

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-0-8 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

KLACHON	
3 =	107/Mechanical
2 =	223/0-3-8 (min. 0-1-8)
4 =	38/Mechanical
Max Horz	
2 =	43(LC 10)
Max Uplift	
3 =	-54(LC 14)
2 =	-67(LC 10)
Max Grav	
3 =	149(LC 21)
2 =	295(LC 21)
4 =	77(LC 7)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10-11)

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 3 and 67 lb uplift at joint 2.

9) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical web bracing representation does not

depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

2x4 =

2x4 =

Plate Offsets (X,Y) [3:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.19 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 4 n/r 180 Vert(CT) 0.00 4 n/r 80 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 0%

4-7-0

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

2	=	152/3-0-12	(min. 0-1-8)
4	=	152/3-0-12	(min. 0-1-8)
Max I	Horz		
2	=	-3	1(LC 10)
Max I	Jplift		
2	=	-2	7(LC 12)
4	=	-2	7(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
8) Provide mechanical connection (by others) of truss

to bearing plate capable of withstanding 27 lb uplift at joint 2 and 27 lb uplift at joint 4.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as

applicable, or consult qualified building designer.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

2x4 =

2x4 =

Plate Offsets (X,Y) [3:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.03 BC 0.19 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 4 n/r 180 Vert(CT) 0.00 4 n/r 80 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 0%

4-7-0

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

2	=	152/3-0-12	(min. 0-1-8)
4	=	152/3-0-12	(min. 0-1-8)
Max	Horz		
2	=	-3	1(LC 10)
Max	Uplift		
2	=	-2	7(LC 12)
4	=	-2	7(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2 and 27 lb uplift at joint 4.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as

applicable, or consult qualified building designer.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

			34-7-0	
			34-7-0	1
Plate Offsets (X,Y) [7:0-2-11,Edge], [11:0-6-4,0-2-4], [15	:0-6-4,0-2-4], [19:0-2-1	1,Edge]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.00 25 n/r 180	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.00 25 n/r 80	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.12	Horz(CT) 0.01 26 n/a n/a	
BCDI 10.0	Code IRC2018/TPI2014	Matrix-R		Weight: 274 lb $FT = 0\%$
2022 10.0				

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.3WEBS2x4 SP No.3OTHERS2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS

- 1 Row at midpt
- 13-36, 12-37, 10-38, 9-40, 14-35, 16-34, 17-32

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 34-7-0.

(lb) - Max Horz 46=-269(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 36, 38, 40, 41, 42, 43, 44, 34, 32, 31, 30, 29, 28 except 46=-175(LC 8), 26=-101(LC 9), 45=-180(LC 12), 27=-155(LC 13) Max Grav All reactions 250 lb or less at joint(s) 46, 26, 36, 43, 44, 45, 29, 28, 27 except 37=283(LC 23), 38=261(LC 20), 40=258(LC 20), 41=256(LC 20), 42=264(LC 20), 35=270(LC 23), 34=257(LC 21), 32=260(LC 21), 31=256(LC 21), 30=264(LC 21)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

10-11=-184/268, 15-16=-184/260

TOP CHORD

10-11=-184/268, 15-16=-184/260

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of

20.0 psf on overhangs non-concurrent with other live loads.6) Provide adequate drainage to prevent water

ponding.

7) All plates are 2x4 MT20 unless otherwise indicated.
8) Gable requires continuous bottom chord bearing.
9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

10) Gable studs spaced at 2-0-0 oc.

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 36, 38, 40, 41, 42, 43, 44, 34, 32, 31, 30, 29, 28 except (jt=lb) 46=175, 26=101, 45=180, 27=155.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

- TOP CHORD
- 2-3=-2170/166, 3-4=-1828/158,
- 4-5=-1434/192, 5-6=-2241/304,
- 6-7=-2067/141, 7-8=-2184/117,

loads

5) Provide adequate drainage to prevent water ponding.

4x8 =

2x4 =

2x4 ||

2x4 ||

4x8 =

2x4 =

 $4x6 \equiv$

	7-7-12	15-0-0	19-7-0	25-1-12	26-9-8	34-3-8	4
		7-4-4	4-7-0	5-6-12	'1-7-12'	7-6-0	
Plate Offsets (X,Y)	[2:0-2-0,0-2-0], [3:0-4-0,0-3-0], [4:0-3	-12,0-2-0], [5:0-5-12,0-2	2-0], [10:0-1-12,0	J-2-0j			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.98 WB 0.57	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.67 11-15 -0.95 11-15 0.06 10	l/defl L/d >606 240 >428 180 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/1PI2014	Matrix-SH				Weight: 241 I	1b $FI = 0\%$
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF B2,B3: WEBS 2x4 SF W12,W OTHERS 2x4 SF BRACING- TOP CHORD Structural wood sheat verticals. BOT CHORD Rigid ceiling directly a Except: 2-2-0 oc bracing: 11-1 6-0-0 oc bracing: 11-1 7-0 br	P No.2 P No.1 *Except* 2x4 SP SS P No.3 *Except* /1: 2x6 SP No.2 P No.3 thing directly applied, except end applied or 10-0-0 oc bracing, 15. 16 that Stabilizers and required talled during truss erection, in bilizer Installation guide. e) 6/0-3-8 (min. 0-1-15) 1460/Mechanical 267(LC 9) -144(LC 12) -103(LC 13) 1629(LC 20) 1619(LC 25) n All forces 250 (lb) or less except 1808/157,	TOP CHORD 2-3=-2151/165, 3-4= 4-5=-1417/192, 5-6= 6-7=-2015/137, 7-8= 8-9=-252/68, 2-20=-1 BOT CHORD 19-20=-288/574, 19-3 18-21=-175/1850, 17 17-22=0/1387, 15-22 12-15=0/1387, 12-23 23-24=0/1387, 11-24 10-11=-77/1616 WEBS 3-17=-487/248, 4-17: 5-16=-91/300, 5-13= 11-13=-243/807, 8-1 2-19=0/1372, 6-11=-3 NOTES - (11-12) 1) Unbalanced roof 11 for this design. 2) Wind: ASCE 7-16; Vasd=103mph; TCD Cat. II; Exp B; Enclos end zone and C-C E: and right exposed;C- MWFRS for reaction: grip DOL=1.60 3) TCLL: ASCE 7-16 DOL=1.15 Plate DOI Partially Exp.; Ce=1.1 4) This truss has beer roof live load of 12.0 20.0 psf on overhang loads. 5) Provide adequate ponding.	-1808/157, -2187/299, -2133/113, 1550/180 21=-175/1850, -18=-175/1850, -18=-175/1850, -18=-0/1387, =-0/1387, =-0/1387, =-20/967, -202/967, 0=-2045/86, 367/237 ive loads have be ; Vult=130mph (3 L=5.0psf; BCDL= sed; MWFRS (en xterior(2) zone; e C for members a s shown; Lumber ; Pr=20.0 psf (roo =1.15); Pf=20.0 =1.15); Is=1.0; F 0; Cs=1.00; Ct=1 en designed for g psf or 2.00 times js non-concurren drainage to prev	een considere 3-second gust) -5.0psf; h=23f ivelope) gable and vertical leff and forces & r DOL=1.60 pl of LL: Lum psf (Lum Rough Cat B; .10 reater of min s flat roof load it with other liv ent water	6) This tru chord live loads. 7) * This t 30.0psf or rectangle bottom ch 10.0psf. 8) Refer tu 9) Provide to bearing at joint(s) 10) This tu 2018 Inter R502.11.1 ANSI/TPI 11) Graph depict on the must I 12) Bearin repres Bearin t; structu indica to bearing d 12) Bearin repres Bearing to structu indica	ss has been designed load nonconcurrent wi "uss has been designed the bottom chord in a 3-6-0 tall by 1-0-0 wide ord and any other men orginder(s) for truss to t mechanical connection plate capable of withs except (jt=lb) 20=144, "uss is designed in acc national Residential C and R802.10.2 and re 1. ical web bracing repret the size, type or the o web. Symbol only ind be braced. Ing symbols are only gra- sentations of a possible graphical and the truss ted. SE(S)	for a 10.0 psf bottom ith any other live ed for a live load of ill areas where a will fit between the nbers, with BCDL = truss connections. on (by others) of truss standing 100 lb uplift 10=103. ordance with the ode sections eferenced standard sentation does not rientation of the brace icates that the member aphical e bearing condition. isidered in the to support the loads

