

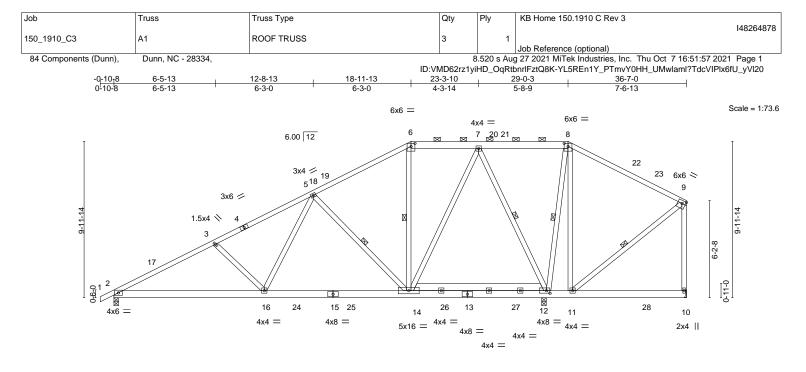
Trenco 818 Soundside Rd Edenton, NC 27932

Re: 150_1910_C3 KB Home 150.1910 C Rev 3

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I48264878 thru I48264912

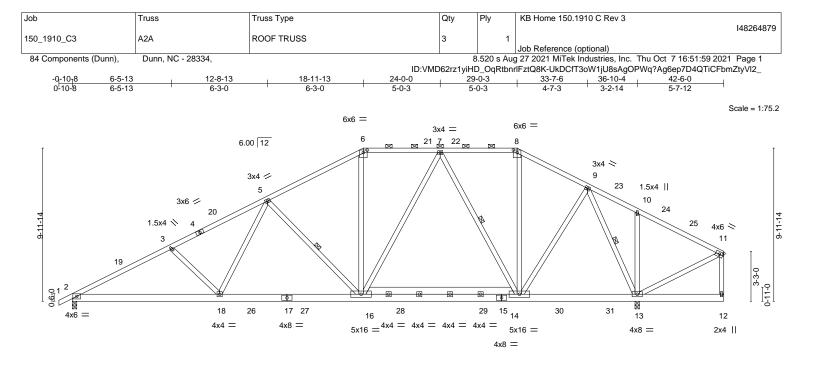
My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

October 10,2021

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



	9-7-5 9-7-5	18-11-13 9-4-8		5-12 5-15	29-0-3		6-7-0 6-13	
Plate Offsets (X,Y) [6:0-3-0,	0-2-7], [8:0-3-0,0-2-7], [9:6	Edge,0-2-4], [12:0-2-12,0-2-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 CSI. 1.15 TC 0.74 1.15 BC 0.58 YES WB 0.70 I2014 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT	-0.08 -0.18	(loc) l/def 2-16 >999 2-16 >999 12 n/a) 240) 180	PLATES MT20 Weight: 296 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0- Max Horz 2=2- Max Uplift 2=-4	2, 8-9: 2x4 SP No.1 3-8, 12=0-3-8, 10=Mecha	10=-218(LC 57)	BRACING- TOP CHORD BOT CHORD WEBS	except er Rigid ceil	nd verticals, a ing directly a pracing: 11-1	nd 2-0-0 oc p oplied or 10-0 2.	applied or 3-11-2 oc purlir purlins (6-0-0 max.): 6-8. -0 oc bracing, Except: -14, 7-12, 8-12, 9-11	ıs,
9-10=-75/295 BOT CHORD 2-16=-228/144 WEBS 3-16=-332/16	, 3-5=-1513/55, 5-6=-611/6 80, 14-16=-119/1027, 11-1	š3, 6-7=-480/81, 7-8=-2/405, 8-9=-54 2=-266/60 167, 7-14=-71/1009, 7-12=-1249/88,						
 MWFRS (envelope) gable en 24-1-14, Interior(1) 24-1-14 tr & MWFRS for reactions show TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surcharge applied to all expod Unbalanced snow loads have This truss has been designed Provide adequate drainage tr This truss has been designed * This truss has been designed Torvide adequate drainage tr This truss has been designed * This truss has been d	nph (3-second gust) Vasd id zone and C-C Exterior(2 29-0-8, Exterior(2R) 29-1 vn; Lumber DOL=1.60 plar isf (roof LL: Lum DOL=1.1 at B; Partially Exp.; Ce=1. sed surfaces with slopes I a been considered for this d for greater of min roof liv e loads. b prevent water ponding. d for a 10.0 psf bottom cho ed for a live load of 20.0ps ord and any other member ord and any other member truss connections. tion (by others) of truss to g-Tie connectors recomme and does not consider late cordance with the 2018 In TPI 1.	=95mph; TCDL=6.0psf; BCDL=6.0ps 2E) -0-10-8 to 2-9-6, Interior(1) 2-9-6 J-8 to 34-2-10, Interior(1) 34-2-10 to the grip DOL=1.60 5 Plate DOL=1.15); Pg=15.0 psf; Pf= 2; Cs=1.00; Ct=1.10, Lu=50-0-0; Min the stan 0.500/12 in accordance with design. a load of 12.0 psf or 1.00 times flat re- rd live load nonconcurrent with any of f on the bottom chord in all areas while rs, with BCDL = 10.0psf. bearing plate capable of withstandin nded to connect truss to bearing wal	to 18-11-13, Exter 36-5-4 zone;C-C fo e16.5 psf (Lum DO . flat roof snow loa n IBC 1608.3.4. bof load of 11.6 psf other live loads. ere a rectangle 3-6 g 100 lb uplift at jo ls due to UPLIFT a s R502.11.1 and R	ior(2R) 18- or members L=1.15 Pla d governs. f on overha 6-0 tall by 2 int(s) excel at jt(s) 2 and 802.10.2 a	11-13 to s and forces te Rain .ngs 2-0-0 wide ot (jt=lb) d 12. This nd	and a second and a second s	SEAL 27687	
WARNING - Verify design para Design valid for use only with MIT a truss system. Before use, the b building design. Bracing indicate is always required for stability an fabrication, storage, delivery, ere	meters and READ NOTES ON TH Fe® connectors. This design is t uiding designer must verify the a d is to prevent buckling of individ t to prevent collapse with possib ction and bracing of trusses and 1	IS AND INCLUDED MITEK REFERENCE PAG ased only upon parameters shown, and is for pplicability of design parameters and properly all truss web and/or chord members only. Are personal injury and property damage. For g	MII-7473 rev. 5/19/2020 an individual building co incorporate this design i ditional temporary and p	0 BEFORE US imponent, not into the overal ermanent bra ng the	E. I cing		ENGINEERING BY AMITek 818 Soundside Road Edenton, NC 27932	LO Affiliate

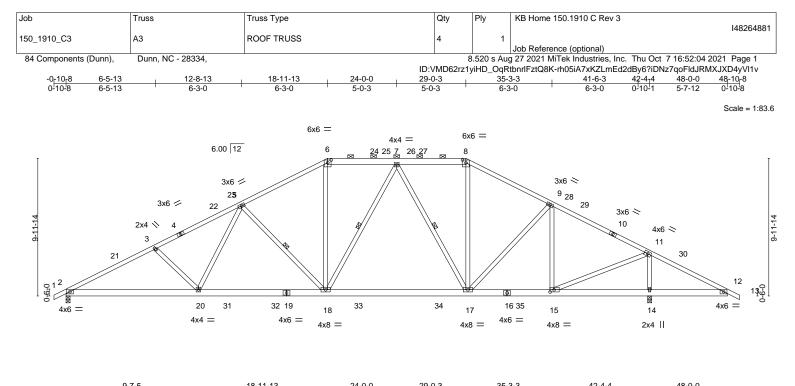
Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
-					148264878		
150_1910_C3	A1	ROOF TRUSS	3	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:51:58 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-0XfqR72AljbdWibTqi?bSy7wVPpsLyYZ_bsC0QyVl2?					

14) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.



9-7-5	<u>18-11-13</u> 9-4-8	24-0-0	<u> </u>		<u>36-10-4</u> 7-10-1	37 ₁ 0-0 0-1-12	42-6-0 5-6-0	1
	-2-0], [8:0-3-0,0-2-0]	5-0-3	5-0-3		7-10-1	0-1-12	5-6-0	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.65 BC 0.76 WB 0.60 Matrix-S	· · /	-0.13 16-18	l/defl L/d >999 240 >999 180 n/a n/a		PLATES MT20 Weight: 325 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3 Max Horz 2=19 Max Uplift 2=-73	3-8, 13=0-3-8	ТО	ex T CHORD Rig	cept end vertica	heathing directly als, and 2-0-0 oc tly applied or 10- 5-16, `	purlins (4-	5-15 max.): 6-8	,
TOP CHORD 2-3=-2886/130, 8-9=-1210/137, BOT CHORD 2-18=-231/249 WEBS 3-18=-306/158,	ax. Ten All forces 250 (lb) or less exc , 3-5=-2669/117, 5-6=-1825/147, 6-7=- , 10-11=-14/263 4, 16-18=-124/2077, 14-16=-15/1383, 7 , 5-18=0/592, 5-16=-760/169, 6-16=0/5 14=0/916, 10-13=-353/131, 9-13=-1666	1578/159, 7-8=-1045/144, 3-14=-2/520 24, 7-16=-39/552, 7-14=-7	60/71,					
 2) Wind: ASCE 7-16; Vult=120m MWFRS (envelope) gable end 24-11-15, Interior(1) 24-11-15 & MWFRS for reactions shown 3) TCLL: ASCE 7-16; Pr=20.0 ps DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expos 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) This truss has been designed * This truss has been designed * This truss has been designed 	for greater of min roof live load of 12.0 loads.	3-4-8, Interior(1) 3-4-8 to 1 5, Interior(1) 35-0-5 to 42-4 .60 1.15); Pg=15.0 psf; Pf=16. t=1.10, Lu=50-0-0; Min. fla 3/12 in accordance with IB psf or 1.00 times flat roof I onconcurrent with any othe n chord in all areas where = 10.0psf.	8-11-13, Exterior(3 -4 zone;C-C for m 5 psf (Lum DOL=1 t roof snow load go C 1608.3.4. Dad of 11.6 psf on r live loads. a rectangle 3-6-0 f	2R) 18-11-13 to nembers and for I.15 Plate overns. Rain overhangs tall by 2-0-0 wid	ces	110RT	SEAL 27687	A THE A PARTY A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


ENGINEERING BY REENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

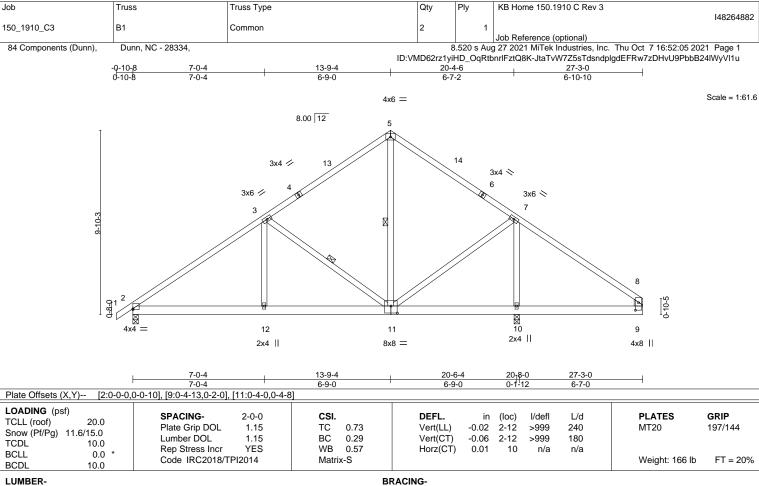
9-7-5	<u>18-11-13</u> 9-4-8	<u>24-0-0</u> 5-0-3	29-0-3	35-7-6	42-6-0 6-10-10	1
	9-4-0)-2-0], [8:0-3-0,0-2-0], [11:Edge,0-3-8], [5-0-3	0-7-2	0-10-10	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.76 BC 0.86 WB 0.78 Matrix-S	Vert(LL) -0.18	(loc) I/defl L/d 15-17 >999 240 15-17 >999 180 11 n/a n/a	PLATES MT20 Weight: 317 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3 Max Horz 2=19 Max Uplift 2=-65	3-8, 11=0-3-8	BRACIN TOP CH BOT CH WEBS	ORD Structura except e	al wood sheathing directly a end verticals, and 2-0-0 oc p illing directly applied or 10-0 tt midpt 5-15, 7-	ourlins (3-9-10 max.): 6-8.	,
TOP CHORD 2-3=-3479/126 8-9=-2175/166 BOT CHORD 2-17=-214/301 WEBS 3-17=-296/159	ax. Ten All forces 250 (lb) or less exc , 3-5=-3266/129, 5-6=-2450/169, 6-7=-7 , 9-10=-2045/105, 10-11=-1781/97 8, 15-17=-107/2624, 13-15=-21/2087, 1 , 5-17=0/566, 5-15=-744/170, 6-15=0/8 13=-42/272, 9-12=-564/104, 10-12=-33	2146/179, 7-8=-1890/170, 2-13=-37/1775 01, 7-15=-127/286, 7-13=-525/9	90,			
 Wind: ASCE 7-16; Vult=120m MWFRS (envelope) gable end 24-11-15, Interior(1) 24-11-15 & MWFRS for reactions show TCLL: ASCE 7-16; Pr=20.0 ps DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose Unbalanced snow loads have 	for greater of min roof live load of 12.0	3-4-8, Interior(1) 3-4-8 to 18-11 5, Interior(1) 35-0-5 to 42-4-4 zo 60 I.15); Pg=15.0 psf; Pf=16.5 psf =1.10, Lu=50-0-0; Min. flat root //12 in accordance with IBC 160	13, Exterior(2R) 18 ne;C-C for membe (Lum DOL=1.15 Pla snow load governs)8.3.4. of 11.6 psf on overh	3-11-13 to rrs and forces ate s. Rain	SEAL	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

