

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Hoener Brad Cummings- Hoener Job.

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: I52514602 thru I52514642

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844



June 13,2022

## Gilbert, Eric

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | AT1   | Attic      | 13  | 1   | Job Reference (optional)   | 152514602 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:26 ID:BTtzQsUdkcsE1i?eLIWxQNz9\_p2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|           | 4-7-6 oc   | ourlins, except                    |
|-----------|------------|------------------------------------|
|           | 2-0-0 oc   | ourlins (3-8-11 max.): 7-8.        |
| BOT CHORD | Rigid ceil | ing directly applied or 10-0-0 oc  |
|           | bracing.   |                                    |
| JOINTS    | 1 Brace a  | at Jt(s): 18,                      |
|           | 19, 20     |                                    |
| REACTIONS | (lb/size)  | 2=1225/0-3-8, 13=1225/0-3-8        |
|           | Max Horiz  | 2=-220 (LC 10)                     |
|           | Max Grav   | 2=1784 (LC 3), 13=1784 (LC 3)      |
| FORCES    | (lb) - Max | imum Compression/Maximum           |
|           | Tension    |                                    |
| TOP CHORD | 1-2=0/34,  | 2-3=-2297/0, 3-5=-2157/0,          |
|           | 5-6=-133   | 2/0, 6-7=-806/139, 7-8=-672/93,    |
|           | 8-9=-806/  | /139, 9-10=-1332/0, 10-12=-2157/0, |
|           | 12-13=-2   | 296/0, 13-14=0/34                  |
| BOT CHORD | 2-17=0/14  | 489, 15-17=0/1458, 13-15=0/1416    |
| WEBS      | 5-17=0/1   | 109, 10-15=0/1109, 6-18=-1376/0,   |
|           | 18-19=-1   | 370/0, 19-20=-1369/0,              |
|           | 9-20=-13   | 75/0, 3-17=-101/194,               |
|           | 12-15=-1   | 01/194, 7-18=0/78, 7-19=-16/110,   |
|           | 8-19=-16/  | /110, 8-20=0/78                    |
|           |            |                                    |

#### NOTES

Scale = 1:77.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

1) Unbalanced roof live loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads. 6)
- Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 7)
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 5-6, 9-10, 6-18, 18-19, 19-20, 9-20; Wall dead load (5.0psf) on member(s).5-17, 10-15
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-17
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard





| Job    | Truss | Truss Type   | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|--------------|-----|-----|----------------------------|-----------|
| Hoener | AT1A  | Attic Girder | 1   | 2   | Job Reference (optional)   | 152514603 |

Scale = 1:77.2

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:28 ID:IrwuCVby6a9DHirxc5c84az9\_iR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Plate Offsets (X, Y): [6:0-1-13,0-2-0], [7:0-3-14,Edge], [8:0-3-14,Edge], [9:0-1-13,0-2-0], [10:0-0-0,Edge], [15:0-6-0,0-2-8], [17:0-6-0,0-2-8]

| <ul> <li>Summer Conception 2 Act S P No.2</li> <li>Sch S P No.2<th><b>Loading</b><br/>TCLL (roof)<br/>Snow (Pf)<br/>TCDL<br/>BCLL<br/>BCDL</th><th>(psf)<br/>20.0<br/>15.0<br/>10.0<br/>0.0*<br/>10.0</th><th><b>Spacing</b><br/>Plate Grip DOL<br/>Lumber DOL<br/>Rep Stress Incr<br/>Code</th><th>4-0-0<br/>1.15<br/>1.15<br/>NO<br/>IRC2015</th><th>/TPI2014</th><th>CSI<br/>TC<br/>BC<br/>WB<br/>Matrix-S</th><th>0.95<br/>0.59<br/>0.31</th><th>DEFL<br/>Vert(LL)<br/>Vert(CT)<br/>Horz(CT)<br/>Attic</th><th>in<br/>-0.25<br/>-0.37<br/>0.02<br/>-0.21</th><th>(loc)<br/>15-17<br/>15-17<br/>13<br/>15-17</th><th>l/defl<br/>&gt;999<br/>&gt;969<br/>n/a<br/>&gt;845</th><th>L/d<br/>240<br/>180<br/>n/a<br/>360</th><th>PLATES<br/>MT20<br/>MT20HS<br/>Weight: 592 lb</th><th><b>GRIP</b><br/>244/190<br/>187/143<br/>FT = 20%</th><th></th></li></ul> | <b>Loading</b><br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                           | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                  | 4-0-0<br>1.15<br>1.15<br>NO<br>IRC2015                                                       | /TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95<br>0.59<br>0.31                                                                                                                                                                                                                                                                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Attic                                                                                                                                                                                                                                                                                                                                                                                                                      | in<br>-0.25<br>-0.37<br>0.02<br>-0.21                                                            | (loc)<br>15-17<br>15-17<br>13<br>15-17                                                                                   | l/defl<br>>999<br>>969<br>n/a<br>>845                                                                                                                      | L/d<br>240<br>180<br>n/a<br>360                                                                                          | PLATES<br>MT20<br>MT20HS<br>Weight: 592 lb                                                                                                                                                                                                                          | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20%                                                                                                                                 |                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| JUIG 13.2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>JOINTS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x6 SP No.2<br>2x10 SP 2250F 1.9E<br>2x10 SP SS<br>2x4 SP No.2 *Except<br>1.5E or 2x4 SP No.1<br>Left: 2x4 SP No.2<br>Right: 2x4 SP No.2<br>2-0-0 oc purlins (6-0-<br>(Switched from shee<br>Rigid ceiling directly<br>bracing.<br>1 Brace at Jt(s): 7,<br>8, 18, 19, 20<br>(Ib/size) 2=2449/0-<br>Max Horiz 2=-440 (L0<br>Max Grav 2=3568 (L<br>(Ib) - Maximum Comp<br>Tension<br>1-2=0/68, 2-3=-4593,<br>5-6=-2663/0, 6-7=-11<br>8-9=-1612/278, 9-10<br>10-12=-4314/0, 12-11<br>2-17=0/2978, 15-17=<br>5-17=0/2219, 10-15=<br>18-19=-2739/0, 19-21<br>9-20=-2751/0, 3-17=<br>12-15=-203/388, 7-11<br>8-19=-31/219, 8-20= | or 2x10 SP DSS or<br>* 6-9:2x4 SP 1650F<br>or 2x4 SP SS<br>-0 max.)<br>ted: Spacing > 2-0-0;<br>applied or 10-0-0 oc<br>3-8, 13=2449/0-3-8<br>C 10)<br>C 3), 13=3568 (LC 3<br>pression/Maximum<br>/0, 3-5=-4314/0,<br>512/278, 7-8=-1343/1<br>=-2663/0,<br>3=-4593/0, 13-14=0/4<br>=0/2916, 13-15=0/283<br>=0/2219, 6-18=-2752/<br>0=-2739/0,<br>-202/388,<br>8=0/156, 7-19=-31/2<br>0/156 | 1)<br>2)<br>3)<br>4)<br>5)<br>186,<br>61<br>61<br>63<br>7)<br>(0,<br>19,<br>9)<br>10)<br>11) | 2-ply truss to<br>(0.131"x3") n<br>Top chords c<br>staggered at<br>Bottom chords<br>c<br>staggered at<br>Web connect<br>All loads are<br>except if note<br>CASE(S) sec<br>provided to d<br>unless otherw<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp B; End<br>cantilever left<br>plate grip DO<br>TCLL: ASCE<br>DOL=1.15 Pl<br>Lumber DOL:<br>Partially Exp.<br>Unbalanced<br>this design.<br>This truss hai<br>load of 12.0 p<br>overhangs nd<br>Provide adeq<br>All plates are<br>This truss hai<br>chord live loa<br>* This truss hai<br>chord and an | be connected toge<br>ails as follows:<br>onnected as follow<br>0-9-0 oc.<br>Is connected as follow<br>0-9-0 oc.<br>Is connected as follow<br>0-9-0 oc.<br>Is connected as follows:<br>2x4<br>considered equally<br>and as front (F) or battion.<br>Ply to ply con<br>istribute only loads<br>vise indicated.<br>roof live loads have<br>7-10; Vult=115mpH<br>; TCDL=6.0psf; BC<br>closed; MWFRS (e:<br>and right exposed<br>L=1.60<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf=<br>=1.15 Plate DOL=1<br>; Ct=1.10<br>show loads have be<br>so been designed for<br>bosf or 2.00 times fila<br>on-concurrent with<br>uate drainage to p<br>MT20 plates unles<br>so been designed for<br>d nonconcurrent w<br>as been designed for<br>d nonconcurrent w<br>as been designed for<br>d nonconcurrent w<br>as been designed for<br>d nonconcurrent with<br>used farmage to p<br>MT20 plates unles<br>so been designed for<br>d nonconcurrent w<br>as been designed for<br>h chord in all areas<br>y 1-00-00 wide will<br>y other members. | ether wi<br>s: 2x6 -<br>lows: 2:<br>- 1 row<br>applied<br>ck (B) f<br>nection<br>noted :<br>e been of<br>(3-sec<br>CDL=6.0<br>nvelope<br>; Lumb<br>(roof liv<br>=10.0 p<br>1.15); C<br>een cor<br>or greate<br>throof k<br>other liv<br>revent v<br>so other<br>r a 10.0<br>ith any<br>for a liv<br>where<br>fit betw | th 10d<br>2 rows<br>x10 - 2 rows<br>at 0-9-0 oc.<br>d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>Dpsf; h=30ft; (<br>b) exterior zon<br>ber DOL=1.60<br>e load: Lumbu<br>sf (flat roof sn<br>ategory II; Ex<br>histidered for the<br>er of min roof<br>bad of 10.0 ps<br>ve loads.<br>water ponding<br>wise indicated<br>0 psf bottom<br>other live load<br>e load of 20.0.0<br>a rectangle<br>veen the bottoc | DAD<br>r<br>Cat.<br>le;<br>oow:<br>p B;<br>nis<br>live<br>sf on<br>g.<br>d.<br>ds.<br>ppsf<br>om | 12) Ceil<br>6-18<br>mer<br>13) Bott<br>cho<br>14) This<br>Inte<br>R8C<br>15) Gra<br>or tf<br>bott<br>16) Attio<br>LOAD ( | ing dead<br>3, 18-19<br>nober(s).<br>tom choir<br>d dead<br>s truss is<br>rmationa<br>(2.10.2 c<br>phical phe<br>orient<br>om choir<br>c room c<br>CASE(S) | d load<br>, 19-20<br>5-17, 1<br>rd live<br>load (<br>d desig<br>I Resid<br>urlin re-<br>ration of<br>d.<br>hecke<br>Stai | (5.0 psf) on mem<br>), 9-20; Wall dea<br>10-15<br>load (40.0 psf) applied c<br>ned in accordann<br>dential Code sec<br>erenced standar<br>appresentation doe<br>of the purlin along<br>d for L/360 deflea<br>ndard<br>CHEESS<br>SEA<br>0363<br>NGIN<br>A. C<br>June | ber(s). 5-6, 9-<br>d load (5.0psf)<br>nd additional b<br>nly to room. 18<br>æ with the 201<br>ions R502.11.<br>J ANSI/TPI 1.<br>is not depict th<br>g the top and/or<br>tion. | 10,<br>on<br>ottom<br>5-17<br>5<br>1 and<br>ie size<br>ir |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type             | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------------|-----|-----|----------------------------|-----------|
| Hoener | AT1E  | Attic Structural Gable | 1   | 1   | Job Reference (optional)   | 152514604 |



Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:29

Page: 1

June 13,2022

818 Soundside Road Edenton, NC 27932

## Plate Offsets (X, Y): [10:0-2-2,Edge], [16:0-2-2,Edge], [18:0-0-0,Edge], [41:0-1-15,0-1-8]

| Loading     |               | (psf)                           | Spacing                                       | 2-0-0               |                    | csi                                    |                    | DEFL            | in        | (lo           | c) l/defl     | L/d             | PLATES             | GRIP           | ı                |
|-------------|---------------|---------------------------------|-----------------------------------------------|---------------------|--------------------|----------------------------------------|--------------------|-----------------|-----------|---------------|---------------|-----------------|--------------------|----------------|------------------|
| TCLL (roof) |               | 20.0                            | Plate Grip DOL                                | 1.15                |                    | TC                                     | 0.44               | Vert(LL)        | -0.07     | 29-3          | 1 >999        | 240             | MT20               | 244/1          | 90               |
| Snow (Pf)   |               | 15.0                            | Lumber DOL                                    | 1.15                |                    | BC                                     | 0.19               | Vert(CT)        | -0.10     | 29-3          | 1 >999        | 180             |                    |                |                  |
| TCDL        |               | 10.0                            | Rep Stress Incr                               | YES                 |                    | WB                                     | 0.33               | Horz(CT)        | 0.00      | 2             | 4 n/a         | n/a             |                    |                |                  |
| BCLL        |               | 0.0*                            | Code                                          | IRC201              | 5/TPI2014          | Matrix-S                               |                    |                 |           |               |               |                 |                    |                |                  |
| BCDL        |               | 10.0                            |                                               |                     |                    |                                        |                    |                 |           |               |               |                 | Weight: 335 I      | ib FT = :      | 20%              |
|             |               |                                 |                                               | т                   |                    | 1-2-0/33 2-3453                        | /170 3             | 4361/139        |           | 4)            |               | E 7-10          | ). Pr-20.0 psf (*  | roof live lc   | ad: Lumber       |
|             | 2v6 SP No     | 2                               |                                               |                     |                    | 4-5354/130 5-7-                        | -364/15            |                 | 153       | -, r          | 101 = 1.15    | Plate D         | )OI -1 15): Pf-    | 10 0 nef (f    | flat roof snow:  |
|             | 2x0 SF NU.    |                                 |                                               |                     |                    | 8-9-510/111 9-10                       |                    | 76              | 155,      | 1             |               | 1 –1 14         | 5 Plate DOI -1     | 15). Cate      | any II: Eyn B:   |
| BOT CHORD   | 2x10 SP 22    | S                               | 01 2X10 3F D33 01                             |                     |                    | 10-11=-696/148, 11                     | -12=-6             | 96/148,         |           | F             | Partially Exp | D.; Ct=         | 1.10               | 10), Outo      | gory II, Exp B,  |
| WEBS        | 2x4 SP No     | 2 *Except                       | t* 9-17 <sup>.</sup> 2x4 SP 1650              | -                   |                    | 12-13=-696/148, 13                     | 8-14=-6            | 96/148,         |           | 5) l          | Jnbalanced    | l snow          | loads have be      | en consid      | lered for this   |
| 112B0       | 1.5E or 2x4   | SP No.1                         | or 2x4 SP SS                                  |                     |                    | 14-15=-696/148, 15                     | 5-16=-6            | 96/148,         |           | ć             | lesign.       |                 |                    |                |                  |
| OTHERS      | 2x4 SP No.    | .2                              |                                               |                     |                    | 16-17=-838/178, 17                     | 7-18=-5            | 10/103,         |           | 6) 7          | This truss h  | as bee          | en designed for    | greater o      | of min roof live |
| WEDGE       | Left: 2x4 SI  | P No.2                          |                                               |                     |                    | 18-19=-338/122, 19                     | 9-21=-3            | 64/118,         |           | ŀ             | oad of 12.0   | psf or          | r 2.00 times flat  | roof load      | of 10.0 psf on   |
|             | Right: 2x4 \$ | SP No.2                         |                                               |                     |                    | 21-22=-352/97, 22-                     | 23=-36             | 1/106,          |           | C             | overhangs i   | non-co          | oncurrent with o   | other live lo  | oads.            |
| BRACING     | -             |                                 |                                               |                     |                    | 23-24=-456/137, 24                     | 1-25=0/3           | 34              |           | 7) F          | Provide ade   | quate           | drainage to pre    | event wate     | er ponding.      |
| TOP CHORD   | Structural v  | wood shea                       | athing directly applied                       | dor <sup>BC</sup>   | DT CHORD           | 2-34=-100/281, 33-                     | 34=-99             | /281,           |           | 8) A          | All plates ar | e 2x4           | MT20 unless o      | therwise i     | indicated.       |
|             | 6-0-0 oc pu   | urlins, exc                     | ept                                           |                     |                    | 32-33=-99/281, 31-                     | 32=-99             | /281,           |           | 9) (          | Sable stude   | space           | ed at 2-0-0 oc.    |                |                  |
|             | 2-0-0 oc pu   | urlins (6-0-                    | -0 max.): 10-16.                              |                     |                    | 29-31=-84/302, 28-                     | 29=-68             | 263,            |           | 10) 1         | This truss h  | as bee          | en designed for    | a 10.0 ps      | sf bottom        |
| BOT CHORD   | Rigid ceilin  | g directly                      | applied or 10-0-0 oc                          |                     | 21-28=-08/204, 20- | 27=-08                                 | 204,               |                 |           | chord live lo | ad no         | nconcurrent wit | th any oth         | er live loads. |                  |
|             | bracing.      |                                 |                                               | ۱۸/                 | EDC                | 24-20=-07/202                          | 20- 21             | 5/95            |           | 11) *         | This truss    | has b           | een designed fo    | or a live lo   | bad of 20.0pst   |
| JOINTS      | 1 Brace at    | Jt(s): 35,                      |                                               | vv                  | EB3                | 0.27_ 02/450 26.2                      | 7_ 92/4            | 5/65,           |           | 0             | on the botto  | m cho           | ord in all areas v | where a re     | ectangle         |
|             | 36, 37, 39,   | 40                              |                                               |                     |                    | 35-37=-02/450, 50-5<br>35-3682/451 35- | 3982               | /451            |           |               | s-06-00 tall  | Dy 1-U          | JU-UU WIDE WIII T  | It betweel     | n the bottom     |
| REACTIONS   | (lb/size) 2   | 2=373/29-                       | 11-0, 24=429/29-11-                           | 0,                  |                    | 39-40=-82/451, 17-                     | 40=-82             | /450, 13-35=-   | 4/1.      | , c           | noru anu a    | ny ou           | iei members, w     |                | = 10.0psi.       |
|             | 2             | 26=-113/2                       | 9-11-0, 27=198/29-1                           | 1-0,                |                    | 12-36=-106/26. 11-                     | 37=-38             | /141. 7-38=-2   | 9/15.     |               |               |                 |                    |                |                  |
|             | 2             | 28=-74/29                       | -11-0, 29=554/29-11                           | -0,                 |                    | 5-32=-148/19, 4-33                     | =-137/9            | 4, 3-34=-93/1   | 133,      |               |               |                 |                    |                |                  |
|             | 3             | 31=557/29                       | 9-11-0, 32=-77/29-11                          | -0,                 |                    | 14-39=-106/26, 15-                     | 40=-37             | /141,           |           |               |               |                 |                    | um.            |                  |
|             | 3             | 33=199/29                       | 9-11-0, 34=-54/29-11                          | -0                  |                    | 19-41=-29/15, 21-2                     | 8=-152             | /25,            |           |               |               |                 | " C                | AD.            | 11.              |
|             | Max Horiz 2   | 2=-221 (L(                      | C 10)                                         |                     |                    | 22-27=-135/95, 23-                     | 26=-86             | /142, 5-38=-6   | 61/86,    |               |               |                 | "aTH U             | 740            | 1 de la          |
|             | Max Uplift 2  | 2=-129 (L(                      | C 8), 24=-109 (LC 9)                          |                     |                    | 31-38=-85/97, 29-4                     | 1=-89/1            | 03, 21-41=-6    | 5/93      |               |               | A               | OTTES              | Sin            | All.             |
|             | 2             | 26=-251 (I                      | LC 49), 27=-22 (LC 1                          | 3), NO              | DTES               |                                        |                    |                 |           |               |               | 22              | 1 AV               | - Vi           | . SIA            |
|             | 4             | 20=-003 (I<br>3321 <i>(</i> I ( | LC 19), 32=-364 (LC<br>C 12) 34194 (LC 4      | $\frac{19}{7}$ , 1) | Unbalanced         | roof live loads have                   | e been o           | considered fo   | or        |               | -             |                 | -                  |                |                  |
|             | Max Gray      | 2-500 (LC                       | (12), 34 = 194 (104)                          | .,                  | this design.       |                                        |                    |                 |           |               | -             |                 | · · · · ·          | 2000           |                  |
|             |               | 2=300 (LC<br>26=82 (LC          | (10, 27), $24 = 377$ ( $10, 27$ ), $(10, 26)$ | 2)                  | Wind: ASCE         | 7-10; Vult=115mpl                      | h (3-seo           | cond gust)      |           |               |               |                 | : SE               | AL             | : =              |
|             | -             | 28=-31 (I (                     | C 36) 29=1137 (I C                            | 46)                 | Vasd=91mp          | h; TCDL=6.0psf; B0                     | CDL=6.0            | 0psf; h=30ft; ( | Cat.      |               | - E           |                 | 036                | 200            | · · · ·          |
|             | 3             | 31=1152 (                       | LC 44). 32=-35 (LC 3                          | 36).                | II; Exp B; En      | closed; MWFRS (e                       | nvelope            | e) exterior zor | ne;       |               | -             |                 | 0.50               | 522            | - E - B -        |
|             | 3             | 33=401 (L                       | C 44), 34=95 (LC 10                           | )                   | cantilever le      | It and right exposed                   | i ; Lumt           | per DOL=1.60    | J         |               |               |                 | N                  |                | 1 8              |
| FORCES      | (lb) - Maxin  | num Com                         | pression/Maximum                              |                     | plate grip DC      | JL=1.6U                                |                    | lana af tha to  |           |               | S             | 1               | A.E.               | A              | 12 3             |
|             | Tension       |                                 |                                               | 3)                  | only For et        | ide exposed to wind                    | n the p            | ane of the tru  | 155       |               |               | 1.5             | S. VGI             | NEE            | 03               |
|             |               |                                 |                                               |                     | con Standar        | d Industry Cable Er                    | u (norm<br>ad Deta | ile as applicat | ),<br>blo |               |               | 11              | 10                 | B              | E N              |
|             |               |                                 |                                               |                     | or consult or      | a industry Gable El                    | ianer a            | s ner ANSI/TE   | PI1       |               |               |                 | 11, A.             | GILY           | 111              |
|             |               |                                 |                                               |                     | e. concar qu       | samou bunanig doo                      | u                  |                 |           |               |               |                 | 11111              | mm             |                  |

Continued on page 2

Scale = 1:82

| Job    | Truss | Truss Type             | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------------|-----|-----|----------------------------|-----------|
| Hoener | AT1E  | Attic Structural Gable | 1   | 1   | Job Reference (optional)   | 152514604 |

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 2, 109 lb uplift at joint 24, 564 lb uplift at joint 32, 21 lb uplift at joint 33, 194 lb uplift at joint 34, 563 lb uplift at joint 28, 22 lb uplift at joint 27 and 251 lb uplift at joint 26.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:29 ID:OuQlSmnjvq?aB5i5Y\_uiCTz8zZv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job    | Truss | Truss Type   | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|--------------|-----|-----|----------------------------|-----------|
| Hoener | AT1G  | Attic Girder | 2   | 3   | Job Reference (optional)   | 152514605 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:30 ID:Hq0uH?7Ua\_pxhRat9iKNMxz9\_du-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:76.5

## Plate Offsets (X, Y): [6:0-1-13,0-2-0], [7:0-3-14,Edge], [8:0-7-8,0-5-4], [9:0-1-13,0-2-0], [15:0-6-0,0-2-8], [17:0-6-0,0-2-8]

| Loading<br>TCLL (roof) | (               | (psf)<br>20.0 | Spacing<br>Plate Grip DOL | 6-0-0<br>1.15        |                 | CSI<br>TC             | 0.95       | <b>DEFL</b><br>Vert(LL) | in<br>-0.25 | (loc)<br>15-17 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20     | <b>GRIP</b><br>244/190 |
|------------------------|-----------------|---------------|---------------------------|----------------------|-----------------|-----------------------|------------|-------------------------|-------------|----------------|----------------|------------|--------------------|------------------------|
| Snow (Pf)              | 1               | 15.0          | Lumber DOL                | 1.15                 |                 | BC                    | 0.59       | Vert(CT)                | -0.37       | 15-17          | >969           | 180        | MT20HS             | 187/143                |
| TCDL                   | 1               | 10.0          | Rep Stress Incr           | NO                   |                 | WB                    | 0.31       | Horz(CT)                | 0.02        | 13             | n/a            | n/a        |                    |                        |
| BCLL                   |                 | 0.0*          | Code                      | IRC201               | 5/TPI2014       | Matrix-S              |            | Attic                   | -0.21       | 15-17          | >845           | 360        |                    |                        |
| BCDL                   | 1               | 10.0          |                           |                      |                 |                       |            |                         |             |                |                |            | Weight: 888 lb     | FT = 20%               |
| LUMBER                 |                 |               |                           | 1)                   | 3-ply truss to  | be connected toge     | ether wi   | th 10d                  |             | 12) Ceil       | ing dead       | d load     | (5.0 psf) on mem   | ber(s). 5-6, 9-10,     |
| TOP CHORD              | 2x6 SP No.2     |               |                           | ,                    | (0.131"x3") n   | ails as follows:      |            |                         |             | 6-20           | ), 18-20,      | 18-19      | ), 9-19; Wall dea  | d load (5.0psf) on     |
| BOT CHORD              | 2x10 SP 2250    | )F 1.9E       | or 2x10 SP DSS or         |                      | Top chords o    | connected as follow   | s: 2x6 ·   | 2 rows                  |             | mer            | nber(s).       | 5-17, 1    | 0-15               |                        |
|                        | 2x10 SP SS      |               |                           |                      | staggered at    | 0-9-0 oc.             |            |                         |             | 13) Bot        | om chor        | d live     | load (40.0 psf) ar | nd additional bottom   |
| WEBS                   | 2x4 SP No.2 *   | *Except       | t* 6-9:2x4 SP 1650F       |                      | Bottom chore    | ds connected as fol   | lows: 2    | x10 - 2 rows            |             | cho            | rd dead        | load (     | 5.0 psf) applied o | nly to room. 15-17     |
|                        | 1.5E or 2x4 S   | P No.1        | or 2x4 SP SS              |                      | staggered at    | 0-9-0 oc.             |            |                         |             | 14) This       | s truss is     | desig      | ned in accordanc   | e with the 2015        |
| WEDGE                  | Left: 2x4 SP N  | No.2          |                           |                      | Web connect     | ted as follows: 2x4   | - 1 row    | at 0-9-0 oc.            |             | Inte           | rnationa       | I Resid    | dential Code sect  | ions R502.11.1 and     |
|                        | Right: 2x4 SP   | 9 No.2        |                           | 2)                   | All loads are   | considered equally    | applie     | d to all plies,         |             | R80            | )2.10.2 a      | and ref    | erenced standard   | J ANSI/TPI 1.          |
| BRACING                |                 |               |                           |                      | except if note  | ed as front (F) or ba | ack (B)    | face in the LC          | DAD         | 15) Attio      | c room c       | hecke      | d for L/360 deflec | ction.                 |
| TOP CHORD              | 2-0-0 oc purlir | ns (6-0-      | -0 max.)                  |                      | CASE(S) sec     | ction. Ply to ply con | nection    | s have been             |             | LOAD (         | CASE(S)        | Sta        | ndard              |                        |
|                        | (Switched from  | m shee        | ted: Spacing > 2-0-0)     | ).                   | provided to d   | listribute only loads | noted      | as (F) or (B),          |             |                |                |            |                    |                        |
| BOT CHORD              | Rigid ceiling c | directly      | applied or 10-0-0 oc      |                      | unless other    | wise indicated.       |            |                         | _           |                |                |            |                    |                        |
|                        | bracing.        |               |                           | 3)                   | Unbalanced      | root live loads have  | e been (   | considered for          | r           |                |                |            |                    |                        |
| JOINTS                 | 1 Brace at Jt(  | (s): 7,       |                           | 4)                   | this design.    | 7 40. 1/114 445 mm    | . (2       |                         |             |                |                |            |                    |                        |
|                        | 8, 18, 19, 20   |               |                           | 4)                   | Wind: ASCE      | 7-10; Vuit=115mpi     | 1 (3-sec   | cond gust)              | <b>D</b>    |                |                |            |                    |                        |
| REACTIONS              | (lb/size) 2=3   | 3674/0-       | 3-8, 13=3674/0-3-8        |                      | Vasu=91mpr      | 1; TCDL=6.0pSI; BC    |            | psi; n=30ii; 0          | Jal.        |                |                |            |                    |                        |
|                        | Max Horiz 2=-   | -659 (LC      | C 10)                     |                      | cantilever left | t and right exposed   | l · Lumb   | r DOI = 1.60            | ie,         |                |                |            |                    |                        |
|                        | Max Grav 2=5    | 5352 (L       | C 3), 13=5352 (LC 3)      | )                    | nlate grin DC   | 1 –1 60               |            |                         |             |                |                |            |                    |                        |
| FORCES                 | (lb) - Maximur  | m Com         | pression/Maximum          | 5)                   | TCLL · ASCE     | 7-10 Pr=20.0 psf      | (roof liv  | e load: Lumb            | er          |                |                |            |                    |                        |
|                        | Tension         |               |                           | 0)                   | DOI =1 15 PI    | late DOI =1 15). Pf:  | =10.0 n    | sf (flat roof sn        | IOW.        |                |                |            |                    |                        |
| TOP CHORD              | 1-2=0/102.2-3   | 3=-689        | 0/0.3-5=-6472/0.          |                      | Lumber DOL      | =1.15 Plate DOL=      | 1.15): C   | ategory II: Ex          | pB:         |                |                |            |                    | UTT                    |
|                        | 5-6=-3996/0.    | 6-7=-24       | 417/419. 7-8=-2014/2      | 280.                 | Partially Exp.  | .: Ct=1.10            |            |                         | ,           |                |                |            | W'LL CA            | Dill                   |
|                        | 8-9=-2419/41    | 7, 9-10       | =-3994/0,                 | 6)                   | Unbalanced      | snow loads have b     | een cor    | sidered for th          | nis         |                |                | - 8        | THUA               | ROM                    |
|                        | 10-12=-6471/    | 0, 12-1       | 3=-6889/0, 13-14=0/*      | 102 <sup>′</sup>     | design.         |                       |            |                         |             |                | /              | S          | ON JESS            | in the                 |
| BOT CHORD              | 2-17=0/4467,    | 15-17=        | =0/4374, 13-15=0/424      | 47 7)                | This truss ha   | s been designed fo    | r great    | er of min roof          | live        |                |                | 12         | 100                | N. S.                  |
| WEBS                   | 5-17=0/3328,    | 10-15=        | =0/3329, 6-20=-4130/      | <i>'</i> 0, <i>'</i> | load of 12.0    | psf or 2.00 times fla | at roof le | bad of 10.0 ps          | sf on       |                | Z              | 2/         |                    | nul                    |
|                        | 18-20=-4112/    | 0, 18-1       | 9=-4107/0,                |                      | overhangs no    | on-concurrent with    | other liv  | /e loads.               |             |                | - 5            | 1          |                    |                        |
|                        | 9-19=-4126/0    | , 3-17=       | -303/581,                 | 8)                   | Provide adec    | quate drainage to p   | revent     | water ponding           | J.          |                | =              |            | SEA                |                        |
|                        | 12-15=-304/5    | 83, 7-1       | 8=-47/330, 8-19=0/23      | 36, 9)               | All plates are  | MT20 plates unles     | s other    | wise indicate           | d.          |                | = =            |            | 0202               |                        |
|                        | 8-18=-48/328    | , 7-20=       | 0/228                     | 10                   | ) This truss ha | s been designed fo    | or a 10.0  | ) psf bottom            |             |                | 1              |            | 0363               | 22 : 2                 |
| NOTES                  |                 |               |                           |                      | chord live loa  | ad nonconcurrent w    | ith any    | other live load         | ds.         |                | -              | 0          |                    | 1 2                    |
|                        |                 |               |                           | 11                   | )* This truss h | has been designed     | for a liv  | e load of 20.0          | )psf        |                |                | -          | ·                  | A 1. 3                 |
|                        |                 |               |                           |                      | on the botton   | n chord in all areas  | where      | a rectangle             |             |                |                | 11         | 1.SN0.             | -chi X S               |

3-06-00 tall by 1-00-00 wide will fit between the bottom

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

chord and any other members.



