

2x4 =

2x4 =

Plate Offsets (X,Y) [3:0-3-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.19 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 4 n/r 180 Vert(CT) 0.00 4 n/r 80 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 0%			

4-7-0

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

2	=	152/3-0-12	(min. 0-1-8)
4	=	152/3-0-12	(min. 0-1-8)
Max	Horz		
2	=	31	1(LC 11)
Max	Uplift		
2	=	-2	7(LC 12)
4	=	-2	7(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as

applicable, or consult qualified building designer.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

2x4 =

2x4 =

Plate Offsets (X,Y) [3:0-3-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.03 BC 0.19 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 4 n/r 180 Vert(CT) 0.00 4 n/r 80 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 0%			

4-7-0

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

2	=	152/3-0-12	(min. 0-1-8)
4	=	152/3-0-12	(min. 0-1-8)
Max	Horz		
2	=	31	1(LC 11)
Max	Uplift		
2	=	-2	7(LC 12)
4	=	-2	7(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as

applicable, or consult qualified building designer.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

	1 die Offseis (A, 1) [11.0 ⁻⁺ - ⁺ ,0 ⁻ 2 ⁻⁺], [1 ⁺ .0 ⁻ 0 ⁻ +,0 ⁻ 2 ⁻⁺], [10.0 ⁻⁺⁻ 0,0 ⁻ 2 ⁻⁺]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP				
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.23 BC 0.18	Vert(LL) -0.00 1 n/r 180 Vert(CT) -0.00 1 n/r 80	MT20 244/190				
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.16 Matrix-R	Horz(CT) 0.01 24 n/a n/a	Weight: 272 lb FT = 0%				

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.3WEBS2x4 SP No.3OTHERS2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS

1 Row at midpt

12-34, 11-35, 10-36, 13-33, 15-32, 16-30

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 34-3-8.

(lb) - Max Horz 44= 267(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 34, 35, 36, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26 except 44=-214(LC 8), 24=-123(LC 11), 43=-197(LC 12), 25=-171(LC 13) Max Grav All reactions 250 lb or less at joint(s) 24, 34, 41, 42, 43, 27, 26, 25 except 44=272(LC 21), 35=276(LC 23), 36=260(LC 20), 38=259(LC 20), 39=256(LC 20), 40=264(LC 20), 33=270(LC 23), 32=251(LC 21), 30=261(LC 21), 29=256(LC 21), 28=264(LC 21)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

9-10=-169/254, 10-11=-197/283,

TOP CHORD

9-10=-169/254, 10-11=-197/283, 14-15=-193/268

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated.
 B) Gable requires continuous bottom chord bearing.

9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e.

diagonal web).

10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any c

bottom chord live load nonconcurrent with any other live loads.

12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 35, 36, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26 except (jt=lb) 44=214, 24=123, 43=197, 25=171.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT 5	1 CROSSING @ AND	DERSON CREEK 1	15 PINNACLE DRIVE SPRING
22-2666-R01	R02	Piggyback Base	7	1			
Atlantic Building Componen	nts, Moncks Corner, South Carolina			JOD R 8.430 s	Feb 12 2021 MiTek) Industries, Inc. Fri A	pr 15 12:31:07 2022 Page 1
-0-10-8	7-7-12	15-0-0	ID:te?_8ytH1N5A 19-7-0	HCxjPc0A_rzRBd0 26-9-8	O-kOkbnSZ_bATj3	VSRbA_WzAO8F 34-3-8	RFU4oYdlcz?22WzQŪQo
0-10-8	7-7-12	7-4-4	4-7-0	7-2-8	ł	7-6-0	
0-0-11 4x4 %	5x8 == 4x4 == 3 W1	8.00 12 4x6	T3 5x8 W4 /3	N/25	5x1 7 W6	3 %	Scale = 1:61,3
912 4x10	B1 B	$16 13 \\ 3x8 = 4x$	B2 2 17 8 =	11 18 $3x8 =$	10 19 4x4 =	<u>B1</u> 20	$\frac{9}{4x4} = \frac{9}{4x4}$
	7.7.12	15-0-0	24-6-(1		34-3-8	
	7-7-12	7-4-4	9-6-0	,	-	9-9-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IRC2018/TPI20	-0, CSI. -0 CSI.	DEFL. Vert(LL) -0.4 Vert(CT) -0.4 Horz(CT) 0.4	in (loc) l/defl 46 10-12 >888 52 10-12 >660 08 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218	GRIP 244/190 b FT = 0%
TOP CHORD 2x4 Sf T2: 2x BOT CHORD 2x4 Sf B2: 2x WEBS 2x4 Sf SLIDER Left 2x6 SP No.2 - 4- BRACING- TOP CHORD Structural wood shea purlins, except end w BOT CHORD Rigid ceiling directly a Except: 10-0-0 oc bracing: 2- WEBS 1 Row at midpt 4-12, 6-12, 7-9 MITek recommends cross bracing be ins accordance with Sta REACTIONS. (Ib/siz 2 = 14'	 No.2 *Except* 4 SP No.1 No.1 *Except* 4 SP No.2 No.3 8-7 thing directly applied or 1-7-8 rerticals. applied or 2-2-0 oc bracing, 14. that Stabilizers and requirect stalled during truss erection, abilizer Installation guide. e) 19/0-3-8 (min. 0-1-14) 	TOP CHORD 2-3=-2185/202, 3-4 4-5=-1619/226, 5-6 6-7=-1942/325, 7-8 8-9=-395/149 BOT CHORD 2-15=-232/1817, 14 14-16=-231/1820, ' 11-17=-9/1239, 10- 19-20=-110/1594, 9 WEBS 4-14=0/379, 4-12=- 5-12=-64/584, 6-10 7-10=-303/290, 7-9 NOTES- (11-12) 1) Unbalanced roof for this design. 2) Wind: ASCE 7-1 Vasd=103mph; TC Cat. II; Exp B; Encl	=-2070/230, =-1267/250, =-462/151, 13-16=-231/1820, 12-17=-9/1239, 18=-9/1239, 19=-110/1594, 9-20=-110/1594 636/247, =-177/813, =-1708/97 ilive loads have been 6; Vult=130mph (3-see DL=5.0psf; BCDL=5.0 osed; MWFRS (envelo	considered cond gust) osf; h=23ft; ope) gable	 7) * This truss h. 30.0psf on the b rectangle 3-6-0 t bottom chord an 10.0psf. 8) Refer to girde 9) Provide mech to bearing plate at joint(s) excep 10) This truss is 2018 Internation R502.11.1 and F ANSI/TPI 1. 11) Graphical we depict the si on the web. must be brace 12) Bearing sym representation Bearing sym structural de indicated. 	as been designe ottom chord in a tall by 1-0-0 wide d any other mer r(s) for truss to t tranical connection capable of withs t (jt=lb) 2=179, 9 designed in acc all Residential C R802.10.2 and re eb bracing repre ze, type or the o Symbol only ind ced. bols are only gra- ons of a possible bols are not cor- sign of the truss	d for a live load of II areas where a a will fit between the nbers, with BCDL = russ connections. on (by others) of truss tanding 100 lb uplift =158. ordance with the ode sections eferenced standard sentation does not rientation of the brace icates that the member aphical a bearing condition. sidered in the to support the loads
9 = Max Horz 2 = Max Uplift 2 = 9 = Max Grav 2 = 9 = FORCES. (lb) Max. Comp./Max. Te when shown. TOP CHORD 2-3=-2185/202, 3-4=- 4-5=-1619/226, 5-6=-	1365/Mechanical 255(LC 9) -179(LC 12) -158(LC 13) 1592(LC 20) 1526(LC 21) n All forces 250 (lb) or less 2070/230, 1267/250,	end zone and C-C and right exposed; MWFRS for reactio grip DOL=1.60 3) TCLL: ASCE 7-1 DOL=1.15 Plate D0 DOL=1.15 Plate D0 Partially Exp.; Ce= 4) This truss has b roof live load of 12. 20.0 psf on overhal loads. 5) Provide adequat ponding. 6) This truss has b chord live load non loads.	Exterior(2) zone; end N C-C for members and i ins shown; Lumber DC 6; Pr=20.0 psf (roof LI DL=1.15); Pf=20.0 psf DL=1.15); Is=1.0; Roug 1.0; Cs=1.00; Ct=1.10 een designed for great 0 psf or 2.00 times flat ngs non-concurrent wit e drainage to prevent een designed for a 10. concurrent with any ot	ertical left orces & DL=1.60 plate L: Lum (Lum gh Cat B; er of min roof load of h other live water 0 psf bottom her live	Standard		

	1-1-12	14-3-0	τ φ- υ _i -υ	24-0-0	34-3-0	1
	7-7-12	6-7-12	0-8-8	9-6-0	9-9-8	1
Plate Offsets (X,Y) [2:0-1-8,0-2-	4], [3:0-1-0,0-2-0], [4:0-4	I-0,0-3-0], [5:0-3-	12,0-2-0], [(6:0-5-12,0-2-0], [7:0-4-0,0)-3-0], [9:0-1-8,0-2-0], [12:0-2-4	,0-3-0], [13:0-2-0,0-2-8],
[17:0-5-12.0	-2-4]					

	/-			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.84 BC 0.94 WB 0.95	DEFL. in (loc) l/defl L/d Vert(LL) -0.44 10-12 >918 240 Vert(CT) -0.63 10-12 >649 180 Horz(CT) 0.23 9 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 241 lb $FT = 0\%$

TOP CHORD 2x4 SP No.2

BOT CHORD	2x4 SP No.2 *Except*
	B5: 2x4 SP No.1
WEBS	2x4 SP No 3 *Excent*

VVLD0	
	W8: 2x8 SP No.1, W1: 2x6 SP No.2
BRACING-	

TOP CHORD

Structural wood sheathing directly applied, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 2-2-0 oc bracing.

