10-0-0 or		63=-77 (LC 11),	64=-39 (LC	10)			29-30	=-113/217, 30	-31=-127/220,		
WEBS	bracing. 1 Row at midpt 9-57, 10-56, 12-55, 13-54, 14-53, 15-52, 16-51, 17-50, 19-49, 20-47, 21-46, 22-45, 23-44, 25-43, 26-42			Max Grav 35=182 (LC 12), 36=277 (LC 24), 31-32=-140/224, 32-33=-150/2 37=155 (LC 40), 38=166 (LC 24), 33-34=-194/267, 34-35=-125/1 39=219 (LC 46), 40=236 (LC 46), 41=234 (LC 46), 42=238 (LC 46), 41=234 (LC 46), 42=238 (LC 46), 43=228 (LC 46), 44=189 (LC 53), 45=218 (LC 39), 46=218 (LC 39), 54=218 (LC 39),									
REACTIONS	$\begin{array}{c} 37 = 15 \\ 39 = 15 \\ 41 = 15 \\ 43 = 15 \\ 43 = 15 \\ 47 = 15 \\ 50 = 15 \\ 50 = 15 \\ 52 = 15 \\ 54 = 15 \\ 56 = 15 \\ 56 = 15 \\ 56 = 15 \\ 60 = 15 \\ 62 = 15 \end{array}$	/55-11-0, 36=159/55-11 5/55-11-0, 38=155/55-1 5/55-11-0, 42=156/55-1 5/55-11-0, 42=156/55-1 5/55-11-0, 44=153/55-1 5/55-11-0, 49=155/55-1 5/55-11-0, 51=155/55-1 4/55-11-0, 53=155/55-1 4/55-11-0, 57=154/55-1 5/55-11-0, 61=157/55-1 4/55-11-0, 63=159/55-1 (55-11-0) 6 (LC 11)	1-0, 1-0,	(lb) - Maı Tension	47=211 (LC 39), 50=176 (LC 20), 52=210 (LC 39), 54=218 (LC 39), 56=226 (LC 42), 58=234 (LC 42), 60=219 (LC 42), 62=219 (LC 43), 64=90 (LC 24)	49=190 (LC 51=189 (LC 53=218 (LC 55=181 (LC 57=237 (LC 59=236 (LC 61=186 (LC 63=222 (LC	2 20), 2 21), 2 39), 2 53), 2 42), 2 42), 2 42), 2 43), 2 43),		Contine	AN	SE 458 NORTH C SE 458	J'Inne	and an annumber

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	A03	Piggyback Base Supported Gable 1		1	Job Reference (optional)	151868719
Carter Components (Sanford), S	anford. NC - 27332.	Run: 8.53 S Apr 27 2	Page: 2			

ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

BOT CHORD	63-64=-223/163, 62-63=-223/163, 61-62=-223/163, 60-61=-223/163, 59-60=-223/163, 58-59=-223/163, 57-58=-223/163, 53-54=-223/163, 52-53=-223/163, 51-52=-223/163, 50-51=-223/163, 49-50=-223/163, 47-49=-223/163, 49-50=-223/163, 42-44=-223/163, 41-42=-223/163, 40-41=-223/163, 39-40=-223/163, 38-39=-223/163, 37-38=-223/163,
	36-37=-223/163, 35-36=-223/163
WEBS	$\begin{array}{l} 2\text{-}63\text{=-}182/80, 3\text{-}62\text{=-}181/60, 4\text{-}61\text{=-}147/74, \\ 6\text{-}60\text{=-}180/75, 7\text{-}59\text{=-}198/71, 8\text{-}58\text{=-}195/99, \\ 9\text{-}57\text{=-}199/143, 10\text{-}56\text{=-}187/63, \\ 12\text{-}55\text{=-}141/9, 13\text{-}54\text{=-}179/81, \\ 14\text{-}53\text{=-}179/90, 15\text{-}52\text{=-}172/54, \\ 16\text{-}51\text{=-}151/48, 17\text{-}50\text{=-}138/48, \\ 19\text{-}49\text{=-}151/48, 17\text{-}50\text{=-}138/48, \\ 19\text{-}49\text{=-}151/48, 0\text{-}47\text{=-}172/55, \\ 21\text{-}46\text{=-}179/92, 22\text{-}45\text{=-}179/78, \\ 23\text{-}44\text{=-}150/21, 25\text{-}43\text{=-}189/72, \\ 26\text{-}42\text{=-}199/142, 28\text{-}41\text{=-}195/99, \\ 29\text{-}40\text{=-}197/72, 30\text{-}39\text{=-}180/72, \\ 31\text{-}38\text{=-}123/73, 32\text{-}37\text{=-}116/65, \\ 33\text{-}36\text{=-}176/123 \end{array}$

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 5-7-0 to 11-5-4, Exterior(2N) 11-5-4 to 17-5-0, Corner(3R) 17-5-0 to 28-7-3, Exterior (2N) 28-7-3 to 38-2-5, Corner(3R) 38-2-5 to 49-5-4, Exterior(2N) 49-5-4 to 55-5-4, Corner(3E) 55-5-4 to 61-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- Provide adequate drainage to prevent water ponding. 6)
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) N/A

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss Truss Type		Qty	Ply	DRB - 106 FARM AT NEILLS CREEK				
22020129	B01	Piggyback Base	3	1	Job Reference (optional)	151868720			

8-6-8 oc bracing: 14-16.

Max Horiz 21=-306 (LC 12)

7-16, 2-21, 3-18, 4-17,

5-22

22=2079/0-3-8

22=-94 (LC 11)

35), 22=2471 (LC 44)

1-2=-167/147, 2-3=-1193/319, 3-4=-700/294,

(Ib) - Maximum Compression/Maximum

4-29=-146/367, 5-29=-136/367,

5-30=-136/367, 7-30=-144/371,

10-12=-1575/392, 12-13=0/26,

17-18=-99/622, 14-16=-6/439,

7-9=-1448/518, 9-10=-1345/359,

20-21=-161/962, 18-20=-120/768

12=982/0-3-8, 21=1038/0-3-8,

12=-243 (LC 15), 21=-180 (LC 14),

12=1248 (LC 49), 21=1379 (LC

1 Row at midpt

Max Uplift

Max Grav

Tension

1-21=-217/100

12-14=-229/1258

WFBS

FORCES

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:44 Page: 1 ID:peT4yLyq7XKivZjUGqMG5_zHvYw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 51-9-8 6-5-13 12-6-14 19-5-15 26-10-4 33-4-2 39-1-4 44-10-6 50-11-0 6-5-13 6-1-1 6-11-2 7-4-5 6-5-14 5-9-2 5-9-2 6-0-10 0 - 10 - 84x6= 6x8= 4x5= 6x10= 6x8= 3 4 34 35 36375 6 7 2x4 I 712 4x6 4x5 🗸 8 9 2 Ø 3839 3233 11-6-0 3x5 II 40 _{2x4 ≠} 31 10 41 4x5、 4-2-0 ¹¹12 130-ဗု 2729 20 44 42 43 19 1845 46 1716 47 15 14 4x5= 4x5= 4x6= 4x5= 4x6= 5x8= 6x10 II 4x5= 6x10= 4x5= 27-1-0 26-10-4 39-1-4 8-11-1 17-8-7 26-7-8 37-0-0 50-11-0 8-11-1 8-9-5 8-11-1 0-2-12 9-11-0 2-1-4 11-9-12 Scale = 1:89.9 0-2-12 Plate Offsets (X, Y): [7:0-3-12,0-3-0], [16:0-1-2,0-6-7] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.47 Vert(LL) -0.35 14-16 >826 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.84 Vert(CT) -0.53 14-16 >541 180 TCDL 10.0 Rep Stress Incr WB Horz(CT) YES 0.89 0.03 12 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 465 lb BCDL 10.0 FT = 20% WEBS LUMBER 7-16=-951/58, 2-21=-1363/186, 9) * This truss has been designed for a live load of 20.0psf 2x6 SP No.2 3-20=-54/549, 3-18=-333/73, 4-18=0/758, on the bottom chord in all areas where a rectangle TOP CHORD 4-17=-1176/166, 2-20=-204/287, 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2x6 SP No.2 9-14=-644/245, 7-14=-191/1386, chord and any other members, with BCDL = 10.0psf. WEBS 2x4 SP No.2 *Except* 21-1,21-2,2-20,14-9,14-10:2x4 SP No.3 10-14=-263/164. 5-22=-1383/18. 10) Bearing at joint(s) 22 considers parallel to grain value 17-22=-99/1142, 22-29=-99/1142, using ANSI/TPI 1 angle to grain formula. Building OTHERS 2x6 SP No.2 16-22=0/1045, 22-30=0/1045 SLIDER Right 2x6 SP No.2 -- 1-6-0 designer should verify capacity of bearing surface. 11) One H2.5A Simpson Strong-Tie connectors NOTES BRACING recommended to connect truss to bearing walls due to TOP CHORD Unbalanced roof live loads have been considered for Structural wood sheathing directly applied or 1) UPLIFT at jt(s) 21, 12, and 22. This connection is for this design. 5-3-2 oc purlins, except end verticals, and uplift only and does not consider lateral forces. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2-0-0 oc purlins (6-0-0 max.): 3-7. 2) 12) This truss is designed in accordance with the 2018 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc International Residential Code sections R502.11.1 and Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior bracing, Except:

zone and C-C Exterior(2E) 5-1-12 to 10-2-14, Exterior

(2R) 10-2-14 to 24-6-7, Interior (1) 24-6-7 to 31-1-12,

51-8-6, Exterior(2E) 51-8-6 to 56-9-8 zone; cantilever

exposed;C-C for members and forces & MWFRS for

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

Provide adequate drainage to prevent water ponding.

All plates are 4x5 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

overhangs non-concurrent with other live loads.

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Exterior(2R) 31-1-12 to 45-6-9, Interior (1) 45-6-9 to

left and right exposed ; end vertical left and right

reactions shown; Lumber DOL=1.60 plate grip

R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DOL=1.60

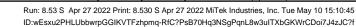
design.

Cs=1.00; Ct=1.10

3)

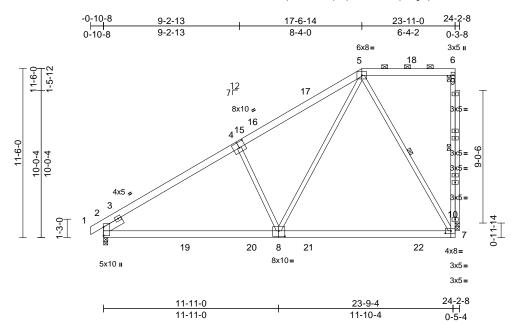
4)

5)


6)

7)

8)



Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	C01	Piggyback Base	3	1	Job Reference (optional)	151868721