4-5=-1417/192, 5-6=-2187/299,

3x4 ||

4x4 =

-----2 Plate Offsets (X,Y)-- [2:0-1-8,0-2-4], [3:0-1-0,0-2-0], [4:0-4-0,0-3-0], [5:0-3-12,0-2-0], [6:0-5-12,0-2-0], [11:0-1-12,0-2-0], [12:0-2-12,0-3-4], [13:0-4-0,0-4-4], [14:0-2-0,0-2-8], [18:0-5-12,0-2-4]

LOADING ((psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) 1/	/defl L/d	PLATES GRIP
TCLL 2	20.0	Plate Grip DOL 1.15	TC 0.83	Vert(LL) -0.29 12-13 >9	999 240	MT20 244/190
TCDL 1	10.0	Lumber DOL 1.15	BC 0.87	Vert(CT) -0.43 12-13 >9	947 180	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.84	Horz(CT) 0.20 11	n/a n/a	
BCDL 1	10.0	Code IRC2018/TPI2014	Matrix-SH			Weight: 255 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD	2x4 SP No.2 *Except*

	B4: 2x6 SP No.2
WEBS	2x4 SP No.3 *Except*
	W8: 2x8 SP No.1, W14,W1: 2x6 SP No.2

BRACING-

Structural wood sheathing directly applied, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing,

Except:

8-4-10 oc bracing: 17-18.

WEBS

1 Row at midpt

4-14, 6-13, 9-11

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

11	=	1352/Mechanical
20	=	1421/0-3-8 (min. 0-1-11)
Max H	lorz	
20	=	267(LC 9)
Max L	Jplift	
11	=	-157(LC 13)
20	=	-182(LC 12)
Max C	Grav	
11	=	1371(LC 21)
20	=	1429(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2686/418, 3-4=-2169/285,

4-5=-1613/222, 5-6=-1154/245,

6-7=-1783/385, 7-8=-1612/222,

TOP CHORD 2-3=-2686/418, 3-4=-2169/285, 4-5=-1613/222, 5-6=-1154/245, 6-7=-1783/385, 7-8=-1612/222, 8-9=-1729/199, 9-10=-256/66, 2-20=-1460/248 BOT CHORD 13-21=-6/1118, 21-22=-7/1116, 12-22=-7/1115, 11-12=-137/1333, 3-18=-90/294, 17-18=-495/2529, 17-23=-266/1927, 15-23=-266/1927, 14-15=-266/1927 WEBS 4-17=0/343, 4-14=-729/272, 13-14=-22/555, 5-14=-47/576, 6-13=-100/251, 6-12=-248/766 9-11=-1631/171, 2-18=-315/2087, 7-12=-365/237, 15-16=-366/0, 18-20=-258/242, 3-17=-618/233

NOTES- (11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=157, 20=182.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 11) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

	7-7-12	15-0-0	19-7-0	25-1-12			34-7-0	4
	7-7-12	7-4-4	4-7-0	5-6-12			9-5-4	1
Plate Offsets (X,Y)	[2:0-2-0,0-2-0], [3:0-4-0,0-3-0], [4:0-3-	·12,0-2-0], [5:0-5-12,0-	2-0], [19:0-2-0,0-	1-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.81 BC 0.97 WB 0.57 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.67 11-15 -0.95 11-15 0.06 10	l/defl >610 >430 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 240 II	GRIP 244/190
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S WT: 2 BRACING- TOP CHORD Structural wood sheat verticals. BOT CHORD Rigid ceiling directly Except: 2-2-0 oc bracing: 11- 6-0-0 oc bracing: 13- WEBS 1 Row at midpt 5-16, 3-17, 8-10 MiTek recommends cross bracing be in accordance with St REACTIONS. (Ib/siz 20 = 15 10 = 14 Max Horz 20 = 15 10 = 14 Max Horz 20 = 15 10 = 14 Max Grav 20 = 10 10 = FORCES. (Ib) Max. Comp./Max. Te when shown. TOP CHORD 2-3=-2171/165, 3-4= 4-5=-1435/192, 5-6= 6-7=-2072/142, 7-8=	P No.2 P No.1 *Except* :: 2x4 SP SS P No.3 *Except* x6 SP No.2 athing directly applied, except end applied or 10-0-0 oc bracing, 15. 16 s that Stabilizers and required stalled during truss erection, in abilizer Installation guide. rep 09/0-3-8 (min. 0-1-15) 71/0-3-8 (min. 0-1-15) 265(LC 9) -144(LC 12) -106(LC 13) 1642(LC 20) 1627(LC 21) en All forces 250 (lb) or less except -1829/158, -2243/303, -2190/118,	TOP CHORD 2-3=-2171/165, 3-4= 4-5=-1435/192, 5-6= 6-7=-2072/142, 7-8= 8-9=-333/81, 2-20=- 9-10=-280/91 BOT CHORD 19-20=-285/575, 19- 18-21=-175/1867, 17 17-22=0/1408, 15-22 12-15=0/1408, 15-22 12-15=0/1408, 15-22 11-23=0/1408, 15-22 11-23=0/1408, 15-22 11-13=-246/858, 6-1 2-19=0/1387, 8-10=- NOTES - (10-11) 1) Unbalanced roof I for this design. 2) Wind: ASCE 7-16 Vasd=103mph; TCD Cat. II; Exp B; Enclo end zone and C-C E and right exposed; C MWFRS for reaction grip DOL=1.60 3) TCLL: ASCE 7-16 DOL=1.15 Plate DO DOL=1.15 Plate DO	1829/158, 2243/303, 2190/118, 1563/180, 21=-175/1867, 7-18=-175/1867, 2=0/1408, 3=0/1408, 1=-79/1722 485/248, 205/1017, 1=-364/235, -2052/81 ive loads have be ; Vult=130mph (3 L=5.0psf; BCDL sed; MWFRS (er xterior(2) zone; e -C for members a is shown; Lumbe 3; Pr=20.0 psf (ro L=1.15); Is=1.0; I 0; Cs=1.00; Ct=1 en designed for g psf or 2.00 times gs non-concurrer drainage to prev	een considere 3-second gust; =5.0psf; h=23f tivelope) gable and forces & r DOL=1.60 pl of LL: Lum psf (Lum Rough Cat B; 1.10 greater of min s flat roof load tt with other liv rent water	d) t ate of /e	 6) This truss chord live loa loads. 7) * This truss 30.0psf on th rectangle 3-6 bottom chord 10.0psf. 8) Provide mu to bearing pla at joint(s) exc 9) This truss International and R802.10 10) Graphica depict the on the we must be b 11) Bearing s represent Bearing s structural indicated 	has been designed d nonconcurrent wit s has been designe e bottom chord in al -0 tall by 1-0-0 wide and any other merr echanical connectio ate capable of withsi capt (jt=lb) 20=144, is designed in accor Residential Code se .2 and referenced si I web bracing repres e size, type or the or eb. Symbol only indi praced. symbols are only gra tations of a possible ymbols are not con- design of the truss (S)	for a 10.0 psf bottom h any other live d for a live load of l areas where a will fit between the ibers, with BCDL = n (by others) of truss anding 100 lb uplift 10=106. dance with the 2018 actions R502.11.1 andard ANSI/TPI 1. sentation does not ientation of the brace cates that the member phical bearing condition. sidered in the to support the loads