- WĚBS
- 1 Row at midpt

4-13, 6-12, 7-9

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

9	=	1356/Mechanical
19	=	1424/0-3-8 (min. 0-1-11)
Max	Horz	
19	=	253(LC 9)
Max	Uplift	
9	=	-157(LC 13)
19	=	-182(LC 12)
Max	Grav	
9	=	1480(LC 25)
19	=	1455(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2731/434, 3-20=-2215/280, 4-20=-2095/302, 4-21=-1662/265, 5-21=-1645/307, 5-6=-1183/314, 6-22=-1850/362, 7-22=-1867/321,

7-23=-273/156, 8-23=-451/134,

TOP CHORD

2-3=-2731/434, 3-20=-2215/280, 4-20=-2095/302, 4-21=-1662/265, 5-21=-1645/307, 5-6=-1183/314, 6-22=-1850/362, 7-22=-1867/321, 7-23=-273/156, 8-23=-451/134, 8-9=-389/152, 2-19=-1483/257 BOT CHORD 12-24=-38/1171, 11-24=-38/1171, 11-25=-38/1171, 10-25=-38/1171, 10-26=-156/1535, 26-27=-156/1535, 9-27=-156/1535, 3-17=-83/294, 16-17=-526/2562, 16-28=-286/1960, 14-28=-286/1960, 13-14=-286/1960 WFBS 4-16=0/350, 4-13=-728/273, 12-13=-32/597, 5-13=-53/614, 6-10=-179/813, 7-10=-308/291 7-9=-1633/184, 2-17=-329/2121, 3-16=-618/245, 14-15=-382/0

NOTES-(11-12)

1) Unbalanced roof live loads have been considered for this design 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-2-9, Exterior(2R) 8-2-9 to 26-4-7 , Interior(1) 26-4-7 to 29-4-2, Exterior(2E) 29-4-2 to 34-1-12 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=157, 19=182. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

- 11) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

	7-7-12	15-0-0	19-7-0	24-6-0		34	4-3-8	
Plate Offsets (X V)	7-7-12 [A:0-4-0 0-3-0] [5:0-3-12 0-2-0] [6:0	/-4-4 1-5-12 0-2-0] [7:0-4-0 0-	4-7-0	4-11-0		9	-9-8	
	[4.0-4-0,0-0-0] , [0.0-0-12,0-2-0] , [0.0		5-0j					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. VES	CSI. TC 0.93 BC 0.94 WB 0.93	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.34 12-13 -0.51 12-13	l/defl >999 >804	L/d 240 180	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH	1012(01)	0.03 3	n/a	Π/a	Weight: 239 lb	FT = 0%
LUMBER- TOP CHORD 2x4 S T3,T4 BOT CHORD 2x4 S B2: 2: WEBS 2x4 S SLIDER Left 2x6 SP No.2 - 4 BRACING- TOP CHORD Structural wood sheat verticals. BOT CHORD Rigid ceiling directly Except: 2-2-0 oc bracing: 16- 6-0-0 oc bracing: 12- WEBS 1 Row at midpt 4-16, 6-15, 7-9 MiTek recommend: cross bracing be in accordance with St REACTIONS. (lb/siz 2 = 14- 9 = Max Horz 2 = 14- 9 = Max Grav 2 = 9 9 = FORCES. (lb) Max. Comp./Max. Tek when shown. TOP CHORD	P No.1 *Except* : 2x4 SP No.2 P No.1 *Except* c4 SP No.2, B3: 2x6 SP No.2 P No.3 -8-7 	TOP CHORD 2-3=-2447/143, 3-4= 4-5=-1880/165, 5-6= 6-7=-2275/245, 7-8= 8-9=-414/146 BOT CHORD 2-19=-185/2026, 18- 18-20=-184/2029, 16 14-21=0/1537, 11-12 10-11=0/1537, 10-22 22-23=-46/1860, 9-2 WEBS 4-18=0/390, 4-16=-6 5-16=-30/728, 6-15= 6-12=-137/979, 10-1 7-10=-289/298, 7-9= NOTES- (11-12) 1) Unbalanced roof I for this design. 2) Wind: ASCE 7-16 Vasd=103mph; TCD Cat. II; Exp B; Encloi end zone and C-C E and right exposed;C MWFRS for reaction grip DOL=1.60 3) TCLL: ASCE 7-16 DOL=1.15 Plate DOI Partially Exp.; Ce=1. 4) This truss has beer roof live load of 12.0 20.0 psf on overhang loads. 5) Provide adequate ponding.	2332/171, 1487/198, 493/147, 19=-185/2026, 7-20=-184/2029, 6-21=0/1537, 4=0/1537, 2=-46/1860, 324/252, 99/262, 2=-178/729, 2017/19 live loads have be 3; Vult=130mph (3) 0=5.0psf; BCDL= sed; MWFRS (en ixterior(2) zone; e -C for members a b shown; Lumber 5; Pr=20.0 psf (roo L=1.15); Pf=20.0 L=1.15); Is=1.0; F 0; Cs=1.00; Ct=1 en designed for g psf or 2.00 times gs non-concurrent	een considered 3-second gust) =5.0psf; h=23ft ivelope) gable ind vertical left and forces & r DOL=1.60 pla of LL: Lum psf (Lum Rough Cat B; .10 reater of min s flat roof load it with other live ent water	d ;; ate of e	 6) This truss chord live loa loads. 7) * This trus 30.0psf on the rectangle 3-6 bottom chord 10.0psf. 8) Refer to gi 9) Provide muto to bearing pla at joint(s) exat 10) This truss 2018 Internat R502.11.1 ar ANSI/TPI 1. 11) Graphica depict the on the we must be 1 12) Bearing s structural indicated 	has been designed f ad nonconcurrent with s has been designed e bottom chord in all -0 tall by 1-0-0 wide l and any other mem irder(s) for truss to tru- echanical connection ate capable of withst- cept (jt=lb) 2=143, 9= s is designed in acco tional Residential Co ad R802.10.2 and ref l web bracing repres e size, type or the ori eb. Symbol only indic oraced. symbols are only grap tations of a possible symbols are not cons l design of the truss f (S)	or a 10.0 psf bottom n any other live I for a live load of areas where a will fit between the bers, with BCDL = USS connections. n (by others) of truss anding 100 lb uplift 107. rdance with the de sections erenced standard entation does not entation of the brace cates that the member obtical bearing condition. idered in the o support the loads

