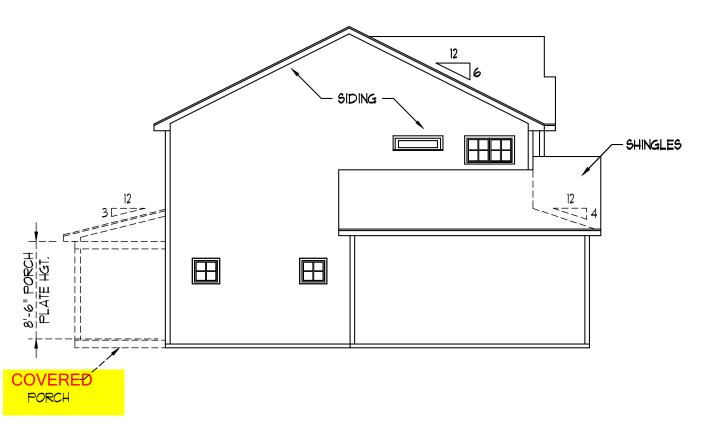
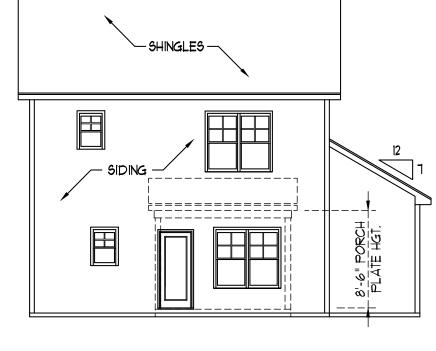
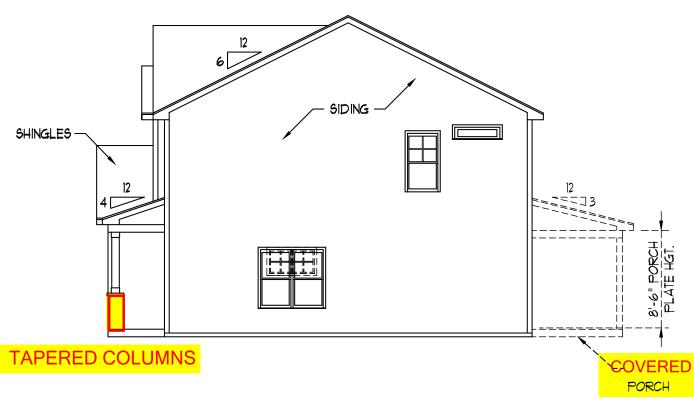

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.

LOT 3 MCPHAIL FARM TBD HAYES RD SPRING LAKE, NC 28390

- GENERAL NOTES


 1. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AND REGULATIONS.
- 2. CONTRACTOR SHALL THOROUGHLY REVIEW ALL SHEETS IN PLAN SET AND VERIFY ALL DETAILS AND DIMENSIONS BEFORE BEGINNING CONSTRUCTION. ANY DISCREPANCIES SHALL BE REPORTED TO RENAISSANCE RESIDENTIAL DESIGN, INC. FOR JUSTIFICATION AND/OR CORRECTION BEFORE PROCEEDING WITH WORK, CONTRACTORS SHALL ASSUME RESPONSIBILITY
- FOR ERRORS THAT ARE NOT REPORTED PRIOR TO CONSTRUCTION. 3. ALL DIMENSIONS SHOULD BE READ OR CALCULATED AND NEVER SCALED.




LEFT ELEVATION

SCALE: 1/8" = 1'-0"

REAR ELEVATION

SCALE: 1/8" = 1'-0"

RIGHT ELEVATION SCALE: 1/8" = 1'-0" DATE: FEBRUARY 19, 2021

RENAISSANCE RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612

(919) 649-4128

WWW.RRDCAROLINA.COM ne art of transforming your vision into rea

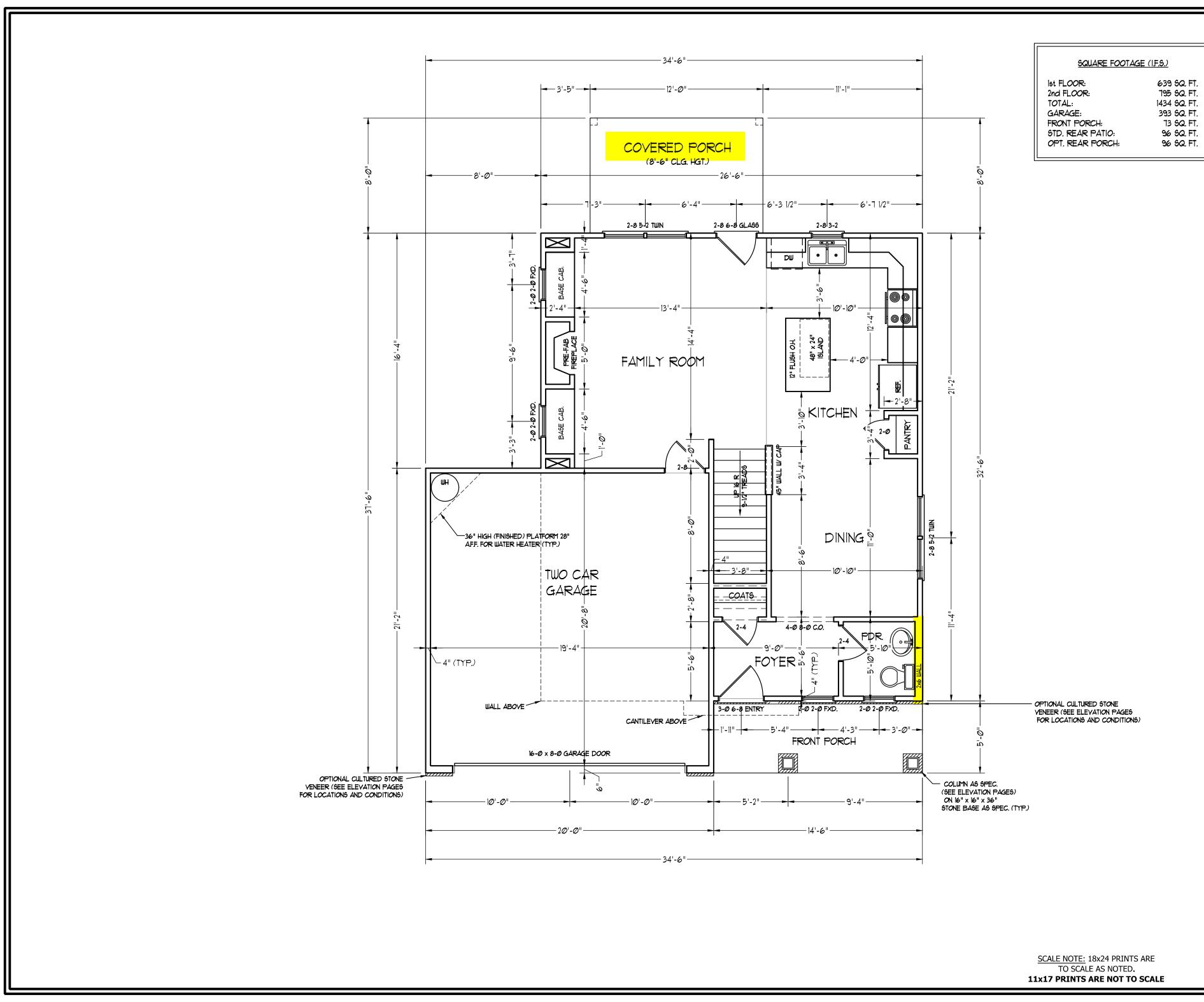
RENAISSANCE RESIDENTIAL DESIGN, INC..
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

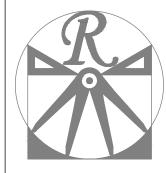
RENAISSANCE RESIDENTIAL DESIGN, INC.

RENAISSANCE RESIDENTIAL DESIGN, INC.
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC., NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

SCALE: 1/4" = 1'-0"

DRAWN BY: WG ENGINEERED BY: REVIEWED BY:


C - ELEVATIONS


A-3

HVAC: CAROLINA COMFORT

ELECTRICAL: PIONEER

PLUMBING: DOUBLE J

RENAISSANCE

RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128

WWW.RRDCAROLINA.COM The art of transforming your vision into reality

RENAISSANCE RESIDENTIAL DESIGN, INC..
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

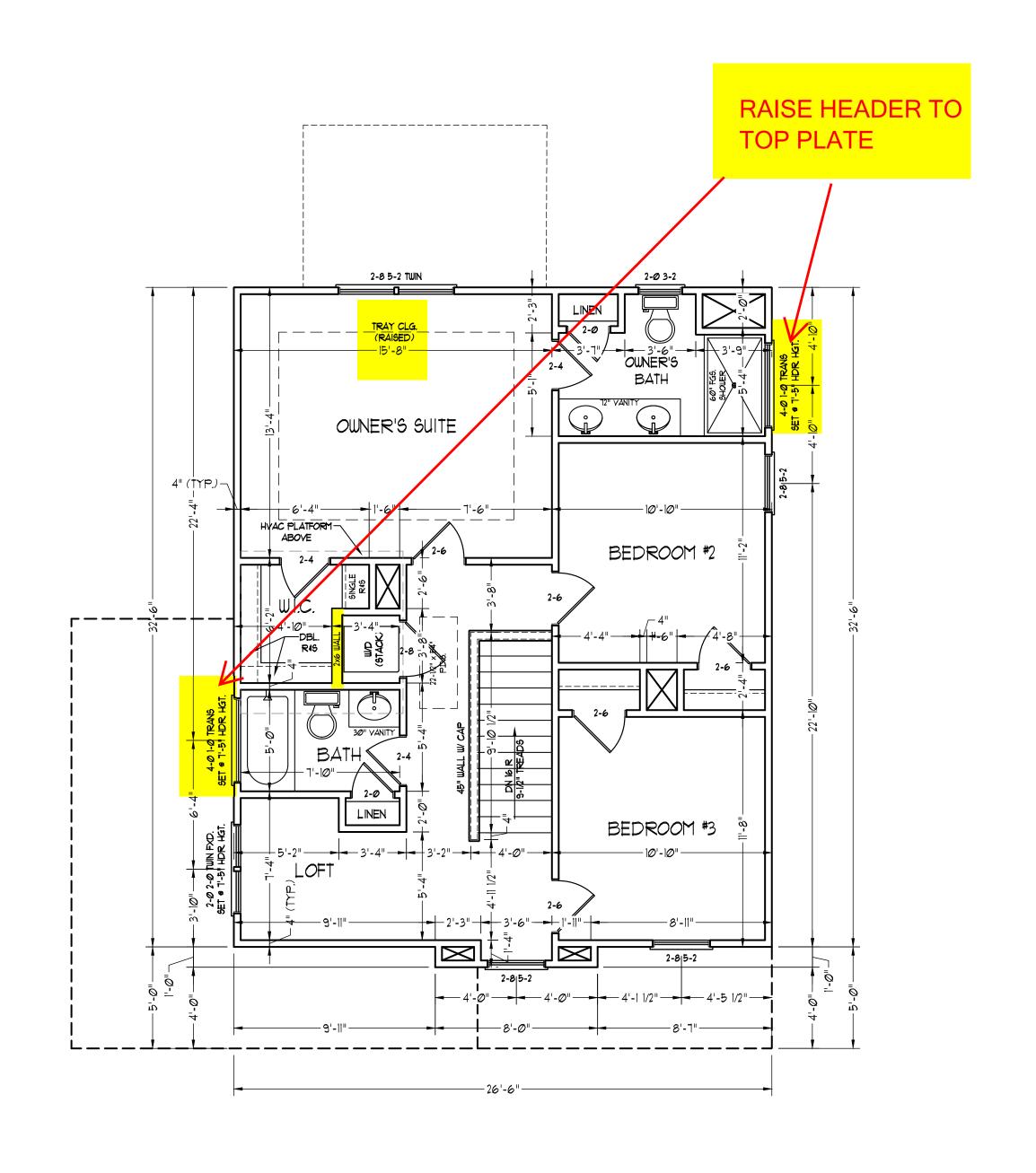
RENAISSANCE RESIDENTIAL DESIGN, INC...
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC... NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

COOTAGE AND DIMESSIONS ARE ESTIMATED AND IN ACTUAL CONSTRUCTION. ACTUAL POSITION OF LOT WILL BE DETERMINED BY THE SITE PLAN AND ELEVATIONS. REDEPLAYS AND ELEVATIONS. REDEPLAYS ARE THE COPPRIGHTED OF WEAVIER FROMES. ANY USE, REPRODUCTION, KION, OR DISPLAY OF THE PLANS IS STRICTLY ATTOM OF THE PLANS IS STRICTLY TO THE PLANS IS STRICTLY TO SEE NINH MOMES SALES CORSULTANT FOR THE PLANS AND ACTUAL AND ACTUAL

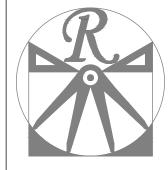
WEAVER HOMES CAROLINA COLLECTION HICKORY-II DRIVE LEFT

DATE: FEBRUARY 19, 2021

KEV.:


SCALE: 1/4" = 1'-0"

DRAWN BY: WG
ENGINEERED BY:


REVIEWED BY:

FIRST FLOOR PLAN

A-4

SCALE NOTE: 18x24 PRINTS ARE
TO SCALE AS NOTED.
11x17 PRINTS ARE NOT TO SCALE

RENAISSANCE

RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128

WWW.RRDCAROLINA.COM
The art of transforming your vision into reali

RENAISSANCE RESIDENTIAL DESIGN, INC..
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

RENAISSANCE RESIDENTIAL DESIGN, INC...
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC... NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

MENSIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

JUARE FOOTAGE AND DIMENSIONS ARE ESTIMATED AND

YORPY IN ACTUAL CONSTRUCTION ACTUAL POSITION OF

SISE ON LOT WILL BE DETERMINED BY THE SITE PLAN AND

IT PLAN. FLOOR PLANS AND ELEVATION RENDERINGS ARE

IST CONCEPTIONS. FLOOR PLANS ARE THE COPYRIGHTED

OPERTY OF WEAVER HOMES ANY USE, REPRODUCTION,

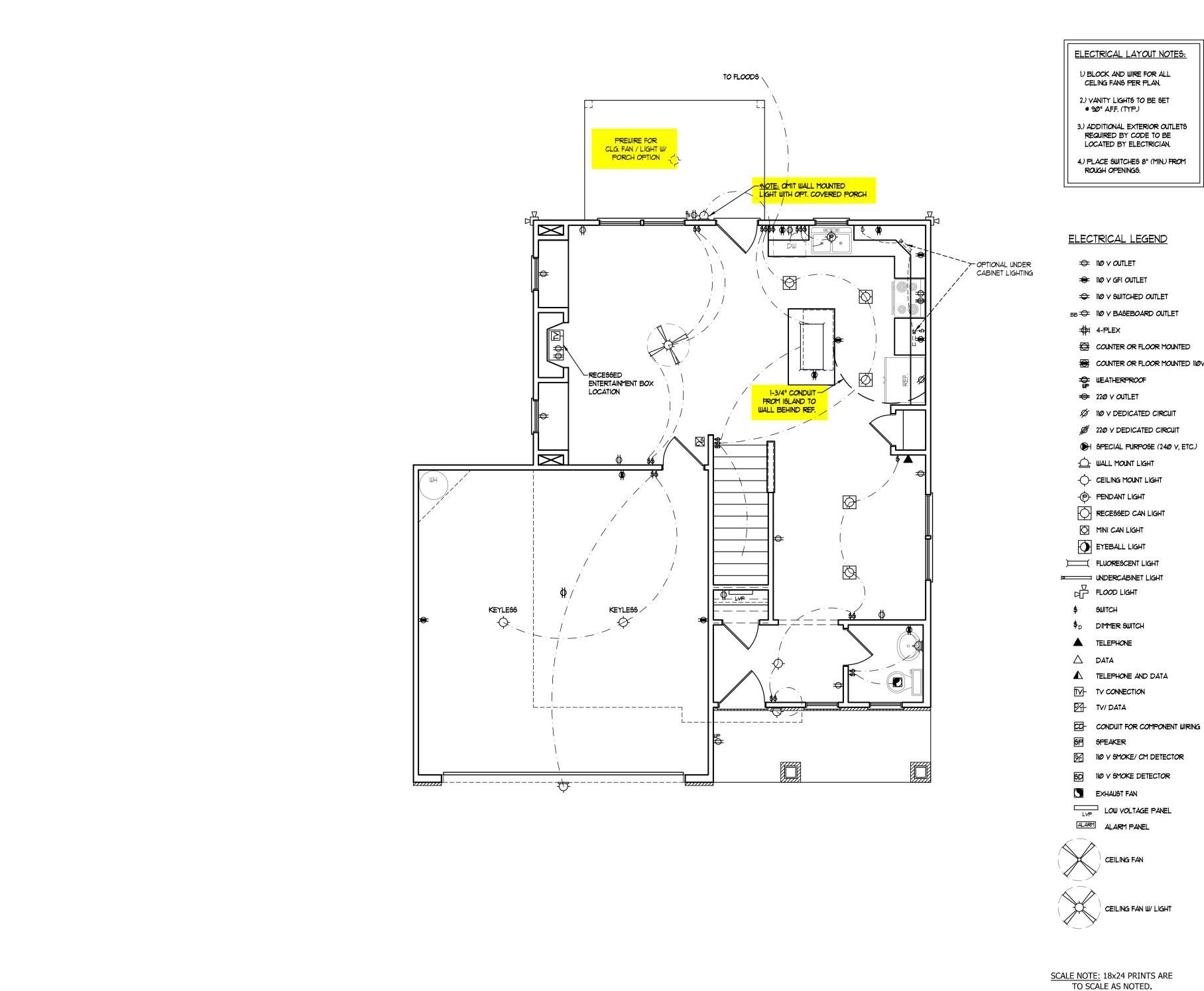
ADAPTATION, OR DISPLAY OF THE PLANS IS STREICT