					-	34-3-8						
Plate Offsets (X,Y) [11:0-4-4,0-2-4], [14:0-6-4,0-2-4], [18:0-4-0,0-2-4]												
LOADING (p	osf)	SPACING-	2-0-0	CSI.	0.23	DEFL.	in 0 00	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10 BCLL 0	0.0 0.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.18	Vert(CT) Horz(CT)	-0.00 0.01	1 24	n/r n/a	80 n/a	WIT20	244/130
BCDL 10	0.0	Code IRC2018/T	PI2014	Matrix	(-R						Weight: 272 lb	FT = 0%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.3WEBS2x4 SP No.3OTHERS2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS

1 Row at midpt

12-34, 11-35, 10-36, 13-33, 15-32, 16-30

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 34-3-8.

(lb) - Max Horz 44= 267(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 34, 35, 36, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26 except 44=-214(LC 8), 24=-123(LC 11), 43=-197(LC 12), 25=-171(LC 13) Max Grav All reactions 250 lb or less at joint(s) 24, 34, 41, 42, 43, 27, 26, 25 except 44=272(LC 21), 35=276(LC 23), 36=260(LC 20), 38=259(LC 20), 39=256(LC 20), 40=264(LC 20), 33=270(LC 23), 32=251(LC 21), 30=261(LC 21), 29=256(LC 21), 28=264(LC 21)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

9-10=-169/254, 10-11=-197/283,

TOP CHORD

9-10=-169/254, 10-11=-197/283, 14-15=-193/268

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

All plates are 2x4 MT20 unless otherwise indicated.
 B) Gable requires continuous bottom chord bearing.

 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e.

diagonal web).

10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any c

bottom chord live load nonconcurrent with any other live loads.

12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 35, 36, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26 except (jt=lb) 44=214, 24=123, 43=197, 25=171.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 10-11-0.

(lb) - Max Horz 16=-183(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 14, 12 except 16=-124(LC 8), 10=-111(LC 9), 15=-151(LC 12), 11=-149(LC 13) Max Grav All reactions 250 lb or less at joint(s) 16, 10, 14, 15, 12, 11 except 13=320(LC 23)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

NOTES-(14-15)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min

roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=124, 10=111, 15=151, 11=149.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 14) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.48	Vert(LL) -0.05 4-5 >999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.76	Vert(CT) -0.11 4-5 >999 180	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.79	Horz(CT) 0.00 4 n/a n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 154 lb FT = 0%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.3 *Except*

 W1: 2x6 SP No.2
 BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size)

6	=	3916/0-3-8 (min. 0-2-6)
4	=	3797/0-3-8 (min. 0-2-6)
Max	Horz	
6	=	-158(LC 6)
Max	Uplift	
6	=	-455(LC 11)
4	=	-369(LC 10)
Max	Grav	
6	=	3979(LC 3)
4	=	3988(LC 3)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-2=-2980/364, 2-3=-2980/364, 1-6=-2466/285, 3-4=-2428/292 BOT CHORD 6-7=-260/752, 7-8=-260/752, 5-8=-260/752, 5-9=-130/861, 9-10=-130/861, 4-10=-130/861 WEBS 2-5=-358/3831, 1-5=-175/1400, 3-5=-212/1223

NOTES- (12-13)

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=455, 4=369. 9) This truss is designed in accordance with the 2018 htterational Beaidantial Code captione D502 111.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-2-12 from the left end to 9-2-12 to connect truss(es) R03 (1 ply 2x4 SP), R03A (1 ply 2x4 SP) to back face of bottom chord. 11) Fill all nail holes where hanger is in contact with lumber.

- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-60, 2-3=-60, 4-6=-20
- Concentrated Loads (lb)
- Vert: 5=-1332(B) 7=-1332(B) 8=-1332(B)
- 9=-1440(B) 10=-1440(B)

TOP CHORD	2x4	SP	No.2
BOT CHORD	2x4	SP	No.3
WEBS	2x4	SP	No.3
OTHERS	2x4	SP	No.3
BRACING-			

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 8-7-0.

(lb) - Max Horz 12=-158(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 12, 8 except 11=-142(LC 12), 9=-139(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 8, 9 except 10=294(LC 23), 11=257(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (14-15)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min

roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) All plates are 2x4 MT20 unless otherwise indicated.
7) Gable requires continuous bottom chord bearing.
8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8 except (jt=lb) 11=142, 9=139.
13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 14) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

LUMBER-	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.3
WEBS	2x4 SP No.3 *Except*
	W1: 2x4 SP No.2
OTHERS	2x4 SP No.3
BRACING-	
TOP CHORD	

10.0

BCDL

Structural wood sheathing directly applied or 5-9-13 oc purlins, except end verticals.

Code IRC2018/TPI2014

BOT CHORD Rigid ceiling directly applied or 9-3-11 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 0-3-8 except (jt=length) 6=7-3-8, 7=7-3-8.

(lb) - Max Horz
10=-236(LC 10)
Max Uplift
All uplift 100 lb or less at joint(s)
10, 8 except 6=-117(LC 13)
Max Grav
All reactions 250 lb or less at joint(s)
7, 8 except 10=633(LC 1), 6=577(LC 1)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-537/140, 3-4=-536/140, 2-10=-559/108, 4-6=-564/104 BOT CHORD 9-10=-351/514, 8-9=-283/303, 7-8=-283/303, 6-7=-283/303 WEBS 3-9=0/260, 2-9=-233/389, 4-9=-197/421

NOTES- (12-13)

Matrix-SH

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) All plates are 2x4 MT20 unless otherwise indicated.7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8 except (jt=lb) 6=117.
11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

Weight: 134 lb

FT = 0%

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

н	11	IN/	R	F	R-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 *Except* W1: 2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-6-15 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size)

9 =	5409/0-3-8 (min. 0-1-8
6 =	5248/0-3-8 (min. 0-1-8)
Max Horz	
9 =	-210(LC 6)
Max Uplift	
9 =	-608(LC 11)
6 =	-642(LC 10)
Max Grav	
9 =	5512(LC 3)
6 =	5250(LC 3)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-2=-4958/633, 2-3=-4865/723, 3-4=-4813/732, 4-5=-4909/643, 1-9=-4120/521, 5-6=-4097/527 BOT CHORD 9-10=-260/773, 10-11=-260/773, 8-11=-260/773, 8-12=-304/2475, 12-13=-304/2475, 13-14=-304/2475, 14-15=-304/2475, 15-16=-304/2475, 7-16=-304/2475, 7-17=-104/626, 17-18=-104/626, 6-18=-104/626 WEBS 3-7=-560/3346, 3-8=-535/3484,

1-8=-324/2813, 5-7=-323/2837

WEBS

3-7=-560/3346, 3-8=-535/3484,

1-8=-324/2813, 5-7=-323/2837

NOTES- (13-14)

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf

8) Bearing at joint(s) 9, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=608, 6=642.

at joint(s) except (J(=ib) 9=608, 6=642. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard

ANSI/TPI 1.