TOP CHORD 2-3=-2447/143, 3-4=-2332/171,

	7-7-12	15-0-0 7-4-4	<u>19-7-0</u> 4-7-0	24-7-12 5-0-12		<u>34</u> 9-	1-7-0 11-4	
Plate Offsets (X,Y)	[4:0-4-0,0-3-0], [5:0-3-12,0-2-0], [6:0-4	5-12,0-2-0], [7:0-3-0,0-	·3-0], [9:0-7-13,Ec	dge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.95 BC 1.00 WB 0.61 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.37 13-14 -0.56 13-14 0.09 9	l/defl >999 >744 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 239 lb	GRIP 244/190 p FT = 0%
LUMBER- TOP CHORD 2x4 S T3: 2) BOT CHORD 2x4 S E2: 2) WEBS 2x4 S SLIDER Left 2x6 SP No.2 - 4 Right 2x6 SP No.2 - 5 BRACING- TOP CHORD Structural wood sheat BOT CHORD Structural wood sheat BOT CHORD Structural wood sheat BOT CHORD Structural wood sheat BOT CHORD Rigid ceiling directly 4-9-0 oc bracing: 13- WEBS 1 Row at midpt MiTek recommends cross bracing be in accordance with St REACTIONS. (Ib/siz 2 = 15 9 = 15 Max Horz 2 = 15 9 = 16 Max Grav 2 = 9 9 = 17 FORCES. (Ib) Max. Comp./Max. Te when shown. TOP CHORD 2-3=-2495/143, 3-4= 4-5=-1932/164, 5-6= 6-7=-2377/258, 7-8=	P SS *Except* 44 SP No.2, T1: 2x4 SP No.1 P No.1 *Except* 44 SP No.2, B3: 2x6 SP No.2 P No.3 8-7, 4-8-10 athing directly applied. applied or 2-2-0 oc bracing. Except: 16 4-17, 6-16 s that Stabilizers and required stalled during truss erection, in abilizer Installation guide. ref) 511/0-3-8 (min. 0-2-2) 539/0-3-8 (min. 0-2-2) 539/0-3-8 (min. 0-2-3) 245(LC 9) -143(LC 12) -129(LC 13) 1781(LC 20) 1839(LC 21) en All forces 250 (lb) or less except -2380/171, -1531/197, -2436/157,	TOP CHORD 2-3=-2495/143, 3-4= 4-5=-1932/164, 5-6= 6-7=-2377/258, 7-8= 8-9=-2551/130 BOT CHORD 2-20=-183/2065, 17 15-22=0/1598, 12-15 11-12=0/1598, 11-25 23-24=-7/1968, 9-24 WEBS 4-19=0/387, 4-17=-6 5-17=-32/761, 16-17 6-13=-150/1050, 11- 7-11=-327/297 NOTES (10-11) 1) Unbalanced roof 1 1) Unbalanced roof 1 (Vasd=103mph; TCD Cat. II; Exp B; Encloo end zone and C-C E and right exposed;C MWFRS for reaction grip DOL=1.60 3) TCLL: ASCE 7-166 DOL=1.15 Plate DOI DOL=1.15 Plate DOI Partially Exp.; Ce=1. 4) This truss has beer roof live load of 12.0 20.0 psf on overhang loads. 5) Provide adequate ponding.	2380/171, 1531/197, 2436/157, 2436/157, 22=0/1598, 5=0/1598, 5=0/1598, 5=0/1598, 5=0/1598, 5=0/1598, 5=-7/1968, -	een considered 3-second gust) =5.0psf; h=23ff ivelope) gable and vertical left and forces & r DOL=1.60 pla of LL: Lum psf (Lum Rough Cat B; .10 reater of min s flat roof load it with other liv ent water	d t; ate of e	 6) This truss chord live loa loads. 7) * This trus 30.0psf on th rectangle 3-6 bottom chord 10.0psf. 8) Provide m to bearing pla at joint(s) exc 9) This truss International and R802.10 10) Graphica depict the on the we must be I 11) Bearing s structural indicated 	has been designed i ad nonconcurrent wit s has been designed e bottom chord in al i-0 tall by 1-0-0 wide and any other mem echanical connection ate capable of withst cept (jt=lb) 2=143, 9= is designed in accor Residential Code se .2 and referenced st l web bracing represe e size, type or the or eb. Symbol only indic oraced. symbols are only gra tations of a possible symbols are not conse design of the truss i (S)	for a 10.0 psf bottom h any other live d for a live load of l areas where a will fit between the bers, with BCDL = n (by others) of truss anding 100 lb uplift =129. dance with the 2018 ctions R502.11.1 andard ANSI/TPI 1. sentation does not ientation of the brace cates that the member phical bearing condition. sidered in the to support the loads

8-9=-2551/130

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.36 BC 0.41 WB 0.16	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 13 n/r 180 Vert(CT) -0.01 13 n/r 80 Horz(CT) 0.01 14 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R		Weight: 115 lb FT = 0%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.3

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

 BRACING 2x4 SP No.3

Plate Offsets (X,Y)-- [7:Edge,0-1-13]

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 14-7-0.

(lb) - Max Horz

23=-301(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 14, 15, 19, 18 except 23=-421(LC 8), 22=-313(LC 11), 20=-202(LC 12), 21=-149(LC 12), 17=-204(LC 13), 16=-154(LC 13) Max Grav All reactions 250 lb or less at joint(s) 14, 15, 21, 16 except 23=488(LC 11), 22=367(LC 10), 19=287(LC 20), 20=252(LC 20), 18=275(LC 22), 17=256(LC 21)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-23=-336/268, 2-3=-434/334, 3-4=-312/206, 10-11=-305/203, 11-12=-422/334, 12-14=-326/268 BOT CHORD 22-23=-318/378, 21-22=-161/257, 20-21=-160/257, 19-20=-160/257, BOT CHORD

```
22-23=-318/378, 21-22=-161/257,
20-21=-160/257, 19-20=-160/257,
18-19=-160/257, 17-18=-160/257,
16-17=-160/257, 15-16=-160/256,
14-15=-210/321
WEBS
5-20=-250/219, 9-17=-250/221
```

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live

loads.
6) All plates are 2x4 MT20 unless otherwise indicated.
7) Gable requires continuous bottom chord bearing.
8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 15, 19, 18 except (jt=lb) 23=421, 22=313, 20=202, 21=149, 17=204, 16=154.

13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 15, 19, 20, 21, 18, 17, 16.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

rectangle 3-6-0 tall by 1-0-0 wide will fit between the

8) Provide mechanical connection (by others) of truss

9) This truss is designed in accordance with the 2018

and R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1

to bearing plate capable of withstanding 100 lb uplift

bottom chord and any other members.

at joint(s) except (jt=lb) 1=599, 5=674.

3-4=-3929/590, 4-5=-5570/682 BOT CHORD 1-9=-446/3423, 8-9=-446/3423, 8-10=-446/3423, 7-10=-446/3423, 7-11=-368/3456, 11-12=-368/3456, 6-12=-368/3456, 6-13=-368/3456, 13-14=-368/3456, 5-14=-368/3456 WEBS 3-7=-838/6008, 4-7=-2039/414, 4-6=-285/2724, 2-7=-1980/413,

2-8=-284/2639

TCLL 20.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) TCDL 10.0 Lumber DOL 1.15 BC 0.46 Vert(CT) BCLL 0.0 * Rep Stress Incr YES WB 0.18 Horz(CT) BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Horz(CT)	-0.00 -0.00 0.01	13 13 14	n/r n/r n/r n/a	180 80 n/a	Weight: 129 lb	244/190 FT = 0%
--	------------------------	----------------	--------------------------	------------------	----------------	--------------------

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 6-19 8-18

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 16-1-0.

(lb) - Max Horz

23=-321(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 14, 15, 19 except 23=-489(LC 10), 22=-377(LC 9), 20=-210(LC 12), 21=-146(LC 12), 17=-212(LC 13), 16=-149(LC 13) Max Grav All reactions 250 lb or less at joint(s) 14, 15, 21, 16 except 23=547(LC 9), 22=469(LC 10), 19=283(LC 23), 20=300(LC 20), 18=277(LC 22), 17=303(LC 21)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-23=-442/333, 2-3=-542/404, 3-4=-293/203, 10-11=-285/186 11-12=-529/404, 12-14=-430/333 BOT CHORD

22-23=-331/416, 21-22=-171/274,

BOT CHORD

22-23=-331/416. 21-22=-171/274. 21-24=-170/274, 20-24=-170/274, 19-20=-170/274, 18-19=-170/274, 17-18=-170/274, 17-25=-170/274, 16-25=-170/274, 15-16=-171/274, 14-15=-244/367 WEBS 5-20=-252/225, 9-17=-252/227, 3-22=-282/276, 11-15=-282/271

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 15, 19 except (jt=lb) 23=489, 22=377, 20=210, 21=146, 17=212, 16=149.

13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 15, 19, 20, 21, 18, 17, 16.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
 - structural design of the truss to support the loads indicated.