YORDHITED. SEE NEW HOME SALES CONSULTANT FOR

WEAVER HOMES CAROLINA COLLECTIO HICKORY-II DRIVE LEFT

DATE: FEBRUARY 19, 2021

KEV.:


SCALE: 1/4" = 1'-0"

DRAWN BY: WG
ENGINEERED BY:

REVIEWED BY:

SECOND FLOOR PLAN

A-5

COUNTER OR FLOOR MOUNTED 110V GF1

11x17 PRINTS ARE NOT TO SCALE

RENAISSANCE

RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128

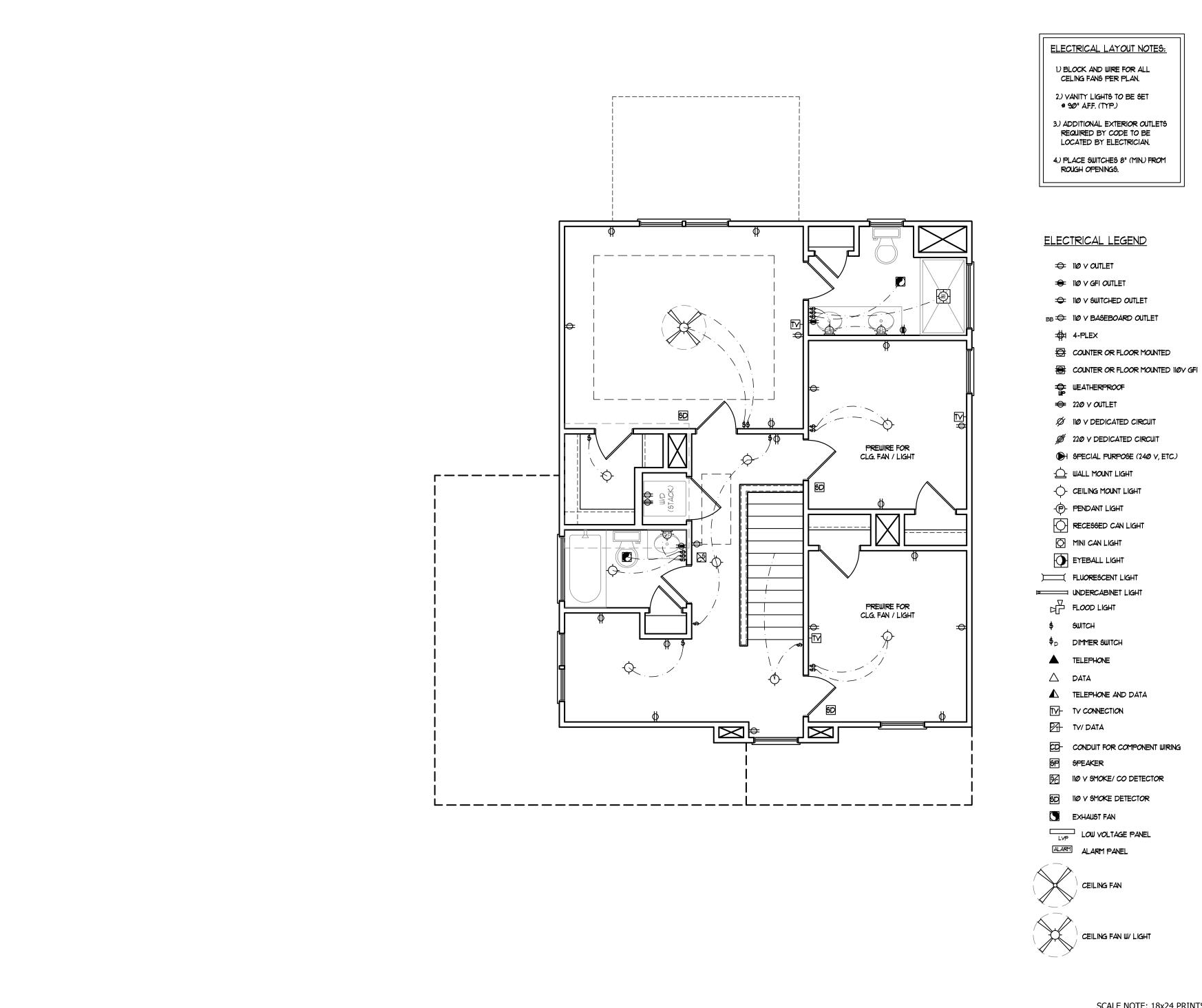
WWW.RRDCAROLINA.COM The art of transforming your vision into rea

RENAISSANCE RESIDENTIAL DESIGN, INC...
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

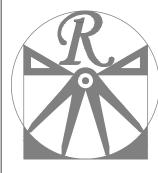
RENAISSANCE RESIDENTIAL DESIGN, INC.,
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC., NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT,

WEAVER HOMES CAROLINA COLLEC HICKORY-II DRIVE I

DATE: FEBRUARY 19, 2021


SCALE: 1/4" = 1'-0"

REVIEWED BY:


DRAWN BY: WG ENGINEERED BY:

FIRST FLOOR ELECTRICAL PLAN

E-1

SCALE NOTE: 18x24 PRINTS ARE
TO SCALE AS NOTED.
11x17 PRINTS ARE NOT TO SCALE

RENAISSANCE

RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128

WWW.RRDCAROLINA.COM he art of transforming your vision into realit

RENAISSANCE RESIDENTIAL DESIGN, INC..
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

RENAISSANCE RESIDENTIAL DESIGN, INC...
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC... NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

ISONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
THE FOOTAGE AND MAINSIONS ARE ESTIMATED AND
THAY IN ACTUAL CONSTRUCTION. ACTUAL POSITION OF
ON LOT WILL BE DETERMINED BY THE SITE PLAN AND
AN FLOOR PLANS AND ELEVATION RENDERINGS ARE
CONCEPTIONS. FLOOR PLANS ARE THE COPYRIGHTED
FITTO OF WARVER HOMES. ANY USE, REPRODUCTION,
THAT ATTON, OR DISPLAY OF THE PLANS IS STRICTLY
HIBITED. SEE NEW HOME SALES CONSULTANT FOR

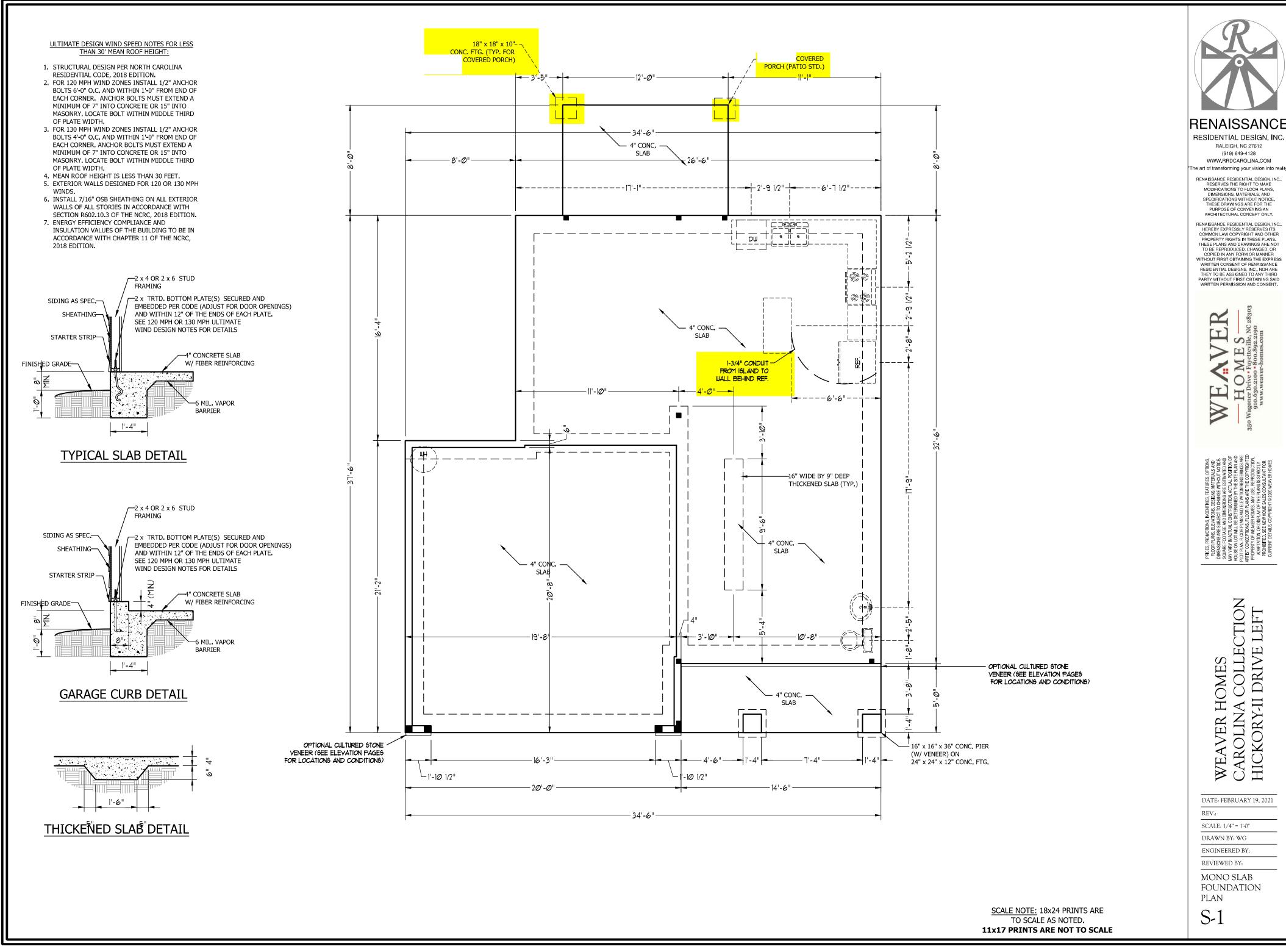
WEAVER HOMES CAROLINA COLLECTION HICKORY-II DRIVE LEFT

DATE: FEBRUARY 19, 2021

REV.:

SCALE: 1/4" = 1'-0"

DRAWN BY: WG


ENGINEERED BY:

REVIEWED BY:

SECOND FLOOR ELCTRICAL

E-2

PLAN

(2) 2 x 10 (TYP.) ✓ 4 x 4 TRTD. POST MIN. (TYP.) 16" TRUSSES AS SPECIFIED 16" TRUSSES AS SPECIFIED 16" TRUSSES AS SPECIFIED ROOF TRUSSES AS SPECIFIED 16" TRUSSES AS SPECIFIED 16" TRUSSES AS SPECIFIED -THDH412 HANGER AS SPEC. (2) 16" LVL AS SPECIFIED GIRDER TRUSS AS SPEC. ROOF TRUSSES AS SPECIFIED (2) 11-7/8" LVL AS SPEC. W/ (3) 2x6 EA. BEARING POINT (2) 2 x 10 (TYP.) -4 x 4 TRTD. POST MIN. (TYP.) PACK PORCH BEAM OUT TO 8" — WIDTH (TYP.)

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO,)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
- 3. INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- 4. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REOUIREMENTS.
- 5. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/
 METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/
 THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

BRACE WALL PANEL NOTES:


EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH, METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH, METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

 $\underline{\textbf{METHODS:}} \ \mathsf{PER} \ \mathsf{TABLE} \ \mathsf{R602.10.1}$

RENAISSANCE RESIDENTIAL DESIGN, INC.

RALEIGH, NC 27612 (919) 649-4128 WWW.RRDCAROLINA.COM

he art of transforming your vision into reality

RENAISSANCE RESIDENTIAL DESIGN, INC..
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

RENAISSANCE RESIDENTIAL DESIGN, INC..
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC.. NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

PASANOR ARE SUBSECTION CHANNER WITHOUT NOTICE.

ARE FOOTAGE AND DIMENSIONS ARE ESTITIATED AND

ARY IN ACTUAL CONSTRUCTION. ACTUAL POSITION OF

E. ONL OT WILL BE DETERMINED BY THE SITE FLAN AND

E. LALA R. LOOP PAUS AND ELENATION RENDERINGS ARE

TOONCEPTIONS. FLOOR PAUS ARE THE COPPRIGHTED

FERTY OF WEAVER HOWES. ANY USE REPRODUCTION,

APATATION, OR DISPLAY OF THE PLANS IS STRICLY

OMERITED. SEE INSW HOME SALES CONSULTANT FOR

RHERIT DETAILS. COPYRIGHT © 2020 WEAVER HOMES

WEAVER HOMES
CAROLINA COLLECTIO
HICKORY-II DRIVE LEFT

DATE: FEBRUARY 19, 2021

REV.:

SCALE: 1/4" = 1'-0"

DRAWN BY: WG
ENGINEERED BY:

REVIEWED BY:

SECOND FLOOR FRAMING PLAN

S-2

STRAP CARACITY SHALL EQUAL 1:00 LBS, OR 4,000 LBS WERE PORT YOU LIST PRESENT

MIN DOUBLE STUD FRAMING COVERED WITH MAIN YOU THEN WOOD STRUCTURAL PRINCE BEATHING TO THE TABLE ROOD STRUCTURAL PRINCE BEATHING TO JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST POR TABLE ROOD STRUCTURAL PRINCE BEATHING SHEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE ROOD STRUCTURAL PRINCE BEATHING TO GRIND JOIST PER TABLE BEATHING TO GRIND JOIST DESTRUCTURAL PANEL BEATHING TO GRIND JOIST DESTRUCTURAL PANEL BEATHING TO GRIND JOIST JOIST P

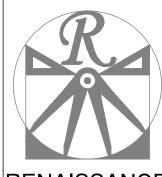
FIGURE R602.10.1
METHOD PF—PORTAL FRAME CONSTRUCTION

EXTENT OF HEADER WITH SINGLE PORTAL FRAME
(ONE BRACED WALL PANEL)

SCALE NOTE: 18x24 PRINTS ARE
TO SCALE AS NOTED.
11x17 PRINTS ARE NOT TO SCALE

nch = 25.4 mm, 1 foot = 305 mm, 1 lb = 4.45 N.

TABLE R602.7.5


MINIMUM NUMBER OF FULL HEIGHT STUDS
AT EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEET)		SPACING (INCHES) E R602.3(5)
(, ==,)	16	24
UP TO 3'	1	1
4'	2	1
8'	3	2
12'	5	3
16'	6	4

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET

RENAISSANCE RESIDENTIAL DESIGN, INC.

RALEIGH, NC 27612 (919) 649-4128 WWW.RRDCAROLINA.COM

WWW.RRDCAROLINA.COM The art of transforming your vision into real

RENAISSANCE RESIDENTIAL DESIGN, INC...
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

RENAISSANCE RESIDENTIAL DESIGN, INC..
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC.. NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

EINSTRUNG THE SUBJECT IN CLARAGE WITHOUT NOTICE.