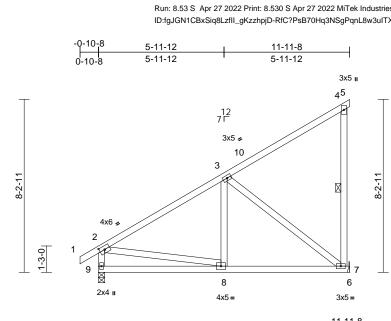
Page: 1

Scale = 1:78.4 Plate Offsets (X, Y): [4:0-5-0,0-4-8], [7:0-4-8,0-2-0], [8:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.26	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.40	7-8	>717	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.72	Horz(CT)	-0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								FT 000/
BCDL	10.0											Weight: 199 lb	FI = 20%
LUMBER			3) TCLL: ASCE	E 7-16; Pr=20.0 psi	f (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x6 SP No.2				1.15); Pf=20.0 psf (
BOT CHORD					Is=1.0; Rough Cat								
VEBS	2x4 SP No.2 *Excep	t* 4-8:2x4 SP No.3		Cs=1.00; Ct			• *						
OTHERS	2x4 SP No.3		4) Unbalanced	snow loads have l	been cor	sidered for t	his					
SLIDER	Left 2x6 SP No.2 7	eft 2x6 SP No.2 1-6-0 design.											
BRACING		5) This truss has been designed for greater of min roof live											
OP CHORD	RD Structural wood sheathing directly applied or load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on												
01 0110112	5-8-0 oc purlins, except end verticals, and overhangs non-concurrent with other live loads.												
	2-0-0 oc purlins (6-0-0 max.): 5-6. 6) Provide adequate drainage to prevent water ponding.												
BOT CHORD		tigid ceiling directly applied or 10-0-0 oc 7) This truss has been designed for a 10.0 psf bottom											
	bracing.	bracing. chord live load nonconcurrent with any other live loads.											
VEBS	1 Row at midpt	6-7, 5-7	8	,	has been designed			0psf					
EACTIONS	(lb/size) 2=1004/0	-3-8, 10=950/0-3-8			m chord in all area								
	Max Horiz 2=396 (LC				by 2-00-00 wide wi								
	Max Uplift 2=-107 (L		11)		ny other members,								
	Max Grav 2=1246 (L				pint(s) 10 considers			Je					
ORCES	(lb) - Maximum Com	<i>y</i> .	,	using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.									
ONOLO	Tension	pression/maximum			Simpson Strong-Ti								
OP CHORD)/232 5-6=-159/164			ed to connect truss			to					
	7-10=-90/1109, 6-10		,		(s) 2 and 10. This								11.
BOT CHORD	,				es not consider late							A LINE	Dille
VEBS	5-8=-164/1246, 5-7=	-1011/183. 4-8=-59	7/313 1		designed in accord							THUA	ROIL
NOTES	,.	,		,	Residential Code			and		1	20	ON SESS	in Alle
	ed roof live loads have	heen considered for	r	R802.10.2 a	nd referenced star	dard AN	ISI/TPI 1.				123	1. rott	Winn
	Unbalanced roof live loads have been considered for this design.				urlin representation	does no	ot depict the	size			V V		11: 2
0	 CE 7-16; Vult=130mph			ation of the purlin a					-				
	Bmph; TCDL=6.0psf; B	bottom chord.											
	n B. Enclosed: MWFR		LOAD CASE(S) Standard							• •			

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-6-5, Interior (1) 2-6-5 to 14-2-1, Exterior(2R) 14-2-1 to 20-11-11, Interior (1) 20-11-11 to 23-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK		
22020129	D01	Monopitch	7	1	Job Reference (optional)	151868722	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:45 ID:fgJGN1CBxSiq8LzfII_gKzzhpjD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

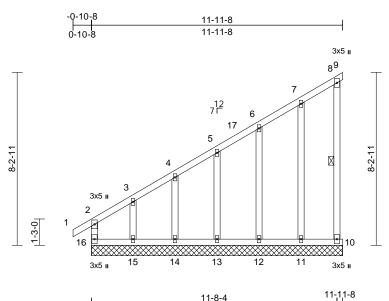
Page: 1

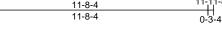
5-11-12 11-8-4 5-11-12 5-8-8

Scale = 1:54.9

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

	, , , , , , , , , , , , , , , , , , ,	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.34 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt Ib/Size) 7=481/ M. Aax Horiz 9=288 (LC Aax Uplift 7=-126 (L Aax Grav 7=634 (LC (Ib) - Maximum Com Tension 1-2=0/31, 2-3=-559/ 4-5=-13/0, 4-7=-264 8-9=-277/261, 7-8=- 3-8=0/233, 3-7=-510	cept end verticals. applied or 10-0-0 oc 4-7 echanical, 9=525/0-3 C 11) C 14), 9=-43 (LC 14 C 21), 9=561 (LC 21) pression/Maximum 107, 3-4=-186/106, /64, 2-9=-508/151 101/419, 6-7=0/0	2 3-8))))) 10	load of 12.0 overhangs n This truss ha chord live loo * This truss l on the bottoo 3-06-00 tall l chord and ad Refer to gird Provide med bearing plate joint 7. One H2.5A s recommend UPLIFT at jt does not cor D) This truss is International	as been designed psf or 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr ishanical connection e capable of withsi Simpson Strong-T ed to connect trus: (s) 9. This connect sider lateral force designed in accor Residential Code nd referenced star Standard	ilat roof le n other lin for a 10.1 with any d for a liv is where ill fit betv uss conre n (by oth tanding 1 ie conne s to bear tion is fo s. dance w sections	bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 26 lb uplift a ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a	ads. Opsf com to t t t t t t					
Vasd=103rr Cat. II; Exp zone and C 2-1-8 to 8-1 cantilever le right expose for reactions DOL=1.60	E 7-16; Vult=130mph ph; TCDL=6.0psf; Bi B; Enclosed; MWFR -C Exterior(2E) -0-10 1-8, Exterior(2E) 8-1 fit and right exposed ad;C-C for members s shown; Lumber DO E 7-16; Pr=20.0 psf (CDL=6.0psf; h=25ft; S (envelope) exterio I-8 to 2-1-8, Interior (1-8 to 11-11-8 zone; ; end vertical left and and forces & MWFR DL=1.60 plate grip	r (1) d S							0	Lui	SEA 4584	Carptine L


- 2) TCLL: ASCE 7-16; Pf=20.0 pst (root LL: Lum DOL=1. Plate DOL=1.15); Pf=20.0 pst (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	151868723

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:46 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

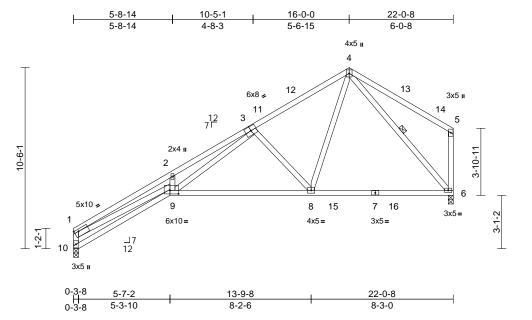
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	-0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 84 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	
WEBS	2x4 SP N 2x4 SP N	
OTHERS	2x4 SP N 2x4 SP N	
• • • • • • •	284 SF IN	0.5
BRACING	0	lease of the state
TOP CHORD		I wood sheathing directly applied or
		ourlins, except end verticals.
BOT CHORD	bracing.	ing directly applied or 10-0-0 oc
WEBS	1 Row at	•
REACTIONS	(lb/size)	9=12/11-11-8, 10=57/11-11-8, 11=156/11-11-8, 12=156/11-11-8, 13=154/11-11-8, 14=158/11-11-8, 15=141/11-11-8, 16=135/11-11-8
	Max Horiz	16=280 (LC 11)
	Max Uplift	9=-82 (LC 14), 10=-146 (LC 13), 11=-53 (LC 14), 12=-46 (LC 14), 13=-58 (LC 14), 14=-14 (LC 14), 15=-199 (LC 14), 16=-96 (LC 10)
	Max Grav	9=93 (LC 13), 10=144 (LC 10), 11=232 (LC 21), 12=223 (LC 21), 13=165 (LC 24), 14=158 (LC 1), 15=237 (LC 24), 16=256 (LC 29)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	3-4=-184/	9/75, 1-2=0/30, 2-3=-259/166, /120, 4-5=-170/109, 5-6=-154/98, /99, 7-8=-109/117, 8-9=-87/66, 5/105
BOT CHORD	15-16=-1 13-14=-1	15/144, 14-15=-115/144, 15/144, 12-13=-115/144, 15/144, 10-11=-115/144
WEBS	5-13=-124	4/105, 4-14=-119/83, 7/205, 6-12=-185/118, 7-11=-193/57
NOTES		

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-12, Exterior (2N) 1-11-12 to 11-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 7)
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 16, 82 lb uplift at joint 9, 146 lb uplift at joint 10, 58 lb uplift at joint 13, 14 lb uplift at joint 14, 199 lb uplift at joint 15, 46 lb uplift at joint 12 and 53 lb uplift at joint 11.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

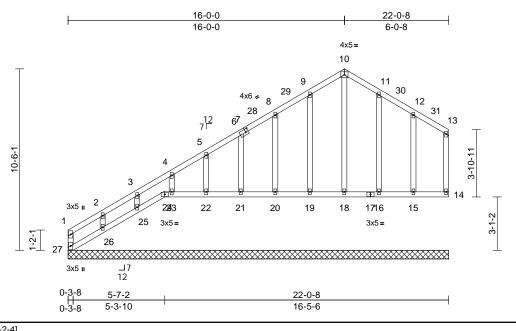
Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	E01	Roof Special	7	1	Job Reference (optional)	151868724

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:46 ID:0AA0YMgemRcHJKS94?AqQBzhpic-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.9 Plate Offsets (X, Y): [1:0-3-0.0-1-8], [9:0-6-0.0-2-8]

Plate Offsets	(X, Y): [1:0-3-0,0-1-8],	[9:0-6-0,0-2-8]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.80 1.00 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.67 0.37	(loc) 8-9 8-9 6	l/defl >746 >388 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2.0E 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 3-2-2 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 6=870/0-3 Max Horiz 10=276 (I Max Uplift 6=-102 (L Max Grav 6=1023 (I (lb) - Maximum Com Tension 1-10=-1134/253, 1-2 2-4=-4834/982, 4-5=	t* 9-1,9-3:2x4 SP No athing directly applied cept end verticals. applied or 1-4-12 oc 4-6 3-8, 10=870/0-3-8 .C 11) C 14), 10=-81 (LC 14 .C 23), 10=990 (LC 2 gpression/Maximum 2=-4869/845, -:194/148, 5-6=-287/ -:287/1632, 6-8=-36/6 -:209/179,	.2 4) d or 5) 6) 7) () (3) 8) 117 9) 582	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an Bearing at jo using ANSI/ designer sho One H2.5A S recommende UPLIFT at jt(only and dee This truss is International	snow loads have to as been designed f ad nonconcurrent has been designed in chord in all areas by 2-00-00 wide wi by other members, int(s) 10 considers FPI 1 angle to grain uld verify capacity Simpson Strong-Ti- ad to connect truss s) 10 and 6. This des is not consider late designed in accorr Residential Code and referenced star	(Lum DC B; Fully been cor- or a 10. with any l for a liv s where ll fit bett with BC s paralle n formul of bear e conne to bear connections and core dance w sections	DL=1.15 Plate Exp.; Ce=0. Insidered for t 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps I to grain valu a. Building ing surface. ctors ing walls due on is for uplif es. ith the 2018 \$ R502.11.1 a	e 9; his ads. Opsf to f. Je to ft			Lunt		ROLIN	
this desig 2) Wind: AS Vasd=10 Cat. II; Ex zone and 3-1-12 to Exterior(2 and right exposed;	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br cp B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 13-0-0, Exterior(2R) 13 2E) 18-10-12 to 21-10-1 exposed; end vertical C-C for members and fr shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Interior (3-0-0 to 18-10-12, 2 zone; cantilever lef eft and right orces & MWFRS for	1)							U	EX.	SEA 4584	HA SULLING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Ma

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	E02	Roof Special Supported Gable	1	1	Job Reference (optional)	151868725

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:46 ID:rgAQfUnjKO4NkJvevcJ9cNzhphB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7 Plate Offsets (X, Y): [6:0-1-12,0-2-4]