A. GILBL

| Job    | Truss | Truss Type | Qty                          | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|------------------------------|-----|----------------------------|-----------|
| Hoener | AT2   | Attic      | 7 1 Job Reference (ontional) |     | Job Reference (optional)   | 152514606 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:31 ID:TaLc?eUNzi2vlojbHxrtSmz9\_c7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:75.3

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                         | ((<br>2<br>1<br>1<br>1                                                                                                                              | psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                               | 0.87<br>0.54<br>0.31                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Attic                                                                                       | in<br>-0.26<br>-0.37<br>0.02<br>-0.21         | (loc)<br>14-16<br>14-16<br>12<br>14-16 | l/defl<br>>999<br>>951<br>n/a<br>>842 | L/d<br>240<br>180<br>n/a<br>360 | PLATES<br>MT20<br>MT20HS<br>Weight: 295 lb | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20% |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>SLIDER<br>BRACING<br>TOP CHORD | 2x6 SP No.2<br>2x10 SP 2250<br>2x10 SP SS<br>2x4 SP No.2 *<br>1.5E or 2x4 SP<br>Right: 2x4 SP<br>Left 2x6 SP N<br>Structural woo<br>3-8-6 oc purlin | DF 1.9E<br>*Except<br>P No.1<br>' No.2<br>lo.2 2<br>od shea<br>ns, exce | or 2x10 SP DSS or<br>* 5-8:2x4 SP 1650F<br>or 2x4 SP SS<br>-4-10<br>athing directly applied<br>apt   | 2)<br>3)<br>d or <sup>4)</sup>          | Wind: ASCE<br>Vasd=91mph<br>II; Exp B; End<br>cantilever left<br>plate grip DC<br>TCLL: ASCE<br>DOL=1.15 PI<br>Lumber DOL<br>Partially Exp.<br>Unbalanced<br>design.                                                       | 7-10; Vult=115mph<br>;; TCDL=6.0psf; BC<br>closed; MWFRS (et<br>and right exposed<br>IL=1.60<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf=<br>=1.15 Plate DOL=1<br>; Ct=1.10<br>snow loads have be | n (3-sec<br>CDL=6.<br>nvelope<br>; Lumh<br>(roof liv<br>=10.0 p<br>I.15); C<br>een cor | ond gust)<br>Dpsf; h=30ft; (<br>) exterior zor<br>ber DOL=1.60<br>e load: Lumb<br>sf (flat roof sn<br>ategory II; Ex<br>isidered for th | Cat.<br>ne;<br>o<br>er<br>now:<br>p B;<br>nis |                                        |                                       |                                 |                                            |                                               |
| BOT CHORD                                                                           | 2-0-0 oc purlir<br>Rigid ceiling d                                                                                                                  | ns (3-8-<br>directly a                                                  | 11 max.): 6-7.<br>applied or 10-0-0 oc                                                               | 5)                                      | load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on<br>overhangs non-concurrent with other live loads.                                                                                                            |                                                                                                                                                                                                 |                                                                                        |                                                                                                                                         |                                               |                                        |                                       |                                 |                                            |                                               |
| JOINTS                                                                              | 1 Brace at Jt(<br>18, 19                                                                                                                            | s): 17,                                                                 |                                                                                                      | 6)<br>7)                                | <ul> <li>i) Provide adequate drainage to prevent water ponding.</li> <li>ii) All plates are MT20 plates unless otherwise indicated.</li> <li>iii) This true has been designed for a f0 work between the plates.</li> </ul> |                                                                                                                                                                                                 |                                                                                        |                                                                                                                                         |                                               |                                        |                                       |                                 |                                            |                                               |
| REACTIONS                                                                           | (Ib/size) 1=1<br>12=<br>Max Horiz 1=-<br>Max Grav 1=1                                                                                               | 1166/ M<br>=1220/0<br>·216 (LC<br>1713 (L                               | lechanical,<br>)-3-8<br>C 8)<br>C 3), 12=1777 (LC 3)                                                 | 9)<br>)                                 | * This truss ha<br>on the botton                                                                                                                                                                                           | ad nonconcurrent w<br>as been designed<br>n chord in all areas                                                                                                                                  | ith any<br>for a liv<br>where<br>fit bety                                              | other live load<br>e load of 20.0<br>a rectangle                                                                                        | ds.<br>)psf                                   |                                        |                                       |                                 |                                            |                                               |
| FORCES                                                                              | (lb) - Maximur<br>Tension                                                                                                                           | m Comp                                                                  | pression/Maximum                                                                                     | 10                                      | chord and an                                                                                                                                                                                                               | y other members.                                                                                                                                                                                | ombor                                                                                  |                                                                                                                                         | . 17                                          |                                        |                                       |                                 |                                            | 11111                                         |
| TOP CHORD                                                                           | 1-3=-2234/0, 3<br>5-6=-799/141,<br>8-9=-1321/0, 9<br>12-13=0/34                                                                                     | 3-4=-20<br>, 6-7=-6<br>9-11=-2                                          | 087/0, 4-5=-1327/0,<br>666/95, 7-8=-806/139<br>2144/0, 11-12=-2283/                                  | ),<br>/0, 11                            | (s).4-16, 9-14<br>Bottom chorc                                                                                                                                                                                             | , 8-19; Wall dead I<br>4<br>I live load (40.0 psf                                                                                                                                               | oad (5.<br>) and a                                                                     | dditional botto                                                                                                                         | om                                            |                                        | 4                                     | 1 in                            | PTH CA                                     | ROLL                                          |
| BOT CHORD<br>WEBS                                                                   | 1-16=0/1430,<br>5-17=-1384/0,<br>18-19=-1355/0<br>9-14=0/1106,<br>6-17=0/78, 6-<br>7-18=-18/105                                                     | 14-16=<br>, 17-18=<br>0, 8-19=<br>3-16=-7<br>18=-13/                    | 0/1447, 12-14=0/14()<br>=-1377/0,<br>=-1361/0, 4-16=0/104<br>78/268, 11-14=-104/<br>′115, 7-19=0/77, | 08 12<br>13<br>45,<br>193,<br>14        | <ul> <li>Refer to girde</li> <li>This truss is of<br/>International<br/>R802.10.2 ar</li> <li>Graphical pu<br/>or the orienta</li> </ul>                                                                                   | er(s) for truss to tru<br>designed in accord<br>Residential Code s<br>ad referenced stand<br>rlin representation of<br>the purlin al                                                            | ance w<br>ections<br>dard AN<br>does no<br>ong the                                     | ith the 2015<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>top and/or                                                              | nd<br>iize                                    |                                        | Thunner.                              |                                 | SEAI<br>03632                              | L 22                                          |
| NOTES<br>1) Unbalance<br>this design                                                | ed roof live loads<br>n.                                                                                                                            | s have I                                                                | been considered for                                                                                  | 15<br>LC                                | bottom chord<br>) Attic room ch<br>)AD CASE(S)                                                                                                                                                                             | l.<br>ecked for L/360 de<br>Standard                                                                                                                                                            | flectior                                                                               |                                                                                                                                         |                                               |                                        |                                       |                                 |                                            | ILBERTUUT                                     |

- 1) Unbalanced roof live loads have been considered for this design.



June 13,2022

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | AT3   | Attic      | 2   | 1   | Job Reference (optional)   | 152514607 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:31 ID:OzXTk0bNvjZwLXvAXG6fzpz8zYr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 6)
  - All plates are MT20 plates unless otherwise indicated. 7)
  - This truss has been designed for a 10.0 psf bottom 8)
  - chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom
  - chord and any other members. 10) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-16, 16-17, 17-18, 7-18; Wall dead load (5.0psf) on member (s).3-15, 8-13
  - 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 13-15
  - 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and
  - R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

14) Attic room checked for L/360 deflection

NOTES

WEBS

Scale = 1:81.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

**REACTIONS** (lb/size)

JOINTS

FORCES

TOP CHORD

BOT CHORD

bracing.

17, 18

Tension

11-12=0/34

1 Brace at Jt(s): 16,

Max Horiz 1=-216 (LC 10)

1) Unbalanced roof live loads have been considered for this design.

6-17=-16/110, 6-18=0/78

4-16=-1376/0, 16-17=-1369/0,

8-13=0/1110. 2-15=-103/197

Rigid ceiling directly applied or 10-0-0 oc

Max Grav 1=1715 (LC 3), 11=1786 (LC 3)

(lb) - Maximum Compression/Maximum

1-2=-2302/0, 2-3=-2164/0, 3-4=-1333/0,

4-5=-807/139, 5-6=-672/93, 6-7=-806/139,

7-8=-1334/0, 8-10=-2160/0, 10-11=-2300/0,

1-15=0/1501, 13-15=0/1460, 11-13=0/1418

17-18=-1372/0, 7-18=-1378/0, 3-15=0/1114,

10-13=-101/194, 5-16=0/78, 5-17=-16/109,

1=1169/0-3-8, 11=1226/0-3-8



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

bottom chord.

LOAD CASE(S) Standard



| Job    | Truss | Truss Type       | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------|-----|-----|----------------------------|-----------|
| Hoener | M1G   | Monopitch Girder | 1   | 2   | Job Reference (optional)   | 152514608 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:32 ID:D5vflu6wYajT7l42lEj?3pz9\_XS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f









Scale = 1:68

| Plate Offsets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (X, Y): [1:0-8-0,0-0-3],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1:0-0-15,1-0-6], [4:0                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-1-4,0-1-1                                                             | 12], [9:0-6-4,0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-0], [10:0-6-0,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                            |                               |                          |                                                                  |                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------|------------------------------------------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2015                                  | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.24<br>0.91<br>0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                     | in<br>-0.05<br>-0.10<br>0.02                                                                                                | (loc)<br>9-10<br>9-10<br>8 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 256 lb                                 | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 2-ply trust<br>(0.131*x3)<br>Top chord<br>staggered<br>Bottom cf<br>staggered<br>Bottom cf<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Staggered<br>Stagger | 2x6 SP No.2<br>2x8 SP No.2<br>2x4 SP No.2<br>Left: 2x10 SP 2250F<br>Structural wood shea<br>5-9-4 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 1=5114/0-<br>Max Grav 1=6374 (L<br>(lb) - Maximum Com<br>Tension<br>1-2=-6969/0, 2-4=-3:<br>5-6=-8/0, 5-8=-117/6<br>1-10=0/5477, 9-10=(0)<br>7-8=0/0<br>2-10=0/3774, 2-9=-3<br>4-8=-5226/0<br>st ob e connected toget<br>") nails as follows:<br>Is connected as follows:<br>Is to be connected toget<br>at 0-9-0 oc, 2x4 - 1 row<br>ords connected as follows:<br>I at 0-9-0 oc, 2x4 - 1 row<br>ords connected as follows:<br>I at 0-9-0 oc, 2x4 - 1 row<br>ords connected as follows:<br>I at 0-7-0 oc.<br>eected as follows: 2x4 -<br>are considered equally in<br>tod as front (F) or back<br>section. Ply to ply connot<br>to distribute only loads in<br>the rewise indicated. | 1.9E or DSS or SS<br>athing directly applie<br>sept end verticals.<br>applied or 10-0-0 oc<br>5-8, 4-8<br>5-8, 8=5163/0-11-0<br>(2), 8=6449 (LC 3)<br>pression/Maximum<br>712/0, 4-5=-112/54,<br>5/5477, 8-9=0/3038,<br>035/0, 4-9=0/6065,<br>her with 10d<br>: 2x6 - 2 rows<br><i>v</i> at 0-9-0 oc.<br>sws: 2x8 - 4 rows<br>1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO.<br>ections have been<br>noted as (F) or (B), | 3)<br>d or<br>5)<br>6)<br>7)<br>8)<br>9)<br>10<br><b>LC</b><br>1)<br>AD | Wind: ASCE<br>Vasd=91mpf<br>II; Exp B; Encantilever lef<br>plate grip DOL<br>TCLL: ASCE<br>DOL=1.15 Pl<br>Lumber DOL<br>Partially Exp<br>Unbalanced<br>* This truss ha<br>chord live loa<br>* This truss is<br>International<br>R802.10.2 at<br>Use Simpsor<br>Truss, Single<br>oc max. starf<br>connect truss<br>) Fill all nail ho<br>DAD CASE(S)<br>Dead + Snot<br>Increase=1.<br>Uniform Loa<br>Vert: 1-55<br>Concentrato<br>Vert: 9=-<br>14=-1354 | 7-10; Vult=115r<br>; TCDL=6.0psf;<br>closed; MWFRS<br>t and right exposed<br>DL=1.60<br>7-10; Pr=20.0 p<br>late DOL=1.15;<br>=1.15 Plate DOL<br>; Ct=1.10<br>snow loads have<br>s been designed<br>ad nonconcurrent<br>has been designed<br>ad nonconcurrent<br>been designed in acco<br>Residential Cod<br>out referenced st<br>h Strong-Tie MU<br>e Ply Girder) or et<br>ing at 0-8-12 frost<br>(les where hangut<br>Standard<br>bw (balanced): L<br>15<br>ads (lb/ft)<br>=-40, 5-6=-40, 1<br>4 (B), 12=-1354<br>7 (B) | nph (3-sec<br>BCDL=6.(<br>(envelope<br>sed ; Lumb<br>sef (roof liv<br>Pf=10.0 p<br>L=1.15); C<br>e been cor<br>d for a 10.0<br>t with any<br>ed for a 1 | cond gust)<br>Dpsf; h=30ft;<br>e) exterior zor-<br>per DOL=1.6(<br>e load: Lumb<br>sf (flat roof sr<br>ategory II; E)<br>asidered for th<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>DL = 10.0psi<br>th the 2015<br>is R502.11.1 a<br>d Girder, 8-11<br>spaced at 2-(<br>end to 12-8-1<br>n chord.<br>ttact with lum<br>rease=1.15, I<br>B=-1354 (B),<br>354 (B), | Cat.<br>ne;<br>0<br>her<br>now:<br>xp B;<br>his<br>ads.<br>0psf<br>om<br>f.<br>and<br>0d<br>0-0<br>12 to<br>laber.<br>Plate |                            |                               |                          | SEA<br>OSEA<br>OSEA<br>OSEA<br>OSEA<br>OSEA<br>OSEA<br>OSEA<br>O | ROLL<br>L<br>22<br>L<br>BER        |  |

## June 13,2022



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB1   | Piggyback  | 18  | 1   | Job Reference (optional)   | 152514609 |

TCDL

BCLL

BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:32 ID:009kDQDwCCfK7m1CDG2NCHz8zZK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932



building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB1E  | Piggyback  | 2   | 1   | Job Reference (optional)   | 152514610 |

Loading

Snow (Pf)

LUMBER

OTHERS

FORCES

TCDL

BCLL

BCDL

Run: 8 53 S. Apr 27 2022 Print: 8 530 S. Apr 27 2022 MiTek Industries. Inc. Mon. Jun 13 14:27:33 ID:HCj7RmEYzWnBlwcPnzZclUz8zZJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

G

818 Soundside Road Edenton, NC 27932

minin

June 13,2022



overhands non-concurrent with other live loads.

Gable studs spaced at 2-0-0 oc.

All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.

7)

8)

9)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB2   | Piggyback  | 7   | 1   | Job Reference (optional)   | 152514611 |

TCDL

BCLL

BCDL

WEBS

2)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:33 ID:HCj7RmEYzWnBlwcPnzZclUz8zZJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G mm June 13,2022 11111111111

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB2A  | Piggyback  | 10  | 1   | Job Reference (optional)   | 152514612 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:34 ID:SEk1pQVwBoTcESErtYRbjfz9\_5q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:38.4 Plate Offsets (X, Y): [1:0-3-8,Edge]

|                                                   |                     |                           |                              | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|---------------------------------------------------|---------------------|---------------------------|------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|----------------|---------------|-------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Loading                                           |                     | (psf)                     | Spacing                      | 2-0-0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | csi                        |              | DEFL           | in            | (loc) | l/defl | L/d    | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP           |
| TCLL (roof)                                       |                     | 20.0                      | Plate Grip DOL               | 1.15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | тс                         | 0.13         | Vert(LL)       | n/a           | -     | n/a    | 999    | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244/190        |
| Snow (Pf)                                         |                     | 10.0                      | Lumber DOL                   | 1.15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC                         | 0.09         | Vert(CT)       | n/a           | -     | n/a    | 999    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| TCDL                                              |                     | 10.0                      | Rep Stress Incr              | YES    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WB                         | 0.06         | Horz(CT)       | 0.00          | 5     | n/a    | n/a    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| BCLL                                              |                     | 0.0*                      | Code                         | IRC20  | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix-S                   |              | ()             |               | -     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| BCDL                                              |                     | 10.0                      | oode                         | 11(020 | 13/11/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix 0                   |              |                |               |       |        |        | Weight: 56 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 20%       |
|                                                   | -                   |                           |                              | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| LUMBER                                            |                     |                           |                              | :      | <li>B) Truss desig</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ned for wind loads         | s in the p   | ane of the tr  | uss           |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| TOP CHORD                                         | 2x4 SP 16           | 650F 1.5E                 | or 2x4 SP No.1 or 2x4        | 4      | only. For stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uds exposed to wi          | nd (norm     | al to the face | e),           |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | SP SS               |                           |                              |        | see Standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Industry Gable I         | End Deta     | ils as applica | ible,         |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| BOT CHORD                                         | 2x4 SP 16           | 650F 1.5E                 | or 2x4 SP No.1 or 2x4        | 4      | or consuit qualified building designer as per ANS/TPL1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |              |                |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | SPSS                |                           |                              | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 7-10; PI=20.0 ps         | 51 (1001 IIV | e load: Lumit  |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| OTHERS                                            | 2x4 SP N            | 0.2                       |                              |        | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.15 Plate DOL=1.15), F   | -1 15)· C    | ategory II: E  | now.<br>vn B· |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| WEDGE                                             | Left: 2x4 ;         | 5P N0.2                   |                              |        | Partially Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{t=1.10} + 1000 = 0000$ | =1.10), 0    |                | λр В,         |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| BRACING                                           | <u>.</u>            |                           |                              | . (    | i) Unbalanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | snow loads have            | been cor     | sidered for t  | his           |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| TOP CHORD                                         | Structura           | I wood shea               | athing directly applied      | or     | design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |              |                |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | Bigid coll          | Juliilis.<br>ina directly | applied or 10.0.0 as         | (      | 6) This truss ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as been designed           | for greate   | er of min root | f live        |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| BOTCHORD                                          | bracing             | ing unecity               | applied of 10-0-0 oc         |        | load of 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | psf or 2.00 times          | flat roof lo | bad of 10.0 p  | sf on         |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| REACTIONS                                         | (lb/size)           | 1-58/12-7                 | 7-11 5-86/12-7-11            |        | overhangs n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ion-concurrent wit         | h other liv  | /e loads.      |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| READING                                           | (10/3120)           | 7=228/12-                 | -7-11 8=201/12-7-11          | -      | <ol> <li>Gable studs</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | spaced at 4-0-0 o          | )C.          |                |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   |                     | 9=221/12-                 | -7-11                        | , 8    | <li>This truss has a second se</li> | as been designed           | for a 10.0   | ) psf bottom   |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | Max Horiz           | 1=-92 (LC                 | : 8)                         |        | chord live lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ad nonconcurrent           | with any     | other live loa | ads.          |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | Max Uplift          | 1=-15 (LC                 | 8), 7=-87 (LC 13), 9=        | =-93   | ) " I NIS TRUSS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nas been designe           | d for a liv  | e load of 20.  | upsr          |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   |                     | (LC 12)                   | -// - (// -                  |        | 3-06-00 tall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m chora in all area        | ill fit boty | a reclangle    | om            |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   | Max Grav            | 1=97 (LC                  | 27), 5=120 (LC 2), 7=        | =317   | chord and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ny other members           |              | veen the bott  | om            |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   |                     | (LC 27), 8                | =259 (LC 2), 9=313 (         | LC .   | 0) Provide med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chanical connectio         | n (bv oth    | ers) of truss  | to            |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                   |                     | 26)                       |                              |        | bearing plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e capable of withs         | tanding 1    | 5 lb uplift at | joint         |       |        |        | MILLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1111           |
| FORCES                                            | (lb) - Max          | imum Com                  | pression/Maximum             |        | 1, 93 lb uplif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t at joint 9 and 87        | lb uplift a  | t joint 7.     |               |       |        |        | WHY CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pall           |
|                                                   | Tension             |                           |                              |        | 1) Non Standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rd bearing condition       | on. Revie    | w required.    |               |       |        | 1      | atrio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/11          |
| TOP CHORD                                         | 1-2=-100/           | 74, 2-3=-1                | 20/84, 3-4=-116/67,          |        | 2) This truss is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | designed in accor          | rdance w     | ith the 2015   |               |       |        | E.     | O' EESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. N'I         |
|                                                   | 4-5=-85/3           | 89, 5-6=0/13              | 3                            |        | International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Residential Code           | esections    | R502.11.1 a    | and           |       |        | 71     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No SIA         |
| BOICHORD                                          | 1-9=-23/6           | 94, 8-9=-23/              | /64, 7-8=-23/64,             |        | R802.10.2 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd referenced sta          | ndard AN     | ISI/TPL1.      |               |       |        |        | :0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| WERS                                              | 3-7=-23/0           | 14<br>10 2 0 - 24         | 2/12/ /7_ 2///120            |        | 3) See Standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rd Industry Piggyb         | ack Irus     | s Connection   | 1             |       |        |        | CEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n <u>1</u> E - |
| WEBS                                              | 3-8=-170/           | 0, 2-9=-24.               | 2/134, 4-7=-244/129          |        | Detail for Connection to base truss as applicable, or SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |                |               |       |        | L : E  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| NOIES                                             |                     | aada haya                 | heen ennidered for           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        | 22 : = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| <ol> <li>Unbalance</li> <li>this docid</li> </ol> | ea rooi live i<br>n | oads have                 | been considered for          |        | OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standard                   |              |                |               |       | -      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 2) Wind AS                                        | n.<br>CE 7-10: Vu   | lt-115mph                 | (3-second quist)             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        | 1. Sec. 1. Sec | - 1 - S -      |
| Vasd=91r                                          | mph TCDI =          | 6 0nsf <sup>-</sup> BC    | DI = 6 0  psf  h = 30  ft  C | at     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        | 10     | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRIAN          |
| II; Exp B;                                        | Enclosed; N         | IWFRS (en                 | velope) exterior zone        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        | 1      | A GIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. P. A.       |
| cantilever                                        | left and righ       | nt exposed                | ; Lumber DOL=1.60            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        | 1      | A CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IL BEIN        |
| plate grip                                        | DOL=1.60            |                           |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        | 11111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                                   |                     |                           |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 2022        |
|                                                   |                     |                           |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |                |               |       |        |        | June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 13,2022      |



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB2AE | Piggyback  | 1   | 1   | Job Reference (optional)   | 152514613 |

Scale = 1:36.6

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:34 ID:IOHVe5FBkpv2N4BbKh4rliz8zZI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|              |                        |               |                                         |                    |                                                      |                      |             |                  |             |       |         |     |               |          | _ |
|--------------|------------------------|---------------|-----------------------------------------|--------------------|------------------------------------------------------|----------------------|-------------|------------------|-------------|-------|---------|-----|---------------|----------|---|
| Loading      |                        | (psf)         | Spacing                                 | 2-0-0              |                                                      | CSI                  |             | DEFL             | in          | (loc) | l/defl  | L/d | PLATES        | GRIP     |   |
| TCLL (roof)  |                        | 20.0          | Plate Grip DOL                          | 1.15               |                                                      | TC                   | 0.05        | Vert(LL)         | n/a         | -     | n/a     | 999 | MT20          | 244/190  |   |
| Snow (Pf)    |                        | 10.0          | Lumber DOL                              | 1.15               |                                                      | BC                   | 0.04        | Vert(CT)         | n/a         | -     | n/a     | 999 |               |          |   |
| TCDL         |                        | 10.0          | Rep Stress Incr                         | YES                |                                                      | WB                   | 0.03        | Horz(CT)         | 0.00        | 7     | n/a     | n/a |               |          |   |
| BCLL         |                        | 0.0*          | Code                                    | IRC2015            | 5/TPI2014                                            | Matrix-S             |             |                  |             |       |         |     |               |          |   |
| BCDL         |                        | 10.0          |                                         |                    |                                                      |                      |             |                  |             |       |         |     | Weight: 65 lb | FT = 20% |   |
| LUMBER       |                        |               |                                         | 2)                 | Wind: ASCE                                           | 7-10; Vult=115mp     | h (3-seo    | cond gust)       |             | LOAD  | CASE(S) | Sta | ndard         |          |   |
| TOP CHORD    | 2x4 SP 1               | 650F 1.5E     | or 2x4 SP No.1 or 2x                    | (4                 | Vasd=91mph                                           | ; TCDL=6.0psf; B     | CDL=6.      | Opsf; h=30ft; (  | Cat.        |       | . ,     |     |               |          |   |
|              | SP SS                  |               |                                         |                    | II; Exp B; Enclosed; MWFRS (envelope) exterior zone; |                      |             |                  |             |       |         |     |               |          |   |
| BOT CHORD    | 2x4 SP 1               | 650F 1.5E     | or 2x4 SP No.1 or 2x                    | (4                 | cantilever ler                                       | t and right exposed  | a ; Luma    | ber DOL=1.60     | )           |       |         |     |               |          |   |
|              | SPISS                  |               |                                         | 2)                 | plate grip DC                                        | L=1.00               |             |                  |             |       |         |     |               |          |   |
| OTHERS       | 2x4 SP N               | lo.2          |                                         | 3)                 | nuss design                                          | de expered to win    | in the p    | ane of the tru   | JSS<br>\    |       |         |     |               |          |   |
| WEDGE        | Left: 2x4              | SP No.2       |                                         |                    | see Standard                                         | lus exposed to will  | nd Dota     |                  | ),<br>hla   |       |         |     |               |          |   |
| BRACING      |                        |               |                                         |                    | or consult au                                        | alified building des | inner a     | s ner ANSI/TI    | Die,<br>⊃I1 |       |         |     |               |          |   |
| TOP CHORD    | Structura              | I wood she    | athing directly applie                  | d or 4)            | TCLL · ASCE                                          | 7-10. Pr=20.0 nsf    | (roof liv   | e load: Lumb     | er          |       |         |     |               |          |   |
|              | 6-0-0 oc               | purlins.      |                                         | •,                 | DOL=1.15 PI                                          | ate DOL=1.15): Pf    | (1001 III   | sf (flat roof sr | now:        |       |         |     |               |          |   |
| BOT CHORD    | Rigid ceil<br>bracing. | ling directly | applied or 10-0-0 oc                    |                    | Lumber DOL<br>Partially Exp                          | =1.15 Plate DOL=     | 1.15); C    | ategory II; Ex   | φB;         |       |         |     |               |          |   |
| REACTIONS    | (lb/size)              | 1=66/12-7     | ′-11, 7=91/12-7-11,                     | 5)                 |                                                      | snow loads have h    | een cor     | sidered for th   | nis         |       |         |     |               |          |   |
|              |                        | 9=160/12-     | 7-11, 10=111/12-7-1                     | 11, °,             | design.                                              |                      |             |                  |             |       |         |     |               |          |   |
|              |                        | 11=102/12     | 2-7-11, 12=115/12-7-                    | <sup>-11,</sup> 6) | This truss ha                                        | s been designed f    | or areat    | er of min roof   | live        |       |         |     |               |          |   |
|              |                        | 13=149/12     | 2-7-11                                  | - /                | load of 12.0                                         | osf or 2.00 times fl | at roof le  | ad of 10.0 p     | sf on       |       |         |     |               |          |   |
|              | Max Horiz              | 1=-92 (LC     | 8)                                      |                    | overhangs no                                         | on-concurrent with   | other liv   | /e loads.        |             |       |         |     |               |          |   |
|              | Max Uplift             | 1=-7 (LC 8    | 8), 9=-56 (LC 13), 10                   | )=-39 7)           | All plates are                                       | 2x4 MT20 unless      | otherwi     | se indicated.    |             |       |         |     |               |          |   |
|              |                        | (LC 13), 1    | 2=-40 (LC 12), 13=-6                    | 61 8)              | Gable studs                                          | spaced at 2-0-0 oc   |             |                  |             |       |         |     |               |          |   |
|              |                        | (LC 12)       |                                         | 9)                 | This truss ha                                        | s been designed f    | or a 10.0   | ) psf bottom     |             |       |         |     |               |          |   |
|              | Max Grav               | 1=100 (LC     | C 27), 7=126 (LC 2),                    | 7)                 | chord live loa                                       | ad nonconcurrent v   | vith any    | other live loa   | ds.         |       |         |     | MILLIN        | UIII.    |   |
|              |                        | 9=220 (LC     | 27), 10=153 (LC 27                      | (), 10             | ) * This truss h                                     | as been designed     | for a liv   | e load of 20.0   | Opsf        |       |         |     | IN'LY CA      | ROUL     |   |
|              |                        | 11=139 (L     | .C 29), 12=159 (LC 2                    | 20),               | on the botton                                        | n chord in all areas | s where     | a rectangle      |             |       |         | 1   | all           | 10/11/   |   |
| FORCES       |                        | 13=200 (L     | .0 20)                                  |                    | 3-06-00 tall b                                       | y 1-00-00 wide wi    | ll fit betv | veen the botto   | om          |       |         | A.  | O'EESS        | in Alex  |   |
| FURGES       | (ID) - Max             | kimum Com     | pression/maximum                        |                    | chord and an                                         | y other members.     |             |                  |             |       |         | 11  | 1P            | No. SIA  |   |
|              | 1 2_ 99/5              | 74 2 2 70     | 157 2 A- 67/02                          | 11                 | ) Provide mecl                                       | hanical connection   | (by oth     | ers) of truss t  | 0           |       | -       |     |               | AND.     |   |
| TOP CHORD    | 1-2=-00/1              | 74, 2-3=-79/  | '37, 3-4=-07/03,<br>/26 6 7_ 76/46 7 9_ | -0/12              | bearing plate                                        | capable of withsta   | anding 7    | 'lb uplift at jo | int         |       | -       |     | 0.54          |          |   |
|              | 4-3=-37/7              | /60 12-13-    | -20/60 11-12-20/6                       | =0/13<br>0         | 1,40 lb uplift                                       | at joint 12, 61 lb u | plift at jo | 5int 13, 39 lb   |             |       |         |     | SEA           | L : =    |   |
| BOT CHORD    | 10-112                 | 9/69 9-10-    | -29/69, 11-12-29/69                     | J,<br>10           | Upilit at joint                                      | 10 and 56 ib uplift  | at joint :  | 1.               |             |       | - 8     |     | 0363          | 22 E     |   |
| WEBS         | 4-11=-97               | /0 3-12=-1    | 24/63 2-13=-152/86                      | 12                 | This trues is                                        | designed in accord   |             | ith the 2015     |             |       |         |     | . 0000        | i E      |   |
|              | 5-10=-12               | 1/62 6-9=-    | 158/82                                  | , 15               | International                                        | Residential Code     | soctions    | R502 11 1 a      | nd          |       |         |     |               | 1 3      |   |
| NOTES        | 0.00.12                |               |                                         |                    | R802 10 2 ar                                         | nd referenced stan   | dard AN     | ISI/TPI 1        | ina         |       |         | 1   | N. E.         | Ricks    |   |
| 1) Unbalance | od roof live           | loode hove    | been considered for                     | 14                 | ) See Standar                                        | d Industry Pigavha   |             | s Connection     |             |       |         | 25  | GIN           | EF. AN   |   |
| this design  | n                      | iodus nave    |                                         | 17                 | Detail for Co                                        | nection to base tr   | uss as a    | applicable or    |             |       |         | 11  | 10            | BEN      |   |
| uns desigi   |                        |               |                                         |                    | consult qualit                                       | fied building design | ner.        |                  |             |       |         |     | 11, A. G      | ILUIN    |   |
|              |                        |               |                                         |                    |                                                      |                      |             |                  |             |       |         |     | (IIIIII)      | ann,     |   |
|              |                        |               |                                         |                    |                                                      |                      |             |                  |             |       |         |     | June          | 13 2022  |   |