UARE FOOTAGE AND DIMENSIONS AFE ESTIMATED AND

VARY IN ACTUAL CONSTRUCTION. ACTUAL POSITION OF

FIS ON LOT WILL BE DETENDANIED BY THE STATE PLAN AND

FINAL FLOOR PLANS AND ELENATON REDIEFRINGS ARE

ST CONCEPTONS. FLOOR PLANS ARE THE COPPRIGHTED

PERTIY OF VEAVER HOMES ANY USE, REPRODUCTION,

MORPATION, OR DISPLAY OF THE PLANS IS STRICTLY

ROHBITED. SEE NIEW HOME SALES CONSULTANT FOR

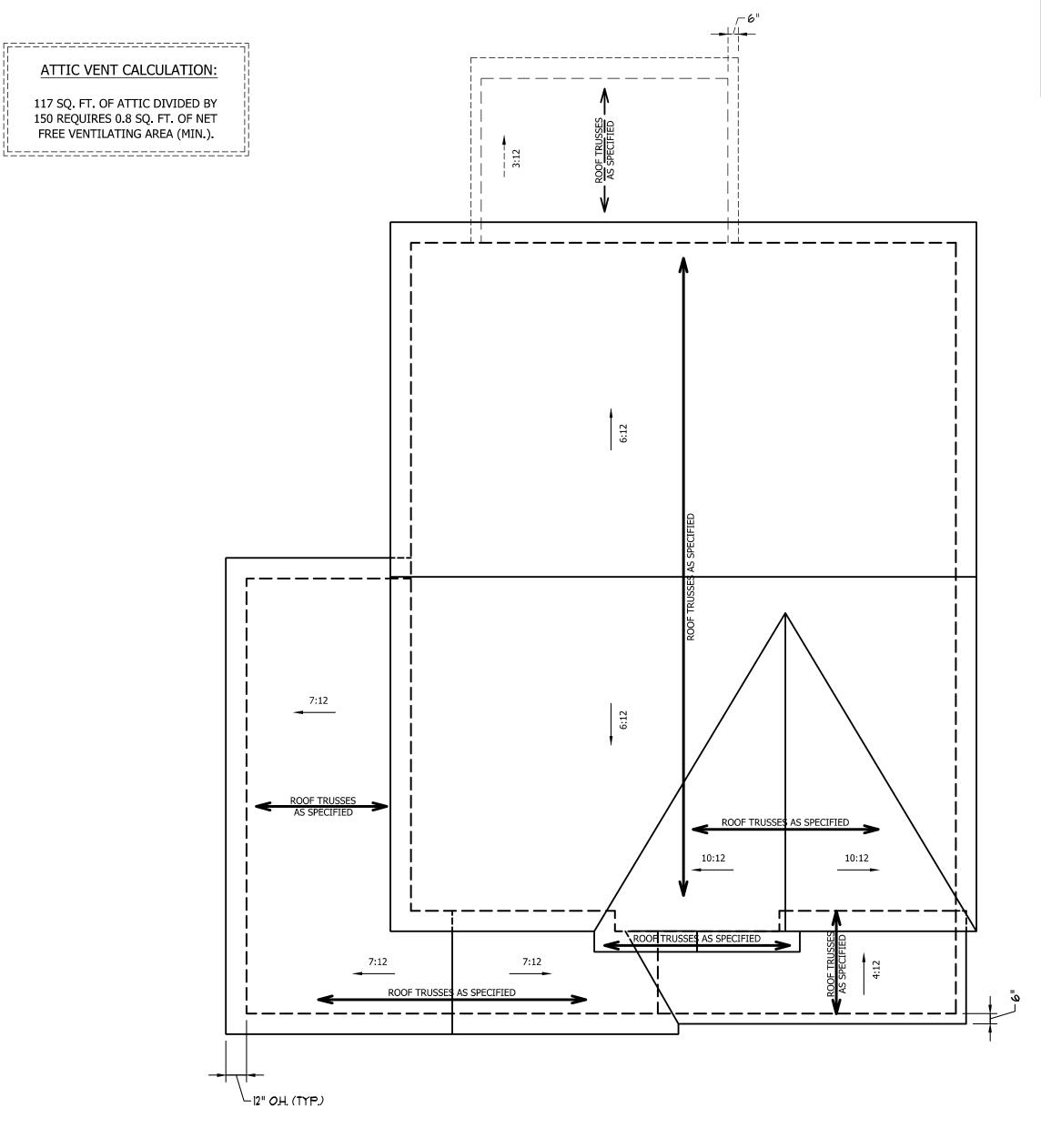
HERENT DETAILS. COPPRIGHT © 2020 WEAVER HOMES

WEAVER HOMES CAROLINA COLLECTION HICKORY-II DRIVE LEFT

DATE: FEBRUARY 19, 2021

REV.:

SCALE: 1/4" = 1'-0"

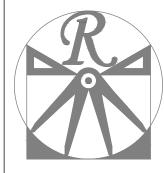

DRAWN BY: WG
ENGINEERED BY:

REVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

SCALE NOTE: 18x24 PRINTS ARE
TO SCALE AS NOTED.
11x17 PRINTS ARE NOT TO SCALE



ATTIC VENT CALCULATION:

1302 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 8.7 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE #2 SPF (UNO).
 HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0".
 FASTEN MEMBERS WITH THREE ROWS OF 12d
 NAILS @ 16" O.C. (TYP.)
- 3. STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- 4. FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32"
 O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING, EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS,
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.

RENAISSANCE

RESIDENTIAL DESIGN, INC.
RALEIGH, NC 27612
(919) 649-4128

WWW.RRDCAROLINA.COM The art of transforming your vision into realing the art of transforming your vision into realing the art of transforming your vision into realing the art of transformation in the art of the art of transformation in the art of the art of transformation in t

RENAISSANCE RESIDENTIAL DESIGN, INC...
RESERVES THE RIGHT TO MAKE
MODIFICATIONS TO FLOOR PLANS,
DIMENSIONS, MATERIALS, AND
SPECIFICATIONS WITHOUT NOTICE.
THESE DRAWINGS ARE FOR THE
PURPOSE OF CONVEYING AN
ARCHITECTURAL CONCEPT ONLY.

RENAISANCE RESIDENTIAL DESIGN, INC...
HEREBY EXPRESSLY RESERVES ITS
COMMON LAW COPYRIGHT AND OTHER
PROPERTY RIGHTS IN THESE PLANS.
THESE PLANS AND DRAWINGS ARE NOT
TO BE REPRODUCED, CHANGED, OR
COPIED IN ANY FORM OR MANNER
WITHOUT FIRST OBTAINING THE EXPRESS
WRITTEN CONSENT OF RENAISSANCE
RESIDENTIAL DESIGNS, INC... NOR ARE
THEY TO BE ASSIGNED TO ANY THIRD
PARTY WITHOUT FIRST OBTAINING SAID
WRITTEN PERMISSION AND CONSENT.

ARE FOOTAGE AND DIMESSIONS ARE ESTIMATED AND ARRY IN ACTUAL CONSTRUCTION. ACTUAL POSITION OF ECON LOTY WILL BE DETERMINED BY THE SITE FLAN AND PLAN AND ELENATION RENDERINGS ARE TOORP PANS AND ELENATION RENDERINGS ARE THE COPYRIGHTED PERITY OF WEAVER HOMES. ANY USE, REPRODUCTION, OAPTATION, OR DISPLAY OF THE PLANS IS STRICTLY OHIBITED. SEE INEW HOMES SALES OWEN UTAIN TOR BRENT OF THAT IS COPYRIGHT OF AND WEAVER HOMES.

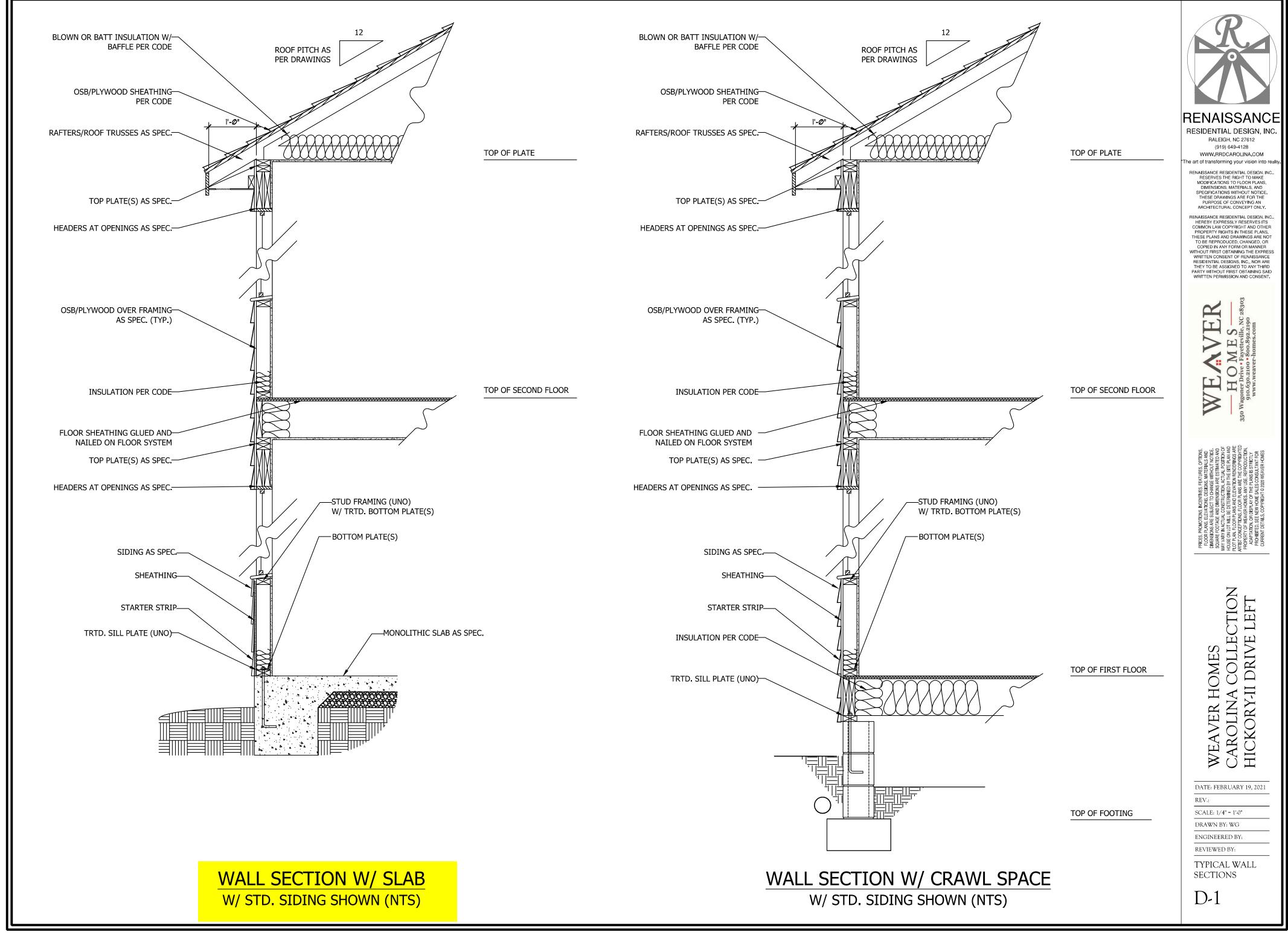
WEAVER HOMES CAROLINA COLLECTION HICKORY-II DRIVE LEFT

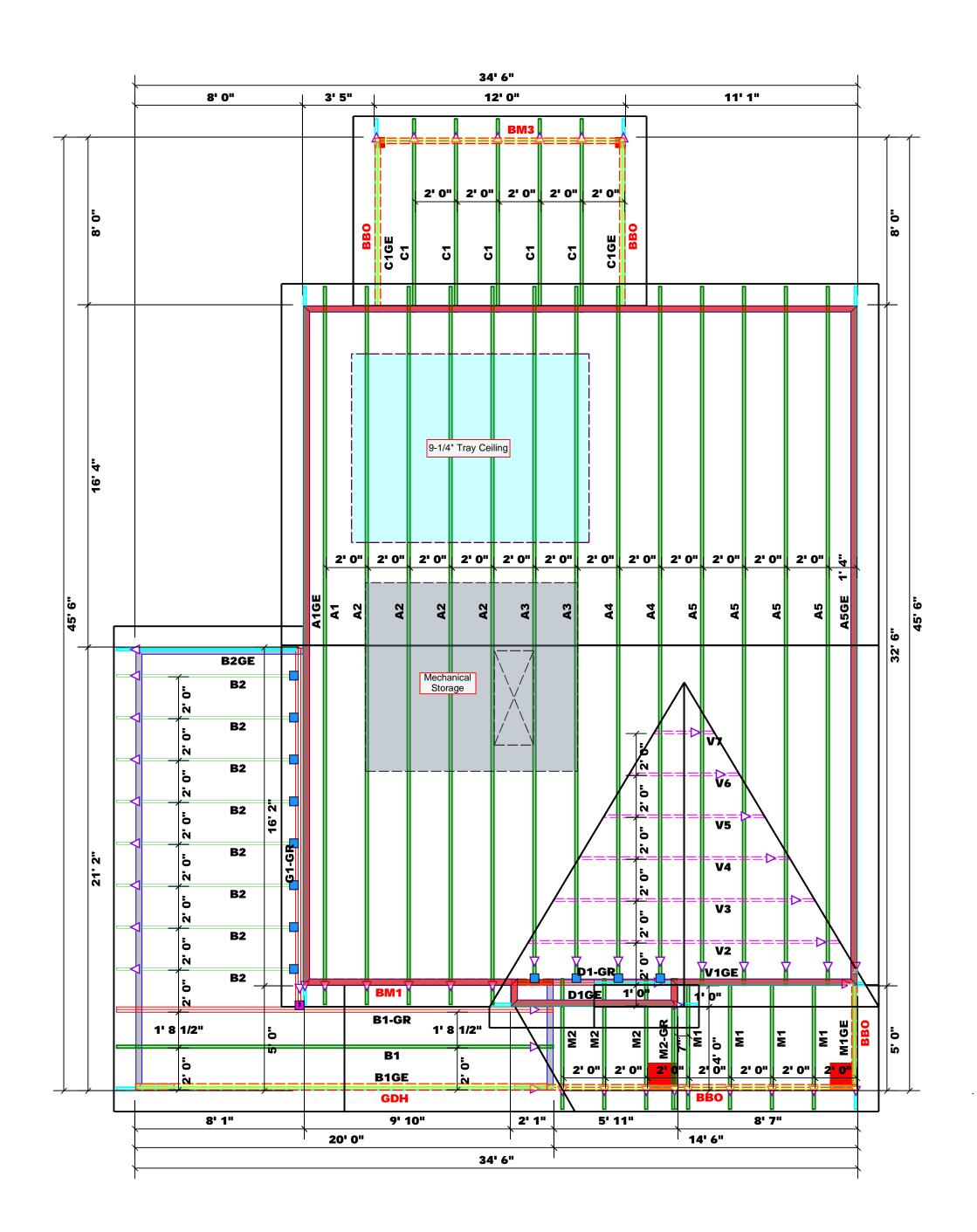
DATE: FEBRUARY 19, 2021

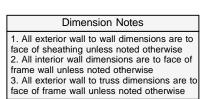
KEV.:

SCALE: 1/4" = 1'-0"

DRAWN BY: WG
ENGINEERED BY:


REVIEWED BY:


ROOF PLAN


S-4

SCALE NOTE: 18x24 PRINTS ARE
TO SCALE AS NOTED.

11x17 PRINTS ARE NOT TO SCALE

All Walls Shown Are Considered Load Bearing

Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 ft. Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheets

L Ha	atch Legend	
	Padded HVAC	
	2nd Floor Walls	
	Tray Ceiling	
	Drop Beam	
		1

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	12	NA	16d/3-1/2"	16d/3-1/2"
3	THDH210-3	USP	1	Varies	16d/3-1/2"	16d/3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Truss Placement Plan Scale: 1/4"=1

соттесн **ROOF & FLOOR**

TRUSSES & BEAMS

Reilly Road Industrial Park Fayetteville, N.C. 28309

Phone: (910) 864-8787 Fax: (910) 864-4444 dearing reactions less than or equal to 3000# are eemed to comply with the prescriptive Code equirements. The contractor shall refer to the ttached Tables (derived from the prescriptive Code equirements) to determine the minimum foundatior ize and number of wood studs required to support eactions greater than 3000# but not greater than 5000#. A registered design professional shall be etained to design the support system for any eaction that exceeds those specified in the attached ables. A registered design professional shall be etained to design the support system for all eactions that exceed 15000#.

David Landry

David Landry

LOAD CHART FOR JACK STUDS (BASED ON TABLES ROOF 5(1) & (b))

	10	v aco	ON	LIVERS	2 PC	WE 11	ri es de	4.73		
NU	WBER C	JE JA		STUDS F EADER/			9.6	A END	Of	
ENB REACTION (UP 10)	REQ10 STUDS FOR (2) PLY HEADER			END REACTION (UF TO)	REQ16 STUTS FOR	(3) ALY HEADER		END REACTION (NR TO)	60. 40	REQUESTUBS FOR
1700	1			2550	1	l		340	Ō	1
3400	5			5100	2	2		680	0	2
5100	3		ŀ	7650	3	3		1020	Ю	3
6800	4		1	0200	1 4	1		1360	0	4
8500	5		1	2750	5)		1700	Ю	5
10200	6		1	5300	1 6	,				
11900	7									
13600	8									
15300	9									

É	00 / / / / /	1 / 2/17
. TNC.	CI 1 Y / CO.	CLIY / CO. Spring Lake / Harnett
	ADDRESS	Hayes Road
ď	MODEL	Roof
	DATE REV . 04/13/22	04/13/22
	DRAWN BY	DRAWN BY David Landry
	SALES REP.	SALES REP. Lenny Norris

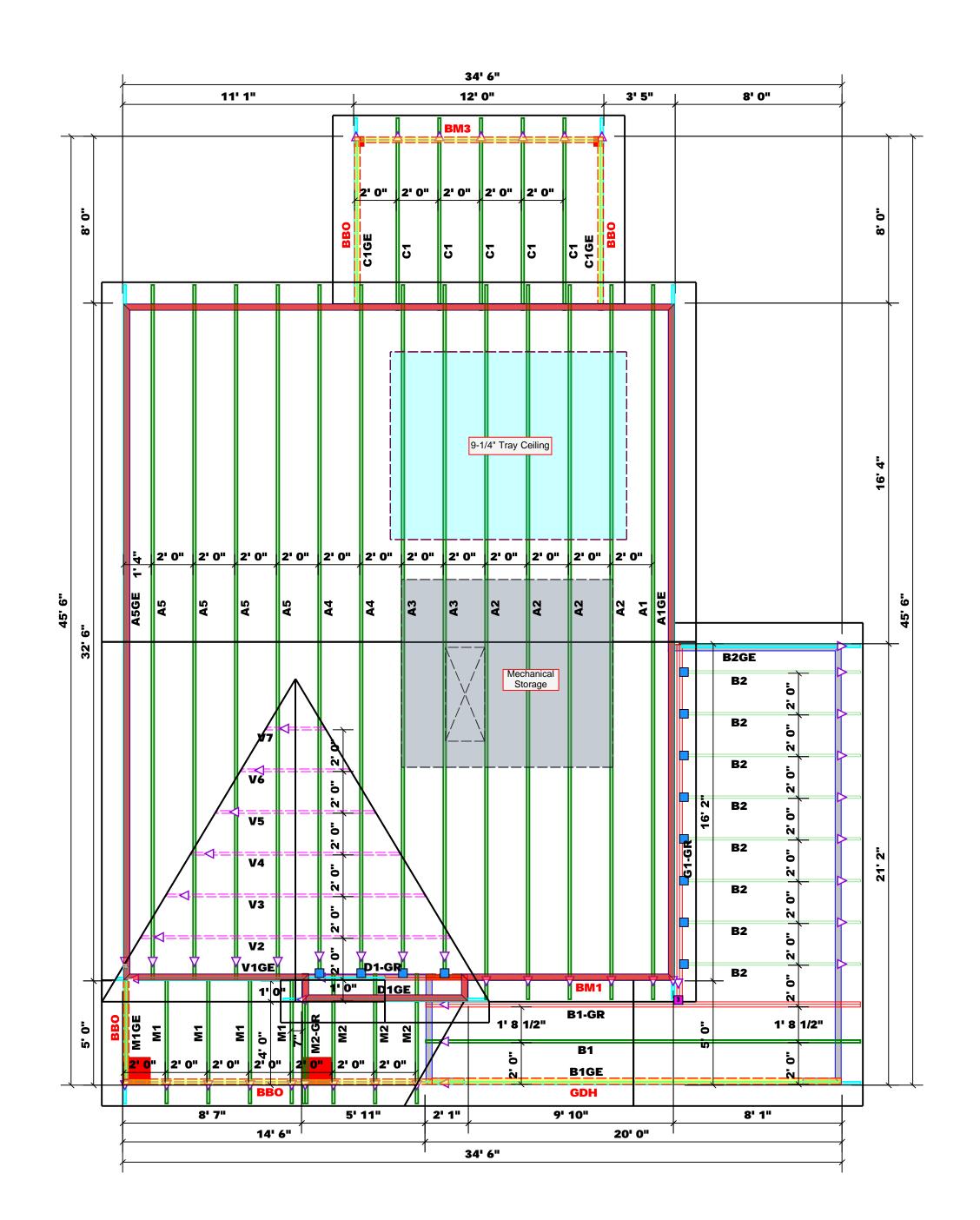
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com (Reference Engineered Truss Drawing)

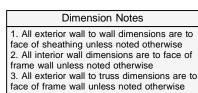
PLAN

JOB NAME

N/A

SEAL DATE


QUOTE#


Weaver Development Co.

