

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the <u>truss delivery package or online @ sbcindustry.com</u>

		Bearing deemed requiren attachee requiren tatachee reaction Tables. retained reaction Signatu	ROC RUS Reilly R Fayet Phon Fax: reactions to compl nents. The Tables (nents) to reactions to compl fax: reactions to compl fax: to design that exce A register to design that exce re	DF 8 SES coad In teville e: (910 c (910) c (91	k FL(& FL(& B adustr , N.C.:)) 864- 864-4 b) 864-4 b) 864-4b) 86	DOF EAN ial Par 28309 -8787 444 to 3000# tive Code efer to th rescriptivi inum foo. iired to s greater 1 greater 1 greater 1 d in the a onal shal m for all onal shal m for all indry : K STU : ((b))	f are e re Coco undatio uppor re Coco undatio uppor re Coco undatio uppor li be y transformation li be y transformation li be y transformation li be
16. 14.	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise	1700 3400	5 6 7 8	2550 5100 7650 10200 12750		102(136(
4 55 6	2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise All Walls Shown Are Considered Load Bearing Hatch Legend Padded HVAC	Spring Lake / Harnett	Hayes Road	Roof	04/14/22	David Landry	Lenny Norris
	Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheets Drop Beam Connector Information Sym Product Manuf Qty Supported Header Truss	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
	HUS26 USP 12 NA 16d/3-1/2" 16d/3-1/2" Image: THDH210-3 USP 1 Varies 16d/3-1/2" 16d/3-1/2" PlotID Length Product Plies Net Qty Fab Type BM1 12'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM2 15'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12'0" 2x10 SPF No.2 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	Weaver Development Co. Inc.	Lot 5 McPhail Farm	Hickory II "C" / 2GLF, CP	N/A		J0422-1797
		BUILDER	JOB NAME	DLACEN	SEAL DATE	QUOTE #	JOB #

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

RE: J0422-1797 Lot 5 McPhail Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development Co. Inc. Lot/Block: 5	Project Name: J0422-1797 Model: Hickory II
Address: Hayes Road City: Spring Lake	Subdivision: McPhail Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

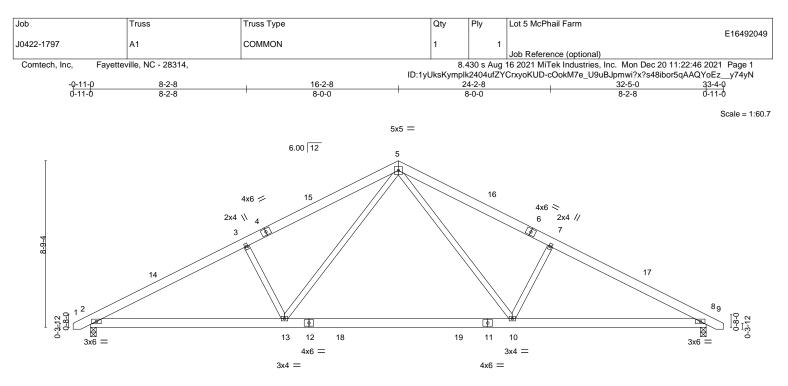
Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16492049	A1	12/20/2021	21	E16492069	M2-GR	12/20/2021
2	E16492050	A1GE	12/20/2021	22	E16492070	V1GE	12/20/2021
3	E16492051	A2	12/20/2021	23	E16492071	V2	12/20/2021
4	E16492052	A3	12/20/2021	24	E16492072	V3	12/20/2021
5	E16492053	A4	12/20/2021	25	E16492073	V4	12/20/2021
6	E16492054	A5	12/20/2021	26	E16492074	V5	12/20/2021
7	E16492055	A5GE	12/20/2021	27	E16492075	V6	12/20/2021
8	E16492056	B1	12/20/2021	28	E16492076	V7	12/20/2021
9	E16492057	B1-GR	12/20/2021				
10	E16492058	B1GE	12/20/2021				
11	E16492059	B2	12/20/2021				
12	E16492060	B2GE	12/20/2021				
13	E16492061	C1	12/20/2021				
14	E16492062	C1GE	12/20/2021				
15	E16492063	D1-GR	12/20/2021				
16	E16492064	D1GE	12/20/2021				
17	E16492065	G1-GR	12/20/2021				
18	E16492066	M1	12/20/2021				
19	E16492067	M1GE	12/20/2021				
20	E16492068	M2	12/20/2021				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8 10-2-8	22-2-8 12-0-0		+	32-5-0 10-2-8	—
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEFL. TC 0.28 Vert(L BC 0.64 Vert(C WB 0.27 Horz(C Matrix-S Wind(I	.) -0.34 10-13 : T) -0.47 10-13 : T) 0.05 8	l/defl L/d >999 360 >824 240 n/a n/a >999 240	PLATES MT20 Weight: 208 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007. 10-13=-106/1303. 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

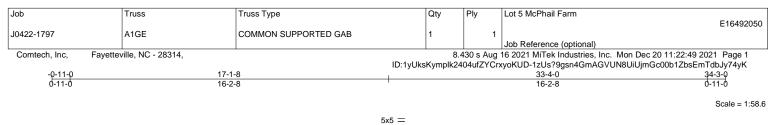
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

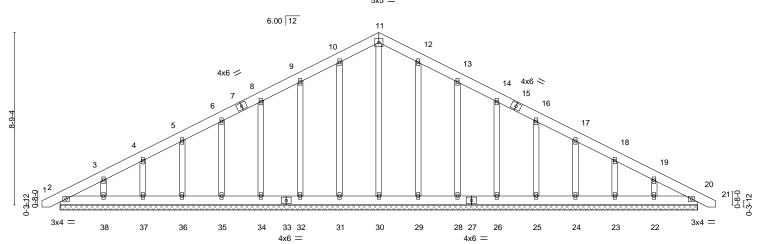
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.




Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

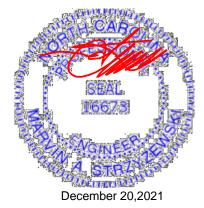
	<u>11-0</u> 11-0					33-4-0 32-5-0						34-3-0 0-11-0
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	0.00	20	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	20	n/r	120		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.00	20	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 258 lb	FT = 20%

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 32-5-0.

Max Horz 2=-171(LC 17) (lb) -

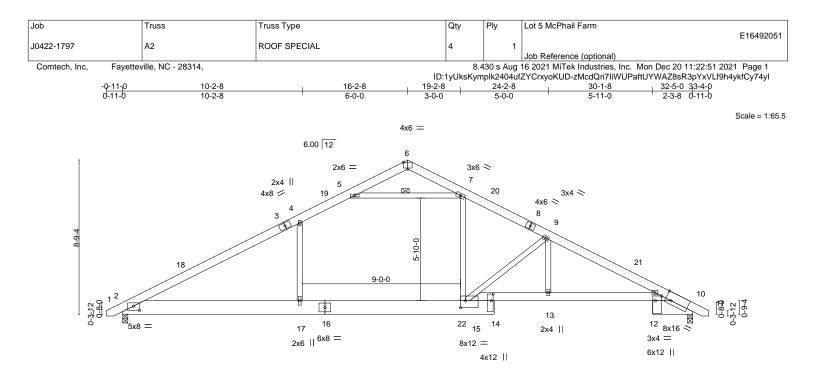

Max Uplift All uplift 100 lb or less at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22 Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-114/284, 11-12=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-2-8	16-2-8	19-2-8	21-1-8	3 24	1-2-8	30-1-		1
	10-2-8	6-0-0	3-0-0	1-11-0) 3	-1-0	5-11-	0 2-3-8	1
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-3-4,Edge]	, [14:0-4-8,0-1-4],	[15:0-3-	8,0-4-1	2]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.38 0.09 0.17	(loc) 17 17 10 2-17	>999 >999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 10-15	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHOF BOT CHOF WEBS	D D	Rigid c		•	ectly applied or 4-0-8 o r 10-0-0 oc bracing. 7	oc purlins.
Max I Max I	ze) 2=0-3-8, 10=0-3-8 Horz 2=110(LC 11) Jplift 2=-90(LC 12), 10=-90(LC 13) Grav 2=1393(LC 2), 10=1353(LC 2)								
TOP CHORD 2-4= BOT CHORD 2-17	. Comp./Max. Ten All forces 250 (lb) or -2217/403, 4-5=-1870/483, 7-9=-2258/5 '=-193/1848, 15-17=-195/1860, 13-15=-3 '=-29/402, 7-15=-114/967, 9-15=-1075/2	19, 9-10=-2889/551 71/2525, 10-13=-380/252	5						

NOTES-

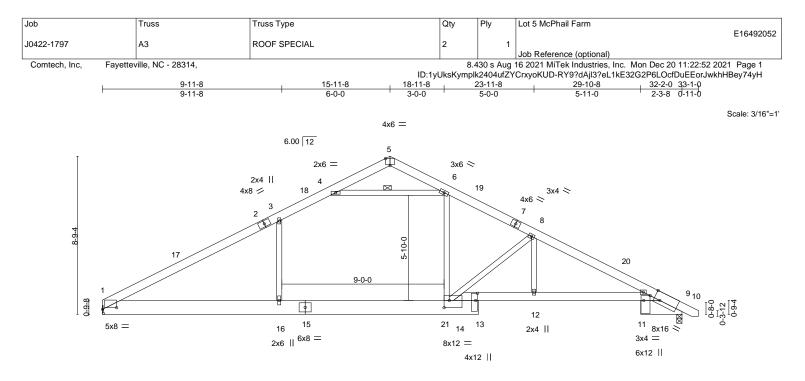
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

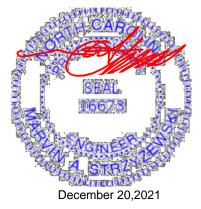
TRENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	9-11-8	18-11-8	20-10-8	23-11-8	29-10-8	32-2-0	
I	9-11-8	9-0-0	1-11-0	3-1-0	5-11-0	2-3-8	
Plate Offsets (X,Y)	[1:0-9-6,0-1-2], [5:0-3-0,Edge], [9:0-4-0,	Edge], [11:0-3-4,Edge], [1	3:0-4-12,0-1-4], [14:0-3-8	3,0-4-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.76 BC 0.66 WB 0.70 Matrix-S	Vert(LL) -0.21 Vert(CT) -0.36 Horz(CT) 0.09	(loc) l/defl 16 >999 16 >999 9 n/a 1-16 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 s 9-14: 9 WEBS 2x4 S	P No.1 SP No.1 *Except* 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		ectly applied or 1	tly applied or 3-10-0 10-0-0 oc bracing.	oc purlins.
Max I Max I	ze) 1=Mechanical, 9=0-3-8 Horz 1=-111(LC 8) Uplift 1=-76(LC 12), 9=-90(LC 13) Grav 1=1345(LC 2), 9=1347(LC 2)						
TOP CHORD 1-3= BOT CHORD 1-16	Comp./Max. Ten All forces 250 (lb) or 2189/401, 3-4=-1853/491, 6-8=-2237/51 3=-198/1827, 14-16=-200/1839, 12-14=-3 I=-117/966, 3-16=-53/392, 4-6=-1931/474	7, 8-9=-2874/549 75/2511, 9-12=-384/2511					
NOTES-							

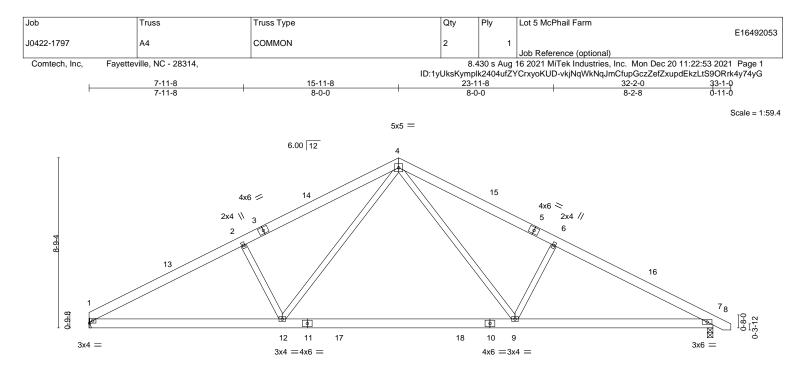
1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	H	9-11-8		+		21-11-8			1		32-2-0	
		9-11-8				12-0-0					10-2-8	
Plate Offsets	(X,Y)	[1:0-1-14,0-1-8]										
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.34	9-12	>999	360	MT20	244/190
TCDL 10	.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.47	9-12	>822	240		
BCLL 0	.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL 10	.0	Code IRC2015/TF	912014	Matri	x-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

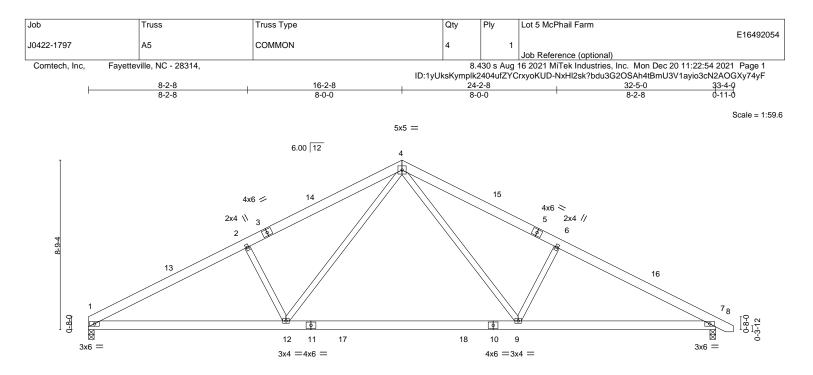
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	<u>10-2-8</u> 10-2-8				22-2-8 12-0-0					32-5-0 10-2-8	
LOADING (psf)	f) SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	0 Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.34	9-12	>999	360	MT20	244/190
TCDL 10.0	0 Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.47	9-12	>822	240		
BCLL 0.0	0 * Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL 10.0	0 Code IRC2015/TF	912014	Matri	-S	Wind(LL)	0.05	12	>999	240	Weight: 206 lb	FT = 20%