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB2E  | Piggyback  | 1   | 1   | Job Reference (optional)   | 152514614 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:35 ID:IOHVe5FBkpv2N4BbKh4rliz8zZI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB3   | Piggyback  | 22  | 1   | Job Reference (optional)   | 152514615 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:35 ID:IOHVe5FBkpv2N4BbKh4rliz8zZI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = | 1:36.1 |
|---------|--------|
|---------|--------|

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]

|                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                       |                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                  |                      |                             |                          |                                 |                                    |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                | 5/TPI2014                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                                                                                                                                                                                                | 0.38<br>0.19<br>0.06                                                                                                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                         | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 39 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 2=163/8-<br>6=221/8-<br>Max Horiz 2=-90 (LC<br>Max Grav 2=229 (LC<br>(LC 2)<br>(lb) Maximum Con | eathing directly appli<br>y applied or 10-0-0 o<br>8-3, 4=163/8-8-3,<br>8-3<br>C 10)<br>C 13), 4=-34 (LC 13)<br>C 2), 4=-29 (LC 2), y | 5)<br>6)<br>ed or 7)<br>8)<br>bc 9)<br>10<br>6=277 11 | Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>bottor<br>3-06-00 tall the<br>chord and ar<br>Provide mec<br>bearing plate<br>2 and 34 lb u | snow loads have<br>as been designed<br>psf or 2.00 times<br>on-concurrent wit<br>es continuous boi<br>spaced at 4-0-0 c<br>as been designed<br>ad nonconcurrent<br>has been designe<br>m chord in all area<br>by 1-00-00 wide w<br>hanical connectic<br>e capable of withs<br>uplift at joint 4. | been cor<br>for great<br>flat roof k<br>h other liv<br>tom chor<br>oc.<br>for a 10.0<br>for a 10.0<br>for a 10.0<br>d for a liv<br>as where<br>with any<br>d for a liv<br>as where<br>iill fit betw<br>s.<br>n (by oth<br>tanding 3 | isidered for the<br>er of min roof<br>pad of 10.0 pe<br>ve loads.<br>d bearing.<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>0 lb uplift at j | his<br>filve<br>sf on<br>ds.<br>Dpsf<br>om<br>to |                      |                             |                          |                                 |                                    |  |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalanc<br>this desig                         | (ii) - Maximum Cor<br>Tension<br>1-2=0/12, 2-3=-147<br>4-5=0/12<br>2-6=-24/72, 4-6=-24<br>3-6=-168/24<br>ted roof live loads have<br>n.                                                                                                  | /69, 3-4=-138/54,<br>4/72<br>9 been considered fo                                                                                     | 12<br>13<br>or <b>LC</b>                              | <ul> <li>This truss is<br/>International<br/>R802.10.2 a</li> <li>See Standar<br/>Detail for Co<br/>consult quali</li> <li>DAD CASE(S)</li> </ul>                                                                                      | designed in acco<br>Residential Code<br>nd referenced sta<br>d Industry Piggyb<br>nnection to base<br>fied building desig<br>Standard                                                                                                                                                            | rdance w<br>e sections<br>ndard AN<br>ack Truss<br>truss as a<br>gner.                                                                                                                                                              | ith the 2015<br>R502.11.1 a<br>ISI/TPI 1.<br>S Connection<br>applicable, or                                                                                                                                 | ind                                              |                      |                             |                          | TH CA                           | ROLIN                              |  |

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

SEAL 036322 June 13,2022



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB3A  | Piggyback  | 2   | 3   | Job Reference (optional)   | 152514616 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:35 ID:MTp7npaiazuV2PhZVgZg\_9z9\_IT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:36.1

| Loading         (psf)         3           TCLL (roof)         20.0         1           Snow (Pf)         10.0         1           TCDL         10.0         1           BCLL         0.0*         0           BCDL         10.0         1 | Spacing         6-0-0           Plate Grip DOL         1.15           Lumber DOL         1.15           Rep Stress Incr         NO           Code         IRC2 | )<br>2015/TPI2014                                                                                                                                                                                                                                                                                                                                            | CSI<br>TC 0<br>BC 0<br>WB 0<br>Matrix-P                                                                                                                                | 16 Vert(LL)<br>09 Vert(CT)<br>02 Horz(CT)                                                     | in<br>n/a<br>n/a<br>0.00                 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 171 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER           TOP CHORD         2x6 SP No.2           BOT CHORD         2x6 SP No.2           OTHERS         2x4 SP No.2           BRACING         TOP CHORD           TOP CHORD         2-0-0 oc purlins (6-0-0                       | max.)                                                                                                                                                          | <ul> <li>4) Wind: ASCE<br/>Vasd=91mph<br/>II; Exp B; End<br/>cantilever left<br/>plate grip DO</li> <li>5) Truss design</li> </ul>                                                                                                                                                                                                                           | 7-10; Vult=115mph (3<br>n; TCDL=6.0psf; BCDI<br>closed; MWFRS (envet<br>and right exposed ; L<br>DL=1.60<br>ned for wind loads in t                                    | -second gust)<br>.=6.0psf; h=30<br>lope) exterior<br>umber DOL=1<br>ne plane of the           | it; Cat.<br>zone;<br>.60<br>truss        |                      |                             |                          |                                  |                                    |
| (Switched from sheete<br>BOT CHORD Rigid ceiling directly ap<br>bracing.                                                                                                                                                                  | ed: Spacing > 2-0-0).<br>pplied or 10-0-0 oc                                                                                                                   | only. For stu<br>see Standard<br>or consult qu                                                                                                                                                                                                                                                                                                               | ids exposed to wind (r<br>I Industry Gable End I<br>alified building design                                                                                            | ormal to the fa<br>Details as appli<br>er as per ANSI                                         | ce),<br>cable,<br>/TPI 1.                |                      |                             |                          |                                  |                                    |
| REACTIONS         (lb/size)         2=508/8-2-8<br>6=570/8-2-8           Max Horiz         2=-264 (LC<br>Max Uplift         2=-89 (LC 1<br>2=-89 (LC 1<br>Max Grav           Max Grav         2=715 (LC 2<br>(LC 7)                       | 3, 4=508/8-2-8,<br>3<br>10)<br>3), 4=-104 (LC 13)<br>2), 4=715 (LC 2), 6=747                                                                                   | <ul> <li>b) FOLL AGE 710, FIE200 ps (robinive robin. Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 ps (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10</li> <li>7) Unbalanced snow loads have been considered for this design.</li> <li>0) This term has been designed to expect to a finite of the term.</li> </ul> |                                                                                                                                                                        |                                                                                               |                                          |                      |                             |                          |                                  |                                    |
| FORCES (Ib) - Maximum Compr<br>Tension                                                                                                                                                                                                    | ression/Maximum                                                                                                                                                | load of 12.0 p                                                                                                                                                                                                                                                                                                                                               | osf or 2.00 times flat re                                                                                                                                              | oof load of 10.0                                                                              | psf on                                   |                      |                             |                          |                                  |                                    |
| TOP CHORD 1-2=0/48, 2-3=-464/19<br>4-5=0/48                                                                                                                                                                                               | 8, 3-4=-450/163,                                                                                                                                               | <ol> <li>Gable require</li> <li>Gable studes</li> </ol>                                                                                                                                                                                                                                                                                                      | es continuous bottom spaced at 4-0-0 oc.                                                                                                                               | chord bearing.                                                                                |                                          |                      |                             |                          |                                  |                                    |
| BOT CHORD         2-6=-60/238, 4-6=-60/2           WEBS         3-6=-393/54                                                                                                                                                               | 238                                                                                                                                                            | 11) This truss has<br>chord live loa                                                                                                                                                                                                                                                                                                                         | s been designed for a<br>ad nonconcurrent with                                                                                                                         | 10.0 psf botto<br>any other live                                                              | n<br>oads.                               |                      |                             |                          |                                  |                                    |
| NOTES<br>1) 3-ply truss to be connected together<br>Top chords connected with 10d (0.<br>follows: 2x6 - 2 rows staggered at (<br>Bottom chords connected with 10d<br>follows: 2x6 - 2 rows staggered at (                                 | er as follows:<br>.131"x3") nails as<br>0-9-0 oc.<br>I (0.131"x3") nails as<br>0-9-0 oc.                                                                       | <ul> <li>12) * This truss h<br/>on the bottom<br/>3-06-00 tall b<br/>chord and an</li> <li>13) Provide mech<br/>bearing plate</li> <li>2 and 104 b</li> </ul>                                                                                                                                                                                                | as been designed for<br>n chord in all areas why<br>y 1-00-00 wide will fit<br>y other members.<br>hanical connection (by<br>capable of withstand<br>uplift at joint 4 | a live load of 2<br>ere a rectangle<br>between the be<br>others) of trus<br>ng 89 lb uplift a | 0.0psf<br>e<br>ottom<br>s to<br>at joint |                      | 4                           | ALL A                    | ORTH CA                          | ROIN                               |

 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- Unbalanced roof live loads have been considered for this design.
- 14) This truss is designed in accordance with the 2015

   ave been
   14) This truss is designed in accordance with the 2015

   (F) or (B),
   14) This truss is designed in accordance with the 2015

   (F) or (B),
   15) See Standard Industry Piggyback Truss Connection

   15) See Standard Industry Piggyback Truss Connection
   15) Detail for Connection to base truss as applicable, or consult qualified building designer.

   LOAD CASE(S)
   Standard





| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB3B  | Piggyback  | 1   | 2   | Job Reference (optional)   | 152514617 |

4-4-1

4-4-1

Builders FirstSource (Albermarle), Albernarle, NC - 28001,

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

2)

TCDL

BCLL

BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:35 ID:MTp7npaiazuV2PhZVgZg\_9z9\_iT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-3

4-4-1

Page: 1

4x6 = 3 12 12 ⊏ 4-10-11 4-9-5 2 -2-3 6 2x4 = 2x4 = 2x4 u 0-2-13 8-8-3 H 8-5-6 0-2-13 Scale = 1:38.8 Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0] 6-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) 999 MT20 244/190 n/a n/a 10.0 Lumber DOL 1.15 BC 0.31 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr WB 0.04 Horz(CT) 4 NO 0.00 n/a n/a 0.0 IRC2015/TPI2014 Matrix-P Code 10.0 Weight: 79 lb FT = 20% 4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. 2x4 SP No 2 TOP CHORD II; Exp B; Enclosed; MWFRS (envelope) exterior zone; BOT CHORD 2x4 SP No 2 cantilever left and right exposed ; Lumber DOL=1.60 2x4 SP No.2 plate grip DOL=1.60 5) Truss designed for wind loads in the plane of the truss TOP CHORD 2-0-0 oc purlins (6-0-0 max.) only. For studs exposed to wind (normal to the face), (Switched from sheeted: Spacing > 2-0-0). see Standard Industry Gable End Details as applicable BOT CHORD Rigid ceiling directly applied or 10-0-0 oc or consult qualified building designer as per ANSI/TPI 1. bracing. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 6) REACTIONS (lb/size) 2=490/8-2-8, 4=490/8-2-8, DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: 6=662/8-2-8 Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Max Horiz 2=-271 (LC 10) Partially Exp.; Ct=1.10 Max Uplift 2=-91 (LC 13), 4=-102 (LC 13) 7) Unbalanced snow loads have been considered for this 2=686 (LC 2), 4=686 (LC 2), 6=831 Max Grav desian. (LC 2) 8) This truss has been designed for greater of min roof live (lb) - Maximum Compression/Maximum load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on Tension overhands non-concurrent with other live loads. TOP CHORD 1-2=0/36, 2-3=-442/206, 3-4=-415/163, 9) Gable studs spaced at 4-0-0 oc. 4-5=0/36 10) This truss has been designed for a 10.0 psf bottom BOT CHORD 2-6=-71/215. 4-6=-71/215 chord live load nonconcurrent with any other live loads. 3-6=-505/71 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom 1) 2-ply truss to be connected together as follows: chord and any other members. Top chords connected with 10d (0.131"x3") nails as 12) Provide mechanical connection (by others) of truss to follows: 2x4 - 1 row at 0-9-0 oc. bearing plate capable of withstanding 91 lb uplift at joint Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. 2 and 102 lb uplift at joint 4. 13) Non Standard bearing condition. Review required. SEAL All loads are considered equally applied to all plies, 14) This truss is designed in accordance with the 2015

- except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for
- this design.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | PB3E  | Piggyback  | 1   | 1   | Job Reference (optional)   | 152514618 |

4-4-1

4-4-1

-0-6-5

0-6-5

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:36 ID:zJkdqkkrdvc?Kd\_WtsK?brz8zZy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-3

4-4-1

9-2-8

)-6-5



4 12 12 Г

4x6 =



Scale = 1:36.1

Plate Offsets (X, Y): [2:0-2-6.0-1-0]. [6:0-2-6.0-1-0]

|                                                                                                                                       | (,,,,,). [2.0 2                                                                                                                                                                                 | 0,0 1 0],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0:0 2 0,0 1 0]                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                                                               |                                                                     |                      |                                                                                                                 |                                         |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                           |                                                                                                                                                                                                 | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20 | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07<br>0.04<br>0.02                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                      | in<br>n/a<br>n/a<br>0.00                                            | (loc)<br>-<br>-<br>6 | l/defl<br>n/a<br>n/a<br>n/a                                                                                     | L/d<br>999<br>999<br>n/a                | PLATES<br>MT20<br>Weight: 46 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                          | 2x4 SP No.<br>2x4 SP No.<br>2x4 SP No.<br>Structural v<br>6-0-0 oc pu<br>Rigid ceilin<br>bracing.<br>(Ib/size) 2<br>(Ib/size) 2<br>Max Horiz 2<br>Max Uplift 2<br>1<br>Max Grav 2<br>8          | 2<br>2<br>2<br>wood shea<br>irlins.<br>g directly<br>2=80/8-8-<br>=158/8-8<br>10=158/8-8<br>10=158/8-8<br>10=158/8-8<br>2=90 (LC<br>2=-5 (LC 8<br>10=-102 (<br>2=-17 (LC<br>2=-17 (LC | athing directly applied<br>applied or 10-0-0 oc<br>3, 6=80/8-8-3,<br>3-3, 9=71/8-8-3,<br>-8-3<br>11)<br>8), 8=-102 (LC 13),<br>LC 12)<br>2 27), 6=111 (LC 2),<br>2 27), 9=109 (LC 29),<br>.C 26)                   | dor (                                 | <ul> <li>TCLL: ASCE<br/>DOL=1.15 P<br/>Lumber DOL<br/>Partially Exp</li> <li>Unbalanced<br/>design.</li> <li>This truss ha<br/>load of 12.0<br/>overhangs n</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loa</li> <li>This truss ha<br/>chord live loa</li> <li>This truss ha<br/>chord live loa</li> <li>This truss a<br/>chord live loa</li> <li>This truss ha<br/>chord and ar</li> <li>Provide mec</li> </ul> | 7-10; Pr=20.0 psf<br>iate DOL=1.15); P<br>=1.15 Plate DOL=<br>;; Ct=1.10<br>snow loads have to<br>show l | (roof livi<br>f=10.0 p<br>1.15); C<br>been color<br>or great<br>at roof l<br>other li<br>other li<br>om cholor<br>c<br>or a 10.<br>with any<br>l for a livi<br>s where<br>ll fit betw<br>h (by oth | e load: Lumb<br>sf (flat roof sr<br>ategory II; E)<br>nsidered for tl<br>er of min roof<br>bad of 10.0 p:<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the bottor<br>ers) of truss t | ver<br>now:<br>kp B;<br>his<br>f live<br>sf on<br>ds.<br>Opsf<br>om |                      |                                                                                                                 |                                         |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalanc<br>this desig<br>2) Wind: AS<br>Vasd=91r<br>II; Exp B;<br>cantilever | (lb) - Maxim<br>Tension<br>1-2=0/12, 2<br>4-5=-76/56<br>2-10=-34/8;<br>6-8=-34/82<br>4-9=-75/0, ;<br>ed roof live loa<br>n.<br>CE 7-10; Vult=<br>mph; TCDL=6.<br>Enclosed; MV<br>left and right | num Com<br>-3=-90/78<br>, 5-6=-79,<br>2, 9-10=-3<br>3-10=-179<br>ads have<br>=115mph<br>.0psf; BC<br>VFRS (en<br>exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pression/Maximum<br>8, 3-4=-81/69,<br>/61, 6-7=0/12<br>34/82, 8-9=-34/82,<br>9/133, 5-8=-178/133<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft; Ca<br>yvelope) exterior zone<br>; Lumber DOL=1.60 | ,<br>at.<br>2;                        | <ul> <li>2, 102 lb upli</li> <li>2) This truss is<br/>International<br/>R802.10.2 at<br/>3) See Standar<br/>Detail for Co<br/>consult quali</li> <li>OAD CASE(S)</li> </ul>                                                                                                                                                                                                                                                                           | f at joint 10 and 1<br>designed in accorr<br>Residential Code<br>nd referenced star<br>d Industry Piggyba<br>nnection to base to<br>fied building desig<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 lb up<br>dance w<br>sections<br>idard At<br>ack Trus<br>russ as<br>ner.                                                                                                                         | iff at joint 8.<br>ith the 2015<br>STO2.11.1 a<br>ISI/TPI 1.<br>S Connection<br>applicable, or                                                                                                                                                | and                                                                 |                      | Contraction of the second s | ALL | SEA<br>0363                     | L 22                               |

plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GIL

| Job    | Truss | Truss Type                   | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------------------|-----|-----|----------------------------|-----------|
| Hoener | SP1   | Roof Special Supported Gable | 1   | 1   | Job Reference (optional)   | 152514619 |

# Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:36

16-4-0

4-0-0



| Scale = 1:55.5 |       |                 |                 |          |      |          |      |       |        |     |                |          |  |
|----------------|-------|-----------------|-----------------|----------|------|----------|------|-------|--------|-----|----------------|----------|--|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES         | GRIP     |  |
| TCLL (roof)    | 20.0  | Plate Grip DOL  | 1.15            | TC       | 0.09 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20           | 244/190  |  |
| Snow (Pf)      | 10.0  | Lumber DOL      | 1.15            | BC       | 0.05 | Vert(CT) | n/a  | -     | n/a    | 999 |                |          |  |
| TCDL           | 10.0  | Rep Stress Incr | YES             | WB       | 0.11 | Horz(CT) | 0.00 | 12    | n/a    | n/a |                |          |  |
| BCLL           | 0.0*  | Code            | IRC2015/TPI2014 | Matrix-S |      |          |      |       |        |     |                |          |  |
| BCDL           | 10.0  |                 |                 |          |      |          |      |       |        |     | Weight: 110 lb | FT = 20% |  |

12-4-0

12-4-0

| LUMBER    |                                                |      |
|-----------|------------------------------------------------|------|
| TOP CHORD | 2x4 SP No.2                                    |      |
| BOT CHORD | 2x4 SP No.2                                    |      |
| WEBS      | 2x4 SP No 2                                    |      |
| OTHERS    | 2x4 SP No 2                                    |      |
| BRACINC   |                                                |      |
|           | Chrysterral uses of the othing directly emplie |      |
| TOP CHORD | Structural wood sheatning directly applie      | aor  |
|           | 6-0-0 00 putilits, except end verticals.       |      |
| BOT CHORD | Rigid celling directly applied or 10-0-0 of    | 2    |
|           | bracing.                                       |      |
| WEBS      | 1 Row at midpt 11-12                           |      |
| REACTIONS | (lb/size) 2=127/16-3-8, 12=45/16-3-8,          |      |
|           | 13=126/16-3-8, 14=144/16-3-                    | 8,   |
|           | 16=92/16-3-8, 17=118/16-3-8                    | ,    |
|           | 18=121/16-3-8, 19=117/16-3-                    | 8,   |
|           | 20=129/16-3-8                                  |      |
|           | Max Horiz 2=257 (LC 12)                        |      |
|           | Max Uplift 12=-16 (LC 12), 13=-46 (LC 1        | 2),  |
|           | 14=-93 (LC 12), 17=-23 (LC 1                   | 2),  |
|           | 18=-23 (LC 12), 19=-23 (LC 1                   | 2),  |
|           | 20=-41 (LC 12)                                 |      |
|           | Max Grav 2=180 (LC 2), 12=83 (LC 26),          |      |
|           | 13=243 (LC 26), 14=202 (LC 2                   | 26), |
|           | 16=154 (LC 28), 17=172 (LC 3                   | 3),  |
|           | 18=162 (LC 2), 19=157 (LC 2)                   | ),   |
|           | 20=168 (LC 2)                                  |      |
| FORCES    | (lb) - Maximum Compression/Maximum             |      |
|           | Tension                                        |      |
| TOP CHORD | 1-2=0/17, 2-3=-228/10, 3-4=-187/4,             |      |
|           | 4-5=-160/10, 5-6=-132/21, 6-7=-105/33,         |      |
|           | 7-8=-116/39, 8-9=-111/55, 9-10=-81/48,         |      |
|           | 10-11=-41/21, 11-12=-47/24                     |      |
| BOT CHORD | 2-20=-33/17, 19-20=-33/17, 18-19=-33/1         | 7,   |
|           | 17-18=-33/17, 16-17=-33/17, 14-16=-33/         | /17, |
|           | 13-14=0/1, 12-13=0/1                           |      |
| WEBS      | 10-13=-131/72, 9-14=-119/43, 7-16=-83/         | /0,  |
|           | 6-17=-117/47, 5-18=-121/48, 4-19=-118/         | /46, |
|           | 3-20=-124/69, 7-14=-42/80                      |      |

### NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
  - chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 12, 46 lb uplift at joint 13, 93 lb uplift at joint 14, 23 lb uplift at joint 17, 23 lb uplift at joint 18, 23 lb uplift at joint 19 and 41 lb uplift at joint 20.
- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



Page: 1

818 Soundside Road Edenton, NC 27932

| Job    | Truss | Truss Type                   | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------------------|-----|-----|----------------------------|-----------|
| Hoener | SP2   | Roof Special Supported Gable | 1   | 1   | Job Reference (optional)   | 152514620 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:36 ID:DbqtsRGpV71v\_EmnuOb4qvz8zZH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 13,2022

SINEEDING

818 Soundside Road Edenton, NC 27932



Scale = 1:64.7

| Plate Offsets | (Х, | Y): | [3:0-4-8,0-2-8] |
|---------------|-----|-----|-----------------|
|---------------|-----|-----|-----------------|

| <b>Loading</b><br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                                            |                                                                                                                                                                                     | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                             | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05<br>0.02<br>0.10                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                                                                                    | (loc)<br>-<br>-<br>6 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|----------------|------------------------|--|
| BCDL                                                                                                                  |                                                                                                                                                                                     | 10.0                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                      |                             |                          | Weight: 123 lb | FT = 20%               |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x6 SP N<br>2x10 SP 2<br>2x10 SP 3<br>2x4 SP N<br>2x4 SP N<br>Right: 2x4<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.<br>1 Row at<br>(lb/size)<br>Max Horiz<br>Max Uplift | 0.2<br>2250F 1.9E<br>SS<br>0.2<br>0.3<br>4 SP No.2<br>1 wood sheat<br>burlins, exc<br>ing directly<br>midpt<br>6=117/10-<br>9=120/10-<br>11=124/10<br>12=-333 (<br>6=-42 (LC<br>9=-71 (LC<br>9=202 (LC<br>9=202 (LC<br>11=241 (L | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>1-12, 2-11<br>-0-0, 8=113/10-0-0,<br>-0-0, 10=121/10-0-0,<br>-0-0, 12=46/10-0-0<br>LC 13)<br>11), 8=-159 (LC 13).<br>C 13), 10=-76 (LC 13).<br>C 13), 12=-31 (LC 13).<br>C 13), 12=-31 (LC 28).<br>C 28), 10=237 (LC 28).<br>C 28), 12=89 (LC 28). | 1)<br>2)<br>d or 3)<br>4)<br>5)<br>()<br>7)<br>8)<br>()<br>8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wind: ASCE<br>Vasd=91mph<br>II; Exp B; Enc<br>cantilever left<br>plate grip DC<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 Pl<br>Lumber DOL<br>Partially Exp.<br>Unbalanced 3<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs no<br>Gable studs 3<br>This truss ha<br>chord live loa<br>* This truss ha<br>on the bottom<br>3-06-00 tall b | 7-10; Vult=115mph<br>; TCDL=6.0psf; BC<br>closed; MWFRS (et<br>and right exposed<br>bL=1.60<br>need for wind loads i<br>ds exposed to wind<br>lindustry Gable En<br>alified building desi<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf=<br>=1.15 Plate DOL=1<br>; Ct=1.10<br>snow loads have be<br>s been designed fo<br>osf or 2.00 times fla<br>pn-concurrent with<br>spaced at 2-0-0 oc.<br>s been designed fo<br>d nonconcurrent with<br>as been designed fo<br>as been designed fo<br>d nonconcurrent with<br>as been designed for<br>a h chord in all areas<br>y 1-00-00 wide will | n (3-secc<br>DL=6.6<br>Nvelope<br>; Lumk<br>n the pip<br>d (norm<br>d Deta<br>gner a:<br>(roof liv<br>=10.0 p<br>15); C<br>een cor<br>r greatk<br>t roof liv<br>other lin<br>r a 10.0;<br>for a liv<br>where<br>fit betw | ond gust)<br>Dpsf; h=30ft;<br>exterior zoner DOL=1.60<br>ane of the tru<br>al to the face<br>ils as applica<br>s per ANSI/TI<br>e load: Lumb<br>sf (flat roof si<br>ategory II; E)<br>asidered for the<br>er of min roof<br>bad of 10.0 p<br>re loads.<br>D psf bottom<br>other live loas<br>a rectangle<br>yeen the bottom | Cat.<br>ne;<br>)<br>uss<br>),<br>ble,<br>Pl 1.<br>er<br>now:<br>cp B;<br>live<br>sf on<br>ds.<br>Opsf<br>om |                      |                             |                          | TH CA          | Roling                 |  |
| FORCES<br>TOP CHORD                                                                                                   | (lb) - Max<br>Tension<br>1-12=-53/                                                                                                                                                  | imum Com<br>(39, 1-2=-5)                                                                                                                                                                                                         | chord and an<br>Provide mech<br>bearing plate                                                                                                                                                                                                                                                                                | y other members, when the second seco | with BC<br>(by oth<br>nding 3                                                                                                                                                                                                                                                                                                                                                                         | DL = 10.0ps<br>ers) of truss t<br>1 lb uplift at j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f.<br>to<br>oint<br>uplift                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             | 4                                                                                                           | i de                 | O FESE                      | The second               | -              |                        |  |
| BOT CHORD                                                                                                             | 4-5=-502/<br>11-12=-11                                                                                                                                                              | 18/332, 10-                                                                                                                                                                                                                      | -11=-118/332,<br>-11=-118/332,                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at joint 10, 71                                                                                                                                                                                                                                                                                                                                                                                       | l lb uplift at joint 9 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and 159                                                                                                                                                                                                                  | bint 11, 70 lb<br>b uplift at jo                                                                                                                                                                                                                                                                                            | oint                                                                                                        |                      |                             |                          | SEA            |                        |  |
| WEBS<br>NOTES                                                                                                         | 9-10=-117<br>2-11=-134<br>5-8=-146/                                                                                                                                                 | //331, 8-9=<br>4/97, 3-10=<br>/166                                                                                                                                                                                               | -117/331, 6-8=-116/3<br>-135/98, 4-9=-132/10                                                                                                                                                                                                                                                                                 | 530<br>50, 10<br>11<br>12<br><b>LC</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o.<br>) Non Standard<br>) This truss is o<br>International<br>R802.10.2 ar<br>) Attic room ch<br>DAD CASE(S)                                                                                                                                                                                                                                                                                          | d bearing condition<br>designed in accord<br>Residential Code s<br>ad referenced stand<br>ecked for L/360 de<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . Revie<br>ance w<br>ections<br>lard AN<br>flection                                                                                                                                                                      | ew required.<br>ith the 2015<br>R502.11.1 a<br>ISI/TPI 1.                                                                                                                                                                                                                                                                   | and                                                                                                         |                      | 11111                       |                          |                | ER.K.                  |  |
|                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                      |                             |                          | 111111 G       | innin                  |  |

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T1    | Piggyback Base | 2   | 1   | Job Reference (optional)   | 152514621 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:37 ID:IxKMnjfWjGBDSIn7Kqhqgtz8zYm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