BUILDER

= Indicates Left End of Truss

Do NOT Erect Truss Backwards

All Walls Shown Are Considered Load Bearing

Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 ft. Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheets

На	atch Legend
	Padded HVAC
	2nd Floor Walls
	Tray Ceiling
	Drop Beam

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	12	NA	16d/3-1/2"	16d/3-1/2"
3	THDH210-3	USP	1	Varies	16d/3-1/2"	16d/3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

dearing reactions less than or equal to 3000# are eemed to comply with the prescriptive Code equirements. The contractor shall refer to the ttached Tables (derived from the prescriptive Code equirements) to determine the minimum foundatior ize and number of wood studs required to support eactions greater than 3000# but not greater than 5000#. A registered design professional shall be etained to design the support system for any eaction that exceeds those specified in the attached ables. A registered design professional shall be etained to design the support system for all eactions that exceed 15000#.

David Landry

LOAD CHART FOR JACK STUDS (BASED ON TABLES ROOF 5(1) & (b))

NUA	WBER C	STUBS R NEADERA		A END OF	F
END REACHION (UP 10)	REQ10 STUDS FOR (2) PLY HEADER	END REACTION (UF TD)	REQ 15 STUTIS FOR (3) ALY HEADER	END REACTION (UP TO)	REQYS STUDS FOR
1700	1	2550	1	3400	1
3400	2	5100	2	6800	2
5100	3	7650	3	10200	3
6800	4	10200	4	13600	4
8500	5	12750	5	17000	5
10200		15300	- 6		
11900	7				
13600	8				
15300	9				

. Inc.	CITY / CO.	CITY / CO. Spring Lake / Harnett	13600 15300
	ADDRESS	Hayes Road	8 9
.p	MODEL	Roof	
	DATE REV.	04/13/22	
	DRAWN BY	DRAWN BY David Landry	
	SALES REP.	SALES REP. Lenny Norris	

JOB NAME QUOTE# BUILDER PLAN THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

N/A

SEAL DATE

Weaver Development Co.

RE: J0422-1795

Lot 3 McPhail Farm

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development Co. Inc. Project Name: J0422-1795 Lot/Block: 3 Model: Hickory II Model: Hickory II

Address: Hayes Road Subdivision: McPhail Farm

City: Spring Lake State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-10 Wind Speed: 130 mph Floor Load: N/A psf Roof Load: 40.0 psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16492049	A1	12/20/2021	21	E16492069	M2-GR	12/20/2021
2	E16492050	A1GE	12/20/2021	22	E16492070	V1GE	12/20/2021
3	E16492051	A2	12/20/2021	23	E16492071	V2	12/20/2021
4	E16492052	A3	12/20/2021	24	E16492072	V3	12/20/2021
5	E16492053	A4	12/20/2021	25	E16492073	V4	12/20/2021
6	E16492054	A5	12/20/2021	26	E16492074	V5	12/20/2021
7	E16492055	A5GE	12/20/2021	27	E16492075	V6	12/20/2021
8	E16492056	B1	12/20/2021	28	E16492076	V7	12/20/2021
9	E16492057	B1-GR	12/20/2021				
10	E16492058	B1GE	12/20/2021				
11	E16492059	B2	12/20/2021				
12	E16492060	B2GE	12/20/2021				
13	E16492061	C1	12/20/2021				

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

C1GE

D1-GR

D1GE

M1

M2

G1-GR

M1GE

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

E16492062

E16492063

E16492064

E16492065

E16492066

E16492067

E16492068

14 15

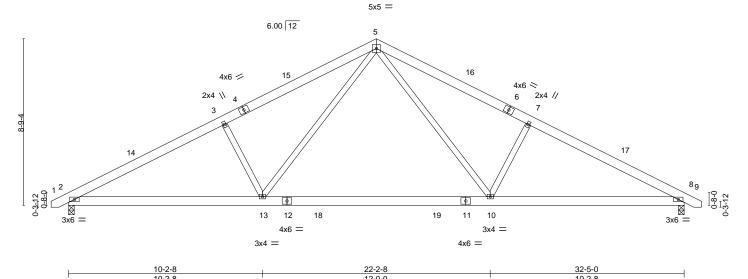
16

17

18

19

20


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492049 J0422-1795 COMMON A1 Job Reference (optional)

Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:46 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-cOokM7e_U9uBJpmwi?x?s48ibor5qAAQYoEz_ y74yN 16-2-8 32-5-0 0-11-0 8-0-0 8-0-0 8-2-8

Scale = 1:60.7

	10-2-8				10-2-8		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.34 10-13	>999 360	MT20 244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.64	Vert(CT) -0.47 10-13	>824 240			
BCLL 0.0 *	Rep Stress Incr YES	WB 0.27	Horz(CT) 0.05 8	n/a n/a			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 2-13	>999 240	Weight: 208 lb FT = 20%		

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=-110(LC 10)

Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486 TOP CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964 **BOT CHORD**

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

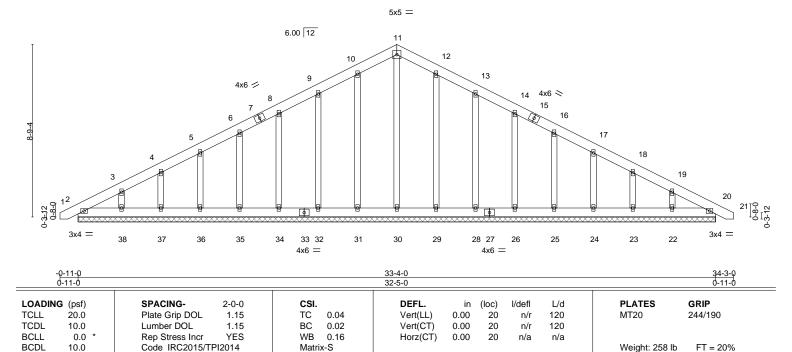
December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492050 J0422-1795 A1GE COMMON SUPPORTED GAB Job Reference (optional) Comtech, Inc.


Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:49 2021 Page 1

17-1-8

16-2-8

ID:1yUksKymplk2404ufZYCrxyoKUD-1zUs?9gsn4GmAGVUN8UiUjmGc00b1ZbsEmTdbJy74yK 33-4-0 16-2-8

Scale = 1:58.6

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 **OTHERS**

-0-11-0 0-11-0

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 32-5-0.

Max Horz 2=-171(LC 17) (lb) -

Max Uplift All uplift 100 b or less at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22 Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23,

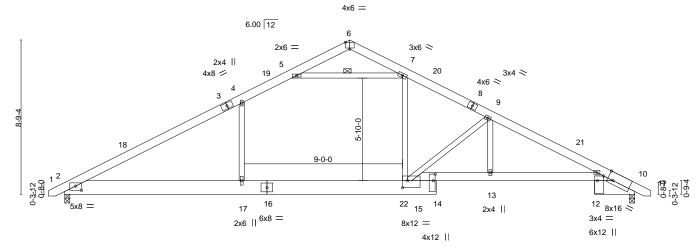
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-114/284, 11-12=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

December 20,2021


Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492051 J0422-1795 A2 ROOF SPECIAL 4 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

10-2-8 10-2-8

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:51 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-zMcdQri7IiWUPaftUYWAZ8sR3pYxVLf9h4ykfCy74yl 16-2-8 19-2-8 24-2-8 30-1-8 32-5-0 33-4-0 2-3-8 0-11-0 6-0-0 3-0-0 5-0-0

Scale = 1:65.5

	10-2-8	16-2-8	19-2-8	21-1-8	24-2-8	_ı 30-1-8	32-5-0
	10-2-8	6-0-0	3-0-0	1-11-0	3-1-0	5-11-0	2-3-8
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4-0,Edge]						

LOADING	G (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC	0.75	Vert(LL)	-0.21	17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC	0.67	Vert(CT)	-0.38	17	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB	0.70	Horz(CT)	0.09	10	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-	-S	Wind(LL)	0.17	2-17	>999	240	Weight: 247 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x6 SP No 1

BOT CHORD 2x10 SP No.1 *Except*

10-15: 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=110(LC 11)

Max Uplift 2=-90(LC 12), 10=-90(LC 13) Max Grav 2=1393(LC 2), 10=1353(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2217/403, 4-5=-1870/483, 7-9=-2258/519, 9-10=-2889/551 $2\text{-}17\text{=-}193/1848,\ 15\text{-}17\text{=-}195/1860,\ 13\text{-}15\text{=-}371/2525,\ 10\text{-}13\text{=-}380/2525}$ **BOT CHORD WEBS** 4-17=-29/402, 7-15=-114/967, 9-15=-1075/232, 9-13=0/616, 5-7=-1955/459

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-0-8 oc purlins.

5-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

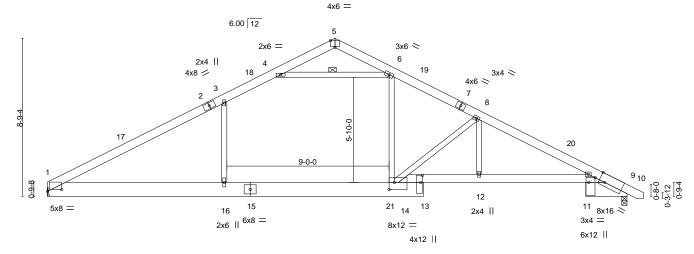
Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492052 J0422-1795 ROOF SPECIAL 2 A3 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

9-11-8

15-11-8

6-0-0


8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:52 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-RY9?dAjl3?eL1kE32G2P6LOcfDuEEorJwkhHBey74yH 18-11-8 23-11-8 29-10-8 32-2-0 33-1-0 2-3-8 0-11-0 3-0-0 5-0-0 5-11-0

Structural wood sheathing directly applied or 3-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Scale: 3/16"=1"

1	9-11-8	18-11-8 2	20-10-8	23-11-8	29-10-8	32-2-0
	9-11-8	9-0-0	1-11-0	3-1-0	5-11-0	2-3-8
Plate Offsets (X,Y)	[1:0-9-6,0-1-2], [5:0-3-0,Edge], [9:0-4-0,E	Edge], [11:0-3-4,Edge], [13:0-4-12,0-1-4], [14:0-3-8	3,0-4-12]		

			0 1/1	<u> </u>	, , ,				•			
LOADING ((psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.21	16	>999	360	MT20	244/190
TCDL 1	10.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.36	16	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.09	9	n/a	n/a		
BCDL 1	10.0	Code IRC2015/TP	12014	Matri	x-S	Wind(LL)	0.16	1-16	>999	240	Weight: 243 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x6 SP No 1

BOT CHORD 2x10 SP No.1 *Except*

9-14: 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 9=0-3-8

Max Horz 1=-111(LC 8)

Max Uplift 1=-76(LC 12), 9=-90(LC 13) Max Grav 1=1345(LC 2), 9=1347(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2189/401, 3-4=-1853/491, 6-8=-2237/517, 8-9=-2874/549 **BOT CHORD**

1-16=-198/1827, 14-16=-200/1839, 12-14=-375/2511, 9-12=-384/2511 **WEBS** 6-14=-117/966, 3-16=-53/392, 4-6=-1931/474, 8-14=-1081/228, 8-12=0/620

NOTES-

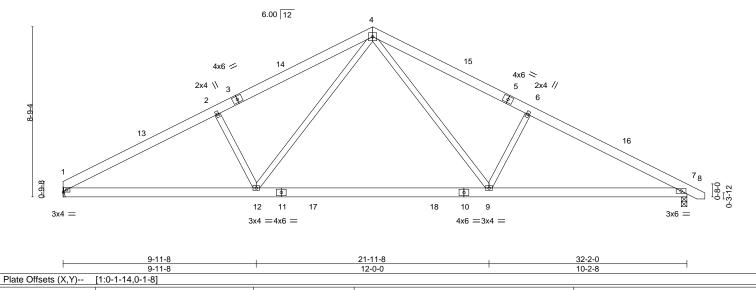
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492053 J0422-1795 COMMON 2 A4 Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:53 2021 Page 1 Comtech, Inc.

ID:1yUksKymplk2404ufZYCrxyoKUD-vkjNqWkNqJmCfupGczZefZxupdEkzLtS9ORrk4y74yG 7-11-8 7-11-8 15-11-8 23-11-8 32-2-0 8-0-0 8-0-0 8-2-8

5x5 =

Scale = 1:59.4

LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.34 9-12 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.64 Vert(CT) -0.47 9-12 >822 240 WB **BCLL** 0.0 Rep Stress Incr YES 0.27 Horz(CT) 0.05 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.05 12 >999 240 Weight: 204 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 WFBS

REACTIONS. (size) 1=Mechanical, 7=0-3-8

Max Horz 1=-111(LC 8)

Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973. 9-12=-109/1291. 7-9=-324/1953

WFBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

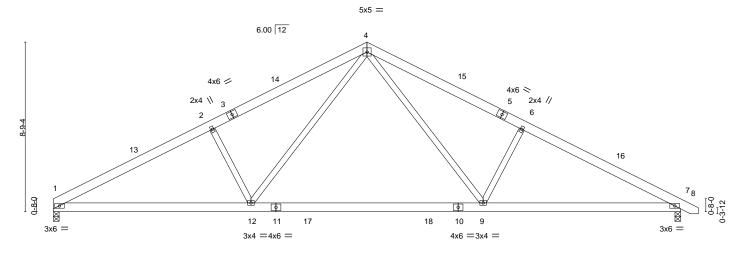
Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492054 J0422-1795 COMMON A5 Job Reference (optional)

Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:54 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-NxHl2sk?bdu3G2OSAh4tBmU3V1ayio3cN2AOGXy74yF 8-2-8 8-2-8 16-2-8 . 24-2-8 32-5-0 8-0-0 8-0-0 8-2-8

Scale = 1:59.6

	10-2-8 10-2-8	12-0-0	1	10-2-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.29 Vert(LL) BC 0.65 Vert(CT) WB 0.27 Horz(CT) Matrix-S Wind(LL)	 l/defl L/d >999 360 >822 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 206 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10)

Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966 **WEBS** 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

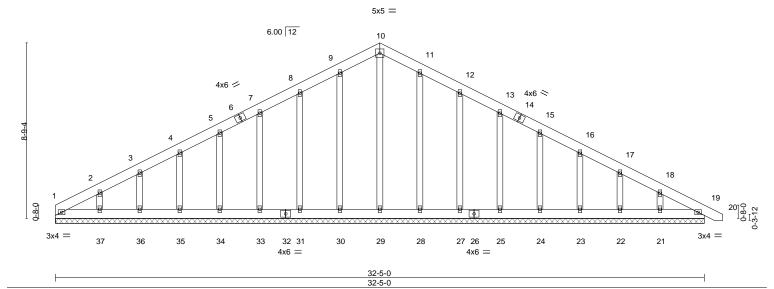
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

Structural wood sheathing directly applied or 4-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021


Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492055 J0422-1795 COMMON SUPPORTED GAB A5GE Job Reference (optional) Comtech, Inc.

Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:55 2021 Page 1

16-2-8 16-2-8

ID:1yUksKymplk2404ufZYCrxyoKUD-r7r7FCldMw0vuByejOb6k_0I5Q4?RG4lchwyozy74yE 32-5-0 16-2-8

Scale = 1:57.6

LOADING	i (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	0.00	19	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	19	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.00	19	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-S						Weight: 256 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 32-5-0.

Max Horz 1=-175(LC 17) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except 37=-101(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 31, 33, 34, 35, 36, 37, 28, 27, 25, 24, 23, 22, 21, 19

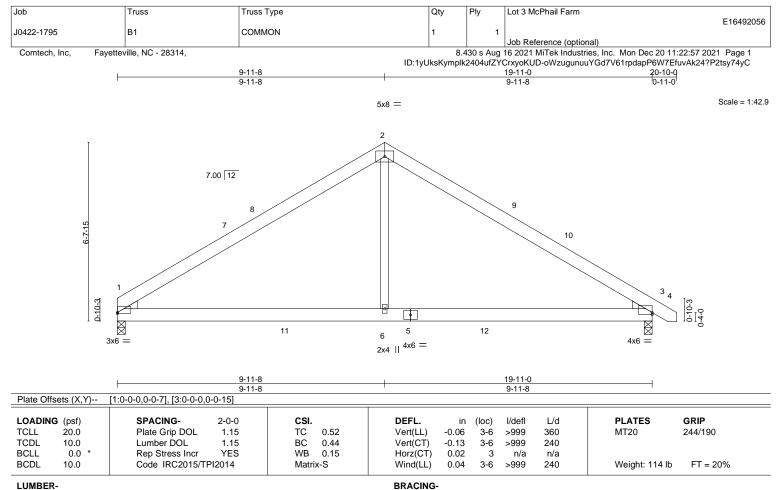
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-114/284, 10-11=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

December 20,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz 1=-149(LC 8)

Max Uplift 1=-43(LC 12), 3=-56(LC 13) Max Grav 1=900(LC 19), 3=951(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1193/217. 2-3=-1221/216 **BOT CHORD** 1-6=-30/956, 3-6=-30/956

WEBS 2-6=0/660

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-11-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

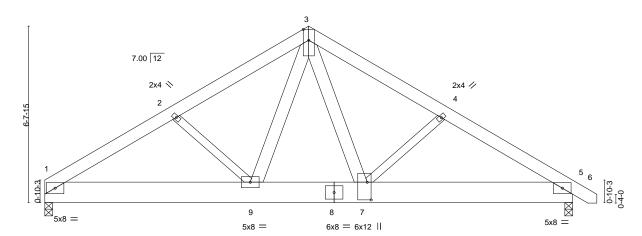
December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492057 J0422-1795 B1-GR COMMON GIRDER 2 Job Reference (optional)


Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:59 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-ku5e5ao8Q9WLNpGPyEg2uqBwH2NwN_uLXJu9xky74yA 9-11-8 14-11-8 19-11-0 5-0-0 5-0-0 4-11-8

> Scale = 1:43.5 5x12 ||

> > Structural wood sheathing directly applied or 4-11-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

12-2-0

Plate Offs	sets (X,Y)	[7:0-8-0,0-1-12]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.07	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.14	7	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.55	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S	Wind(LL)	0.05	7	>999	240	Weight: 348 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x10 SP 2400F 2.0E **WEBS** 2x6 SP No.1 *Except* 4-7,2-9: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-148(LC 4)

Max Uplift 1=-423(LC 8), 5=-642(LC 9) Max Grav 1=4234(LC 2), 5=6219(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-7519/795, 2-3=-7422/798, 3-4=-10665/1144, 4-5=-10716/1136

BOT CHORD 1-9=-679/6256, 7-9=-581/6251, 5-7=-887/8935

WEBS 3-7=-953/8888, 4-7=-281/487, 3-9=-44/404, 2-9=-284/309

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 4 rows staggered at 0-2-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9034 lb down and 972 lb up at 12-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb) Vert: 7=-7520(B)

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492058 J0422-1795 B1GE COMMON SUPPORTED GAB Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:22:58 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-GiXGuEnWfrOUlfhDPW8pMcepae5keeDBlf8cPly74yB 9-11-8 9-11-8 19-11-0 20-10-0 0-11-0 Scale = 1:42.6 5x5 = 6 7 5 7.00 12 8 9 3 10

	-	19-11-0 19-11-0						
19-11-0								
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.03 BC 0.02	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00	(loc) 11 11	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190

18 17 16

0.00

4x6 =

Horz(CT)

15

11

n/a

14

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

13

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BCDL 10.0 Code IRC2015/TPI2014 Matrix-S LUMBER-BRACING-

20

19

0.07

TOP CHORD 2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 **OTHERS**

YES

21

REACTIONS. All bearings 19-11-0. Max Horz 1=-186(LC 8) (lb) -

WB

13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BCLL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

0-10-3

0.0

3x4 =

22

Rep Stress Incr

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

3x4 =

Weight: 146 lb

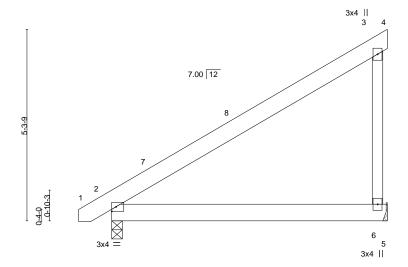
FT = 20%

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm	
						E16492059
J0422-1795	B2	JACK-CLOSED	8	1		
					Job Reference (optional)	

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:00 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-C4e0lwpmBTeC_zrcWxBHR1k4LRkA6ZnUmzdjUAy74y9 7-7-8 7-7-8

Scale: 3/8"=1

BRACING-TOP CHORD

BOT CHORD

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc	c) I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.33	Vert(LL)	-0.04 2-	6 >999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.21	Vert(CT)	-0.07 2-	6 >999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	2 ****	240	Weight: 48 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD**

2x4 SP No.2 **WEBS**

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12)

Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-6=-288/220

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0-11-0

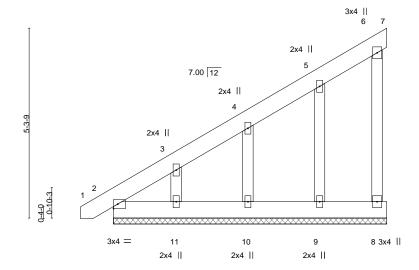
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 20,2021



Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm	٦
					E16492060)
J0422-1795	B2GE	MONOPITCH SUPPORTED	1	1		
					Joh Reference (ontional)	

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:00 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-C4e0lwpmBTeC_zrcWxBHR1k9_Rnl6ZJUmzdjUAy74y9

Scale: 3/8"=1'

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL)	-0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.01	Vert(CT)	-0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 57 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

NOTES-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD**

2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 7-7-8. (lb) -Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12)

0-11-0

Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-269/227

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

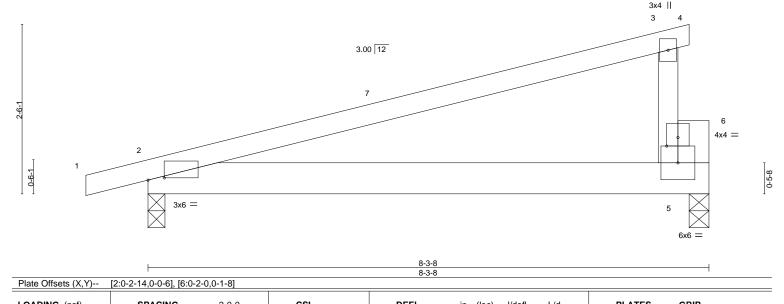
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (jt=lb) 11=117.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 20,2021



Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm	
					E1649206	.
J0422-1795	C1	Monopitch	5	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	rille, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:01 2021 Page 1	_

ID:1yUksKymplk2404ufZYCrxyoKUD-gHCPWFqOymn3c6Qo4fiWzFG70r4tr01e_dNG0dy74y8 -0-11-0 8-0-0 0-11-0

Scale = 1:17.0

LUADIN	psi) و	SPACING-	2-0-0	Col.		DEFL.	In	(100)	i/deii	L/a	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.05	2-5	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.10	2-5	>969	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a			
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-P	Wind(LL)	0.10	2-5	>886	240	Weight: 37 lb	FT = 20%	

BRACING-TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No 1 2x6 SP No.1

BOT CHORD 2x4 SP No.2 WFBS

OTHERS 2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8)

Max Uplift 2=-150(LC 8), 5=-127(LC 8)

Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

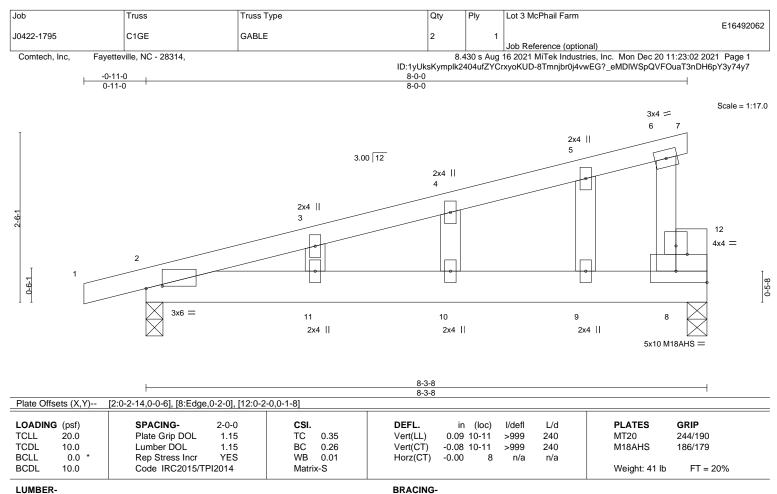
- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127,

Structural wood sheathing directly applied or 5-3-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 20,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WFBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2 *Except*

8-12: 2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 8=0-3-8

Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 20,2021

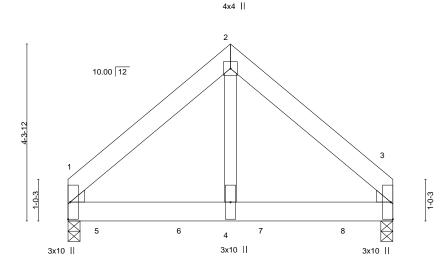
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492063 J0422-1795 D1-GR Common Girder 2 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.


8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-5suX8HsHEh9eTa8NlnFDbtulV30Y2Hm4hbbwdyy74y5

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-11-8 3-11-8

Scale = 1:28.1

SPACING-CSI. GRIP LOADING (psf) 2-0-0 DEFL. in (loc) I/defl L/d **PLATES TCLL** 20.0 Plate Grip DOL 1.15 TC 0.38 Vert(LL) -0.02 3-4 >999 360 MT20 244/190 TCDL Lumber DOL 1.15 ВС 0.57 Vert(CT) -0.04 3-4 >999 240 WB **BCLL** 0.0 Rep Stress Incr NO 0.39 Horz(CT) 0.01 3 n/a n/a Code IRC2015/TPI2014 Wind(LL) BCDL 10.0 Matrix-P 0.01 3-4 >999 240 Weight: 100 lb FT = 20%

> BRACING-TOP CHORD

> BOT CHORD

3-11-8

3-11-8 3-11-8

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz 1=91(LC 24) Max Uplift 1=-191(LC 8), 3=-180(LC 9)

Max Grav 1=2919(LC 1), 3=2779(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2418/177, 2-3=-2418/177 BOT CHORD 1-4=-100/1678, 3-4=-100/1678

WEBS 2-4=-154/3142

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 1-3=-20

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

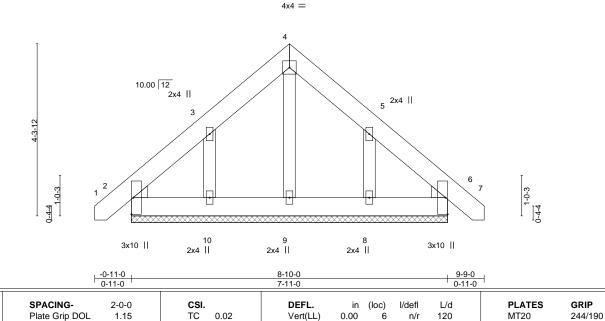
Jo	ob	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
	100 1705	D4 0D	0 0: 1			E16492063
JC)422-1795	D1-GR	Common Girder	1	2	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-5suX8HsHEh9eTa8NlnFDbtulV30Y2Hm4hbbwdyy74y5

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)


Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492064 J0422-1795 D1GE COMMON SUPPORTED GAB Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:03 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-cfK9xxreUO1nrQaBB4k_3fMfMfozJw1wSxsN4Vy74y6

4-10-8 8-10-0 3-11-8

Scale = 1:28.8

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

0.00

6

6

n/r

n/a

120

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 60 lb

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS WEDGE

20.0

0.0

10.0

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

(lb) - Max Horz 2=-118(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

1.15

YES

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

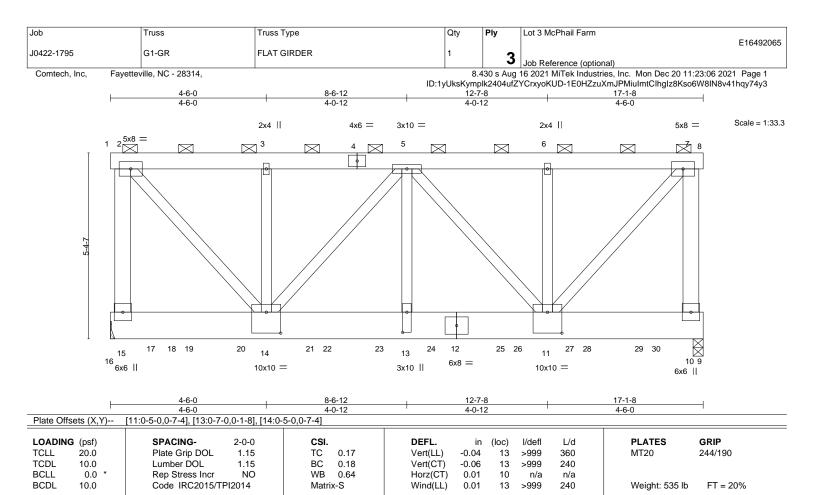
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

вс

WB

Matrix-P

0.01


0.03

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152. 8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

December 20,2021

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 **BOT CHORD** 2x10 SP 2400F 2 0F WFBS 2x4 SP No.2 *Except*

2-15,7-10: 2x6 SP No.1

REACTIONS.

15=Mechanical, 10=0-3-8 Max Uplift 15=-952(LC 4), 10=-496(LC 5) Max Grav 15=9044(LC 2), 10=5622(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-15=-4967/485, 2-3=-4297/388, 3-5=-4297/388, 5-6=-4012/329, 6-7=-4012/329. TOP CHORD

7-10=-4613/423

BOT CHORD 13-14=-445/5318 11-13=-445/5318

WEBS $2-14 = -563/6307, \, 5-14 = -1816/442, \, 7-11 = -484/5953, \, 5-13 = -233/2760, \, 5-11 = -2053/179$

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x10 - 5 rows staggered at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=952, 10=496.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 5000 lb down and 537 lb up at 1-2-8, 276 lb down and 102 lb up at 1-9-12, 1043 lb down at 2-3-12, 276 lb down and 102 lb up at 3-9-12, 1043 lb down at 4-3-12 276 lb down and 102 lb up at 5-9-12, 1043 lb down at 6-3-12, 276 lb down and 102 lb up at 7-9-12, 1122 lb down at 8-3-12, 1122 lb down at 9-3-12, 276 lb down and 102 lb up at 9-9-12, 1122 lb down at 11-3-12, 276 lb down and 102 lb up at 11-9-12, 1122 lb down at 13-3-12, 276 lb down and 102 lb up at 13-9-12, and 1122 lb down at 15-3-12, and 276 lb down and 102 lb up at

15-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 fev. 5/19/20/20 BEFUNE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2-0-0 oc purlins (6-0-0 max.): 1-8, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

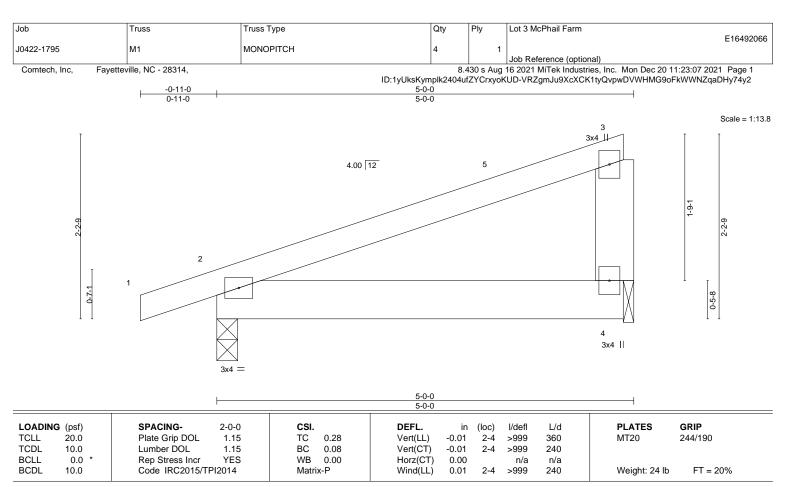
Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492065
J0422-1795	G1-GR	FLAT GIRDER	1	3	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:06 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-1E0HZzuXmJPMiuImtClhglz8Kso6W8lN8v41hqy74y3

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F)

818 Soundside Road Edenton, NC 27932

LUMBER-

REACTIONS.