11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-8-12 from the left end to 13-8-12 to connect truss(es) R03A (1 ply 2x4 SP), R03B (1 ply 2x4 SP), R03 (1 ply 2x4 SP) to back face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

- 13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 6-9=-20 Concentrated Loads (lb)

Vert: 10=-1440(B) 11=-1332(B) 12=-1332(B)

14=-1332(B) 16=-1332(B) 17=-1332(B) 18=-1332(B)

Job	Truss	Truss Type	Qty Ply L	OT 157 CROSSING @	ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
22-2670-R01	R13	Half Hip	7 1		
Atlantic Building Componen	ts, Moncks Corner, South Carolina		J	Iob Reference (optio .430 s Feb 12 2021 Mi	nal) Fek Industries, Inc. Fri Apr 15 12:24:34 2022 Page 1
	-0-10-8	F	ID:te?_8ytH1N5AHCxjPc04 5-11-8	A_rzRBdO-InU0I4pT	8QyUP6vv38RMYIc0WqU?DtTSEKIllozQUWx 7-10-0
	0-10-8	5	5-11-8	1	1-10-8
					Scale = 1:17.2
				3x4	
II.		3 00 12		3	
		0.001.12			
				3x	8 = 4x4 = 5
10-1 -2-0-2		11		4 VV1	
4	2				4
	8				
0-0			B1		
				7	
				4x6 =	0
	3x4 =				2x4
	L	5	5-11-8		7-10-0
Plate Offsets (X,Y) [4:0-3-4,0-1-8], [5:0-1-12,0-2	-0]	5-11-8		1-10-8
			DEEL in (loc) l	/dofl L/d	
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.64	Vert(LL) -0.03 2-7 >	999 240	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr N	IS BC 0.50 O WB 0.52	Vert(CT) -0.09 2-7 > Horz(CT) 0.01 6	·999 180 n/a n/a	
BCDL 10.0	Code IRC2018/TPI201	4 Matrix-SH			Weight: 31 lb FT = 0%
BOT CHORD 2x4 SP WEBS 2x4 SP W1: 2x BRACING- TOP CHORD Structural wood sheat purlins, except end ve BOT CHORD Rigid ceiling directly a MiTek recommends cross bracing be inst accordance with Sta REACTIONS. (lb/size 6 = 2 = 46 Max Horz 2 = 46 Max Horz 2 = 2 Max Grav 6 = 2 2 = 46 Max Horz 2 = 5 FORCES. (lb) Max. Comp./Max. Ter when shown. TOP CHORD 2-3=-847/0, 4-7=-374/ 5-9=-1371/0, 5-6=-745 BOT CHORD 2-7=0/1260 NOTES- (13-14) 1) Unbalanced roof liv this design.	No.2 No.3 *Except* 6 SP No.2 hing directly applied or 4-6-4 erticals. pplied or 10-0-0 oc bracing. that Stabilizers and required talled during truss erection, i bilizer Installation guide. 9) 810/Mechanical 5/0-5-8 (min. 0-1-8) 86(LC 14) 820(LC 36) 594(LC 36) 1 All forces 250 (lb) or less 33, 4-9=-1371/0, 3/0	 2) Wind: ASCE 7-16 Vasd=103mph; TCE Cat. II; Exp B; Encloo end zone; end vertic DOL=1.60 plate grip 3) C-C wind load us 4) TCLL: ASCE 7-16 DOL=1.15 Plate DO Partially Exp.; Ce=1 5) Unbalanced snow this design. 6) This truss has be roof live load of 12.0 20.0 psf on overhan loads. 7) Provide adequate ponding. 8) This truss has be chord live load nonc loads. 9) * This truss has be s0.0psf on the botto rectangle 3-6-0 tall t bottom chord and ar 10) Refer to girder(s 11) This truss is des 2018 International R R502.11.1 and R800 ANSI/TPI 1. 12) Load case(s) 1, , 14, 15, 16, 17, 18, 28, 29, 30, 31, 32, 3 44, 45, 46, 47, 48, 4 modified. Building d that they are correct 	b; Vult=130mph (3-second gust) JL=5.0psf; BCDL=5.0psf; h=23ft; used; MWFRS (envelope) gable and left and right exposed; Lumber DDL=1.60 er defined. 6; Pr=20.0 psf (roof LL: Lum UL=1.15); Pf=20.0 psf (Lum UL=1.15); Is=1.0; Rough Cat B; .0; Cs=1.00; Ct=1.10 v loads have been considered for en designed for greater of min 0 psf or 2.00 times flat roof load of gs non-concurrent with other live e drainage to prevent water en designed for a 10.0 psf bottom concurrent with any other live en designed for a live load of m chord in all areas where a ay 1-0-0 wide will fit between the hy other members. b) for truss to truss connections. signed in accordance with the escidential Code sections 2.10.2 and referenced standard 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 19, 20, 21, 22, 23, 24, 25, 26, 27, 5, 36, 37, 38, 39, 40, 41, 42, 43, .9, 50, 51, 52 has/have been esigner must review loads to verifi- for the intended use of this truss.	 (a) Graphical depict the on the we must be to the on the we must be to the on the we must be to the one of the weight of the one of the weight of the one of the weight of the one of the one	 size, type or the orientation of the brace b. Symbol only indicates that the member maced. ymbols are only graphical ations of a possible bearing condition. ymbols are not considered in the design of the truss to support the loads S) xcept: ow (balanced): Lumber Increase=1.15, ase=1.15 ads (plf) 60, 4-9=-60, 5-9=-260, 2-6=-20 ted Loads (lb) of Live (balanced): Lumber 1.15, Plate Increase=1.15 ads (plf) 60, 4-9=-60, 5-9=-260, 2-6=-20 ted Loads (lb) o 75 Roof Live (balanced): Lumber 1.15, Plate Increase=1.15 ads (plf) 50, 4-9=-50, 5-9=-250, 2-6=-20 ted Loads (lb) o 75 Snow (balanced): Lumber 1.15, Plate Increase=1.15 ads (plf) 50, 4-9=-50, 5-9=-250, 2-6=-20 ted Loads (lb) o 75 Snow (balanced): Lumber 1.15, Plate Increase=1.15 bads (plf) 50, 4-9=-50, 5-9=-250, 2-6=-20 ted Loads (lb) o 75 Snow (Unbal. Left): Lumber 1.15, Plate Increase=1.15 bads (plf) 50, 3-8=-58, 4-9=-29, 5-9=-229, 2-6=-20 ted Loads (lb) ted Loads (lb)
Continued on page 2					