54-2-8 1-3-0 <u>44-7-3</u> 6-2-7 11-4-4 16-2-4 20-8-2 28-8-6 36-6-14 52-11-8 6-2-7 5-1-13 4-9-15 4-5-14 8-0-4 7-10-8 8-0-4 8-4-5 6x8 🍫 2x4 II 4x8 =6x8= 6 29 7 30 8 31 9 32 10 8.25<sup>12</sup> 11-7-14 6-4-14 5 6x8 🍫 33 5x6、 28 <sup>11</sup>34<sub>12</sub> 11-11-8 27 5<sup>12</sup> 26 5-10-14 3 5-3-0 5-3-0 0-6-3 13 ĕ 25 24 23 35 19 36 187 37 15 38 39 16 14 2220 3x4 II 7x10= 4x8= 2x4 **I** 2x4 II 0-0-8 | 0-0-8 6-2-7 11-2-8 16-2-4 20-9-14 28-8-6 36-6-14 44-5-7 52-11-8 6-1-15 5-0-1 4-11-11 4-7-10 7-10-8 7-10-8 7-10-8 8-6-1

Scale = 1:96.5

| Plate Offsets (                                                               | (X, Y): [6:0                                                                                                 | -2-8,0-2-0],                                                                                                         | [10:0-4-0,0-2-12], [1                                                                                                                                             | 1:0-2-12                              | 0-2-0], [18:0-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0-4-8]                                                                                                                                                                                         |                                                                                                      |                                                                                                                                       |                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                   |                                                                                                              | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20 | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                | 1.00<br>0.41<br>0.61                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                              | in<br>-0.07<br>-0.13<br>0.03                  | (loc)<br>16-18<br>16-18<br>13 | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 465 lb | <b>GRIP</b> 244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x6 SP N<br>2x6 SP N<br>2x4 SP N<br>Structura<br>5-10-12 c<br>2-0-0 oc<br>Rigid ceil<br>bracing,<br>6-0-0 oc | lo.2<br>lo.2<br>lo.2<br>oc purlins,<br>purlins (5-9<br>ling directly<br>Except:<br>bracing: 19                       | athing directly applied<br>except end verticals,<br>-13 max.): 6-10.<br>applied or 10-0-0 oc<br>-21.                                                              | N<br>1<br>d or 2<br>and 3             | IOTES<br>) 2x6 SP No.2<br>front face wi<br>o.c. 12 Total<br>No.3.<br>) Unbalanced<br>this design.<br>) Wind: ASCE<br>Vasd=91mpl<br>II; Exp B; En<br>cantilever let<br>plate grip D0                                                                                                                                                                                                                                                                                                                | bearing block 12'<br>th 3 rows of 10d (<br>fasteners. Bearing<br>roof live loads hav<br>7-10; Vult=115mp<br>h; TCDL=6.0psf; E<br>closed; MWFRS (<br>it and right expose<br>0 = 1 60              | ' long at<br>0.131"x3<br>g is assu<br>ve been<br>bh (3-sec<br>3CDL=6.<br>envelope<br>ed ; Luml       | jt. 21 attache<br>") nails space<br>med to be SI<br>considered for<br>cond gust)<br>0psf; h=30ft;<br>a) exterior zoi<br>per DOL=1.60  | d to<br>ed 3"<br>PF<br>or<br>Cat.<br>ne;<br>0 | LOAD (                        | CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndard                            |                                 |  |
| WEBS                                                                          | 1 Row at<br>(Ib/size)<br>Max Horiz<br>Max Uplift<br>Max Grav                                                 | midpt<br>2=462/0-3<br>21=1806//<br>(req. 0-3-9<br>2=238 (LC<br>2=-12 (LC<br>(LC 12)<br>2=620 (LC<br>21=2279)         | 6-19, 7-18, 9-18, 9-1<br>10-14, 5-21<br>3-0, 13=1234/0-3-8,<br>(0-3-8 + bearing block<br>9)<br>C 12)<br>5 8), 13=-2 (LC 8), 21:<br>C 54), 13=1603 (LC 5<br>(LC 3) | 4, 4<br>k), 5<br>=-43 6<br>57), 7     | <ul> <li>a) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber<br/>DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow:<br/>Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br/>Partially Exp.; Ct=1.10</li> <li>b) Unbalanced snow loads have been considered for this<br/>design.</li> <li>c) This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on<br/>overhangs non-concurrent with other live loads.</li> </ul> |                                                                                                                                                                                                  |                                                                                                      |                                                                                                                                       |                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |  |
| FORCES<br>TOP CHORD                                                           | (lb) - Max<br>Tension<br>1-2=0/22<br>4-5=-79/2<br>7-9=-117                                                   | ximum Com<br>, 2-3=-922/3<br>288, 5-6=-7<br>9/112, 9-10<br>213/84 11-                                                | (-2 - 2)<br>pression/Maximum<br>3, 3-4=-353/40,<br>01/79, 6-7=-1180/112<br>)=-909/97,<br>12=0/47, 11-13=-147                                                      | 7<br>8<br>9<br>2, 1                   | <ul> <li>) Provide ade</li> <li>) All plates are</li> <li>) This truss ha<br/>chord live los</li> <li>(0) * This truss I<br/>on the botton</li> </ul>                                                                                                                                                                                                                                                                                                                                              | quate drainage to<br>a 4x6 MT20 unless<br>as been designed<br>ad nonconcurrent<br>nas been designed<br>m chord in all area                                                                       | prevent<br>s otherwi<br>for a 10.<br>with any<br>d for a liv<br>s where                              | water ponding<br>se indicated.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle                                    | g.<br>Ids.<br>Opsf                            |                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I.I.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR CEESS                         | ROIN                            |  |
| BOT CHORD                                                                     | 2-25=-12<br>21-24=-5<br>18-19=-6<br>14-16=-6<br>3-25=0/2<br>6-19=-90<br>7-18=-51<br>9-14=-73                 | 6/786, 24-2<br>9/257, 19-2<br>8/573, 16-1<br>4/1314, 13-<br>45, 3-24=-6<br>1/79, 6-18=<br>4/155, 9-18<br>6/126, 10-1 | -12-047, 11-13=147<br>-12-207/55,<br>8=-64/1314,<br>-14=-8/30<br>03/94, 4-24=0/381,<br>-91/1105,<br>=-267/25, 9-16=0/44<br>4=-13/296,                             | 1<br>1<br>1,<br>1                     | <ol> <li>3-06-00 tall I<br/>chord and ar</li> <li>Provide mec<br/>bearing plate</li> <li>2) This truss is<br/>International<br/>R802.10.2 a</li> <li>3) Graphical put</li> </ol>                                                                                                                                                                                                                                                                                                                   | by 1-00-00 wide w<br>ny other members,<br>hanical connection<br>e capable of withst<br>at joint 13 and 43<br>designed in accor<br>Residential Code<br>nd referenced star<br>rifin representation | III fit betw<br>, with BC<br>n (by oth<br>anding 1<br>lb uplift a<br>dance w<br>sections<br>ndard AN | veen the both<br>CDL = 10.0psi<br>ers) of truss t<br>2 lb uplift at j<br>it joint 21.<br>ith the 2015<br>\$ R502.11.1 a<br>ISI/TPI 1. | om<br>f.<br>to<br>joint<br>and<br>size        |                               | THE DESIGNATION OF THE DESIGNATI | A THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERTY INTERNA |                                  | ER.K                            |  |
|                                                                               | 11-14=0/<br>5-19=-5/1                                                                                        | 1059, 4-21:<br>1254                                                                                                  | =-570/79, 5-21=-1770                                                                                                                                              | 0/60,                                 | or the orient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation of the purlin a                                                                                                                                                                            | along the                                                                                            | e top and/or                                                                                                                          | 5120                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. G                             | ILL III                         |  |

June 13,2022

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

bottom chord.

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T1A   | Piggyback Base | 1   | 1   | Job Reference (optional)   | 152514622 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MITek Industries, Inc. Mon Jun 13 14:27:37 ID:hKS6CPhmFtRxhcxWREkIIIz8zYk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

54-2-8 1-3-0 44-7-3 6-2-7 16-2-4 20-8-2 28-8-6 36-6-14 52-11-8 11-4-4 5-1-13 6-2-7 7-10-8 8-4-5 4-9-15 4-5-14 8-0-4 8-0-4 4x8= 6x8 🍫 4x6= 6x8= 6 42 <u>7</u> 43 <u>8</u> 44 <u>9</u> 10 11 452 13 8.25 8.25 4 ħ 14 4x6 11-7-14 15 6-4-14 5 496 5x6 6x8 🍫 12 51 33 4 <sup>6</sup> 17 47<sub>18</sub> 11-11-8 40 4x6 🚅 39 5-10-14 3 5-3-0 5-3-0 316 0-6-3 36 19 T. 20 49 32 31 30 26 25 24 23 51 22 21 48 50 29287 4x6 =3x4 II 4x6= 4x6= 4x6= 7x10= 4x6= 4x8= 4x6= 0-0-8 52-11-8 6-2-7 11-2-8 16-2-4 20-9-14 28-8-6 36-6-14 44-5-7 50-11-8 2-0-0 6-1-15 5-0-1 4-11-11 4-7-10 7-10-8 7-10-8 7-10-8 6-6-1 0-0-8

Scale = 1:96.5

| late Offsets (X, Y): [6:0-2-12,0-2-0], [13:0-4-0,0-2-12], [17:0-2-8,0-2-8], [25:0-5-0,0-4-8] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                                                      |                                       |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                |                              |                                                                                                                                                                                 |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                 |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20 | 15/TPI2014                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                               | 0.54<br>0.43<br>0.52                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                       | in<br>-0.07<br>-0.13<br>0.03 | (loc)<br>22-24<br>24-25<br>20                                                                                                                                                   | l/defl<br>>999<br>>999<br>n/a                                                                                                  | L/d<br>240<br>180<br>n/a                                                                                 | PLATES<br>MT20<br>Weight: 522 It                                                                                                                                                                             | <b>GRIP</b> 244/190                                                                                                                    | %                                                                                                               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD      | 2x6 SP No<br>2x6 SP No<br>2x4 SP No<br>2x4 SP No<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2<br>0.2<br>0.2<br>0.2<br>wood shea<br>ourlins, exo<br>ourlins (5-1)<br>ng directly                               | athing directly applie<br>cept end verticals, ar<br>0-10 max.): 6-13.<br>applied or 6-0-0 oc                                         | ed or<br>nd                           | WEBS                                                                                                                  | 3-32=0/245, 3-31=<br>6-26=-880/82, 6-25<br>7-25=-520/155, 9-2<br>9-33=-762/103, 33<br>34-35=-774/103, 2<br>13-22=0/268, 22-3<br>36-37=-22/994, 37<br>17-38=-27/1006, 4<br>5-26=-5/1231, 5-25<br>11-34=-29/7, 12-35<br>15-37=-150/71, 21                                                                                         | -603/94<br>5=-91/10<br>25=-236<br>-34=-75<br>2-35=-7<br>5=-29/10<br>-38=-23<br>-28=-57<br>3=-1741<br>5=-6/7, 1<br>-37=-14 | 4-31=0/382,<br>70,<br>72, 9-24=0/45<br>3/98,<br>76/107,<br>1025,<br>1/002,<br>1/79,<br>68, 10-33=-6/<br>4-36=-11/62,<br>7/72,<br>200                                           | 56,<br>/19,                  | <ol> <li>9) All p</li> <li>10) Gab</li> <li>11) This cho</li> <li>12) * Th</li> <li>on t</li> <li>3-06</li> <li>cho</li> <li>13) Prov</li> <li>bea</li> <li>14) Prov</li> </ol> | blates an<br>ole studs<br>s truss ha<br>rd live lo<br>nis truss<br>he botto<br>5-00 tall<br>rd and a<br>vide med<br>ring plate | e 2x4<br>space<br>as bee<br>ad noi<br>has be<br>m cho<br>by 1-0<br>ny oth<br>chanic<br>e at jo<br>chanic | MT20 unless ot<br>ad at 2-0-0 oc.<br>en designed for<br>nconcurrent with<br>een designed fo<br>rd in all areas w<br>0-00 wide will fi<br>er members, wi<br>al connection (b<br>int(s) 2.<br>al connection (b | herwise ind<br>a 10.0 psf b<br>n any other<br>r a live load<br>here a rect<br>t between t<br>th BCDL =<br>by others) o<br>ay others) o | licated.<br>bottom<br>live loads.<br>I of 20.0psf<br>angle<br>he bottom<br>10.0psf.<br>f truss to<br>f truss to |
| WEBS                                                                                         | 1 Row at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | midpt                                                                                                               | 6-26, 7-25, 9-25, 5-2                                                                                                                | 28,                                   | NOTES                                                                                                                 | 16-38=-292/77, 20                                                                                                                                                                                                                                                                                                               | -38=-30                                                                                                                   | 9/86                                                                                                                                                                           |                              | bea<br>2, 3                                                                                                                                                                     | ring plat<br>5 lb uplif                                                                                                        | e capa<br>t at joi                                                                                       | able of withstand<br>int 19, 43 lb upli                                                                                                                                                                      | ding 12 lb u<br>ft at joint 28                                                                                                         | plift at joint<br>3 and 108 lb                                                                                  |
| JOINTS                                                                                       | 1 Brace a<br>34, 35, 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t Jt(s): 33,<br>5, 37, 38                                                                                           | 12-33                                                                                                                                |                                       | <ol> <li>2x6 SP No.2<br/>front face with<br/>o.c. 12 Tota</li> </ol>                                                  | 2 bearing block 12"<br>ith 3 rows of 10d (0<br>Il fasteners. Bearing                                                                                                                                                                                                                                                            | long at<br>).131"x3<br>) is assu                                                                                          | it. 28 attached<br>") nails space<br>med to be SP                                                                                                                              | d to<br>d 3"<br>PF           | uplit<br>15) This<br>Inte                                                                                                                                                       | ft at joint<br>truss is<br>rnationa                                                                                            | 20.<br>desig<br>I Resig                                                                                  | ned in accordar<br>dential Code se                                                                                                                                                                           | nce with the ctions R502                                                                                                               | 2015<br>2.11.1 and                                                                                              |
| REACTIONS                                                                                    | <ul> <li>(Ib/size) 2=462/0-3-0, 19=889/2-3-8, 20=367/0-3-8, 28=1783/0-3-8</li> <li>Max Horiz 2=238 (LC 12)</li> <li>Max Grav 2=621 (LC 54), 19=1164 (LC 57), 20=-108 (LC 13), 28=-43 (LC 12)</li> <li>Max Grav 2=621 (LC 54), 19=1164 (LC 57), 20=-520 (LC 42), 28=2250 (LC 42)</li> <li>Max Grav 2=621 (LC 64), 19=1164 (LC 57), 20=521 (LC 64), 19=1164 (LC 65), 20=521 (LC 64), 19=1164 (LC 65), 20=521 (LC 64), 19=1164 (LC 65), 20=521 (LC 64), 20</li></ul> |                                                                                                                     |                                                                                                                                      |                                       |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           | <ul> <li>Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> <li>CAD CASE(S) Standard</li> </ul> |                              |                                                                                                                                                                                 |                                                                                                                                |                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                 |
| FORCES                                                                                       | (lb) - Maxi<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imum Com                                                                                                            | pression/Maximum                                                                                                                     | - ,                                   | <ul> <li>Fruss designed only. For st</li> </ul>                                                                       | oL=1.60<br>gned for wind loads<br>uds exposed to win                                                                                                                                                                                                                                                                            | in the p<br>d (norm                                                                                                       | lane of the tru<br>al to the face)                                                                                                                                             | SS<br>,                      |                                                                                                                                                                                 |                                                                                                                                | A                                                                                                        | ORIFES                                                                                                                                                                                                       | To all                                                                                                                                 | N.                                                                                                              |
| BOT CHORD                                                                                    | 1-2=0/22,<br>4-5=-79/2<br>7-9=-1159<br>11-12=-84<br>13-14=-98<br>15-16=-10<br>17-18=0/4<br>2-32=-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-3=-925/4<br>87, 5-6=-69<br>9/113, 9-10<br>40/99, 12-1<br>30/98, 14-1<br>066/55, 16-<br>17, 17-19=-<br>5/789, 31-3 | 4, 3-4=-356/40,<br>94/79, 6-7=-1158/11<br>=-840/99, 10-11=-84<br>3=-843/99,<br>5=-1058/83,<br>17=-1002/47,<br>1184/26<br>2=-126/789, | 2,<br>40/99, y                        | see Standar<br>or consult q<br>5) TCLL: ASCI<br>DOL=1.15 F<br>Lumber DOI<br>Partially Exp<br>5) Unbalanced<br>design. | hdard Industry Gable End Details as applicable,<br>JIt qualified building designer as per ANSI/TPI 1.<br>ISCE 7-10; Pr=20.0 psf (roof live load: Lumber<br>15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow:<br>DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br>'Exp.; Ct=1.10<br>nced snow loads have been considered for this |                                                                                                                           |                                                                                                                                                                                |                              |                                                                                                                                                                                 |                                                                                                                                |                                                                                                          | SE/<br>0363                                                                                                                                                                                                  | AL<br>322                                                                                                                              |                                                                                                                 |
|                                                                                              | 28-31=-61<br>24-26=-80<br>21-22=-5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/258, 26-2<br>0/1281, 22-<br>0, 20-21=-{                                                                           | 8=-207/56,<br>24=-80/1281,<br>5/0, 19-20=-5/0                                                                                        | -                                     | <ul> <li>7) This truss had load of 12.0 overhangs r</li> <li>8) Provide ade</li> </ul>                                | as been designed f<br>psf or 2.00 times fl<br>non-concurrent with<br>equate drainage to p                                                                                                                                                                                                                                       | or great<br>at roof le<br>other li<br>prevent                                                                             | er of min roof<br>oad of 10.0 ps<br>ve loads.<br>water ponding                                                                                                                 | live<br>of on<br>I.          |                                                                                                                                                                                 |                                                                                                                                | and a                                                                                                    | A. (                                                                                                                                                                                                         | GILBE                                                                                                                                  | ITT IN                                                                                                          |

June 13,2022

Page: 1



| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T2    | Piggyback Base | 4   | 1   | Job Reference (optional)   | 152514623 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:38 ID:WTpNSTmXrjC4PXPfoVri\_Zz8zYe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932



| Scale = 1: | 96.5 |
|------------|------|
|------------|------|

| Plate Offsets (                                                                                                     | X, Y): [6:0-2-8,0-2-0],                                                                                                                                                                                                                                                                                                              | [10:0-4-0,0-2-12], [11:                                                                                                                                                                                                                                    | :0-2-12,0                               | -2-0], [20:0-5-8                                                                                                                                                                                                                                                                                                | 3,0-4-0], [23:0-4-4,                                                                                                                                                                                                                                                                                                                                       | 0-4-8]                                                                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |                                    |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                         | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                          | 0.62<br>0.43<br>0.56                                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                          | in<br>-0.07<br>-0.14<br>0.03                                                            | (loc)<br>14-16<br>16-18<br>13 | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 458 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>1 Row at midp<br>WEBS<br>REACTIONS | 2x6 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.2<br>Structural wood she<br>5-8-3 oc purlins, ex<br>2-0-0 oc purlins (5-6<br>Rigid ceiling directly<br>bracing. Except:<br>tt 5-20<br>1 Row at midpt<br>(lb/size) 2=469/0-3<br>21=1795//<br>Max Horiz 2=238 (LC<br>Max Uplift 2=-11 (LC<br>(LC 12)<br>Max Grav 2=631 (LC<br>21=2245 ( | ot* 21-5:2x4 SP No.2<br>athing directly applied<br>cept end verticals, and<br>3-9 max.): 6-10.<br>• applied or 3-10-14 oc<br>6-19, 7-18, 9-18, 9-14<br>3-0, 13=1237/0-3-8,<br>0-3-8<br>C 12)<br>2 8), 13=11 (LC 8), 21=<br>C 54), 13=1526 (LC 55<br>(LC 3) | 1)<br>2)<br>or 3)<br>-41 5)<br>.), 6)   | 2x6 SP No.2<br>front face wit<br>o.c. 12 Total<br>No.3.<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp B; En-<br>cantilever lef<br>plate grip DC<br>TCLL: ASCE<br>DOL=1.15 PI<br>Lumber DOL<br>Partially Exp.<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 j<br>overhangs no | bearing block 12"<br>h 3 rows of 10d (0<br>fasteners. Bearing<br>roof live loads have<br>7-10; Vult=115mp<br>1; TCDL=6.0psf; Bi<br>closed; MWFRS (et<br>and right exposed<br>JL=1.60<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf<br>=1.15 Plate DOL=<br>; Ct=1.10<br>snow loads have b<br>s been designed fo<br>posf or 2.00 times fit<br>on-concurrent with | long at<br>).131"x3<br>i is assu<br>e been i<br>h (3-sec<br>CDL=6.<br>envelope<br>d; Lumb<br>(roof liv<br>=10.0 p<br>1.15); C<br>been cor<br>or great<br>at roof liv<br>other li<br>other li | it. 21 attached<br>") nails space<br>med to be SF<br>considered fo<br>cond gust)<br>Dpsf; h=30ft; (<br>) exterior zor<br>ber DOL=1.60<br>e load: Lumb<br>sf (flat roof sr<br>ategory II; Ex<br>insidered for th<br>er of min roof<br>bead of 10.0 pi<br>ve loads. | d to<br>ed 3"<br>PF<br>Cat.<br>ne;<br>o<br>wer<br>now:<br>cp B;<br>his<br>live<br>sf on | LOAD                          | CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sta                      | ndard                            |                                    |  |
| FORCES                                                                                                              | (lb) - Maximum Com<br>Tension<br>1-2=0/22, 2-3=-978/<br>4-5=-75/294, 5-6=-7:<br>7-9=-1275/113, 9-10<br>10-11=-1298/83, 11-                                                                                                                                                                                                           | npression/Maximum<br>1, 3-4=-407/35,<br>58/72, 6-7=-1276/112,<br>)=-980/96,<br>-12=0/47, 11-13=-1453                                                                                                                                                       | 7)<br>8)<br>9)<br>8/43                  | Provide adec<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b                                                                                                                                                                                                            | uate drainage to p<br>s been designed fo<br>ad nonconcurrent v<br>las been designed<br>n chord in all areas<br>ov 1-00-00 wide wil                                                                                                                                                                                                                         | orevent<br>or a 10.0<br>vith any<br>for a liv<br>s where<br>Il fit betw                                                                                                                      | water ponding<br>o psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>yeen the botto                                                                                                                                                                | g.<br>.ds.<br>Opsf<br>om                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALL ALL                  | OR FESS                          | ROLIN                              |  |
| BOT CHORD                                                                                                           | 2-24=-136/842, 21-2<br>20-21=-2198/67, 5-2<br>19-20=-216/61, 18-1<br>16-18=-66/1424, 14-<br>13-14=-11/41<br>3-24=0/227, 3-23=-6<br>20-23=-52/315, 4-20<br>6-19=-854/84, 6-18=                                                                                                                                                        | 24=-136/842,<br>20=-1781/55,<br>19=-65/616,<br>-16=-66/1424,<br>502/99, 4-23=0/357,<br>0=-563/72, 5-19=-8/126<br>-95/1120,                                                                                                                                 | 10<br>11                                | chord and an<br>) Provide mecl<br>bearing plate<br>) Provide mecl<br>bearing plate<br>2, 41 lb uplift<br>) This truss is<br>International                                                                                                                                                                       | y other members,<br>hanical connection<br>at joint(s) 2.<br>hanical connection<br>capable of withsta<br>at joint 21 and 1 lt<br>designed in accord<br>Residential Code                                                                                                                                                                                     | with BC<br>(by oth<br>anding 1<br>o uplift a<br>dance w<br>sections                                                                                                                          | DL = 10.0psf<br>ers) of truss t<br>ers) of truss t<br>1 lb uplift at j<br>it joint 13.<br>ith the 2015<br>s R502.11.1 a                                                                                                                                           | io<br>oo<br>oint                                                                        |                               | Contraction of the second seco |                          | SEA<br>03632                     | 22 ER K                            |  |
| NOTES                                                                                                               | 7-18=-513/155, 9-18<br>9-14=-759/127, 10-1                                                                                                                                                                                                                                                                                           | 3=-271/25, 9-16=0/439<br>14=0/340, 11-14=0/107                                                                                                                                                                                                             | ,<br>77 13                              | R802.10.2 ar<br>Graphical pu<br>or the orienta<br>bottom chord                                                                                                                                                                                                                                                  | nd referenced stan<br>rlin representation<br>ation of the purlin a<br>I.                                                                                                                                                                                                                                                                                   | dard AN<br>does no<br>long the                                                                                                                                                               | ISI/TPI 1.<br>ot depict the s<br>e top and/or                                                                                                                                                                                                                     | size                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | A. G. June                       | 13,2022                            |  |

| Job    | Truss | Truss Type             | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------------------|-----|-----|----------------------------|-----------|
| Hoener | T2E   | Common Supported Gable | 1   | 1   | Job Reference (optional)   | 152514624 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:39 ID:hnOF3nHRGR9mcOLzS57JN7z8zZG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



## Scale = 1:61.4

## Plate Offsets (X, Y): [12:Edge,0-1-8]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                  |                                                                                                                                                                                 | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20    | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.33<br>0.18<br>0.11                                                                                                                                                                                                                                                                                       | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.00                                                                                  | (loc)<br>-<br>-<br>12                                                                                                                                          | l/defl<br>n/a<br>n/a<br>n/a                                                                                           | L/d<br>999<br>999<br>n/a                                                                                  | PLATES<br>MT20<br>Weight: 147 lb                                                                                                                                                     | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                    |                                                     |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP 16<br>SP SS<br>2x4 SP 16<br>SP SS<br>2x4 SP No<br>2x4 SP No<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.<br>1 Row at I<br>(lb/size)<br>Max Horiz<br>Max Uplift | 550F 1.5E c<br>550F 1.5E c<br>5.2<br>5.2<br>wood sheat<br>ourlins, exc<br>ng directly<br>midpt<br>12=118/15<br>14=122/15<br>16=115/15<br>18=122/15<br>20=-149 (L<br>12=-208 (L<br>12=-208 (L<br>12=-218 (L<br>14=217 (L<br>16=296 (L<br>18=218 (L<br>18=218 (L<br>18=218 (L)<br>18=218 (L)<br>18=2 | or 2x4 SP No.1 or 2<br>or 2x4 SP No.1 or 2<br>or 2x4 SP No.1 or 2<br>athing directly applie<br>expt end verticals.<br>applied or 6-0-0 oc<br>6-16, 5-17, 7-15<br>5-11-0, 15=124/15-1<br>5-11-0, 15=124/15-1<br>5-11-0, 17=124/15-1<br>5-11-0, 17=124/15-1<br>5-11-0<br>C 19, 13=-217 (LC<br>C 12), 15=-52 (LC 1<br>C 12), 15=-52 (LC 1<br>C 12), 15=-52 (LC 1<br>C 26), 13=-380 (LC<br>C 26), 15=243 (LC<br>C 29), 17=243 (LC<br>C 27), 19=381 (LC<br>C 27) | x4 x | <ul> <li>WEBS 6</li> <li>WOTES</li> <li>I) Unbalanced i<br/>this design.</li> <li>2) Wind: ASCE<br/>Vasd=91mph<br/>II; Exp B; Enc<br/>cantilever lefi<br/>plate grip DC</li> <li>3) Truss desigr<br/>only. For stu<br/>see Standarc<br/>or consult qu</li> <li>4) TCLL: ASCE<br/>DOL=1.15 PI<br/>Lumber DOL<br/>Partially Exp.</li> <li>5) Unbalanced<br/>design.</li> <li>6) This truss ha<br/>load of 12.0 p<br/>overhangs no</li> <li>7) All plates are</li> <li>8) Gable require</li> <li>9) Truss to be fi<br/>braced again</li> </ul> | S-16=-221/0, 5-17:<br>J-9=-186/143, 7-<br>J-13=-185/143<br>roof live loads hav<br>7-10; Vult=115m;<br>; TCDL=6.0psf; E<br>closed; MWFRS (<br>i and right exposed<br>to and right exposed<br>to wind loads<br>ds exposed to win<br>l ndustry Gable E<br>alified building de<br>7-10; Pr=20.0 ps<br>ate DOL=1.15; P<br>=1.15 Plate DOL<br>; Ct=1.10<br>snow loads have l<br>s been designed 1<br>bs for 2.00 times f<br>on-concurrent witt<br>2x4 MT20 unless<br>as continuous bott<br>y lateral movement | =-137/72<br>15=-137/<br>re been of<br>oh (3-sec<br>CDL=6.0<br>envelope<br>d ; Lumk<br>in the pi<br>d (norm<br>ind Deta<br>signer as<br>f (roof liv<br>f=10.0 p<br>e1.15); C<br>been cor<br>ior greate<br>lat roof liv<br>s other liv<br>s other liv<br>s other wi<br>con chor<br>n one fac<br>on t (i.e. d | :, 4-18=-125/7<br>72, 8-14=-12<br>considered fo<br>ond gust)<br>ppsf; h=30ft; (<br>e) exterior zor<br>eer DOL=1.60<br>ane of the tru<br>al to the face),<br>is as applicat<br>s per ANSI/TF<br>e load: Lumb<br>sf (flat roof sr<br>ategory II; Ex<br>usidered for th<br>er of min roof<br>sad of 10.0 ps<br>re loads.<br>se indicated.<br>d bearing.<br>e or securely<br>iagonal web) | 72,<br>5/72,<br>r<br>Cat.<br>ne;<br>)<br>sss<br>),<br>ble,<br>er<br>tow:<br>cp B;<br>his<br>live<br>sf on | <ul> <li>13) Probe</li> <li>bea</li> <li>join</li> <li>lb u</li> <li>join</li> <li>13.</li> <li>14) This</li> <li>Inte</li> <li>R8C</li> <li>LOAD C</li> </ul> | vide me<br>ring plat<br>t 20, 200<br>plift at jot<br>t 15, 50<br>s truss is<br>rnationa<br>22.10.2 t<br><b>CASE(S</b> | chanicic<br>e capap<br>lib Up Upil<br>lib upili<br>l Resici<br>a desigg<br>I Resici<br>not refr<br>) Star | al connection (by<br>able of withstandi<br>lift at joint 12, 52<br>218 lb uplift at jc<br>t at joint 14 and 2<br>ned in accordance<br>dential Code sect<br>erenced standard<br>ndard | others) of truss<br>1g 209 lb uplift at<br>b uplift at joint 1<br>int 19, 52 lb uplift<br>17 lb uplift at joint<br>e with the 2015<br>ions R502.11.1<br>I ANSI/TPI 1. | s to<br>at<br>17, 50<br>lift at<br>bint<br>5<br>and |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                             | (lb) - Maxi<br>Tension<br>2-20=-213<br>3-4=-52/13<br>6-7=-42/2<br>9-10=-142<br>19-20=-74<br>16-17=-74                                                                           | imum Com<br>3/136, 1-2=<br>33, 4-5=-57<br>10, 7-8=-56<br>2/159, 10-1<br>4/74, 18-19:<br>1/74, 15-16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0/54, 2-3=-143/159,<br>7/182, 5-6=-42/210,<br>5/182, 8-9=-52/132,<br>1=0/54, 10-12=-212<br>=-74/74, 17-18=-74<br>-74/74, 14-15=-74                                                                                                                                                                                                                                                                                                                          | ,<br>2/135<br>/74,<br>/74                | <ul> <li>10) Gable studs s</li> <li>11) This truss ha<br/>chord live loa</li> <li>12) * This truss h<br/>on the botton<br/>3-06-00 tall b<br/>chord and an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | spaced at 2-0-0 o<br>s been designed to<br>d nonconcurrent<br>as been designed<br>n chord in all area<br>y 1-00-00 wide w<br>y other members                                                                                                                                                                                                                                                                                                                                                            | c.<br>for a 10.0<br>with any<br>I for a liv<br>s where<br>ill fit betw<br>with BC                                                                                                                                                                                                                          | ) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>DL = 10.0psf                                                                                                                                                                                                                                                                                     | ds.<br>)psf<br>om                                                                                         |                                                                                                                                                                |                                                                                                                       | K. K.                                                                                                     |                                                                                                                                                                                      | EER.                                                                                                                                                                  | WILLING THE                                         |
|                                                                                                              | 13-14=-74                                                                                                                                                                       | 4, 13-16<br>1/74, 12-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =-74/74, 14-15=-74,<br>=-74/74                                                                                                                                                                                                                                                                                                                                                                                                                              | //4,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                                                                                                                                |                                                                                                                       |                                                                                                           | Thunn                                                                                                                                                                                | inni                                                                                                                                                                  |                                                     |

## June 13,2022



| Job    | Truss | Truss Type    | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|---------------|-----|-----|----------------------------|-----------|
| Hoener | T2G   | Common Girder | 1   | 3   | Job Reference (optional)   | 152514625 |

## Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:39 ID:Ssx7t8nnMKSoerY2vwtA4\_z8zYc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

....