LOAD CASE(S)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP No.2 2x4 SP No.3 *Except* WFBS W3: 2x4 SP No.2 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-8-3 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size)

1	=	5479/0-3-8 (min.	0-3-8)
5	=	5255/0-3-8 (min.	0-3-5)
Max	Horz		
1	=	253(LC 3	32)
Max	Uplift		
1	=	-634(LC 1	1)
5	=	-655(LC 1	0)
Max	Grav		
1	=	5936(LC	3)
5	=	5609(LC	3)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown TOP CHORD 1-2=-6214/749, 2-3=-4288/649, 3-4=-4287/649, 4-5=-6148/766 BOT CHORD 1-9=-489/3848, 9-10=-489/3848, 8-10=-489/3848, 8-11=-489/3848,

- 7-11=-489/3848, 7-12=-414/3803,
- 6-12=-414/3803, 6-13=-414/3803, 5-13=-414/3803

WEBS

3-7=-919/6552, 4-7=-2229/465, 4-6=-331/3014, 2-7=-2307/444,

2-8=-299/3125

NOTES- (12-13)

1) 2-ply truss to be connected together with 10d

(0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=634, 5=655. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 13-11-4 to connect truss(es) R03 (1 ply 2x4 SP), R02A (1 ply 2x4 SP), R02 (1 ply 2x4 SP) to back face of bottom chord.

11) Fill all nail holes where hanger is in contact with lumber.

- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

- Uniform Loads (plf)
- Vert: 1-3=-60, 3-5=-60, 1-5=-20
- Concentrated Loads (lb)
- Vert: 7=-1336(B) 6=-1336(B) 9=-1447(B)
- 10=-1336(B) 11=-1336(B) 12=-1336(B) 13=-1345(B)

		<u>7-10-0</u> 1-10-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. DEFL. TC 0.31 Vert(LL) BC 0.23 Vert(CT) WB 0.07 Horz(CT) Matrix-SH Horz(CT) Horz(CT)	in (loc) l/defl L/d -0.00 1 n/r 180 0.00 1 n/r 80 -0.00 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 0%

BOT CHORD	2x4 SP No.3
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3
BRACING-	

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 7-10-0.

(lb) - Max Horz
2= 83(LC 14)
Max Uplift
All uplift 100 lb or less at joint(s) 2, 9
Max Grav
All reactions 250 lb or less at joint(s)
except 8=509(LC 35), 7=317(LC 35), 2=254(LC 36), 9=433(LC 36)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 5-8=-488/0, 6-7=-301/0 WEBS 3-9=-348/113

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 7-8-4 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

7) Provide adequate drainage to prevent water ponding.

8) Gable requires continuous bottom chord bearing.9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-4=-60, 5-11=-60, 6-11=-260, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300
- 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 5-11=-60, 6-11=-260, 2-7=-20 Concentrated Loads (lb)
 - Vert: 11=-300
- 3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-50, 5-11=-50, 6-11=-250, 2-7=-20

Concentrated Loads (lb) Vert: 11=-300

 4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-50, 5-11=-50, 6-11=-250, 2-7=-20 Concentrated Loads (lb)

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING	
22-2666-R01	R09	Half Hip Supported	1	1	lak Deference (antional)	
	And the Original Constitution				JOD Reference (optional)	

Atlantic Building Components, Moncks Corner, South Carolina LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 11=-300 5) Dead + 0.75 Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-10=-50, 4-10=-58, 5-11=-29, 6-11=-229, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-29, 5-11=-63, 6-11=-263, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-20, 5-11=-20, 6-11=-220, 2-7=-40 Concentrated Loads (lb) Vert: 11=-300 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 2-4=-5, 5-11=-5, 6-11=-205, 2-7=-10 Horz: 2-4=-5, 4-5=-62, 6-7=35 Concentrated Loads (lb) Vert: 11=-300 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-4=-42, 5-11=-42, 6-11=-242, 2-7=-20 Horz: 2-4=22, 4-5=22, 6-7=-32 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Vert: 1-2=38, 2-4=26, 5-11=10, 6-11=-190, 2-7=-10 Horz: 2-4=-36, 4-5=15, 6-7=19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-4=13, 5-11=26, 6-11=-174, 2-7=-10 Horz: 2-4=-23, 4-5=-19, 6-7=-15 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-4=6, 5-11=-10, 6-11=-210, 2-7=-20 Horz: 2-4=-26, 4-5=25, 6-7=9 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-4=-7, 5-11=6, 6-11=-194, 2-7=-20 Horz: 2-4=-13, 4-5=-9, 6-7=-25 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-4=26, 5-11=10, 6-11=-190, 2-7=-10

- Horz: 2-4=-36, 4-5=-36, 6-7=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300
- Continued on page 3

Standard 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-4=10, 5-11=26, 6-11=-174, 2-7=-10 Horz: 2-4=-20, 4-5=-20, 6-7=-12 Drag: 1-2=-0 Concentrated Loads (Ib) Vert: 11=-300 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-4=26, 5-11=10, 6-11=-190, 2-7=-10 Horz: 2-4=-36, 4-5=-36, 6-7=17 Drag: 1-2=-0 Concentrated Loads (Ib) Vert: 11=-300 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-4=10, 5-11=26, 6-11=-174, 2-7=-10 Horz: 2-4=-20, 4-5=-20, 6-7=-12 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-4=6, 5-11=-10, 6-11=-210, 2-7=-20 Horz: 2-4=-26, 4-5=-26, 6-7=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 2-4=-10, 5-11=6, 6-11=-194, 2-7=-20 Horz: 2-4=-10, 4-5=-10, 6-7=-23 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-4=-20, 5-11=-20, 6-11=-220, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-10=-60, 4-10=-70, 5-11=-32, 6-11=-232, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-32, 5-11=-77, 6-11=-277, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf)

Vert: 1-4=-20, 5-11=-20, 6-11=-220, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind

(Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-9VTaY60BtY7T?BnYFR9Cz_QbEAlqzSzI7ETWrszQUQD Standard Vert: 1-2=-27, 2-4=-31, 5-11=-42, 6-11=-242, 2-7=-20 Horz: 2-4=-19, 4-5=19, 6-7=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-4=-40, 5-11=-31, 6-11=-231, 2-7=-20 Horz: 2-4=-10, 4-5=-6, 6-7=-19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-4=-31, 5-11=-42, 6-11=-242, 2-7=-20 Horz: 2-4=-19, 4-5=-19, 6-7=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-4=-42, 5-11=-31, 6-11=-231, 2-7=-20 Horz: 2-4=-8, 4-5=-8, 6-7=-17 Concentrated Loads (Ib) Vert: 11=-300 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-4=-31, 5-11=-42, 6-11=-242, 2-7=-20 Horz: 2-4=-19, 4-5=19, 6-7=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-4=-40, 5-11=-31, 6-11=-231, 2-7=-20 Horz: 2-4=-10, 4-5=-6, 6-7=-19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-4=-31, 5-11=-42, 6-11=-242, 2-7=-20 Horz: 2-4=-19, 4-5=-19, 6-7=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 31) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-4=-42, 5-11=-31, 6-11=-231, 2-7=-20 Horz: 2-4=-8, 4-5=-8, 6-7=-17 Concentrated Loads (lb)

Vert: 11=-300 32) Dead + Minimum Snow: Lumber Increase=1.15,

Plate Increase=1.15

Uniform Loads (plf)

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	R09	Half Hip Supported	1	1	
					Job Reference (optional)
Atlantic Building Components, N	Ioncks Corner. South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:44 2022 Page 3

lina 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:44 2022 Page 3 ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-9VTaY60BtY7T?BnYFR9Cz_QbEAIqzSzl7ETWrszQUQD