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
			-		
22-2670-R01	R13	Half Hip	7	1	
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)
Atlantic Building Components, M	Noncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:34 2022 Page 2
0 1	·	ID:te	? 8ytH1N	5AHCxjPc)A rzRBdO-InU0I4pT8QyUP6vv38RMYIc0WqU?DtTSEKIIlozQŬWx

- LOAD CASE(S) Standard Except: Concentrated Loads (lb) Vert: 9=-300 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9=-63, 5-9=-263, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-220, 2-6=-40 Concentrated Loads (lb) Vert: 9=-300 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 2-3=-5, 4-9=-5, 5-9=-205, 2-6=-10 Horz: 2-3=-5, 3-4=-47, 5-6=35 Concentrated Loads (lb) Vert: 9=-300 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-42, 4-9=-42, 5-9=-242, 2-6=-20 Horz: 2-3=22, 3-4=27, 5-6=-32 Concentrated Loads (lb) Vert: 9=-300 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=38, 2-3=26, 4-9=10, 5-9=-190, 2-6=-10 Horz: 2-3=-36, 3-4=9, 5-6=19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-3=13, 4-9=26, 5-9=-174, 2-6=-10 Horz: 2-3=-23, 3-4=-24, 5-6=-15 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-210, 2-6=-20 Horz: 2-3=-26, 3-4=30, 5-6=9 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-7, 4-9=6, 5-9=-194, 2-6=-20 Horz: 2-3=-13, 3-4=-3, 5-6=-25 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-41, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-9=26, 5-9=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-26, 5-6=-12 Concentrated Loads (Ib) Vert: 9=-300 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd
- Parallel: Lumber Increase=1.60, Plate Increase=1.60 Continued on page 3
- Standard Except: Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-41, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-9=26, 5-9=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-26, 5-6=-12 Concentrated Loads (lb) Vert: 9=-300 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-210, 2-6=-20 Horz: 2-3=-26, 3-4=-20, 5-6=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Increase=1.00 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-9=6, 5-9=-194, 2-6=-20 Horz: 2-3=-10, 3-4=-5, 5-6=-23 Concentrated Loads (lb) Vert: 9=-300 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-9=-20, 5-9=-220, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-8=-60, 3-8=-70, 4-9=-32, 5-9=-232, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-77, 5-9=-277, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-220, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-242, 2-6=-20 Horz: 2-3=-19, 3-4=23, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
- Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-3, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300
- 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
- Standard Except: Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-15, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-4, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-242, 2-6=-20 Horz: 2-3=-19, 3-4=23, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-3, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-15, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 vert. 9=-300
 31) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
 Lipiter Loads (clip) Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-4, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-60, 5-9=-260, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-289, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-9=-32, 5-9=-232, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9=-72, 5-9=-272, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-72, 4-9=-29, 5-9=-229, 2-6=-20 Concentrated Loads (lb)
 - Vert: 9=-300

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
22-2670-R01	R13	Half Hip	7	1	Job Reference (optional)
Atlantic Building Components, M	Noncks Corner, South Carolina	ID:te	? 8ytH1N	AHCxiPc	8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:34 2022 Page 3 0A rzRBdO-InU0I4pT8QyUP6vv38RMYIc0WqU?DtTSEKIIlozQUWx

Concentrated Loads (lb)

LOAD CASE(S) 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-264, 2-6=-20 Horz: 2-3=-19, 3-4=23, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-221, 2-6=-20 Horz: 2-3=-19, 3-4=23, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-3=-19, 4-9=-53, 5-9=-253, 2-6=-20 Horz: 2-3=-10, 3-4=-3, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 4-9=-10, 5-9=-210, 2-6=-20 Horz: 2-3=-10, 3-4=-3, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-264, 2-6=-20 Horz: 2-3=-19, 3-4=-15, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-221, 2-6=-20 Horz: 2-3=-19, 3-4=-15, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-21, 4-9=-53, 5-9=-253, 2-6=-20 Horz: 2-3=-8, 3-4=-4, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-3=-64, 4-9=-10, 5-9=-210, 2-6=-20 Horz: 2-3=-8, 3-4=-4, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-289, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-89, 4-9=-32, 5-9=-232, 2-6=-20

Vert: 9=-300 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-20, 5-9=-220, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-60, 5-9=-260, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-9=-20, 5-9=-220, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-50, 5-9=-250, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300

	2-6-0	9-10-8 7-4-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFL. in (loc) l/defl L/d TC 0.40 Vert(LL) -0.08 5-6 >999 240 BC 0.78 Vert(CT) -0.16 5-6 >554 180 WB 0.39 Horz(CT) 0.01 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 47 lb FT = 0%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.3

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

 BRACING 3

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

343/Mechanical
306/2-6-0 (min. 0-1-8)
182/0-3-8 (min. 0-1-8)
100(LC 11)
-97(LC 14)
-151(LC 10)
449(LC 21)
367(LC 21)
311(LC 7)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-13=-855/232, 3-13=-772/239 BOT CHORD

2-6=-248/781, 5-6=-248/781 WEBS

3-5=-765/280

NOTES- (13-14)

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for

4) Unbalanced show loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) All plates are 2x4 MT20 unless otherwise indicated.7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

10) Refer to girder(s) for truss to truss connections. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=151.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

	<u>2-0-8</u> 2-0-8		7-0-0 4-11-8	8-0-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. DEFL. TC 0.71 Vert(LL) BC 0.67 Vert(CT) WB 0.01 Horz(CT) Matrix-P Horz(CT) Horz(CT)	in (loc) l/defl L/d -0.01 7-8 >999 240 -0.02 7-8 >999 180 -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 30 lb FT = 0%

TOP CHORD	2x4 SP 5	SS *Except
	T2. 2x4 §	SP No 2

BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 6-0-0 except (jt=length) 2=0-3-8, 8=0-3-8.

(lb) - Max Horz 2= 101(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-118(LC 10) Max Grav All reactions 250 lb or less at joint(s) 6, 8 except 7=649(LC 36), 2=403(LC 36)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown TOP CHORD

4-7=-558/0, 3-4=-293/100, 5-6=-253/0

NOTES-(13-14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone: end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) C-C wind load user defined.

Continued on page 2

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for

this design. 6) This truss has been designed for greater of min

roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads

7) Provide adequate drainage to prevent water ponding.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of

truss to bearing plate capable of withstanding 118 lb uplift at joint 2.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

12) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

- Standard Except:
- 1) Dead + Snow (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-260, 2-6=-20

Concentrated Loads (lb) Vert: 10=-250

- 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-260, 2-6=-20 Concentrated Loads (lb)
- Vert: 10=-250 3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-5=-250, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250
- 4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-5=-250, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250
- 5) Dead + 0.75 Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-9=-50, 3-9=-56, 4-5=-229, 2-6=-20 Concentrated Loads (lb)

Vert: 10=-250 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29. 4-5=-263. 2-6=-20 Concentrated Loads (lb) Vert: 10=-250

7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
			-	-	
22-2670-R01	R15	Half Hip	1	1	
		· · · · · · · · · · · · · · · · · · ·	-		Job Reference (optional)
Atlantic Building Components, M	Noncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:40 2022 Page 2
0		ID:te	? 8ytH1N5	5AHCxjPc0	A rzRBdO-axrHZ7uEkGid71M3QOYmoZs01FUidj0LdGl4yRzQŬWr