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13)

Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012 9-12=-111/1304 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

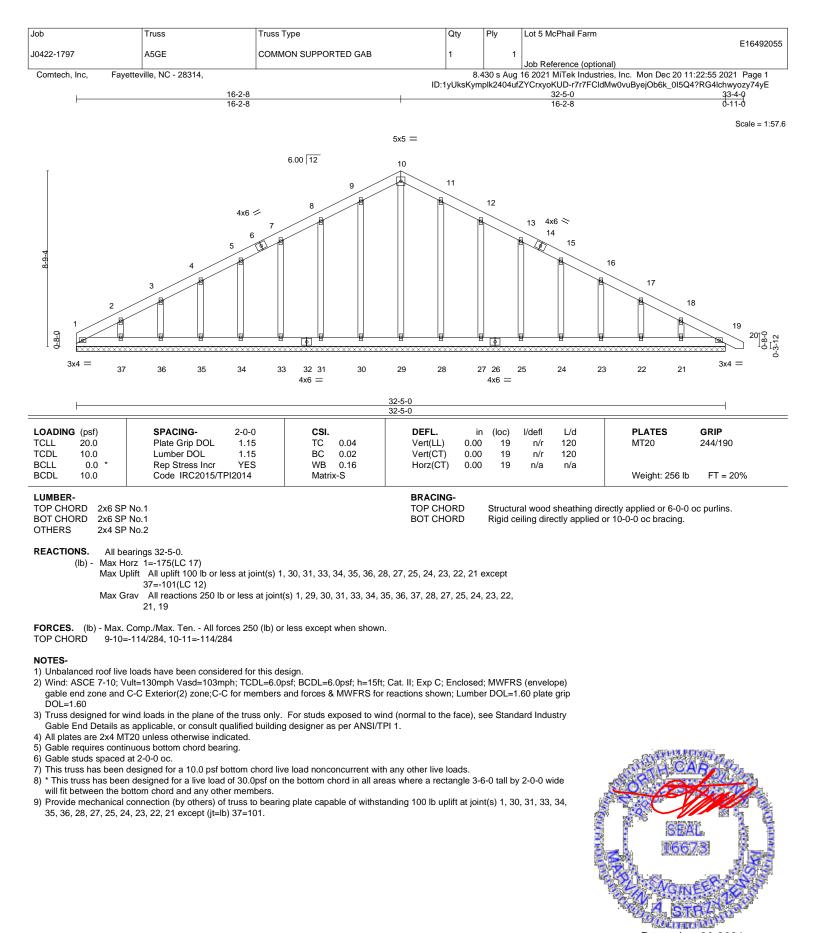
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

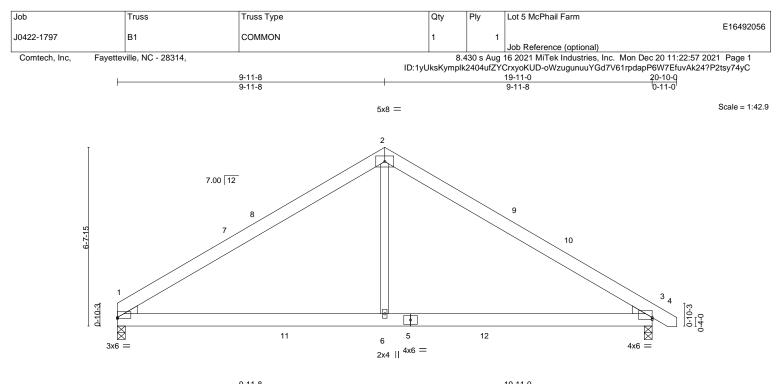
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 December 20,2021

		9-11-8						9-11-8			
Plate Offsets (X,Y)	[1:0-0-0,0-0-7], [3:0-0-0,0							9-11-0			
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.06	3-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.13	3-6	>999	240		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.02	3	n/a	n/a		
3CDL 10.0	Code IRC2015/TI	PI2014	Matri	x-S	Wind(LL)	0.04	3-6	>999	240	Weight: 114 lb	FT = 20%

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=-149(LC 8) Max Uplift 1=-43(LC 12), 3=-56(LC 13) Max Grav 1=900(LC 19), 3=951(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1193/217, 2-3=-1221/216

BOT CHORD 1-6=-30/956, 3-6=-30/956

WEBS 2-6=0/660

NOTES-

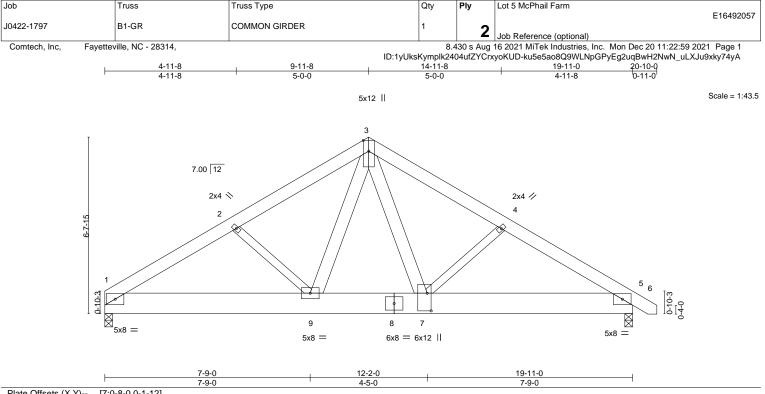
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 5-11-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -	-0.07	` <i>7</i>	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -	-0.14	7	>999	240		
3CLL 0.0 *	Rep Stress Incr NO	WB 0.55	Horz(CT)	0.03	5	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.05	7	>999	240	Weight: 348 lb	FT = 20%

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x10 SP 2400F 2 0F 2x6 SP No.1 *Except* WFBS 4-7,2-9: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=-148(LC 4) Max Uplift 1=-423(LC 8), 5=-642(LC 9) Max Grav 1=4234(LC 2), 5=6219(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-7519/795, 2-3=-7422/798, 3-4=-10665/1144, 4-5=-10716/1136

BOT CHORD 1-9=-679/6256, 7-9=-581/6251, 5-7=-887/8935

WEBS 3-7=-953/8888, 4-7=-281/487, 3-9=-44/404, 2-9=-284/309

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 4 rows staggered at 0-2-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

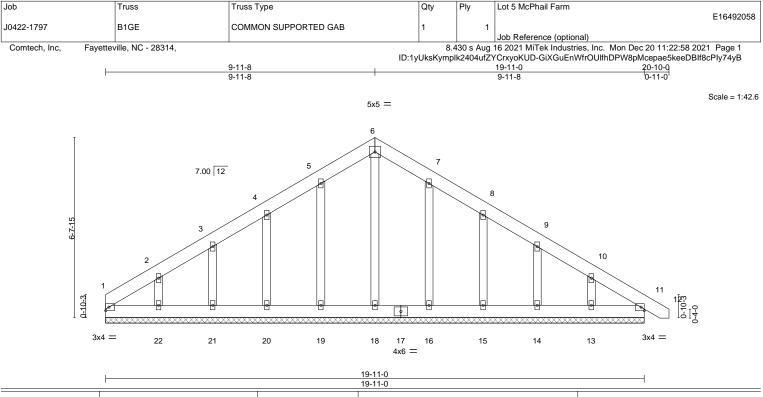
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=423, 5=642.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9034 lb down and 972 lb up at 12-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20 Concentrated Loads (lb) Vert: 7=-7520(B)

CITER OF A December 20,2021


Structural wood sheathing directly applied or 4-11-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) 0.00	11	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	11	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT) 0.00	11	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	· · /				Weight: 146 lb	FT = 20%

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 1=-186(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12),

13=-103(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11

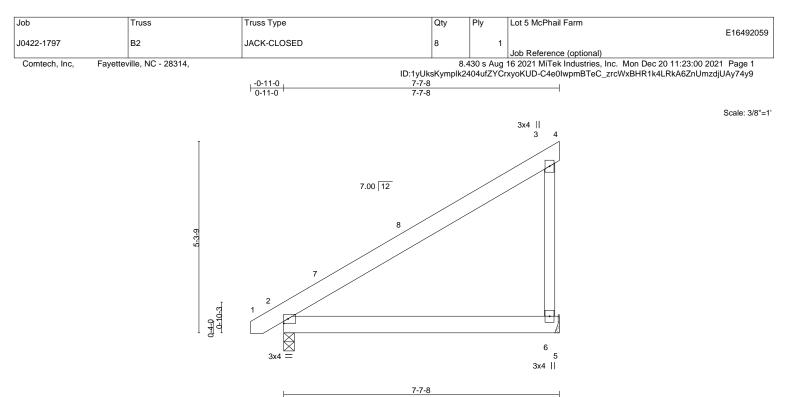
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	•	7-7-8			•	
SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
Plate Grip DOL 1.15	TC 0.33	Vert(LL) -0.04	2-6	>999	360	MT20 244/190
Lumber DOL 1.15	BC 0.21	Vert(CT) -0.07	2-6	>999	240	
Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00		n/a	n/a	
Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00	2	****	240	Weight: 48 lb FT = 20%
	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	Plate Grip DOL 1.15 TC 0.33 Lumber DOL 1.15 BC 0.21 Rep Stress Incr YES WB 0.00	SPACING- 2-0-0 CSI. DEFL. in Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00	SPACING- 2-0-0 CSI. DEFL. in (loc) Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 >999 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 >999 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 >999 360 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 >999 240 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12)

Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

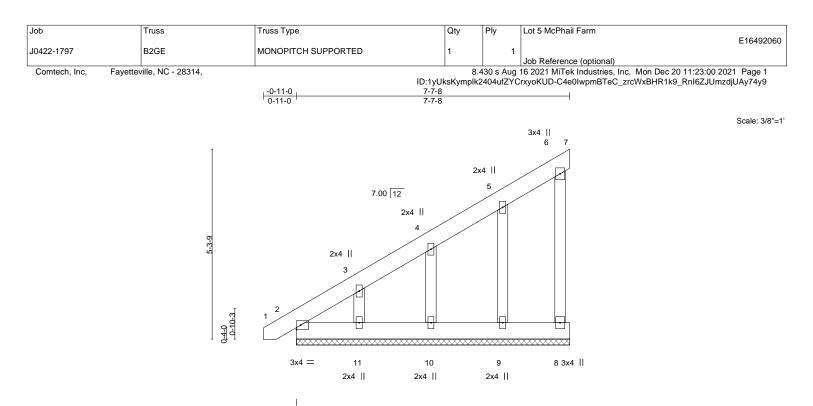
1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00	1 n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00	1 n/r	120	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) -0.00	7 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	()			Weight: 57 lb FT = 20%

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-7-8.

(lb) -Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-269/227

NOTES-

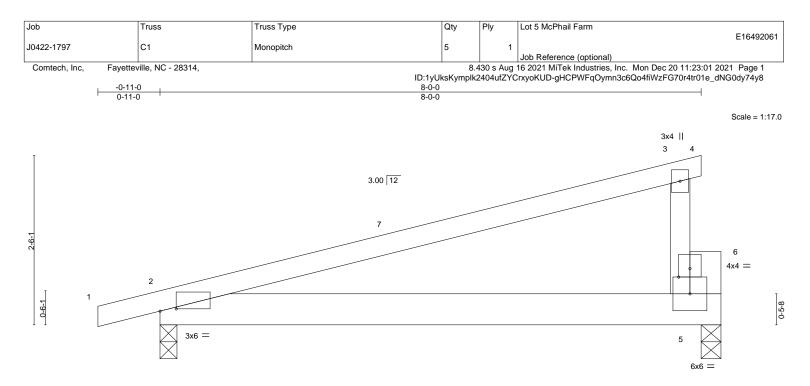
- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (jt=lb) 11=117.