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-4=-60, 5-11=-60, 6-11=-260, 2-7=-20 Concentrated Loads (Ib) Vert: 11=-300 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-4=-26, 5-11=-26, 6-11=-226, 2-7=-10 Horz: 2-4=16, 4-5=16, 6-7=-16 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-4=6, 5-11=6, 6-11=-194, 2-7=-10 Horz: 2-4=-16, 4-5=-16, 6-7=16 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-32, 5-11=-89, 6-11=-289, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-89, 5-11=-32, 6-11=-232, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-29, 5-11=-72, 6-11=-272, 2-7=-20 Concentrated Loads (Ib) Vert: 11=-300 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-72, 5-11=-29, 6-11=-229, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6. 2-4=-10. 5-11=-64. 6-11=-264. 2-7=-20 Horz: 2-4=-19, 4-5=19, 6-7=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-4=-53, 5-11=-21, 6-11=-221, 2-7=-20 Horz: 2-4=-19, 4-5=19, 6-7=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-4=-19, 5-11=-53, 6-11=-253, 2-7=-20 Horz: 2-4=-10, 4-5=-6, 6-7=-19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Standard Standard Vert: 1-2=-58, 2-4=-62, 5-11=-10, 6-11=-210, Vert: 1-4=-20, 5-11=-50, 6-11=-250, 2-7=-20 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 Horz: 2-4=-10, 4-5=-6, 6-7=-19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-4=-10, 5-11=-64, 6-11=-264, 2-7=-20 Horz: 2-4=-19, 4-5=-19, 6-7=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-4=-53, 5-11=-21, 6-11=-221, 2-7=-20 Horz: 2-4=-19, 4-5=-19, 6-7=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 11=-300 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-4=-21, 5-11=-53, 6-11=-253, 2-7=-20 Horz: 2-4=-8, 4-5=-8, 6-7=-17 Concentrated Loads (lb) Vert: 11=-300 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-4=-64, 5-11=-10, 6-11=-210, 2-7=-20 Horz: 2-4=-8, 4-5=-8, 6-7=-17 Concentrated Loads (lb) Vert: 11=-300 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-32, 5-11=-89, 6-11=-289, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-89, 5-11=-32, 6-11=-232, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 5-11=-20, 6-11=-220, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-20, 5-11=-60, 6-11=-260, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-50, 5-11=-20, 6-11=-220, 2-7=-20 Concentrated Loads (lb) Vert: 11=-300 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Job	Truss	Truss Type	Qty	Ply L	OT 51 CROSSING	@ ANDERSON CREEK 11	5 PINNACLE DRIVE SPRING
22-2666-R01	R10	Half Hip	8	1		e n	
Atlantic Building Component	s, Moncks Corner, South Carolina			8	3.430 s Feb 12 2021 M	tional) MiTek Industries, Inc. Fri Ap	r 15 12:31:47 2022 Page 1
	-0-10-8	5-	ID:te?_8ytH1N5 11-8	5AHCxjPc0A	_rzRBdO-Z48jA82	3ATV2sfV7xaivbc2?GN 7-10-0	JAmjBpBhASBzQUQA
	0-10-8	5-	11-8		1	1-10-8	
							Scale = 1:17.2
					3x4		
II.		3.00 12			3		
		1					
						4x8 =	5 ^{2x4}
		11			4 ^{VV1}	T2	
14	2				8		4
						W2	
0-6			B1			Ľ	
					7		
					7 3x4		0
	3x4 =					4x4	4 =
	L	5-	11-8			7-10-0	1
Plate Offsets (X Y) [4	4.0-3-4 0-2-01 [5:0-2-0 0-1-0	5- 5- 1 [6:0-1-12 0-2-0]	11-8		1	1-10-8	
		j, [0.0 1 12,0 2 0]					
LOADING (psf) TCLL 20.0	Plate Grip DOL 1.1	0 CSI. 5 TC 0.64	DEFL. Vert(LL) -0.0	in (loc) l.)3 2-7 >	/defl L/d >999 240	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.1	5 BC 0.50	Vert(CT) -0.0	9 2-7 >	-999 180		
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI201	A WB 0.26 Matrix-SH	Horz(CT) 0.0	01 6	n/a n/a	Weight: 31 lb	FT = 0%
TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP W1: 2x6 BRACING- TOP CHORD Structural wood sheatt purlins, except end ve BOT CHORD Rigid ceiling directly af MiTek recommends t cross bracing be inst accordance with Stat REACTIONS. (lb/size 6 = 2 = 463 Max Horz 2 = 463 Max Horz 2 = 463 Max Horz 2 = 463 Max Grav 6 = 2 3 = 2 FORCES. (lb) Max. Comp./Max. Ten. when shown. TOP CHORD 2-3=-841/0, 5-6=-372/0 BOT CHORD 2-7=0/739, 6-7=0/1367 WEBS 4-6=-1260/0 NOTES- (13-14)	No.2 No.2 No.3 *Except* 5 SP No.2 hing directly applied or 4-11- rticals. oplied or 10-0-0 oc bracing. hat Stabilizers and required alled during truss erection, in bilizer Installation guide.) 808/Mechanical 8/0-5-8 (min. 0-1-8) 81(LC 14) -2(LC 10) 817(LC 36) 592(LC 36) - All forces 250 (lb) or less	 2) Wind: ASCE 7-16; Vasd=103mph; TCDI Cat. II; Exp B; Enclose end zone and C-C Ex- end vertical left and r and forces & MWFR3 DOL=1.60 plate grip 3) TCLL: ASCE 7-16; DOL=1.15 Plate DOL DOL=1.15 Plate DOL Partially Exp.; Ce=1.0 4) Unbalanced snow this design. 5) This truss has bee roof live load of 12.0 20.0 psf on overhang loads. 6) Provide adequate ponding. 7) This truss has bee chord live load nonco loads. 8) * This truss has bee chord live load nonco loads. 8) * This truss has bee chord live load nonco loads. 9) Refer to girder(s) f 10) Provide mechanit truss to bearing plate uplift at joint(s) 2. 11) This truss is desi 2018 International Re R502.11.1 and R802 ANSI/TPI 1. 12) Load case(s) 1, 2 , 14, 15, 16, 17, 18, 1 	Vult=130mph (3-sec _=5.0psf; BCDL=5.0p red; MWFRS (envelo tterior(2) -0-10-8 to 7- ight exposed;C-C for 5 for reactions shown DOL=1.60 Pr=20.0 psf (roof LL _=1.15); Pf=20.0 psf (_=1.15); Pf=20.0 psf (_=1.15); Is=1.0; Roug 0; Cs=1.00; Ct=1.10 loads have been con n designed for greate psf or 2.00 times flat s non-concurrent with drainage to prevent v n designed for a 10.0 mcurrent with any oth then designed for a 10.0 mcurrent with any oth then designed for a live n chord in all areas w v 1-0-0 wide will fit be y other members. or truss to truss conn cal connection (by oth capable of withstanc gned in accordance v esidential Code sectio 10.2 and referenced	cond gust) osf; h=23ft; pe) gable -8-4 zone; members n; Lumber : Lum (Lum h Cat B; asidered for er of min roof load of h other live vater 0 psf bottom her live e load of there a etween the nections. hers) of ding 100 lb with the oss standard 0, 11, 12, 13 , 25, 26, 27,	 13) Graphic depict ti on the v must be 14) Bearing represe Bearing structur indicate LOAD CAS Standard 1) Dead + S Plate Inc Uniform Vert: 1-3 Concent Vert: 8=- 2) Dead + F Increase Uniform Vert: 1-3 Concent Vert: 8=- 3) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 8=- 4) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 1-3 Concent Vert: 8=- 4) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 8=- 4) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 8=- 4) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 8=- 4) Dead + C Increase Uniform Vert: 8=- 4) Dead + C Increase Uniform Vert: 1-3 Concent Vert: 8=- 5) Dead + C 	cal web bracing repress he size, type or the ori web. Symbol only indice a braced. g symbols are only gra intations of a possible g symbols are not constrained by the truss and design of the trust and design of the trust a	entation does not entation of the brace :ates that the member phical bearing condition. sidered in the to support the loads ber Increase=1.15, 30, 2-6=-20 Lumber =1.15 50, 2-6=-20 ed): Lumber =1.15 50, 2-6=-20 Lumber =1.15 50, 2-6=-20
 Unbalanced roof live this design. 	e loads have been considere	ed for 28, 29, 30, 31, 32, 33 42, 43, 44, 45, 46, 47	, 34, 35, 36, 37, 38, 3 , 48, 49, 50, 51, 52 h	39, 40, 41, has/have	Increase	=1.15, Plate Increase	=1.15
-		been modified. Buildi verify that they are co	ng designer must rev	view loads to d use of this	o Uniform Vert: 1-3	Loads (plf) =-58, 4-8=-29, 5-8=-22	29, 2-6=-20
Continued on page 2		truss.			Concenti	rated Loads (lb)	

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	R10	Half Hip	8	1	Job Reference (optional)
Atlantic Building Components, N	Noncks Corner, South Carolina	ID:te?	8ytH1N5A	HCxjPc0/	8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:47 2022 Page 2 A rzRBdO-Z48jA823ATV2sfV7xaivbc2?GNGJAmjBpBhASBzQUQA

Atlantic Building Components, Moncks Corner, South Carolina LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-300 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-8=-63, 5-8=-263, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 4-8=-20, 5-8=-220, 2-6=-40 Concentrated Loads (lb) Vert: 8=-300 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 2-3=-5, 4-8=-5, 5-8=-205, 2-6=-10 Horz: 2-3=-5, 3-4=-42, 5-6=35 Concentrated Loads (lb) Vert: 8=-300 Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Concentrated Loads (lb) Vert: 8=-300