WFBS

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1

2x6 SP No.1

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8) Max Grav 2=255(LC 1), 4=179(LC 1)

(size) 2=0-3-0, 4=0-1-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492067 J0422-1795 M1GE **GABLE** Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:07 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-VRZgmJu9XcXCK1tyQvpwDVWKGG9dFkHWNZqaDHy74y2 0-11-0 Scale = 1:13.8 2x4 || 3x4 ↓ 4.00 12 2x4 || 3 1-9-1 2-2-9 0-7-1 ⁸ 2x4 || ⁷ 2x4 || 3x4 II 3x4 = 5-0-0 5-0-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) 0.01 8 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 вс 0.09 Vert(CT) -0.01 >999 240 WB **BCLL** 0.0 Rep Stress Incr YES 0.02 Horz(CT) -0.00 6 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 27 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 **BOT CHORD**

2x6 SP No.1 WFBS **OTHERS** 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8)

Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147. 6=115.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492068 3 J0422-1795 M2 Half Hip Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1 -0-11-0 3-11-8 0-11-0 Scale = 1:13.2 3x4 || 3 4.00 12 10 4x6 = 4x4 || 5-3-8 3-11-8 LOADING (psf) SPACING-2-0-0 CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) -0.00 8 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 вс 0.24 Vert(CT) -0.01 8 >999 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.00 Horz(CT) -0.00 n/a n/a Wind(LL) BCDL 10.0 Code IRC2015/TPI2014 Matrix-R 0.02 8 >999 240 Weight: 28 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

2x6 SP No.1 WFBS

REACTIONS. (size) 7=0-3-8, 2=0-3-0

Max Horz 2=69(LC 12)

Max Uplift 7=-173(LC 8), 2=-138(LC 8) Max Grav 7=561(LC 19), 2=349(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-425/505, 5-8=-279/265, 5-6=-233/338, 6-7=-292/309 TOP CHORD

BOT CHORD 2-8=-546/359 7-8=-338/233

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-7-4, Interior(1) 3-7-4 to 5-0-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=173, 2=138.
- 7) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-9=-40, 6-9=-80, 2-7=-20

Concentrated Loads (lb) Vert: 9=-400

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-50, 3-4=-50, 5-9=-100, 6-9=-130, 2-7=-20

Structural wood sheathing directly applied or 5-3-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-8, 5-6. Except:

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-0-0 oc bracing: 3-5

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
J0422-1795	M2	Half Hip	2	1	E16492068
J0422-1795	IVI∠	пан пр 	3	'	Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 9=-350

3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40

Concentrated Loads (lb)

Vert: 9=-300

4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55

Concentrated Loads (lb)

Vert: 9=548

5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55

Concentrated Loads (lb)

Vert: 9=566

6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9

Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51

Concentrated Loads (lb)

Vert: 9=-420

7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9

Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51

Concentrated Loads (lb)

Vert: 9=-420

8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10

Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7

Concentrated Loads (lb)

Vert: 9=154

9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12

Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27

Concentrated Loads (lb)

Vert: 9=43

10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2

Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34

Concentrated Loads (lb)

Vert: 9=-339

11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20

Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0

Concentrated Loads (lb)

Vert: 9=-234

12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12

Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39

Concentrated Loads (lb)

Vert: 9=43

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12

Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27

Concentrated Loads (lb)

Vert: 9=43

14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39

Concentrated Loads (lb)

Vert: 9=43

15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492068
J0422-1795	M2	Half Hip	3	1	
					Job Reference (optional)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

```
LOAD CASE(S) Standard
    Uniform Loads (plf)
            Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
            Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
    Concentrated Loads (lb)
            Vert: 9=43
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
            Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
    Concentrated Loads (lb)
            Vert: 9=-234
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
            Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-234
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
    Uniform Loads (plf)
            Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-200
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
            Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
    Concentrated Loads (lb)
            Vert: 9=-454
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75 (0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20
            Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-375
21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
            Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
    Concentrated Loads (lb)
            Vert: 9=-375
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20
            Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-375
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-400
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-400
25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-350
```

Uniform Loads (plf)

Concentrated Loads (lb) Vert: 9=-350

26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492069 J0422-1795 M2-GR HALF HIP 2 Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0 -0-11-0 3-11-8 0-11-0 Scale = 1:13.2 3x4 || 3 4.00 12 9 4x6 = 3x4 = 3x4 || 5-3-8 3-11-8 LOADING (psf) SPACING-2-0-0 CSI. DEFL (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.12 Vert(LL) -0.00 8 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 вс 0.14 Vert(CT) -0.01 8 >999 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.00 Horz(CT) -0.00 n/a n/a Wind(LL) BCDL 10.0 Code IRC2015/TPI2014 Matrix-R 0.01 8 >999 240 Weight: 55 lb FT = 20%LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 5-3-8 oc purlins,

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

2x6 SP No.1 WFBS

REACTIONS. (size) 7=0-3-8, 2=0-3-0

Max Horz 2=69(LC 12)

Max Uplift 7=-24(LC 8), 2=-112(LC 8) Max Grav 7=710(LC 19), 2=375(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-484/446, 5-8=-334/210, 5-6=-280/291, 6-7=-390/210 TOP CHORD

BOT CHORD 2-8=-491/415 7-8=-291/280

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-7-4, Interior(1) 3-7-4 to 5-0-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb)
- 9) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-60, 3-4=-60, 5-9=-160, 6-9=-200, 2-7=-20

except end verticals, and 2-0-0 oc purlins: 3-8, 5-6. Except:

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-0-0 oc bracing: 3-5

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm	
J0422-1795	M2-GR	HALF HIP	1		E1649206	39
					Job Reference (optional)	

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOIwbgK4pMje0pqtJhl9y74y0

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 9=-400

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20

Concentrated Loads (lb)

Vert: 9=-350

3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40

Concentrated Loads (lb)

Vert: 9=-300

4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52

Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55

Concentrated Loads (lb)

Vert: 9=548

5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52

Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55

Concentrated Loads (lb)

Vert: 9=566

6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9

Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51

Concentrated Loads (lb)

Vert: 9=-420

7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9

Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51

Concentrated Loads (lb)

Vert: 9=-420

8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10 Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7

Concentrated Loads (lb)

Vert: 9=154

9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12

Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27

Concentrated Loads (lb)

Vert: 9=43

10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2

Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34

Concentrated Loads (lb)

Vert: 9=-339

11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20

Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0

Concentrated Loads (lb)

Vert: 9=-234

12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12

Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39

Concentrated Loads (lb)

Vert: 9=43

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12

Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb)

Vert: 9=43

14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm	
J0422-1795	M2-GR	 HALF HIP	1	_		E16492069
					Job Reference (optional)	

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOIwbgK4pMje0pqtJhl9y74y0

```
LOAD CASE(S) Standard
    Uniform Loads (plf)
            Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
            Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
    Concentrated Loads (lb)
            Vert: 9=43
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
            Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
    Concentrated Loads (lb)
            Vert: 9=43
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20
            Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
    Concentrated Loads (lb)
            Vert: 9=-234
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20
            Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-234
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
    Uniform Loads (plf)
            Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-200
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3
            Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
    Concentrated Loads (lb)
            Vert: 9=-454
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20
            Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-375
21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
            Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20
            Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
    Concentrated Loads (lb)
            Vert: 9=-375
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
    Uniform Loads (plf)
            Vert: 1-2=-40. 2-3=-45. 3-4=-40. 5-9=-206. 6-9=-236. 2-7=-20
            Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
    Concentrated Loads (lb)
            Vert: 9=-375
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-400
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-400
25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
    Uniform Loads (plf)
            Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20
    Concentrated Loads (lb)
            Vert: 9=-350
```

Uniform Loads (plf)

Concentrated Loads (lb) Vert: 9=-350

26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor; Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492070 V1GE J0422-1795 ROOF SPECIAL STRUCTU Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:10 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-v0FoPKx1qXvnBVcX62Mdr88s_TBHS42y3X2Eqby74y?

12-10-9 4-3-2

4x4 =

Scale = 1:44.8

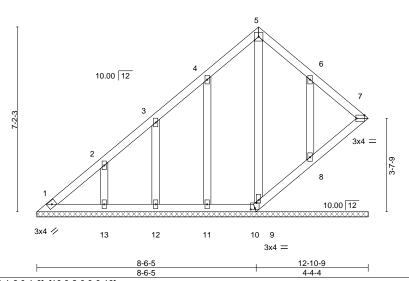


Plate Offsets (X,Y)--[7:0-3-11,Edge], [9:0-1-6,0-1-0], [10:0-2-0,0-0-10] LOADING (psf) SPACING-2-0-0 DEFL. (loc) I/defl L/d **PLATES GRIP TCLL** 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a 999 n/a WB **BCLL** 0.0 Rep Stress Incr YES 0.08 Horz(CT) 0.00 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 75 lb FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x4 SP No 1 **BOT CHORD** 2x4 SP No 1

2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-9.

(lb) -Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (it=lb) 11=112, 12=107, 13=133, 8=126,
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

December 20,2021

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492071 J0422-1795 V2 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:11 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-NCpAcgxgbr1epfBjfltsNLh?XtVeBX56lBooM2y74y_ 7-5-0 7-5-0 14-10-0 Scale = 1:39.2 4x4 = 3 10.00 12 10 2x4 || 2x4 || 12 9 3x4 / 3x4 🚿 13 2x4 || 2x4 || 2x4 || 14-10-0 14-10-0

Plate Off	sets (X,Y)	[4:0-0-0,0-0-0]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a			
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-S						Weight: 64 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No 1 2x4 SP No.1

BOT CHORD 2x4 SP No.2 **OTHERS**

REACTIONS. All bearings 14-10-0. (lb) -Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-338/247, 4-6=-338/247

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492072 J0422-1795 V3 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:12 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-sONZq0yIM99VRpmvDTP5wZDAQHsqw_IFWrXLuUy74xz 6-2-10 6-2-10 6-2-10 Scale = 1:32.8 4x4 = 3 10 10.00 12 2x4 || 2x4 || 3x4 📏 3x4 // 8 7 6 2x4 || 2x4 || 2x4 || 12-5-4 12-5-4 Plate Offsets (X Y)-- [4:0-0-0 0-0-0]

I late Off	3013 (71, 1)	[4.0 0 0,0 0 0]		
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) n/a - n/a 999 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) n/a - n/a 999
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.00 5 n/a n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 52 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

2x4 SP No.2 **OTHERS**

REACTIONS. All bearings 12-5-4. (lb) -Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E16492073 J0422-1795 V4 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:14 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-onVJFi_YumPDg6vlLuRZ?_JVR5XFOuPY_90SyNy74xx 5-0-3 5-0-3 10-0-7 5-0-4 Scale = 1:26.9 4x4 = 10.00 12 4 3x4 📏 3x4 // 2x4 || 10-0-7 10-0-7 LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) n/a n/a 999 MT20 244/190 TCDL Lumber DOL 1.15 ВС 0.16 Vert(CT) n/a n/a 999 WB **BCLL** 0.0 Rep Stress Incr YES 0.05 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 38 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

Ply

Lot 3 McPhail Farm

LUMBER-

Job

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

REACTIONS.

(size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8)

Truss

Truss Type

Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492074 J0422-1795 V5 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:15 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-Gz2hS2?Af4X4IGUUubyoYBrh1Utb7L7hDpm?Upy74xw 3-9-13 3-9-13 3-9-13 Scale = 1:21.7 4x4 =10.00 12 9-0-0 0-0-6 3x4 📏 3x4 // 2x4 || 7-7-10 7-7-10 LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.17 Vert(LL) n/a n/a 999 MT20 244/190 TCDL Lumber DOL 1.15 вс 0.09 Vert(CT) n/a n/a 999 WB **BCLL** 0.0 Rep Stress Incr YES 0.02 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 28 lb FT = 20% LUMBER-**BRACING-**TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492075 J0422-1795 V6 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:15 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-Gz2hS2?Af4X4lGUUubyoYBridUuN7LKhDpm?Upy74xw 5-2-13 Scale: 3/4"=1' 4x4 = 2 10.00 12 3 9-0-0 9-0-0 3x4 📏 3x4 / 5-2-13 LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) n/a n/a 999 MT20 244/190 TCDL Lumber DOL 1.15 вс 0.04 Vert(CT) n/a n/a 999 WB **BCLL** 0.0 Rep Stress Incr YES 0.01 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 19 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13

Max Horz 1=-44(LC 8)

Max Uplift 1=-15(LC 13), 3=-19(LC 13)

Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 20,2021

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492076 J0422-1795 V7 VALLEY Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:16 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-k9c3fO?oQNgxvQ3hSIT14POuCuEfsolrRTVZ1Fy74xv 2-10-0 Scale = 1:8.7 3x4 2 10.00 12 3 0-0-6 9-0-0 3x4 💉 3x4 // 2-10-0 2-10-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.15 TC 0.01 Vert(LL) n/a n/a 999 MT20 244/190

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

n/a

n/a

999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 8 lb

Structural wood sheathing directly applied or 2-10-0 oc purlins.

FT = 20%

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

10.0

10.0

0.0

REACTIONS. (size) 1=2-10-0, 3=2-10-0

Max Horz 1=-20(LC 8)

Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ВС

WB

Matrix-P

0.03

0.00

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15

YES

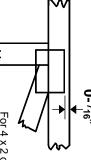
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths
Apply plates to both sides of truss and fully embed teeth.

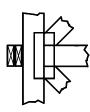
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

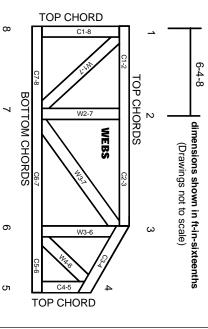
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

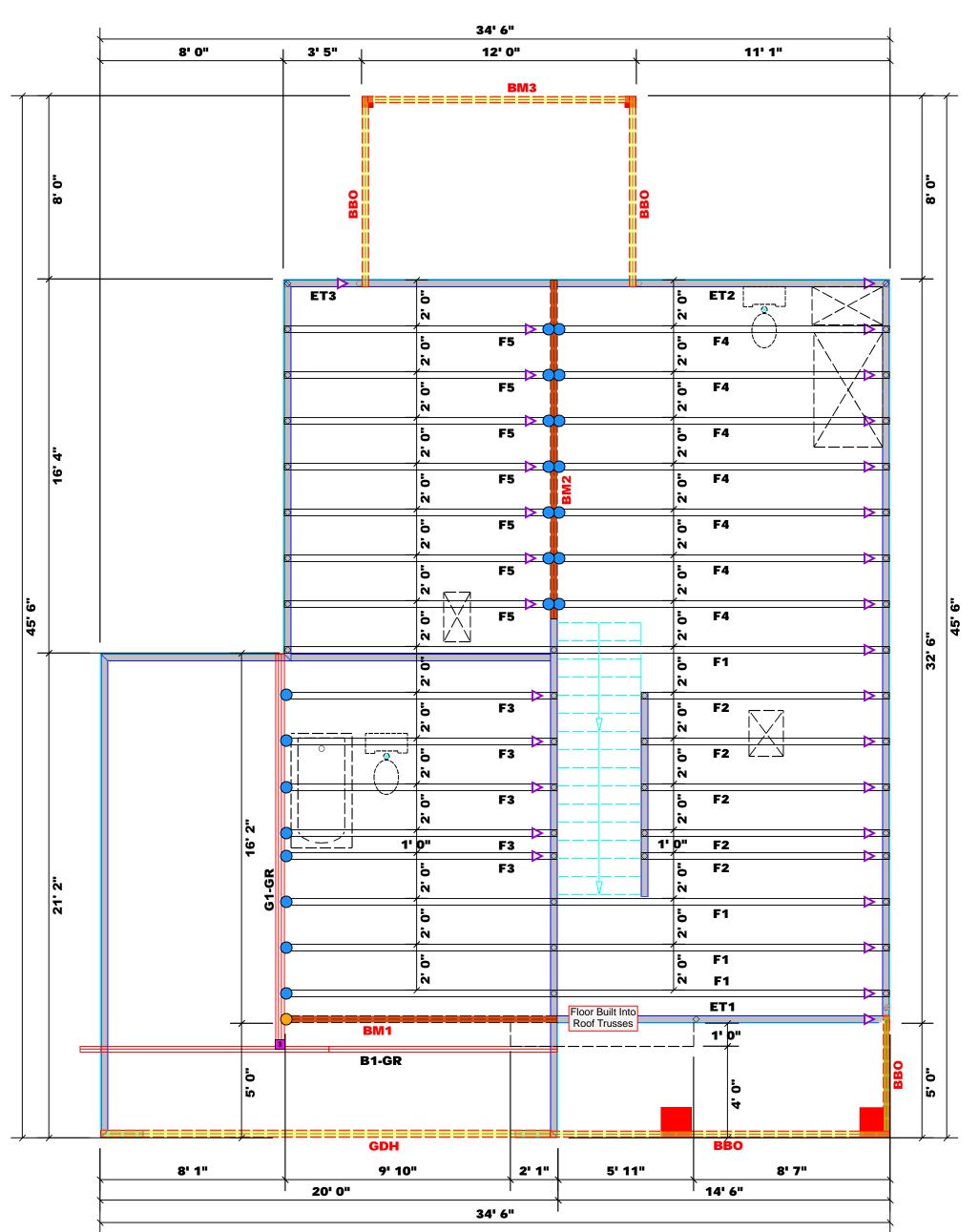
4.

- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ი ი

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- use with fire retardant, preservative treated, or green lumber.

Unless expressly noted, this design is not applicable for


9

œ

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.