Plate Offsets (X, Y): [6:0-1-12,0-2	-4]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 ' 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-MR	0.30 0.19 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, e	neathing directly applie except end verticals. tly applied or 10-0-0 oc 24-25.	B d or	OT CHORD	 RD 1-27=-185/123, 1-2=-276/217, 2-3=-203/162, 3-4=-186/153, 4-5=-164/134, 5-6=-151/130, 6-8=-137/126, 8-9=-124/131, 9-10=-137/174, 10-11=-137/174, 11-12=-110/130, 12-13=-87/98, 13-14=-80/70 RD 26-27=-100/77, 25-26=-67/70, 24-25=-73/60, 23-24=-53/51, 22-23=-53/51, 21-22=-53/51, 20-21=-53/51, 19-20=-53/51, 18-19=-53/51, 16-18=-53/51, 15-16=-53/51, 14-15=-53/51 10-18=-123/72, 5-22=-121/71, 4-23=-126/78, 3-25=-115/51, 2-26=-183/163, 					aced aga able stude is truss h ord live lo This truss the botto 06-00 tall ord and a ovide me earing pla	inst late s space bas bee bad not has be bom cho by 2-0 any oth echanic te capa	eral movement (ad at 2-0-0 oc. an designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit er members. al connection (bj able of withstand	e face or securely i.e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom y others) of truss to ing 32 lb uplift at joint uplift at joint 26.	
REACTIONS	16=160 19=161 21=155 23=149 25=151 27=57/2 Max Uplift 14=-50 16=-52 19=-49 21=-49 23=-53 25=-4 (I	(LC 11) (LC 14), 15=-41 (LC 15 (LC 15), 18=-10 (LC 13 (LC 14), 20=-50 (LC 14 (LC 14), 22=-47 (LC 14 (LC 14), 24=-32 (LC 13 LC 14), 26=-230 (LC 14	5, N 6, 1 5), 2 5), 4), 4), 3),	 11-16=-205/72, 12-15=-187/78 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=-25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 13-0-0, Exterior(2R) 13-0-0 to 18-10-12, Exterior(2E) 18-10-12 to 21-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 					 13) N/A 14) Beveled plate or shim required to provide full bearin surface with truss chord at joint(s) 24, 14, 18, 19, 20 22, 23, 25, 26, 16, 15. 					
	Max Grav 14=68 (16=243 19=245 21=162 23=155 25=151	 27=-183 (LC 12) 14=68 (LC 21), 15=227 (LC 21), 16=243 (LC 20), 20=219 (LC 20), 21=162 (LC 23), 22=161 (LC 23), 23=155 (LC 23), 24=34 (LC 10), 25=151 (LC 1), 26=282 (LC 23), 27=292 (LC 11) IDUE=1.00 ITruss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 										SEA 458	EEFR. ON INTERNAL	
FORCES		mpression/Maximum	5) 6) 7)) Unbalanced design.) All plates ar	t=1.10 I snow loads have b re 2x4 MT20 unless ires continuous both	otherwi	se indicated.	iis					E.E.I. OT	

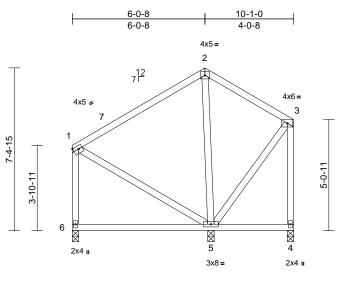
mm May 11,2022

(Continued on page 2
	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	E02	Roof Special Supported Gable	1	1	Job Reference (optional)	151868725

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:46 ID:rgAQfUnjKO4NkJvevcJ9cNzhphB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

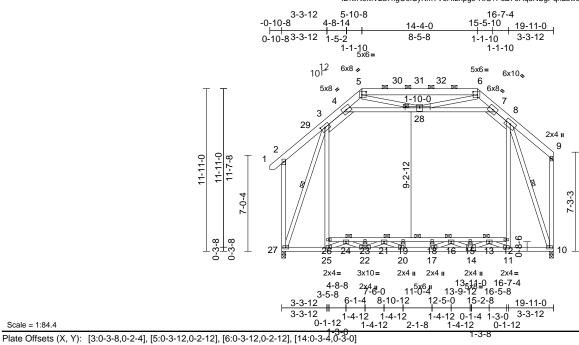
Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	F01	Common	3	1	Job Reference (optional)	151868726

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:46 ID:83UDOfsHl8rKoauzUUuAOszHwvY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52.5 Plate Offsets (X, Y): [1:Edge,0-1-12]

- 1010 0110010 ((,,, ,): [::=ago,o : :=												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.28 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.00	(loc) 5-6 5-6 4	l/defl >999 >951 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or 3-8, 5=395/0-3-8, 3-8 C 11) C 15), 5=-19 (LC 14), C 14) C 21), 5=410 (LC 20	ed or ^d	 Plate DOL=² DOL=1.15); Cs=1.00; Cs Unbalancet design. This truss ha chord live los * This truss I on the botto 3-06-00 tall I chord and ai One H2.5A S recommended UPLIFT at jt only and doc This truss is 	7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10; Rough Cat =1.10 snow loads have t as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi hy other members. Simpson Strong-Tie ed to connect truss (s) 6, 4, and 5. This as not consider late designed in accord Residential Code	(Lum DC B; Fully been cor for a 10. with any l for a liv s where ll fit betw e conne s to bear s conner eral force dance w	DL=1.15 Plate Exp.; Ce=0. Insidered for t D psf bottom other live los e load of 20. a rectangle veen the bott ctors ing walls due tion is for up ss.	e 9; his ads. 0psf om e to					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-164/100, 2-3=- 3-4=-186/54 5-6=-196/188, 4-5=- 2-5=-328/61, 1-5=-1	104/116, 1-6=-254/8 74/82 15/114, 3-5=-108/10	85, 08	R802.10.2 a _OAD CASE(S)	nd referenced stan Standard	ndard AN	ISI/TPI 1.			/	1	OR HESS	ROLIN
this design 2) Wind: ASC Vasd=103	Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior									U	M	SEA	• •

zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior (2R) 3-1-12 to 6-11-4, Exterior(2E) 6-11-4 to 9-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


ANNI MARTIN All Marine 45844 mun May 11,2022

818 Soundside Road Edenton, NC 27932

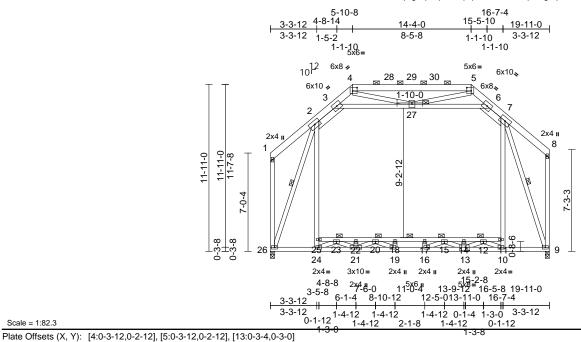
Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	G01	Attic	3	1	Job Reference (optional)	151868727

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:47 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.4

	A, T). [3.0-3-6,0-2-4],	[5.0-5-12,0-2-12], [0	.0-3-12,0-2-1	2], [14.0-3	+,0-0-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.73 0.96 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.23 -0.38 0.06 -0.20	18-19 10	l/defl >999 >624 n/a >795	L/d 240 180 n/a 360	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		t* 3-25,8-11,4-7:2x4 No.2 athing directly applied cept end verticals, an	SP d or	8 7 1 1 2 1 1	25-26=0/858, 3-26= 25-26=0/858, 3-26= 3-12=0/1031, 8-10 7-28=-539/493, 3-2 11-13=-1440/0, 24- 13-14=0/1093, 22-2 22-23=-160/0, 14-1 16-17=-15/617, 20- 19-20=-197/0, 6-28	1624/3 7=-1603 25=-143 24=0/11 6=-893, 21=0/5	31, 4-28=-502 8/59, 59/0, 25, 14-15=-1 /0, 21-22=-86 90, 17-18=-20	2/547, 92/0, 67/0, 04/0,	7-24 11) Bot cho 23- 12) This Inte R80	8; Wall tom cho rd dead 24, 21-2 s truss is rnationa 02.10.2 a	dead lo rd live load (5 3, 19-2 s desig al Resio and ref	bad (5.0psf) on m 5.0 psf) applied o 21, 18-19, 16-18, ned in accordanc dential Code sect erenced standard	tions R502.11.1 and d ANSI/TPI 1.
BOT CHORD	Rigid ceiling directly bracing. Except: 2-10-0 oc bracing: 1 3-9-0 oc bracing: 21 3-11-0 oc bracing: 1 10-0-0 oc bracing: 2	6-21 -24 3-16	2) V	nis design. Vind: ASCE ′asd=103mp Cat. II; Exp E	roof live loads have 7-16; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-8	h (3-seo 3CDL=6 RS (env	cond gust) 6.0psf; h=25ft elope) exterio	i; or	or t bott	he orien tom choi c room c	tation o rd. checke	of the purlin along d for L/360 deflec	
	1 Row at midpt 1 Brace at Jt(s): 13, 24, 16, 21, 28 (lb/size) 10=1138// Max Horiz 27=358 (L	8-10, 3-27 0-3-8, 27=1189/0-3-8 _C 13)	2 c r f E 2) 7	-3-11 to 16- antilever lef ght exposed or reactions OOL=1.60	7-4, Exterior(2E) 1 t and right exposed d;C-C for members shown; Lumber D(7-16; Pr=20.0 psf	6-7-4 to 1 ; end v and for DL=1.60	9 19-9-4 zone vertical left ar ces & MWFF) plate grip	e; nd RS					
FORCES	Max Grav 10=1500 (Ib) - Maximum Com Tension		5 ⁴⁶⁾ F	late DOL=1 00L=1.15); I	.15); Pf=20.0 psf (l ls=1.0; Rough Cat	Lum DC	L=1.15 Plate	Э			. 9	THCA	RO
TOP CHORD	1-2=0/52, 2-3=-314/2	-983/117, 6-7=-973/3	4) L 339, c ^{254,} 5) T	esign. 'his truss ha	snow loads have b is been designed fo	or great	er of min roof	f live		C	ł.	of the so	Bunnin
BOT CHORD	25-27=-91/548, 22-2	D=0/3867, 11-17=0/3 26=-95/227, 23=-2165/0, 9=-3446/0, 6=-2115/0,	346, 6) F 7) <i>F</i> 8) T 6 9) *	verhangs no provide adec Il plates are his truss ha hord live loa This truss h n the botton -06-00 tall b	psf or 1.00 times fla on-concurrent with quate drainage to p a 3x5 MT20 unless is been designed fi ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members.	other liv revent otherwi or a 10.0 vith any for a liv	ve loads. water ponding se indicated.) psf bottom other live loa e load of 20.0 a rectangle	g. ads. Opsf		THUNKY	N. N	SEA 4584 SNGIN SNGIN	EEP. ON


May 11,2022

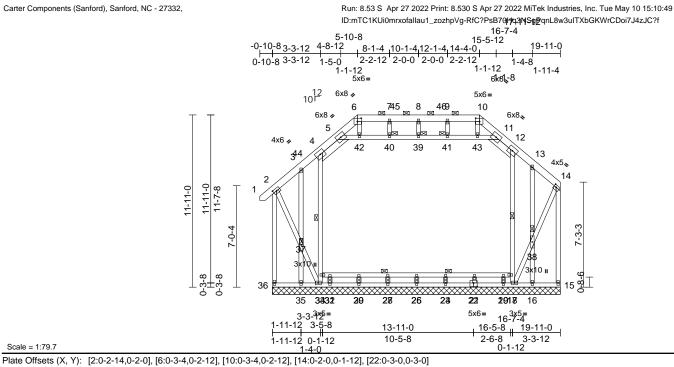
Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	G02	Attic	6	1	Job Reference (optional)	151868728

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:48 ID:PwMtYSc3X5EpzgXspX1pmRzhpep-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.3