December 20.2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-0,0	<u>)-1-8]</u>									
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.05	2-5	>999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.10	2-5	>969	240		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code IRC2015/TP	12014	Matrix	-P	Wind(LL)	0.10	2-5	>886	240	Weight: 37 lb	FT = 20%
UMBER-		1		L	BRACING-						
OP CHORD 2x4 SF	9 No.1				TOP CHOP	RD	Structu	ral wood	sheathing dire	ectly applied or 5-3-4	oc purlins,
BOT CHORD 2x6 SF	9 No.1						except	end verti	cals.	, ,,	• •
NEBS 2x4 SF	9 No.2				BOT CHOF	RD	Rigid c	eiling dire	ectly applied o	r 10-0-0 oc bracing.	
OTHERS 2x6 SF	9 No.1						U	0	, ,,	Ŭ	

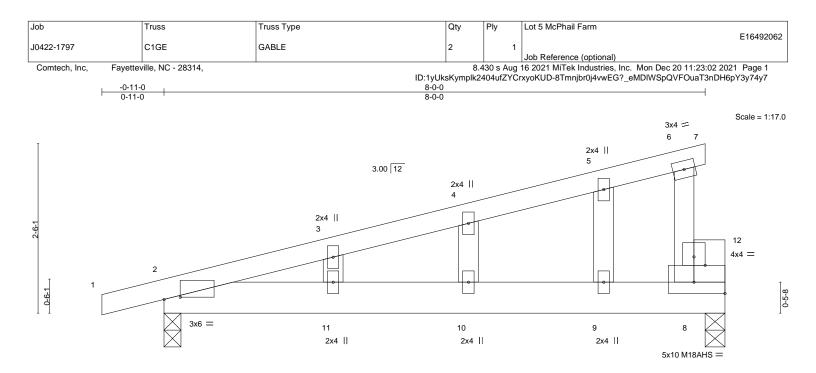
Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

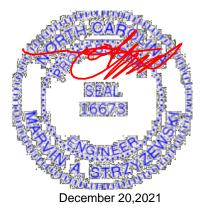
3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

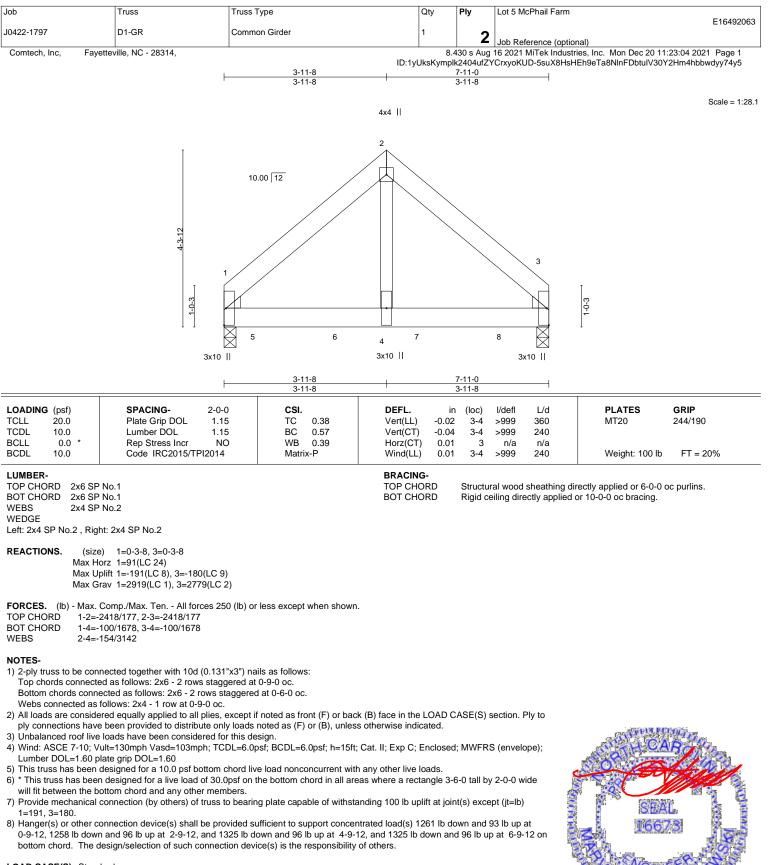
			<u>8-3-8</u> 8-3-8		
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [8:Edge,0-2-0], [12:0-2	2-0,0-1-8]	8-3-6		
LOADING (psf) FCLL 20.0 FCDL 10.0 3CLL 0.0 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.0	in (loc) I/defl L/d 9 10-11 >999 240 8 10-11 >999 240 0 8 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 41 lb FT = 20%
	P No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.
	e) 2=0-3-0, 8=0-3-8 łorz 2=105(LC 8) Jplift 2=-216(LC 8), 8=-188(LC 8)				


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

Max Grav 2=375(LC 1), 8=314(LC 1)

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

TRENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

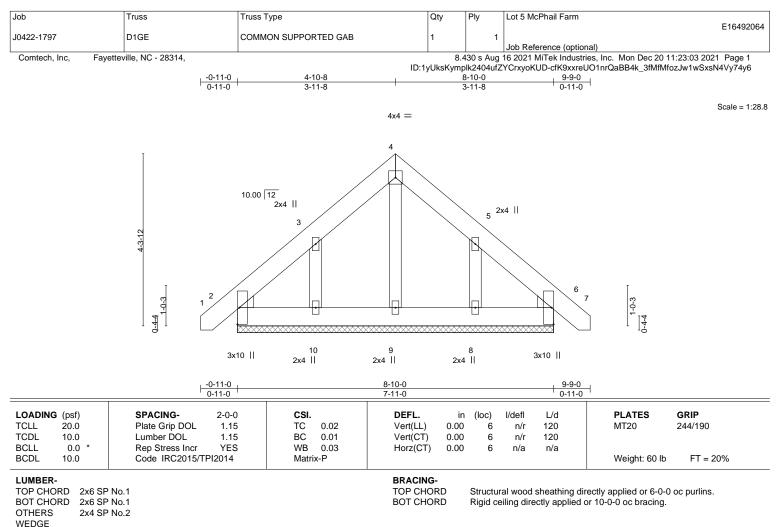
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 1-3=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A CONTRACTOR OF December 20,2021


ob	Truss	Truss Type	Qty	Ply	Lot 5 McPhail Farm
					E16492063
0422-1797	D1-GR	Common Girder	1	2	
				2	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 2
		ID:1yl	UksKympll	<2404ufZY	CrxyoKUD-5suX8HsHEh9eTa8NInFDbtuIV30Y2Hm4hbbwdyy74y5

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

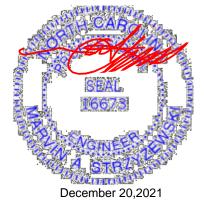
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

(lb) - Max Horz 2=-118(LC 10)

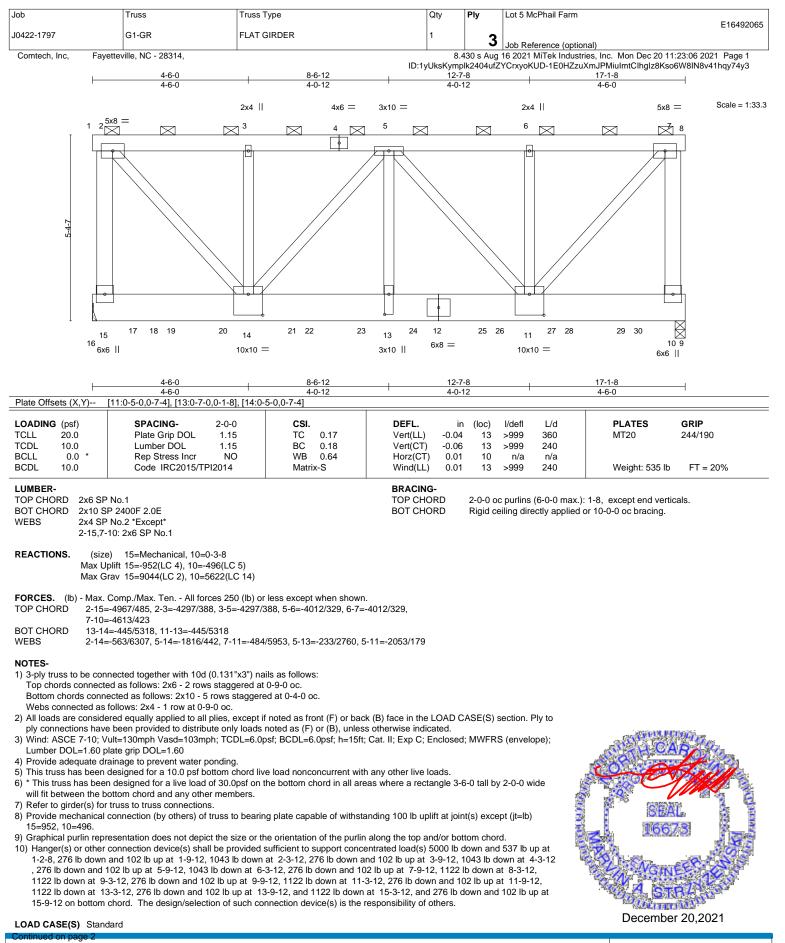
Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.


- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152, 8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

BIB Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPT/I Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

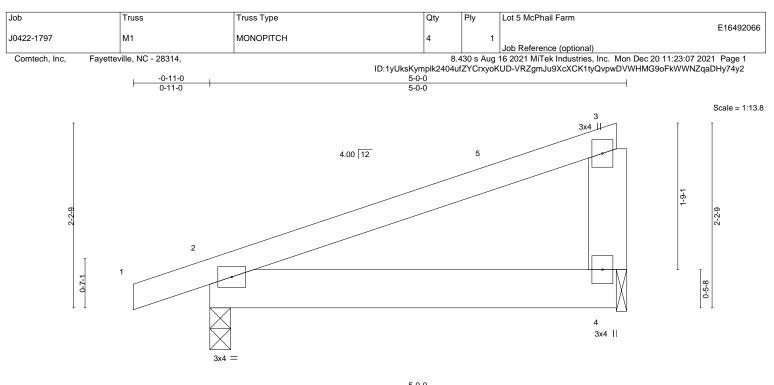
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. b19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss Type	Qty P	Ply	Lot 5 McPhail Farm	
			E1	6492065
FLAT GIRDER	1	2		
		3	Job Reference (optional)	
4,	8.430	0 s Aug '	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:06 2021 Pa	age 2
1		FLAT GIRDER 1	FLAT GIRDER 1 3	FLAT GIRDER 1 3 Job Reference (optional)

ID:1yUksKymplk2404ufZYCrxyoKUD-1E0HZzuXmJPMiuImtClhgIz8Kso6W8IN8v41hqy74y3

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20 Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 26=-276(F) 24=-291(B) 25=-291(B) 25=-27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

T	F	1			5-0-0						
LOADING (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014	Matrix	κ-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD WEBS

2x6 SP No.1

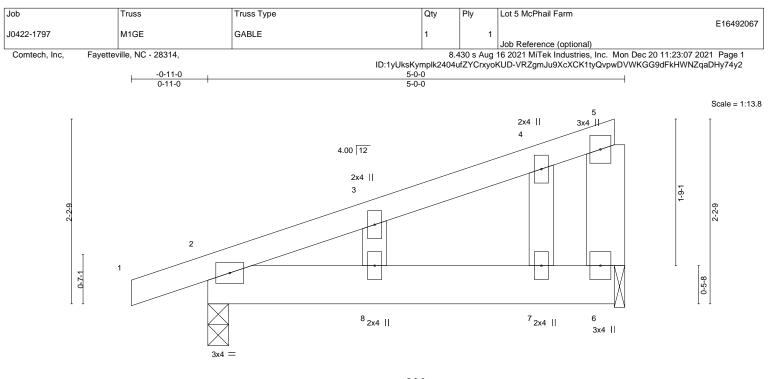
REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=63(LC 8)

Max Uplift 2=-102(LC 8), 4=-79(LC 8) Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1		5-0-0					
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) 0.01	8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) -0.01	8	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT) -0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 27 lb	FT = 20%

BOT CHORD

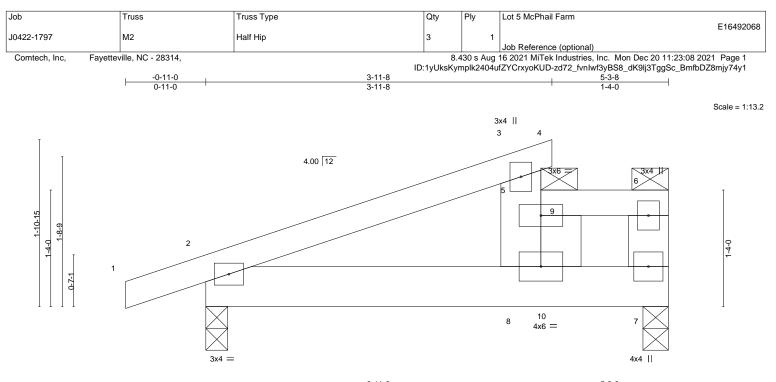
TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			11-8 11-8				<u>5-3-8</u> 1-4-0	1
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.00	8	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.01	8	>999	240		
3CLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) -0.00	7	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-R	Wind(LL) 0.02	8	>999	240	Weight: 28 lb	FT = 20%

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x6 SP No.1

REACTIONS. (size) 7=0-3-8, 2=0-3-0

Max Horz 2=69(LC 12) Max Uplift 7=-173(LC 8), 2=-138(LC 8)

Max Grav 7=561(LC 19), 2=349(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-425/505, 5-8=-279/265, 5-6=-233/338, 6-7=-292/309

BOT CHORD 2-8=-546/359, 7-8=-338/233

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-7-4, Interior(1) 3-7-4 to 5-0-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=173, 2=138.
- 7) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-9=-40, 6-9=-80, 2-7=-20 Concentrated Loads (lb)
 - Vert: 9=-400

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-50, 3-4=-50, 5-9=-100, 6-9=-130, 2-7=-20

Structural wood sheathing directly applied or 5-3-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-8, 5-6. Except:

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-0-0 oc bracing: 3-5

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 McPhail Farm		
			-			E	16492068
J0422-1797	M2	Half Hip	3	1	Job Reference (optional)		
Comtech, Inc, Fayette	eville, NC - 28314,		ID:1vUk			c. Mon Dec 20 11:23:08 2021 F /BS8_dK9lj3TggSc_BmfbDZ8mj	
	-J		1211901	 		200_arto,jo : 9900_2rm2220mj	,, .
LOAD CASE(S) Standar Concentrated Loads (Ib							
Vert: 9=-350	Attic Without Storage: Lumbor	Increase=1.25, Plate Increase=1.25					
Uniform Loads (plf)	Allic Williout Storage. Lumber	Increase=1.25, Flate Increase=1.25					
Vert: 1-3=-20, Concentrated Loads (lb	3-4=-20, 5-6=-40, 2-7=-40						
Vert: 9=-300)						
 Dead + 0.6 C-C Wind (Uniform Loads (plf) 	Pos. Internal) Case 1: Lumbe	Increase=1.60, Plate Increase=1.60					
	2-3=58, 3-4=153, 5-6=12, 2-8=	52, 8-10=115, 7-10=52					
	2-3=-70, 3-4=-165, 3-5=-55						
Concentrated Loads (lb Vert: 9=548))						
	Pos. Internal) Case 2: Lumbe	Increase=1.60, Plate Increase=1.60					
Uniform Loads (plf) Vert: 1-2=51, 2	2-3=58, 3-4=51, 5-6=42, 2-8=	52, 8-10=115, 7-10=52					
Horz: 1-2=-63,	2-3=-70, 3-4=-63, 3-5=-55						
Concentrated Loads (lb Vert: 9=566))						
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumbe	r Increase=1.60, Plate Increase=1.60					
Uniform Loads (plf) Vert: 1-2=-1 2	-3=-45, 3-4=17, 5-6=-58, 2-8=	-9 8-10=2 7-10=-9					
Horz: 1-2=-19,	2-3=25, 3-4=-37, 3-5=51	0,010-2,110-0					
Concentrated Loads (lb Vert: 9=-420))						
	Neg. Internal) Case 2: Lumbe	r Increase=1.60, Plate Increase=1.60					
Uniform Loads (plf)	2-3=-45, 3-4=-39, 5-6=-58, 2-	89 8-10-2 7-109					
	2-3=25, 3-4=19, 3-5=51	59, 0-10-2, 7-109					
Concentrated Loads (lb))						
Vert: 9=-420 8) Dead + 0.6 MWFRS W	ind (Pos. Internal) Left: Lumb	er Increase=1.60, Plate Increase=1.60					
Uniform Loads (plf)							
	2-3=21, 3-4=14, 5-6=-11, 2-8= 2-3=-33, 3-4=-26, 3-5=7	10, 8-10=33, 7-10=10					
Concentrated Loads (Ib							
Vert: 9=154 9) Dead + 0.6 MWFRS W	ind (Pos. Internal) Right: Lum	ber Increase=1.60, Plate Increase=1.60)				
Uniform Loads (plf)	· · · ·						
	3=12, 3-4=28, 5-6=1, 2-7=-12 2-3=-24, 3-4=-40, 3-5=-27						
Concentrated Loads (Ib							
Vert: 9=43	Wind (Neg. Internal) Left: Lum	ber Increase=1.60, Plate Increase=1.60	1				
Uniform Loads (plf)	wind (Neg. Internal) Lett. Luth		,				
,	2-3=-1, 3-4=6, 5-6=-33, 2-8=2 6, 2-3=-19, 3-4=-26, 3-5=34	8-10=25, 7-10=2					
Concentrated Loads (
Vert: 9=-339	Nind (Neg. Internal) Right: Lui	nber Increase=1.60, Plate Increase=1.	80				
Uniform Loads (plf)	wind (Neg. Internal) Right. Edi		00				
	2-3=-9, 3-4=-2, 5-6=-21, 2-7= 8, 2-3=-11, 3-4=-18, 3-5=-0	-20					
Concentrated Loads (
Vert: 9=-234	Mind (Dec. Internal) 1at Darall	al Lumber Increase 4.00 Dista Increa					
Uniform Loads (plf)	wind (Pos. Internal) 1st Parali	el: Lumber Increase=1.60, Plate Increa	se=1.60				
	2-3=21, 3-4=14, 5-6=-11, 2-7	=-12					
Concentrated Loads (6, 2-3=-33, 3-4=-26, 3-5=-39 lb)						
Vert: 9=43	Nin d. (De e. la tenne d). On d. De nel		4.00				
13) Dead + 0.6 MWFRS V Uniform Loads (plf)	Wind (Pos. Internal) 2nd Paral	lel: Lumber Increase=1.60, Plate Increa	ase=1.60				
Vert: 1-2=2, 2	2-3=9, 3-4=2, 5-6=1, 2-7=-12						
Horz: 1-2=-14 Concentrated Loads (4, 2-3=-21, 3-4=-14, 3-5=-27 lb)						
Vert: 9=43							
14) Dead + 0.6 MWFRS V Uniform Loads (plf)	Wind (Pos. Internal) 3rd Parall	el: Lumber Increase=1.60, Plate Increa	se=1.60				
Vert: 1-2=14,	2-3=21, 3-4=14, 5-6=-11, 2-7	=-12					
Horz: 1-2=-26 Concentrated Loads (6, 2-3=-33, 3-4=-26, 3-5=-39						
Vert: 9=43							
15) Dead + 0.6 MWFRS V	Wind (Pos. Internal) 4th Parall	el: Lumber Increase=1.60, Plate Increa	se=1.60				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 McPhail Farm
					E16492068
J0422-1797	M2	Half Hip	3	1	
					Job Reference (optional)

Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3 Comtech, Inc, ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1 LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0

Concentrated Loads (lb)

Vert: 9=-375

21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9

Concentrated Loads (lb)

Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2--40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375

23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20

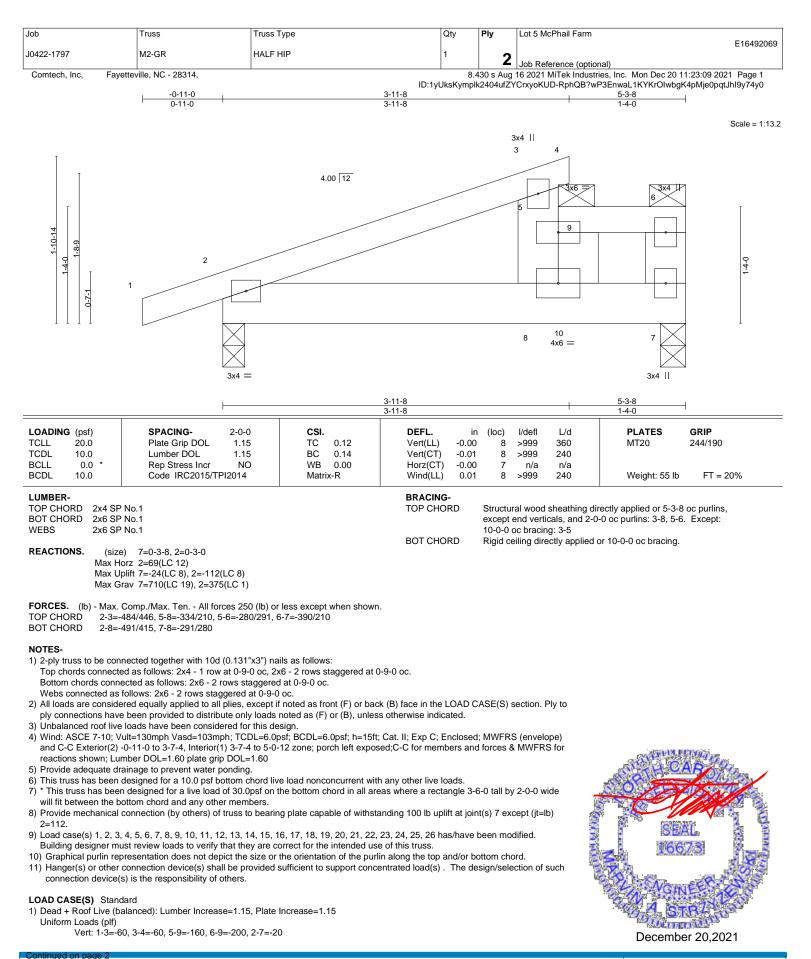
Concentrated Loads (Ib)

Vert: 9=-400

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20 Concentrated Loads (lb)

Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20


Concentrated Loads (lb)

Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO

Edenton, NC 27932

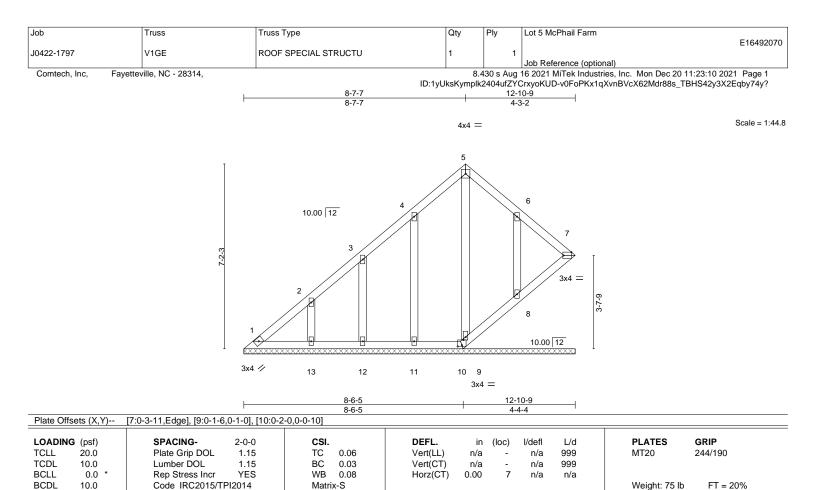
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss	Truss Type	Qty	Ply	Lot 5 McPhail Farm
				E16492069
M2-GR	HALF HIP	1	2	
			_	Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 2
•	M2-GR	M2-GR HALF HIP	M2-GR HALF HIP 1	M2-GR HALF HIP 1 2

ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOIwbgK4pMje0pqtJhl9y74y0

LOAD CASE(S) Standard Concentrated Loads (Ib)
Vert: 9=-400
2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
Concentrated Loads (lb)
Vert: 9=-350
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
Concentrated Loads (lb)
Vert: 9=-300
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb)
Vert: 9=548
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (lb)
Vert: 9=566
 Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
Concentrated Loads (lb)
Vert: 9=-420 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
Concentrated Loads (lb) Vert: 9=-420
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
Concentrated Loads (lb) Vert: 9=154
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
Concentrated Loads (lb)
Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
Concentrated Loads (lb)
Vert: 9=-234
 Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb)
Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Concentrated Loads (lb) Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/I7PI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


[Job	Truss	Truss Type	Qty	Ply	Lot 5 McPhail Farm
						E16492069
	J0422-1797	M2-GR	HALF HIP	1	2	
					2	Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,			8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3	

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOIwbgK4pMje0pqtJhl9y74y0

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right); Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350

BRACING-

BOT CHORD

LUMBER-	

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

1) Unbalanced roof live loads have been considered for this design.

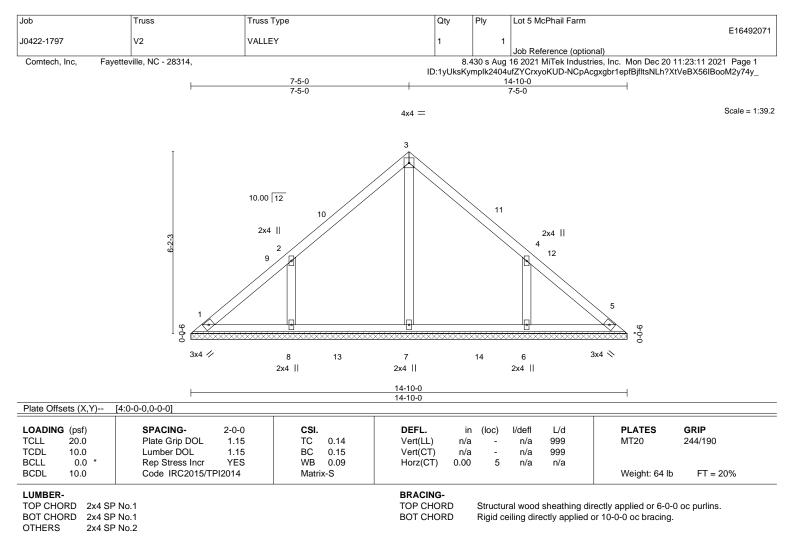
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-338/247, 4-6=-338/247

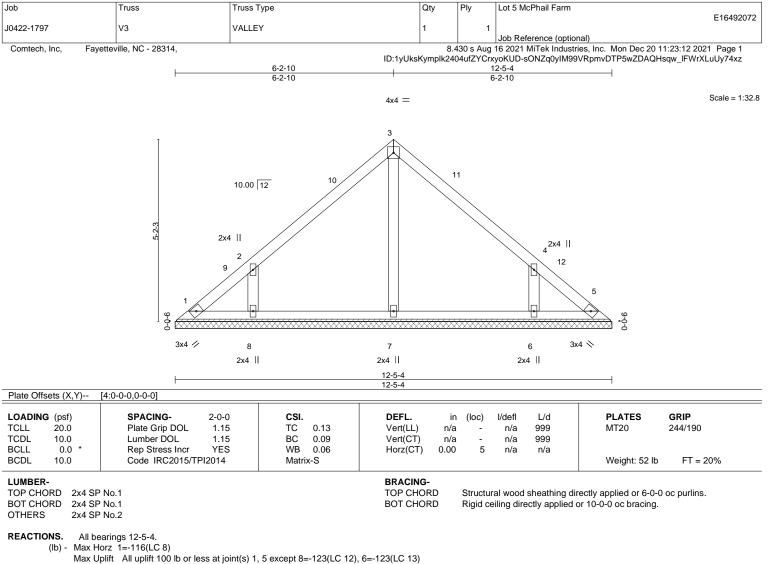
NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

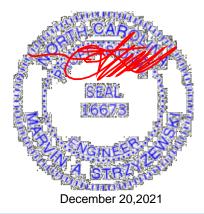
¹⁾ Unbalanced roof live loads have been considered for this design.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

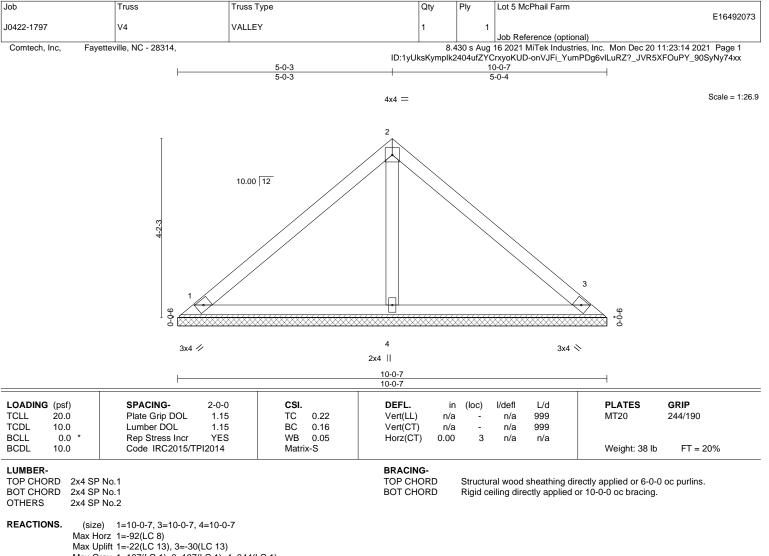

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.