⊢	9-7-5	18-11-13	24-0-0	29-0-3	35-3-3		42-4-4	48-0-0	
Plate Offsets (9-7-5 (X.Y) [6:0-3-0.0	<u>9-4-8</u> -2-7], [8:0-3-0,0-2-7], [15:0-3-8,0-2-0]	5-0-3	5-0-3	6-3-0		7-1-1	5-7-12	
LOADING (ps	sf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)		Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.67 BC 0.83	Vert(LL) Vert(CT)	-0.22 17-18 -0.39 17-18	>999 >999	240 180	MT20	197/144
TCDL BCLL	10.0 0.0 *	Rep Stress Incr YES	WB 0.88	Horz(CT		n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 326 lb	FT = 20%
LUMBER-				BRACING-					
TOP CHORD	2x4 SP No.2 or 2 6-8: 2x6 SP No.2	2x4 SPF No.2 *Except*		TOP CHORD	Structural wood except	l sheathing	g directly ap	plied or 2-4-13 oc purlir	ıs,
BOT CHORD		-			2-0-0 oc purlins	(5-1-0 ma	ax.): 6-8.		
WEBS	2x4 SP No.3			BOT CHORD WEBS	Rigid ceiling dir 1 Row at midpt		ied or 6-0-0 5-18, 7-18		
REACTIONS.	Max Horz 2=13 Max Uplift 2=-69	3-8, 14=(0-3-8 + H10A Simpson Strong I4(LC 16) 9(LC 16), 14=-64(LC 17) I88(LC 3), 14=2451(LC 3)		WEBS	T Kow at midpt		5-16, 7-16	5, 7-17	
FORCES. (Ib TOP CHORD	2-3=-3410/133	ax. Ten All forces 250 (lb) or less exc 3, 3-5=-3196/134, 5-6=-2381/171, 6-7=-		78,					
BOT CHORD	2-20=-167/295), 9-11=-1830/121, 11-12=-113/542 57, 18-20=-56/2535, 17-18=0/1971, 15-	17=0/1574, 14-15=-401	1/144,					
WEBS	12-14=-401/14	14 9, 5-20=0/605, 5-18=-738/170, 6-18=0/7	65 7-1895/319 7-17	7566/89					
WEBO		-17=-14/343, 9-15=-649/95, 11-15=-63/		,					
NOTES-									
 Wind: ASCI MWFRS (er 25-9-4, Inte & MWFRS (TCLL: ASC DOL=1.15); surcharge a Unbalanced This truss h non-concur Provide add This truss h This truss h * This truss h 	E 7-16; Vult=120m nvelope) gable env prior(1) 25-9-4 to 25 for reactions show E 7-16; Pr=20.0 p; ; Is=1.0; Rough Ca applied to all expose d snow loads have has been designed has been designed has been designed has been designed son Strong-Tie co ly and does not co A Simpson Strong n is for uplift only a is designed in acc	prevent water ponding. I for a 10.0 psf bottom chord live load ne ad for a live load of 20.0psf on the botto ord and any other members, with BCDL nnectors recommended to connect trus insider lateral forces. Tie connectors recommended to conne and does not consider lateral forces. cordance with the 2018 International Re	3-11-2, Interior(1) 3-11 tterior(1) 35-9-11 to 48 .60 1.15); Pg=15.0 psf; Pf= t=1.10, Lu=50-0-0; Min 0/12 in accordance with psf or 1.00 times flat ro onconcurrent with any of m chord in all areas wh = 10.0psf. s to bearing walls due to exct truss to bearing wal	-2 to 18-11-13, Ex -10-8 zone;C-C for -16.5 psf (Lum DO . flat roof snow loa h IBC 1608.3.4. bof load of 11.6 psf other live loads. here a rectangle 3-f to UPLIFT at jt(s) 1 Is due to UPLIFT a	terior(2R) 18-11- members and fo L=1.15 Plate d governs. Rain f on overhangs 6-0 tall by 2-0-0 v 4. This connection t jt(s) 2. This	13 to prces vide on is	and a second and a second second	GANG GANG	
	d standard ANSI/T	PI 1. ion does not depict the size or the orier	tation of the purlin alon	ng the top and/or be	ottom chord.			October 10,2	2021
		·	•						
Design vali a truss syst building des is always re	id for use only with MiT tem. Before use, the bu sign. Bracing indicated equired for stability and	neters and READ NOTES ON THIS AND INCLUDE ek® connectors. This design is based only upon p ilding designer must verify the applicability of des I is to prevent buckling of individual truss web and to prevent collapse with possible personal injury tion and bracing of trusses and truss systems, set	arameters shown, and is for a ign parameters and properly i /or chord members only. Ado and property damage. For ge	an individual building co incorporate this design i ditional temporary and p	mponent, not nto the overall ermanent bracing ng the	ponent		ENGINEERING BY A MITEK 818 Soundside Road	Affiliate

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3
					I48264881
150_1910_C3	A3	ROOF TRUSS	4	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	3.520 s Aug	g 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:04 2021 Page 2

ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-rh05iA7xKZLmEd2dBy6?iDNz7qoFldJRMXJXD4yVI1v

NOTES-

13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LUMBER-		BRACING-				
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheathing	directly applied or 5-3-2 oc purlins,		
BOT CHORD	2x6 SP No.2		except end verticals.			
WEBS	2x4 SP No.3 *Except*	BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.				
	8-9: 2x6 SP No.2	WEBS	1 Row at midpt	3-11, 5-11		
			-			

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=192(LC 11) Max Uplift 2=-51(LC 14), 10=-38(LC 15) Max Grav 2=794(LC 2), 10=1417(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-984/67, 3-5=-464/115, 5-7=-466/128, 7-8=-27/420 TOP CHORD

- BOT CHORD 2-12=-100/770. 11-12=-100/770
- WEBS 3-12=0/315, 3-11=-552/161, 7-11=0/650, 7-10=-1197/106

NOTES

1) Unbalanced roof live loads have been considered for this design.

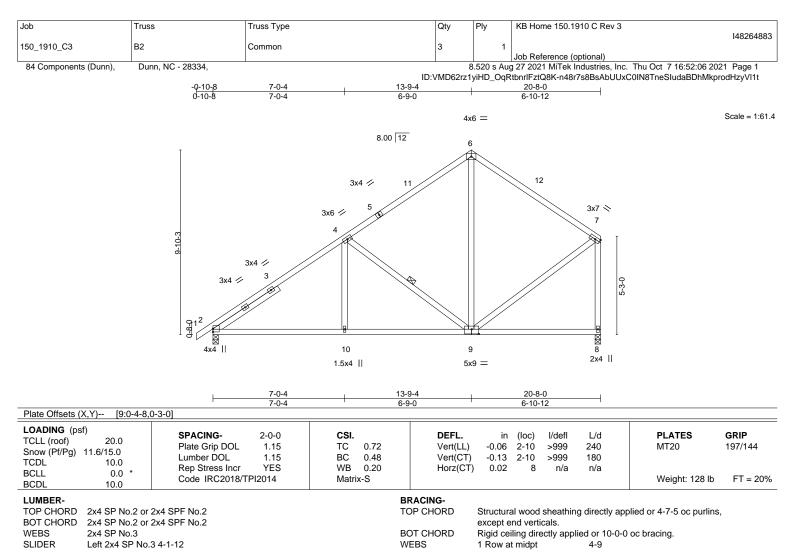
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-9-4, Exterior(2R) 13-9-4 to 16-9-4, Interior(1) 16-9-4 to 27-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.


7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE. 2762 SE. 2762 October 10⁻ The second se AN GARCIP

October 10,2021

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=224(LC 14) Max Uplift 2=-32(LC 14), 8=-39(LC 14) Max Grav 2=874(LC 2), 8=820(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-1087/36, 4-6=-616/91, 6-7=-604/95, 7-8=-759/73
- BOT CHORD 2-10=-152/832 9-10=-152/832
- WEBS 4-10=0/289, 4-9=-531/161, 6-9=0/286, 7-9=-27/483

NOTES

1) Unbalanced roof live loads have been considered for this design.

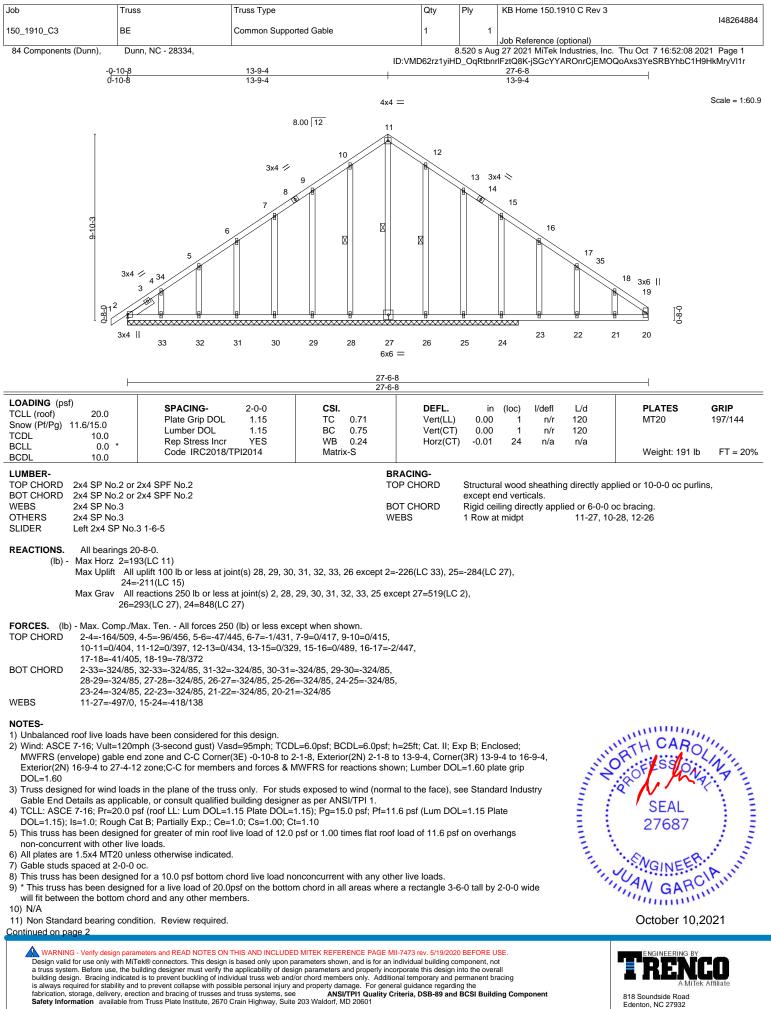
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-9-4, Exterior(2R) 13-9-4 to 16-9-4, Interior(1) 16-9-4 to 20-6-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

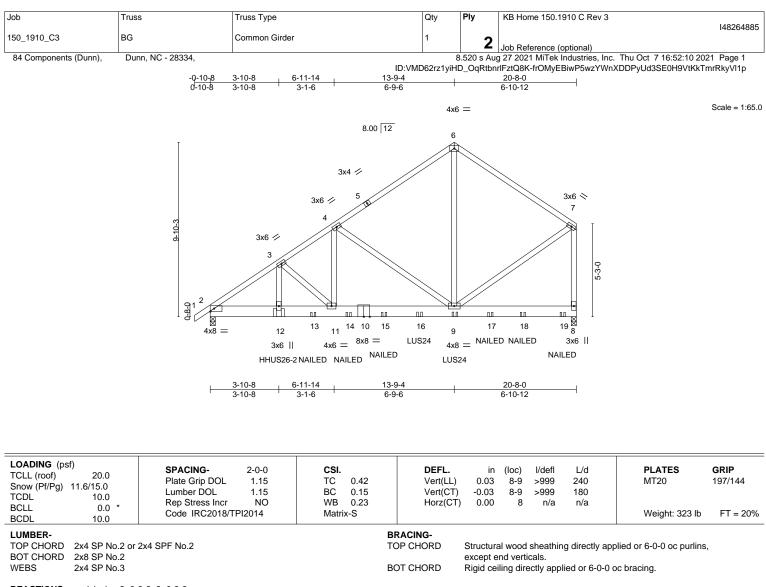
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.