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2], [0:0 0 12,0 2 12],	1.000 0 1,0	0.0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.96 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.38 0.06	(loc) 17-18 17-18 9 11-25	l/defl >999 >623 n/a >795	L/d 240 180 n/a 360	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep No.2, 2-3,6-7:2x6 SF Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (4-1 Rigid ceiling directly	t* 2-24,7-10,3-6:2x4 P No.2 athing directly applie cept end verticals, ar 0-14 max.): 4-5.	SP d or nd NO	TES Unbalanced	24-25=0/857, 2-25 7-11=0/1031, 7-9= 6-27=-542/490, 2-2 10-12=-1440/0, 23 12-13=0/1093, 21- 21-22=-160/0, 13-1 15-16=-10/618, 19 18-19=-197/0, 4-27 roof live loads hav	-1622/7 26=-1592 -24=-149 23=0/11 5=-894/ -20=0/58 7=-193/3	l, 3-27=-501/ 2/70, 59/0, 25, 13-14=-1 '0, 20-21=-86 36, 16-17=-20 99, 5-27=-20	/546, 92/0, 67/0, 04/0, 03/406	cho 22- 11) This Inte R80 12) Gra or t bott 13) Atti	rd dead 23, 20-2 s truss is rnationa 02.10.2 a phical p he orien tom choi c room c	load (2, 18-2 s desig al Resid and ref urlin re tation o rd. checke	load (40.0 psf) an 5.0 psf) applied o 20, 17-18, 15-17, ned in accordanc dential Code sect erenced standar, epresentation doo of the purlin along d for L/360 deflect	nd additional bottom only to room. 23-25, 14-15, 12-14, 11-12 ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or
WEBS JOINTS REACTIONS	bracing. Except: 2-10-0 oc bracing: 19 3-9-0 oc bracing: 20 3-11-0 oc bracing: 11 10-0-0 oc bracing: 12 1 Row at midpt 1 Brace at Jt(s): 12, 23, 15, 20, 27	5-20 -23 2-15 3-25, 11-12 7-9, 2-26 3-8, 26=1138/0-3-8 C 11) C 45), 26=1506 (LC pression/Maximum 660/144, 3-4=-1003/ 972/342, 6-7=-662/1- -382/233, 8-9=-352/ 4=0/1655, 9=0/3868, 10-16=0/3 =-98/223, 2=-2166/0, 8=-3446/0, 5=-2114/0,	2) 45) 3) 343, 4) 47, 5) 346, 7) 8) 9)	Vasd=103m Cat. II; Exp f zone and C- (2R) 3-3-12 zone; cantile and right exp MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. Provide ader All plates are chord live lot * This truss ha chord live lot * This truss la on the botton 3-06-00 tall I chord and an Ceiling dead	7-16; Pr=20.0 psf I.15); Pf=20.0 psf (Is=1.0; Rough Cat	BCDL=6 RS (envi- 12 to 3- 22E) 16-1- xposed bers an umber I (roof LL Lum DC B; Fully been cor or en 10.0 vith any for a liv s where Il fit betw nember(.0psf; h=25ft elope) exterio 3-12, Exterio 3-12, Exterio 4 or 19-9-4 end vertical d forces & DOL=1.60 pla :: Lum DOL= UL=1.15 Plate Exp.; Ce=0.5 asidered for the water ponding se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottw (s). 2-3, 6-7, 5	or r left 1.15 9; his g. dds. 0psf om 3-27,	LOAD	(I.	NORTESS SEA 4584	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	G03	Attic Supported Gable	1	1	Job Reference (optional)	151868729

Scale = 1:79.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.14 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	4-5,11-12: 2x4 SP No Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. I 6-0-0 oc b	5.2 5.3 *Excep 22x6 SP No 5.3 wood shea ourlins, exc ourlins (6-0 ng directly Except: oracing: 18	athing directly applie cept end verticals, ar -0 max.): 6-10. applied or 10-0-0 oc -33	BOT CHORD d or nd	3-4=-169/237, 4-5 6-7=-903/244, 7-8 9-10=-903/244, 10 11-12=-370/249, 1 13-14=-179/193, 1	=-366/24 =-903/24 0-11=-10 12-13=-1 14-15=-3 34-35=-3 30-32=-1 20-24=-1 20-24=-1 16-17=-9 1-33=-4/1 7=-4/11,	I9, 5-6=-995/2 14, 8-9=-903/2 02/267, 76/230, 70/264 00/262, 88/143, 88/143, 88/143, 88/143, 88/143, 5/115, 1, 29-31=-4/1 23-25=-4/11,	67, 44,	Vas Cat zor 2-3 (2N Con righ for Lur 3) Tru only see	d=103m II; Exp e and C -11 to 2- 0 8-10-8 ner(3E) tt expose member Do uss desig y. For st Standa	nph; TC B; Enc -C Cor 10-8, C to 11 16-7-4 ed; enc s and f L=1.60 gned fo tuds ex rd Indu	closed; MWFRS (iner(3E) -0-8-5 to Corner(3R) 2-10- 4-0, Corner(3R) to 19-9-4 zone; d vertical left and forces & MWFRS 0 plate grip DOL= bor wind loads in to posed to wind (n istry Gable End I	DL=6.0psf; h=25ft; (envelope) exterior 2-3-11, Exterior(2N) 8 to 8-10-8, Exterior 11-4-0 to 16-7-4, cantilever left and right exposed;C-C for reactions shown; 1.60 he plane of the truss iormal to the face), Details as applicable,
WEBS JOINTS REACTIONS	. ,	t Jt(s): 37, 9, 41 15=280/19 17=206/19 22=77/19- 26=78/19- 30=77/19-	9-11-0, 16=84/19-11 9-11-0, 20=73/19-11 -11-0, 24=77/19-11-(11-0, 28=77/19-11-(-11-0, 32=71/19-11-(9-11-0, 35=103/19-1	-0,),),),	3-37=-97/79, 31-3 27-28=-115/0, 25- 21-22=-119/0, 19- 5-42=-169/773, 40 39-40=-173/792, 3 41-43=-173/792, 1 33-34=-454/145, 4 17-18=-409/116, 1 7-40=-94/29, 9-41	29-30=-119/0 /0, 23-24=-110 /0, 16-38=-112 3/792, 73/792, 67/772, 2/147, 17/116, 8-39= 2-37=-290/33	5/0, 2/81, -9/1,	 or consult qualified building designer as per AN 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum D Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Cr Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered design. 					
	Max Grav	36=329 (L 15=-280 (L 17=-225 (35=-29 (L 15=407 (L 17=321 (L 22=238 (L 26=234 (L 30=239 (L	C 13) LC 11), 16=-39 (LC LC 10), 34=-366 (LC C 14), 36=-287 (LC C 47), 16=218 (LC 4 C 50), 20=202 (LC 2 C 21), 24=229 (LC 2 C 21), 28=230 (LC 2 C 21), 32=194 (LC 2 C 48), 35=194 (LC 3	: 11), NOTES 10) 1) Unbalance 50), this design 21), 21), 21), 21),	34-37=-340/389, 1 14-38=-286/331, 3 13-38=-136/88, 6- ed roof live loads hav n.	35-37=-1 42=-53/1	42/78, 58, 10-43=-53				T	SEA 4584	L H4 OHNSTITUTION
FORCES			pression/Maximum								11	REW J	OHNSIII

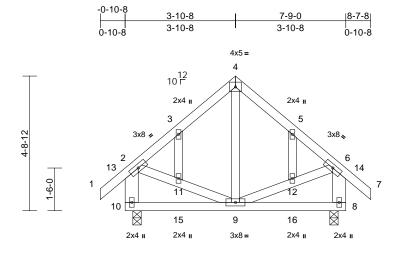
May 11,2022

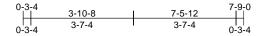
Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	15 (000 700
22020129	G03	Attic Supported Gable	1	1	Job Reference (optional)	151868729

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 4-5, 11-12, 5-42, 40-42, 39-40, 39-41, 41-43, 11-43; Wall dead load (5.0psf) on member(s).33-34, 4-33, 17-18, 12-18
- 15) N/A
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:49 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	H01	Common	1	1	Job Reference (optional)	151868730

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:49 ID:odQRt_LKkd3VzU9QYSTuUUzhpTY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

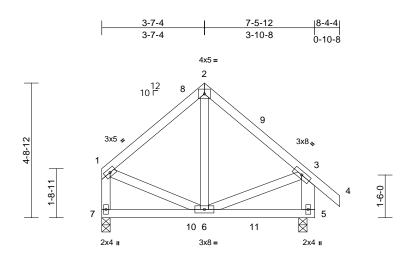
Scale = 1:40.5	40.5	1	=	Scale	
----------------	------	---	---	-------	--

					1		· · · ·						
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	0.01	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.01	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 58 lb	FT = 20%
LUMBER			3)	Truss desig	ned for wind loads	s in the n	lane of the tri	221					
TOP CHORD	2x4 SP No.2		0)		uds exposed to wi								
BOT CHORD	2x4 SP No.2				d Industry Gable E	· ·							
WEBS	2x4 SP No.3 *Except	* 10-2.8-6:2x6 SP N	0.2	or consult q	ualified building de	signer a	s per ANSI/T	PI 1.					
OTHERS	2x4 SP No.3	,	4)	TCLL: ASCI	E 7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
BRACING				Plate DOL=	1.15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate	Э					
TOP CHORD	Structural wood shea	athing directly applied	lor	· · ·	Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
	6-0-0 oc purlins, exc			Cs=1.00; Ct									
BOT CHORD	Rigid ceiling directly a		5)		snow loads have	been co	nsidered for t	his					
	bracing.			design.									
REACTIONS	(lb/size) 8=347/0-3-	-8, 10=347/0-3-8	6)		as been designed								
	Max Horiz 10=-135 (L	,			psf or 1.00 times f			ston					
	Max Uplift 8=-36 (LC	,		0	ion-concurrent with								
	Max Grav 8=462 (LC	,, (,) /)		fully sheathed from								
FORCES	(lb) - Maximum Comp	,. ·	, 8)		nst lateral moveme spaced at 2-0-0 o		liagonal web)).					
IONOLO	Tension	pression/maximum	o) 9)		as been designed		and hottom						
TOP CHORD	1-2=0/53, 2-3=-289/2	266 3-4=-204/303	9)		ad nonconcurrent			ade					
	4-5=-204/303, 5-6=-2		10		has been designed								
	2-10=-428/319, 6-8=-		10		m chord in all area			0001					
BOT CHORD	9-10=-120/133, 8-9=-	-19/61			by 2-00-00 wide w		0	om					
WEBS	4-9=-252/105, 2-11=-		26.		ny other members								
	9-12=-52/126, 6-12=-	,	,		Simpson Strong-T		ctors					SOUTH	1155
	5-12=-55/34				ed to connect trus			to				White CA	111
												11	

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 1-10-8, Exterior (2R) 1-10-8 to 5-10-8, Exterior(2E) 5-10-8 to 8-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- UPLIFT at jt(s) 10 and 8. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	H02	Common	3	1	Job Reference (optional)	151868731

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:50 ID:1RaY1JHdbHmaiJXEZ7Mx6jzhpSL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

					-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.41	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	-0.01	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 49 lb	FT = 20%
LUMBER			5)	This truss ha	is been designe	d for great	er of min roo	of live					
TOP CHORD	2x4 SP No.2		-,		psf or 1.00 time								
BOT CHORD	2x4 SP No.2			overhangs n	on-concurrent w	ith other liv	ve loads.						
WEBS	2x4 SP No.3 *Excep	ot* 5-3:2x6 SP No.2	6)	This truss ha	is been designe	d for a 10.0	0 psf bottom						
BRACING				chord live loa	ad nonconcurrer	nt with any	other live loa	ads.					
TOP CHORD	Structural wood she	athing directly applied	dor 7)	* This truss h	nas been design	ed for a liv	e load of 20.	.0psf					

- іу аррі 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 5=356/0-3-8, 7=279/0-3-8 Max Horiz 7=-134 (LC 10)
- Max Uplift 5=-36 (LC 15), 7=-25 (LC 10) Max Grav 5=436 (LC 22), 7=373 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-262/274, 2-3=-285/276, 3-4=0/42, 1-7=-347/280, 3-5=-408/324
- BOT CHORD 6-7=-118/123, 5-6=-23/25 WFBS 2-6=-203/97 1-6=-112/142 3-6=-37/139
- NOTES
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior (2R) 3-1-12 to 5-4-4, Exterior(2E) 5-4-4 to 8-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00. Ct=1 10
- 4) Unbalanced snow loads have been considered for this design.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Summer SEAL 45844 mm May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	H03	Common	1	1	Job Reference (optional)	151868732

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:50 ID:DqG8vucB?ulc3cgcC?sVEdzhpRv-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.01	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 48 lb	FT = 20%

	244 01 110.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 5-3:2x6 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 5=345/0-3-8, 7=268/0-3-8
	Max Horiz 7=-137 (LC 12)
	Max Uplift 5=-35 (LC 15), 7=-29 (LC 10)
	Max Grav 5=411 (LC 22), 7=353 (LC 21)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-239/267, 2-3=-264/259, 3-4=0/42,
	1-7=-330/280, 3-5=-382/311
BOT CHORD	6-7=-117/124, 5-6=-23/25
WEBS	2-6=-193/87, 1-6=-112/134, 3-6=-37/129

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-0 to 3-7-4, Exterior(2R) 3-7-4 to 5-4-4, Exterior(2E) 5-4-4 to 8-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00. Ct=1 10
- 4) Unbalanced snow loads have been considered for this design.