LOAD CASE(S) Standard Except: Uniform Loads (plf) Vert: 1-3=-20, 4-5=-220, 2-6=-40 Concentrated Loads (lb) Vert: 10=-250 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 2-3=-5, 4-5=-205, 2-6=-10 Horz: 2-3=-5, 3-4=-42, 5-6=35 Concentrated Loads (lb) Vert: 10=-250 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-41, 4-5=-241, 2-6=-20 Horz: 2-3=21, 3-4=21, 5-6=-32 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=38, 2-3=26, 4-5=-190, 2-6=-10 Horz: 2-3=-36, 3-4=15, 5-6=19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-3=13, 4-5=-174, 2-6=-10 Horz: 2-3=-23, 3-4=-19, 5-6=-15 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-5=-210, 2-6=-20 Horz: 2-3=-26, 3-4=25, 5-6=9 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-7, 4-5=-194, 2-6=-20 Horz: 2-3=-13, 3-4=-9, 5-6=-25 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-5=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-5=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb) Vert: 10=-250 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-5=-190, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Continued on page 3

Standard Except: Vert: 1-2=5, 2-3=10, 4-5=-174, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb) Vert: 10=-250 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-5=-210, 2-6=-20 Horz: 2-3=-26, 3-4=-26, 5-6=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-5=-194, 2-6=-20 Horz: 2-3=-10, 3-4=-10, 5-6=-23 Concentrated Loads (lb) Vert: 10=-250 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-5=-220, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Vert: 1-9=-60, 3-9=-68, 4-5=-232, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-5=-277, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 4-5=-220, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-5=-242, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-5=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 10=-250 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-5=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-5=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17

Standard Except: Concentrated Loads (lb) Vert: 10=-250 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-5=-242, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-5=-231, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Concentrated Loads (ib)
Vert: 10=-250
30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-5=-242, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 31) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-5=-231, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (Ib) Vert: 10=-250 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-260, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-5=-226, 2-6=-10 Horz: 2-3=16, 3-4=16, 5-6=-16 Drag: 1-2=-0 34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=6, 4-5=-194, 2-6=-10 Horz: 2-3=-16, 3-4=-16, 5-6=16 Drag: 1-2=-0 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-5=-289, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-5=-232, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-5=-272, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-72, 4-5=-229, 2-6=-20

Concentrated Loads (Ib)

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF	
22-2670-R01	R15	Half Hip	1	1	leb Reference (optional)	
Atlantic Building Components, I	Moncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:40 2022 Page 3	
0 1 1		IC	D:te? 8ytH1N5/	AHCxiPc0	A rzRBdO-axrHZ7uEkGid71M3QOYmoZs01FUidj0LdGl4yRzQŬWr	

Uniform Loads (plf)

LOAD CASE(S) Concentrated Loads (lb) Vert: 10=-250 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-5=-264, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6

- MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-5=-221, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-3=-19, 4-5=-253, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 10=-250 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60
- Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 4-5=-210, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 10=-250
- 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-5=-264, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0
- Concentrated Loads (lb) Vert: 10=-250
- 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-5=-221, 2-6=-20
- Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 10=-250
- Vert 10-200 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-21, 4-5=-253, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb)
- Vert: 10=-250 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-3=-64, 4-5=-210, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb)
- Vert: 10=-250
- 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-5=-289, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250
- 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15

- Vert: 1-3=-89, 4-5=-232, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-220, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-5=-260, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-5=-220, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-3=-20, 4-5=-250, 2-6=-20 Concentrated Loads (lb) Vert: 10=-250

		<u> </u>	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. DEFL. in (loc) TC 0.95 Vert(LL) -0.08 2-7 BC 0.62 Vert(CT) -0.17 2-7 WB 0.36 Horz(CT) 0.01 6	I/defl L/d PLATES GRIP >999 240 MT20 244/190 >567 180 MT20 244/190 n/a n/a Weight: 31 lb FT = 0%

TOP CHORD	2x4 SP No.1 *Except*
	T2: 2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except*
	W1: 2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-8-14 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

	(
6 =	633/0-3-8 (min. 0-1-8)
2 =	420/0-3-8 (min. 0-1-8)
Max Horz	
2 =	101(LC 14)
Max Uplift	
2 =	-65(LC 10)
Max Grav	
6 =	679(LC 36)
2 =	563(LC 36)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-607/0, 3-8=-526/0, 4-7=-264/0, 4-9=-870/0, 5-9=-870/0, 5-6=-689/0 BOT CHORD

2-7=0/506

WEBS 5-7=0/862

01-0,002

NOTES- (12-13)

1) Unbalanced roof live loads have been considered for this design.

Continued on page 2

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 8-2-4 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 2.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-3=-60, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb)
- Vert: 9=-250
- 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250
- 3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-9=-50, 5-9=-160, 2-6=-20 Concentrated Loads (lb)
- Vert: 9=-250 4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-9=-50, 5-9=-160, 2-6=-20 Concentrated Loads (lb)

Vert: 9=-250

5) Dead + 0.75 Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-8=-50, 3-8=-57, 4-9=-29, 5-9=-139, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	
22-2670-R01	R16	Half Hip	3	1	
			0		Job Reference (optional)
Atlantic Building Components, M	Noncks Corner, South Carolina				8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:44 2022 Page 2

LOAD CASE(S) Standard 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9-63, 5-9=-173, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-130, 2-6=-40 Concentrated Loads (lb) Vert: 9=-250 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

- Vert: 1-2=-10, 2-3=-5, 4-9=-5, 5-9=-115, 2-6=-10 Horz: 2-3=-5, 3-4=-42, 5-6=35 Concentrated Loads (lb) Vert: 9=-250 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-41, 4-9=-41, 5-9=-151, 2-6=-20
- Horz: 2-3=21, 3-4=21, 5-6=-32 Drag: 1-2=-0 Concentrated Loads (lb)
- Vert: 9=-250
- 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=38, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=15, 5-6=19 Drag: 1-2=-0 Concentrated Loads (lb)
- Vert: 9=-250 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-3=13, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-23, 3-4=-19, 5-6=-15 Drag: 1-2=-0 Concentrated Loads (lb)
- Vert: 9=-250 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-26, 3-4=25, 5-6=9 Drag: 1-2=-0 Concentrated Loads (lb)
- Vert: 9=-250 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-7, 4-9=6, 5-9=-104, 2-6=-20 Horz: 2-3=-13, 3-4=-9, 5-6=-25 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250
- 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0
 - Concentrated Loads (lb)
- Vert: 9=-250 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
- Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb)
- Vert: 9=-250
- 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Continued on page 3
- ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-Si5oPVxkoVC3cegqfEdiyP1flssTZRWwYujH5CzQUWn Standard Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb) Vert: 9=-250 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-26, 3-4=-26, 5-6=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-9=6, 5-9=-104, 2-6=-20 Horz: 2-3=-10, 3-4=-10, 5-6=-23 Concentrated Loads (lb) Vert: 9=-250 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-8=-60, 3-8=-69, 4-9=-32, 5-9=-142, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-77, 5-9=-187, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb)
- Vert: 9=-250
- 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
- Standard Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-250 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-250 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 Ven. 9–200
 Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-250 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-9=-26, 5-9=-136, 2-6=-10 Horz: 2-3=16, 3-4=16, 5-6=-16 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=6, 4-9=6, 5-9=-104, 2-6=-10 Horz: 2-3=-16, 3-4=-16, 5-6=16 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-199, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250
- 36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SPF
22-2670-R01	R16	Half Hip	3	1	Job Reference (optional)
Atlantic Building Components, N	Noncks Corner, South Carolina	ID:te?	_8ytH1N5	AHCxjPc	8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:44 2022 Page 3 0A_rzRBdO-Si5oPVxkoVC3cegqfEdiyP1flssTZRWwYujH5CzQUWn