7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 10,2021


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
450 4040 00	DE	Common Quana da di Cabla			148264884		
150_1910_C3	BE	Common Supported Gable	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:08 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-jSGcYYAROnrCjEMOQoAxs3YeSRBYhbC1H9HkMryVl1r					

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- REACTIONS. 2=0-3-8, 8=0-3-8 (size) Max Horz 2=224(LC 45) Max Uplift 2=-367(LC 10), 8=-540(LC 37) Max Grav 2=799(LC 2), 8=1147(LC 2)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-1037/554, 3-4=-935/522, 4-6=-738/379, 6-7=-729/449, 7-8=-890/356
- BOT CHORD 2-12=-600/869, 11-12=-600/869, 9-11=-536/800
- WFBS 4-11=-311/155, 4-9=-452/376, 6-9=-653/333, 7-9=-370/599
- NOTES-
- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x8 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

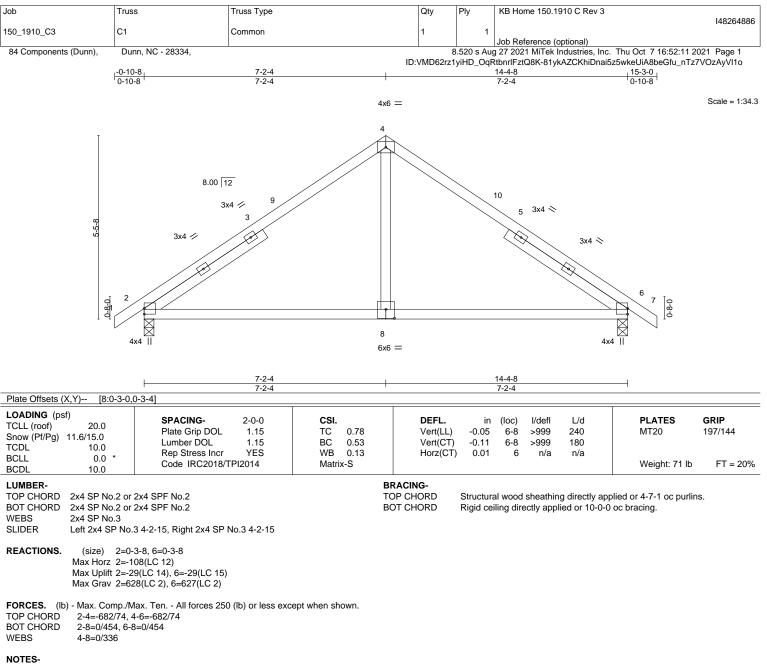
3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate 5) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere on estate 2 dard ANSI/TPI 1

October 10,2021

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
					148264885		
150_1910_C3	BG	Common Girder	1	2			
				2	Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,		6	3.520 s Aug	27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:10 2021 Page 2		
		ID:VMD62rz1viHD_OqRtbnrlFztQ8K-frOMyEBiwP5wzYWnXDDPyUd3SE0H9VtKkTmrRkyVI1p					

- 12) Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 4-10d Truss) or equivalent at 3-10-8 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 11-9-12 from the left end to 13-9-12 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-6=-43, 6-7=-43, 2-8=-20 Concentrated Loads (lb)

Vert: 9=-94(B) 12=96(B) 13=74(B) 14=83(B) 15=-17(B) 16=-37(B) 17=-127(B) 18=-127(B) 19=-131(B)

1) Unbalanced roof live loads have been considered for this design.

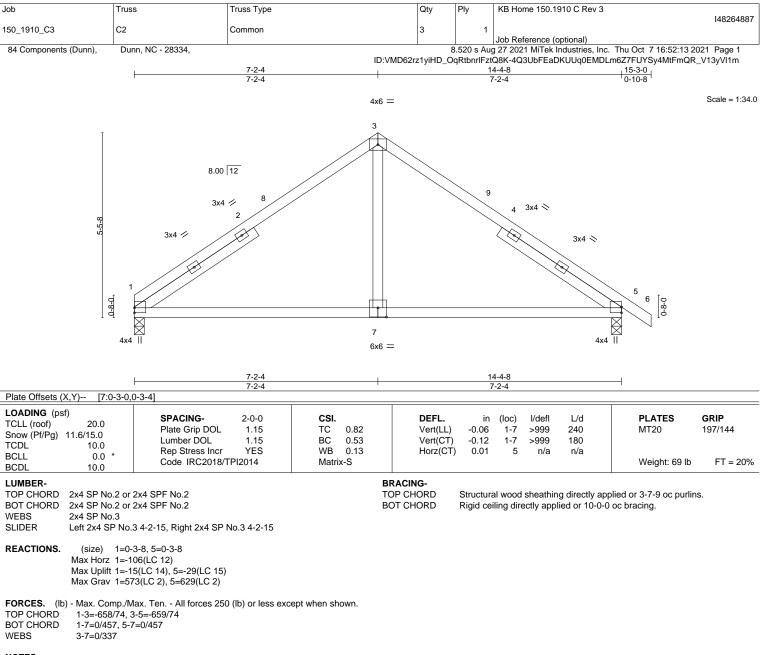
2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-2-4, Exterior(2R) 7-2-4 to 10-2-4, Interior(1) 10-2-4 to 15-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

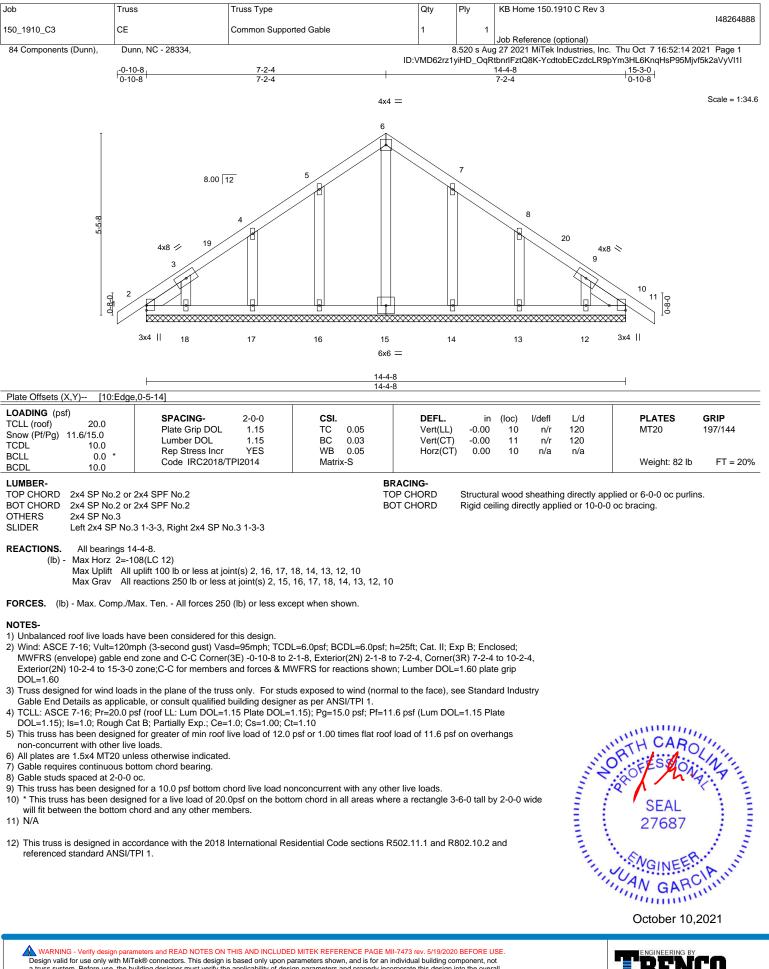
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

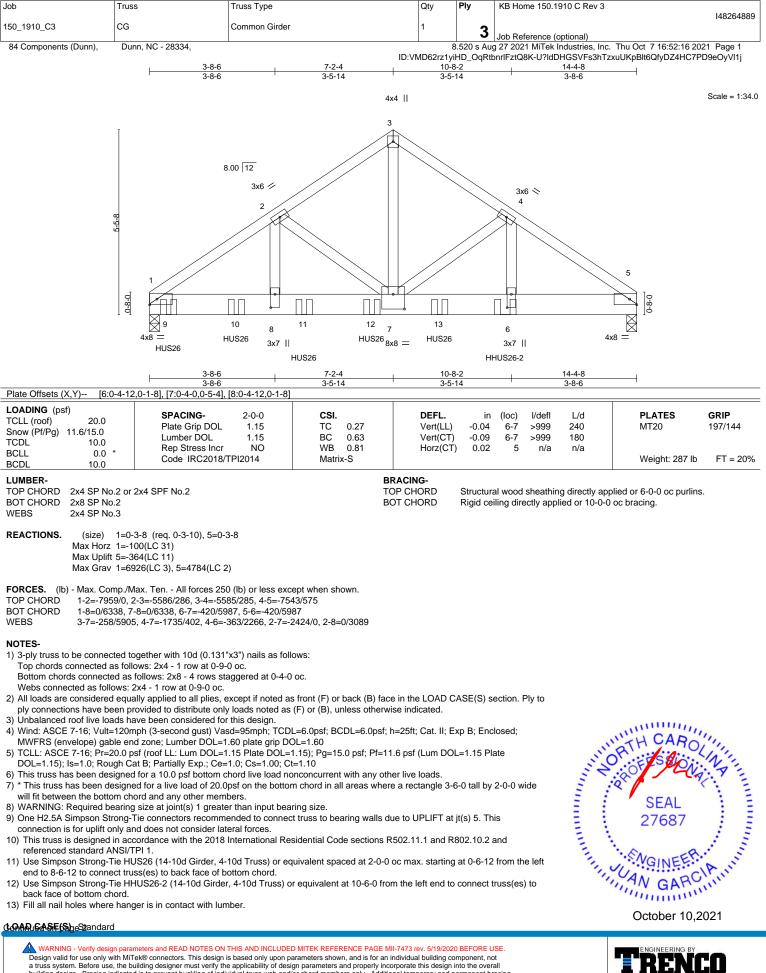

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 10,2021



- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0. Interior(1) 3-0-0 to 7-2-4, Exterior(2R) 7-2-4 to 10-2-4. Interior(1) 10-2-4 to 15-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

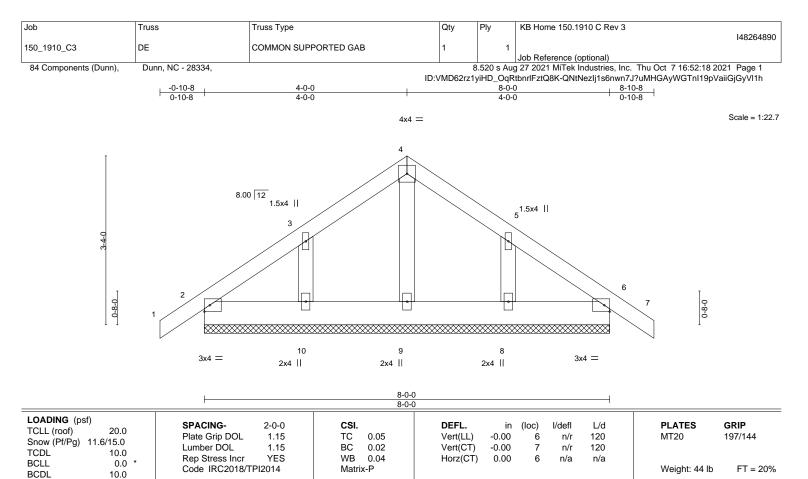

October 10,2021

October 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3			
					148264889			
150_1910_C3	CG	Common Girder	1	2				
				J	Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:16 2021 Page 2						
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-U?IdDHGSVFs3hTzxuUKpBlt6QfyDZ4HC7PD9eOyVI1j						

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 3-5=-43, 1-5=-20

Concentrated Loads (lb)

Vert: 6=-2044(B) 9=-1612(B) 10=-1531(B) 11=-1555(B) 12=-1608(B) 13=-1662(B)

-	 	-		

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x6 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

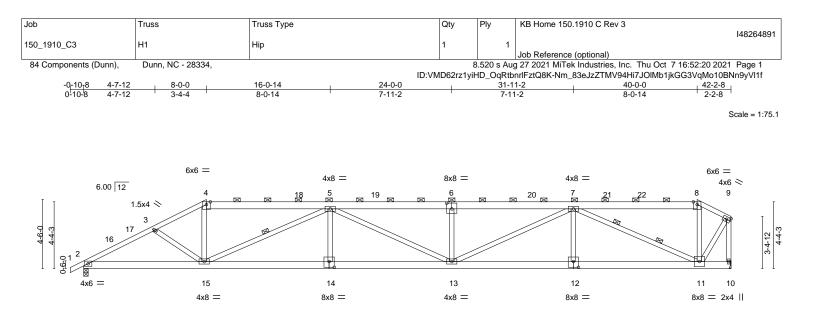
Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0. Max Horz 2=65(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

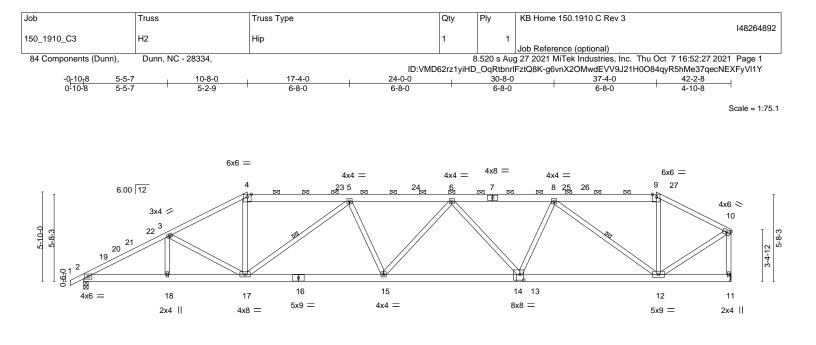
Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