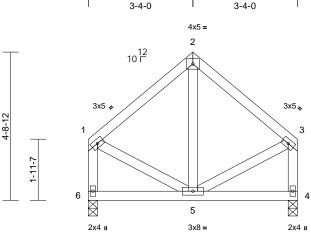
- overhangs non-concurrent with other live loa 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MILLIN CAR Summing . SEAL 45844 JOY mm May 11,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

or

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	H04	Common	2	1	Job Reference (optional)	151868733


3-4-0

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:50 ID:pX6RsgnziB3dlmlI0x6npazhpRh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-0

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 44 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 4=255/0-3-8, 6=255/0-3-8
	Max Horiz 6=-122 (LC 10)
	Max Uplift 4=-28 (LC 11), 6=-28 (LC 10)
	Max Grav 4=321 (LC 21), 6=321 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-213/235, 2-3=-213/235, 1-6=-296/248,
	3-4=-296/248
BOT CHORD	5-6=-114/109, 4-5=-29/32
WEBS	2-5=-157/70, 1-5=-80/117, 3-5=-80/117
NOTES	

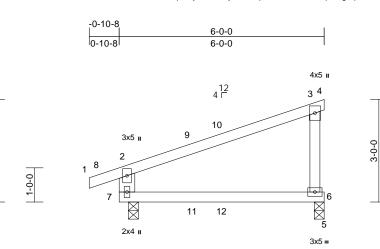
Scale - 1:36 7

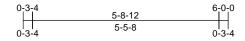
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	J01	Monopitch	6	1	Job Reference (optional)	151868734

3-0-0

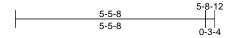
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:50 ID:H_CEdq?GTjK3vX7m4jR0XNzhpRP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.75	DEFL Vert(LL)	in 0.09	(loc) 6-7	I/defl >714	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.35	. ,	0.08	6-7	>879	180	101120	244/130
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	· · ·	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	4 Matrix-MR								
BCDL	10.0				-						Weight: 25 lb	FT = 20%
LUMBER				uss has been designed								
TOP CHORD				ive load nonconcurrer								
BOT CHORD		** 7 0 0 0 0 0 0	· · ·	russ has been design bottom chord in all are			st					
WEBS	2x4 SP No.3 *Excep	ot* 7-2:2x6 SP No.2		0 tall by 2-00-00 wide								
BRACING	Structural wood obc	othing directly appli	obord	and any other member		ween the bottom	•					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex			2.5A Simpson Strong-		ctors						
BOT CHORD				mended to connect tru								
	bracing.		UPLIF	T at jt(s) 6 and 7. This		n is for uplift onl	ly					
REACTIONS	•	3-8, 7=292/0-3-8		es not consider latera		"th the 2019						
	Max Horiz 7=109 (Le	,		uss is designed in acco tional Residential Coc			4					
	Max Uplift 6=-92 (LC	C 10), 7=-116 (LC 10		0.2 and referenced st			•					
	Max Grav 6=322 (L	C 21), 7=395 (LC 21	1)	SE(S) Standard								
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD		130, 3-4=-8/0,										
	3-6=-239/164, 2-7=-											
BOT CHORD	6-7=-96/95, 5-6=0/0											
NOTES												
	CE 7-16; Vult=130mph											
	3mph; TCDL=6.0psf; B											
	C-C Exterior(2E) -0-10											in the second se
	-0-0, Exterior(2E) 3-0-1		(')								TH CA	ROUL
	left and right exposed		nd							~	A Aci	Sin VIA 11
	sed; porch left and rig									R -	a and	Minan
	and forces & MWFRS		ו;						U	000	in the	1. 2
	OL=1.60 plate grip DC										100	
	CE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L								=		SEA	∖L : =
	5); Is=1.0; Rough Cat E								=		458	44 : 3
Cs=1.00; (-, ·,p., 00-0.	-,							1	-50	77 - E E
	ed snow loads have be	een considered for t	his									1. 3
design.										-7	1. SNO.	-ER: 53
	has been designed fo									1	O, GIN	F.F. GUN
	2.0 psf or 1.00 times fla		st on								REWJ	OHN
overnangs	s non-concurrent with	uner live loads.									JANK J	U. A.

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this
- 3) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932


mun

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	J02	Monopitch Girder	1	2	Job Reference (optional)	151868735

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:51 ID:pKhjZ7PzisUOMc86V9WINKzhpQu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-8-12 3x5 II 12 4 Г 2 ³ 2x4 🛛 3-0-0 3-0-0 1 P 1-1-1 0 0 6 ΠΠ 5 \mathbb{Z} \bigotimes 7 8 4 2x4 II 3x5 II LUS26 LUS26

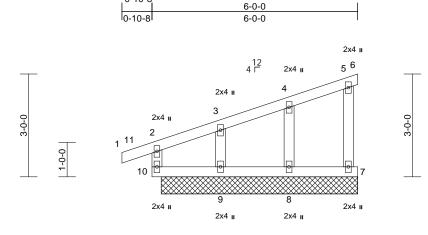
Scale = 1:33.1

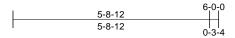
Scale = 1.55.1										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCDL 10.0 BCDL 10.0 LUMBER 10.0 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= 5) Unbalanced design.	snow loads have been	6 Vert(CT) Horz(CT) LL: Lum DOL= DOL=1.15 Plate Ily Exp.; Ce=0.	e 9;	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
5-8-12 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc -8, 6=533/0-3-8 32) C 8), 6=-87 (LC 8) C 18), 6=607 (LC 18) pression/Maximum 70, 2-5=-225/73, 0 her as follows: 0.131"x3") nails as 0d (0.131"x3") nails as xt 0-9-0 oc. applied to all plies, xk (B) face in the LOAD ections have been hoted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior oosed; end vertical left	 6) This truss has chord live loa? 7) * This truss has not he bottor 3-06-00 tall he chord and ar 8) One H2.5A S recommendé UPLIFT at jtí and does no 9) This truss is International R802.10.2 a 10) Use Simpson Truss, Single oc max. star connect trus 11) Fill all nail he LOAD CASE(S) 1) Dead + Sne Increase=1 Uniform Lo Vert: 12-Concentrat Vert: 7=- 	ow (balanced): Lumber I .15	ny other live load live load of 20. re a rectangle etween the both nectors aring walls due ion is for uplift with the 2018 ns R502.11.1 a ANSI/TPI 1. 0d Girder, 3-11 nt spaced at 2- end to 4-0-0 to om chord.	0psf tom e to only and 0-0 o o nber.		Continue		SEA 458 VOR SEA 458	44 EER.SOLUTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 11,2022

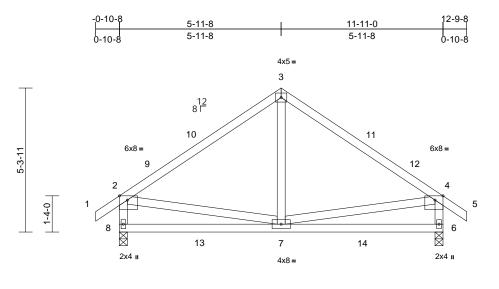
Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	J03	Monopitch Supported Gable	1	1	Job Reference (optional)	151868736


-0-10-8


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:51 ID:TeQF4DYUtY?hoS3PCgkZsszhpQi-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:33.6

Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	6 Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TP	I2014 Matri	k-MR							
BCDL	10.0				-						Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (lb/size) 6=3/5-8 8=157/5 10=138/ Max Horiz 10=106 Max Uplift 6=-28 (L 8=-24 (L 10=-23 (L 10=-23 (L 10=-21) 	(LC 11) C 10), 7=-22 (LC 11), C 10), 9=-56 (LC 14), LC 10) C 19), 7=96 (LC 21), 8 9=197 (LC 21), 10=1	on se or 3) TC Pla dor Cs 4) Ur de 5) Th loa ov 6) All 7) Tr bra 8) Ga 8)=212 82 10) * T on	y. For studs exp e Standard Indus consult qualified LL: ASCE 7-16; the DOL=1.15); P DL=1.15); Is=1.0; =1.00; Ct=1.10 balanced snow lo sign. is truss has been d of 12.0 psf or 1 erhangs non-con plates are 2x4 M uss to be fully sho ceed against later ble studs spaced is truss has been this truss has been this truss has been the bottom chord	designed for a 10 concurrent with an en designed for a l I in all areas wher	mal to the face tails as applica as per ANSI/T LL: Lum DOL= IOL=1.15 Plate by Exp.; Ce=0. considered for t ater of min root load of 20.0 p live loads. wise indicated. ace or securely diagonal web, 0.0 psf bottom y other live loa vie load of 20. e a rectangle	 adds. b), b), b), c), c), c), c), c), c), 					
FORCES	Tension 2-10=-164/127, 1-2 3-4=-51/24, 4-5=-4		ch 11) Pr	ord and any othe	-00 wide will fit be members. connection (by of le of withstanding	thers) of truss	to			1.8	TH CA	ARO
	5-7=-81/20		6.							1º	ON	No. All
BOT CHORD	,	,							- 1	1 2	· OFFT	Wing is
WEBS	4-8=-174/149, 3-9=	-100/194								w	mont	m
NOTES									ž			
Vasd=10 Cat. II; Ez zone and 2-0-0 to 6 end vertio forces &	SCE 7-16; Vult=130mp 3mph; TCDL=6.0psf; xp B; Enclosed; MWFI 6-C- Corner(3E) -0-11 6-0-0 zone; cantilever cal left and right expos MWFRS for reactions i0 plate grip DOL=1.60	CDL=6.0psf; h=25ft; RS (envelope) exterio 0-8 to 2-0-0, Exterior(2 eft and right exposed ed;C-C for members shown; Lumber	2N) ;							Number of Street	TEW J	44 EER.SON

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	L01	Common Supported Gable	5	1	Job Reference (optional)	151868737

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:51 ID:U5CzCuUcXWbZOtE48eu3mpzhpis-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:42.4

	(,,, ,). [<u>=:</u> e e e; <u>=</u> age]	[
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.30 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 6=526/0-3 Max Horiz 8=145 (L0 Max Uplift 6=-56 (L0 Max Grav 6=619 (L0 (Ib) - Maximum Con Tension 2-8=-566/356, 1-2=(3-4=-539/408, 4-5=(7-8=-173/252, 6-7=- 3-7=-284/208, 4-7=-	cept end verticals. applied or 10-0-0 od 3-8, 8=526/0-3-8 C 13) C 15), 8=-56 (LC 14) C 22), 8=619 (LC 21) apression/Maximum 0/34, 2-3=-539/408, 0/34, 4-6=-566/356 115/252	c 7) 8)) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th chord and ar One H2.5A S recommended UPLIFT at jit and does no This truss is International	snow loads have l as been designed i psf or 1.00 times f on-concurrent with as been designed i ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members. Simpson Strong-Ti ed to connect truss (s) 8 and 6. This ci t consider lateral fi designed in accor Residential Code nd referenced star Standard	for great lat roof lo o other li for a 10. with any d for a liv s where e conne s to bear onnectio orces. dance w sections	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live ads. Opsf com					
this desigr 2) Wind: ASC	ed roof live loads have n. CE 7-16; Vult=130mph mph: TCDI =6 0psf: B	(3-second gust)								\wedge	- AN	OR STATES	ROLIN

- 2) Wind: ASCE 7-10, Value (Softpin (SSECOM gust)) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

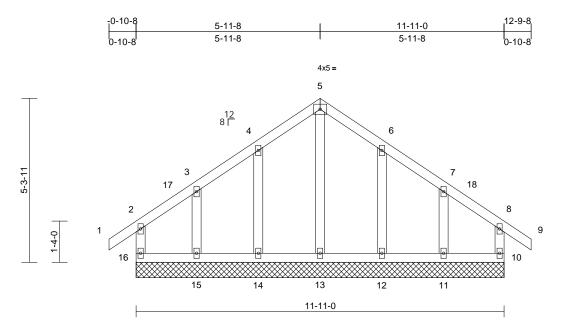
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JOY

May 11,2022

SEAL

45844


Anna anna anna

Summing .