Scale = 1:67

| Plate Offsets | (X, | Y): | [5:0-5-0,0-4- | 12] |  |
|---------------|-----|-----|---------------|-----|--|
|---------------|-----|-----|---------------|-----|--|

| Loading<br>TCLL (roof)                                                                                                                                                                                                                                 | (psf)<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL                                                                                                                                                                                                                                                                                                    | 2-0-0<br>1.15                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.45                                                                                                                                                                                                                                             | DEFL<br>Vert(LL)                                                                                                                                                                                                                                                                                                                                                   | in<br>-0.10                                                                                                              | (loc)<br>5-6 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20             | <b>GRIP</b><br>244/190 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------|----------------------------|------------------------|-----------|
| Snow (Pf)                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lumber DOL                                                                                                                                                                                                                                                                                                                   | 1.15                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63                                                                                                                                                                                                                                             | Vert(CT)                                                                                                                                                                                                                                                                                                                                                           | -0.20                                                                                                                    | 5-6          | >960           | 180        | MT20HS                     | 187/143                |           |
|                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Codo                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WD<br>Matrix S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                                                                                                             | HOIZ(CT)                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                     | 4            | n/a            | n/a        |                            |                        |           |
| BCDI                                                                                                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Code                                                                                                                                                                                                                                                                                                                         | 1602015/                                                                  | 1712014                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Watrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |              |                |            | Weight <sup>.</sup> 408 lb | FT = 20%               |           |
|                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |              |                |            | troigita too io            | 2070                   |           |
| BCDL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 3-ply truss<br>(0.131"x3"<br>Top chord<br>staggered<br>Bottom ch<br>staggered<br>Bottom ch | 10.0     10.0     10.0     10.0     2x6 SP No.2     2x6 SP 2400F 2.0E i     SP M 31     2x4 SP No.2     Structural wood shea     6-0-0 oc purlins, exi     Rigid ceiling directly     bracing.     (Ib/size) 4=4263/0     Max Horiz 6=126 (LC     Max Grav 4=5033 (L     (Ib) - Maximum Com     Tension     1-2=-3469/0, 2-3=-3:     3:-4=-3460/0     5-6=-94/268, 4-5=0/2     to be connected togef     ) nails as follows:     s connected as follows     at 0-9-0 oc, 2x4 - 1 ro     ords connected as follows:     2x4 - 500 | coue<br>or 2x6 SP DSS or 2x<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>3-8, 6=4177/0-3-8<br>29)<br>C 25), 6=4933 (LC 2<br>pression/Maximum<br>469/0, 1-6=-3460/0,<br>176<br>690, 2-5=0/3855<br>ther with 10d<br>:: 2x6 - 2 rows<br>w at 0-9-0 oc.<br>ows: 2x6 - 2 rows<br>1 row at 0-9-0 oc | 4)<br>6<br>5)<br>d or<br>6)<br>7)<br>8)<br>9)<br>10)<br>11)<br>12)<br>LO2 | Wind: ASCE<br>Vasd=91mph<br>II; Exp B; Enc<br>cantilever left<br>plate grip DO<br>TCLL: ASCE<br>DOL=1.15 PI<br>Lumber DOL<br>Partially Exp.<br>Unbalanced si<br>design.<br>All plates are<br>This truss ha<br>chord live loa<br>* This truss ha<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>This truss is of<br>International<br>R802.10.2 ar<br>Use Simpsor<br>Truss) or equ<br>2-0-12 from t<br>to back face of<br>Fill all nail ho<br><b>AD CASE(S)</b> | 7-10; Vult=115mpf<br>; TCDL=6.0psf; BC<br>closed; MWFRS (er<br>and right exposed<br>L=1.60<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf=<br>1.15 Plate DOL=1<br>; Ct=1.10<br>snow loads have be<br>MT20 plates unless<br>is been designed for<br>d nonconcurrent w<br>as been d nonconcurrent w<br>as bee | n (3-sec<br>CDL=6.0<br>nvelope<br>; Lumb<br>(roof liv<br>=10.0 p<br>I.15); C<br>een cor<br>ss other<br>or a 10.0<br>ith any<br>for a liv<br>where<br>fit betw<br>ance wi<br>sections<br>dard AN<br>6 (6-100<br>2-0-0 oc<br>-12 to co<br>s in con | ond gust)<br>opsf; h=30ft;<br>) exterior zo<br>er DOL=1.6<br>e load: Luml<br>sf (flat roof s<br>ategory II; E<br>sidered for 1<br>wise indicate<br>0 psf bottom<br>other live load<br>e load of 20.<br>a rectangle<br>reen the bott<br>th the 2015<br>R502.11.1 is<br>SI/TPI 1.<br>d Girder, 4-1<br>max. startin<br>max. startin<br>connect truss<br>tact with lum | Cat.<br>ine;<br>0<br>ber<br>inow:<br>xp B;<br>ed.<br>ads.<br>0psf<br>tom<br>and<br>0d<br>ig at<br>(es)<br>nber.<br>Plate |              | 4              | A          | Weight: 408 lb             | FT = 20%               |           |
| <ol> <li>All loads a<br/>except if n<br/>CASE(S) :<br/>provided t<br/>unless oth</li> <li>Unbalance<br/>this design</li> </ol>                                                                                                                         | ore considered equally<br>oted as front (F) or bac<br>section. Ply to ply conr<br>o distribute only loads<br>erwise indicated.<br>ed roof live loads have<br>h.                                                                                                                                                                                                                                                                                                                                                                  | applied to all plies,<br>ck (B) face in the LO.<br>lections have been<br>noted as (F) or (B),<br>been considered for                                                                                                                                                                                                         | AD                                                                        | Increase=1.<br>Uniform Loa<br>Vert: 1-2=<br>Concentrate<br>Vert: 5=-'<br>11=-1072<br>(B)                                                                                                                                                                                                                                                                                                                                                                             | 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :-20<br>(B), 10=<br>, 13=-1(                                                                                                                                                                                                                     | -1072 (В),<br>)72 (В), 14=                                                                                                                                                                                                                                                                                                                                         | -1072                                                                                                                    |              | THUNNY'S       |            | SEA<br>0363                | ER. K. I.I.            | WHITE THE |



| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | ТЗ    | Piggyback Base | 7   | 1   | Job Reference (optional)   | 152514626 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:40 ID:pqk0wsrwBt45lcR0iTTLn1z8zYX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:96.5

| Plate Offsets                                                                                                                | Plate Offsets (X, Y): [6:0-2-8,0-2-0], [10:0-3-4,0-2-0], [11:0-2-12,0-2-0], [16:0-6-4,0-4-4], [20:0-5-8,0-4-0], [21:0-5-7, Edge], [22:0-4-4,0-4-8]                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                  |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 |                                                                                                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |                                    |             |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|------------------------------------|-------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                  | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                        | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60<br>0.50<br>0.41                                                                                                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                        | in<br>-0.10<br>-0.19<br>0.04                                                                         | (loc)<br>16-18<br>16-18<br>13 | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 469 lb | <b>GRIP</b><br>244/190<br>FT = 20% |             |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>1 Row at mid<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD | 2x6 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.2<br>Structural wood she<br>5-10-10 oc purlins,<br>2-0-0 oc purlins (5-3<br>Rigid ceiling directly<br>bracing. Except:<br>pt 5-20, 9-16<br>1 Row at midpt<br>(lb/size) 2=457/0-<br>21=1811/<br>Max Horiz 2=238 (LC<br>Max Uplift 2=-7 (LC<br>Max Grav 2=619 (LC<br>21=2240<br>(lb) - Maximum Com<br>Tension<br>1-2=0/22, 2-3=-917 | ot* 21-5,9-15:2x4 SP<br>eathing directly applie<br>except end verticals,<br>3-8 max.): 6-10.<br>r applied or 3-10-15 c<br>6-19, 7-18, 9-18, 10<br>11-13<br>3-0, 13=1232/0-3-8,<br>0-3-8<br>C 12)<br>8), 21=-43 (LC 12)<br>C 54), 13=1524 (LC 5<br>(LC 2)<br>npression/Maximum<br>0, 3-4=-369/27, | 1)<br>No.2 2,<br>ed or ,<br>and 3,<br>bc 5,<br>-14, 4,<br>5,<br>57), 7,<br>8, | <ul> <li>Unbalanced<br/>this design.</li> <li>Wind: ASCE<br/>Vasd=91mpH<br/>II; Exp B; En<br/>cantilever lef<br/>plate grip DC</li> <li>TCLL: ASCE<br/>DOL=1.15 P<br/>Lumber DOL<br/>Partially Exp</li> <li>Unbalanced<br/>design.</li> <li>This truss ha<br/>load of 12.0<br/>overhangs n</li> <li>Provide aded</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss ha<br/>chord live loa</li> <li>* This truss ha<br/>chord live loa</li> </ul> | roof live loads hav<br>7-10; Vult=115mp<br>n; TCDL=6.0psf; E<br>closed; MWFRS (<br>t and right expose<br>0L=1.60<br>7-10; Pr=20.0 ps<br>late DOL=1.15); P<br>=1.15 Plate DOL=<br>.; Ct=1.10<br>snow loads have<br>bs for 2.00 times f<br>pon-concurrent with<br>quate drainage to<br>s been designed<br>ad nonconcurrent times<br>ad nonconcurrent times<br>a | ve been of<br>bh (3-sec<br>SCDL=6.1<br>cenvelope<br>d; Lumb<br>f (roof liv<br>f=10.0 p<br>=1.15); C<br>been cor<br>for great<br>lat roof liv<br>for a great<br>lat roof liv<br>o other liv<br>prevent v<br>for a 10.4<br>with any<br>d for a liv<br>s where<br>ill fit betw,<br>with BC | considered fc<br>considered fc<br>cond gust)<br>Dpsf; h=30ft;<br>e) exterior zoiver DOL=1.6(<br>e load: Lumb<br>sf (flat roof si<br>ategory II; E)<br>asidered for the<br>er of min roof<br>sad of 10.0 p<br>water ponding<br>b psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botti<br>DL = 10.0psi | Cat.<br>ne;<br>0<br>per<br>now:<br>xp B;<br>his<br>f live<br>sf on<br>g.<br>dds.<br>0psf<br>om<br>f. |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | WH CA                            | ROM                                |             |
| BOT CHORD<br>WEBS<br>NOTES                                                                                                   | 4-5=-76/330, 5-6=-7<br>7-9=-1286/114, 9-1(<br>10-11=-1160/83, 11<br>2-23=-127/781, 21-2<br>20-21=-2192/69, 5-2<br>19-20=-226/70, 18-1<br>16-18=-50/1299, 15<br>14-15=-77/24, 13-14<br>3-23=0/233, 3-22=-5<br>20-22=-51/279, 4-20<br>5-19=-15/1268, 6-18<br>6-18=-99/1099, 7-18<br>14-16=0/890, 10-16<br>10-14=-563/89, 11-1                                                      | 25/04, 6-7=-1267/11<br>0=-1287/123,<br>-12=0/47, 11-13=-14,<br>23=-127/781,<br>20=-1785/63,<br>19=-59/595,<br>-16=0/63, 9-16=-476,<br>4=-7/31<br>586/96, 4-22=0/363,<br>0=-559/71,<br>0=-855/96,<br>3=-617/188, 9-18=-91<br>=-133/974,<br>14=0/979                                               | 4, 9,<br>45/42<br>/191, 1 <sup>,</sup><br>/191, 1 <sup>,</sup><br>L<br>1/26,  | <ul> <li>Provide mec</li> <li>bearing plate</li> <li>and 43 lb up</li> <li>This truss is</li> <li>International</li> <li>R802.10.2 at</li> <li>Graphical pu</li> <li>or the orient</li> <li>bottom chore</li> <li>OAD CASE(S)</li> </ul>                                                                                                                                                                                                                      | hanical connection<br>e capable of withst<br>lift at joint 21.<br>designed in accor<br>Residential Code<br>nd referenced star<br>rlin representatior<br>ation of the purlin a<br>I.<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n (by oth<br>anding 7<br>dance w<br>sections<br>ndard AN<br>n does no<br>along the                                                                                                                                                                                                      | ers) of truss t<br>Ib uplift at jo<br>ith the 2015<br>i R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>top and/or                                                                                                                                                                                                              | to<br>pint 2<br>and<br>size                                                                          |                               | M. Contraction of the Contractio |                          | SEA<br>0363                      |                                    | Manunning . |

AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | Т4    | Piggyback Base | 4   | 1   | Job Reference (optional)   | 152514627 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:41 ID:e\_5IBvwhnjqETXu93kZI0Iz8zYR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = 1 | :93.4 |
|-----------|-------|
|-----------|-------|

| 30ale = 1.93.4                                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                             |                                                                             |                               |                               |                          |                                  |                                    |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Plate Offsets                                                                                               | (X, Y): [6:0-3                                                                                                                                                  | -0,0-2-0],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [8:0-3-4,0-2-8], [11:0                                                                                                                     | -5-8,Edge                               | ], [14:0-4-8,0-3                                                                                                                                                                                                                                                                                                                                                                                      | 3-0]                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                                             |                                                                             |                               |                               |                          |                                  |                                    |
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                 |                                                                                                                                                                 | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                  | 0.57<br>0.57<br>0.49                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                    | in<br>-0.07<br>-0.13<br>0.04                                                | (loc)<br>14-15<br>14-15<br>11 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 421 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x6 SP No.<br>2x6 SP No.<br>2x4 SP No.<br>Right: 2x4 S<br>Structural v<br>4-9-14 oc p<br>2-0-0 oc pu<br>Rigid ceilin<br>bracing, E<br>6-0-0 oc br<br>1 Row at m | 2<br>2<br>2<br>SP No.2<br>spr No.2<br>urlins, ex<br>urlins, ex | athing directly applied<br>ccept<br>-0 max.): 6-8.<br>applied or 10-0-0 oc<br>-18.<br>5-18, 6-17, 7-15, 8-1<br>10-14<br>-0, 11=1102/0-3-8, | 1)<br>2)<br>d or<br>3)<br>4)<br>5, 5)   | Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mpf<br>II; Exp B; Enicantilever lef<br>plate grip DC<br>TCLL: ASCE<br>DOL=1.15 PI<br>Lumber DOL<br>Partially Exp.<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 µ<br>overhangs ni                                                                                                                                                      | roof live loads have<br>7-10; Vult=115mph<br>n; TCDL=6.0psf; BC<br>closed; MWFRS (er<br>t and right exposed<br>0L=1.60<br>7-10; Pr=20.0 psf (<br>ate DOL=1.15); Pf=<br>=1.15 Plate DOL=1<br>; Ct=1.10<br>snow loads have be<br>s been designed fo<br>osf or 2.00 times fla<br>on-concurrent with ( | been of<br>DL=6.1<br>Nvelope<br>; Lumb<br>(roof liv<br>=10.0 p<br>.15); C<br>een cor<br>r great<br>t roof lo<br>t cor liv | considered fo<br>cond gust)<br>Dpsf; h=30ft; (<br>e) exterior zor<br>ver DOL=1.6C<br>e load: Lumb<br>sf (flat roof sr<br>ategory II; Ex<br>asidered for th<br>er of min roof<br>pad of 10.0 ps<br>re loads. | r<br>Cat.<br>he;<br>)<br>er<br>how:<br>p B;<br>p B;<br>his<br>live<br>sf on |                               |                               |                          |                                  |                                    |
|                                                                                                             | Max Horiz 2<br>Max Uplift 2<br>Max Grav 2                                                                                                                       | 18=1731//<br>2=238 (LC<br>2=-26 (LC<br>18=-33 (L<br>2=613 (LC<br>18=2192 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-3-8<br>C 11)<br>E 8), 11=-48 (LC 13),<br>C 12)<br>C 54), 11=1464 (LC 2<br>(LC 3)                                                         | 6)<br>7)<br>8)<br>7), 9)                | <ul> <li>overhangs non-concurrent with other live loads.</li> <li>6) Provide adequate drainage to prevent water ponding.</li> <li>7) All plates are 4x6 MT20 unless otherwise indicated.</li> <li>8) This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>9) * This truss has been designed for a live load of 20.0psf</li> </ul> |                                                                                                                                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                             |                                                                             |                               |                               | 900                      |                                  |                                    |
| FORCES                                                                                                      | (lb) - Maxin<br>Tension<br>1-2=0/21, 2<br>4-5=-41/30<br>7-8=-1011/<br>10-11=-205                                                                                | num Com<br>2-3=-936/3<br>5, 5-6=-63<br>114, 8-10<br>53/61, 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pression/Maximum<br>38, 3-4=-342/75,<br>21/129, 6-7=-1011/11<br>I=-1459/114,<br>·12=0/21                                                   | 10)<br>14,<br>11)                       | 3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>2, 33 lb uplift<br>This truss is                                                                                                                                                                                                                                                                                                   | y 1-00-00 wide will<br>y other members, w<br>hanical connection<br>capable of withstar<br>at joint 18 and 48 I<br>designed in accorda                                                                                                                                                              | fit betw<br>with BC<br>(by oth<br>nding 2<br>b uplift<br>ance w                                                           | veen the botto<br>DL = 10.0psf<br>ers) of truss t<br>6 lb uplift at jo<br>at joint 11.<br>ith the 2015                                                                                                      | om<br>o<br>oint                                                             |                               | 4                             | AN AN                    | OR THESS                         | ROUN                               |
| BOT CHORD                                                                                                   | 2-21=-82/8<br>18-20=-81/2<br>15-17=-50/2                                                                                                                        | 03, 20-21<br>269, 17-1<br>558, 13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =-82/803,<br>8=-258/157,<br>5=0/1564, 11-13=0/1                                                                                            | 564 12                                  | International<br>R802.10.2 ar<br>Graphical pu                                                                                                                                                                                                                                                                                                                                                         | Residential Code s<br>nd referenced stand<br>rlin representation of                                                                                                                                                                                                                                | ections<br>lard AN<br>does no                                                                                             | R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s                                                                                                                                                                | nd<br>ize                                                                   |                               | THI1                          |                          | SEAI<br>03632                    | 22                                 |
| WEBS                                                                                                        | 3-21=0/240<br>4-18=-568/<br>6-17=-878/<br>8-15=-386/<br>10-14=-707                                                                                              | ), 3-20=-6<br>84, 5-18=<br>29, 6-15=<br>53, 8-14=<br>7/176, 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :16/98, 4-20=0/380,<br>:-1686/25, 5-17=0/12/<br>:-47/999, 7-15=-639/1<br>:-15/671,<br>:13=0/356                                            | <sup>02,</sup><br><sup>I61,</sup> LO    | or the orienta<br>bottom chord<br>AD CASE(S)                                                                                                                                                                                                                                                                                                                                                          | ation of the purlin al<br>I.<br>Standard                                                                                                                                                                                                                                                           | ong the                                                                                                                   | top and/or                                                                                                                                                                                                  |                                                                             |                               |                               |                          | A. G                             | E.P. KINN                          |
|                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                             |                                                                             |                               |                               |                          | (ALLININ)                        | 1111,                              |

## NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T4A   | Piggyback Base | 2   | 1   | Job Reference (optional)   | 152514628 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:41 ID:Oi?19COivVQLpw6u1ClfnEz8zZ6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-2-8 1-2-8 5-9-7 11-4-4 16-0-3 20-8-1 28-0-0 35-3-15 43-0-3 51-0-0 5-9-7 5-6-13 4-7-14 4-7-14 7-3-15 7-3-15 7-8-5 7-11-12 6x8 🍫 6x8💊 2x4 II 25 8 6 24 7 8.25<sup>12</sup> 11-7-13 26 6-4-14 5 9 23 270 6x8 🍫 11-11-8 242 28 12 51-2 21 3 5-3-0 5-3-0 0-6-3 0-10-Œ ĕ 20 19 18 29 16 305 14 31 13 32 12 33 6x8 II 17 2x4 II 4x8= 6x8 II 2x4 🛛 20-9-13 <u>16-2-4</u> 16-4-0 4-11-11 0-1-12 4-5-13 0-0-8 5-9-7 11-2-8 28-0-0 35-2-3 43-0-3 51-0-0 0-0-8 5-8-15 5-5-1 7-2-3 7-2-3 7-10-0 7-11-12

Scale = 1:91.6

## Plate Offsets (X, Y): [6:0-3-0,0-2-0], [8:0-3-4,0-2-8], [13:0-4-8,0-3-0]

| Loading     |             | (psf)                     | Spacing                          | 2-0-0              |                  | CSI                    |           | DEFL              | in     | (loc) | l/defl | L/d   | PLATES         | GRIP       |
|-------------|-------------|---------------------------|----------------------------------|--------------------|------------------|------------------------|-----------|-------------------|--------|-------|--------|-------|----------------|------------|
| TCLL (roof) |             | 20.0                      | Plate Grip DOL                   | 1.15               |                  | TC                     | 0.42      | Vert(LL)          | -0.07  | 13-14 | >999   | 240   | MT20           | 244/190    |
| Snow (Pf)   |             | 15.0                      | Lumber DOL                       | 1.15               |                  | BC                     | 0.44      | Vert(CT)          | -0.13  | 13-14 | >999   | 180   |                |            |
| TCDL        |             | 10.0                      | Rep Stress Incr                  | YES                |                  | WB                     | 0.50      | Horz(CT)          | 0.04   | 11    | n/a    | n/a   | -              |            |
| BCLL        |             | 0.0*                      | Code                             | IRC20 <sup>2</sup> | 5/TPI2014        | Matrix-S               |           |                   |        |       |        |       |                |            |
| BCDL        |             | 10.0                      |                                  |                    |                  |                        |           |                   |        |       |        |       | Weight: 417 lb | FT = 20%   |
|             |             |                           |                                  | 1                  | Unbalanced       | roof live loads have   | been      | considered fo     | or     |       |        |       |                |            |
| TOP CHORD   | 2x6 SP N    | 02                        |                                  |                    | this design.     |                        |           |                   |        |       |        |       |                |            |
| BOT CHORD   | 2x6 SP N    | 0.2                       |                                  | 2                  | Wind: ASCE       | 7-10; Vult=115mph      | n (3-seo  | cond gust)        |        |       |        |       |                |            |
| WEBS        | 2x4 SP N    | 0.2                       |                                  |                    | Vasd=91mpł       | ; TCDL=6.0psf; BC      | DL=6.     | 0psf; h=30ft;     | Cat.   |       |        |       |                |            |
| WEDGE       | Right: 2x4  | SP No.2                   |                                  |                    | II; Exp B; En    | closed; MWFRS (er      | nvelope   | e) exterior zor   | ne;    |       |        |       |                |            |
| BRACING     | 0           |                           |                                  |                    | cantilever lef   | t and right exposed    | ; Luml    | per DOL=1.60      | )      |       |        |       |                |            |
| TOP CHORD   | Structural  | wood she                  | athing directly applie           | d or               | plate grip DC    | L=1.60                 |           |                   |        |       |        |       |                |            |
|             | 4-8-14 oc   | purlins, ex               | cept                             | 3                  | ) TCLL: ASCE     | 7-10; Pr=20.0 psf      | (roof liv | e load: Lumb      | er     |       |        |       |                |            |
|             | 2-0-0 oc p  | ourlins (6-0              | -0 max.): 6-8.                   |                    | DOL=1.15 P       | ate DOL=1.15); Pf=     | =10.0 p   | sf (flat roof sr  | now:   |       |        |       |                |            |
| BOT CHORD   | Rigid ceili | ing directly              | applied or 10-0-0 oc             |                    | Lumber DOL       | =1.15 Plate DOL=1      | .15); C   | ategory II; Ex    | кр B;  |       |        |       |                |            |
|             | bracing,    | Except:                   |                                  | 4                  | Partially Exp    | ; Ct=1.10              |           |                   | h in   |       |        |       |                |            |
|             | 6-0-0 oc b  | oracing: 16               | -17.                             | 4                  | ) Unbalanced     | snow loads have be     | een coi   | isidered for ti   | nis    |       |        |       |                |            |
| WEBS        | 1 Row at    | midpt                     | 5-17, 6-16, 7-14, 8-1            | 4, 5               | Uesign.          | s been designed fo     | r aroot   | or of min roof    | livo   |       |        |       |                |            |
|             |             |                           | 10-13                            | 5                  | load of 12 0     | s been designed to     | t roof l  | ad of 10 0 p      | sfon   |       |        |       |                |            |
| REACTIONS   | (lb/size)   | 2=448/0-3                 | -0, 11=1055/ Mecha               | nical,             | overhands n      | on-concurrent with     | other li  | ve loads          | 51 011 |       |        |       |                |            |
|             |             | 17=1736/0                 | )-3-8                            | 6                  | Provide adec     | uate drainage to p     | revent    | vater ponding     | n      |       |        |       |                |            |
|             | Max Horiz   | 2=236 (LC                 | ; 9)                             | 7                  | All plates are   | 4x6 MT20 unless (      | otherwi   | se indicated      | 9.     |       |        |       |                |            |
|             | Max Uplift  | 2=-25 (LC                 | 8), 11=-30 (LC 13),              | . 8                | ) This truss ha  | s been designed fo     | ra 10.    | 0 psf bottom      |        |       |        |       |                |            |
|             |             | 17=-33 (L                 | C 12)                            |                    | chord live loa   | d nonconcurrent w      | ith anv   | other live loa    | ids.   |       |        |       |                |            |
|             | Max Grav    | 2=612 (LC<br>17=2199 (    | C 54), 11=1404 (LC 5<br>I C 3)   | 57), 9             | * This truss h   | as been designed       | for a liv | e load of 20.0    | Opsf   |       |        |       |                | LESS.      |
| FORCES      | (lb) - Max  | imum Com                  | nression/Maximum                 |                    | on the botton    | n chord in all areas   | where     | a rectangle       |        |       |        |       |                |            |
| I ONOLO     | Tension     |                           | probolon/maximum                 |                    | chord and ar     | y other members        | with BC   |                   | F F    |       |        |       | ITH UA         | ROUL       |
| TOP CHORD   | 1-2=0/21.   | 2-3=-933/3                | 36, 3-4=-339/73,                 | 1                  | n) Refer to gird | r(s) for trues to true |           | DC = 10.0p3       |        |       |        | A     | A              | The states |
|             | 4-5=-43/3   | 10. 5-6=-62               | 20/127. 6-7=-1013/1 <sup>-</sup> | 13. 1              | 1) Provide med   | nanical connection     | (hy oth   | ers) of truss t   | n      |       | /      | 53    | FEE            | Nit sin    |
|             | 7-8=-1013   | 3/113, 8-10               | =-1467/114,                      | -, 1               | bearing plate    | capable of withsta     | ndina 2   | 25 lb uplift at i | oint   |       | 4      | V     |                | Bille      |
|             | 10-11=-20   | 047/60                    |                                  |                    | 2, 33 lb uplift  | at joint 17 and 30 l   | b uplift  | at joint 11.      |        |       |        | ( ) ( | .4 -           | 1.00       |
| BOT CHORD   | 2-20=-84/   | 801, 19-20                | =-84/801,                        | 1                  | 2) This truss is | designed in accord     | ance w    | ,<br>ith the 2015 |        |       | =      |       | SEA            | L 🕴 E      |
|             | 17-19=-83   | 3/261, 16-1               | 7=-260/151,                      |                    | International    | Residential Code s     | ections   | R502.11.1 a       | and    |       |        |       | 0000           |            |
|             | 14-16=-52   | 2/552, 12-1               | 4=0/1586, 11-12=0/1              | 1586               | R802.10.2 a      | nd referenced stand    | dard AN   | ISI/TPI 1.        |        |       | 1      |       | 0363           | 22 : :     |
| WEBS        | 3-20=0/24   | 40, 3-19=-6               | 13/98, 4-19=0/380,               | . 1                | 3) Graphical pu  | rlin representation    | does n    | ot depict the s   | size   |       |        | 0     | N              | 1 - E      |
|             | 4-17=-567   | 7/84, 5-17=               | -1694/26, 5-16=0/12              | .09,               | or the orienta   | tion of the purlin al  | ong the   | e top and/or      |        |       |        | 5     | 1 A            | all S      |
|             | 6-16=-883   | 3/30, 6-14=               | -47/1006,                        | 200                | bottom chord     |                        |           |                   |        |       |        | 2.5   | S. S. NGINI    | Enix       |
|             | 10 12- 7    | 9/101, 0-14<br>04/170, 40 | =-391/34, 8-13=-18/0<br>12_0/250 | <sup>560,</sup> L  | OAD CASE(S)      | Standard               |           |                   |        |       |        | 11    | 710            | - Frish    |
| NOTEO       | 10-13=-72   | 24/179, 10-               | 12=0/309                         |                    |                  |                        |           |                   |        |       |        |       | IL A G         | ILDUN      |
| NULES       |             |                           |                                  |                    |                  |                        |           |                   |        |       |        |       | 1111111        | inn,       |
|             |             |                           |                                  |                    |                  |                        |           |                   |        |       |        |       |                | N DC       |

### NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type            | Qty Ply |   | Brad Cummings- Hoener Job. |           |
|--------|-------|-----------------------|---------|---|----------------------------|-----------|
| Hoener | T4E   | Piggyback Base Girder | 1       | 1 | Job Reference (optional)   | 152514629 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:42 ID:5dcpGdW\_Yagw?StpdIU?BLz8zYy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:91.6

| Plate Offsets (                                                                                  | X, Y): [14:0-3-4,0-2-8                                                                                                                                                                                                                                 | ], [19:0-2-0,0-2-0], [20                                                                                                                                                                                 | ):0-4-0,0-2-12], [25:0-                        | 4-4,0-1-8],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [28:0-5-0,0-4-8]                                                                                                                                                                                                              |                                                                                                                                    |                             |                               |                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                |                                    |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                      | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2015/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77<br>0.97<br>0.76<br>S                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                           | in<br>0.08<br>-0.14<br>0.03 | (loc)<br>26-28<br>26-28<br>24 | l/defl<br>>999<br>>999<br>n/a                                                          | L/d<br>240<br>180<br>n/a                                                                                                                                                                            | PLATES<br>MT20<br>Weight: 582 lb                                                                                                               | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x6 SP No.2<br>2x6 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>Right: 2x4 SP No.2<br>Structural wood she<br>3-10-14 oc purlins, 6<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing, Except:<br>10-0-0 oc bracing: 25<br>9-8-7 oc bracing: 25 | l or                                                                                                                                                                                                     | Max Uplift<br>Max Grav                         | $\begin{array}{c} 2=-60 \ (LC 58), 2\\ 29=-531 \ (LC 13)\\ 32=-7 \ (LC 9), 33\\ 34=-20 \ (LC 9), 33\\ 36=-61 \ (LC 12),\\ 38=-50 \ (LC 60),\\ 41=-59 \ (LC 60),\\ 41=-59 \ (LC 60),\\ 43=-44 \ (LC 60),\\ 45=-8 \ (LC 59), 4\\ 2=-163 \ (LC 40),\\ 29=2273 \ (LC 27)\\ 32=-167 \ (LC 44),\\ 34=250 \ (LC 36),\\ 36=-304 \ (LC 2),\\ $ | 4=-629 (LC<br>, 31=-160 (L<br>=-237 (LC 8<br>5=-39 (LC 5<br>37=-21 (LC<br>39=-60 (LC<br>44=-61 (LC<br>6=-38 (LC 1<br>, 42=-59 (LC<br>44=-61 (LC<br>6=-38 (LC 1)<br>, 31=74 (LC<br>33=1119 (L<br>35=65 (LC 2)<br>37=173 (LC 2) | 13),<br>.C 29),<br>.),<br>55),<br>12),<br>60),<br>58),<br>55),<br>2)<br>2 27),<br>C 2),<br>C 2),<br>21),<br>37),                   | BOT CH                      | IORD                          | 2-46=<br>44-45<br>42-43<br>39-41<br>37-38<br>35-36<br>33-34<br>31-32<br>28-29<br>25-26 | -146/124, 45-46=<br>=-146/124, 43-44<br>=-146/124, 41-42<br>=-264/206, 38-33<br>=-373/265, 36-33<br>=-469/306, 34-33<br>=-469/306, 32-33<br>=-316/260, 29-3<br>=-316/260, 26-28<br>=-567/2367, 24-2 | 146/124,<br>+=-146/124,<br>2=-264/206,<br>+=-373/265,<br>5=-469/306,<br>=-316/260,<br>=-316/260,<br>=-316/260,<br>3=-282/1536,<br>25=-567/2367 |                                    |
| WEBS                                                                                             | 9-5-7 oc bracing: 24<br>1 Row at midpt                                                                                                                                                                                                                 | -25.<br>14-36, 16-33, 19-29,<br>19-28, 21-28, 31-47                                                                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41=201 (LC 37),<br>43=275 (LC 40),<br>45=47 (LC 40),                                                                                                                                                                          | 42=90 (LC 4<br>44=35 (LC 4<br>46=263 (LC 2                                                                                         | 54),<br>13),<br>2)          |                               |                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                |                                    |
| REACTIONS                                                                                        | 1 Brace at Jt(s): 47,<br>48, 49, 51, 52, 54,<br>55<br>(lb/size) 2=110/30<br>Mechanic<br>31=-88/3(<br>33=869/3)<br>35=-20/3(<br>37=112/3<br>39=84/30<br>42=59/30<br>44=-36/3(<br>46=199/3<br>Max Horiz 2=236 (L0                                        | -3-8, 24=1751/<br>al, 29=1654/30-3-8,<br>)-3-8, 32=107/30-3-8,<br>)-3-8, 36=227/30-3-8,<br>)-3-8, 38=52/30-3-8,<br>-3-8, 41=113/30-3-8,<br>-3-8, 43=203/30-3-8,<br>)-3-8, 45=33/30-3-8,<br>0-3-8<br>C 9) | FORCES<br>TOP CHORD                            | (Ib) - May<br>Tension<br>1-2=0/21<br>4-5=-132<br>7-8=-126<br>10-11=-1<br>12-13=-9<br>14-15=-7<br>16-17=-7<br>18-19=-7<br>20-21=-8<br>23-24=-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kimum Compressie<br>, 2-3=-172/155, 3-<br>/148, 5-6=-156/25<br>/289, 8-9=-149/43<br>10/445, 11-12=-11<br>8/550, 13-14=-74/<br>4/566, 13-14=-74/<br>4/566, 19-20=-67<br>83/340, 21-23=-15<br>043/802                           | on/Maximum<br>4=-142/137,<br>8, 6-7=-138,<br>3, 9-10=-123<br>(4/507,<br>542,<br>566,<br>566,<br>566,<br>566,<br>7/316,<br>990/575, | /255,<br>3/424,             |                               | <b>G</b> . 111111                                                                      |                                                                                                                                                                                                     | NUTH CA<br>OR FESS<br>SEA<br>0363                                                                                                              | L 22                               |

## Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type            | Qty | Ply | Brad Cummings- Hoener Job. |  |
|--------|-------|-----------------------|-----|-----|----------------------------|--|
| Hoener | T4E   | Piggyback Base Girder | 1   | 1   | Job Reference (optional)   |  |

53-54=-157/86, 39-53=-164/90,

11-39=-51/105, 11-52=-196/92,

51-52=-202/96, 36-51=-201/95,

14-36=-132/19, 14-50=-278/57,

49-50=-336/74, 33-49=-343/74,

16-33=-145/47, 33-48=-737/192, 47-48=-739/193, 19-47=-747/194, 19-29=-1348/330, 19-28=-605/2291, 20-28=-121/225, 21-28=-1672/537, 21-26=-475/1690, 23-26=-1067/365, 23-25=-280/1061, 18-47=-361/94, 31-47=-370/95, 17-48=-57/73, 32-48=-58/72,

15-49=-208/48, 34-49=-201/47, 35-50=-20/67, 13-51=-132/44,

37-51=-133/46, 12-52=-82/65, 38-52=-76/66, 10-53=-14/17, 9-54=-147/77, 41-54=-159/84, 7-55=-32/14, 6-56=-172/78, 43-56=-203/87,

5-44=-41/54 5-56=-140/91 55-56=-130/88

42-55=-140/91, 8-42=-65/147, 8-54=-166/91,

ID:5dcpGdW\_Yagw?StpdIU?BLz8zYy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Uniform Loads (lb/ft)

Unitorm Loads (Ib/It) Vert: 1-8=-40, 8-14=-40, 14-20=-50, 20-24=-40, 2-24=-20 Concentrated Loads (Ib)

Vert: 64=-237 (F), 66=-237 (F), 67=-237 (F), 68=-237 (F), 69=-237 (F), 70=-237 (F), 71=-237 (F), 72=-237 (F), 73=-237 (F), 74=-238 (F)

Run: 8 53 S. Apr 27 2022 Print: 8 530 S. Apr 27 2022 MiTek Industries. Inc. Mon. Jun 13 14:27:42

Page: 2

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

4-45=-26/26, 3-46=-189/73

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
   3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 2, 61 lb uplift at joint 44, 59 lb uplift at joint 42, 60 lb uplift at joint 39, 61 lb uplift at joint 36, 237 lb uplift at joint 33, 531 lb uplift at joint 29, 629 lb uplift at joint 24, 160 lb uplift at joint 31, 7 lb uplift at joint 32, 20 lb uplift at joint 34, 39 lb uplift at joint 35, 21 lb uplift at joint 37, 50 lb uplift at joint 38, 59 lb uplift at joint 41, 44 lb uplift at joint 43, 8 lb uplift at joint 45 and 38 lb uplift at joint 46.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 32-1-4 from the left end to 50-1-4 to connect truss(es) to front face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.18) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15



| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | Т5    | Piggyback Base | 5   | 1   | Job Reference (optional)   | 152514630 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:44 ID:\_xvBEczpbFTXZIn7rH9wjMz8zYM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-2-8 1-2-8 49-2-8 7-11-4 15-8-2 23-8-6 31-6-15 39-7-3 47-11-8 7-10-8 1-3-0 7-11-4 8-0-4 7-8-14 8-0-4 8-4-5 4x8= 6x8 🍫 2x4 II 4x6= 6x8= 7 24 8 5 9 22 ⊠ <u>6</u> 23 25 F 8.25 8.25 4x6 🖌 4x6 Δ 3<sup>21</sup> 5x6、 260 27<sub>11</sub> 11-7-14 11-11-9 20 5-10-14 0-10-9 12 T T T T 28 19 29 18 30 17 31 16 15 14 32 13 33 6x8 II 3x8 🅢 2x4 II 6x8 II 4x8= 4x6= 2x4 II 4x6= 4x12= 0-0-8 0-0-8 7-11-4 15-9-14 23-8-6 31-6-15 39-5-7 47-11-8 7-10-12 7-10-10 7-10-8 7-10-8 7-10-8 8-6-1

Scale = 1:87.9

| Plate Offsets (X, Y): [5:0-2-8,0-2-8], [9:0-4-0,0-2-12], [10:0-2-12,0-2-0], [12:0-5-7,Edge], [18:0-4-8,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                                 |                                                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Loading         (psf)         Spacing         2-0-0         CSI         DEFL           TCLL (roof)         20.0         Plate Grip DOL         1.15         TC         0.84         Vert(LL)           Snow (Pf)         15.0         Lumber DOL         1.15         BC         0.95         Vert(CT)           TCDL         10.0         Rep Stress Incr         YES         WB         0.82         Horz(CT)           BCLL         0.0*         Code         IRC2015/TPI2014         Matrix-S         Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in (loc)<br>-0.13 17-18<br>-0.24 17-18<br>0.09 12                                                                   | l/defl L/d<br>>999 240<br>>999 180<br>n/a n/a                                                                   | PLATES         GRIP           MT20         244/190           Weight: 411 lb         FT = 20% |  |  |  |  |  |
| LUMBER<br>TOP CHORD<br>DCHORD<br>WEBS<br>2x4 SP No.22x6 SP No.22BOT CHORD<br>TOP CHORD2x6 SP No.211; Exp B; Enclosed; MWFRS (envelope) exterior zon-<br>cantilever left and right exposed; Lumber DOL=1.60BRACING<br>TOP CHORDStructural wood sheathing directly applied or<br>3-10-14 oc purlins, except end verticals, and<br>2-0-0 oc purlins (4-3-8 max.): 5-9.2BOT CHORD<br>Rigid ceiling directly applied or 10-0-0 oc<br>bracing.TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber<br>DOL=1.15); Pf=10.0 psf (flat roof sin-<br>Lumber DOL=1.15); Pf=10.0 psf (flat roof sin-<br> | Cat.<br>ne;<br>)<br>er<br>now:<br>cp B;<br>nis<br>live<br>sf on<br>g.<br>ds.<br>Opsf<br>om<br>:<br>o<br>int<br>size | The second se | SEAL<br>036322                                                                               |  |  |  |  |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G minim June 13,2022

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T5A   | Piggyback Base | 1   | 1   | Job Reference (optional)   | 152514631 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:45 ID:p5GSVg2aB5DgHDEHCYGKzcz8zYG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:87.9

| Plate Offsets (X, Y): | [5:0-2-12,0-2-8] | , [12:0-4-0,0-2-12], | [16:0-2-8,0-2-8], | [26:0-4-8,0-3-0] |
|-----------------------|------------------|----------------------|-------------------|------------------|
|-----------------------|------------------|----------------------|-------------------|------------------|

| Loading                                                                                          |                                                                                                                                 | (psf)                                                                                                                                             | Spacing                                                                                                                                                     | 2-0-0                      |                                                                                                                                                                                         | CSI                                                                                                                                                                                                                                                                   |                                                                                                          | DEFL                                                                                                                                   | in                                | (loc)                                                                                                            | l/defl                                                                                                                                                           | L/d                                                                                                                                       | PLATES                                                                                                                                                                                                                                                    | GRIP                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (roof)                                                                                      |                                                                                                                                 | 20.0                                                                                                                                              | Plate Grip DOL                                                                                                                                              | 1.15                       |                                                                                                                                                                                         | TC                                                                                                                                                                                                                                                                    | 1.00                                                                                                     | Vert(LL)                                                                                                                               | -0.13                             | 25-26                                                                                                            | >999                                                                                                                                                             | 240                                                                                                                                       | MT20                                                                                                                                                                                                                                                      | 244/190                                                                                                                                                                                                                                                             |
| Snow (Pf)                                                                                        |                                                                                                                                 | 15.0                                                                                                                                              | Lumber DOL                                                                                                                                                  | 1.15                       |                                                                                                                                                                                         | BC                                                                                                                                                                                                                                                                    | 0.94                                                                                                     | Vert(CT)                                                                                                                               | -0.23                             | 25-26                                                                                                            | >999                                                                                                                                                             | 180                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
| TCDL                                                                                             |                                                                                                                                 | 10.0                                                                                                                                              | Rep Stress Incr                                                                                                                                             | YES                        |                                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                    | 0.53                                                                                                     | Horz(CT)                                                                                                                               | 0.09                              | 19                                                                                                               | n/a                                                                                                                                                              | n/a                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
| BCLL                                                                                             |                                                                                                                                 | 0.0*                                                                                                                                              | Code                                                                                                                                                        | IRC20                      | 15/TPI2014                                                                                                                                                                              | Matrix-S                                                                                                                                                                                                                                                              |                                                                                                          |                                                                                                                                        |                                   |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
| BCDL                                                                                             |                                                                                                                                 | 10.0                                                                                                                                              |                                                                                                                                                             |                            |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                                        |                                   |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                           | Weight: 469 lb                                                                                                                                                                                                                                            | FT = 20%                                                                                                                                                                                                                                                            |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x6 SP N<br>2x6 SP N<br>2x4 SP N<br>2x4 SP N<br>Left: 2x4<br>Structura<br>3-11-1 oc<br>2-0-0 oc  <br>Rigid ceil<br>bracing.     | o.2<br>o.2<br>o.2<br>SP No.2<br>I wood shea<br>purlins, ex<br>purlins (4-4<br>ing directly                                                        | athing directly applie<br>xcept end verticals, a<br>-1 max.): 5-12.<br>applied or 6-0-0 oc                                                                  | V<br>d or<br>and           | VEBS                                                                                                                                                                                    | 3-27=0/346, 3-26=-<br>5-25=-165/540, 6-23<br>8-25=-35/409, 8-23<br>28-29=-1347/105, 2<br>21-30=-1369/114, 1<br>21-31=-34/1434, 31<br>32-33=-28/1407, 16<br>9-28=-6/22, 10-29=-<br>13-31=-11/78, 14-32<br>20-32=-148/72, 15-3<br>19-33=-340/83<br>roof live loads have | 674/18(<br>5=-517/<br>=0/456,<br>9-30=-'<br>2-21=0<br>-32=-2<br>-33=-32<br>-31/7, 1<br>2=-153/<br>33=-32 | 0, 5-26=-12/6<br>(160,<br>8-28=-1363/<br>1368/110,<br>/507,<br>7/1400,<br>2/1408,<br>1-30=-5/8,<br>(71,<br>5/74,                       | 76,<br>110,                       | 11) * Tr<br>on t<br>3-00<br>cho<br>12) Pro<br>bea<br>2, 4<br>13) This<br>Inte<br>R80<br>14) Gra<br>or tl<br>bott | his truss<br>he botto<br>5-00 tall<br>rd and a<br>vide mee<br>ring plat<br>0 lb uplii<br>s truss is<br>rnationa<br>i2.10.2 a<br>phical p<br>he orient<br>om chor | has be<br>m cho<br>by 1-0<br>ny oth<br>chanic<br>e capa<br>ft at joi<br>desig<br>desig<br>l Resid<br>and ref<br>urlin re<br>ation o<br>d. | een designed for<br>rd in all areas wh<br>0-00 wide will fit<br>er members, with<br>al connection (by<br>able of withstandi<br>int 18 and 102 lb<br>ned in accordand<br>dential Code sect<br>erenced standard<br>spresentation doe<br>of the purlin along | a live load of 20.0psf<br>ere a rectangle<br>between the bottom<br>I BCDL = 10.0psf.<br>others) of truss to<br>ng 3 lb uplift at joint<br>uplift at joint 19.<br>with the 2015<br>ions R502.11.1 and<br>d ANSI/TPI 1.<br>se not depict the size<br>g the top and/or |
| WEBS                                                                                             | 1 Row at                                                                                                                        | midpt                                                                                                                                             | 3-26, 6-25, 11-30                                                                                                                                           | 1                          | ) Unbalanced                                                                                                                                                                            | roof live loads have                                                                                                                                                                                                                                                  | e been o                                                                                                 | considered for                                                                                                                         | r                                 | DOII                                                                                                             | om chor                                                                                                                                                          | a.                                                                                                                                        |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
|                                                                                                  | 1 Brace a<br>29, 30, 3 <sup>-</sup>                                                                                             | at Jt(s): 28,<br>1, 32, 33<br>2–1560/0-                                                                                                           | 3-8 18-1218/2-3-8                                                                                                                                           | 2                          | this design.<br>) Wind: ASCE<br>Vasd=91mpl<br>II; Exp B; En                                                                                                                             | 7-10; Vult=115mph<br>h; TCDL=6.0psf; BC<br>closed; MWFRS (ei                                                                                                                                                                                                          | n (3-sec<br>DL=6.0<br>nvelope                                                                            | cond gust)<br>Opsf; h=30ft; (<br>e) exterior zon                                                                                       | Cat.<br>ne;                       | LOAD                                                                                                             | CASE(S)                                                                                                                                                          | ) Sta                                                                                                                                     | ndard                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |
|                                                                                                  | Max Horiz<br>Max Uplift<br>Max Grav                                                                                             | 19=425/0-<br>2=237 (LC<br>2=-3 (LC<br>19=-102 (I<br>2=2036 (L                                                                                     | 3-8<br>2 12)<br>12), 18=-40 (LC 9),<br>LC 13)<br>.C 3), 18=1574 (LC 3                                                                                       | 3),                        | cantilever lef<br>plate grip DC<br>) Truss design<br>only. For stu<br>see Standard<br>or consult du                                                                                     | It and right exposed<br>DL=1.60<br>ned for wind loads i<br>uds exposed to wind<br>d Industry Gable En<br>ualified building desi                                                                                                                                       | ; Lumt<br>n the pl<br>d (norm<br>d Deta                                                                  | lane of the tru<br>al to the face)<br>ils as applicat                                                                                  | )<br>ISS<br>),<br>ble,<br>PI 1    |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
| FORCES                                                                                           | (lb) - Max<br>Tension                                                                                                           | 19=648 (L<br>imum Com                                                                                                                             | .C 45)<br>pression/Maximum                                                                                                                                  | 4                          | ) TCLL: ASCE<br>DOL=1.15 P                                                                                                                                                              | = 7-10; Pr=20.0 psf (<br>late DOL=1.15); Pf=                                                                                                                                                                                                                          | (roof liv<br>=10.0 p                                                                                     | e load: Lumb<br>sf (flat roof sn                                                                                                       | er<br>now:<br>rn B:               |                                                                                                                  | 4                                                                                                                                                                | Nº Y                                                                                                                                      | ORTHOR                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |
| TOP CHORD                                                                                        | 1-2=0/21,<br>5-6=-216;<br>8-9=-117;<br>10-11=-1;<br>12-13=-1;<br>14-15=-1;<br>16-17=0/4;<br>2-27=-11;<br>23-25=-8;<br>20-21=-8; | 2-3=-3003<br>5/103, 6-8=<br>8/61, 9-10=<br>178/61, 11-<br>396/52, 13-<br>493/32, 15-<br>47, 16-18=-<br>3/2325, 25-<br>8/1949, 21-<br>/0, 19-20=-{ | /0, 3-5=-2430/76,<br>-2164/104,<br>-1178/61,<br>12=-1181/61,<br>14=-1487/36,<br>16=-1402/52,<br>1619/31<br>27=-113/2325,<br>23=-88/1949,<br>B/0, 18-19=-8/0 | 5<br>6<br>7<br>8<br>9<br>1 | Partially Exp<br>) Unbalanced<br>design.<br>) This truss ha<br>load of 12.0<br>overhangs n<br>) Provide adee<br>) All plates are<br>) Gable studs<br>0) This truss ha<br>chord live loa | :; Ct=1.10<br>snow loads have be<br>as been designed fo<br>psf or 2.00 times fla<br>on-concurrent with<br>quate drainage to p<br>e 2x4 MT20 unless of<br>spaced at 2-0-0 oc.<br>as been designed fo<br>ad nonconcurrent w                                             | een cor<br>or greate<br>tt roof k<br>other liv<br>revent v<br>otherwi<br>or a 10.0<br>ith any            | nsidered for the<br>er of min roof<br>bad of 10.0 ps<br>ve loads.<br>water ponding<br>se indicated.<br>D psf bottom<br>other live load | his<br>live<br>sf on<br>g.<br>ds. |                                                                                                                  | Contraction (Contraction)                                                                                                                                        |                                                                                                                                           | SEA<br>0363                                                                                                                                                                                                                                               | EER. K                                                                                                                                                                                                                                                              |

June 13,2022

818 Soundside Road Edenton, NC 27932

Page: 1

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | Т6    | Piggyback Base | 1   | 1   | Job Reference (optional)   | 152514632 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:46 ID:HHqqi03CyPLXvNpTmFnZVqz8zYF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:83.3

## Plate Offsets (X, Y): [5:0-4-0,0-1-8], [7:0-4-0,0-1-8], [13:0-4-8,0-3-0], [15:0-4-8,0-3-0]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                 | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015 | 5/TPI2014                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                | 0.79<br>0.89<br>0.42                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                            | in<br>-0.12<br>-0.22<br>0.10                                             | (loc)<br>14-15<br>14-15<br>10 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 358 lb | <b>GRIP</b> 244/190<br>FT = 20% |       |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|---------------------------------|-------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x6 SP No.2 *Except<br>1.5E or 2x4 SP No.1<br>2x6 SP No.2<br>2x4 SP No.2<br>Left: 2x4 SP No.2<br>Right: 2x4 SP No.2<br>Structural wood sheat<br>4-0-6 oc purlins, exc<br>2-0-0 oc purlins (3-9-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 2=1493/0- | t* 5-7:2x4 SP 1650F<br>or 2x4 SP SS<br>athing directly applied<br>ept<br>-12 max.): 5-7.<br>applied or 10-0-0 oc<br>3-15, 6-14, 9-13<br>3-8, 10=1493/0-3-8 | 2)<br>3)<br>d or 4)<br>5)<br>6)<br>7)   | Wind: ASCE<br>Vasd=91mph<br>II; Exp B; Enc<br>cantilever lef<br>plate grip DC<br>TCLL: ASCE<br>DOL=1.15 Pl<br>Lumber DOL<br>Partially Exp<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs m<br>Provide adec<br>This truss ha | 7-10; Vult=115mpl<br>;; TCDL=6.0psf; BC<br>closed; MWFRS (et<br>and right exposed<br>0L=1.60<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pf<br>=1.15 Plate DOL=1<br>; Ct=1.10<br>snow loads have b<br>s been designed fo<br>cosf or 2.00 times fit<br>on-concurrent with<br>juate drainage to p<br>s been designed fo | h (3-sec<br>CDL=6.0<br>nvelope<br>1; Lumb<br>(roof liv<br>=10.0 p<br>1.15); C<br>een cor<br>or greate<br>at roof lo<br>other liv<br>revent v<br>or a 10.0 | ond gust)<br>Dpsf; h=30ft;<br>) exterior zo<br>ver DOL=1.6(<br>e load: Lumb<br>sf (flat roof si<br>ategory II; E:<br>sidered for t<br>er of min roof<br>vad of 10.0 p<br>re loads.<br>water pondin:<br>0 psf bottom | Cat.<br>ne;<br>0<br>per<br>now:<br>xp B;<br>his<br>f live<br>sf on<br>g. |                               |                               |                          |                                  |                                 |       |
| FORCES                                                                                                      | Max Hofiz 2=224 (LC<br>Max Uplift 2=-11 (LC<br>Max Grav 2=1958 (L<br>(Ib) - Maximum Com                                                                                                                                                                                        | . 12), 10=-11 (LC 13)<br>.C 3), 10=1958 (LC 3<br>pression/Maximum                                                                                          | ) 8)                                    | <ul> <li>chord live loa</li> <li>* This truss h</li> <li>on the bottom</li> <li>3-06-00 tall b</li> <li>chord and an</li> </ul>                                                                                                                       | ad nonconcurrent w<br>has been designed<br>in chord in all areas<br>by 1-00-00 wide will<br>we other mombers                                                                                                                                                                                                     | vith any<br>for a liv<br>where<br>I fit betw                                                                                                              | other live loa<br>e load of 20.<br>a rectangle<br>veen the bott                                                                                                                                                     | ads.<br>Opsf<br>om                                                       |                               |                               |                          |                                  |                                 |       |
| TOP CHORD                                                                                                   | 1-2=0/21, 2-3=-2876<br>5-6=-1990/42, 6-7=-'<br>9-10=-2876/2, 10-11                                                                                                                                                                                                             | 5/1, 3-5=-2293/47,<br>1990/42, 7-9=-2293/4<br>=0/21                                                                                                        | 9)<br>17,                               | Provide mech<br>bearing plate<br>2 and 11 lb u                                                                                                                                                                                                        | hanical connection<br>capable of withsta<br>plift at joint 10.                                                                                                                                                                                                                                                   | (by oth<br>nding 1                                                                                                                                        | ers) of truss i<br>1 lb uplift at j                                                                                                                                                                                 | to<br>joint                                                              |                               |                               |                          | TH CA                            | RO                              | 2     |
| BOT CHORD                                                                                                   | 2-16=-40/2273, 14-1<br>12-14=0/2224, 10-12                                                                                                                                                                                                                                     | 6=-40/2273,<br>2=0/2224                                                                                                                                    | 10                                      | This truss is<br>International                                                                                                                                                                                                                        | designed in accord<br>Residential Code s                                                                                                                                                                                                                                                                         | lance w                                                                                                                                                   | ith the 2015<br>R502.11.1 a                                                                                                                                                                                         | and                                                                      |                               | 4                             | in                       | ON FESS                          | 1                               |       |
| WEB2                                                                                                        | 3-10=0/352, 3-15=-6<br>5-14=-135/486, 6-14<br>7-14=-135/486, 7-13<br>9-13=-693/183, 9-12                                                                                                                                                                                       | 92/183, 5-15=-18/66<br>=-604/156,<br>=-18/667,<br>=0/352                                                                                                   | 7,<br>11                                | Graphical pu<br>or the orienta<br>bottom chorc                                                                                                                                                                                                        | rlin representation<br>tion of the purlin a<br>l.                                                                                                                                                                                                                                                                | does no<br>long the                                                                                                                                       | top and/or                                                                                                                                                                                                          | size                                                                     |                               |                               |                          | SEA                              |                                 | ann a |
| NOTES                                                                                                       |                                                                                                                                                                                                                                                                                |                                                                                                                                                            | LC                                      | AD CASE(S)                                                                                                                                                                                                                                            | Standard                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                          |                               | 1                             |                          | 0363                             | ~ :                             | =     |

1) Unbalanced roof live loads have been considered for this design.