TRENCO

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

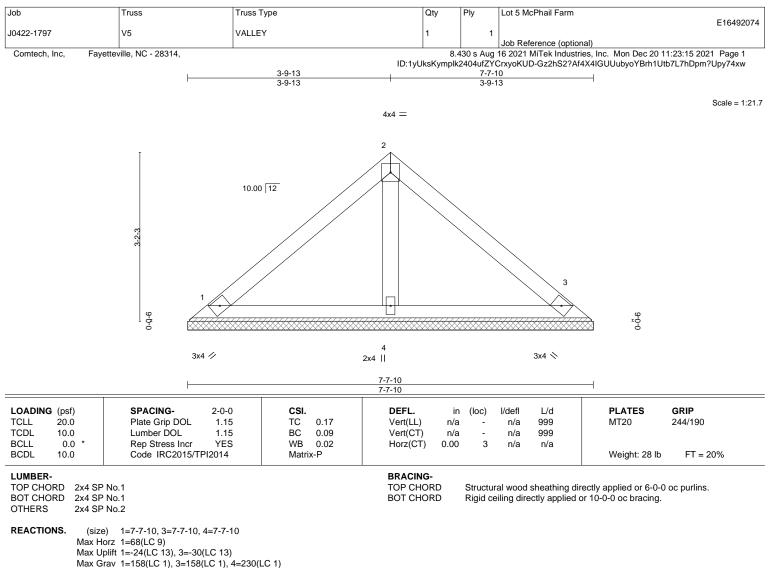
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

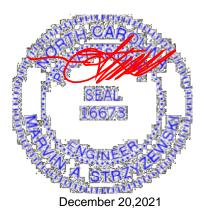

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

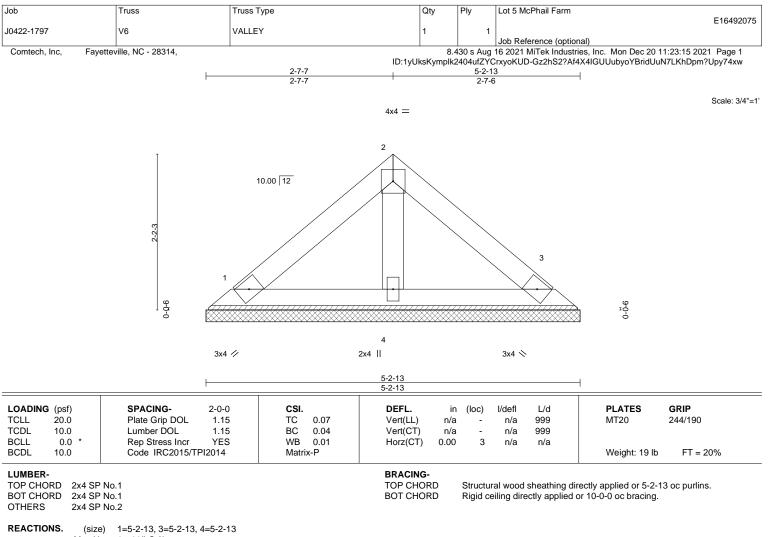
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MS. (SIZE) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8) Max Uplift 1=-15(LC 13), 3=-19(LC 13)

Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

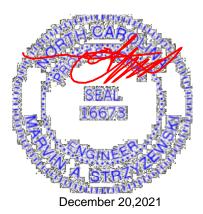
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

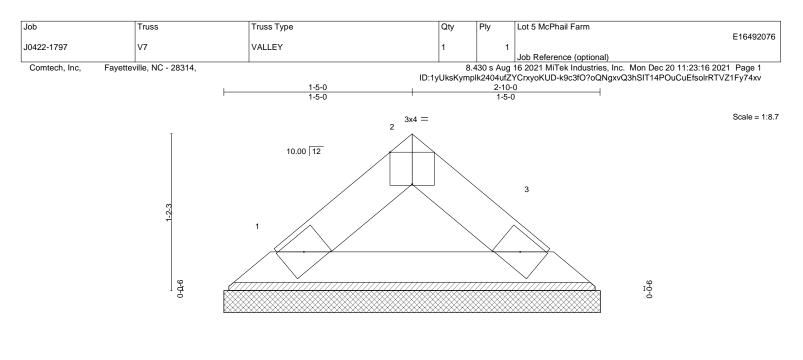
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

Rigid ceiling directly applied or 10-0-0 oc bracing.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.01	Vert(LL)	n/a -	n/a	999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT)	n/a -	n/a	999	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00 3	n/a	n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 8 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0

Max Horz 1=-20(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13)

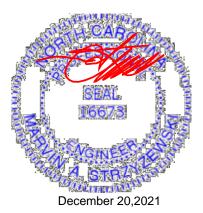
Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

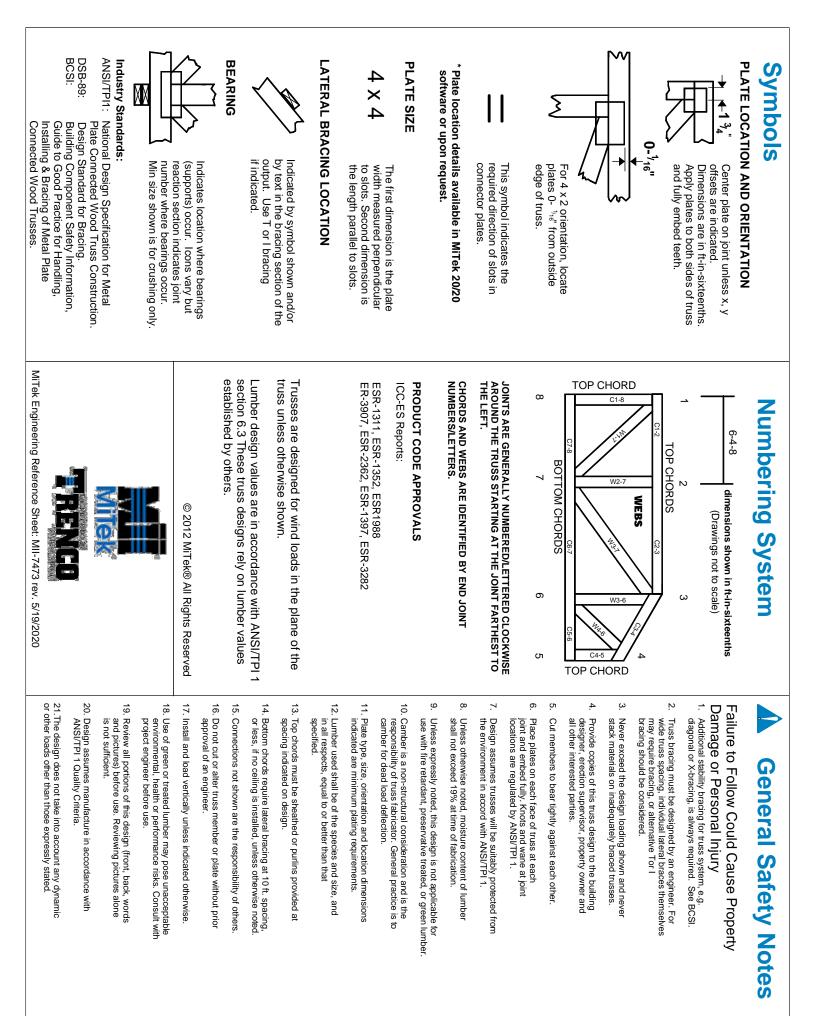
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

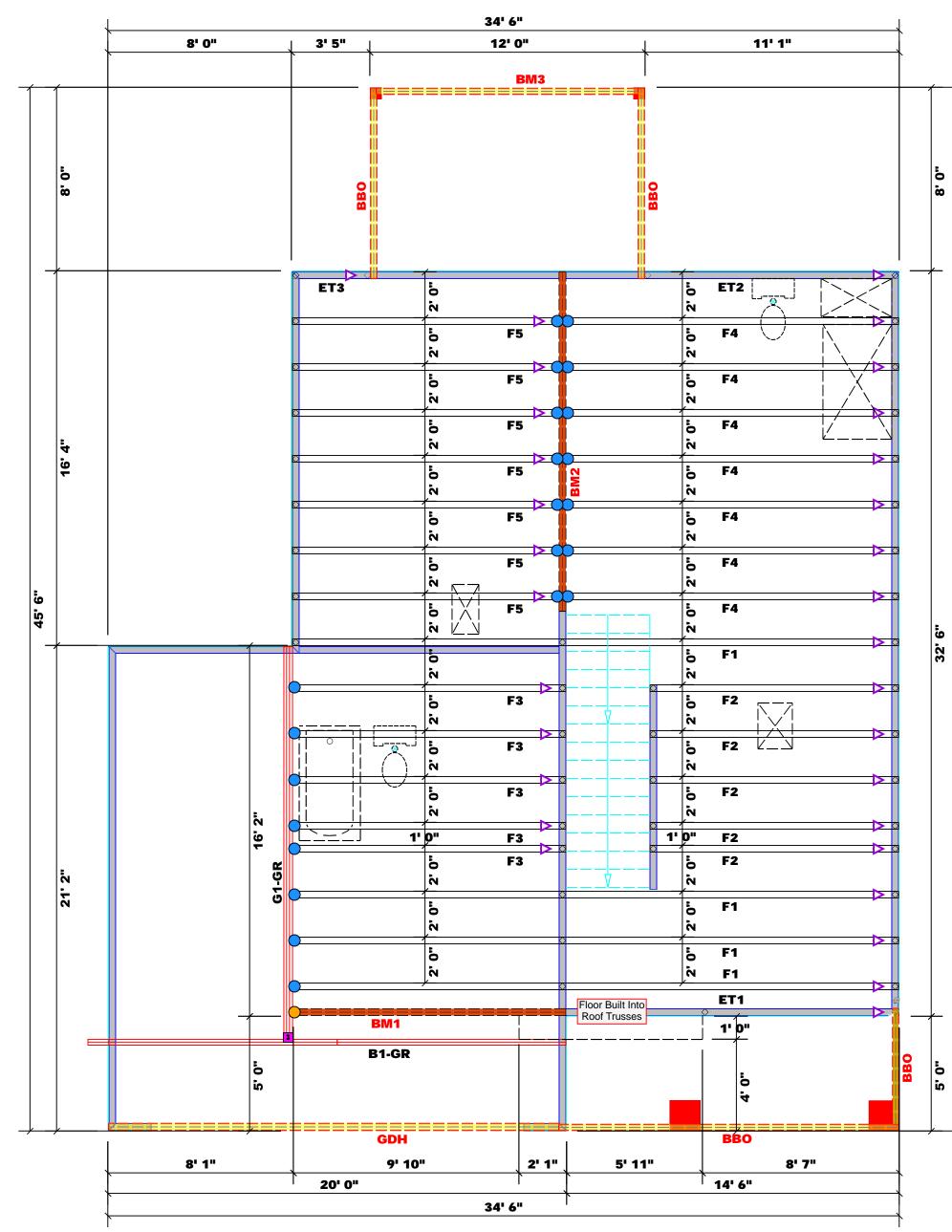

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

)							
These t compor design See ind identifie designe for the support and col designe consult	BUILDER	Weaver Development Co. Inc.	CITY / CO .	CITY / CO. Spring Lake / Harnett		deemed requirem attached requirem size and reaction 15000# retained reaction Tables retained	R
russes ar nents to b at the spo ividual de ed on the er is respo ent bracin overall st t structurd umns is t er. For gel BCSI-B1	JOB NAME	JOB NAME Lot 5 McPhail Farm	ADDRESS	Hayes Road	(BASED	to comply nents. The Tables (number of s greater A register that exce A register to design s that exce	RUS eilly R Fayett Phon
e designo e incorpo ecification esign she placemen onsible fo ng of the ructure. 1 e includir the respo neral guid and BCS	PLAN	Hickory II "C" / 2GLF, CP	MODEL	Floor	ON TABL	y with the e contract derived f determin of wood s than 3000 red design of the supp seds thos ed design the supp seds thos ed design the supp	OF & SES load Ir teville e: (910
ed as indi prated int n of the b ets for ea nt drawin roof and The desig ng header nsibility of dance reg il-B3 prov	SEAL DATE N/A	N/A	DATE REV.	04/14/22	ES RODEL() RECONTREL ACTROFER	e prescrip tor shall r rom the p e the min studs requination affinition of the study of the specifie of the specifie the specifie of the specifie the specifie the specifie of the specifie of the specifie the specifie of the specifie of the specifie of the specifie the specifie of the specifie of t	& B
GRAM ON ividual bu o the buil uilding de ich truss g. The bu ary and floor syst n of the tuil arding br ided with sbcindus	QUOTE #		DRAWN BY	DRAWN BY David Landry	CK STU (2 4 (b)) C CA CND C	ndr	OOF EAN ial Par 28309 -8787
ilding ding esigner. design ilding tem and russ , walls, ding acing, the	JOB #	J0422-1798	SALES REP.	SALES REP. Lenny Norris	00 sof 00 sof 00 softs 0,000 00 1 00 2 00 3 00 4	e ve Code Indation upport ihan II be y Ittached I be	∕IS k