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	L02	Common Supported Gable	1	1	Job Reference (optional)	151868738

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:52 ID:MsRT1GX6al6_tUXrNTz?wfzhpio-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scolo -	= 1:37.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.06 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 6-0-0 oc pu Rigid ceilin bracing. (Ib/size) Max Horiz Max Uplift	.2 .2 .3 .3 wood shea urlins, exc g directly 10=131/11 12=165/11 14=165/11 16=131/11 16=131/11 16=131/11 16=131/11 15=-82 (LI 10=-43 (LI 15=-82 (LI 10=143 (LI 10=143 (LI	LC 12) C 14), 11=-80 (LC 15 C 15), 14=-52 (LC 14 C 14), 16=-53 (LC 10 C 24), 11=200 (LC 2 C 22), 13=161 (LC 2 .C 21), 15=200 (LC 2	1-0, 1-0, 1-0, 1-0, 25), 4), 22), 42), 67), 6	 Vasd=103mj Cat. II; Exp B zone and C- 1-11-8 to 2-1 (2N) 8-11-8 i cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss has load of 12.0 	7-16; Vult=130r oh; TCDL=6.0ps 3; Enclosed; MW C Corner(3E) -0- 1-8, Corner(3E) -0- 1-8, Corner(3E) to 9-9-8, Corner(t and right exposid cyc-C for member shown; Lumber and for wind load d;C-C for member shown; Lumber and for wind load d;C-C for member shown; Lumber and for wind load to pose the sposed to d Industry Gable alified building c c 7-16; Pr=20.0 ps 1-15); Pf=20.0 ps 15]: 0, Rough C =1.10 snow loads have as been designed ps for 1.00 times on-concurrent w	F, BCDL=6 FRS (env 10-8 to 1- 2-11-8 to 3E) 9-9-8 sed ; end v ers and fo DOL=1.6 ds in the p vind (norm End Deta lesigner a: sof (roof Ll f (Lum DC at B; Fully e been con d for great fat roof l	.0psf; h=25ft elope) exterio 11-8, Exterio 8-11-8, Exterio to 12-9-8 zor vertical left ar cces & MWFF 0 plate grip lane of the tru al to the face ils as applica s per ANS/TI b=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 p	r(2N) rior he; hd XS Jss Jss Js Jss Js Js Js Js Js Js Js Js	Ínte	rnationa 2.10.2 a	Il Resil and ref) Sta	ned in accordani dential Code sec ierenced standar ndard	ce with the 2018 tions R502.11.1 d ANSI/TPI 1.	
FORCES	Tension 2-16=-118/ 3-4=-75/17	157, 1-2= 3, 4-5=-1 3, 7-8=-68	pression/Maximum 0/33, 2-3=-77/96, 13/248, 5-6=-113/248 8/96, 8-9=0/33,	8, 3,	 7) All plates are 8) Gable requir 8) Truss to be f braced agair 10) Gable studs 	e 2x4 MT20 unle es continuous bo ully sheathed fro ist lateral moven spaced at 2-0-0 as been designed	ss otherwi ottom chor om one fac nent (i.e. c oc.	se indicated. d bearing. e or securely iagonal web)			0	1.	ORTH CA	1 . SA 1	
BOT CHORD	15-16=-71/	68, 14-15	=-71/68, 13-14=-71/6 =-71/68, 10-11=-71/6	58, 29	chord live loa	ad nonconcurren	t with any	other live loa					SEA	L	1
WEBS	5-13=-197/ 3-15=-162/ 7-11=-162/	32, 4-14= 117, 6-12	-217/112,		on the bottor 3-06-00 tall t	nas been design n chord in all are by 2-00-00 wide ny other member	eas where will fit betw	a rectangle			THUN.		4584	14	unun
NOTES 1) Unbalance this design		ads have	been considered for		 Provide mec bearing plate 16, 46 lb upl 	hanical connecti capable of with ift at joint 10, 52 15, 53 lb uplift a	on (by oth standing 5 lb uplift at	i3 lb uplift at j joint 14, 82 ll	oint o			in Providence in	SEA 4584 SEA 4584 SEA 4584 May	E.E.R. ON OHNSON	111

- Unt alanced of live loads have been this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	PB1	Piggyback	10	1	Job Reference (optional)	151868739

TCDL

BCLL

BCDL

WEBS

NOTES

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:52 ID:wqE9XHIrfY1kw2gm2JUHo?zHvhW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-9-12 19-10-11 19-0-15 9-6-8 d-9-12 9-6-8 9-6-8 d-9-12 4x5 = 5 1<u>2</u> 7 Г 25 26 4 6 24 27 5-11-1 6-0-11 23 28 3 0-4-5 15 14 29 13 12 30 11 10 3x5 =3x5 =3x5 =19-0-15 Scale = 1:44.6 2-0-0 CSI DEFL L/d PLATES GRIP Loading (psf) Spacing in (loc) l/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Pf) BC 20.0 Lumber DOL 1 15 0.17 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 20 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 83 lb FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER 2) 14) See Standard Industry Piggyback Truss Connection Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Detail for Connection to base truss as applicable, or 2x4 SP No.2 TOP CHORD Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior consult qualified building designer. BOT CHORD 2x4 SP No.2 2x4 SP No.3 zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) OTHERS LOAD CASE(S) Standard 3-3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior BRACING (1) 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 TOP CHORD Structural wood sheathing directly applied or zone; cantilever left and right exposed ; end vertical left 6-0-0 oc purlins. and right exposed:C-C for members and forces & BOT CHORD Rigid ceiling directly applied or 10-0-0 oc MWFRS for reactions shown; Lumber DOL=1.60 plate bracing. grip DOL=1.60 REACTIONS (lb/size) 2=67/19-0-15, 8=67/19-0-15, Truss designed for wind loads in the plane of the truss 3) 10=253/19-0-15, 11=346/19-0-15, only. For studs exposed to wind (normal to the face), 13=260/19-0-15, 14=346/19-0-15, see Standard Industry Gable End Details as applicable 15=253/19-0-15. 16=67/19-0-15. or consult qualified building designer as per ANSI/TPI 1. 20=67/19-0-15 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Max Horiz 2=-138 (LC 12), 16=-138 (LC 12) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Max Uplift 2=-36 (LC 10), 8=-9 (LC 11), DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 10=-79 (LC 15), 11=-115 (LC 15), Cs=1.00; Ct=1.10 14=-116 (LC 14), 15=-80 (LC 14), 5) Unbalanced snow loads have been considered for this 16=-36 (LC 10), 20=-9 (LC 11) desian. Max Grav 2=89 (LC 25), 8=75 (LC 22), This truss has been designed for greater of min roof live 6) 10=310 (LC 25), 11=479 (LC 6), load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 13=374 (LC 24), 14=479 (LC 5), overhangs non-concurrent with other live loads. 15=311 (LC 24), 16=89 (LC 25), All plates are 2x4 MT20 unless otherwise indicated. 20=75 (LC 22) Gable requires continuous bottom chord bearing. 8) FORCES (lb) - Maximum Compression/Maximum 9) Gable studs spaced at 4-0-0 oc. Tension 10) This truss has been designed for a 10.0 psf bottom TOP CHORD 1-2=0/16, 2-3=-127/108, 3-4=-130/87, chord live load nonconcurrent with any other live loads. A MANUTURIA 4-5=-147/128, 5-6=-147/111, 6-7=-90/52, Contraction of the * This truss has been designed for a live load of 20.0psf 11) 7-8=-91/55, 8-9=0/16 on the bottom chord in all areas where a rectangle BOT CHORD 2-15=-39/90, 14-15=-39/90, 13-14=-39/90, 3-06-00 tall by 2-00-00 wide will fit between the bottom 11-13=-39/90, 10-11=-39/90, 8-10=-39/90 chord and any other members, with BCDL = 10.0psf. 5-13=-203/0, 4-14=-395/165, 3-15=-206/129, 12) N/A 6-11=-395/164, 7-10=-206/128 1) Unbalanced roof live loads have been considered for 13) This truss is designed in accordance with the 2018 this design. International Residential Code sections R502.11.1 and num R802.10.2 and referenced standard ANSI/TPI 1. May 11,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	PB2	Piggyback	1	1	Job Reference (optional)	151868740

Loading

TCLL (roof)

10.0

Snow (Pf)

TCDL

BCLL

BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:52 ID:OvaXnpHesqpQkCbmd7MgygzHvb5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -ρ-9-12 19-10-11 19-0-15 9-6-8 0-9-12 0-9-12 9-6-8 9-6-8 4x5 = 7 6 8 12 7 [5 9 32 33 6-0-11 5-11-4 10 31 34 3 11 12 13 2 0-4-5 23 22 21 20 19 1817 16 15 14 3x5 = 3x5 = 3x5 = 19-0-15 Scale = 1:44.6 (psf) Spacing 1-11-4 CSI DEFL in l/defl L/d PLATES GRIP (loc) 20.0 Plate Grip DOL 1.15 тс 0.07 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 1.15 0.03 Vert(CT) 999 Lumber DOL n/a n/a 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 12 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly a	thing directly applied or	BOT CHORD WEBS	2-23=-42/97, 22-23=-42/97, 21-22=-42/97, 20-21=-42/97, 19-20=-42/97, 18-19=-42/97, 16-18=-42/97, 15-16=-42/97, 14-15=-42/97, 12-14=-42/97 7-19=-110/5, 6-20=-206/79, 5-21=-180/80, 4-22=-126/83, 3-23=-110/81, 8-18=-206/79, 9-16=-180/80, 10-15=-126/83, 11-14=-110/81
BOTCHORD	bracing.	applied of 10-0-0 oc		ed roof live loads have been considered for
REACTIONS	14=144/19 16=153/19 19=128/19 21=153/19 23=144/19 27=90/19-0 Max Horiz 2=-134 (LC 15=-49 (LC 21=-49 (LC 23=-49 (LC 23=-49 (LC 23=-49 (LC 14=151 (L0 16=219 (L0 21=219 (L0 21=219 (L0	 12), 24=-134 (LC 12) 10), 14=-47 (LC 15), 15), 16=-50 (LC 15), 15), 20=-51 (LC 14), 14), 22=-49 (LC 14), 14), 24=-24 (LC 10) 25), 12=91 (LC 22), 25), 15=164 (LC 25), 22), 18=245 (LC 21), 27), 20=245 (LC 21), 21), 22=164 (LC 24), 24), 24=102 (LC 25), 	 Vasd=100 Cat. II; Ez zone and 3-3-11 to (2N) 13-4 zone; car and right MWFRS grip DOL 3) Truss de only. For see Stand or consul 4) TCLL: AS Plate DO DOL=1.1 Cs=1.00; 	CE 7-16; Vult=130mph (3-second gust) 3mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; vp B; Enclosed; MWFRS (envelope) exterior C-C Corner(3E) 0-3-11 to 3-3-11, Exterior(2N) 7-4-10, Corner(3R) 7-4-10 to 13-4-10, Exterior 1-10 to 17-5-10, Corner(3E) 17-5-10 to 20-5-10 tilever left and right exposed ; end vertical left exposed;C-C for members and forces & for reactions shown; Lumber DOL=1.60 plate =1.60 signed for wind loads in the plane of the truss studs exposed to wind (normal to the face), dard Industry Gable End Details as applicable, t qualified building designer as per ANSI/TP1 1. SCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 L=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 5); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	0	s has been designed for greater of min roof live
TOP CHORD	1-2=0/16, 2-3=-114/1 4-5=-87/74, 5-6=-76/5 7-8=-82/148, 8-9=-64 10-11=-57/34, 11-12=	99, 6-7=-82/148, /97, 9-10=-49/45,	overhang 7) All plates 8) Gable rec 9) Gable stu 10) This truss	2.0 psf or 1.00 times flat roof load of 20.0 psf on is non-concurrent with other live loads. are 2x4 MT20 unless otherwise indicated. quires continuous bottom chord bearing. Ids spaced at 2-0-0 oc. is has been designed for a 10.0 psf bottom to load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) N/A