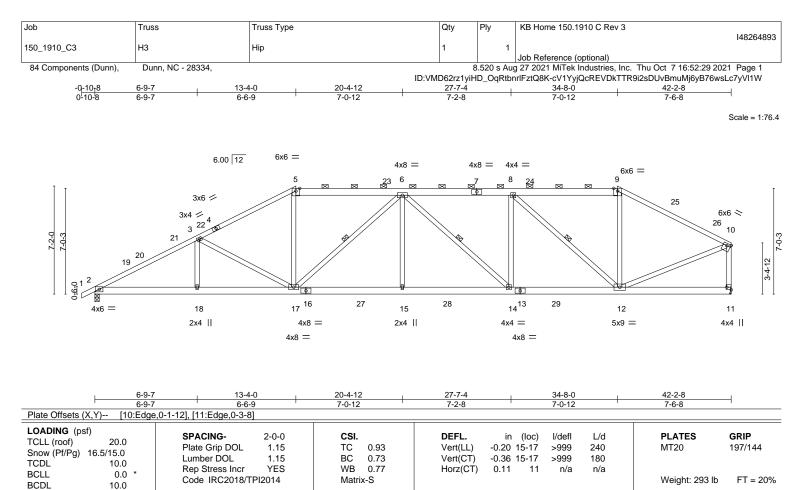

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 4-0-0, Corner(3R) 4-0-0 to 7-0-0,
- Exterior(2N) 7-0-0 to 8-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) N/A
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

October 10,2021


	8-0-0) 1	16-0-14	24-0-0	1	31-11-2		40-0	0-0 42-2-8	8 .		
l	8-0-0		8-0-14	7-11-2		7-11-2		8-0-	-14 2-2-8			
Plate Offsets ((X,Y) [6:0-4-0,	0-4-8], [12:0-4-0	0,0-4-8], [14:0-4-0,0-4-8]		1							
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0	SPACIN Plate Gr Lumber Rep Stre	ip DOL 1.15 DOL 1.15 ess Incr YES	CSI. TC 0.63 BC 0.83 WB 1.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.32 13-14 -0.65 13-14 0.15 10	l/defl >999 >777 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144		
BCDL	10.0	Code IR	RC2018/TPI2014	Matrix-S					Weight: 284 lb	FT = 20%		
LUMBER- TOP CHORD	2x4 SP No.2 or 4-6,6-8: 2x6 SP 2x6 SP No.2 2x4 SP No.3 *E 9-10: 2x4 SP No	No.2 xcept*		T(B	RACING- OP CHORD OT CHORD /EBS		icals, and ectly appli	2-0-0 oc purli	ied or 2-11-8 oc purlin ns (3-2-3 max.): 4-8. oc bracing.	S,		
REACTIONS.	Max Horz 2=117(LC 16) Max Uplift 2=-64(LC 13), 10=-112(LC 12) Max Grav 2=1739(LC 2), 10=1682(LC 40)											
FORCES. (IL TOP CHORD BOT CHORD WEBS	FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-3179/187, 3-4=-3047/192, 4-5=-2692/183, 5-6=-4499/376, 6-7=-4499/376, 7-8=-862/67, 8-9=-923/61, 9-10=-1717/95 BOT CHORD 2-15=-197/2738, 14-15=-352/4356, 13-14=-354/4353, 12-13=-287/3461, 11-12=-287/3461											
 Wind: ASCI MWFRS (en Interior(1) 1 Lumber DO TCLL: ASC DOL=1.15); surcharge a Unbalancec This truss h non-concur Provide add This truss h non-concur Provide add This truss will fit betwee Refer to gir Provide m 10 Provide m 10=112. One H2.5/ connection This truss 	E 7-16; Vult=120n nvelope) gable en 3-11-10 to 40-0-0 VL=1.60 plate grip E 7-16; Pr=20.0 p ; Is=1.0; Rough C applied to all expo d snow loads have as been designed has been d	nph (3-second g Id zone and C-C 0, Exterior(2E) 4 DOL=1.60 Dot 1.10 at B; Partially E sed surfaces wi e been consider d for greater of r e loads. o prevent water d for a live load ord and any oth truss connection tion (by others) g-Tie connectors and does not cc cordance with th	bottom chord live load no d of 20.0psf on the bottor her members.	3-4-2, Interior(1) 3-4-2 to C for members and force .15); Pg=15.0 psf; Pf=16 =1.10, Lu=50-0-0; Min. fi /12 in accordance with I psf or 1.00 times flat root nconcurrent with any oth n chord in all areas wher capable of withstanding ct truss to bearing walls	8-0-0, Exterior(2 as & MWFRS for 6.5 psf (Lum DOL lat roof snow load BC 1608.3.4. f load of 11.6 psf her live loads. e a rectangle 3-6 100 lb uplift at joi due to UPLIFT a	R) 8-0-0 to 13-11 reactions shown _=1.15 Plate d governs. Rain on overhangs 6-0 tall by 2-0-0 w nt(s) except (jt=lt t jt(s) 2. This	1-10, ; ride b)	And Antonio and	SEAL 27687			
Design vali a truss sys building de	id for use only with MiT tem. Before use, the b sign. Bracing indicate	Fek® connectors. The uilding designer must d is to prevent buck	OTES ON THIS AND INCLUDED his design is based only upon pa st verify the applicability of designing of individual truss web and/ e with possible personal injury a	rameters shown, and is for an on parameters and properly inc or chord members only. Addition	individual building con orporate this design in onal temporary and po	mponent, not nto the overall ermanent bracing)				

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
114	Llin	4	1	148264891		
	Пр	1	1	Job Reference (optional)		
Dupp NC - 28334		8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:20 2021 Page 2				
Dunn, 140 - 20004,	ID:VMD62rz1yiHD_QqRtbnlFztQ8K-Nm_83eJzZTMV94Hi7JOIMb1kGG3V94Mo108Nn9yV11f					
	Truss H1 Dunn, NC - 28334,	H1 Hip Dunn, NC - 28334,	H1 Hip 1 Dunn, NC - 28334, 8	H1 Hip 1 1 1 Dunn, NC - 28334, 8.520 s Au		

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ŀ	<u>5-5-7</u> 5-5-7	10-8-0 5-2-9	<u>19-6-11</u> 8-10-11		<u>28-5-5</u> 8-10-11		<u> </u>	42-2-8	
Plate Offsets (0-10-11		8-10-11		0-10-11	4-10-6	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL	20.0 16.5/15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 C: 1.15 T(1.15 B(YES W	C 0.66	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 13-15 -0.39 13-15 0.12 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Code IRC2018/TF		atrix-S	1012(01)	0.12 11	iva iva	Weight: 286 lb	FT = 20%
LUMBER-	2x4 SP No.2 or 2 4-7,7-9: 2x6 SP 2x6 SP No.2 2x4 SP No.3 *Ex				BRACING- TOP CHORD BOT CHORD WEBS	except end verti	icals, and 2-0-0 oc pu ectly applied or 10-0-(
REACTIONS.	Max Horz 2=13 Max Uplift 2=-33	3-8, 11=Mechanical 5(LC 16) 3(LC 13), 11=-68(LC 12) 39(LC 2), 11=1676(LC 2)							
FORCES. (IL TOP CHORD BOT CHORD WEBS	8-9=-1347/94, 9-10=-1532/91, 10-11=-1645/81 BOT CHORD 2-18=-136/2759, 17-18=-136/2759, 15-17=-234/3353, 13-15=-246/3369, 12-13=-196/2806 WEBS 3-17=-434/121, 4-17=0/920, 5-17=-1168/166, 5-15=0/279, 6-13=-569/99, 8-13=0/668, 8-12=-1844/181, 9-12=0/389, 10-12=-63/1614								
 8-12=-1844/181, 9-12=0/389, 10-12=-63/1614 NOTES- Unid: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-4-2, Interior(1) 3-4-2 to 10-8-0, Exterior(2R) 10-8-0 to 16-7-10, Interior(1) 16-7-10 to 37-4-0, Exterior(2E) 37-4-0 to 42-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; Rough Cat B; Partially Exp; Ce=10, 0; CE=1.10, Lu=50-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fl between the bottom chord and any other members. Provide mechanical connection. (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TFP1 i. Graphical puritin representation does not consider latera forces. 								11111	
Design vali a truss syst building des is always re fabrication,	d for use only with MiTe tem. Before use, the bu sign. Bracing indicated equired for stability and storage, delivery, erect	neters and READ NOTES ON TH ek® connectors. This design is b iliding designer must verify the a is to prevent buckling of individ to prevent collapse with possibilition and bracing of trusses and i m Truss Plate Institute, 2670 Cr	ased only upon parameters s pplicability of design paramet ual truss web and/or chord mu e personal injury and property russ systems, see	hown, and is for a ers and properly i embers only. Add damage. For ge	an individual building co incorporate this design i ditional temporary and p	mponent, not nto the overall ermanent bracing ng the	ponent	ANITEK BIB Soundside Road Edenton, NC 27932	LOO Affiliate

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2 *Except*	TOP CHORD	Structural wood sheat	thing directly applied, except end verticals, and
	5-7,7-9: 2x6 SP No.2, 9-10: 2x4 SP No.1		2-0-0 oc purlins (4-2-4	4 max.): 5-9.
BOT CHORD	2x6 SP No.2	BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.3 *Except*	WEBS	1 Row at midpt	6-17, 6-14, 8-12
	10-11: 2x4 SP No.2 or 2x4 SPF No.2			
REACTIONS	. (size) 2=0-3-8, 11=Mechanical			
	Max Horz 2=153(LC 16)			
	Max Uplift 2=-25(LC 16), 11=-22(LC 12)			

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3482/108. 3-5=-2934/132. 5-6=-2553/147. 6-8=-2871/146. 8-9=-1742/122. 9-10=-2015/101, 10-11=-1739/98

BOT CHORD 2-18=-118/3015, 17-18=-118/3015, 15-17=-133/3144, 14-15=-133/3144, 12-14=-116/2871 WEBS 3-18=0/272, 3-17=-633/137, 5-17=0/987, 6-17=-864/123, 6-15=0/386, 6-14=-421/27, 8-14=0/572, 8-12=-1531/122, 9-12=0/589, 10-12=-32/1861

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Max Grav 2=1891(LC 3), 11=1852(LC 3)

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-4-2, Interior(1) 3-4-2 to 13-4-0, Exterior(2R) 13-4-0 to 19-3-10, Interior(1) 19-3-10 to 34-8-0, Exterior(2R) 34-8-0 to 40-7-10, Interior(1) 40-7-10 to 42-0-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

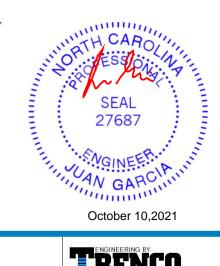
4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

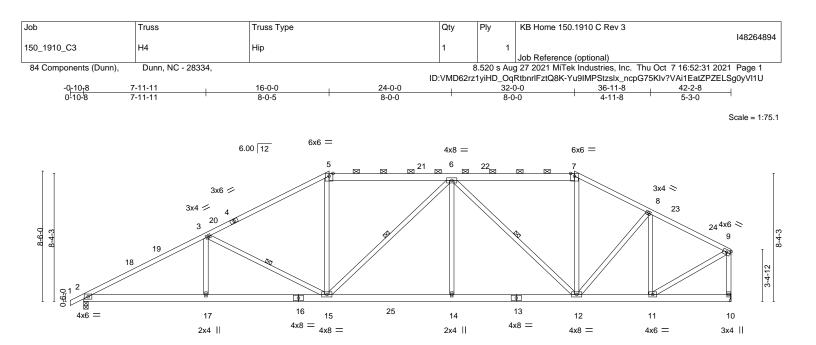
7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

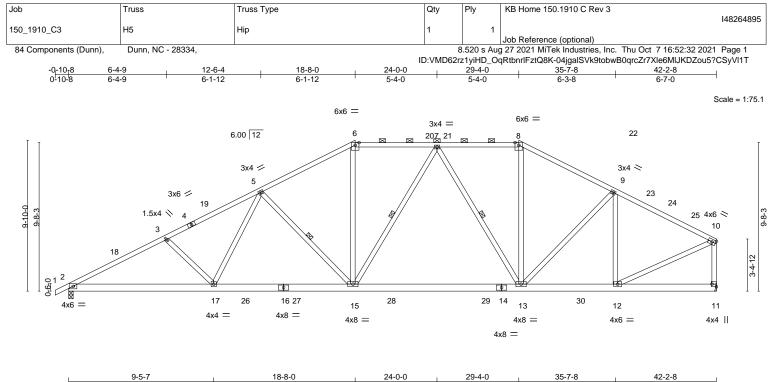

9) Refer to girder(s) for truss to truss connections.