- Concentrated Loads (ib) Vert: 8=-300 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-42, 4-8=-42, 5-8=-242, 2-6=-20 Horz: 2-3=22, 3-4=22, 5-6=-32 Concentrated Loads (lb) Vert: 8=-300 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=38, 2-3=26, 4-8=10, 5-8=-190, 2-6=-10 Horz: 2-3=-36, 3-4=15, 5-6=19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-3=13, 4-8=26, 5-8=-174, 2-6=-10 Horz: 2-3=-23, 3-4=-19, 5-6=-15 Drag: 1-2=-0
- Concentrated Loads (lb) Vert: 8=-300 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-8=-10, 5-8=-210, 2-6=-20 Horz: 2-3=-26, 3-4=25, 5-6=9 Drag: 1-2=-0
 - Concentrated Loads (lb)
 - Vert: 8=-300
- Vert. 0-300
 Vert. 10-300
 Vert. 10-300
 Vert. 1-2-500
 Vert. 1-2-2, 2-3-7, 4-8=6, 5-8=-194, 2-6=-20
 Horz: 2-3=-13, 3-4-9, 5-6=-25
 Drag: 1-2=-0
 - Concentrated Loads (lb)
 - Vert: 8=-300
- Vert. 0-300
 Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 Vert: 1-2=21, 2-3=26, 4-8=10, 5-8=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17
 - Drag: 1-2=-0
 - Concentrated Loads (lb)
 - Vert: 8=-300
- 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-8=26, 5-8=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb)
 - Vert: 8=-300
- 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
- Continued on page 3

Standard Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-8=10, 5-8=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-8=26, 5-8=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb) Vert: 8=-300 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-8=-10, 5-8=-210, 2-6=-20 Horz: 2-3=-26, 3-4=-26, 5-6=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Increase=1.00 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-8=6, 5-8=-194, 2-6=-20 Horz: 2-3=-10, 3-4=-10, 5-6=-23 Concentrated Loads (lb) Vert: 8=-300 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-8=-20, 5-8=-220, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-71, 4-8=-32, 5-8=-232, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-8=-77, 5-8=-277, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 4-8=-20, 5-8=-220, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-8=-42, 5-8=-242, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300

- 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-8=-31, 5-8=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 8=-300
- 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Standard Vert: 1-2=-27, 2-3=-31, 4-8=-42, 5-8=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-8=-31, 5-8=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 8=-300 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-8=-42, 5-8=-242, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-8=-31, 5-8=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 8=-300 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-8=-42, 5-8=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-8=-31, 5-8=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 8=-300 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-8=-60, 5-8=-260, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-8=-26, 5-8=-226, 2-6=-10 Horz: 2-3=16, 3-4=16, 5-6=-16 Concentrated Loads (lb) Vert: 8=-300 34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=6, 4-8=6, 5-8=-194, 2-6=-10 Horz: 2-3=-16, 3-4=-16, 5-6=16 Concentrated Loads (lb) Vert: 8=-300 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-8=-89, 5-8=-289, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300

 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-8=-32, 5-8=-232, 2-6=-20

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	R10	Half Hip	8	1	Job Reference (optional)
Atlantic Building Components, N	Noncks Corner, South Carolina	ID:te?	8ytH1N5A	HCxjPc0/	8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:47 2022 Page 3 A rzRBdO-Z48jA823ATV2sfV7xaivbc2?GNGJAmjBpBhASBzQUQA

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-300 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-8=-72, 5-8=-272, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-72, 4-8=-29, 5-8=-229, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-8=-64, 5-8=-264, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-8=-21, 5-8=-221, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-3=-19, 4-8=-53, 5-8=-253, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 8=-300 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 4-8=-10, 5-8=-210, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 8=-300 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-8=-64, 5-8=-264, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-8=-21, 5-8=-221, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 8=-300 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-21, 4-8=-53, 5-8=-253, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 8=-300 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Standard Uniform Loads (plf) Vert: 1-2=-61, 2-3=-64, 4-8=-10, 5-8=-210, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 8=-300 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-8=-89, 5-8=-289, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-8=-32, 5-8=-232, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-8=-20, 5-8=-220, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-8=-60, 5-8=-260, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-8=-20, 5-8=-220, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-8=-50, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-300

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	R12	Half Hip	1	1	
					Job Reference (optional)
Atlantic Building Components, M	Ioncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:53 2022 Page 2

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=-20, 3-7=-20, 4-7=-220, 1-5=-40 Concentrated Loads (lb) Vert: 7=-300 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 3-7=-5, 4-7=-205, 1-5=-10 Horz: 1-2=-5, 2-3=-47, 4-5=35 Concentrated Loads (lb) Vert: 7=-300 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-42, 3-7=-42, 4-7=-242, 1-5=-20 Horz: 1-2=22, 2-3=27, 4-5=-32 Concentrated Loads (lb) Vert: 7=-300 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=26, 3-7=10, 4-7=-190, 1-5=-10 Horz: 1-2=-36, 2-3=9, 4-5=19 Concentrated Loads (lb) Vert: 7=-300 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=13, 3-7=26, 4-7=-174, 1-5=-10 Horz: 1-2=-23, 2-3=-24, 4-5=-15 Concentrated Loads (Ib) Vert: 7=-300 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 3-7=-10, 4-7=-210, 1-5=-20 Horz: 1-2=-26, 2-3=30, 4-5=9 Concentrated Loads (lb) Vert: 7=-300 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right:
 Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-7, 3-7=6, 4-7=-194, 1-5=-20 Horz: 1-2=-13, 2-3=-3, 4-5=-25 Concentrated Loads (lb) Vert: 7=-300 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=26, 3-7=10, 4-7=-190, 1-5=-10 Horz: 1-2=-36, 2-3=-41, 4-5=17 Concentrated Loads (lb) Vert: 7=-300 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=10, 3-7=26, 4-7=-174, 1-5=-10 Horz: 1-2=-20, 2-3=-26, 4-5=-12 Concentrated Loads (Ib) Vert: 7=-300 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=26, 3-7=10, 4-7=-190, 1-5=-10 Horz: 1-2=-36, 2-3=-41, 4-5=17 Concentrated Loads (lb) Vert: 7=-300 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=10, 3-7=26, 4-7=-174, 1-5=-10 Horz: 1-2=-20, 2-3=-26, 4-5=-12 Concentrated Loads (lb) Vert: 7=-300 Vert. 7 = -500
 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Continued on page 3

8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:53 2022 Page 2 ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-OEW_RB7qmJGBaazHHqpJrtI1DolkaU84B78UgrzQUQ4 Standard Vert: 1-2=6, 3-7=-10, 4-7=-210, 1-5=-20 Horz: 1-2=-26, 2-3=-20, 4-5=7 Concentrated Loads (lb) Vert: 7=-300 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 3-7=6, 4-7=-194, 1-5=-20 Horz: 1-2=-10, 2-3=-5, 4-5=-23 Concentrated Loads (lb) Vert: 7=-300 20) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 3-7=-32, 4-7=-232, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 21) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-32, 3-7=-77, 4-7=-277, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 22) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-2=-20, 3-7=-20, 4-7=-220, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 23) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 3-7=-42, 4-7=-242, 1-5=-20 Horz: 1-2=-19, 2-3=23, 4-5=6 Concentrated Loads (lb) Vert: 7=-300 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 3-7=-31, 4-7=-231, 1-5=-20 Horz: 1-2=-10, 2-3=-3, 4-5=-19 Concentrated Loads (lb) Vert: 7=-300 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 3-7=-42, 4-7=-242, 1-5=-20 Horz: 1-2=-19, 2-3=-15, 4-5=5 Concentrated Loads (lb) Vert: 7=-300 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-42, 3-7=-31, 4-7=-231, 1-5=-20 Horz: 1-2=-8, 2-3=-4, 4-5=-17 Concentrated Loads (lb) Vert: 7=-300 27) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 3-7=-42, 4-7=-242, 1-5=-20 Horz: 1-2=-19, 2-3=23, 4-5=6 Concentrated Loads (lb) Vert: 7=-300 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 3-7=-31, 4-7=-231, 1-5=-20 Horz: 1-2=-10, 2-3=-3, 4-5=-19 Concentrated Loads (b) Concentrated Loads (lb)

Standard Vert: 7=-300 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 3-7=-42, 4-7=-242, 1-5=-20 Horz: 1-2=-19, 2-3=-15, 4-5=5 Concentrated Loads (lb) Vert: 7=-300 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-42, 3-7=-31, 4-7=-231, 1-5=-20 Horz: 1-2=-8, 2-3=-4, 4-5=-17 Concentrated Loads (lb) Vert: 7=-300 31) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 3-7=-60, 4-7=-260, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 32) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-26, 3-7=-26, 4-7=-226, 1-5=-10 Horz: 1-2=16, 2-3=16, 4-5=-16 Concentrated Loads (lb) Vert: 7=-300 33) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 3-7=6, 4-7=-194, 1-5=-10 Horz: 1-2=-16, 2-3=-16, 4-5=16 Concentrated Loads (lb) Vert: 7=-300 34) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-32, 3-7=-89, 4-7=-289, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 35) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-89, 3-7=-32, 4-7=-232, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 36) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-29, 3-7=-72, 4-7=-272, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 37) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-72, 3-7=-29, 4-7=-229, 1-5=-20 Concentrated Loads (lb) Vert: 7=-300 38) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 3-7=-64, 4-7=-264, 1-5=-20 Horz: 1-2=-19, 2-3=23, 4-5=6 Concentrated Loads (lb) Vert: 7=-300 39) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-53, 3-7=-21, 4-7=-221, 1-5=-20 Horz: 1-2=-19, 2-3=23, 4-5=6 Concentrated Loads (lb) Vert: 7=-300