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

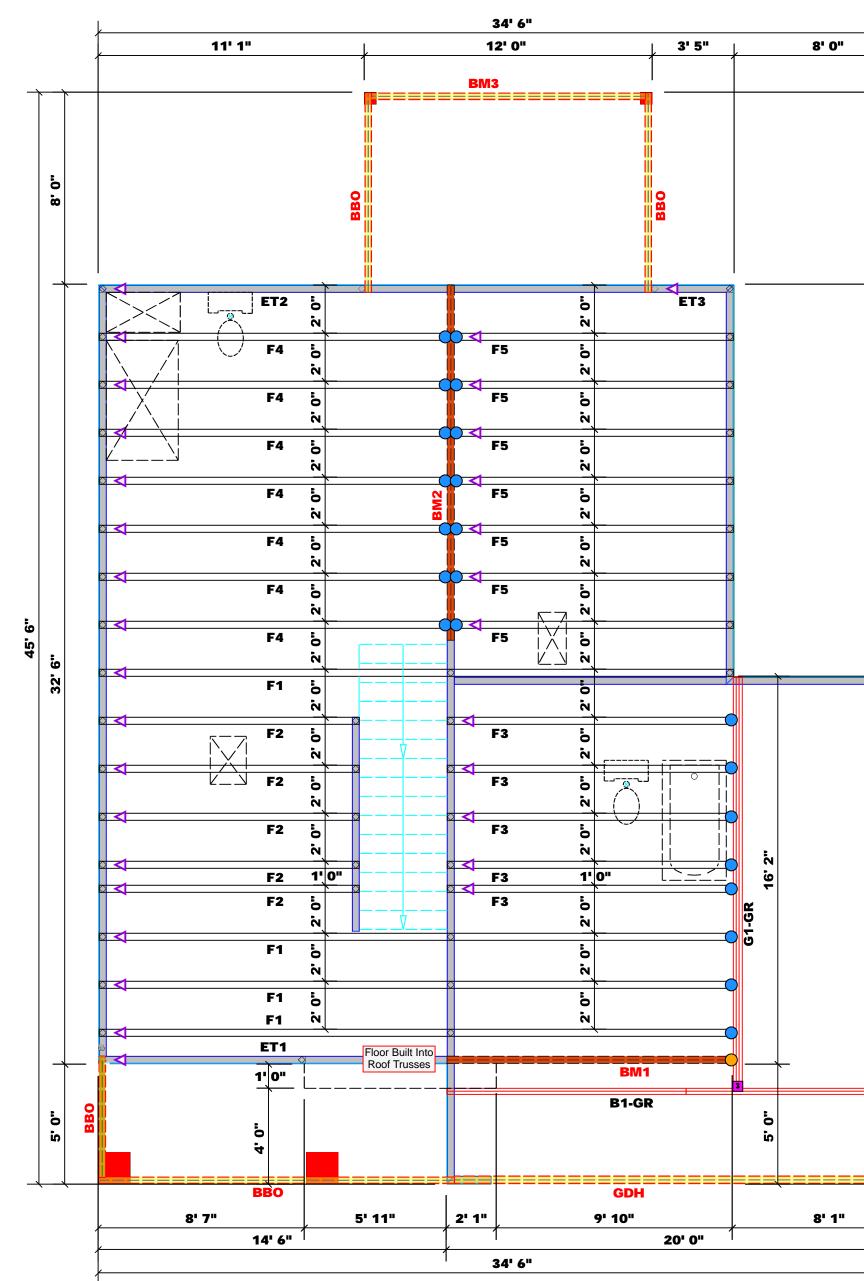
All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes Plumbing drop locations shown are NOT exact. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. Adjust spacing as needed not to exceed 24"oc.

	Conne	ctor Info	rmati	ion	Nail Info	ormation
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Truss Placement Plan ---(1)**Scale: 1/4"=1**


0

45' 6"

o |

Ó

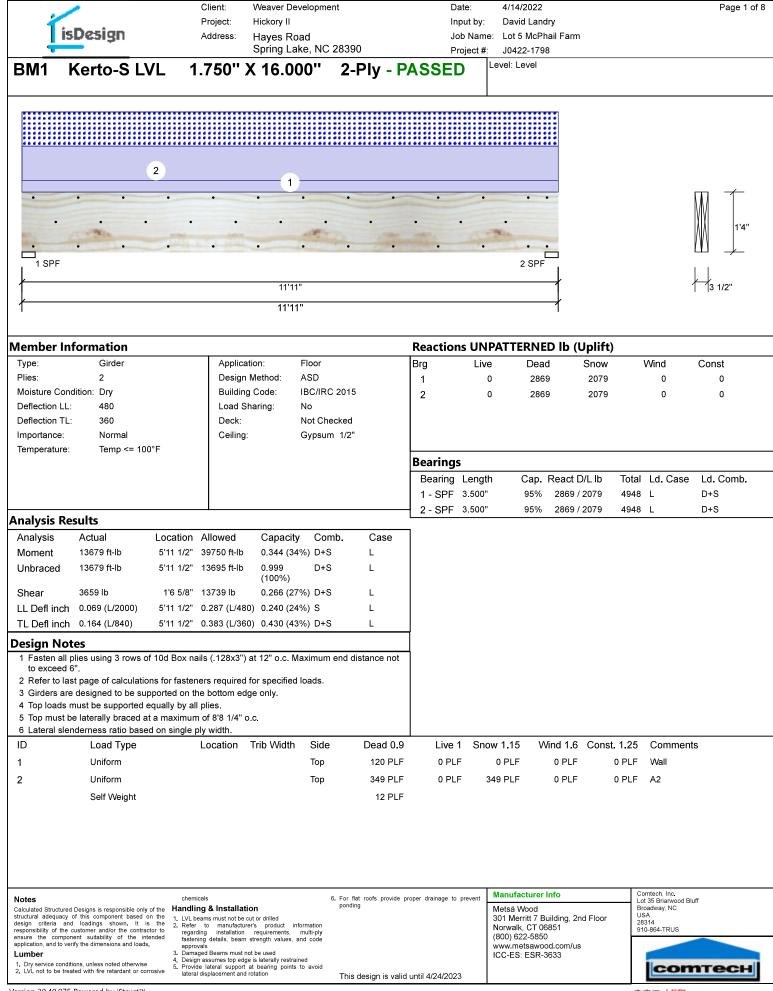
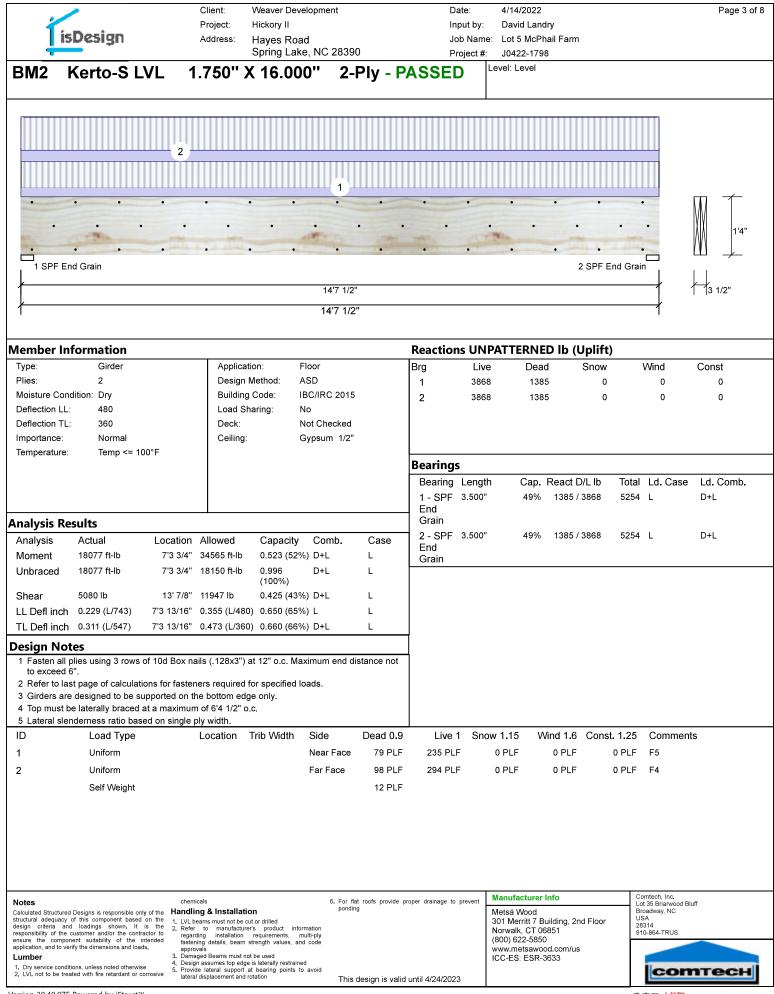

lio

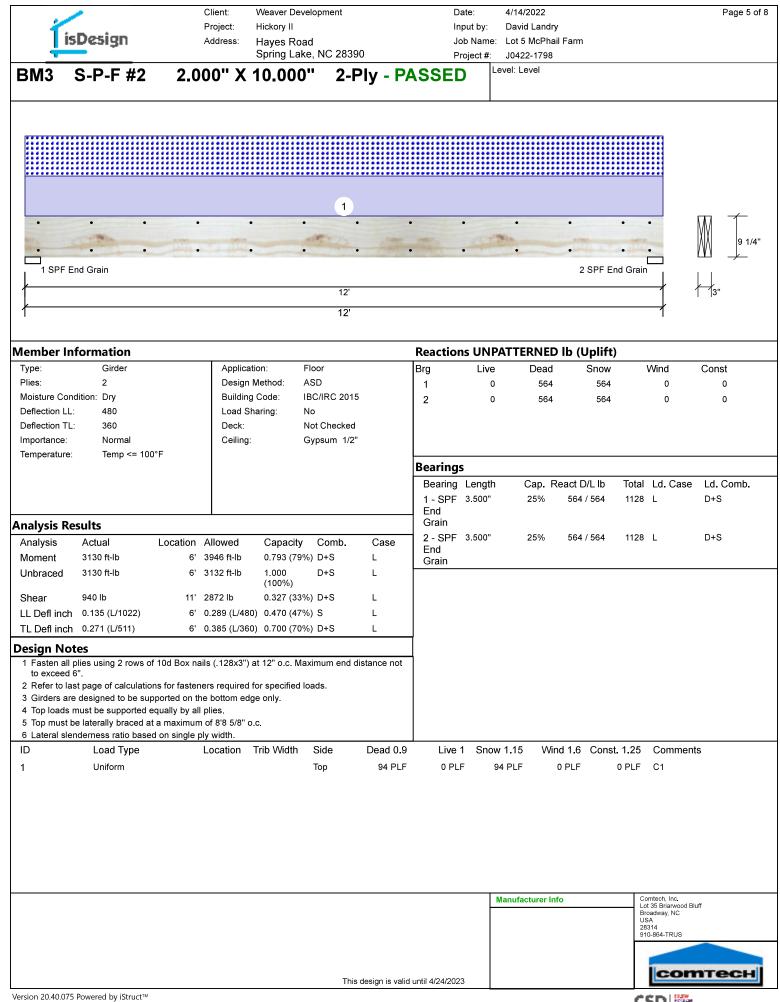
Image: Truss Placement Plan Image: Truss Plan Ima	1 Direction Notes 1	6800 4 10200 4 8500 5 12750 5 10200 6 15300 6	DOR EAM al Park 28309 8787 444 to 3000# ar ive Code afer to the rescriptive d afer to the rescriptive d and shall b m for any d in the art onal shall b m for all andry d STUD
---	---	---	--