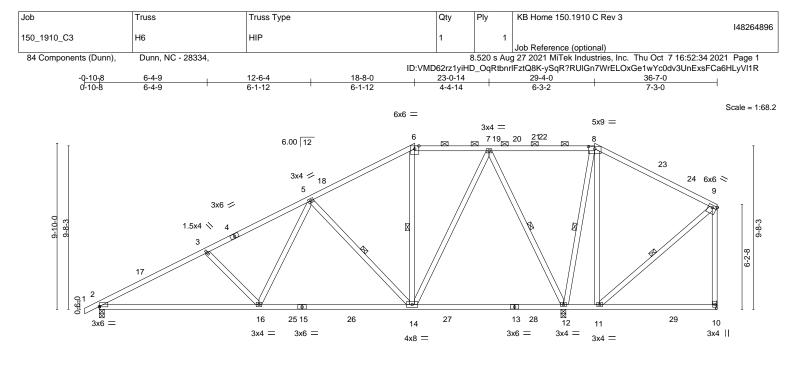
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

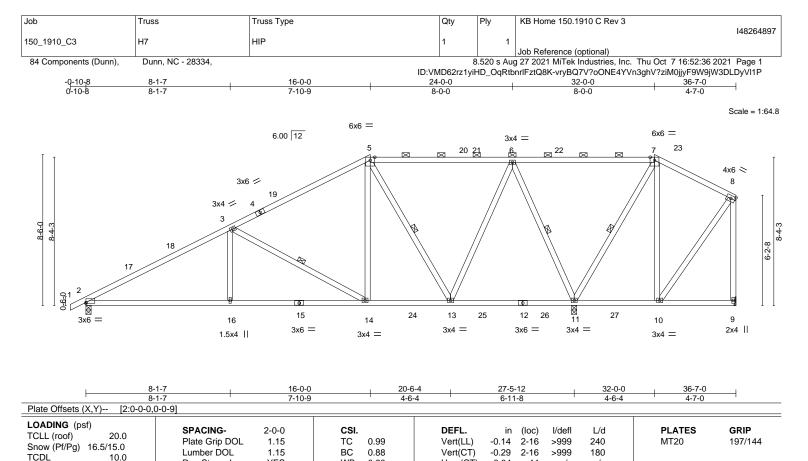

October 10.2021



	7-11-11	I 16-0-0	24-0-0		32-0-0		36-11-8	42-2-8		
	7-11-11		8-0-0		8-0-0		4-11-8	5-3-0		
LOADING (p	ef)									
TCLL (roof)	20.0	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
Snow (Pf/Pg)		Plate Grip DOL 1.15	TC 1.00	Vert(LL)	-0.17 14-15	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL 1.15	BC 0.79	Vert(CT)		>999	180			
BCLL	0.0 *	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.71 Matrix-S	Horz(CT) 0.10 10	n/a	n/a	Weight: 296 lb	FT = 20%	
BCDL	10.0	Code IRC2016/TFI2014	Wathx-S					weight. 296 lb	FT = 20%	
LUMBER-			В	RACING-						
	2x4 SP No.1 *E>	kcept*		OP CHORD	Structural wood	sheathin	a directly appli	ed, except end vertic	als, and	
		2, 7-9: 2x4 SP No.2 or 2x4 SPF No.2			2-0-0 oc purlins			,		
BOT CHORD	2x6 SP No.2		B	OT CHORD	Rigid ceiling dir	ectly appli	ed or 10-0-0 c	c bracing.		
WEBS	2x4 SP No.3 *E>		W	EBS	1 Row at midpt		3-15, 6-15,	6-12		
	9-10: 2x4 SP No	0.2 or 2x4 SPF No.2								
REACTIONS.	Max Horz 2=17 Max Uplift 2=-40 Max Grav 2=18		opt when shown							
TOP CHORD	2-3=-3439/114	ax. Ten All forces 250 (ib) of less exc , 3-5=-2710/145, 5-6=-2337/166, 6-7=-' 9-10=-1760/90	1	3						
BOT CHORD WEBS										
 Wind: ASC MWFRS (e 21-11-10, I forces & M TCLL: ASC DOL=1.15) surcharge - Unbalance This truss I non-concur Provide ad This truss I non-concur Provide ad This truss I surcharge - This truss I non-concur Provide ad This truss I non-concur Provide ad This truss I non-concur Provide ad This truss I non-concur This truss I non-concur This truss I reference 	E 7-16; Vult=120m invelope) gable end interior(1) 21-11-10 WFRS for reaction E 7-16; Pr=20.0 pc ; Is=1.0; Rough Ca applied to all expose d snow loads have has been designed is has been designed is designed in acc d standard ANSI/T	prevent water ponding. I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottor ord and any other members, with BCDL truss connections. -Tie connectors recommended to conne and does not consider lateral forces. cordance with the 2018 International Res	3-4-2, Interior(1) 3-4-2 to -10, Interior(1) 37-11-10 DOL=1.60 1.15); Pg=15.0 psf; Pf=16 =1.10, Lu=50-0-0; Min. fi D/12 in accordance with II psf or 1.00 times flat root onconcurrent with any oth n chord in all areas wher = 10.0psf. ct truss to bearing walls sidential Code sections F	16-0-0, Exterior to 42-0-12 zone 6.5 psf (Lum DO at roof snow loa BC 1608.3.4. f load of 11.6 psf her live loads. e a rectangle 3-f due to UPLIFT a 2502.11.1 and R	(2R) 16-0-0 to C-C for member L=1.15 Plate d governs. Rain on overhangs 6-0 tall by 2-0-0 v it jt(s) 2. This 802.10.2 and	s and vide	THOMAN MULTING	SEAL 27687	14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	
Design va a truss sys building de	lid for use only with MiTe stem. Before use, the bu esign. Bracing indicated	neters and READ NOTES ON THIS AND INCLUDE! ek® connectors. This design is based only upon pr uilding designer must verify the applicability of desi j is to prevent buckling of individual truss web and/ to prevent collapse with possible personal injury a	arameters shown, and is for an gn parameters and properly inco or chord members only. Addition	individual building co prporate this design i pnal temporary and p	mponent, not nto the overall ermanent bracing				10 Affiliate	

a duss system. Detailed use, the building designer must vering the application of design parameters and property incorporate inside use design into everal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	9-0		18-8-0		24-0-0	29-4-0		5-7-8	42-2-8	
	9-5		9-2-9		5-4-0	5-4-0	. 6	6-3-8	6-7-0	
Plate Offsets ((X,Y) [11:Edge	,0-3-8]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0	SPACING- Plate Grip D Lumber DOL Rep Stress I	. 1.15 ncr YES	CSI. TC 0.70 BC 0.84 WB 0.75	4 Vert(L) -0.25 13- CT) -0.44 13-	15 >999	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC20)18/TPI2014	Matrix-S					Weight: 291 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 or	<cept*< td=""><td></td><td></td><td>BRACING- TOP CHORD BOT CHORD WEBS</td><td>except end</td><td>verticals, an directly app</td><td>d 2-0-0 oc p olied or 10-0</td><td>pplied or 2-4-13 oc purlin ourlins (3-9-0 max.): 6-8. -0 oc bracing. 15, 7-13</td><td>S,</td></cept*<>			BRACING- TOP CHORD BOT CHORD WEBS	except end	verticals, an directly app	d 2-0-0 oc p olied or 10-0	pplied or 2-4-13 oc purlin ourlins (3-9-0 max.): 6-8. -0 oc bracing. 15, 7-13	S,
REACTIONS.	Max Horz 2=19 Max Uplift 2=-6	3-8, 11=Mechanica 00(LC 16) 3(LC 16), 11=-4(LC 114(LC 3), 11=1878	17)							
FORCES. (III TOP CHORD	2-3=-3466/126		5 250 (lb) or less exc ·6=-2473/164, 6-7=-2 10-11=-1764/98		333/160,					
BOT CHORD 2-17=-214/3006, 15-17=-105/2602, 13-15=-29/2085, 12-13=-38/1681 WEBS 3-17=-288/156, 5-17=-2/580, 5-15=-716/170, 6-15=0/819, 7-15=-151/270, 7-13=-590/98, 8-13=0/664, 9-13=-30/356, 9-12=-593/87, 10-12=-37/1815										
 Wind: ASCI MWFRS (er Interior(1) 2 MWFRS for 3) TCLL: ASC DOL=1.15); surcharge a Unbalancec This truss h non-concur Provide ade This truss h * This truss will fit betwee Refer to gir Provide m One H2.5/ connection This truss referenced 	E 7-16; Vult=120rr nvelope) gable en 24-7-10 to 29-4-0, r reactions shown; E 7-16; Pr=20.0 p ; Is=1.0; Rough Ca applied to all exposed d snow loads have nas been designed rent with other live equate drainage to has been designed has been designed has been designed can be bottom chheder(s) for truss to techanical connect A Simpson Strong n is for uplift only a is designed in acc d standard ANSI/T	d zone and C-C Exi Exterior(2R) 29-4-0 Lumber DOL=1.60 sf (roof LL: Lum DC at B; Partially Exp.; sed surfaces with sl been considered fu for greater of nin r loads. prevent water pon for a 10.0 psf botto ed for a live load of 1 ord and any other n truss connections. tion (by others) of tr Tie connectors rec and does not consic cordance with the 20 Pl 1.	Vasd=95mph; TCD terior(2E) -0-10-8 to to 35-3-10, Interior(plate grip DOL=1.60 U=1.15 Plate DOL= Ce=1.0; Cs=1.00; Ci opes less than 0.500 or this design. oof live load of 12.0 ding. m chord live load no 20.0psf on the botton nembers, with BCDL uss to bearing plate ommended to conne	3-4-2, Interior(1) 3 1) 35-3-10 to 42-0 1.15); Pg=15.0 psi =1.10, Lu=50-0-0 0/12 in accordance psf or 1.00 times i pnconcurrent with m chord in all area = 10.0psf. capable of withsta act truss to bearing sidential Code sec	3-4-2 to 18-8-0, Exte -12 zone;C-C for me f; Pf=16.5 psf (Lum I ; Min. flat roof snow e with IBC 1608.3.4. flat roof load of 11.6 any other live loads. as where a rectangle anding 100 lb uplift a g walls due to UPLIF ctions R502.11.1 and	rior(2R) 18-8-0 to mbers and force DOL=1.15 Plate load governs. R psf on overhang 3-6-0 tall by 2-0- t joint(s) 11. T at jt(s) 2. This 3 R802.10.2 and	<u> </u>	and a support of the	SEAL 27687	021
Design vali a truss sys building de is always re fabrication,	id for use only with MiT tem. Before use, the bu sign. Bracing indicated equired for stability and storage, delivery, erec	ek® connectors. This de uilding designer must ver d is to prevent buckling o to prevent collapse with tion and bracing of truss	S ON THIS AND INCLUDE sign is based only upon p ify the applicability of desi f individual truss web and possible personal injury a es and truss systems, see 670 Crain Highway, Suite	arameters shown, and gn parameters and pro for chord members only and property damage. ANSI/TPI1 0	is for an individual buildin operly incorporate this des y. Additional temporary a For general guidance reg Quality Criteria, DSB-89	g component, not ign into the overall nd permanent bracing arding the	I		ENGINEERING BY A MiTek 818 Soundside Road Edenton, NC 27932	:O Affiliate


	9-5-7	18-8-0		27-5-12	29-4-0	36-7-0	
Plate Offsets (X,Y) [2:0-0-0,0	9-5-7)-0-5], [8:0-4-8,0-1-11], [9:Edge,	9-2-9 0-1-12]		8-9-12	1-10-4	7-3-0	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES	TC 0.99 BC 0.76 WB 0.74	DEFL. Vert(LL) Vert(CT) Horz(CT	-0.38 2-16	>999 240 >875 180	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S				Weight: 237 lb	FT = 20%
REACTIONS. (size) 2=0- Max Horz 2=24 Max Uplift 2=-4	xcept* 9.2 or 2x4 SPF No.2 3-8, 12=(0-3-8 + H10A Simpson	T B V Strong-Tie) (req. 0-3-10), 10=N 56(LC 56)	BRACING- TOP CHORD BOT CHORD VEBS Mechanical	2-0-0 oc purlin	s (6-0-0 max.): 6-8. irectly applied or 10-0- ng: 11-12.	oplied, except end vertion 0 oc bracing, Except: 14, 7-12, 8-12, 9-11	cals, and
9-10=-46/365 BOT CHORD 2-16=-235/145 WEBS 3-16=-322/159	ax. Ten All forces 250 (lb) or 1 3-5=-1489/65, 5-6=-648/72, 6-7 31, 14-16=-125/1006, 11-12=-31 0, 5-16=-0/636, 5-14=-761/168, 7 8-11=0/371, 9-11=-430/70	=-516/90, 7-8=-1/460, 8-9=-44/4 7/53					
Interior(1) 23-10-1 to 29-4-0, for reactions shown; Lumber 3) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough Cá surcharge applied to all expos 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) This truss has been designed non-concurrent with other live 6) * This truss has been designed will fit between the bottom ch 9) Refer to girder(s) for truss to 10) Provide mechanical connect 10=256. 11) H10A Simpson Strong-Tie of for uplift only and does not of 12) One H2.5A Simpson Strong	Iph (3-second gust) Vasd=95mp d zone and C-C Exterior(2E) -0- Exterior(2R) 29-4-0 to 34-6-1, Ir DOL=1.60 plate grip DOL=1.60 of (roof LL: Lum DOL=1.15 Platt at B; Partially Exp.; Ce=1.0; Cs= sed surfaces with slopes less the been considered for this design for greater of min roof live load loads. I prevent water ponding. for a 10.0 psf bottom chord live ed for a live load of 20.0psf on the ord and any other members, wit truss connections. ion (by others) of truss to bearin connectors recommended to con- consider lateral forces.	h; TCDL=6.0psf; BCDL=6.0psf; 10-8 to 2-9-6, Interior(1) 2-9-6 to terior(1) 34-6-1 to 36-5-4 zone;(DOL=1.15); Pg=15.0 psf; Pf=1 1.00; Ct=1.10, Lu=50-0-0; Min. 1 in 0.500/12 in accordance with 1 of 12.0 psf or 1.00 times flat roc load nonconcurrent with any ott e bottom chord in all areas when b BCDL = 10.0psf. g plate capable of withstanding nect truss to bearing walls due to connect truss to bearing walls	o 18-8-0, Exterior C-C for members 6.5 psf (Lum DO flat roof snow loa IBC 1608.3.4. of load of 11.6 ps her live loads. re a rectangle 3- 100 lb uplift at jc to UPLIFT at jt(s)	r(2R) 18-8-0 to 2 and forces & M IL=1.15 Plate Id governs. Rain f on overhangs 6-0 tall by 2-0-0 pint(s) except (jt= 12. This connect	i3-10-1, WFRS wide	SEAL 27687	
Design valid for use only with MiT a truss system. Before use, the building design. Bracing indicater is always required for stability and fabrication, storage, delivery, erec	neters and READ NOTES ON THIS AND ek® connectors. This design is based or illding designer must verify the applicabi is to prevent buckling of individual truss to prevent collapse with possible perso- tion and bracing of trusses and truss sys m Truss Plate Institute, 2670 Crain High	y upon parameters shown, and is for an ty of design parameters and properly in web and/or chord members only. Additi al injury and property damage. For gene tems, see ANSI/TPI1 Quality (i individual building co corporate this design ional temporary and p eral guidance regardi	omponent, not into the overall permanent bracing ng the	nponent	A MiTek Bill Soundside Road Edenton, NC 27932	LOO Affiliate

[Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
	150 1910 C3	H6	 HIP	1	1	148264896		
	150_1910_03	по	AIP	1		Job Reference (optional)		
ı	84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MITek Industries, Inc. Thu Oct 7 16:52:34 2021 Page 2					
			ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-ySqR?RUIGn7WrELOxGe1wYc0dv3UnExsFCa6HLyVI1R					

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-S	Horz(CT)	0.04	11	n/a	n/a	Weight: 227 lb	FT = 20%
LUMBER-			BI	RACING-						
TOP CHORD	2x4 SP No.2 or	2x4 SPF No.2 *Except*	тс	OP CHORD	Structural	wood s	heathing	g directly app	lied, except end vertica	als, and
	5-7: 2x4 SP No.	.1			2-0-0 oc p	ourlins (2-2-0 ma	ax.): 5-7.		
BOT CHORD	2x4 SP No.2 or	2x4 SPF No.2	BO	OT CHORD	Rigid ceili	ng direo	ctly appli	ied or 6-0-0 d	c bracing.	
WEBS	2x4 SP No.3 *E	xcept*	W	EBS	1 Row at	midpt		3-14, 5-13	. 6-11. 7-11	

REACTIONS. 2=0-3-8, 11=(0-3-8 + H10A Simpson Strong-Tie) (reg. 0-3-10), 9=Mechanical (size) Max Horz 2=222(LC 16) Max Uplift 2=-44(LC 16), 11=-68(LC 13), 9=-243(LC 56) Max Grav 2=1065(LC 58), 11=2330(LC 3), 9=60(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1638/45, 3-5=-877/60, 5-6=-371/52, 6-7=-11/580, 8-9=-37/289

BOT CHORD 2-16=-174/1403, 14-16=-174/1403, 13-14=-32/687

8-9: 2x4 SP No.2 or 2x4 SPF No.2

WEBS 3-16=0/360, 3-14=-869/162, 5-14=-6/640, 5-13=-717/96, 6-13=-17/945, 6-11=-1415/138, 7-11=-868/75, 7-10=0/399, 8-10=-287/52

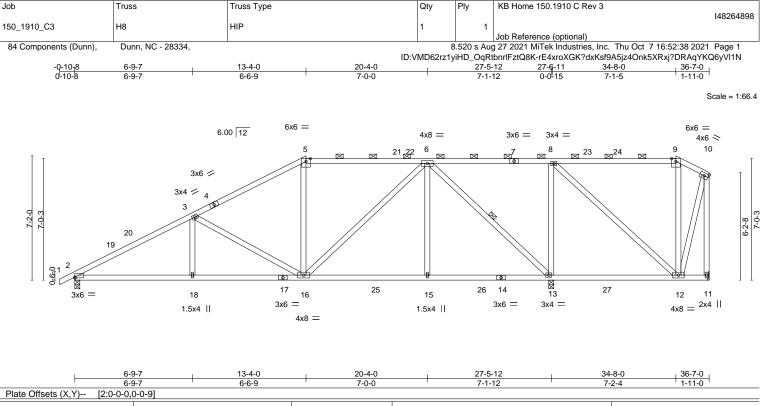
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-9-6, Interior(1) 2-9-6 to 16-0-0, Exterior(2R) 16-0-0 to 21-2-1, Interior(1) 21-2-1 to 32-0-0, Exterior(2E) 32-0-0 to 36-5-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9 = 243
- 11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 10,2021



Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3			
150 1910 C3	H7	HIP	1	1	148264897			
100_1010_00					Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:36 2021 Page 2						
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-vryBQ7V?oONE4YVn3ghV?ziM0jjyF9W9jW3DLDyVl1P						

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC 0.72	DEFL. in (loc) l/defl L/d Vert(LL) -0.10 15-16 >999 240 Vert(CT) -0.18 15-16 >999 180 Horz(CT) 0.05 13 n/a n/a	PLATES GRIP MT20 197/144 Weight: 227 lb FT = 20%
--	--	--

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 3-8-6 oc purlins,
BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2		except end verticals, and 2-0-0 oc purlins (4-9-4 max.): 5-9.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	10-11: 2x4 SP No.2 or 2x4 SPF No.2	WEBS	1 Row at midpt 6-13

REACTIONS. (size) 2=0-3-8, 13=(0-3-8 + H10A Simpson Strong-Tie) (req. 0-3-9), 11=Mechanical Max Horz 2=204(LC 16) Max Uplift 2=-41(LC 16), 13=-102(LC 13), 11=-110(LC 49)

Max Grav 2=1091(LC 58), 13=2288(LC 46), 11=63(LC 57)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1749/41, 3-5=-1161/61, 5-6=-968/81, 6-8=0/533

BOT CHORD 2-18=-166/1495, 16-18=-166/1495, 15-16=-58/636, 13-15=-58/636, 12-13=-533/12

- WEBS 3-18=0/281, 3-16=-706/138, 6-16=-73/585, 6-15=0/387, 6-13=-1539/71, 8-13=-959/142,
- 8-12=-16/730, 9-12=-333/85

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-9-6, Interior(1) 2-9-6 to 13-4-0, Exterior(2R) 13-4-0 to 18-6-1, Interior(1) 18-6-1 to 34-8-0, Exterior(2E) 34-8-0 to 36-5-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.

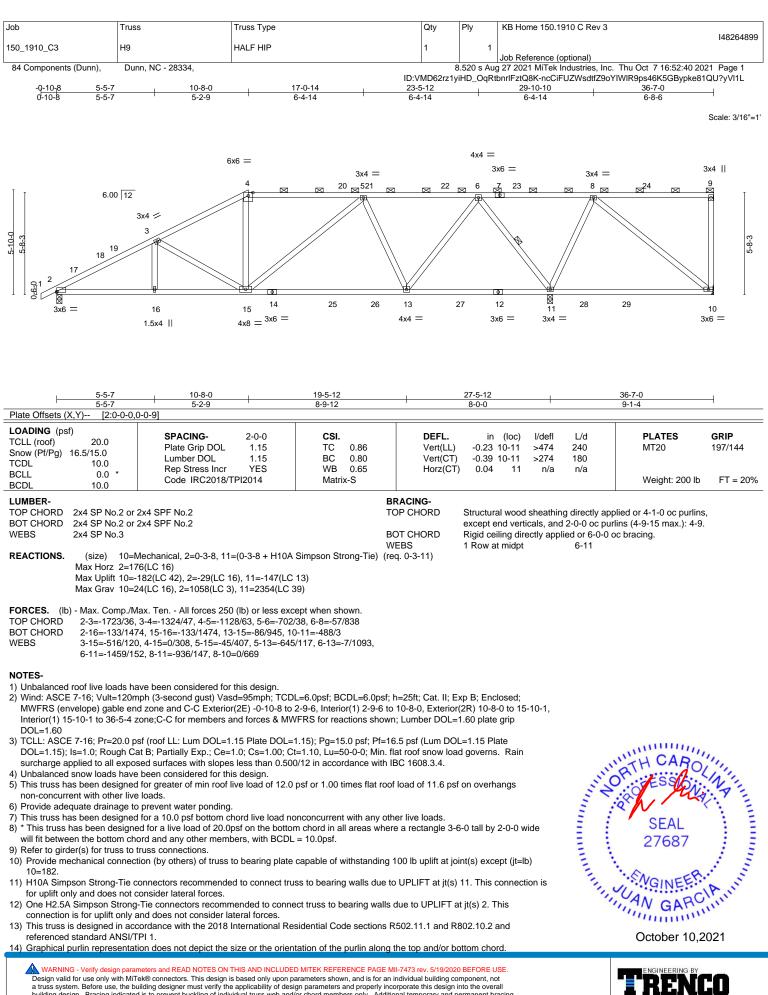
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=110.

11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuerencessian2dard ANSI/TPI 1

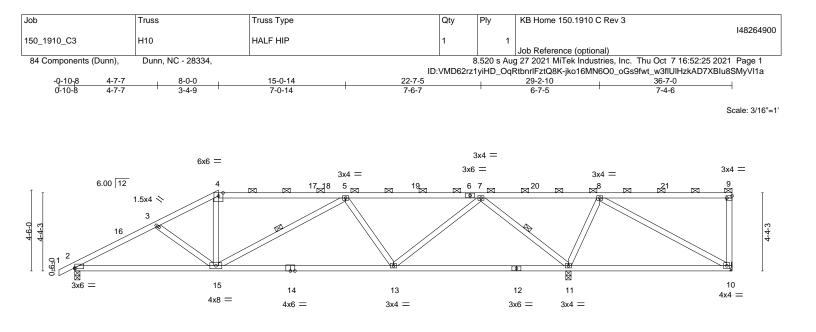
🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


October 10,2021

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
-					148264898		
150_1910_C3	H8	HIP	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:38 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-rE4xroXGK?dxKsf9A5jz4Onk5XRxj?DRAqYKQ6yV11N					

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.


12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 10.2021

8-0-0	17-8-1	14	27	7-5-12	36-7-0	1
8-0-0	9-8-1	4	9	-8-14	9-1-4	
Plate Offsets (X,Y) [2:0-0-0,0	0-0-9], [9:Edge,0-1-8]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 1.00 BC 0.86 WB 0.45 Matrix-S	DEFL. Vert(LL) Vert(CT Horz(C1	-0.17 13-15 >999 24) -0.37 13-15 >880 18		GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing directly applied or 4-2-15 oc purlins, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 4-9. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 10-11. 1 Row at midot 5-15, 7-11		
					,	

REACTIONS. (size) 10=Mechanical, 2=0-3-8, 11=0-3-8 Max Horz 2=134(LC 16) Max Uplift 10=-111(LC 38), 2=-17(LC 16), 11=-169(LC 13) Max Grav 10=11(LC 16), 2=1003(LC 2), 11=2123(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

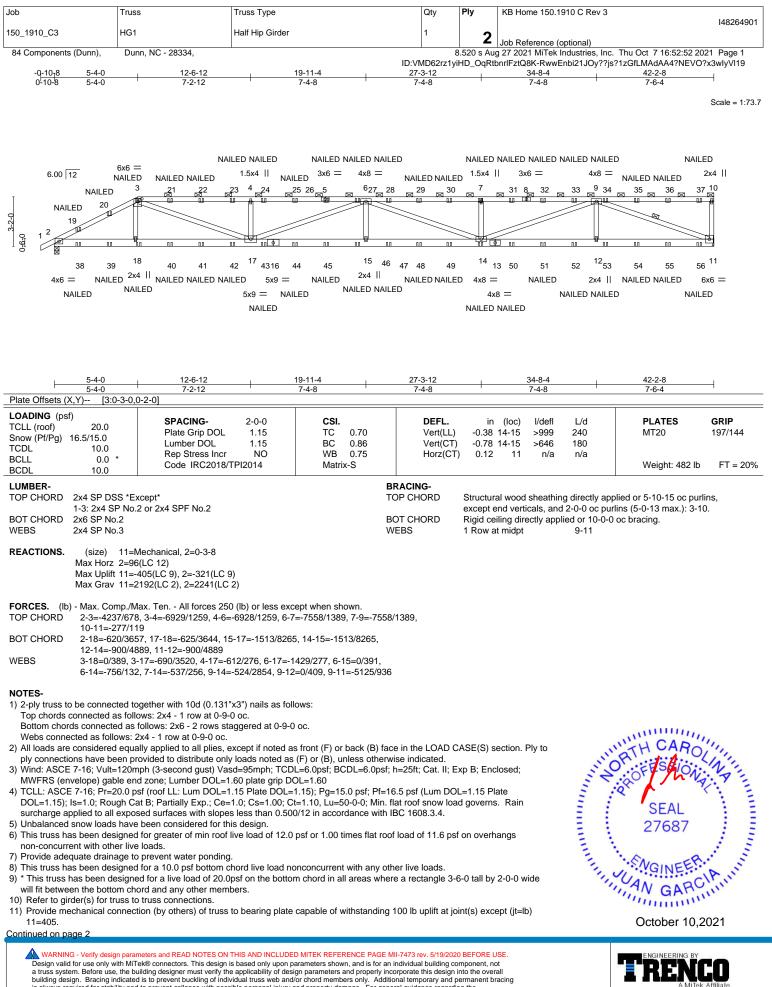
TOP CHORD 2-3=-1607/63, 3-4=-1432/57, 4-5=-1242/62, 5-7=-1056/53, 7-8=-99/981