LOAD CASE(S) Standard Standard Uniform Loads (plf) 46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 Vert: 1-3=-89, 4-9=-32, 5-9=-142, 2-6=-20 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Concentrated Loads (lb) Increase=1.60, Plate Increase=1.60 Vert: 9=-250 Uniform Loads (plf) 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Vert: 1-2=-61, 2-3=-64, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-8. 3-4=-8. 5-6=-17 Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9=-72, 5-9=-182, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-72, 4-9=-29, 5-9=-139, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-174, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-131, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-3=-19, 4-9=-53, 5-9=-163, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Uniform Loads (plf) Vert: 1-3=-20, 4-9=-50, 5-9=-160, 2-6=-20 Vert: 9=-250 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 Concentrated Loads (lb) MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Vert: 9=-250 Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-250 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-174, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-131, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-250 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6

MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-21, 4-9=-53, 5-9=-163, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-250

Concentrated Loads (lb) Vert: 9=-250 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-199, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-9=-32, 5-9=-142, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-250 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

11) Provide mechanical connection (by others) of

12) This truss is designed in accordance with the

R502.11.1 and R802.10.2 and referenced standard

13) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

been modified. Building designer must review loads to

verify that they are correct for the intended use of this

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 has/have

2018 International Residential Code sections

uplift at joint 2.

ANSI/TPI 1.

truss

truss to bearing plate capable of withstanding 70 lb

Vert: 1-3=-50, 4-9=-50, 5-9=-160, 2-6=-20

Vert: 1-3=-50, 4-9=-50, 5-9=-160, 2-6=-20

Vert: 1-8=-50, 3-8=-56, 4-9=-29, 5-9=-139, 2-6=-20

5) Dead + 0.75 Snow (Unbal. Left): Lumber

Increase=1.15, Plate Increase=1.15

4) Dead + 0.75 Snow (balanced): Lumber

Increase=1.15, Plate Increase=1.15

Concentrated Loads (lb)

Concentrated Loads (lb)

Concentrated Loads (lb)

Uniform Loads (plf)

Uniform Loads (plf)

Vert: 9=-300

Vert: 9=-300

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown TOP CHORD 2-8=-542/0, 3-8=-460/0, 4-9=-694/0, 5-9=-694/0, 5-6=-743/0

BOT CHORD 2-7=0/442 WEBS 5-7=0/726

NOTES- (14-15)

1) Unbalanced roof live loads have been considered for this design.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SP
22-2670-R01	R16A	Half Hip	2	1	Job Reference (optional)
Atlantic Building Components, N	Ioncks Corner, South Carolina		ID:te? 8vtH1N5AH	CxiPc0A	8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:48 2022 Page 2 rzRBdO-I TK IEs. FrkiV5Gzbu4be6EBKRTE6VGNWSVhVE zQUWi

LOAD CASE(S) Standard Except: Vert: 9=-300

Concentrated Loads (lb) 6) Dead + 0.75 Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9=-63, 5-9=-173, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-130, 2-6=-40 Concentrated Loads (lb) Vert: 9=-300 8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-10, 2-3=-5, 4-9=-5, 5-9=-115, 2-6=-10 Horz: 2-3=-5, 3-4=-42, 5-6=35 Concentrated Loads (lb) Vert: 9=-300 9) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-41, 4-9=-41, 5-9=-151, 2-6=-20 Horz: 2-3=21, 3-4=21, 5-6=-32 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 10) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=38, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=15, 5-6=19 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=8, 2-3=13, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-23, 3-4=-19, 5-6=-15 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 12) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-26, 3-4=25, 5-6=9 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 13) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-7, 4-9=6, 5-9=-104, 2-6=-20 Horz: 2-3=-13, 3-4=-9, 5-6=-25 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-25, 2-3=10, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb)

Vert: 9=-300

Continued on page 3

Standard Except: 16) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-9=10, 5-9=-100, 2-6=-10 Horz: 2-3=-36, 3-4=-36, 5-6=17 Drag: 1-2=-0 Concentrated Loads (Ib) Vert: 9=-300 17) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-9=26, 5-9=-84, 2-6=-10 Horz: 2-3=-20, 3-4=-20, 5-6=-12 Concentrated Loads (lb) Vert: 9=-300 18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-26, 3-4=-26, 5-6=7 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-9=6, 5-9=-104, 2-6=-20 Horz: 2-3=-10, 3-4=-10, 5-6=-23 Concentrated Loads (lb) Vert: 9=-300 20) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-8=-60, 3-8=-68, 4-9=-32, 5-9=-142, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-77, 5-9=-187, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 23) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 24) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 25) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300

Standard Except: 26) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (Ib) Vert: 9=-300 27) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 28) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 29) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-40, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 30) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-9=-42, 5-9=-152, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 31) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-9=-31, 5-9=-141, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 32) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 33) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-9=-26, 5-9=-136, 2-6=-10 Horz: 2-3=16, 3-4=16, 5-6=-16 Hulz. 2-3=10, 0-4=10, 0 0 1.2
Drag: 1-2=-0
34) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=6, 4-9=6, 5-9=-104, 2-6=-10 Horz: 2-3=-16, 3-4=-16, 5-6=16 Drag: 1-2=-0 35) 3rd Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-199, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300

36) 4th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15

Job	Truss	Truss Type	Qty	Ply	LOT 157 CROSSING @ ANDERSON CREEK 357 TIMBER SKIP DRIVE SP	F
				-	'	
22-2670-R01	R16A	Half Hip	2	1		
		· · · · · · · · · · · · · · · · · · ·			Job Reference (optional)	
Atlantic Building Components	Anneks Corner, South Carolina				8 430 s Feb 12 2021 MiTek Industries Inc. Fri Apr 15 12:24:48 2022 Page 3	

8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Apr 15 12:24:48 2022 Page 3 ID:te?_8ytH1N5AHCxjPc0A_rzRBdO-LTKJEs_FrkjV5Gzbu4he6FBKRTE6VGNWSVhVE_zQUWj

LOAD CASE(S) Uniform Loads (plf) Vert: 1-3=-89, 4-9=-32, 5-9=-142, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 37) 5th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-29, 4-9=-72, 5-9=-182, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 38) 6th Unbal.Dead + 0.75 Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-72, 4-9=-29, 5-9=-139, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 39) 7th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-174, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 40) 8th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-131, 2-6=-20 Horz: 2-3=-19, 3-4=19, 5-6=6 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 41) 9th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-16, 2-3=-19, 4-9=-53, 5-9=-163, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 42) 10th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right) + Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-58, 2-3=-62, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-10, 3-4=-6, 5-6=-19 Concentrated Loads (lb) Vert: 9=-300 43) 11th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-10, 4-9=-64, 5-9=-174, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 44) 12th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-49, 2-3=-53, 4-9=-21, 5-9=-131, 2-6=-20 Horz: 2-3=-19, 3-4=-19, 5-6=5 Drag: 1-2=-0 Concentrated Loads (lb) Vert: 9=-300 45) 13th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-18, 2-3=-21, 4-9=-53, 5-9=-163, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300