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	R12	Half Hip	1	1	
					Job Reference (optional)
Atlantic Building Components, Moncks Corner, South Carolina					8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:31:53 2022 Page 3

ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-OEW_RB7qmJGBaazHHqpJrt11DolkaU84B78UgrzQUQ4

LO	AD CASE(S)	
St	andard 9th Upbal Doad + 0.75 Spow (upbal) + 0.75(0.6	Standard
40)	MWERS Wind (Neg. Int) Right) + Parallel: Lumber	51) 4th Dead + 0 75 Roof Live (unbalanced): Lumber
	Increase=1.60, Plate Increase=1.60	Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)	Uniform Loads (plf)
	Vert: 1-2=-19, 3-7=-53, 4-7=-253, 1-5=-20	Vert: 1-2=-20, 3-7=-50, 4-7=-250, 1-5=-20
	H0rZ: 1-2=-10, 2-3=-3, 4-5=-19 Concentrated Loads (Ib)	Concentrated Loads (ID)
	Vert: 7=-300	ven. 7=-300
41)	10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6	
	MWFRS Wind (Neg. Int) Right) + Parallel: Lumber	
	Increase=1.60, Plate Increase=1.60	
	Vert: 1-2=-62, 3-7=-10, 4-7=-210, 1-5=-20	
	Horz: 1-2=-10, 2-3=-3, 4-5=-19	
	Concentrated Loads (lb)	
40)	Vert: 7=-300	
42)	11th Unbal.Dead + 0.75 Show (unbal.) + 0.75(0.6	
	Increase=1.60. Plate Increase=1.60	
	Uniform Loads (plf)	
	Vert: 1-2=-10, 3-7=-64, 4-7=-264, 1-5=-20	
	Horz: 1-2=-19, 2-3=-15, 4-5=5	
	Vert: 7=-300	
43)	12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6	
	MWFRS Wind (Neg. Int) 1st Parallel): Lumber	
	Increase=1.60, Plate Increase=1.60	
	Vert: 1-2=-53, 3-7=-21, 4-7=-221, 1-5=-20	
	Horz: 1-2=-19, 2-3=-15, 4-5=5	
	Concentrated Loads (lb)	
44)	Vert: 7=-300	
44)	MWERS Wind (Neg. Int) 2nd Parallel): Lumber	
	Increase=1.60, Plate Increase=1.60	
	Uniform Loads (plf)	
	Vert: 1-2=-21, 3-7=-53, 4-7=-253, 1-5=-20	
	H0[2: 1-2=-8, 2-3=-4, 4-5=-17 Concentrated Loads (Ib)	
	Vert: 7=-300	
45)	14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6	
	MWFRS Wind (Neg. Int) 2nd Parallel): Lumber	
	Increase=1.60, Plate Increase=1.60	
	Vert: 1-2=-64. 3-7=-10. 4-7=-210. 1-5=-20	
	Horz: 1-2=-8, 2-3=-4, 4-5=-17	
	Concentrated Loads (lb)	
46)	Vert: /=-300 15th Llabal Doad + Minimum Show + Parallel:	
40)	Lumber Increase=1.15. Plate Increase=1.15	
	Uniform Loads (plf)	
	Vert: 1-2=-32, 3-7=-89, 4-7=-289, 1-5=-20	
	Vort: 7-300	
47)	16th Unbal.Dead + Minimum Snow + Parallel:	
,	Lumber Increase=1.15, Plate Increase=1.15	
	Uniform Loads (plf)	
	Concentrated Loads (lb)	
	Vert: 7=-300	
48)	1st Dead + Roof Live (unbalanced): Lumber	
	Increase=1.15, Plate Increase=1.15	
	Vert: 1-260 3-720 4-7220 1-520	
	Concentrated Loads (Ib)	
	Vert: 7=-300	
49)	2nd Dead + Roof Live (unbalanced): Lumber	
	Increase=1.15, Mate Increase=1.15	
	Vert: 1-2=-20, 3-7=-60, 4-7=-260, 1-5=-20	
	Concentrated Loads (lb)	
EC	Vert: 7=-300	
5U)	Increase=1 15 Plate Increase=1 15	
	Uniform Loads (plf)	
	Vert: 1-2=-50, 3-7=-20, 4-7=-220, 1-5=-20	
	Concentrated Loads (lb)	

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

10.0

WEBS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-7-3 oc purlins, except end verticals.

Code IRC2018/TPI2014

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

5 =	447/0-3-8 (min. 0-1-8)
2 =	446/0-3-8 (min. 0-1-8)
Max Horz	
2 =	81(LC 9)
Max Uplift	
5 =	-118(LC 12)
2 =	-117(LC 8)
Max Grav	
5 =	525(LC 19)
2 =	515(LC 19)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-969/159, 3-7=-929/169 BOT CHORD 2-6=-176/892, 6-9=-176/892,

5-9=-176/892

WEBS

3-6=0/254, 3-5=-945/206

NOTES- (11-12)

Matrix-P

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

(b) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=118, 2=117.
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

 11) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 20) Beachage and beachage and brace brace brace of the state of the state brace brace.

Weight: 42 lb

FT = 0%

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

- Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-4=-60, 2-5=-20
- Concentrated Loads (lb)
- Vert: 3=-34(F) 6=-68(F) 8=22(F) 9=-134(F)

TOP CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

4	=	54/Mechanical
7	=	200/0-3-8 (min. 0-1-8)
6	=	71/Mechanical
Max H	lorz	
7	=	34(LC 14)
Max L	Jplift	
4	=	-25(LC 10)
7	=	-34(LC 14)
6	=	-3(LC 11)
Max 6	Grav	
4	=	91(LC 35)
7	=	278(LC 36)
6	=	88(LC 35)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

(12-13) NOTES-

1) Unbalanced roof live loads have been considered for this design.

end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of

truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 6. 11) This truss is designed in accordance with the

2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Bearing symbols are only graphical representations of a possible bearing condition.

Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

VVEDO	284	Эг
BRACING-		

TOP CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

4 =	7/Mechanical
7 =	196/0-3-8 (min. 0-1-8)
6 =	123/Mechanical
Max Horz	
7 =	52(LC 14)
Max Uplift	
4 =	-23(LC 40)
7 =	-31(LC 14)
6 =	-38(LC 14)
Max Grav	
4 =	33(LC 35)
7 =	303(LC 36)
6 =	154(LC 36)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-265/51

- - - -

NOTES- (12-13)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for

this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live

20.0 psf on overhangs non-concurrent with other liv loads.6) Provide adequate drainage to prevent water

ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

 Perfer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 6.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale: 1/4"=1'

12-5-4
12-5-4

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) n/a - n/a 999	
TCDL 10.0	Lumber DOL 1.15	BC 0.40	Vert(CT) n/a - n/a 999	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.15 Matrix-SH	Horz(CT) 0.00 5 n/a n/a	Weight: 66 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 12-5-4.

(lb) - Max Horz

1= 196(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 5 except 1=-113(LC 10), 8=-305(LC 12), 6=-305(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=398(LC 22), 8=434(LC 19), 6=434(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-266/193 WEBS 2-8=-387/343, 4-6=-387/343

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=113, 8=305, 6=305.
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.40.7

Plate Offsets (X,Y)-- [6:0-2-8,0-1-0], [8:0-2-8,0-1-0]

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL)	n/a	-	n/a	999	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.30	Vert(CT)	n/a	-	n/a	999	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.12	Horz(CT)	0.00	5	n/a	n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-SH						Weight: 53 lb FT = 0%

10-5-4

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 10-5-4.