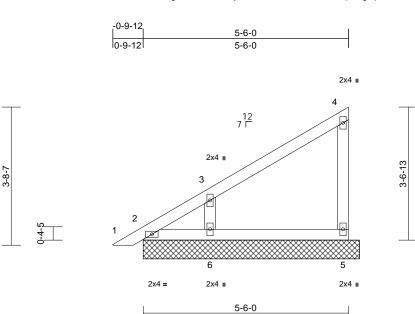
Weight: 101 lb

FT = 20%

Page: 1

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	PB3	Piggyback	3	1	Job Reference (optional)	151868741

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:52 ID:gKt_2hRK?ORI5CjExemzTUzHww5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

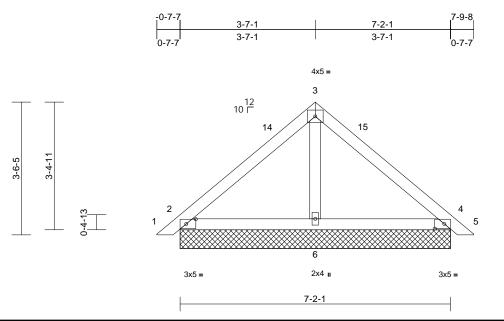
Scale = 1:30.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.10 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6=288/5-9 Max Horiz 2=124 (LC Max Uplift 5=-37 (LC Max Grav 2=64 (LC	applied or 10-0-0 oc 8, 5=116/5-9-8, 9-8, 7=57/5-9-8 C 14), 7=124 (LC 14) 5 14), 6=-93 (LC 14)	8) 9)	design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t	snow loads have as been designed psf or 1.00 times on-concurrent wi es continuous bo spaced at 4-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide wi by other members	for great flat roof lo th other liv ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv	er of min roof oad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle	live sf on ids. Opsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/16, 2-3=-164/ 2-6=-12/12, 5-6=0/0 3-6=-369/193, 4-5=-	102, 3-4=-105/54		International R802.10.2 a See Standar Detail for Co	designed in acco Residential Cod nd referenced sta d Industry Piggyt nnection to base fied building desi	e sections indard AN back Trus truss as a	s R502.11.1 a NSI/TPI 1. s Connection					Commun	90

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	PB5	Piggyback	9	1	Job Reference (optional)	151868742

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:53 ID:__1c4MYtF38IP9oyf2SACtzhpgB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.6

Plate Offsets (X, Y): [2:0-3-1,0-1-8], [4:0-3-1,0-1-8]

		1	_		1			_					-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.27	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 31 lb	FT = 20%
UMBER			3) Truss desig	ned for wind loads	s in the p	lane of the tr	uss					
TOP CHORD	2x4 SP No.2				uds exposed to wir								
BOT CHORD	2x4 SP No.2				d Industry Gable E								
DTHERS	2x4 SP No.3				ualified building de								
BRACING			4		E 7-16; Pr=20.0 ps								
TOP CHORD	Structural wood she	eathing directly applie	ed or		1.15); Pf=20.0 psf								
	6-0-0 oc purlins.			DOL=1.15); Cs=1.00; Ct	Is=1.0; Rough Cat -1 10	i B; Fully	Exp.; Ce=0.	э,					
BOT CHORD		/ applied or 10-0-0 or	c ,		snow loads have	heen co	sidered for t	his					
	bracing.			design.	Show loads have	Deen co		1113					
REACTIONS		2-1, 4=205/7-2-1,	F	0	as been designed	for great	er of min root	f live					
		2-1, 7=205/7-2-1,			psf or 1.00 times f								
	11=205/7				on-concurrent with								
	Max Horiz 2=-78 (LC	, , , , , , , , , , , , , , , , , , , ,) Gable requi	res continuous bot	tom choi	d bearing.						
	Max Uplift 2=-37 (LO) Gable studs	spaced at 4-0-0 o	iC.	5						
		C 14), 11=-46 (LC 15) This truss h	as been designed	for a 10.	0 psf bottom						
	Max Grav 2=300 (L		1 I		ad nonconcurrent								
	6=228 (L 11=300 (C 21), 7=300 (LC 21	[,] 1		has been designed			0psf					
ORCES		,			m chord in all area								
ORCES	(ID) - Maximum Cor Tension	npression/Maximum			by 2-00-00 wide w		veen the bott	om					
OP CHORD	1-2=0/26, 2-3=-206	112 2 1- 206/112			ny other members								1.1.27
OF CHORD	4-5=0/26	113, 3-4=-200/113,	1	1) N/A									in the second se
BOT CHORD	2-6=-34/82, 4-6=-24	1/82										WAH CA	Roit
WEBS	3-6=-80/0	"OL								/	N	AL	in Alate
NOTES	0 0- 00/0		1	2) This truss is	designed in accor	rdance w	ith the 2018				1	· · · FESP	RAIN
	ed roof live loads have	been considered fo			Residential Code			and		U	V V	Nor f	which
this design			1	R802.10.2 a	ind referenced star	ndard AN	ISI/TPI 1.					.4	N 1 E
0	CE 7-16; Vult=130mpl	(3-second qust)	1	3) See Standa	rd Industry Piggyb	ack Trus	s Connection	n				SEA	1 3 3
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;				En ore Detail for Connection to base truss as applicable or					• •				
	p B; Enclosed; MWFF			consult qual	ified building desig	gner.					6 - E	4584	44 <u>:</u> E
	$C \subset Extorior(2E) = 0.2$			OAD CASE(S)	Standard					-	S 2	•	

- zone and C-C Exterior(2E) 0-2-14 to 3-2-14, Exterior (2R) 3-2-14 to 5-2-10, Exterior(2E) 5-2-10 to 8-2-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	PB6	Piggyback	1	1	Job Reference (optional)	151868743

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:53 ID:yJrm4RdFA?Afxfl8EdwakXzhpVm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

0-7-7 7-9-8 3-7-1 7-2-1 3-7-1 3-7-1 4x5 = 12 10 ∟ 4 2x4 II 18 19 2x4 II 3-4-11 3-6-5 3 5 ø 2 6 0-4-13 0 7 ĸ 10 9 8 2x4 🛛 2x4 🛛 2x4 🛛

7-2-1

2x4 =

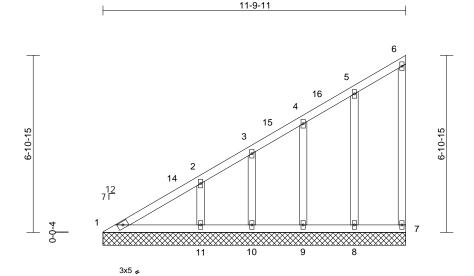
Scale = 1:30.6

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [6:0-2-1,0-1-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=85/7-2- 8=165/7-2 10=165/7- 15=85/7-2 Max Horiz 2=-76 (LC Max Uplift 2=-9 (LC 10=-87 (LL Max Grav 2=127 (LC 8=252 (LC	applied or 10-0-0 or 1, 6=85/7-2-1, 2-1, 9=104/7-2-1, 2-1, 11=85/7-2-1, 2-1 12), 11=-76 (LC 12 10), 8=-87 (LC 15), C 14), 11=-9 (LC 10 2-1), 6=127 (LC 22) 2-22), 9=111 (LC 21) LC 21), 11=127 (LC	3)) 4)), 5)	Vasd=103mp Cat. II; Exp E zone and C-((2R) 3-2-14 t zone; cantile and right exp MWFRS for 1 grip DOL=1.6 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	ned for wind loads ids exposed to wind d Industry Gable E ialified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have to is been designed f	BCDL=6 RS (env- 14 to 3- (2E) 5-2: xposed nbers ar Lumber I in the p nd (norm nd Deta signer a: f (roof LI (Lum DC B; Fully been cor for great	6.0psf; h=25ft; elope) exterio 2-14, Exterior 10 to 8-2-10 ; end vertical 1 dd forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof	r te ss , ble, 11. .15 ; is	Det	ail for C sult qua	onnect	ustry Piggyback [¬] tion to base truss puilding designer.	Truss Connection as applicable, or
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-59/5; 4-5=-100/84, 5-6=-4 2-10=-24/77, 9-10=-; 6-8=-24/77 4-9=-73/0, 3-10=-20; ed roof live loads have	pression/Maximum 3, 3-4=-100/84, 6/34, 6-7=0/25 24/77, 8-9=-24/77, 9/155, 5-8=-209/155	i r	overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b	psf or 1.00 times fl on-concurrent with es continuous bott spaced at 2-0-0 or s been designed ad nonconcurrent v nas been designed n chord in all area: by 2-00-00 wide wi by other members.	o other lin om chor c. or a 10.1 with any I for a liv s where Il fit betw	ve loads. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle	ds. psf		0	i e	SEA	• • •
			12	International	designed in accord Residential Code	sections	8 R502.11.1 a	nd			in Plant	NOREW I	EEP. ONIT

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 11,2022



unun

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V1	Valley	1	1	Job Reference (optional)	151868744

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:53 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-9-11

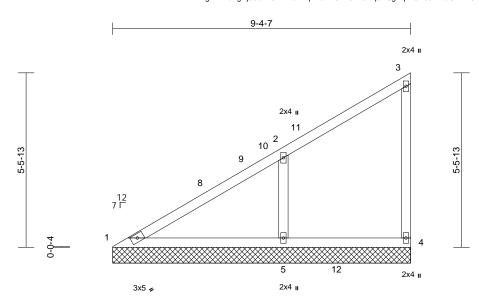
Scale	- 1	·44	a

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.15 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=121/11 8=160/11 10=96/11 Max Horiz 1=229 (LC Max Uplift 1=-3 (LC (LC 14), S 14), 11=-5 Max Grav 1=152 (LC 8=239 (LC 10=104 (L	cept end verticals. • applied or 10-0-0 or -9-11, 7=59/11-9-11 -9-11, 9=169/11-9-1 -9-11, 11=299/11-9- C 11) 10), 7=-32 (LC 11), 8 9=-50 (LC 14), 10=-4 74 (LC 14) C 24), 7=87 (LC 20), C 20), 9=238 (LC 20 LC 20), 11=306 (LC	only. For sti see Standar or consult q 3) TCLL: ASCE Plate DOL= DOL=1.15); CS=1.00; Ct 4) Unbalanced design. 5) All plates arr 6) Gable requil 11 8) This truss ha chord live lo 3=-52 9) * This truss on the botto 3-06-00 tall chord and a	ned for wind load uds exposed to w d Industry Gable Jalified building di 5-7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.10 snow loads have e 2x4 MT20 unless res continuous bo spaced at 2-0-0 as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide w hanical connection e capable of withs	ind (norm End Deta esigner as sf (roof LL f (Lum DC at B; Fully been cor ss otherwi ttom chor oc. I for a 10.0 f or a 10.0 f or a liv as where will fit betw s. on (by oth	al to the face Is as applica as per ANSI/TI : Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 isidered for the se indicated. d bearing.) psf bottom other live loa e load of 20.1 a rectangle veen the botther ers) of truss 1), ble, PI 1. 1.15 e 9; ds. 0psf om				Weight: 67 lb	FT = 20%	
FORCES	(lb) - Maximum Com Tension 1-2=-241/135, 2-3=-		joint 9, 40 lb	at joint 1, 52 lb up uplift at joint 10 a designed in acco	and 74 lb i	uplift at joint '					mun	um.	
BOT CHORD	4-5=-125/83, 5-6=-9)3/94, 6-7=-72/26 1=-98/124, 9-10=-98/	Internationa	Residential Code nd referenced sta	e sections	R502.11.1 a	and		(2	ORTHCA	ROLIN	111
WEBS	5-8=-200/74, 4-9=-1 2-11=-199/157			Stanuaru					Q	1M	in the second	min	hin
Vasd=103 Cat. II; Ex zone and 3-0-7 to 8- cantilever	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br p B; Enclosed; MWFR C-C Corner(3E) 0-0-7 -8-6, Corner(3E) 8-8-6 left and right exposed sed;C-C for members	CDL=6.0psf; h=25ft; S (envelope) exterio to 3-0-7, Exterior(2N to 11-8-6 zone; ; end vertical left and	r)) d							A STATE	SEA 458	•	A CONTRACTOR