3

- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

Dimension Notes

1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise

3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes
Plumbing drop locations shown are NOT exact Contractor to verify ALL plumbing drop
locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Truss Placement Plan

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attacher Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.

David Landry

David Landry

LOAD CHART FOR JACK STUDS

	(8)	ASED O	N TABLES	ROOE	5(t) & (b))				
NUMBER OF JACK STUDS REQUIRED & EA END OF HEADER/STROER										
ENB REACTION (UP 10)	REQUESTUDS FOR (2) PLY HEADOR		END REACTION (OF TU)	REQ 15 STUDS FOR (3) MY MEABER		END REACTION (UP TO)	REQUESTUBS FOR			
1700	1		2550	1		3400	1			
3400	2		5100	2		6800	2			
5100	3		7650	3		10200	3			
6800	4		10200	4		13600	4			
8500	5		12750	5		17000	5			
10200	6		15300	6						
11900	7									
13600	8									
15300	9									

CITY / CO.	CITY / CO. Spring Lake / Harnett
ADDRESS	Hayes Road
WODEL	Floor
DATE REV.	04/13/22
DRAWN BY	DRAWN BY David Landry
SALES REP.	SALES REP. Lenny Norris

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Weaver Development Co. Inc.

Lot 3 McPhail Far

JOB NAME


BUILDER

Hickory .

N/A

SEAL DATE

QUOTE #

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
ВМ3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Truss Placement Plan Scale: 1/4"=1"

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

earing reactions less than or equal to 3000# are seemed to comply with the prescriptive Code equirements. The contractor shall refer to the tached Tables (derived from the prescriptive Code equirements) to determine the minimum foundation are and number of wood studs required to support sections greater than 3000# but not greater than 5000#. A registered design professional shall be stained to design the support system for any section that exceeds those specified in the attached belse. A registered design professional shall be stained to design the support system for all sactions that exceed 15000#.

David Landry

David Landry

LOAD CHART FOR JACK STUDS

(BASED ON TABLES ROCES(I) & (b))								
NU	WBER C		STUBS R HEADER/			A END OF		
ENB REACTION (UP 10)	REQ10 STUDS FOR (2) PLY HEADOR		END REACTION (UF TD)	REQ 15 STUTIS FOR (3) ALM HEADER		END REACTION (UP TO)	REQUESTIBLE FOR	
1700	1		2550	1		3400	1	
3400	2		5100	2		6800	2	
5100	3		7650	3		10200	3	
6800	4		10200	4		13600	4	
8500	5		12750	5		17000	5	
10200	6		15300	6				
11900	7							
13600	8							
15300	9							

Weaver Development Co. Inc.	CITY / CO.	CITY / CO. Spring Lake / Harnett
Lot 3 McPhail Farm	ADDRESS	Hayes Road
Hickory II "C" / 2GLF, CP	MODEL	Floor
N/A	DATE REV.	04/13/22
	DRAWN BY	DRAWN BY David Landry
J0422-1796	SALES REP.	SALES REP. Lenny Norris

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

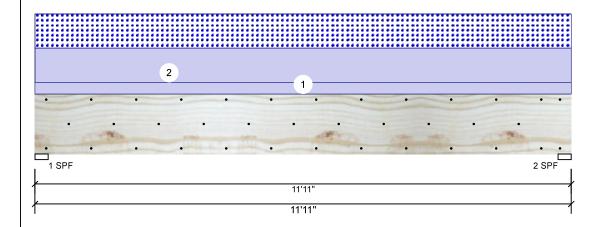
JOB NAME

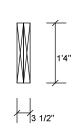
BUILDER

SEAL DATE

QUOTE#

Client: Weaver Development Project:


Hickory II Address:


Hayes Road Spring Lake, NC 28390

Date: 4/13/2022 Input by: David Landry Job Name: Lot 3 McPhail Farm Project #: J0422-1796

Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED BM₁

Level: Level

Page 1 of 8

Member Information Туре Girder

Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 360 Importance: Normal Temperature: Temp <= 100°F

Application: ASD Design Method: **Building Code: IBC/IRC 2015** Load Sharing: No Deck: Not Checked Ceiling: Gypsum 1/2"

Reactions UNPATTERNED Ib (Uplift) Wind Brg Live Dead Snow Const 0 2869 2079 0 0 1 2 0 2869 2079 0 n

Bearings

Bearing Length Cap. React D/L lb Total Ld. Case Ld. Comb. 1 - SPF 3.500" D+S 2869 / 2079 4948 L 2 - SPF 3.500" 95% 2869 / 2079 4948 I D+S

Analysis Results

,						
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	13679 ft-lb	5'11 1/2"	39750 ft-lb	0.344 (34%)	D+S	L
Unbraced	13679 ft-lb	5'11 1/2"	13695 ft-lb	0.999 (100%)	D+S	L
Shear	3659 lb	1'6 5/8"	13739 lb	0.266 (27%)	D+S	L
LL Defl inch	0.069 (L/2000)	5'11 1/2"	0.287 (L/480)	0.240 (24%)	S	L
TL Defl inch	0.164 (L/840)	5'11 1/2"	0.383 (L/360)	0.430 (43%)	D+S	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.
- 5 Top must be laterally braced at a maximum of 8'8 1/4" o.c.
- 6 Lateral slenderness ratio based on single ply width

		p-17 111111111									
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
1	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall	
2	Uniform			Тор	349 PLF	0 PLF	349 PLF	0 PLF	0 PLF	A2	
	Self Weight				12 PLF						

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

1. UVL beams must not be cut or drilled
2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals
3. Damaged Beams must not be used

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Comtech, Inc. Lot 35 Briarwood Bluff ay, NC USA 28314 910-864-TRUS

This design is valid until 4/24/2023 CSD |

BM1

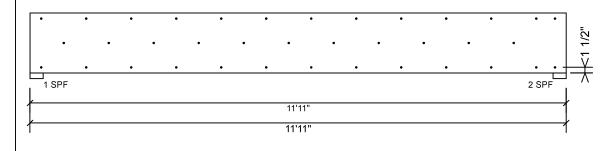
Client: Weaver Development Project:

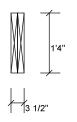
Address:

Hickory II

Hayes Road

Spring Lake, NC 28390


Date: Input by: Job Name: Lot 3 McPhail Farm


1.750" X 16.000" **Kerto-S LVL** 2-Ply - PASSED

Project #: J0422-1796 Level: Level

4/13/2022

David Landry

Page 2 of 8

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

rasterrain pines asing 5 To	TIS OF TOU BOX HAIRS (. TEONS) at
Capacity	0.0 %
Load	0.0 PLF
Yield Limit per Foot	245.6 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	
Duration Factor	1.00

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

- Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

- Handling & Installation

 1. UVI beams must not be cut or drilled

 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

 3. Damaged Beams must not be used

 4. Design assumes top edge is laterally restrained

 5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

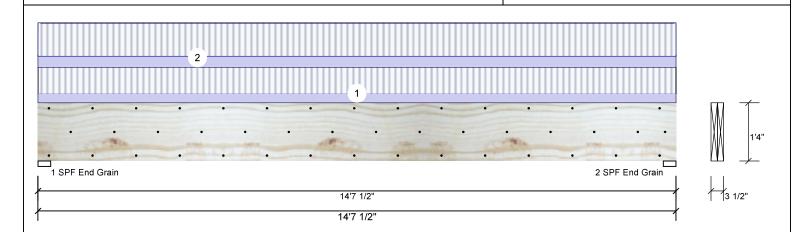
Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC adway, NC Broadway, NC USA 28314 910-864-TRUS

This design is valid until 4/24/2023

Client: Project: Address: Weaver Development

Hickory II

Hayes Road Spring Lake, NC 28390


Date: 4/13/2022 Input by: David Landry Job Name: Lot 3 McPhail Farm

Project #:

1.750" X 16.000" **Kerto-S LVL** 2-Ply - PASSED BM₂

Level: Level

J0422-1796

Member Inforn	nation			Reactio	ns UNPA	ΓTERNED II	o (Uplift)		
Type:	Girder	Application:	Floor	Brg	Live	Dead	Snow	V	/ind
Plies:	2	Design Method:	ASD	1	3868	1385	0		0
Moisture Condition:	Dry	Building Code:	IBC/IRC 2015	2	3868	1385	0		0
Deflection LL:	480	Load Sharing:	No						
Deflection TL:	360	Deck:	Not Checked						
Importance:	Normal	Ceiling:	Gypsum 1/2"						
Temperature:	Temp <= 100°F								
				Bearing	js –				
				Bearing	g Length	Cap. Rea	ct D/L lb	Total I	Ld. Cas

Ana	lysis	Results

, ,						
Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	18077 ft-lb	7'3 3/4"	34565 ft-lb	0.523 (52%)	D+L	L
Unbraced	18077 ft-lb	7'3 3/4"	18150 ft-lb	0.996 (100%)	D+L	L
Shear	5080 lb	13' 7/8"	11947 lb	0.425 (43%)	D+L	L
LL Defl inch	0.229 (L/743)	7'3 13/16"	0.355 (L/480)	0.650 (65%)	L	L
TL Defl inch	0.311 (L/547)	7'3 13/16"	0.473 (L/360)	0.660 (66%)	D+L	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top must be laterally braced at a maximum of 6'4 1/2" o.c.
- 5 Lateral slenderness ratio based on single ply width.

Uniform

E	Bearing:	5					
Γ	Bearing	Length	Cap.	React D/L lb	Total	Ld. Case	Ld. Comb.
	1 - SPF End Grain	3.500"	49%	1385 / 3868	5254	L	D+L
	2 - SPF End Grain	3.500"	49%	1385 / 3868	5254	L	D+L

		p.,								
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Near Face	79 PLF	235 PLF	0 PLF	0 PLF	0 PLF	F5

98 PLF

294 PLF

0 PLF

Far Face

Self Weight 12 PLF

Notes

2

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

Handling & Installation

1. UVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained

5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 4/24/2023

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

0 PI F

Comtech, Inc. Lot 35 Briarwood Bluff dway, NC USA 28314 910-864-TRUS

OPIF F4

Page 3 of 8

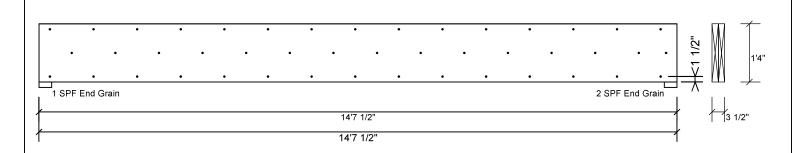
Const 0 0

Client: Project:

Hickory II Address:

Weaver Development Hayes Road

Spring Lake, NC 28390


Date: 4/13/2022 Input by: David Landry

Job Name: Lot 3 McPhail Farm Project #: J0422-1796

Page 4 of 8

Kerto-S LVL 2-Ply - PASSED 1.750" X 16.000" BM₂

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

		`	,
Capacity	79.8 %		
Load	196.0 PLF		
Yield Limit per Foot	245.6 PLF		
Yield Limit per Fastener	81.9 lb.		
Yield Mode	IV		
Edge Distance	1 1/2"		
Min. End Distance	3"		
Load Combination	D+L		
Duration Factor	1.00		

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

Handling & Installation

1. UVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained

5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC adway, NC Broadway, NC USA 28314 910-864-TRUS

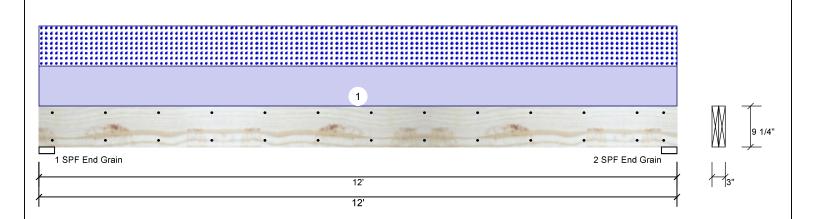
This design is valid until 4/24/2023

Client: Project: Address: Weaver Development Hickory II

Hayes Road Spring Lake, NC 28390 Date: 4/13/2022

Input by: David Landry

Job Name: Lot 3 McPhail Farm


Project #: J0422-1796

Page 5 of 8

BM3 S-P-F #2 2.000" X 10.000"

2-Ply - PASSED

Level: Level

2 - SPF 3.500"

End

Grain

Type:	Girder
Plies:	2
Moisture Condition:	Dry
Deflection LL:	480
Deflection TL:	360
Importance:	Normal
Temperature:	Temp <= 100°F

Member Information

Application: Floor
Design Method: ASD
Building Code: IBC/IRC 2015
Load Sharing: No
Deck: Not Checked
Ceiling: Gypsum 1/2"

Reaction	ons UNPAT	TERNED I	(Uplift)		
Brg	Live	Dead	Snow	Wind	Const
1	0	564	564	0	0
2	0	564	564	0	0

Analysis Results Location Allowed Comb. Analysis Actual Case Capacity Moment 3130 ft-lb 6' 3946 ft-lb 0.793 (79%) D+S L Unbraced 3130 ft-lb 6' 3132 ft-lb 1.000 L (100%) 940 lb 0.327 (33%) D+S Shear 11' 2872 lb 6' 0.289 (L/480) 0.470 (47%) S LL Defl inch 0.135 (L/1022) 1 TL Defl inch 0.271 (L/511) 6' 0.385 (L/360) 0.700 (70%) D+S

564 / 564

1128 L

D+S

25%

Design Notes

- 1 Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.
- 5 Top must be laterally braced at a maximum of 8'8 5/8" o.c.
- 6 Lateral slenderness ratio based on single ply width.

ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments
1	Uniform			Top	94 PI F	0 PI F	94 PI F	0 PI F	0 PI F	C1

This design is valid until 4/24/2023

Manufacturer Info

Comtech, Inc.
Lot 35 Brisarvood Bluff
Broadway, NC
USA
28314
910-964-TRUS

Client: Project:

Address:

Weaver Development

Hickory II

Hayes Road

Spring Lake, NC 28390

Date: 4/13/2022 Input by: David Landry

Job Name: Lot 3 McPhail Farm Project #: J0422-1796

Level: Level

Page 6 of 8

2.000" X 10.000" S-P-F #2

2-Ply - PASSED

1 SPF End Grain 2 SPF End Grain 12'

12'

Multi-Ply Analysis

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

Capacity 0.0 % 0.0 PLF Load 157.4 PLF Yield Limit per Foot Yield Limit per Fastener 78.7 lb. Yield Mode IV Edge Distance 1 1/2" Min. End Distance 3" Load Combination Duration Factor 1.00

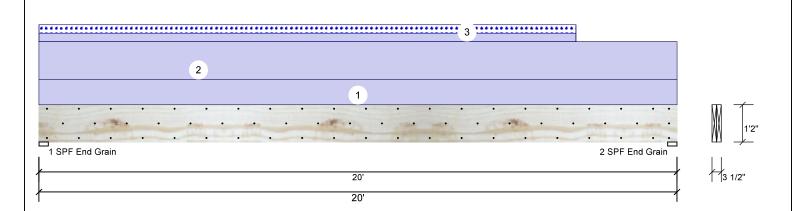
> Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC USA 28314 910-864-TRUS Manufacturer Info соттесн

This design is valid until 4/24/2023

CSD |

Client:

Project: Hickory II Address: Hayes Road


Spring Lake, NC 28390

Weaver Development Date: 4/13/2022 David Landry Input by:

Job Name: Lot 3 McPhail Farm Project #: J0422-1796

Kerto-S LVL 1.750" X 14.000" 2-Ply - PASSED **GDH**

Level: Level

Member Information Reactions UNPATTERNED Ib (Uplift) Girder Application: Wind Type: Brg Live Dead Snow Const Plies: 2 Design Method: ASD 1804 0 0 196 0 1 Moisture Condition: Dry **Building Code: IBC/IRC 2015** 2 0 1750 141 0 0 Deflection LL: 480 Load Sharing: No Deflection TL: 360 Deck: Not Checked Importance: Normal Ceiling: Gypsum 1/2' Temperature: Temp <= 100°F Bearings Bearing Length Cap. React D/L lb Total Ld. Case Ld. Comb. 1 - SPF 3.500" 1804 / 196 2000 L

End Grain

End Grain

2 - SPF 3.500"

Analysis Results

Analysis	Actual	Location	Allowed	Capacity	Comb.	Case
Moment	8592 ft-lb	9'11 11/16"	24299 ft-lb	0.354 (35%)	D	Uniform
Unbraced	9503 ft-lb	9'11 1/2"	9506 ft-lb	1.000 (100%)	D+S	L
Shear	1552 lb	1'4 3/4"	9408 lb	0.165 (16%)	D	Uniform
LL Defl inch	0.041 (L/5726)	9'11 1/16"	0.489 (L/480)	0.080 (8%)	S	L
TL Defl inch	0.430 (L/546)	9'11 7/8"	0.651 (L/360)	0.660 (66%)	D+S	L

Design Notes

- 1 Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6".
- 2 Refer to last page of calculations for fasteners required for specified loads.
- 3 Girders are designed to be supported on the bottom edge only.
- 4 Top loads must be supported equally by all plies.
- 5 Top must be laterally braced at a maximum of 11'9" o.c.
- 6 Lateral slenderness ratio based on single ply width

o Eutoral ololla	offices falls based of	remigre pro middin									
ID	Load Type	Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6	Const. 1.25	Comments	
1	Uniform			Тор	60 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall	
2	Uniform			Тор	90 PLF	0 PLF	0 PLF	0 PLF	0 PLF	B1GE	
3	Tie-In	0-0-0 to 16-10-0	1-0-0	Тор	20 PSF	0 PSF	20 PSF	0 PSF	0 PSF	Roof Load	
	Self Weight				11 PLF						

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

L. UVL beams must not be cut or drilled
 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals
 Darnaged Beams must not be used.