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards


THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

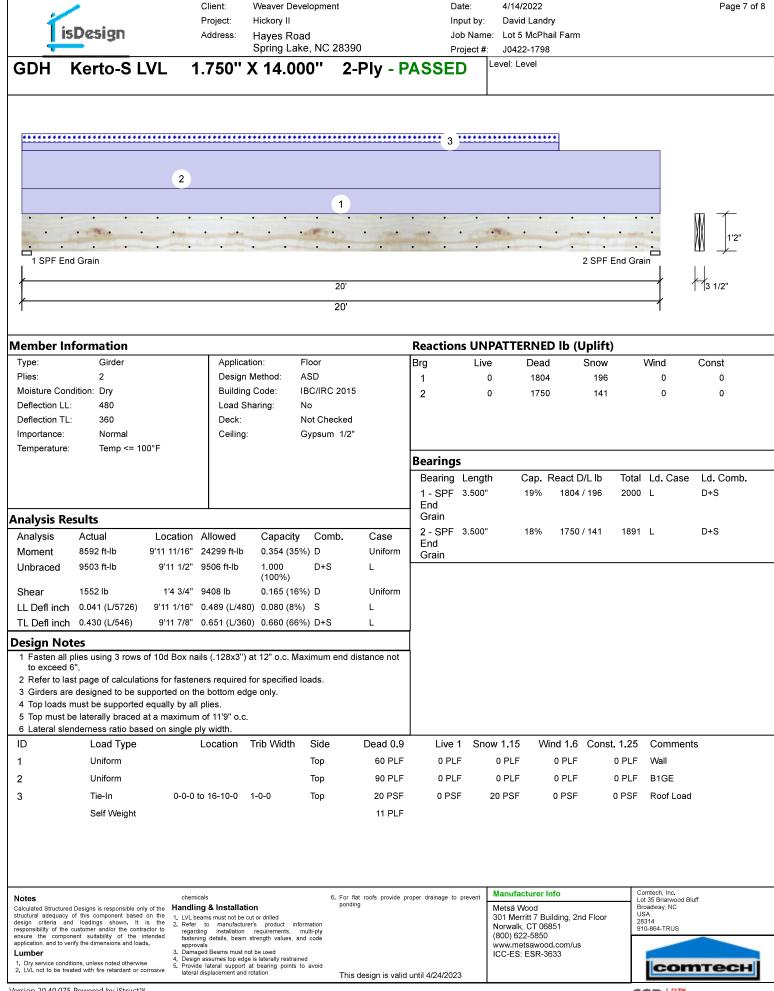
Version 20.40.075 Powered by iStruct™

isDesign BM1 Kerto-S LVL	Client: Weaver Developme Project: Hickory II Address: Hayes Road Spring Lake, NC 1.750'' X 16.000''	li J 28390 F	Date: 4/14/2022 nput by: David Landry ob Name: Lot 5 McPhail Farm Project #: J0422-1798 D Level: Level	Page 2 of 8
1 SPF	· · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	1'4"
	11'11" 11'11"			3 1/2"
Capacity 0.0 % Load 0.0 Pl Yield Limit per Fastener 81.9 II Yield Mode IV Edge Distance 1 1/2" Min. End Distance 3" Load Combination Duration Factor 1.00	LF PLF b.			
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.	chemicals andling & Installation LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used	 For flat roofs provide proper drainage to ponding 	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC USA 28314 910-864-TRUS
1. Dry service conditions, unless noted otherwise 5	Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 4/24/20;	ICC-ES: ESR-3633 23	соттесн


CSD 🗱

Version 20.40.075 Powered by iStruct™

			Client:	Weaver Developm	ent	Dat	۵.	4/14/2022	Page 4 of 8
2			Project:	Hickory II			ut by:	David Landry	
	isDesign		Address:	Hayes Road			Name		
	T			Spring Lake, NO	C 28390	Proj	ject #:	J0422-1798	
BM2	Kerto-S	IVI	1.750"	X 16.000"	2-Plv	- PASSED	L	evel: Level	
					_ ,				
•	• •	•	•	• •	• •	•	•	• • •	
									2 M
•	•	•	• •	• •	•	• •	•	• •	· · 2/ //4"
•	• •	•	•	• •	• •	•	•	• • •	• ¥ /// [
 1 SPF	F End Grain							2 SPF End	d Grain
					14'7 1/2"				1 13 1/2"
1				1	4'7 1/2"				1
Multi_Dh	y Analysis								
-		C -		(400 00) + 400	·				
	l plies using 3			s (.128x3") at 12"	o.c Maxım	um end distan	ce nc	ot to exceed 6"	
Capacity Load		79.8 196	% 0 PLF						
Yield Limit p	er Foot		6 PLF						
Yield Limit p	er Fastener	81.9	lb.						
Yield Mode		IV							
Edge Distan Min. End Dis		1 1/2 3"	2						
Load Combi		D+L							
Duration Fac	ctor	1.00							
								Manufacturer Info	Comtech, Inc.
Notes Calculated Struc	ctured Designs is responsibl	le only of the H	chemicals Iandling & Installa	ation	For flat roofs pro ponding	ovide proper drainage to pr	even	Metsä Wood	Lot 35 Briarwood Bluff Broadway, NC
structural adequ design criteria	uacy of this component ba and loadings shown	ased on the 1 It is the 2	. LVL beams must not b					301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314
responsibility of ensure the co	f the customer and/or the opponent suitability of the	contractor to	regarding installatio fastening details, bea	in requirements, multi-ply m strength values, and code				(800) 622-5850	910-864-TRUS
application, and Lumber	to verify the dimensions and	3	approvals Damaged Beams mus	t not be used				www.metsawood.com/us ICC-ES: ESR-3633	
1. Dry service of	conditions, unless noted other treated with fire retardant	erwise 5		dge is laterally restrained of at bearing points to avoid nd rotation		p			соттесн
			iaterai displacement ar	ing i station	This design is	valid until 4/24/2023			
Version 20.40	0.075 Powered by iStru	ict™							CCD 188%


CSD IIII

CSD 🎬

		Client:	Weaver Develop	ment		Date:	4/14/2022		F	Page 6 of 8
		Project:	Hickory II			Input by:	David Landry			
isDes	ign	Address:	Hayes Road			Job Name:	Lot 5 McPhail Fa	rm		
	-		Spring Lake, N	IC 28390		Project #:	J0422-1798			
BM3 S-P	-F #2	2.000" X	10.000"		- PASSI		evel: Level			
				_ · · j						
						·				
									-	
• •	•	•	• •	•	•	•	• •	• •] ≌∭	\uparrow
										9 1/4"
	•	•	• •	•	•	•	• •	• • -	<u>+ −</u> ¥ /₩	9 1/4
1 SPF End Grain								2 SPF End Grain	1 — X —	<i>—</i>
	1							2 SFF Ellu Glaill		
1				12'				· · · · · · · · · · · · · · · · · · ·	1 13"	
/ <u>/</u>				12'				,	*	
									•	
Multi-Ply Analys	is									
Fasten all plies usi	ing 2 rows of	[:] 10d Box nails	(.128x3") at 12	" o.c Maxir	num end di	stance not	t to exceed 6"			
Capacity) %								
Load	0.0) PLF								
Yield Limit per Foot		7.4 PLF								
Yield Limit per Fastener		.7 lb.								
Yield Mode	IV									
Edge Distance	1 1	/2"								
Min. End Distance	3"									
Load Combination										
Duration Factor	1.0	00								

Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC USA 28314 910-864-TRUS
	соттесн

Version 20.40.075 Powered by iStruct™

CSD 🎬

1	Client: Project:	Weaver Developme Hickory II	ent	Date: Input b	4/14/2022 y: David Landry	Page 8 o
isDesign	Address:	Hayes Road Spring Lake, NC	28390	Job Na Project	me: Lot 5 McPhail Farm	
BDH Kerto-S LV	L 1.750"	X 14.000"		*	Level: Level	
· · · · · · ·	· · · · ·	· · · ·	· · ·	· · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
1 SPF End Grain		<u> </u>			2 SPF Er	
			20'			¹ 3 1/2"
Ι			20'			1
ulti-Ply Analysis						
sten all plies using 3 rows		(.128x3") at 12"	o.c Maximı	um end distance	not to exceed 6"	
ad (0.0 % 0.0 PLF					
•	245.6 PLF 31.9 lb.					
ld Mode I	V					
-	1 1/2" 3"					
ad Combination						
uration Factor	1.00					
lotes	chemicals		6. For flat roofs prov	ide proper drainage to prever	Manufacturer Info	Comtech, Inc.
lotes alculated Structured Designs is responsible only of the tructural adaptation of this companyon based on the	Handling & Installa	tion	ponding	propor aramage to prever	Metsä Wood	Lot 35 Briarwood Bluff Broadway, NC USA
tructural adequacy of this component based on the esign criteria and loadings shown. It is the esponsibility of the customer and/or the contractor	e 2 Refer to manufactu	rer's product information			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 910-864-TRUS
nsure the component suitability of the intended pplication, and to verify the dimensions and loads.		requirements, multi-pl y strength values, and code			(800) 622-5850 www.metsawood.com/us	
umber	 Damaged Beams must Design assumes top ed 	ge is laterally restrained			ICC-ES: ESR-3633	
 Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corrosiv 	5 Provide lateral support	at bearing points to avoid				COMTECH

CSD 🎬

RE: J0422-1798 Lot 5 McPhail Farm

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development Co. Inc. Lot/Block: 5	Project Name: J0422-1798 Model: Hickory II
Address: Hayes Road City: Spring Lake	Subdivision: McPhail Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

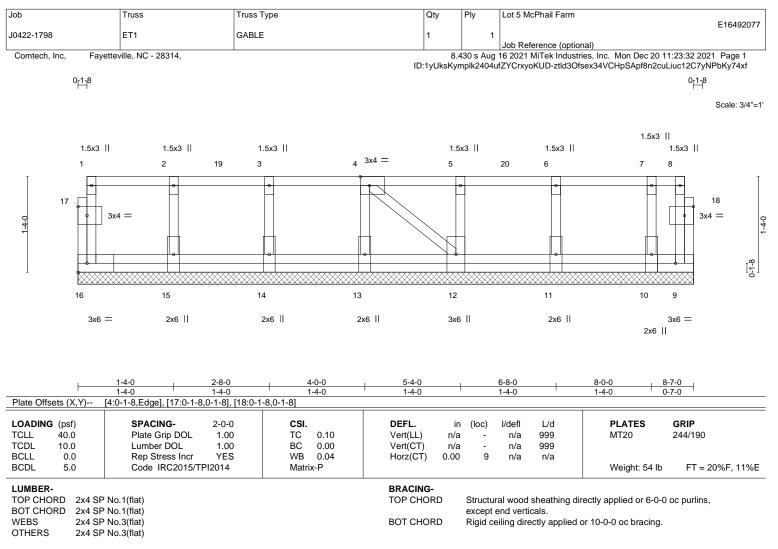
No. 1 2	Seal# E16492077 E16492078	Truss Name ET1 ET2	Date 12/20/2021 12/20/2021
3 4	E16492079 E16492080	ET3 F1	12/20/2021 12/20/2021
5	E16492081	F2	12/20/2021
6	E16492082	F3	12/20/2021
7	E16492083	F4	12/20/2021
8	E16492084	F5	12/20/2021

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Strzyzewski, Marvin


My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

- Vert: 9-16=-10, 1-8=-100
- Concentrated Loads (lb)
 - Vert: 4=-71 7=-77 19=-71 20=-71

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Lot 5 McPhail Far	m			E16492078
J0422-1798	ET2	GABLE		1	1	Job Reference (or	otional)			210402070
Comtech, Inc, Fay	vetteville, NC - 28314,		ID:1vU			16 2021 MiTek Indu rxyoKUD-R4J?Hkc				
0 _∐ 18			,.			,		<u>9</u>		0 ₁ 38
										Scale = 1:18.0
1	2 3	4 3x4 =	5	6		7		8		9 10
						• •				
19	18 17	16	15	<u></u>		13		12	********	11
3x4 =			3x4 =							3x6 =
<u> </u>	2-8-0 1-4-0	4-0-0 5-4-0 1-4-0 1-4-0	6-8-0			0-0 4-0	9-4-0 1-4-0		10-8-0 1-4-0	11-1-0 0-5-0
Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edg	<u>)</u>								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1 Lumber DOL 1	O-0 CSI. 00 TC 0.06 00 BC 0.01 ES WB 0.03 4 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT		a - a -	l/defl L/d n/a 999 n/a 999 n/a n/a		PLATES MT20 Weight: 54	GRIP 244/190 lb FT =) = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF		I	BRACIN TOP CH			al wood sheathing	directly a	applied or 6-(0-0 oc purlin	s,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

REACTIONS. All bearings 11-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

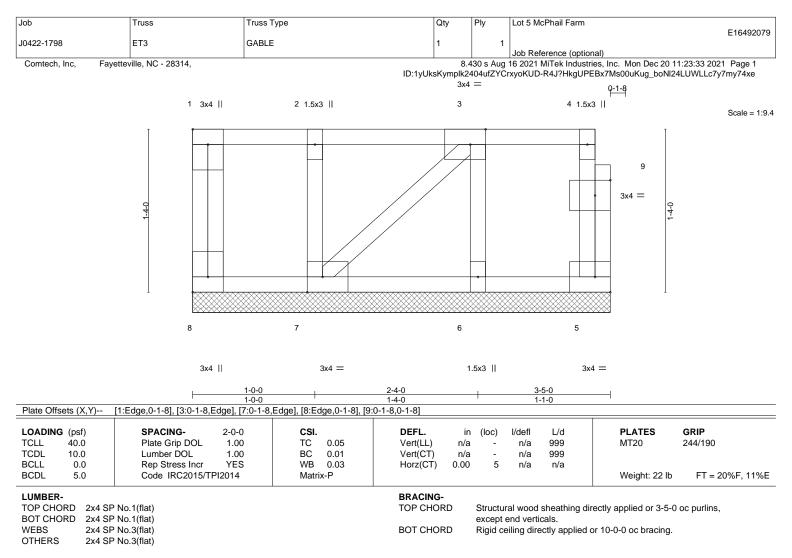
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