(lb) - Max Horz 1=-163(LC 8) Max Uplift All uplift 100 lb or less at joint(s) except 1=-193(LC 10), 5=-171(LC 11), 8=-335(LC 12), 6=-335(LC 13) Max Grav All reactions 250 lb or less at joint(s) 5 except 1=263(LC 12), 7=344(LC 19), 8=443(LC 19), 6=442(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-322/227, 4-5=-305/227 WEBS 2-8=-455/402, 4-6=-455/402

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; CS=1.00; Ct=1.10
4) Gable requires continuous bottom chord bearing.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 193 lb uplift at joint 1, 171 lb uplift at joint 5, 335 lb uplift at joint 8 and 335 lb uplift at joint 6.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.35.6

			<u> </u>	8-5-4 8-5-4			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.41	Vert(LL) n/a	- n/a	999	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.26	Vert(CT) n/a	- n/a	999	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT) 0.00	3 n/a	n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P				Weight: 40 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

2x4 SP No.3 OTHERS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

1	=	203/8-5-4	(min. 0-1-8)
3	=	203/8-5-4	(min. 0-1-8)
4	=	223/8-5-4	(min. 0-1-8)
Max H	lorz		
1	=	13	30(LC 9)
Max L	Jplift		
1	=	-6	5(LC 13)
3	=	-5	4(LC 12)
Max 0	Grav		
1	=	20	03(LC 1)
3	=	20	03(LC 1)
4	=	23	38(LC 5)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads 6) * This truss has been designed for a live load of

30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at

joint 1 and 54 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace

- on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.27.5

FT = 0%

2x4 //

1-3-8

4 2x4 ||

		I	6-5-4	
		Γ	6-5-4	
CING-	2-0-0	CSI.	DEFL	
	1 15	TC 0.22	Vert(LL)	

Lumber DOL1.15BC0.15Vert(C1)n/a-n/a999Rep Stress IncrYESWB0.03Horz(CT)0.003n/an/aCode IRC2018/TPI2014Matrix-PWeight: 30 lb	lb FT=	
--	--------	--

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x4 SP No.2

20.0

10.0

0.0

10.0

BOT CHORD 2x4 SP No.3

2x4 SP No.3 OTHERS BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REA	СТ	IONS.	(lb/size)

		(
1	=	151/6-5-4 (min. 0-1-8)
3	=	151/6-5-4 (min. 0-1-8)
4	=	166/6-5-4 (min. 0-1-8)
Max	Horz	
1	=	-97(LC 8)
Max	: Uplift	
1	=	-48(LC 13)
3	=	-40(LC 12)
Max	Grav	
1	=	151(LC 1)
3	=	151(LC 1)
4	=	177(LC 5)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at

joint 1 and 40 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace

on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1:17.7

4-5-4 4-5-4 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl I/d PLATES GRIP Plate Grip DOL 20.Ó 0.09 Vert(LL) 244/190 TCLL 1.15 тс 999 n/a n/a MT20 BC TCDL 10.0 Lumber DOI 1.15 0.06 Vert(CT) n/a n/a 999 WB BCLL 0.0 Rep Stress Incr YES 0.01 Horz(CT) 0.00 3 n/a n/a Code IRC2018/TPI2014 FT = 0% BCDL 10.0 Matrix-P Weight: 20 lb

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-5-4 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

		(
1	=	100/4-5-4	(min. 0-1-8)			
3	=	100/4-5-4	(min. 0-1-8)			
4	=	109/4-5-4	(min. 0-1-8)			
Max H	lorz					
1	=	-6	4(LC 8)			
Max L	Jplift					
1	=	-3	2(LC 13)			
3	=	-26(LC 12)				
Max G	Grav					
1	=	10	00(LC 1)			
3	=	10	00(LC 1)			
4	=	11	17(LC 5)			

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at

a) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace

on the web. Symbol only indicates that the member must be braced.

 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	VT06	Valley	1	1	Job Reference (optional)
Atlantic Building Components, N	Ioncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:32:28 2022 Page 1

Scale = 1.110

2x4 // 2x4 || 2x4 \\

			2-5-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.02 BC 0.02 WB 0.01 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 0%

. . .

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

- 2x4 SP No.3 OTHERS
- BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-5-4 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

1 =	48/2-5-4 (min. 0-1-8)
3 =	48/2-5-4 (min. 0-1-8)
4 =	53/2-5-4 (min. 0-1-8)
Max Horz	
1 =	31(LC 9)
Max Uplift	
1 =	-15(LC 13)
3 =	-13(LC 12)
Max Grav	
1 =	48(LC 1)
3 =	48(LC 1)
4 =	56(LC 5)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads. 6) * This truss has been designed for a live load of

30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at

joint 1 and 13 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member

must be braced. 10) Bearing symbols are only graphical

representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.42.6

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.33	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CŤ) 0.00 5 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 56 lb $FT = 0\%$

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 10-11-4.

(lb) - Max Horz

1=-171(LC 8) Max Uplift All uplift 100 lb or less at joint(s) except 1=-161(LC 10), 5=-138(LC 11), 8=-315(LC 12), 6=-314(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=359(LC 22), 8=424(LC 19), 6=423(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-296/207, 4-5=-278/195

WEBS 2-8=-420/371, 4-6=-420/371

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 1, 138 lb uplift at joint 5, 315 lb uplift at joint 8 and 314 lb uplift at joint 6.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Scale = 1.375

2x4 ||

8-11-4

			8-11-4	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCDL 10.0 BCU 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.30 WB 0.08	Vert(CC) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 - 3 n/a n/a	WI120 244/130
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 42 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc

purlins. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size)

		(10/3120)				
1	=	216/8-11-4	(min. 0-1-8)			
3	=	216/8-11-4	(min. 0-1-8)			
4	=	237/8-11-4	(min. 0-1-8)			
Max H	orz					
1	=	-13	8(LC 8)			
Max U	plift					
1	=	-69	9(LC 13)			
3	=	-57(LC 12)				
Max G	rav					
1	=	21	6(LC 20)			
3	=	21	6(LC 1)			
4	=	34	0(LC 19)			

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1 and 57 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

<u>6-11-4</u> 3-5-10

2x4 🚿

Scale = 1.294

<u>3-5-10</u> 3-5-10

2x4 //

4 2x4 ||

2,74 ||

6-11-4						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL)	n/a -	n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT)	n/a -	n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT)	0.00 3	n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P				Weight: 32 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

	. (10/0120)			
1 =	164/6-11-4	(min. 0-1-8)		
3 =	164/6-11-4	(min. 0-1-8)		
4 =	180/6-11-4	(min. 0-1-8)		
Max Horz				
1 =	10	105(LC 9)		
Max Uplift				
1 =	-5	2(LC 13)		
3 =	-43(LC 12)			
Max Grav				
1 =	16	64(LC 1)		
3 =	16	64(LC 1)		
4 =	19	2(LC 5)		

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
4) Gable requires continuous bottom chord bearing.
5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at

joint 1 and 43 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace

on the web. Symbol only indicates that the member must be braced.

 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.19.3

4-11-4

			4-11-4	4
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT) n/a - n/a S	999 W120 244/190 999
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	Horz(CT) 0.00 3 h/a	Weight: 22 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 3

DOT CHORD	274 OF 110.	J
OTHERS	2x4 SP No.	3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-11-4 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

		(
1	=	112/4-11-4	(min. 0-1-8)	
3	=	112/4-11-4	(min. 0-1-8)	
4	=	123/4-11-4	(min. 0-1-8)	
Max	Horz			
1	=	72(LC 9)		
Max	Uplift			
1	=	-30	6(LC 13)	
3	=	-30(LC 12)		
Max	Grav			
1	=	11	2(LC 1)	
3	=	11	2(LC 1)	
4	=	13	2(LC 5)	

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads

3-3-8

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at

joint 1 and 30 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace

on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Job	Truss	Truss Type	Qty	Ply	LOT 51 CROSSING @ ANDERSON CREEK 115 PINNACLE DRIVE SPRING
22-2666-R01	VT11	Valley	1	1	
					Job Reference (optional)
Atlantic Building Components, N	Ioncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:32:41 2022 Page 1
÷ , ,		ID:tr	e? 8ytH1N5AH	CxjPc0A	rzRBdO- TP7WbixS3JNLyeV5vgZn?HOB8pKgF28Dbm1L3zQUPK

2-11-4

Scale = 1.12 7

			2-11-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.01 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 12 lb FT = 0%

. . . .

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

2x4 SP No.3 OTHERS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-11-4 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

		(
1	=	61/2-11-4	(min. 0-1-8)	
3	=	61/2-11-4	(min. 0-1-8)	
4	=	67/2-11-4	(min. 0-1-8)	
Max	Horz			
1	=	-39(LC 8)		
Max	Uplift			
1	=	-1	9(LC 13)	
3	=	-1	6(LC 12)	
Max	Grav			
1	=	6	1(LC 1)	
3	=	6	1(LC 1)	
4	=	7	1(LC 5)	

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at

joint 1 and 16 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not

depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)