Design assumes top edge is laterally restrained
Provide lateral support at bearing points to avoid
lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

This design is valid until 4/24/2023

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Manufacturer Info

1750 / 141

18%

1891 L

D+S

Comtech, Inc. Lot 35 Briarwood Bluff vay, NC USA 28314 910-864-TRUS

Page 7 of 8

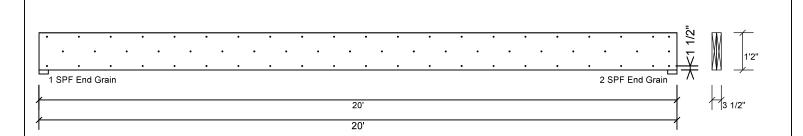
Client: Weaver Development Project:

Address:

Hickory II

Hayes Road

Spring Lake, NC 28390


Date: 4/13/2022 Input by:

David Landry Job Name: Lot 3 McPhail Farm Project #: J0422-1796

Page 8 of 8

Kerto-S LVL 2-Ply - PASSED 1.750" X 14.000" **GDH**

Level: Level

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6"

rasterrain pries asing s	TOWN OF TOU BOX Halls (.TEONS) at
Capacity	0.0 %
Load	0.0 PLF
Yield Limit per Foot	245.6 PLF
Yield Limit per Fastener	81.9 lb.
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	
Duration Factor	1.00

Notes

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Handling & Installation

Handling & Installation

1. UVI beams must not be cut or drilled

2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals

3. Damaged Beams must not be used

4. Design assumes top edge is laterally restrained

5. Provide lateral support at bearing points to avoid lateral displacement and rotation

6. For flat roofs provide proper drainage to prevent ponding

Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633

Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC adway, NC Broadway, NC USA 28314 910-864-TRUS

This design is valid until 4/24/2023

Manufacturer Info

RE: J0422-1796

Lot 3 McPhail Farm

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Weaver Development Co. Inc. Project Name: J0422-1796 Lot/Block: 3

Model: Hickory II

Address: Hayes Road Subdivision: McPhail Farm

City: Spring Lake State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: N/A Wind Speed: N/A mph Floor Load: 55.0 psf Roof Load: N/A psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16492077	ET1	12/20/2021
2	E16492078	ET2	12/20/2021
3	E16492079	ET3	12/20/2021
4	E16492080	F1	12/20/2021
5	E16492081	F2	12/20/2021
6	E16492082	F3	12/20/2021
7	E16492083	F4	12/20/2021
8	E16492084	F5	12/20/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Strzyzewski, Marvin

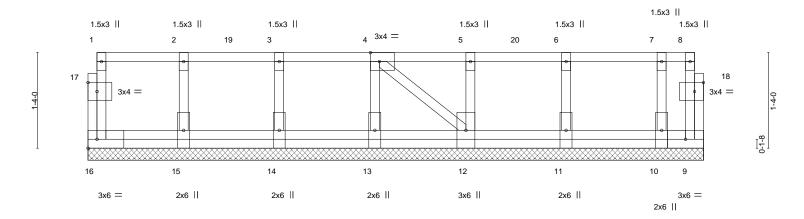
My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
10.400.4700		CARLE			E16492077
J0422-1796	E11 	GABLE	1	1	Job Reference (optional)

Comtech, Inc,


0_1_8

Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:32 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-ztld3Ofsex34VCHpSApf8n2cuLiuc12C7yNPbKy74xf

0_1_8

Scale: 3/4"=1'

Plate Off	Plate Offsets (X,Y) [4:0-1-8,Edge], [17:0-1-8,0-1-8], [18:0-1-8,0-1-8]											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.10	Vert(LL)	n/a	· -	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	ВС	0.00	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	9	n/a	n/a		
BCDL	5.0	Code IRC2015/T	PI2014	Matri	x-P	` '					Weight: 54 lb	FT = 20%F, 11%E

4-0-0

1-4-0

LUMBER-TOP CHORD

2x4 SP No 1(flat)

1-4-0

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS

OTHERS 2x4 SP No.3(flat) **BRACING-**TOP CHORD **BOT CHORD**

1-4-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

6-8-0

1-4-0

Rigid ceiling directly applied or 10-0-0 oc bracing.

8-0-0

1-4-0

8-7-0

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

2-8-0

1-4-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Plates checked for a plus or minus 1 degree rotation about its center.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

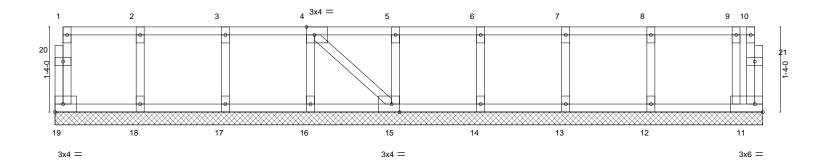
Uniform Loads (plf)

Vert: 9-16=-10, 1-8=-100

Concentrated Loads (lb)

Vert: 4=-71 7=-77 19=-71 20=-71

December 20,2021


Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492078
J0422-1796	ET2	GABLE	1	1	
					Joh Reference (ontional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:33 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-R4J?HkgUPEBx7Ms00uKug_boBl2_LURLLc7y7my74xe

0118

0₁1₇8 Scale = 1:18.0

	1-4-0	' 1-4-0	1-4-0	'	1-4-0	'	1-4-0			1-4-0		1-4-0	'	1-4-0	' 0-5-0 '
Plate Offsets	s (X,Y)	[4:0-1-8,Edge], [15:0-1-8	,Edge]												
LOADING (psf)	SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP	
TCLL 4	40.Ó	Plate Grip DOL	1.00	TC	0.06		Vert(LL)	n/a	` -	n/a	999		MT20	244/190	
TCDL 1	10.0	Lumber DOL	1.00	BC	0.01		Vert(CT)	n/a	-	n/a	999				
BCLL	0.0	Rep Stress Incr	YES	WB	0.03		Horz(CT)	0.00	11	n/a	n/a				
BCDL	5.0	Code IRC2015/TF	PI2014	Matri	x-S								Weight: 54 lb	FT = 2	20%F, 11%E

5-4-0

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat)

2x4 SP No 1(flat)

WFBS **OTHERS** 2x4 SP No.3(flat) **BRACING-**TOP CHORD

6-8-0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

8-0-0

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

4-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

LUMBER-

TOP CHORD

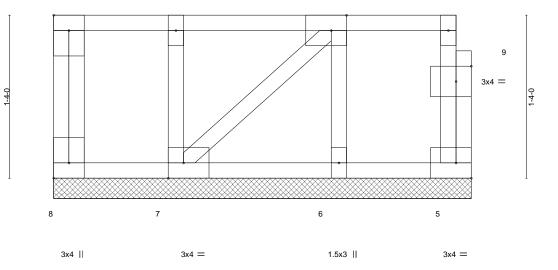
- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

10-8-0

11-1-0

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 3 McPhail Farm E16492079 J0422-1796 ЕТ3 **GABLE** Job Reference (optional) Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:33 2021 Page 1 Comtech, Inc. ID:1yUksKymplk2404ufZYCrxyoKUD-R4J?HkgUPEBx7Ms00uKug_boNl24LUWLLc7y7my74xe Q-1-8 1 3x4 II 2 1.5x3 II 3 4 1.5x3 || Scale = 1:9.4

Plate Off	Plate Offsets (X,Y) [1:Edge,0-1-8], [3:0-1-8,Edge], [7:0-1-8,Edge], [8:Edge,0-1-8], [9:0-1-8,0-1-8]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 22 lb	FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

1-4-0

1-1-0

except end verticals.

Structural wood sheathing directly applied or 3-5-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD

2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat) WFBS

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Plates checked for a plus or minus 1 degree rotation about its center.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

1-0-0

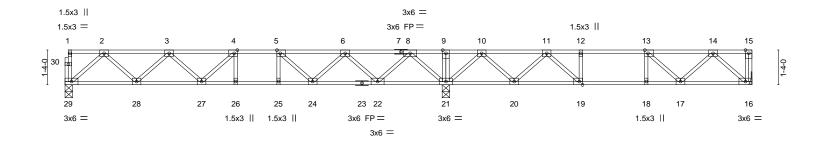
6) CAUTION, Do not erect truss backwards.

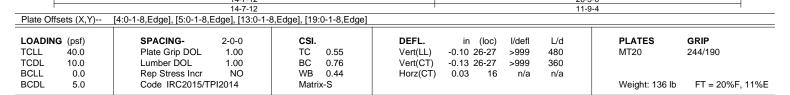
December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
		_			E16492080
J0422-1796	F1	Floor	4	1	Job Reference (optional)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:34 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-vGtNU4g6AYJokWRCabr7DC8rM9CS4rLUaGsWfCy74xd

0-1-8

BRACING-

LUMBER-TOP CHORD

2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WFBS

2x4 SP No.3(flat)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 29=0-3-8, 16=Mechanical, 21=0-3-8

Max Grav 29=727(LC 10), 16=1063(LC 4), 21=1671(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

15-16=-537/0, 2-3=-1257/0, 3-4=-1883/0, 4-5=-2002/0, 5-6=-1658/0, 6-8=-756/225, TOP CHORD 8-9=0/1401, 9-10=0/1401, 10-11=-468/367, 11-12=-1158/0, 12-13=-1158/0,

13-14=-884/0

BOT CHORD $28 - 29 = 0/771,\ 27 - 28 = 0/1717,\ 26 - 27 = 0/2002,\ 25 - 26 = 0/2002,\ 24 - 25 = 0/2002,$

 $22 - 24 = -34/1340,\ 21 - 22 = -444/147,\ 20 - 21 = -637/19,\ 19 - 20 = -175/900,\ 18 - 19 = 0/1158,$

17-18=0/1158, 16-17=0/586

WEBS 2-29=-1023/0, 2-28=0/677, 3-28=-640/0, 8-21=-1289/0, 14-16=-780/0, 14-17=0/415,

13-17=-372/90, 10-21=-1064/0, 8-22=0/923, 6-22=-882/0, 6-24=0/527, 5-24=-633/0,

10-20=0/687, 11-20=-690/0, 11-19=0/582, 12-19=-278/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 16-29=-10, 1-15=-100 Concentrated Loads (lb)

Vert: 15=-500

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

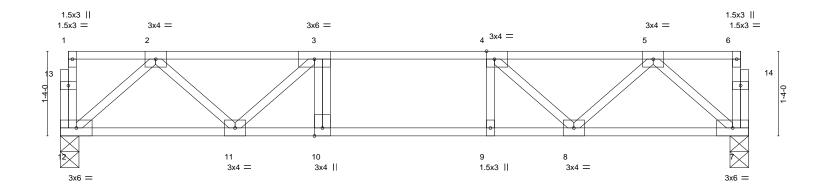
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492081
J0422-1796	F2	Floor	5	1	
					Job Reference (optional)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:35 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-NSRliPhkxsRfMg0O7JMMmPg20YcQpL7epwc3Cfy74xc

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8

 $0_{1}1_{1}8$ Scale = 1:18.1

	10-10-0	
	10-10-0	1
Plate Offsets (X Y) [4:0-1-8 Edge]		

Flate Oil	SetS (A, I)			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	40.0	Plate Grip DOL 1.00	TC 0.36	Vert(LL) -0.07 10 >999 480 MT20 244/190
TCDL	10.0	Lumber DOL 1.00	BC 0.46	Vert(CT) -0.09 10 >999 360
BCLL	0.0	Rep Stress Incr YES	WB 0.21	Horz(CT) 0.01 7 n/a n/a
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S	Weight: 57 lb FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1(flat) TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.3(flat) WFBS

REACTIONS. (size) 12=0-3-8, 7=0-3-8

Max Grav 12=576(LC 1), 7=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-923/0, 3-4=-1242/0, 4-5=-925/0 TOP CHORD

BOT CHORD 11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603 **WEBS** 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

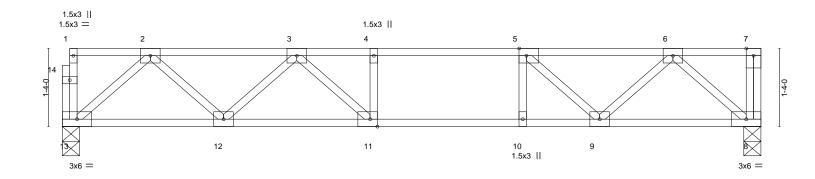
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492082
J0422-1796	F3	Floor	5	1	
					Job Reference (optional)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:36 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-sf?7vliMi9ZW_qbbh0tbIdD90yvzYnZn2aLck5y74xb

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

0-1-8

 $0_{1}^{1}_{1}^{8}$ Scale = 1:19.7

I		11-	-11-0	1
		11-	-11-0	
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]			

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.60	Vert(LL) -0.13 11-12 >999 480	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.70	Vert(CT) -0.16 11-12 >894 360	
BCLL 0.0	Rep Stress Incr NO	WB 0.27	Horz(CT) 0.02 8 n/a n/a	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 62 lb FT = 20%F, 11%E

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 1(flat) 2x4 SP No.1(flat)

BOT CHORD WFBS

2x4 SP No.3(flat)

REACTIONS. (size) 13=0-3-8, 8=0-3-8

Max Grav 13=635(LC 1), 8=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659 **BOT CHORD** $2\text{-}13\text{=-}898/0,\ 2\text{-}12\text{=-}0/534,\ 3\text{-}12\text{=-}466/0,\ 3\text{-}11\text{=-}19/356,\ 6\text{-}8\text{=-}877/0,\ 6\text{-}9\text{=-}0/557,}$ **WEBS**

5-9=-616/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 8-13=-10, 1-7=-100

Concentrated Loads (lb) Vert: 7=-500

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

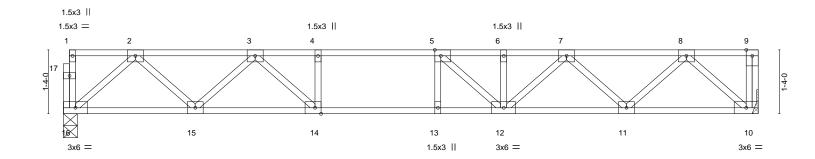
ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
					E16492083
J0422-1796	F4	Floor	7	1	
					Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:36 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-sf?7vliMi9ZW_qbbh0tbIdD9fyteYmHn2aLck5y74xb


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale: 1/2"=1'

Plate Offsets (X,Y)				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.62	Vert(LL) -0.17 12-13 >999 480	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.78	Vert(CT) -0.22 12-13 >790 360	
BCLL 0.0	Rep Stress Incr YES	WB 0.35	Horz(CT) 0.03 10 n/a n/a	
BCDI 5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 76 lb FT = 20%F, 11%E

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 16=0-3-8, 10=Mechanical Max Grav 16=778(LC 1), 10=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0 TOP CHORD **BOT CHORD** 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835 **WEBS** 2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0,

8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

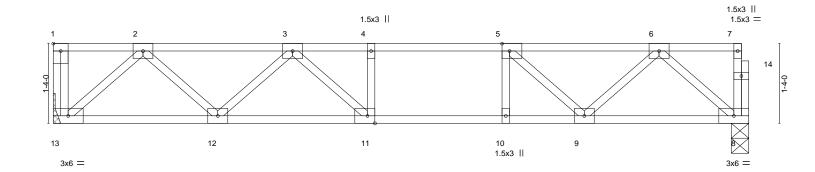
NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

December 20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 3 McPhail Farm
			_		E16492084
J0422-1796	F5	Floor	1	1	
					Job Reference (optional)

1-3-0


8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:37 2021 Page 1 ID:1yUksKymplk2404ufZYCrxyoKUD-KrZW65j_TThNczAnFkOrrqmNBMHHHF2xGE5AGXy74xa 0₁1₇8

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale = 1:19.3

11-7-8 Plate Offsets (X,Y)-- [1:Edge.0-1-8], [5:0-1-8,Edge], [11:0-1-8,Edge]

- riale Oil	Seis (A, I)	[1.Euge,0-1-0], [3.0-1-0,Euge], [11.0	- 1-0, Lugej		
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	40.0	Plate Grip DOL 1.00	TC 0.44	Vert(LL) -0.10 11-12 >999 480	MT20 244/190
TCDL	10.0	Lumber DOL 1.00	BC 0.56	Vert(CT) -0.13 11-12 >999 360	
BCLL	0.0	Rep Stress Incr YES	WB 0.25	Horz(CT) 0.02 8 n/a n/a	
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 61 lb FT = 20%F, 11%E

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat)

BOT CHORD

WFBS 2x4 SP No.3(flat)

REACTIONS. (size) 13=Mechanical, 8=0-3-8 Max Grav 13=626(LC 1), 8=619(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

BOT CHORD 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

WEBS 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526,

5-9=-570/0

NOTES-

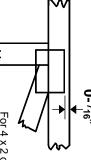
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths
Apply plates to both sides of truss and fully embed teeth.

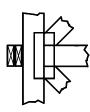
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

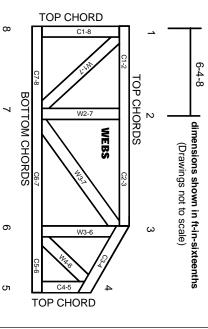
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4.

- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANS//TPI 1.

ი ი

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.