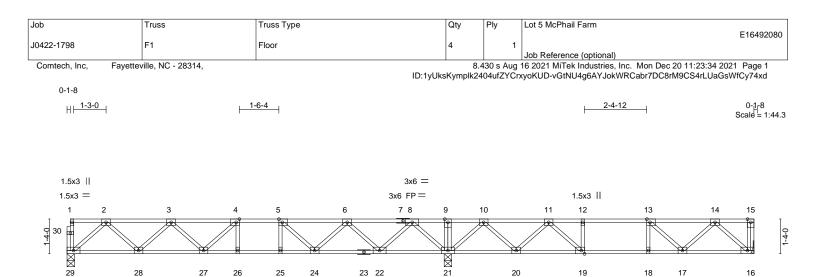
NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

3x6 =

3x6 FP =

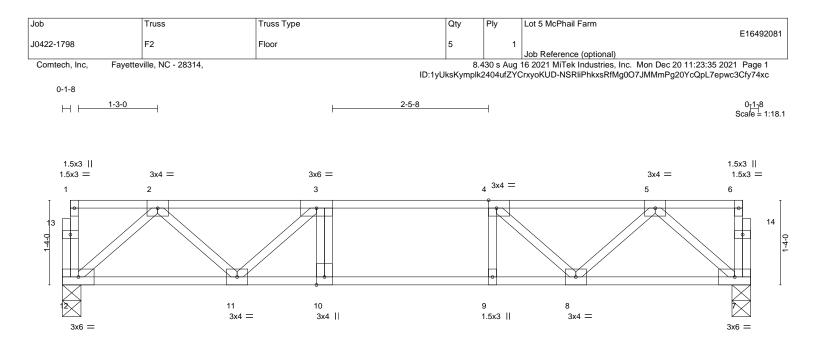
3x6 =

1.5x3 ||

3x6 =

1.5x3 ||

	14-7-12					26-5		
Plate Offsets (X,Y)	14-7-12 [4:0-1-8,Edge], [5:0-1-8,Edge], [13:0-1-8	3,Edge], [19:0-1-8,Edge]				11-9	-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.76 WB 0.44 Matrix-S	Vert(CT) -0	in (loc) 0.10 26-27 0.13 26-27 0.03 16	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S			BRACING- TOP CHORD BOT CHORD	except	end vertie	cals.	ectly applied or 6-0-0 or 6-0-0 or 6-0-0 or 6-0-0 oc bracing.	oc purlins,
	ze) 29=0-3-8, 16=Mechanical, 21=0-3-8 Grav 29=727(LC 10), 16=1063(LC 4), 21							
TOP CHORD 15 8-9= 13 BOT CHORD 28-2 22-2 WEBS 2-29 13 17	lax. Comp./Max. Ten All forces 250 (lb) or less except when shown. 5-16=-537/0, 2-3=-1257/0, 3-4=-1883/0, 4-5=-2002/0, 5-6=-1658/0, 6-8=-756/225, -9=0/1401, 9-10=0/1401, 10-11=-468/367, 11-12=-1158/0, 12-13=-1158/0, 3-14=-884/0 8-29=0/771, 27-28=0/1717, 26-27=0/2002, 25-26=0/2002, 24-25=0/2002, 2-24=-34/1340, 21-22=-444/147, 20-21=-637/19, 19-20=-175/900, 18-19=0/1158, 7-18=0/1158, 16-17=0/586 -29=-1023/0, 2-28=0/677, 3-28=-640/0, 8-21=-1289/0, 14-16=-780/0, 14-17=0/415, 3-17=-372/90, 10-21=-1064/0, 8-22=-0/923, 6-22=-882/0, 6-24=0/527, 5-24=-633/0, 0-20=0/687, 11-20=-690/0, 11-19=0/582, 12-19=-278/0							
 All plates are 3x4 M Plates checked for Refer to girder(s) fr Recommend 2x6 s Strongbacks to be CAUTION, Do not LOAD CASE(S) Stat Dead + Floor Live Uniform Loads (plf) 	(balanced): Lumber Increase=1.00, Plate) 9=-10, 1-15=-100 is (lb)	is center. c and fastened to each tr strained by other means.	uss with 3-10d (0.131	" X 3") nails				



1.5x3 ||

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [4:0-1-8,Edge] LOADING (psf) SPACING- 100 2-0-0 100 CSI. TC 0.36 DEFL. in (loc) l/defl L/d TCLL 40.0 Plate Grip DOL 1.00 TC 0.36 Vert(LL) -0.07 10 >999 480 MT20 244/190 TCDL 10.0 Rep Stress Incr YES WB 0.21 Horz(CT) 0.01 7 n/a n/a				<u>10-10-0</u> 10-10-0			
TCLL 40.0 Plate Grip DOL 1.00 TC 0.36 Vert(LL) -0.07 10 >999 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.46 Vert(LL) -0.07 10 >999 480 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.21 Matrix-S Vert(CT) -0.09 10 >999 360 Weight: 57 lb FT = 20%F, 119 LUMBER- Code IRC2015/TPI2014 Matrix-S BRACING- Weight: 57 lb FT = 20%F, 119 EUMBER- TOP CHORD 2x4 SP No.1(flat) Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	Plate Offsets (X,Y)	[4:0-1-8,Edge]		10-10-0			
TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	TCLL 40.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	TC 0.36 BC 0.46 WB 0.21	Vert(LL) -0.07 Vert(CT) -0.09	7 10 >999 480 9 10 >999 360	MT20	244/190
	TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.1(flat)		TOP CHORD	except end verticals.	,) oc purlins,

REACTIONS. (size) 12=0-3-8, 7=0-3-8 Max Grav 12=576(LC 1), 7=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-923/0, 3-4=-1242/0, 4-5=-925/0

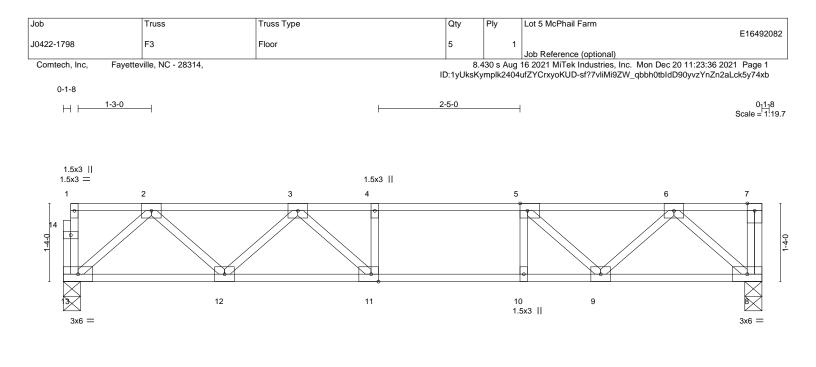
BOT CHORD 11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603

WEBS 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.


3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			11-11-0			
			11-11-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.70 WB 0.27 Matrix-S	Vert(LL) -0.13	n (loc) l/defl L/d 3 11-12 >999 480 6 11-12 >894 360 2 8 n/a n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	⁹ No.1(flat) ⁹ No.1(flat) ⁹ No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	,	l oc purlins,

REACTIONS.	(size)	13=0-3-8, 8=0-3-8
	Max Grav	13=635(LC 1), 8=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0

BOT CHORD 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659

WEBS 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/557, 5-9=-616/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

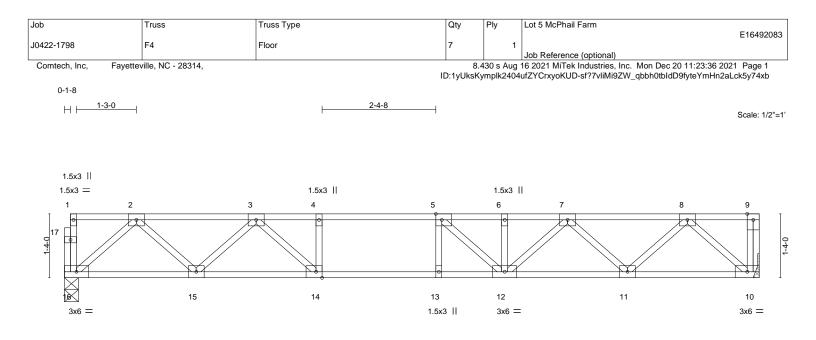
Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

```
Uniform Loads (plf)
```

Vert: 8-13=-10, 1-7=-100


Concentrated Loads (lb) Vert: 7=-500

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ŀ			<u>14-6-0</u> 14-6-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.62 BC 0.78 WB 0.35 Matrix-S	- () -	7 12-13 >999 480 2 12-13 >790 360	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or		oc purlins,

REACTIONS.	(size)	16=0-3-8, 10=Mechanical
	Max Grav	16=778(LC 1), 10=784(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0

BOT CHORD 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835

WEBS 2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0,

8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

NOTES-

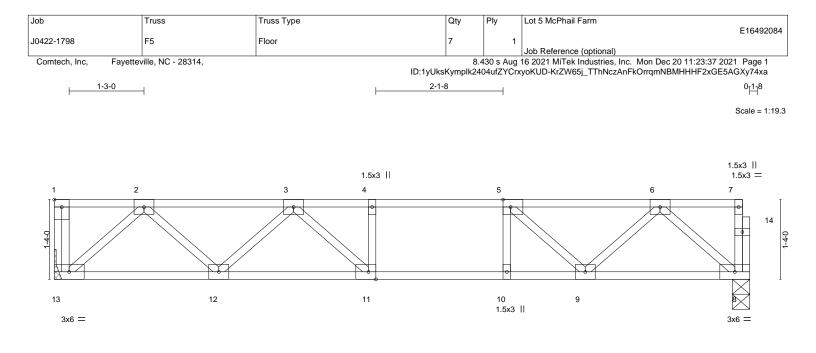
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>11-7-8</u> 11-7-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [11:0-1-8	3,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.44 BC 0.56 WB 0.25 Matrix-S	Vert(LL) -0.10	n (loc) l/defl L/d 0 11-12 >999 480 3 11-12 >999 360 2 8 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	<i>y</i> 11	oc purlins,

REACTIONS.	(size)	13=Mechanical, 8=0-3-8
	Max Grav	13=626(LC 1), 8=619(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

BOT CHORD 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

WEBS 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526, 5-9=-570/0

NOTES-

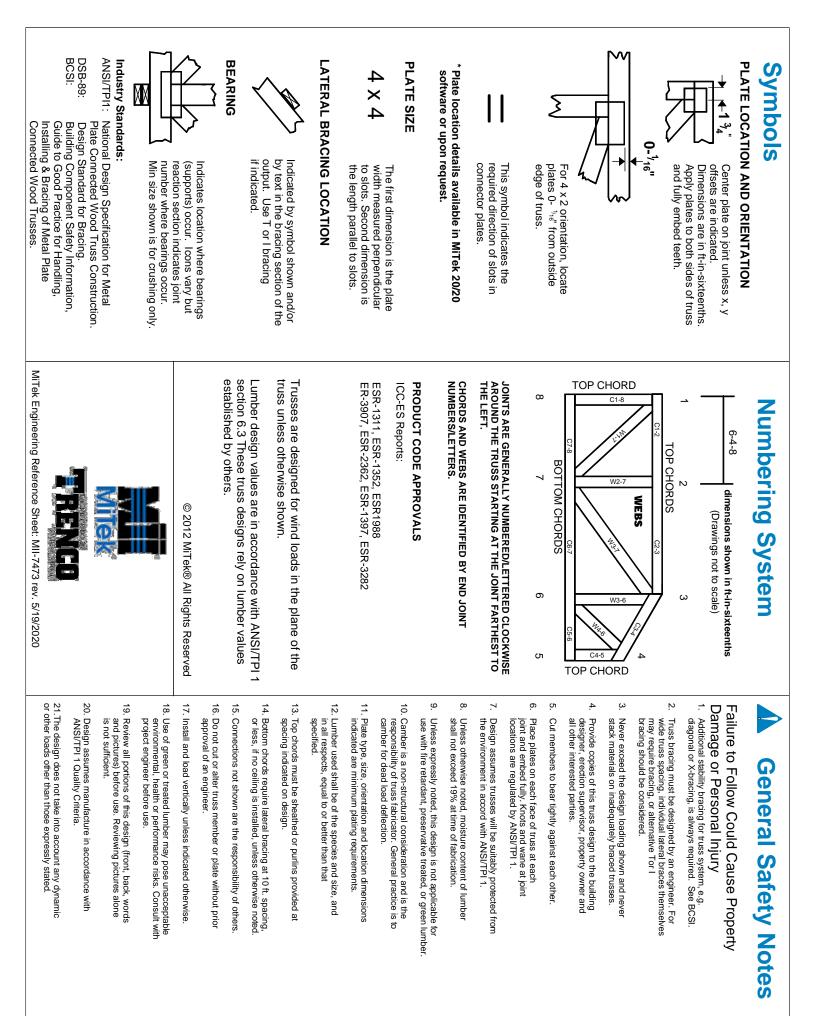
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