3-0-7 to 8-8-6, Corner(3E) 8-8-6 to 11-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


1111111111

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V2	Valley	1	1	Job Reference (optional)	151868745

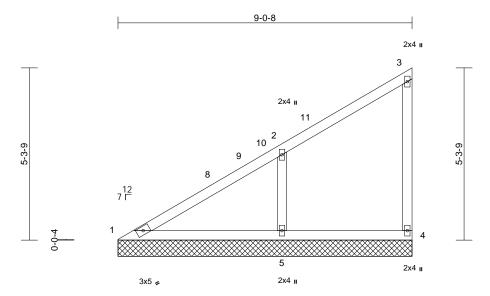
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:53 ID:gMYf1oAgDjo6oY?3nh7v07zhpM0-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

9-4-7

Scale - 1:36.2

Scale = 1:36.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	77PI2014	CSI TC BC WB Matrix-MSH	0.39 0.27 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. • applied or 10-0-0 od 4-7, 4=94/9-4-7, 4-7 C 11) C 11) C 11), 5=-112 (LC 14 C 24), 4=170 (LC 5),	4) ed or 5) 6) 7) 8)	Plate DOL=1 DOL=1.15); Cs=1.0; Ct: Unbalanced design. Gable requir Gable studs This truss h on the botton 3-06-00 tall il chord and an Provide mec bearing plate	57-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps 1.5); Rough Ca es continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designed ad nonconcurrent n chord in all area by 2-00-00 wide w ny other members thanical connectio a capable of withs uplift at joint 5.	(Lum DC t B; Fully been cor tom chor c. for a 10.1 with any d for a liv as where s, with BC n (by oth	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botth DL = 10.0psj ers) of truss t	e); ds. Opsf om :. o					
FORCES TOP CHORD BOT CHORD WEBS	,	123/65, 3-4=-141/41	,	This truss is International	designed in accor Residential Code nd referenced sta	sections	R502.11.1 a	Ind					
NOTES 1) Wind: ASU Vasd=102 Cat. II; Ex zone and 3-0-7 to 5 cantilever right expo for reaction DOL=1.60 2) Truss det only. For see Stance	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B cp B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 i-0-3, Exterior(2R) 5-0-3 left and right exposed seed;C-C for members ons shown; Lumber DC	CDL=6.0psf; h=25ft; S (envelope) exterio Y to 3-0-7, Interior (1) 3 to 9-3-2 zone; ; end vertical left an: and forces & MWFR PL=1.60 plate grip n the plane of the tru I (normal to the face) d Details as applicat	r d S ss ,							Comme	In	SEA 458	LL 44 EEERSON



100000 May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V3	Valley	1	1	Job Reference (optional)	151868746

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:54 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

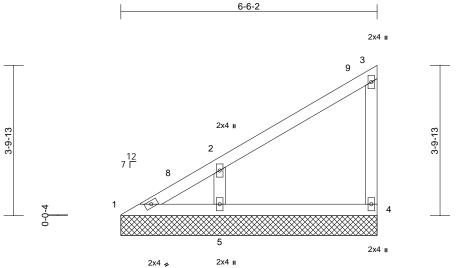
9-0-8

Scale = 1:35.4

Scale = 1.55.4														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.25 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=162/9-0 5=446/9-0 Max Horiz 1=178 (LC Max Uplift 4=-28 (LC Max Uplift 4=-28 (LC Max Grav 1=170 (LC 5=570 (LC (Ib) - Maximum Com Tension 1-2=-270/126, 2-3=-	cept end verticals. applied or 10-0-0 oc)-8, 4=103/9-0-8,)-8 C 11) C 11), 5=-113 (LC 14 C 28), 4=169 (LC 20) C 20) Ippression/Maximum 123/63, 3-4=-148/42	7-16; Pr=20.0 ps i.5); Pf=20.0 ps is=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area yo 2-00-00 wide w yo yother members hanical connectio e capable of withs uplift at joint 5. designed in accor Residential Code nd referenced stai Standard	(Lum DC t B; Fully been cor tom chor c. for a 10. for a 10. d for a liv s where rill fit betw n (by oth tanding 2 rdance w	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the botth ers) of truss to 28 lb uplift at j ith the 2018 \$ R502.11.1 a	e 9; his dds. 0psf om to joint								
	2-5=-435/175												N•N-X TO F	
 Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-7 to 4 cantilever right expo for reaction DOL=1.60 2) Truss des only. For see Stand 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 -8-4, Exterior(2R) 4-8-4 left and right exposed used;C-C for members ons shown; Lumber DO o signed for wind loads in studs exposed to wind dard Industry Gable En- c qualified building design	CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) 4 to 8-11-3 zone; ; end vertical left ann and forces & MWFR L=1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat	d S ss ,								A STATE OF THE STA	SEA 4584	44 EER.O	7

- to 4-8-4, Exterior(2R) 4-8-4 to 8-11-3 z cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind industrial to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Summer WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



mun May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V4	Valley	1	1	Job Reference (optional)	151868747

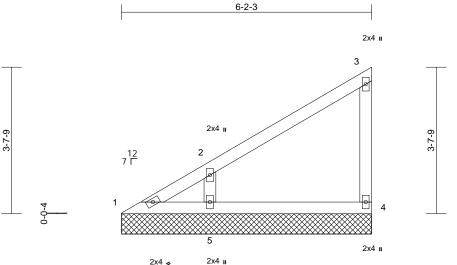
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:54 ID:Z7nAtADAHyIYGAIq0WBsBzzhpLy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-6-2

Scale = 1:29.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	bracing.	cept end verticals. applied or 10-0-0 oc 2, 4=125/6-6-2, 5-2 C 11) 10), 4=-22 (LC 11), 5 24), 4=186 (LC 20),	9) 5=-93 ¹⁰	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 1, 22 lb upliff)) This truss is International	snow loads have es continuous bo spaced at 4-0-0 d so been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide v hanical connection e capable of withs t at joint 4 and 93 designed in acco Residential Code nd referenced sta Standard	ttom chor bc. for a 10. with any d for a liv as where vill fit betw s. nn (by oth tanding f lb upliff a rdance we e sections	rd bearing. 0 psf bottom other live load ve load of 20. a rectangle ween the bott uers) of truss 5 lb uplift at jo ta joint 5. ith the 2018 s R502.11.1 a	ads. Opsf om to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-108/97, 2-3=-1 1-5=-58/63, 4-5=-58	npression/Maximum 14/59, 3-4=-154/40											
WEBS	2-5=-401/195	/05											17.5
NOTES											a	WITH CA	ROUL
Vasd=103 Cat. II; Ex zone and	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri								C	K.	, setter	shak


- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V5	Valley	1	1	Job Reference (optional)	151868748

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:54 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-2-3

Scale = 1:28.5

Scale = 1.20.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, existing directly bracing. 	cept end verticals. applied or 10-0-0 o 3, 4=125/6-2-3, 2-3 C 11) 2 10), 4=-27 (LC 14) 2 14) 2 8), 4=186 (LC 20)	5) 6) 7) ed or 8) c 9) , 10	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 4, 10 lb upliff)) This truss is International	snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren m chord in all are by 2-00-00 wide v by other member hanical connection capable of with t at joint 1 and 9 designed in acco Residential Cod nd referenced sta Standard	ottom chor oc. I for a 10. t with any ed for a liv as where will fit betv s. on (by oth standing 2 0 Ib uplift a ordance w e sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 7 lb uplift at j it joint 5. ith the 2018 i R502.11.1 a	ids. Opsf om io oint					
FORCES TOP CHORD BOT CHORD	0 1-5=-55/60, 4-5=-55	14/58, 3-4=-153/45											
Vasd=10 Cat. II; E zone and exposed members Lumber I 2) Truss de only. For see Stan or consul 3) TCLL: AS Plate DO DOL=1.1	2-5=-412/207 SCE 7-16; Vult=130mph I3mph; TCDL=6.0psf; Bi xp B; Enclosed; MWFR; I C-C Exterior(2E) zone; ; end vertical left and rig s and forces & MWFRS OCL=1.60 plate grip DO ssigned for wind loads ir r studs exposed to wind dard Industry Gable Em t qualified building desig SCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft S (envelope) exteric ; cantilever left and ght exposed;C-C for for reactions shown PL=1.60 h the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI roof LL: Lum DOL= um DOL=1.15 Plate	or right ; uss), ble, PI 1. 1.15							C	A States	SEA 4584 VORTEESS SEA 4584 VORTEESS	44 EEP.GO

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

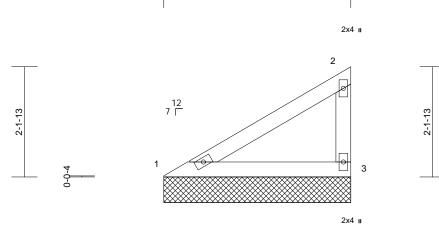
1111111111

May 11,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 106 FARM AT NEILLS CREEK	
22020129	V6	Valley	1	1	Job Reference (optional)	151868749

3-7-14

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Tue May 10 15:10:54 ID:OH8R8DIxto2i?5m_NnIGQEzhpLs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 11,2022

SINEEDING

818 Soundside Road Edenton, NC 27932

2x4 🍃

3-7-14

Scale = 1.22.5

Scale = 1:22.5												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.25 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103n Cat. II; Exp zone and C exposed ; e members a Lumber DC 2) Truss desi only. For s see Standa or consult C 2) Truss desi only. For s see Standa or consult C 2) Trus desi only. For s see Standa or consult C 2) Tuss desi only. For s see Standa or consult C 2) Tuss desi only. For s see Standa or consult C 2) Tuss desi only. For s see Standa or consult C 2) Torus desi only. For s see Standa or consult C 2) Trus desi only. For s	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-14 oc purlins, e Rigid ceiling directly bracing. (Ib/size) 1=140/3-7 Max Horiz 1=66 (LC Max Uplift 1=-13 (LC Max Grav 1=197 (LC (Ib) - Maximum Com Tension 1-2=-289/54, 2-3=-1 1-3=-61/240 E 7-16; Vult=130mph mph; TCDL=6.0psf; Br B; Enclosed; MWFR B; Enclosed; MWFR DL=1.60 plate grip DC gned for wind loads in tuds exposed to wind ard Industry Gable En qualified building desig E 7-16; Pr=20.0 psf (L ; Is=1.0; Rough Cat E	xcept end verticals. applied or 10-0-0 od 7-14, 3=140/3-7-14 11) 2 14), 3=-32 (LC 14) 2 20), 3=197 (LC 20 pression/Maximum 30/46 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown. DL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9 seen considered for th	chord liv 8) * This tr on the b 3-06-00 chord ar 9) Provide bearing 3 and 13 10) This true Internati R802.10 LOAD CASI or right ; iss ble, PI 1. 1.15	s has been designed te load nonconcurrent uss has been designed ottom chord in all are tall by 2-00-00 wide v id any other member mechanical connection plate capable of with 3 Ib uplift at joint 1. is is designed in acco onal Residential Cod 0.2 and referenced sta E(S) Standard	t with any ed for a liv as where will fit betv s. on (by oth standing 3 ordance w e sections	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 32 lb uplift at ju ith the 2018 \$ R502.11.1 a)psf om o oint		() and the second secon		SEA 4584	L HA EEER. SO
											Mo	(11.2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