ERIC . G minim June 13,2022

818 Soundside Road Edenton, NC 27932

Page: 1

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T6A   | Piggyback Base | 2   | 1   | Job Reference (optional)   | 152514633 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:46 ID:wQIP1mWYy5bTscp2QFyqGsz9\_5p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 30-6-8 6-10-0 13-7-15 21-4-4 29-4-0 H 7-8-4 6-10-0 1-2-8 6-10-0 7-11-12 2x4 🛛 4x6= 6x8= 2 3 1 11  $\boxtimes$ 12 4x6👟 12 18.25 4 4x6、 5 11-11-8 11-7-13 13 MT20HS 3x10 || 6 -10-10 ₿ 閿 14 15 16 179 18 8 19 3x4= 6x8= 10x12= 2x4 🛛

21-4-4

|               | 13-6-3 | 7-10-1 |
|---------------|--------|--------|
| cale = 1:71.7 |        |        |

13-6-3

| Scale = 1:71.7        | 1000                                                                |
|-----------------------|---------------------------------------------------------------------|
| Plate Offsets (X, Y): | [3:0-4-0,0-2-12], [6:Edge,0-0-7], [6:0-2-10,0-4-4], [9:0-6-0,0-4-8] |

| Loading                                                                                                                                                                                   | (psf)                                                                                                                                                                                                                                                                                                | Spacing                                                                                                                                                                                                                                  | 2-0-0                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.56                                                                                                                                                                               | DEFL                                                                                                                                                                                                                                                                    | in<br>0.12                                                                | (loc) | l/defl     | L/d | PLATES         | GRIP     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|------------|-----|----------------|----------|
|                                                                                                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          | 1.15                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                               | Vert(LL)                                                                                                                                                                                                                                                                | -0.13                                                                     | 9-10  | >999       | 240 | MT20           | 244/190  |
| Show (Pt)                                                                                                                                                                                 | 15.0                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          | 1.15                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.67                                                                                                                                                                               |                                                                                                                                                                                                                                                                         | -0.25                                                                     | 9-10  | >999       | 180 | MI20HS         | 187/143  |
| TCDL                                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                                                                                                                          | NO                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.81                                                                                                                                                                               | Horz(CT)                                                                                                                                                                                                                                                                | 0.02                                                                      | 6     | n/a        | n/a |                |          |
| BCLL                                                                                                                                                                                      | 0.0*                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                                                     | IRC2015/TF                                                                                                                                                                                                                                                                      | PI2014                                                                                                                                                                                                                                                                                              | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                         |                                                                           |       |            |     |                |          |
| BCDL                                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                         |                                                                           |       |            |     | Weight: 261 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                               | 2x6 SP No.2<br>2x10 SP 2250F 1.9E<br>2x10 SP SS *Except<br>2x4 SP No.2<br>Right: 2x4 SP No.2<br>Structural wood shea<br>5-2-4 oc purlins, exc<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 6=1009/0-<br>Max Horiz 10=-348 (1<br>Max Uplift 6=-9 (LC | e or 2x10 SP DSS or<br>* 9-6:2x6 SP No.2<br>athing directly applied<br>cept end verticals, an<br>-0 max.): 1-3.<br>applied or 10-0-0 oc<br>1-10, 5-9, 2-10<br>-3-8, 10=1157/0-3-8<br>LC 13)<br>13), 10=-89 (LC 8)<br>- 282, 10, 1447 (LC | 4) Tr<br>lo:<br>ov<br>5) Pr<br>6) Al<br>7) Tr<br>cr<br>d or<br>8) * -<br>d or<br>d or<br>4<br>9) Pr<br>be<br>10<br>10) Tr<br>be<br>10<br>10, Tr<br>be<br>10<br>10, Tr<br>be<br>10<br>10, Tr<br>be<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | his truss have<br>bad of 12.0 p<br>verhangs no<br>rovide adeq<br>Il plates are<br>hord live loa<br>This truss have<br>hord live loa<br>This truss h<br>n the bottom<br>-06-00 tall b<br>hord and an<br>rovide mech<br>earing plate<br>0 and 9 lb u<br>his truss is o<br>iternational<br>802.10.2 ar | s been designed for<br>out of a speed of the speed of the speed<br>of the speed of the speed of the speed<br>of the speed of the speed of the speed<br>of the speed of the speed of the speed of the speed<br>of the speed of the speed of the speed of the speed of the speed<br>of the speed of the sp | r greate<br>t roof lo<br>other liv<br>event v<br>s other<br>r a 10.0<br>ith any<br>or a liv<br>where<br>fit betw<br>vith BC<br>(by oth<br>nding 8<br>ance wi<br>ections<br>lard AN | er of min roof<br>pad of 10.0 p:<br>re loads.<br>vater ponding<br>wise indicate<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>reen the botto<br>DL = 10.0psf<br>ers) of truss t<br>9 lb uplift at j<br>th the 2015<br>R502.11.1 a<br>ISI/TPI 1. | live<br>sf on<br>g.<br>d.<br>ds.<br>Dpsf<br>om<br>c.<br>oom<br>i.<br>oont |       |            |     |                |          |
| FORCES                                                                                                                                                                                    | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                        | pression/Maximum                                                                                                                                                                                                                         | <sup>34)</sup> 11) Gi<br>or                                                                                                                                                                                                                                                     | raphical pur                                                                                                                                                                                                                                                                                        | lin representation of the purlin alo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | does no<br>ong the                                                                                                                                                                 | top and/or                                                                                                                                                                                                                                                              | size                                                                      |       |            |     |                |          |
| TOP CHORD                                                                                                                                                                                 | 1-10=-200/47, 1-2=-0<br>3-5=-1226/42, 5-6=-1                                                                                                                                                                                                                                                         | 6/0, 2-3=-913/83,<br>1794/0, 6-7=0/21                                                                                                                                                                                                    | 12) A                                                                                                                                                                                                                                                                           | TTIC SPAC                                                                                                                                                                                                                                                                                           | E SHOWN IS DES<br>.BI F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IGNED                                                                                                                                                                              | AS                                                                                                                                                                                                                                                                      |                                                                           |       |            |     | muu            | 1111     |
| BOT CHORD                                                                                                                                                                                 | 8-10=-13/1348, 6-8=                                                                                                                                                                                                                                                                                  | 0/1348                                                                                                                                                                                                                                   | 13) In                                                                                                                                                                                                                                                                          | the LOAD                                                                                                                                                                                                                                                                                            | CASE(S) section, lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oads ap                                                                                                                                                                            | plied to the f                                                                                                                                                                                                                                                          | face                                                                      |       |            |     | "H CA          | ROUL     |
| WEBS                                                                                                                                                                                      | 3-9=0/333, 5-9=-669<br>2-10=-1115/123, 2-9                                                                                                                                                                                                                                                           | )/187, 5-8=0/306,<br>)=-61/783                                                                                                                                                                                                           | of                                                                                                                                                                                                                                                                              | f the truss a                                                                                                                                                                                                                                                                                       | re noted as front (F<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) or ba                                                                                                                                                                            | ck (B).                                                                                                                                                                                                                                                                 |                                                                           |       |            | -A' | ORIESS         | All'     |
| NOTES                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          | 1)                                                                                                                                                                                                                                                                              | Dead + Sno                                                                                                                                                                                                                                                                                          | w (balanced): I uml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ber Inci                                                                                                                                                                           | ease=1.15                                                                                                                                                                                                                                                               | Plate                                                                     |       |            | 23  |                | 1: Salt  |
| <ol> <li>Wind: ASC<br/>Vasd=91m<br/>II; Exp B; I<br/>cantilever<br/>plate grip I</li> <li>TCLL: ASC<br/>DOL=1.15<br/>Lumber DO<br/>Partially E:</li> <li>Unbalance<br/>design.</li> </ol> | CE 7-10; Vult=115mph<br>hph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>left and right exposed<br>DOL=1.60<br>CE 7-10; Pr=20.0 psf (r<br>Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1.<br>xp.; Ct=1.10<br>d snow loads have be                                                                        | (3-second gust)<br>DL=6.0psf; h=30ft; C<br>vvelope) exterior zone<br>; Lumber DOL=1.60<br>roof live load: Lumbe<br>10.0 psf (flat roof snc<br>.15); Category II; Exp<br>en considered for this                                           | r, L<br>at. L<br>x;<br>r<br>ww:<br>B;<br>s                                                                                                                                                                                                                                      | Vert: 1-3=<br>(F=-20), 6                                                                                                                                                                                                                                                                            | (blanced), Lunn<br>15<br>Ids (lb/ft)<br>-50, 3-7=-40, 10-1<br>-17=-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4=-20,                                                                                                                                                                             | 14-17=-40                                                                                                                                                                                                                                                               |                                                                           |       | A THURSDAY |     | SEAI<br>03632  | ER. KIN  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 13,2022

29-4-0 0-0-8

29-3-8

7-11-5

Page: 1

| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | Т6В   | Piggyback Base | 7   | 1   | Job Reference (optional)   | 152514634 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:47 ID:9mbNODNjHcFR4NYI\_gA5Yez9\_?X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:72.6

| Plate Offsets (X, Y): | [3:0-4-0,0-2-12], [6:1 | Edge,0-0-7], [6:0-2 | -10,0-4-4], | [8:0-6-0,0-4-8] |
|-----------------------|------------------------|---------------------|-------------|-----------------|

| Loading<br>TCLL (roof)<br>Snow (Pf)                                                                                                                                       | (psf)<br>20.0<br>15.0                                                                                                                                                                                                                                                                                 | <b>Spacing</b><br>Plate Grip DOL                                                                                                                                                           | 2-0-0<br>1.15<br>1 15                                                                                                                                |                                                                                                                                                                                              | CSI<br>TC<br>BC                                                                                                                                                                                                                                                                                                                                        | 0.45<br>0.68                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)                                                                                                                                                                                                                                                               | in<br>-0.14<br>-0.26                                 | (loc)<br>8-9<br>8-9 | l/defl<br>>999<br>>999 | L/d<br>240<br>180 | PLATES<br>MT20<br>MT20HS | <b>GRIP</b><br>244/190<br>187/143 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|------------------------|-------------------|--------------------------|-----------------------------------|
| TCDL                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                  | Rep Stress Incr                                                                                                                                                                            | NO                                                                                                                                                   |                                                                                                                                                                                              | WB                                                                                                                                                                                                                                                                                                                                                     | 0.83                                                                                                                                                              | Horz(CT)                                                                                                                                                                                                                                                                                   | 0.03                                                 | 6                   | n/a                    | n/a               |                          |                                   |
| BCLL                                                                                                                                                                      | 0.0*                                                                                                                                                                                                                                                                                                  | Code                                                                                                                                                                                       | IRC2015/TPI                                                                                                                                          | 2014                                                                                                                                                                                         | Matrix-S                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                      |                     |                        |                   |                          |                                   |
| BCDL                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                      |                     |                        |                   | Weight: 258 lb           | FT = 20%                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                               | 2x6 SP No.2<br>2x10 SP 2250F 1.9E<br>2x10 SP SS *Except<br>2x4 SP No.2<br>Right: 2x4 SP No.2<br>Structural wood shea<br>5-1-5 oc purlins, exc<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 6=962/ Ma<br>Max Horiz 9=-338 (LC<br>Max Uplift 9=-89 (LC | or 2x10 SP DSS or<br>* 8-6:2x6 SP No.2<br>athing directly applied<br>ept<br>-0 max.): 1-3.<br>applied or 10-0-0 oc<br>1-9, 2-9, 5-8<br>echanical, 9=1161/0-<br>C 13)<br>8                  | 4) Uni<br>des<br>5) Pro<br>6) All<br>7) Thi<br>cho<br>8) * Ti<br>3-0<br>cho<br>9) Ref<br>10) Pro<br>bez<br>9.<br>3-8<br>11) Thi<br>Inte<br>Rate<br>8 | balanced s<br>sign.<br>ovide adeq<br>plates are<br>is truss has<br>ord live loa<br>the bottom<br>06-00 tall b<br>ord and any<br>fer to girde<br>aring plate<br>as truss is c<br>ernational 1 | snow loads have be<br>uate drainage to pr<br>MT20 plates unless<br>s been designed for<br>d nonconcurrent wi<br>as been designed for<br>o chord in all areas<br>y 1-00-00 wide will<br>y other members, v<br>r(s) for truss to trus<br>lanical connection (<br>capable of withstar<br>designed in accorda<br>Residential Code so<br>d referenced stand | een cor<br>event v<br>s other<br>r a 10.0<br>ith any<br>or a liv<br>where<br>fit betw<br>vith BC<br>ss conr<br>(by oth<br>hding 8<br>ance wi<br>ections<br>ard Ab | sidered for the<br>vater ponding<br>wise indicate<br>0 psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botth<br>DL = 10.0psf<br>veen the botth<br>DL = 10.0psf<br>veetions.<br>ers) of truss i<br>9 lb uplift at j<br>rth the 2015<br>R502.11.1 at<br>ISI/TPI 1 | his<br>g.<br>ids.<br>Dpsf<br>com<br>f.<br>ro<br>oint |                     |                        |                   |                          |                                   |
| FORCES                                                                                                                                                                    | Max Grav 6=1282 (L<br>(lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                   | .C 26), 9=1451 (LC 3<br>pression/Maximum                                                                                                                                                   | <sup>2)</sup> 12) Gra<br>or t                                                                                                                        | aphical pur<br>the orienta                                                                                                                                                                   | lin representation c<br>tion of the purlin alc                                                                                                                                                                                                                                                                                                         | does no<br>ong the                                                                                                                                                | ot depict the s<br>top and/or                                                                                                                                                                                                                                                              | size                                                 |                     |                        |                   |                          |                                   |
| TOP CHORD                                                                                                                                                                 | 1-2=0/0, 2-3=-934/8 <sup>-</sup><br>5-6=-1786/0                                                                                                                                                                                                                                                       | 1, 3-5=-1258/40,                                                                                                                                                                           | 13) In t                                                                                                                                             | the LOAD (                                                                                                                                                                                   | CASE(S) section, Ic                                                                                                                                                                                                                                                                                                                                    | bads ap                                                                                                                                                           | oplied to the t                                                                                                                                                                                                                                                                            | face                                                 |                     |                        |                   |                          |                                   |
| BOT CHORD<br>WEBS                                                                                                                                                         | 7-9=-15/1370, 6-7=0<br>1-9=-195/47, 3-8=0/3<br>2-9=-1134/123, 2-8=                                                                                                                                                                                                                                    | /1367<br>347, 5-7=0/285,<br>-59/799, 5-8=-659/19                                                                                                                                           | LOAD (<br>1) De                                                                                                                                      | CASE(S)<br>ead + Sno                                                                                                                                                                         | Standard<br>w (balanced): Lumb                                                                                                                                                                                                                                                                                                                         | ber Inci                                                                                                                                                          | rease=1.15, I                                                                                                                                                                                                                                                                              | Plate                                                |                     |                        | m                 | WITH CA                  | ROLIN                             |
| NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91m<br>II; Exp B; E<br>cantilever I<br>plate grip I<br>3) TCLL: ASC<br>DOL=1.15<br>Lumber DC<br>Partially Ex | ed roof live loads have<br>b.<br>E 7-10; Vult=115mph<br>iph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>left and right exposed<br>DOL=1.60<br>CE 7-10; Pr=20.0 psf (r<br>Plate DOL=1.15); Pf=<br>DL=1.15 Plate DOL=1.<br>xp.; Ct=1.10                                                                 | been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft; C<br>velope) exterior zone<br>; Lumber DOL=1.60<br>roof live load: Lumbe<br>10.0 psf (flat roof sno<br>.15); Category II; Exp | un<br>at.<br>∋;<br>r<br>w:<br>∍ B;                                                                                                                   | niform Loa<br>Vert: 1-3=<br>6-16=-20                                                                                                                                                         | ds (lb/ft)<br>-50, 3-6=-40, 9-13:                                                                                                                                                                                                                                                                                                                      | =-20, 1                                                                                                                                                           | 3-16=-40 (F=                                                                                                                                                                                                                                                                               | 20),                                                 |                     | A THILLING .           |                   | SEA<br>0363              | L<br>22<br>LBERTIN                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|----------------|-----|-----|----------------------------|-----------|
| Hoener | T6C   | Piggyback Base | 1   | 1   | Job Reference (optional)   | 152514635 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:47 ID:L2zyFU9wfnmaDzHY52Ia0ez8zzE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:72.6

| Plate Offsets (X, Y): | [3:0-4-0,0-2-12], | [6:Edge,0-0-7], | [6:0-2-10,0-4-4], | [8:0-6-0,0-4-8] |
|-----------------------|-------------------|-----------------|-------------------|-----------------|

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                           | (psf)<br>20.0<br>15.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2015                        | 5/TPI2014                                                                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                             | 0.45<br>0.68<br>0.82                                                                                                                                                                                   | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                               | in<br>-0.14<br>-0.26<br>0.03                                          | (loc)<br>8-9<br>8-9<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>MT20HS<br>Weight: 258 lb | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD                                                             | 2x6 SP No.2<br>2x10 SP 2250F 1.9E<br>2x10 SP SS *Except<br>2x4 SP No.2<br>Right: 2x4 SP No.2<br>Structural wood shea<br>5-1-14 oc purlins, ex<br>2-0-0 oc purlins (6-0-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(Ib/size) 6=959/0-4<br>Max Horiz 9=-338 (Lf<br>Max Uplift 9=-89 (LC<br>Max Grav 6=1278 (L<br>(Ib) - Maximum Com<br>Tension<br>1-2=0/0, 2-3=-929/81<br>5-6=-1771/0 | or 2x10 SP DSS or<br>* 8-6:2x6 SP No.2<br>athing directly applied<br>cept<br>-0 max.): 1-3.<br>applied or 10-0-0 oc<br>1-9, 2-9, 5-8<br>-0, 9=1158/0-3-8<br>C 13)<br>8)<br>C 26), 9=1447 (LC 3:<br>pression/Maximum                                  | 4)<br>5)<br>6)<br>7)<br>8)<br>1 or<br>9)<br>10<br>2) 11<br>12 | Unbalanced :<br>design.<br>Provide adec<br>All plates are<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mecl<br>bearing plate<br>9.<br>) This truss is of<br>International<br>R802.10.2 ar<br>) Graphical pu<br>or the orienta<br>bottom chord<br>) In the LOAD<br>of the truss a | snow loads have by<br>uate drainage to p<br>MT20 plates unless<br>s been designed for<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 1-00-00 wide will<br>y other members,<br>nanical connection<br>capable of withsta<br>designed in accord<br>Residential Code s<br>d referenced stand<br>rlin representation<br>tion of the purlin al<br>CASE(S) section, I<br>re noted as front (f | een cor<br>revent v<br>so other<br>or a 10.4<br>ith any<br>for a liv<br>where<br>fit betv<br>with BC<br>(by oth<br>nding 8<br>ance w<br>sections<br>dard AN<br>does no<br>ong the<br>oads a<br>) or ba | water ponding<br>wise indicate<br>) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>DL = 10.0psf<br>ers) of truss t<br>9 lb uplift at ju-<br>ith the 2015<br>is R502,11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>e top and/or<br>oplied to the f<br>ck (B). | nis<br>J.<br>d.<br>ds.<br>)psf<br>om<br>o<br>oint<br>nd<br>ize<br>ace |                          |                               |                          |                                            |                                               |
| BOT CHORD<br>WEBS<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91m<br>II; Exp B; E<br>cantilever I<br>plate grip [<br>3) TCLL: ASC<br>DOL=1.15<br>Lumber DC<br>Partially Ex | 7-9=-15/1353, 6-7=0<br>1-9=-195/47, 3-8=0/3<br>2-9=-1129/123, 2-8=<br>d roof live loads have<br>E 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>eft and right exposed ;<br>DCL=1.60<br>CE 7-10; Pr=20.0 psf (r<br>Plate DOL=1.15); Pf=<br>DL=1.15 Plate DOL=1.<br>cp.; Ct=1.10                                                                                                 | /1350<br>944, 5-7=0/283,<br>-59/794, 5-8=-645/19<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ft; C <i>i</i><br>velope) exterior zone<br>Lumber DOL=1.60<br>006 live load: Lumber<br>10.0 psf (flat roof sno<br>15); Category II; Exp | LC<br>1)<br>12<br>at.<br>;;<br>r<br>w:<br>B;                  | DAD CASE(S)<br>Dead + Sno<br>Increase=1.<br>Uniform Loa<br>Vert: 1-3=<br>6-16=-20                                                                                                                                                                                                                                                                      | Standard<br>w (balanced): Lum<br>15<br>ds (lb/ft)<br>50, 3-6=-40, 9-13                                                                                                                                                                                                                                                                                                                                        | ber Inc                                                                                                                                                                                                | rease=1.15, F<br>3-16=-40 (F=                                                                                                                                                                                                                                                                 | Plate<br>-20),                                                        |                          | Manna Mar                     |                          | SEA<br>OR ESS<br>SEA<br>O363               |                                               |

- MWFRS (e cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 110000

| Job    | Truss | Truss Type                     | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|--------------------------------|-----|-----|----------------------------|-----------|
| Hoener | T6E   | Piggyback Base Supported Gable | 1   | 1   | Job Reference (optional)   | 152514636 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:48 ID:hsVzL155FKj6mrY2RNLG7Sz8zYC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



| Loading                                  |                                                             | (psf)                          | Spacing                                        | 2-0-0    |              | CSI      |                               | 0.06                                                                          | DEFL                                                                         | in<br>n/a                            | (        | loc)                                | l/defl                                                 | L/d                                              | PLATES                                                                                        | GRIP                                                                | 90                                                                              |
|------------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------------------------|----------|--------------|----------|-------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|----------|-------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Spow (Pf)                                |                                                             | 20.0                           |                                                | 1.15     |              | BC       |                               | 0.00                                                                          | Vert(LL)                                                                     | n/a                                  |          | -                                   | n/a                                                    | 999                                              | WIT20                                                                                         | 244/13                                                              | 30                                                                              |
|                                          |                                                             | 10.0                           | Ren Stress Incr                                | VES      |              | WB       |                               | 0.02                                                                          | Horiz(TL)                                                                    | 0.00                                 |          | 17                                  | n/a                                                    | n/a                                              |                                                                                               |                                                                     |                                                                                 |
| BCU                                      |                                                             | 0.0*                           | Code                                           | IRC20    | 15/TPI2014   | Mat      | riv-S                         | 0.10                                                                          |                                                                              | 0.00                                 |          | .,                                  | n/a                                                    | Π/a                                              |                                                                                               |                                                                     |                                                                                 |
|                                          |                                                             | 10.0                           | Code                                           | 11(02)   | /13/11/2014  | Iviat    | 14-0                          |                                                                               |                                                                              |                                      |          |                                     |                                                        |                                                  | Weight: 364 I                                                                                 | h FT-C                                                              | 20%                                                                             |
| DODL                                     |                                                             | 10.0                           |                                                |          |              |          |                               |                                                                               |                                                                              |                                      |          |                                     |                                                        |                                                  | Weight. 504 I                                                                                 |                                                                     | 2070                                                                            |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x6 SP N<br>2x10 SP 2<br>2x10 SP 3<br>2x10 SP 3<br>2x4 SP N | o.2<br>2250F 1.9E<br>SS<br>o.2 | or 2x10 SP DSS or                              |          |              | Max Gr   | av 17<br>19<br>21<br>23<br>26 | Z=218 (LC 13)<br>=142 (LC 26)<br>=248 (LC 38)<br>=253 (LC 38)<br>=222 (LC 33) | , 18=279 (LC<br>, 20=245 (LC<br>, 22=251 (LC<br>, 24=201 (LC<br>, 27=226 (LC | 26),<br>38),<br>38),<br>26),<br>33), | 2)<br>3) | True<br>only<br>see<br>or co<br>TCL | ss desig<br>. For st<br>Standai<br>onsult q<br>L: ASCI | ined fo<br>uds ex<br>d Indu<br>ualifie<br>E 7-10 | or wind loads in<br>posed to wind<br>ustry Gable Enc<br>d building desig<br>p; Pr=20.0 psf (r | the plane<br>(normal to<br>I Details a<br>ner as pe<br>coof live lo | e of the truss<br>o the face),<br>is applicable,<br>r ANSI/TPI 1.<br>ad: Lumber |
| OTHERS                                   | 2x4 SP N                                                    | o.2                            |                                                |          |              |          | 28                            | 3=224 (LC 33)                                                                 | , 29=225 (LC                                                                 | 33),                                 |          | DOL                                 | =1.15 F                                                | Plate D                                          | OL=1.15); Pf=                                                                                 | 10.0 psf (fl                                                        | lat roof snow:                                                                  |
| BRACING                                  |                                                             |                                |                                                |          |              |          | 30                            | )=226 (LC 33)                                                                 | , 31=231 (LC                                                                 | 33),                                 |          | Lum                                 | ber DO                                                 | L=1.1                                            | 5 Plate DOL=1.                                                                                | 15); Cateç                                                          | gory II; Exp B;                                                                 |
| TOP CHORD                                | Structural                                                  | l wood shea                    | athing directly applied                        | d or     |              |          |                               | 2=87 (LC 33)                                                                  | <i></i>                                                                      |                                      | 4)       | Part                                | ally Exp                                               | ).; Ct=                                          | 1.10                                                                                          | on oonoid                                                           | arad for this                                                                   |
|                                          | 6-0-0 oc p                                                  | ourlins, exc                   | cept end verticals, and                        | d        | FORCES       | (Ib) - N | laximu                        | um Compress                                                                   | ion/Maximum                                                                  |                                      | 4)       | dasi                                | alanceu<br>an                                          | SHOW                                             | loaus nave be                                                                                 | SILCOUSIGE                                                          |                                                                                 |
|                                          | 2-0-0 oc p                                                  | ourlins (6-0                   | -0 max.): 1-8.                                 |          |              | 1 22     | 011<br>60/15                  | 1 2 0/0 2 2                                                                   | 0/0 2 4 0/0                                                                  |                                      | 5)       | Prov                                | yn.<br>vide ade                                        | quate                                            | drainage to pre                                                                               | vent wate                                                           | er nonding                                                                      |
| BOT CHORD                                | Rigid ceili                                                 | ing directly                   | applied or 10-0-0 oc                           |          |              | 4-5-0    | 02/15,                        | -0/0 6-7-0/0                                                                  | =0/0, 3-4=0/0,<br>7-8-0/0                                                    |                                      | 6)       | All p                               | lates ar                                               | e 2x4                                            | MT20 unless of                                                                                | therwise in                                                         | ndicated.                                                                       |
|                                          | bracing.                                                    | ma i al m t                    | 4 00 0 04 0 00 4 00                            | <u> </u> |              | 8-9=-3   | 8/8.9-                        | -10=-55/41                                                                    | -11 = -92/58                                                                 |                                      | 7)       | Gab                                 | le requi                                               | res co                                           | ntinuous botton                                                                               | n chord be                                                          | earing.                                                                         |
| WEB5                                     | I ROW at                                                    | πιαρι                          | 1-32, 2-31, 3-30, 4-23<br>5-28 6-27 7-26 0-2/  | 9,<br>4  |              | 11-12    | =-143/7                       | 72, 12-13=-19                                                                 | 4/87,                                                                        |                                      | 8)       | Gab                                 | le studs                                               | space                                            | ed at 2-0-0 oc.                                                                               |                                                                     |                                                                                 |
|                                          |                                                             |                                | 10-23                                          | 4,       |              | 13-14    | =-245/9                       | 98, 14-16=-28                                                                 | 9/109,                                                                       |                                      | 9)       | This                                | truss h                                                | as bee                                           | en designed for                                                                               | a 10.0 ps                                                           | f bottom                                                                        |
| PEACTIONS                                | (lb/sizo)                                                   | 17-82/20-                      | 4-0 18-202/20-4-0                              |          |              | 16-17    | =-383/                        | 155                                                                           |                                                                              |                                      |          | chor                                | d live lo                                              | ad no                                            | nconcurrent wit                                                                               | h any othe                                                          | er live loads.                                                                  |
| REACTIONS                                | (10/3126)                                                   | 19=91/29-                      | 4-0, 10=202/29-4-0,                            |          | BOT CHORD    | 31-32    | =-120/3                       | 334, 30-31=-1                                                                 | 20/334,                                                                      |                                      | 10)      | ) * Th                              | is truss                                               | has b                                            | een designed fo                                                                               | or a live loa                                                       | ad of 20.0psf                                                                   |
|                                          |                                                             | 21=119/29                      | 9-4-0. 22=120/29-4-0.                          |          |              | 29-30    | =-120/3                       | 334, 28-29=-1                                                                 | 20/334,                                                                      |                                      |          | on th                               | ne botto                                               | m cho                                            | ord in all areas v                                                                            | vhere a re                                                          | ctangle                                                                         |
|                                          |                                                             | 23=120/29                      | 9-4-0, 24=126/29-4-0,                          | ,        |              | 27-28    | =-120/3                       | 334, 26-27=-1                                                                 | 20/334,                                                                      |                                      |          | 3-00                                | -00 tall<br>d and a                                    | by I-U                                           | or members w                                                                                  | it between                                                          |                                                                                 |
|                                          |                                                             | 26=140/29                      | 9-4-0, 27=141/29-4-0,                          | ,        |              | 24-20    | =-120/、<br>120/               | 334, 23-24=-1<br>334-21-221                                                   | 20/334,<br>20/334                                                            |                                      |          | CHOI                                | u anu a                                                | ny Ou                                            | iei members, w                                                                                |                                                                     | = 10.0p3i.                                                                      |
|                                          |                                                             | 28=140/29                      | 9-4-0, 29=140/29-4-0,                          | ,        |              | 20-21    | =-120/(                       | 334 19-201                                                                    | 20/334                                                                       |                                      |          |                                     |                                                        |                                                  |                                                                                               | 1111                                                                |                                                                                 |
|                                          |                                                             | 30=142/29                      | 9-4-0, 31=142/29-4-0,                          | ,        |              | 18-19    | =-120/3                       | 334. 17-18=-1                                                                 | 20/334                                                                       |                                      |          |                                     |                                                        |                                                  | M' C                                                                                          | AD."                                                                | 11.                                                                             |
|                                          |                                                             | 32=55/29-                      | 4-0                                            |          | WEBS         | 2-31=    | 151/36                        | 6. 3-30=-157/3                                                                | 38. 4-29=-152                                                                | 2/36.                                |          |                                     |                                                        |                                                  | "ATH U                                                                                        | 1077                                                                | China China                                                                     |
|                                          | Max Horiz                                                   | 32=-334 (                      | LU 13)<br>C 11) 19 - 01 (LC 12)                |          |              | 5-28=    | 152/3                         | 7, 6-27=-155/                                                                 | 38, 7-26=-150                                                                | /36,                                 |          |                                     |                                                        | N                                                | OTTES                                                                                         | Cid.                                                                | All.                                                                            |
|                                          | Max Oplin                                                   | 10-32 (L                       | C 11), 18=-91 (LC 13)<br>C 13) 2042 (LC 13)    | ),<br>)  |              | 9-24=    | 118/44                        | 4, 10-23=-157                                                                 | /67,                                                                         |                                      |          |                                     |                                                        | 22                                               | 10 FLC                                                                                        | X                                                                   | 1                                                                               |
|                                          |                                                             | 21=-41 (1)                     | C 13), 20= 42 (LC 13)<br>C 13), 22=-42 (LC 13) | ),<br>)) |              | 11-22    | =-154/6                       | 66, 12-21=-15                                                                 | 5/65,                                                                        |                                      |          |                                     | 2                                                      |                                                  |                                                                                               | 1                                                                   |                                                                                 |
|                                          |                                                             | 23=-43 (L                      | C 13), 24=-20 (LC 13)                          | ),       |              | 13-20    | =-137/6                       | 66, 14-19=-10                                                                 | 4/55,                                                                        |                                      |          |                                     | -                                                      |                                                  | 05                                                                                            | A 1                                                                 | 1 E                                                                             |
|                                          |                                                             | 26=-12 (L                      | C 8), 27=-14 (LC 9),                           | ,,       |              | 16-18    | =-194/                        | 118                                                                           |                                                                              |                                      |          |                                     | - 5                                                    |                                                  | SE.                                                                                           | AL                                                                  | - E - E -                                                                       |
|                                          |                                                             | 28=-13 (L                      | C 9), 29=-12 (LC 8),                           |          | NOTES        |          |                               |                                                                               |                                                                              |                                      |          |                                     | 1                                                      |                                                  | 0.36                                                                                          | 322                                                                 | : z                                                                             |
|                                          |                                                             | 30=-14 (L                      | C 8), 31=-10 (LC 9),                           |          | 1) Wind: ASC | E 7-10;  | Vult=1                        | 115mph (3-se                                                                  | cond gust)                                                                   | 0-1                                  |          |                                     | -                                                      |                                                  |                                                                                               |                                                                     | 1 - Z -                                                                         |
|                                          |                                                             | 32=-7 (LC                      | 8)                                             |          |              | pn; TCL  | )L=0.0                        | PST; BCDL=6.                                                                  | Upsi; n=30ft;                                                                | Cat.                                 |          |                                     | -                                                      |                                                  | All second                                                                                    |                                                                     | 1. 3                                                                            |
|                                          |                                                             |                                |                                                |          | cantilever   | eft and  | riaht e                       | xposed · Lum                                                                  | ber DOI = $1.60$                                                             | ופ,<br>ו                             |          |                                     |                                                        | 11                                               | C. ENOU                                                                                       | FER.                                                                | · K S -                                                                         |
|                                          |                                                             |                                |                                                |          | plate grin I | OL=1 f   |                               | , Lum                                                                         | 55. DOL-1.00                                                                 |                                      |          |                                     |                                                        | 1                                                | A. GI                                                                                         | VEL                                                                 | 8.5                                                                             |
|                                          |                                                             |                                |                                                |          | Pierce Bub I |          |                               |                                                                               |                                                                              |                                      |          |                                     |                                                        | 1                                                | ICA                                                                                           | CILBR                                                               | (III)                                                                           |
|                                          |                                                             |                                |                                                |          |              |          |                               |                                                                               |                                                                              |                                      |          |                                     |                                                        |                                                  | 1111                                                                                          | allin                                                               | · ·                                                                             |
|                                          |                                                             |                                |                                                |          |              |          |                               |                                                                               |                                                                              |                                      |          |                                     |                                                        |                                                  |                                                                                               | TUTING                                                              |                                                                                 |