2-15=-126/1362, 13-15=-130/1380, 11-13=-59/285, 10-11=-628/29 BOT CHORD


WEBS 4-15=0/385, 5-13=-589/140, 7-13=0/1073, 7-11=-1627/200, 8-11=-994/176, 8-10 = -34/760

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-9-6, Interior(1) 2-9-6 to 8-0-0, Exterior(2R) 8-0-0 to 13-2-1, Interior(1) 13-2-1 to 36-5-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=111.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 10,2021

besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3
					I48264901
150_1910_C3	HG1	Half Hip Girder	1	2	
				~	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,	8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 7 16:52:52 2021 Page 2			
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-RwwEnbi21JOy??js?1zGfLMAdAA4?NEVO?x3wIyVI19			

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

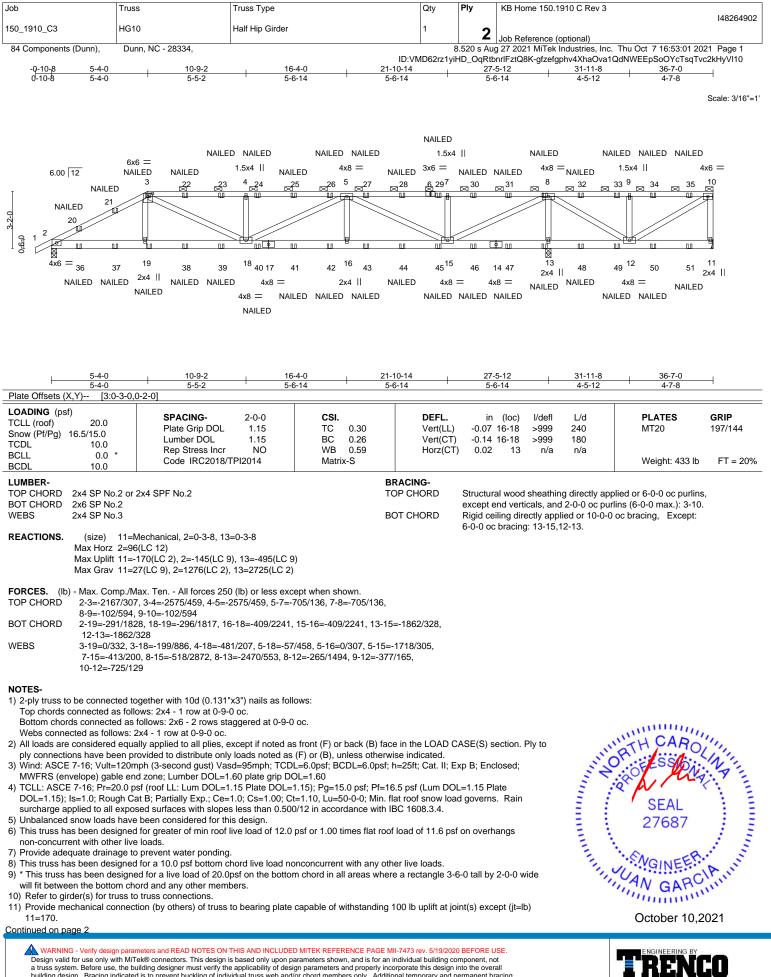
13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-43, 3-10=-53, 2-11=-20

Concentrated Loads (lb)

Vert: 5=-12(B) 18=-17(B) 3=-17(B) 7=-12(B) 14=-17(B) 19=-35(B) 20=-29(B) 21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 27=-12(B) 28=-12(B) 29=-12(B) 30=-12(B) 31=-12(B) 32=-12(B) 33=-12(B) 33=-12(B) 35=-12(B) 35=-12(B) 36=-12(B) 37=-17(B) 38=-23(B) 39=-22(B) 40=-17(B) 41=-17(B) 42=-17(B) 43=-17(B) 44=-17(B) 45=-17(B) 46=-17(B) 47=-17(B) 48=-17(B) 49=-17(B) 50=-17(B) 51=-17(B) 52=-17(B) 53=-17(B) 54=-17(B) 55=-17(B) 56=-19(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3		
					148264902		
150_1910_C3	HG10	Half Hip Girder	1	2			
				-	Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,		6	3.520 s Aug	g 27 2021 MiTek Industries, Inc. Thu Oct 7 16:53:02 2021 Page 2		
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-8rX0t0qJgNfYCYUna88c3SnzCCknLw6_hZMbGjyVl1?					

NOTES-

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.

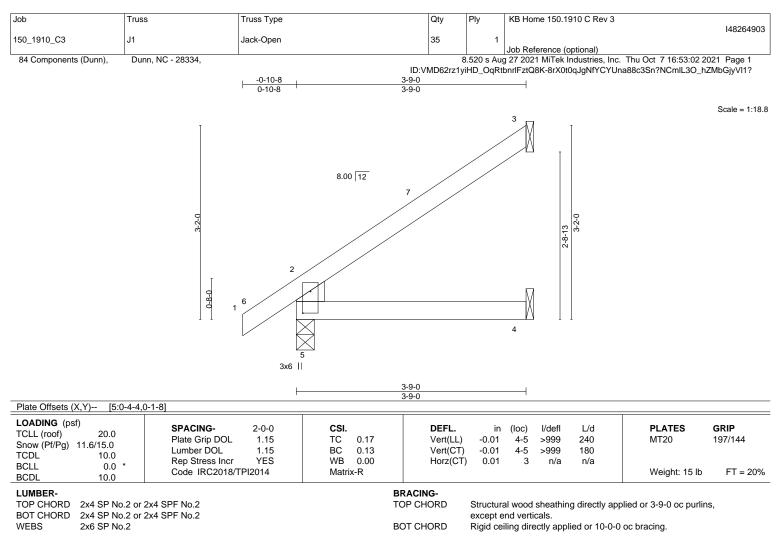
13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-43, 3-10=-53, 2-11=-20

Concentrated Loads (lb)

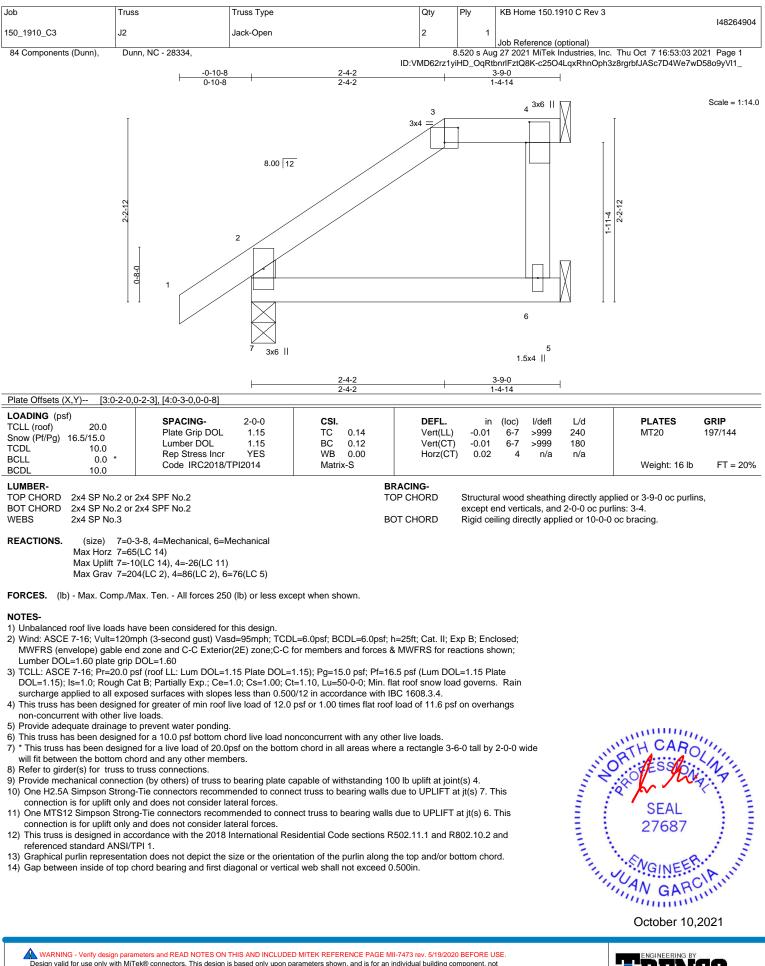
Vert: 19=-17(F) 3=-17(F) 13=-17(F) 8=-12(F) 20=-35(F) 21=-29(F) 22=-12(F) 23=-12(F) 24=-12(F) 25=-12(F) 26=-12(F) 27=-12(F) 28=-12(F) 29=-12(F) 30=-12(F) 31=-12(F) 32=-12(F) 33=-12(F) 33=-12(F) 35=-12(F) 35=-12(F) 36=-23(F) 37=-22(F) 38=-17(F) 40=-17(F) 41=-17(F) 42=-17(F) 43=-17(F) 44=-17(F) 45=-17(F) 46=-17(F) 47=-17(F) 48=-17(F) 48=-17(F) 49=-17(F) 50=-17(F) 51=-17(F) 51

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

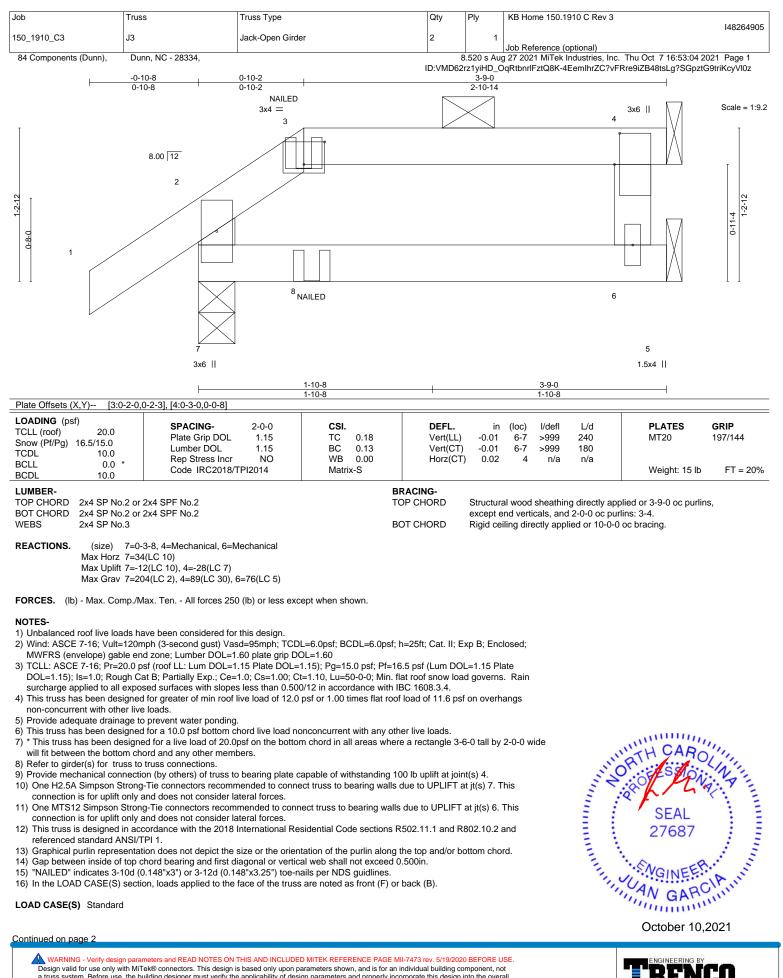
Max Horz 5=92(LC 14)

Max Uplift 3=-51(LC 14) Max Grav 5=215(LC 2), 3=94(LC 26), 4=64(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


October 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH (Duality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

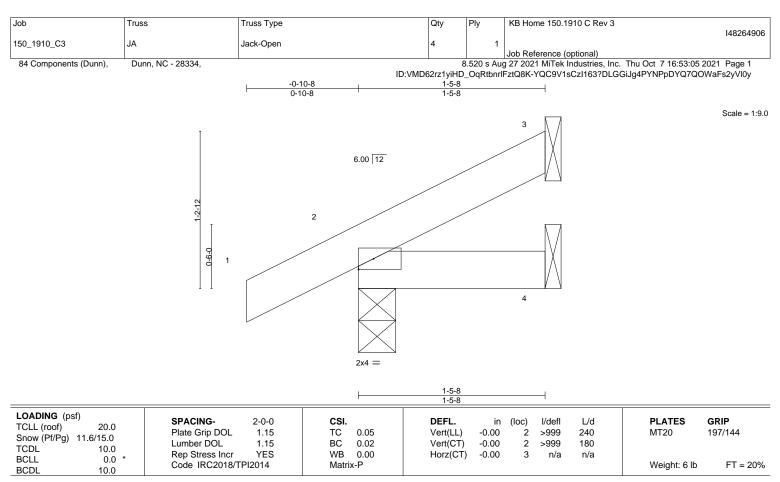
A MITEK 818 Soundside Road Edenton, NC 27932

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910 C Rev 3
					148264905
150_1910_C3	J3	Jack-Open Girder	2	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	3.520 s Aug	g 27 2021 MiTek Industries, Inc. Thu Oct 7 16:53:05 2021 Page 2


ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-YQC9V1sCzI163?DLGGiJg4PWQPnVYQ7QOWaFs2yVl0y

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-53, 5-7=-20


```
LUMBER-
```

TOP CHORD2x4 SP No.2 or 2x4 SPF No.2BOT CHORD2x4 SP No.2 or 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-5-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

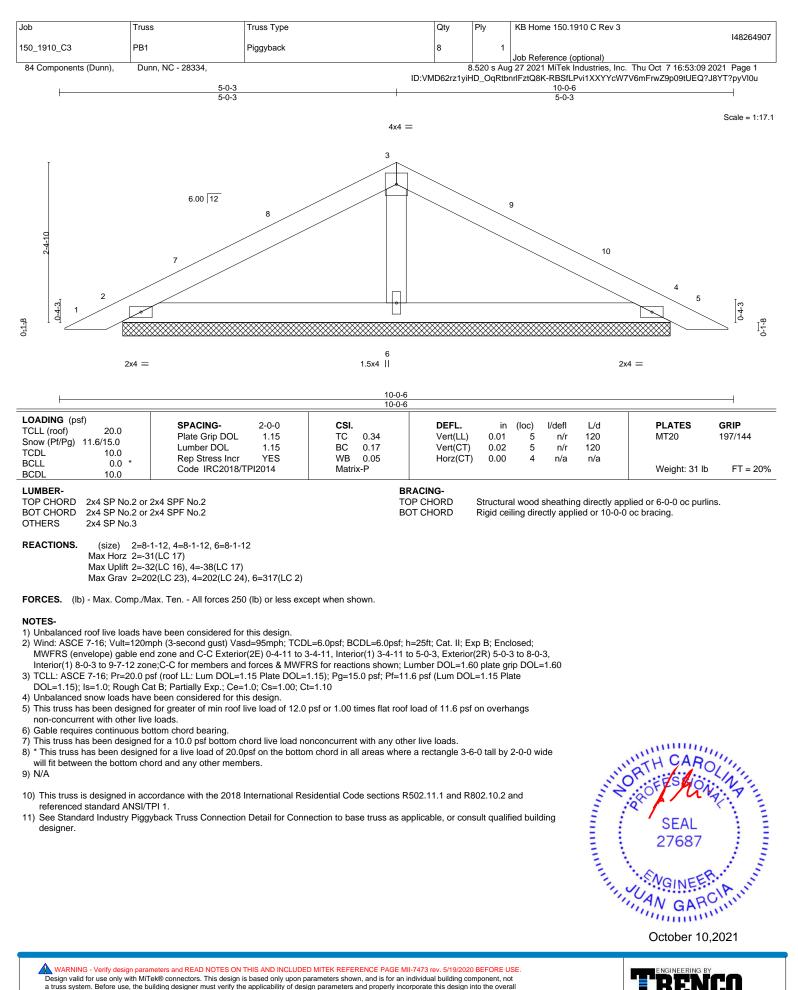
REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=35(LC 16) Max Uplift 3=-18(LC 16), 2=-14(LC 16)

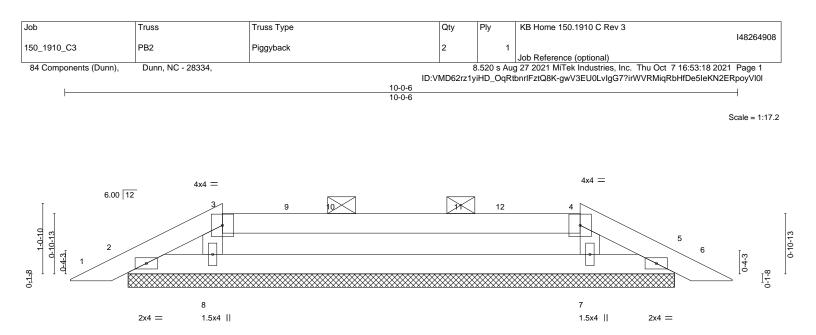
Max Grav 3=25(LC 2), 2=128(LC 2), 4=28(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
- connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 10,2021



October 10,2021

		10-0-6 10-0-6					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.75 BC 0.19 WB 0.05 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 5 0.00 5 0.00 7	l/defl L/ n/r 12 n/r 12 n/a n/	0 MT20 0	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x4 SP No.2 or 2 WEBS 2x4 SP No.3		T		except 2-0-0 oc purlins	(6-0-0 max.):	ectly applied or 10-0-0 oc pur 3-4. r 6-0-0 oc bracing.	lins,

REACTIONS. All bearings 8-1-12. (lb) - Max Horz 2=-12(LC 17)

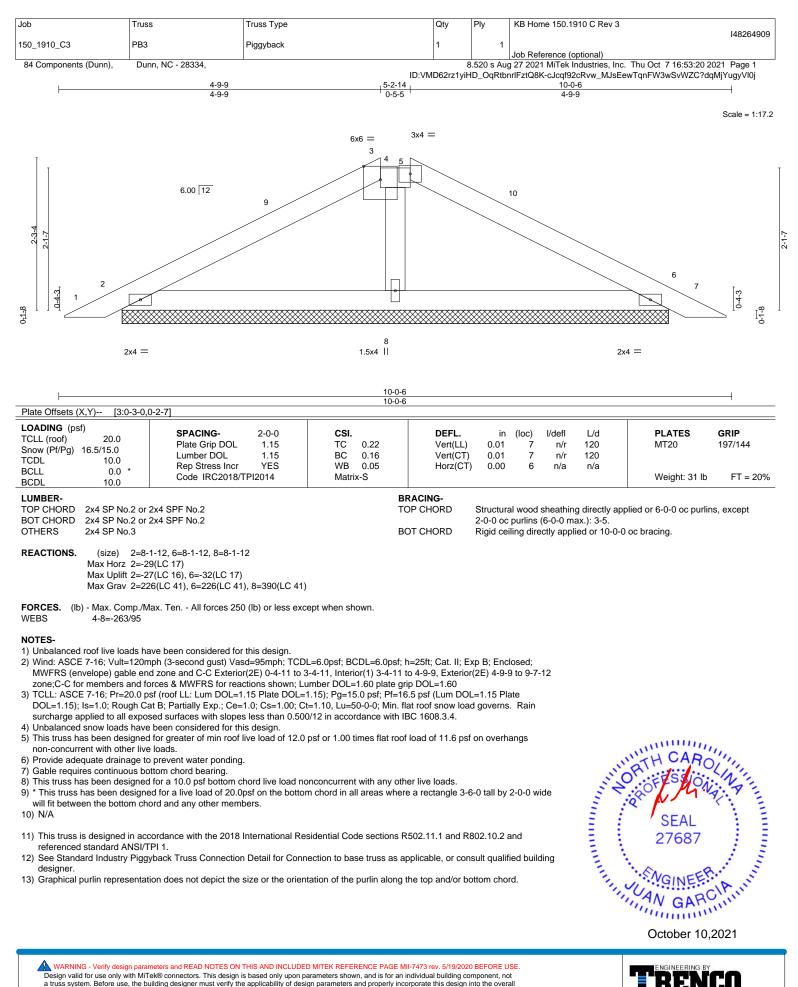
Max Uplift All uplift 100 lb or less at joint(s) 2, 5

Max Grav All reactions 250 lb or less at joint(s) 2, 5 except 8=333(LC 40), 7=333(LC 40)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

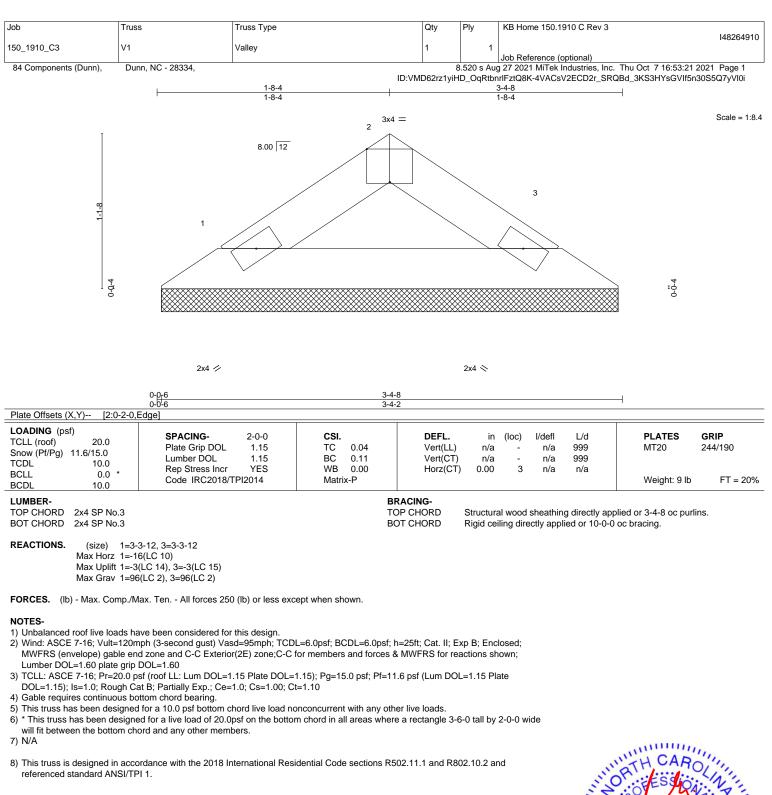
NOTES-

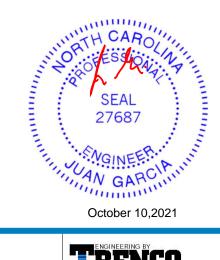
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-11 to 2-4-3, Exterior(2R) 2-4-3 to 6-7-2, Interior(1) 6-7-2 to 7-8-3, Exterior(2E) 7-8-3 to 9-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


10) N/A

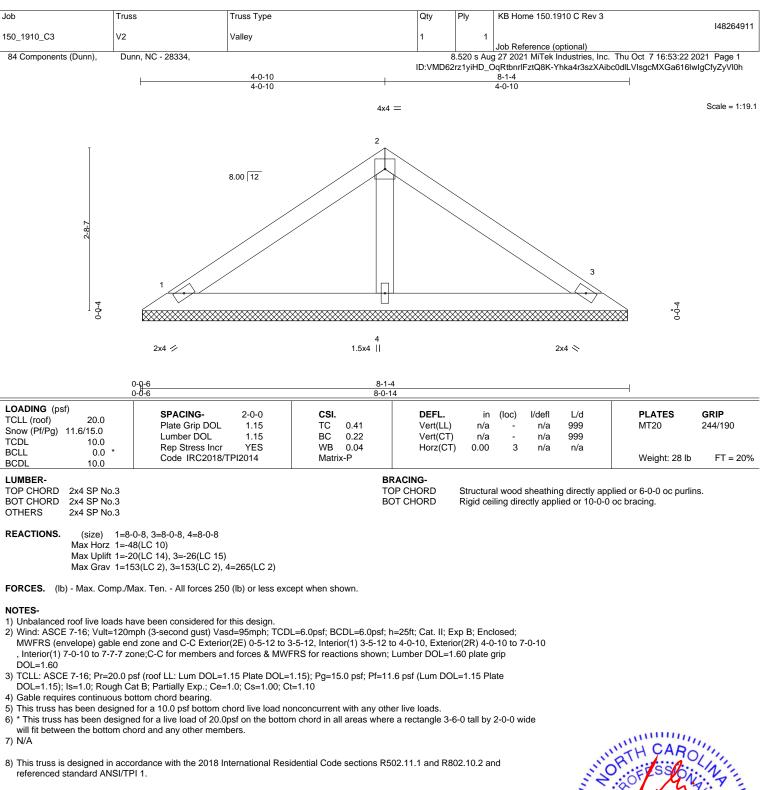
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 27687

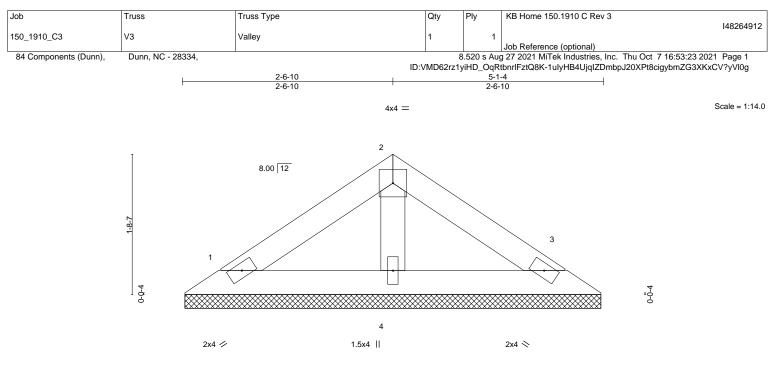

October 10,2021



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

October 10,2021


818 Soundside Road Edenton, NC 27932

October 10,2021

818 Soundside Road Edenton, NC 27932

0- <u>0-6</u> 0-0-6		<u>5-1-4</u> 5-0-14							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.13 BC 0.07 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-1-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-0-8, 3=5-0-8, 4=5-0-8 Max Horz 1=-28(LC 10) Max Uplift 1=-11(LC 14), 3=-15(LC 15) Max Grav 1=89(LC 2), 3=89(LC 2), 4=154(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown;

- Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- 3) TCLL: ASCE 7-16; Pr=20.0 pst (root LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 pst DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; C
 Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

7) N/A

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 10,2021