46) 14th Unbal.Dead + 0.75 Snow (unbal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-3=-64, 4-9=-10, 5-9=-120, 2-6=-20 Horz: 2-3=-8, 3-4=-8, 5-6=-17 Concentrated Loads (lb) Vert: 9=-300 47) 15th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-32, 4-9=-89, 5-9=-199, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 48) 16th Unbal.Dead + Minimum Snow + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-89, 4-9=-32, 5-9=-142, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 49) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 50) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-60, 5-9=-170, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 51) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 4-9=-20, 5-9=-130, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300 52) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 4-9=-50, 5-9=-160, 2-6=-20 Concentrated Loads (lb) Vert: 9=-300

LOADING (psf) SPACING- Plate Grip DOL 2-0-0 1.15 CSI. TC DEFL. Vert(LL) in (loc) I/defl L/d PLATES GRIP MT20 244/19	6-0-8 1-11-8 '0-4-0'	
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.75 Vert(LL) -0.05 2-6 >999 240 MT20 244/19		
TCDL 10.0 Lumber DOL 1.15 BC 0.36 Vert(CT) -0.09 2-6 >999 180 BCLL 0.0 * Rep Stress Incr YES WB 0.18 Horz(CT) 0.00 5 n/a N/a BCDL 10.0 Code IBC/2014/(TB)2014 Matrix B Matrix B Weight: 22 lb ET	CSI. DEFL. in (loc) l/defl L/d TC 0.75 Vert(LL) -0.05 2-6 >999 240 BC 0.36 Vert(CT) -0.09 2-6 >999 180 WB 0.18 Horz(CT) 0.00 5 n/a n/a	LOADING (psf) SPACING- 2-0-0 CSI. TCLL 20.0 Plate Grip DOL 1.15 TC 0.75 TCDL 10.0 Lumber DOL 1.15 BC 0.36 BCLL 0.0 * Rep Stress Incr YES WB 0.18 PCDL 10.0 Code JBC20142(TE)1014 Matrix B Matrix B

 TOP CHORD
 2x4 SP No.1 *Except*

 T2:
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-6-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

5	=	304/0-3-8	(min. 0-1-8)
2	=	374/0-3-8	(min. 0-1-8)
Max H	lorz		
2	=	6	5(LC 13)
Max L	Jplift		
5	=	-6	2(LC 10)
2	=	-9	9(LC 10)
Max C	Grav		
5	=	32	23(LC 36)
2	=	50	06(LC 36)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-395/25, 3-4=-304/40, 4-5=-344/48

BOT CHORD 2-6=-21/320

WEBS 4-6=-34/438

NOTES- (10-11)

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 5 and 99 lb uplift at joint 2.
9) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 10) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 11) Bearder and the problem of the problem.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

		4-0-8 4-0-8		8-0-0 3-11-8	<u>8-4-0</u> 0-4-0
Plate Offsets (X,Y)	[5:0-2-0,0-1-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.66 BC 0.60 WB 0.32 Matrix-P	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) l/defl L/d 0.02 6 >999 240 0.03 6 >999 180 0.01 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 34 lb FT = 0%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

WEBS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-5-3 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

5 =	441/0-3-8 (min. 0-1-8)
2 =	450/0-3-8 (min. 0-1-8)
Max Horz	
2 =	47(LC 50)
Max Uplift	
5 =	-84(LC 8)
2 =	-114(LC 8)
Max Grav	
5 =	476(LC 33)
2 =	548(LC 34)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-836/119, 3-7=-728/118, 4-7=-728/118, 4-5=-434/100 BOT CHORD 2-6=-111/743

WEBS 4-6=-112/768

NOTES- (12-13)

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 5 and 114 lb uplift at joint 2.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
11) In the LOAD CASE(S) section, loads applied to the section of the section section.

the face of the truss are noted as front (F) or back (B).

- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)
 - Vert: 1-3=-60, 3-4=-60, 2-5=-20
 - Concentrated Loads (lb)
 - Vert: 3=-89(F) 6=-18(F) 7=-89(F) 8=-18(F)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

2x4 SP No.3 OTHERS

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 13-4-11.

(lb) - Max Horz

1=-145(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-206(LC 12), 6=-205(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=396(LC 26), 8=374(LC 19), 6=374(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WFBS

2-8=-269/238, 4-6=-268/238

NOTES-(9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=206, 6=205 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member

- must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition.
 - Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 10-8-11.

(lb) - Max Horz

1=-115(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 5 except 1=-109(LC 10), 8=-215(LC 12), 6=-215(LC 13) Max Grav All reactions 250 lb or less at joint(s)

1, 5 except 7=314(LC 19), 8=357(LC 19), 6=357(LC 20)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS

2-8=-300/270, 4-6=-299/270

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; CS=1.00; Ct=1.10
4) Gable requires continuous bottom chord bearing.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=109, 8=215, 6=215.
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-4-11 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

		•	,	
1	=		113/5-4-11	(min. 0-1-8)
3	=		113/5-4-11	(min. 0-1-8)
4	=		149/5-4-11	(min. 0-1-8)
Max	Horz			. ,
1	=		5	4(LC 9)
Max	Uplift			
1	=		-2	9(LC 13)
3	=		-2	9(LC 13)
				. ,

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical

representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

Scale = 1.9.6

2x4 1/

-4-5

2x4 🚿

			<u>2-8-11</u> <u>2-8-11</u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.02 BC 0.02 WB 0.01 Matrix-P	DEFL. in (loc) l/defl L/d PL Vert(LL) n/a - n/a 999 M1 Vert(CT) n/a - n/a 999 M1 Vert(CT) n/a - n/a 999 M1 Horz(CT) 0.00 3 n/a n/a W1	ATES GRIP ² 0 244/190 sight: 10 lb FT = 0%

2x4 ||

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

- OTHERS 2x4 SP No.3
- BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-8-11 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

	• • • • • • • •	(10/0120)	
1	=	49/2-8-11	(min. 0-1-8)
3	=	49/2-8-11	(min. 0-1-8)
4	=	64/2-8-11	(min. 0-1-8)
Max	Horz		
1	=	-2	23(LC 8)
Max	Uplift		
1	=	-1	2(LC 13)
3	=	-1	2(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical
- representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

Scale = 1.20.0

			6-0-11	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.13 BC 0.12 WB 0.02 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 24 lb FT = 0%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

OTHERS	2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

		(
1	=	129/6-0-11	(min. 0-1-8)
3	=	129/6-0-11	(min. 0-1-8)
4	=	170/6-0-11	(min. 0-1-8)
Мах	Horz		
1	=	-6	1(LC 8)
Мах	(Uplift		
1	=	-3	3(LC 13)
3	=	-3	3(LC 13)

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical
- representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)

2x4 //

2x4 🚿

			3-4-11 3-4-11	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.03 WB 0.01 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 12 lb FT = 0%

4

2x4 ||

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

DOT OTIOND	274 01	140.0
OTHERS	2x4 SF	No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 3-4-11 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size)

	• • • • • • • •	(10/0120)		
1	=	65/3-4-11	(min. 0-1-8)	
3	=	65/3-4-11	(min. 0-1-8)	
4	=	85/3-4-11	(min. 0-1-8)	
Max Horz				
1	=	-31(LC 8)		
Max	Uplift			
1	=	-17(LC 13)		
3	=	-1	7(LC 13)	

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical
- representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S)