Scale = 1:74.1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job    | Truss | Truss Type                     | Qty | Ply | Brad Cummings- Hoener Job. |          |
|--------|-------|--------------------------------|-----|-----|----------------------------|----------|
| Hoener | T6E   | Piggyback Base Supported Gable | 1   | 1   | Job Reference (optional)   | 52514636 |

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 32, 12 lb uplift at joint 17, 10 lb uplift at joint 31, 14 lb uplift at joint 30, 12 lb uplift at joint 29, 13 lb uplift at joint 28, 14 lb uplift at joint 27, 12 lb uplift at joint 27, 12 lb uplift at joint 26, 20 lb uplift at joint 24, 43 lb uplift at joint 23, 42 lb uplift at joint 22, 41 lb uplift at joint 21, 42 lb uplift at joint 20, 32 lb uplift at joint 19 and 91 lb uplift at joint 18.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:48 ID:hsVzL155FKj6mrY2RNLG7Sz8zYC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |
|--------|-------|------------|-----|-----|----------------------------|
| Hoener | Т7    | Common     | 2   | 1   | Job Reference (optional)   |

## Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:48 ID:9zydH7H30kHcEYwA0peYvKz8zZF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:64.6

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                        | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015           | ;/TPI2014                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                           | 0.62<br>0.40<br>0.05                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                      | in<br>-0.07<br>-0.15<br>0.00       | (loc)<br>7-8<br>7-8<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 111 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP 1650F 1.5E of<br>SP SS<br>2x4 SP 1650F 1.5E of<br>SP SS<br>2x4 SP No.2<br>Structural wood sheat<br>6-0-0 oc purlins, exo<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 6=525/0-3<br>Max Horiz 8=-149 (LC<br>Max Uplift 6=-15 (LC<br>Max Grav 6=709 (LC | or 2x4 SP No.1 or 2x4<br>or 2x4 SP No.1 or 2x4<br>athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>3-7<br>-8, 8=525/0-3-8<br>C 10)<br>12), 8=-15 (LC 13)<br>c 2), 8=709 (LC 2) | 5)<br>4 6)<br>7)<br>1 or<br>8)<br>9)<br><b>LO</b> | This truss ha<br>load of 12.0 p<br>overhangs no<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and ar<br>Provide mect<br>8 and 15 lb u<br>This truss is<br>International<br>R802.10.2 ar<br><b>AD CASE(S)</b> | s been designed<br>of or 2.00 times<br>on-concurrent wi<br>s been designed<br>at nonconcurrent<br>as been designed<br>n chord in all are<br>by 1-00-00 wide w<br>by other members<br>hanical connection<br>capable of withs<br>plift at joint 6.<br>designed in acco<br>Residential Code<br>and referenced star<br>Standard | for greate<br>flat roof lo<br>th other liv<br>for a 10.0<br>t with any<br>ad for a live<br>as where<br>will fit betw<br>s.<br>on (by othe<br>standing 1<br>ordance wi<br>e sections<br>andard AN | er of min roof<br>aad of 10.0 p<br>re loads.<br>p psf bottom<br>other live load<br>a rectangle<br>reen the bott<br>f b uplift at j<br>th the 2015<br>R502.11.1 a<br>SI/TPI 1. | live<br>sfon<br>Opsf<br>om<br>oint |                          |                               |                          |                                  |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS                                                                     | (ib) - Maximum Com<br>Tension<br>1-2=0/54, 2-3=-492/1<br>4-5=0/54, 2-8=-640/5<br>7-8=-146/196, 6-7=-3<br>3-7=-24/193, 2-7=-14                                                                                                                                                        | 00, 3-4=-492/100,<br>52, 4-6=-640/52<br>81/68<br>4/275, 4-7=-14/275                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                               |                                    |                          |                               |                          |                                  | 90 <i>.</i> .                      |

### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: 3) Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Vanananan WWWWWWWW SEAL 036322 G١ 100000 June 13,2022



| Job    | Truss Truss Type |        | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|------------------|--------|-----|-----|----------------------------|-----------|
| Hoener | Т8               | Common | 2   | 1   | Job Reference (optional)   | 152514638 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:48 ID:9zydH7H30kHcEYwA0peYvKz8zZF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

UDUI/J4ZJU?



Scale = 1:59.8

| Plate Offsets (X V)            | [2.0-3-0 0-1-8] [4.0-3-0 0-1-8]  |
|--------------------------------|----------------------------------|
| Fible Offsets $(\Lambda, T)$ . | [2.0-3-0,0-1-0], [4.0-3-0,0-1-0] |

| Loading                                                                                                                                                                                                                      | (psf)                                                                                                                                                                                                                                                         | Spacing                                                                                                                                                                                                           | 2-0-0                                           |                                                                                                                                                                                                                                                           | CSI                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                | DEFL                                                                                                                                                                                                            | in                                                      | (loc) | l/defl   | L/d | PLATES        | GRIP                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|----------|-----|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (roof)                                                                                                                                                                                                                  | 20.0                                                                                                                                                                                                                                                          | Plate Grip DOL                                                                                                                                                                                                    | 1.15                                            |                                                                                                                                                                                                                                                           | TC                                                                                                                                                                                                                                                                                                                                     | 0.41                                                                                                                                                                           | Vert(LL)                                                                                                                                                                                                        | -0.04                                                   | 6-7   | >999     | 240 | MT20          | 244/190                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Snow (Pf)                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                          | Lumber DOL                                                                                                                                                                                                        | 1.15                                            |                                                                                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                                     | 0.28                                                                                                                                                                           | Vert(CT)                                                                                                                                                                                                        | -0.08                                                   | 6-7   | >999     | 180 |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TCDL                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                          | Rep Stress Incr                                                                                                                                                                                                   | YES                                             |                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                           | Horz(CT)                                                                                                                                                                                                        | 0.00                                                    | 6     | n/a      | n/a |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BCLL                                                                                                                                                                                                                         | 0.0*                                                                                                                                                                                                                                                          | Code                                                                                                                                                                                                              | IRC201                                          | 5/TPI2014                                                                                                                                                                                                                                                 | Matrix-S                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BCDL                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     | Weight: 97 lb | FT = 20%                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                                                                           | 2x4 SP 1650F 1.5E of<br>SP SS<br>2x4 SP 1650F 1.5E of<br>SP SS<br>2x4 SP No.2<br>Structural wood shea<br>6-0-0 oc purlins, exo<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 6=450/0-3<br>Max Horiz 8=-128 (LI<br>Max Uplift 6=-17 (LC | or 2x4 SP No.1 or 2x<br>or 2x4 SP No.1 or 2x<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>3-7<br>3-8, 8=450/0-3-8<br>C 10)<br>12), 8=-17 (LC 13)                                   | 5)<br>x4<br>(x4 6)<br>7)<br>cd or<br>c 8)<br>9) | This truss ha<br>load of 12.0 (<br>overhangs m<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Provide mec<br>bearing plate<br>8 and 17 lb u<br>This truss is<br>International<br>R802.10.2 ar | s been designed<br>osf or 2.00 times f<br>on-concurrent with<br>s been designed<br>ad nonconcurrent<br>as been designed<br>n chord in all area<br>by 1-00-00 wide w<br>by other members<br>hanical connection<br>c capable of withst<br>uplift at joint 6.<br>designed in accor<br>Residential Code<br>and referenced stan<br>Standard | for greate<br>flat roof lo<br>n other lin<br>for a 10.0<br>with any<br>d for a liv<br>as where<br>ill fit betw<br>n (by oth-<br>tanding 1<br>rdance wi<br>sections<br>ndard AN | er of min roo<br>pad of 10.0 p<br>/e loads.<br>) psf bottom<br>other live load<br>e load of 20.<br>a rectangle<br>/een the bott<br>ers) of truss<br>7 lb uplift at<br>ith the 2015<br>R502.11.1 a<br>ISI/TPI 1. | f live<br>sisf on<br>ads.<br>Opsf<br>to<br>joint<br>and |       |          |     |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FORCES                                                                                                                                                                                                                       | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                 | pression/Maximum                                                                                                                                                                                                  |                                                 | ( )                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TOP CHORD                                                                                                                                                                                                                    | 1-2=0/54, 2-3=-392/9<br>4-5=0/54, 2-8=-551/4                                                                                                                                                                                                                  | 90, 3-4=-392/90,<br>48, 4-6=-551/48                                                                                                                                                                               |                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BOT CHORD                                                                                                                                                                                                                    | 7-8=-120/158, 6-7=-                                                                                                                                                                                                                                           | 19/42                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     | minin         | 1111                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WEBS                                                                                                                                                                                                                         | 3-7=-47/142, 2-7=-1                                                                                                                                                                                                                                           | 1/236, 4-7=-11/236                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     | WHILL CA      | Dall                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NOTES                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       |          |     | ATT           | . SU                       | 11. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC<br/>Vasd=91m<br/>II; Exp B; I<br/>cantilever<br/>plate grip I</li> <li>TCLL: ASC<br/>DOL=1.15<br/>Lumber DO<br/>Partially E:</li> <li>Unbalance<br/>design.</li> </ol> | ed roof live loads have<br><br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (en<br>left and right exposed<br>DOL=1.60<br>CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1.<br>xp.; Ct=1.10<br>ad snow loads have be   | been considered for<br>(3-second gust)<br>DL=6.0psf; h=30ff; C<br>vvelope) exterior zon<br>; Lumber DOL=1.60<br>roof live load: Lumbe<br>10.0 psf (flat roof sn<br>.15); Category II; Exp<br>en considered for th | r<br>Cat.<br>er<br>ow:<br>p B;<br>is            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                         |       | William. |     | SEA<br>0363   | L<br>22<br>E.E.R<br>11,202 | Annun an |



| Job    | Truss | Truss Type | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|------------|-----|-----|----------------------------|-----------|
| Hoener | T8A   | Common     | 10  | 1   | Job Reference (optional)   | 152514639 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:49 ID:9zydH7H30kHcEYwA0peYvKz8zZF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-1-3-0 9-0-0 6-8-8 1-3-0 2-3-8 6-8-8 4x6= 3 3x6、 8 12 10 4 9-8-6 3x6 2 7-9-7 4-1-5 7 5 X 6 2x4 II 2x4 II 3x8= 6-8-8 9-0-0 + 6-8-8 2-3-8

#### Scale = 1:59.8

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                        | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201               | 5/TPI2014                                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                           | 0.63<br>0.27<br>0.07                                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                    | in<br>-0.06<br>-0.12<br>0.00            | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>888<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 86 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP 1650F 1.5E c<br>SP SS<br>2x4 SP 1650F 1.5E c<br>SP SS<br>2x4 SP No.2<br>Structural wood shea<br>6-0-0 oc purlins, exc<br>Rigid ceiling directly is<br>bracing.<br>1 Row at midpt 3<br>(Ib/size) 5=257/ Me<br>Max Horiz 7=165 (LC<br>Max Uplift 5=-109 (LC<br>Max Grav 5=354 (LC<br>(Ib) - Maximum Comp<br>Tension | or 2x4 SP No.1 or 2x<br>or 2x4 SP No.1 or 2x<br>athing directly applie<br>ept end verticals.<br>applied or 10-0-0 oc<br>3-6<br>cchanical, 7=322/0-3<br>12)<br>C 12)<br>C 12)<br>C 12)<br>C 26), 7=439 (LC 2)<br>pression/Maximum | 5)<br>4 6)<br>7)<br>d or<br>8)<br>9)<br>4-8 10<br>LC | This truss ha<br>load of 12.0 p<br>overhangs no<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Refer to gird<br>Provide mecl<br>bearing plate<br>joint 5.<br>1) This truss is<br>International<br>R802.10.2 ar<br>DAD CASE(S) | s been designed<br>osf or 2.00 times f<br>on-concurrent with<br>s been designed<br>ad nonconcurrent<br>ias been designed<br>n chord in all area<br>by 1-00-00 wide w<br>by other members<br>ar(s) for truss to tr<br>hanical connection<br>is capable of withst<br>designed in accor<br>Residential Code<br>and referenced star<br>Standard | for greate<br>flat roof lo<br>n other lin<br>for a 10.0<br>with any<br>d for a liv<br>is where<br>ill fit betw<br>russ conr<br>n (by oth<br>tanding 1<br>dance wi<br>sections<br>ndard AN | er of min roo<br>bad of 10.0 p<br>ve loads.<br>) psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>ween the bott<br>nections.<br>ers) of truss<br>09 lb uplift a<br>ith the 2015<br>R502.11.1 a<br>ISI/TPI 1. | f live<br>ads.<br>Opsf<br>om<br>to<br>t |                          |                               |                          |                                 |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS<br><b>NOTES</b><br>1) Unbalance<br>this design<br>2) Wind: ASC      | 1-2=0/54, 2-3=-194/2<br>2-7=-385/0, 4-5=-369<br>6-7=-165/82, 5-6=0/0<br>3-6=-141/61, 2-6=-28<br>ad roof live loads have I                                                                                                                                                                                                | <ul> <li>.6, 3-4=-120/50,</li> <li>.9/98</li> <li>.9/170, 4-6=-67/275</li> <li>been considered for</li> <li>(3-second cust)</li> </ul>                                                                                           |                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                         |                          |                               | 1 III                    | ORTH CA                         | ROLL                               |

- Wind: AŠCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- Caltilieven leit and right exposed , edited and right exposed and rindex exposed and right exposed and rindex e
- 4) Unbalanced snow loads have been considered for this design.





| Job    | Truss | Truss Type             | Qty | Ply | Brad Cummings- Hoener Job. |           |  |  |  |
|--------|-------|------------------------|-----|-----|----------------------------|-----------|--|--|--|
| Hoener | T8AE  | Common Supported Gable | 1   | 1   | Job Reference (optional)   | 152514640 |  |  |  |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:49 ID:ZYemv9KyJffB5?elhxBFXzz8zZC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



### Scale = 1:60.9

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                  |                                                                                                                                                                             | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201          | 5/TPI2014                                                                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                              | 0.10<br>0.04<br>0.14                                                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.00                                                                      | (loc)<br>-<br>-<br>7 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 90 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP 16<br>SP SS<br>2x4 SP 16<br>SP SS<br>2x4 SP N<br>2x4 SP N<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing,<br>6-0-0 oc b<br>1 Row at<br>(lb/size)<br>Max Horiz | 650F 1.5E 0<br>650F 1.5E 0<br>0.2<br>0.2<br>1 wood shea<br>ourlins, exc<br>ing directly<br>Except:<br>oracing: 10<br>9=116/9-0<br>11=139/9-<br>11=165 (L<br>2, 20 / L | or 2x4 SP No.1 or 2x<br>or 2x4 SP No.1 or 2x<br>athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>-11.<br>6-7, 5-8<br>0, 8=130/9-0-0,<br>0-0, 10=135/9-0-0,<br>-0-0<br>.C 12)<br>-(2) = 60.4 C 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2)<br>4<br>3)<br>d or 4)<br>5)<br>6)<br>7)      | Wind: ASCE<br>Vasd=91mpl<br>II; Exp B; En<br>cantilever lef<br>plate grip DC<br>Truss desig<br>only. For stu<br>see Standar<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL<br>Partially Exp<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Gable requir     | 7-10; Vult=115m<br>r; TCDL=6.0psf;<br>iclosed; MWFRS<br>it and right exposed<br>bl=1.60<br>med for wind load<br>wids exposed to w<br>d Industry Gable<br>valified building dv<br>r-10; Pr=20.0 psi<br>late DOL=1.15); I<br>i=1.15 Plate DOL<br>; Ct=1.10<br>snow loads have<br>as been designed<br>psf or 2.00 times<br>on-concurrent will<br>es continuous bo | ph (3-set<br>BCDL=6.<br>(envelopped; Lumi<br>s in the p<br>ind (norm<br>End Deta<br>esigner a<br>sf (roof lin<br>Pf=10.0 p<br>=1.15); C<br>been col<br>for great<br>flat roof l<br>th other li<br>tho ther li | cond gust)<br>cond gust)<br>cond gust)<br>pops(; h=30ft; (;<br>a) exterior zor<br>per DOL=1.60<br>lane of the tru<br>al to the face<br>ils as applical<br>s per ANSI/TF<br>e load: Lumb<br>sf (flat roof sr<br>rategory II; Ex<br>nsidered for th<br>pad of 10.0 p:<br>ve loads.<br>d bearing. | Cat.<br>ne;<br>)<br>uss<br>),<br>ble,<br>PI 1.<br>er<br>now:<br>cp B;<br>nis<br>live<br>sf on |                      |                             |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design                             | (lb) - Max<br>Tension<br>2-11=-29<br>3-4=-74/7<br>6-7=-65/3<br>10-11=-16<br>5-8=-123/<br>2-10=-148<br>ed roof live I<br>n.                                                  | 10=-302 (<br>7=110 (LC<br>9=230 (LC<br>11=311 (L<br>imum Com<br>0/94, 1-2=0<br>(2, 4-5=-59),<br>19<br>33/82, 9-10<br>(5, 4-9=-13,<br>3/295<br>oads have               | <ul> <li>(15), 3-30 (LC 2), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(2,7), 1(</li></ul> | 0) 8)<br>, 9)<br>,), 11<br>11<br>/1<br>/1<br>12 | Truss to be f<br>braced agair<br>Gable studs<br>)) This truss ha<br>chord live loa<br>)) * This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>2) Provide mec<br>bearing platt<br>11, 29 lb upl<br>uplift at joint<br>3) This truss is<br>International<br>R802.10.2 a<br>DAD CASE(S) | ully sheathed from<br>ast lateral movem<br>spaced at 2-0-0 d<br>as been designed<br>ad nonconcurrent<br>nas been designe<br>n chord in all are<br>by 1-00-00 wide v<br>ay other members<br>hanical connectic<br>e capable of withs<br>ift at joint 7, 60 lb<br>10.<br>designed in acco<br>Residential Code<br>nd referenced sta<br>Standard                    | m one fac<br>ent (i.e. c<br>oc.<br>for a 10.<br>with any<br>d for a lin<br>as where<br>vill fit betw<br>s, with BC<br>on (by oth<br>standing 7<br>uplift at j<br>rdance w<br>e sections<br>undard AN          | e or securely<br>liagonal web)<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>DL = 10.0psf<br>ers) of truss t<br>3 lb uplift at j<br>joint 9 and 300<br>ith the 2015<br>s R502.11.1 a<br>USI/TPI 1.                                                   | ds.<br>Dpsf<br>om<br>i.<br>o<br>oint<br>2 lb<br>nd                                            |                      | Mr. and the                 |                          | SEA<br>0363                     | L 22                               |

June

818 Soundside Road Edenton, NC 27932

| Job    | Truss | Truss Type             |   | Ply | Brad Cummings- Hoener Job. |           |  |  |  |
|--------|-------|------------------------|---|-----|----------------------------|-----------|--|--|--|
| Hoener | T8E   | Common Supported Gable | 1 | 1   | Job Reference (optional)   | 152514641 |  |  |  |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:49 ID:2IC86VKa4zn2i9DxFfiU4Az8zZB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:59.2

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                             | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-R                                                                    | 0.29<br>0.15<br>0.14                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                            | in<br>n/a<br>n/a<br>0.00                                                                | (loc)<br>-<br>-<br>12                                                                                                                                                                  | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                         | L/d<br>999<br>999<br>n/a              | PLATES<br>MT20<br>Weight: 128 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 6-16=-184/0, 5-1;<br>3-19=-206/177, 7<br>9-13=-205/176<br>roof live loads ha<br>5.7-10; Vult=115m<br>h; TCDL=6.0psf;<br>tand right expose<br>to and right exposed<br>to and right exposed<br>root and root and root and<br>root and root and root and<br>the and right exposed<br>to and root and root and<br>the and root | 7=-134/70<br>-15=-134,<br>ave been (<br>ave been (<br>ave been (<br>b) (3-sec<br>BCDL=6.1<br>(envelope<br>ed; Lumt<br>is in the p<br>ind (norm<br>End Deta<br>esigner a:<br>sf (roof liv<br>Pf=10.0 p<br>L=1.15); C<br>been cor<br>l for great<br>flat roof la<br>to other liv<br>so otherwittom chor<br>m one fac | I, 4-18=-135/9<br>(70, 8-14=-135)<br>considered for<br>cond gust)<br>Ops; h=30ft; C<br>e) exterior zom-<br>ber DOL=1.60<br>(ane of the true<br>al to the face)<br>is as applicab<br>s per ANSI/TP<br>e load: Lumbes<br>of (flat roof sm<br>ategory II; Exp<br>isidered for th<br>er of min roof 1<br>op ad of 10.0 ps<br>ve loads.<br>se indicated.<br>d bearing.<br>e or securely<br>isonal web | 1,<br>//91,<br>2at.<br>e;<br>ss<br>,<br>e;<br>ble,<br>11.<br>er<br>ow:<br>p B;<br>is<br>live<br>f on | <ul> <li>13) Probea</li> <li>bea</li> <li>join</li> <li>lb u</li> <li>join</li> <li>13.</li> <li>14) This</li> <li>Inte</li> <li>R8C</li> <li>LOAD (</li> </ul> | vide me<br>ring pla<br>t 20, 430<br>plift at j5<br>t 15, 58<br>s truss is<br>rnationa<br>j2,10.2 a<br><b>CASE(S</b> | chanic<br>te capa<br>3 lb upli<br>lb uplif<br>lb uplif<br>l Resica<br>and ref<br>) Star | al connection (by<br>ble of withstandii<br>ift at joint 12, 49<br>401 lb uplift at joint<br>t at joint 14 and 3<br>ned in accordance<br>dential Code sect<br>erenced standard<br>ndard | others) of truss to<br>ng 439 lb uplift at<br>b uplift at joint 17, 58<br>int 19, 49 lb uplift at<br>i99 lb uplift at joint<br>with the 2015<br>ions R502.11.1 and<br>J ANSI/TPI 1. |                                       |                                  |                                    |
| FORCES                                                                                  | (lb) - Maximum Con<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | npression/Maximum                                                                                                                                                                                                                                                                                                  | 10) Gable studs<br>11) This truss h<br>chord live lo                                                                                                                                                                                                                                                                                                                                             | spaced at 2-0-0 o<br>as been designed<br>ad nonconcurrent                                            | oc.<br>I for a 10.0<br>t with any                                                                                                                               | ) psf bottom                                                                                                        | ls                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                     |                                       | SEA                              |                                    |
| BOT CHORD                                                                               | 2-20=-269/217, 1-2:<br>3-4=-71/113, 4-5=-5<br>6-7=-41/180, 7-8=-5<br>9-10=-184/195, 10-<br>19-20=-65/63, 18-11<br>16-17=-65/63, 15-11<br>13-14=-65/63, 12-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =0/54, 2-3=-185/196,<br>51/147, 5-6=-41/180,<br>51/146, 8-9=-70/112,<br>11=0/54, 10-12=-268/2<br>9=-65/63, 17-18=-65/6<br>6=-65/63, 14-15=-65/6<br>3=-65/63                                                                                                                                                        | 12) * This truss<br>on the botto<br>16 3-06-00 tall<br>3, chord and a<br>3,                                                                                                                                                                                                                                                                                                                      | has been designe<br>m chord in all are<br>by 1-00-00 wide v<br>ny other members                      | ed for a liv<br>as where<br>vill fit betv<br>s, with BC                                                                                                         | e load of 20.0<br>a rectangle<br>veen the botto<br>DL = 10.0psf.                                                    | psf<br>m                                                                                |                                                                                                                                                                                        | 1100 m                                                                                                                                                                              | A A A A A A A A A A A A A A A A A A A |                                  | EER. KIN                           |



| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not        |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing    |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the             |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component      |
| Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601                                                   |

| Job    | Truss | Truss Type    | Qty | Ply | Brad Cummings- Hoener Job. |           |
|--------|-------|---------------|-----|-----|----------------------------|-----------|
| Hoener | T8G   | Common Girder | 1   | 3   | Job Reference (optional)   | 152514642 |

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon Jun 13 14:27:50 ID:eFdjlj7Lmx\_q?8hQYoNkCtz8zYA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-8-8 13-5-0 6-8-8 6-8-8 5x6= 2 7 8 12 10 9-8-6 4x6 4x6、 1 3 4-1-5 6 4 X 5 9 10 4x6 II 4x6 🛛 6x8= HTU26 MUS26 MUS26 6-8-8 13-5-0 -F 6-8-8 6-8-8

Scale = 1:60.9

| Plate Offsets (                                                                                                                                                                                                                                                                                                                                    | X, Y): [4:Edge,0-3-8],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [5:0-4-0,0-4-0]                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                          |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                        | (psf)<br>20.0<br>10.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201                                                                           | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.46<br>0.58<br>0.12                                                                                                                                                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in<br>-0.10<br>-0.19<br>0.00                                                                                                  | (loc)<br>4-5<br>4-5<br>4 | l/defl<br>>999<br>>816<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 353 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>GRIP</b> 244/190<br>FT = 20%          |  |
| BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 3-ply truss<br>(0.131"x3"<br>Top chord<br>staggered<br>Bottom ch<br>staggered<br>Bottom ch<br>staggered<br>Web conn<br>2) All loads a<br>except if n<br>CASE(5)<br>provided t | 10.0           2x6 SP No.2           2x6 SP 2400F 2.0E           SP M 31           2x4 SP No.2           Structural wood she           6-0-0 oc purlins, ex           Rigid ceiling directly           bracing.           (lb/size)           4=3762/0           Max Horiz           Max Uplift           4=520 (L           Max Uplift           4=520 (L           Max Grav           1-2=-1561/330, 2-3=           1-6=-1762/318, 3-4=           5-6=-137/122, 4-5=-           2-5=-294/1535, 1-5=           3-5=-199/1144           at obe connected toge           ) nails as follows:           s connected as follows:           at 0-9-0 oc, 2x4 - 1 ro           ords connected as follows:           at 0-5-0 oc.           ected as follows: 2x4 - 1 ro           ords connected as follows: 2x4 - 1 ro           ords connected as follows: 2x4 - 1 ro           ords connected equally           otest in the only loads | or 2x6 SP DSS or 2x<br>athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>-3-8, 6=1179/0-3-8<br>C 8)<br>C 12), 6=-224 (LC 1:<br>-C 25), 6=1499 (LC 2:<br>-1670/302<br>35/175<br>-238/1369,<br>ther with 10d<br>s: 2x6 - 2 rows<br>w at 0-9-0 oc.<br>ows: 2x6 - 3 rows<br>-1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO<br>rections have been<br>noted as (F) or (B). | 4)<br>46<br>57<br>66<br>77<br>33)<br>89<br>91<br>10<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | <ul> <li>Wind: ASCE<br/>Vasd=91mph<br/>II; Exp B; En<br/>cantilever lef<br/>plate grip DC<br/>TCLL: ASCE<br/>DOL=1.15 P<br/>Lumber DOL<br/>Partially Exp<br/>Unbalanced<br/>design.</li> <li>This truss ha<br/>chord live loa<br/>a This truss ha<br/>chord live loa<br/>a This truss ha<br/>chord live loa<br/>baring plate<br/>joint 6 and 52</li> <li>This truss is<br/>International<br/>R802.10.2 ai</li> <li>Use Simpsor<br/>11-10dx1 1/2<br/>end to conne</li> <li>Use Simpsor<br/>Truss) or eqt<br/>11-0.12 from<br/>to back face</li> <li>Fill all nail ho<br/>Dcad + Snc<br/>Increase=1</li> </ul> | 7-10; Vult=115mp<br>n; TCDL=6.0psf; B<br>closed; MWFRS (<br>t and right expose<br>DL=1.60<br>57-10; Pr=20.0 psi<br>late DOL=1.15); P<br>=1.15 Plate DOL=<br>.; Ct=1.10<br>snow loads have B<br>is been designed f<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 1-00-00 wide win<br>y other members.<br>hanical connectior<br>e capable of withst<br>20 lb uplift at joint<br>designed in accord<br>Residential Code<br>nd referenced star<br>n Strong-Tie HTU2<br>2 Truss) or equival<br>ext truss(es) to bac<br>n Strong-Tie HTU2<br>2 Truss) or equival<br>ext truss(es) to bac<br>n Strong-Tie HTU3<br>uivalent spaced at<br>t the left end to 13.<br>of bottom chord.<br>bles where hanger<br>Standard<br>bw (balanced): Lur<br>.15 | bh (3-sec<br>GDL=6.<br>envelope<br>d; Lumb<br>f (roof liv<br>f=10.0 p<br>=1.15); C<br>been cor<br>for a 10.1<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>h<br>anding 2<br>4.<br>dance w<br>sections<br>ndard AN<br>26 (20-11<br>26 (20-11<br>26 (20-20)<br>-3-4 to c<br>is in cor<br>mber Inc | cond gust)<br>Dpsf; h=30ft; (<br>a) exterior zor<br>per DOL=1.60<br>re load: Lumb<br>sf (flat roof sr<br>iategory II; Ex<br>asidered for th<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>124 lb uplift at<br>124 lb uplift at<br>124 lb uplift at<br>124 lb uplift at<br>124 lb uplift at<br>125 R502,11.1 a<br>ISI/TPI 1.<br>5G Girder,<br>0-12 from the<br>f bottom chord<br>d Girder, 6-10<br>c max. starting<br>onnect truss(i<br>trasse=1.15, F | Cat.<br>he;<br>o<br>er<br>how:<br>up B;<br>his<br>ds.<br>Opsf<br>o<br>nd<br>e left<br>d.<br>o<br>g at<br>es)<br>ber.<br>Plate |                          | Vert: 4=                      | -1158                    | Weight: 353 lb<br>(B), 9=-1845 (B),<br>(B), 9=-1845 (B),<br>(C), 9=-1845 (B),<br>(C), 9=-1845 (C),<br>(C), 9=-1845 (C), 9=-1845 (C),<br>(C), 9=-1845 (C), 9=-1845 (C), 9=-1845 | FT = 20%<br>10=-1150 (B<br>RO<br>L<br>22 |  |
| unless oth<br>3) Unbalance<br>this desigr                                                                                                                                                                                                                                                                                                          | erwise indicated.<br>ed roof live loads have<br>n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | been considered for                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Uniform Loads (lb/ft)<br>Vert: 1-2=-40, 2-3=-40, 4-6=-20<br>Concentrated Loads (lb)<br>June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                          |                               |                          | 13,2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                        |  |



