

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 243\_2939\_B KB Home 243.2939.B

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I44459039 thru I44459066

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844



January 21,2021

# Sevier, Scott

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-3-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14-4-7                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                    |                                              | 21-8-0                               |                                        |                                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-3-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-0-15                                                                                                                                                                                                                                                                     |                                                                                                                                                              | 1                                                                                                                  |                                              | 7-3-9                                | 1                                      |                                    |  |  |
| LOADING (psf)<br>TCLL (roof)<br>Snow (Pf/Pg) 11.<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                      | 20.0<br>6/15.0<br>10.0<br>0.0 *<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CSI.</b><br>TC 0.36<br>BC 0.60<br>WB 0.19<br>Matrix-S                                                                                                                                                                                                                   | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                    | in (loc<br>-0.08 6<br>-0.18 6<br>0.04                                                                              | c) l/defl<br>8 >999<br>8 >999<br>6 n/a       | L/d<br>240<br>180<br>n/a             | <b>PLATES</b><br>MT20<br>Weight: 99 lb | <b>GRIP</b><br>197/144<br>FT = 20% |  |  |
| LUMBER-<br>TOP CHORD 2x<br>BOT CHORD 2x<br>WEBS 2x                                                                                                                                                                                                                                                                            | 4 SP No.2 or 3<br>4 SP No.2 or 3<br>4 SP No.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2x4 SPF No.2<br>2x4 SPF No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BR<br>TO<br>BO                                                                                                                                                                                                                                                             | <b>ACING-</b><br>P CHORD<br>T CHORD                                                                                                                          | Structural wo<br>Rigid ceiling                                                                                     | od sheathir<br>directly app                  | ng directly appl<br>lied or 10-0-0 o | ied or 4-5-13 oc purl<br>oc bracing.   | ins.                               |  |  |
| REACTIONS.<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                     | (size) 2=0-<br>lax Horz 2=-7<br>lax Uplift 2=-8<br>lax Grav 2=97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-8, 6=0-3-8<br>5(LC 17)<br>4(LC 16), 6=-84(LC 17)<br>6(LC 2), 6=976(LC 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                    |                                              |                                      |                                        |                                    |  |  |
| FORCES. (lb) - M<br>TOP CHORD 2<br>BOT CHORD 2<br>WEBS 2                                                                                                                                                                                                                                                                      | FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.         TOP CHORD       2-3=-1579/99, 3-4=-1386/98, 4-5=-1386/98, 5-6=-1579/100         BOT CHORD       2-10=-97/1373, 8-10=0/949, 6-8=-33/1373         WEBS       4-8=-32/465, 5-8=-279/144, 4-10=-32/465, 3-10=-279/144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                    |                                              |                                      |                                        |                                    |  |  |
| NOTES-<br>1) Unbalanced roc<br>2) Wind: ASCE 7-<br>gable end zone<br>23-6-8 zone; ca<br>reactions showi<br>3) TCLL: ASCE 7-<br>roof snow: Lum<br>4) Unbalanced smo<br>5) This truss has b<br>non-concurrent<br>6) This truss has b<br>7) * This truss has b<br>7) * This truss has b<br>8) One H2.5A Sim<br>connection is for | of live loads ha<br>10; Vult=120m<br>and C-C Extent<br>antilever left ar<br>n; Lumber DO<br>10; Pr=20.0 p<br>ber DOL=1.15<br>ow loads have<br>been designed<br>with other live<br>been designed<br>been designed | ave been considered for this design.<br>ph Vasd=95mph; TCDL=6.0psf; BCDL=<br>prior(2) -1-10-8 to 1-1-8, Interior(1) 1-1-8<br>nd right exposed ; end vertical left and right<br>L=1.60 plate grip DOL=1.60<br>sf (roof live load: Lumber DOL=1.15 Platics<br>is Plate DOL=1.15); Category II; Exp B; F<br>been considered for this design.<br>I for greater of min roof live load of 12.0<br>be loads.<br>I for a 10.0 psf bottom chord live load no<br>rod and any other members.<br>Fie connectors recommended to connect<br>and does not consider lateral forces. | =6.0psf; h=30ft; Cat. II; Ex<br>to 10-10-0, Exterior(2) 10<br>ght exposed;C-C for memil<br>te DOL=1.15); Pg=15.0 ps<br>Partially Exp.; Ct=1.10<br>psf or 1.00 times flat roof I<br>onconcurrent with any othe<br>n chord in all areas where<br>t truss to bearing walls du | o B; Enclosed; M<br>-10-0 to 13-10-0<br>bers and forces &<br>of (ground snow)<br>oad of 11.6 psf o<br>r live loads.<br>a rectangle 3-6-<br>e to UPLIFT at jt | IWFRS (enve<br>, Interior(1) 1<br>& MWFRS fo<br>; Pf=11.6 psf<br>on overhangs<br>0 tall by 2-0-1<br>(s) 2 and 6. 1 | lope)<br>3-10-0 to<br>(flat<br>) wide<br>his | South                                | TH CAR                                 | Kier                               |  |  |



SEFORE USE. conent, not to the overall manent bracing the CSI Building Component 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



(lb) -Max Horz 2=-75(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 12

All reactions 250 lb or less at joint(s) 18, 20, 21, 22, 23, 17, 16, 15, 14 except 2=257(LC 2), Max Grav 12=257(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-10-8 to 1-1-8, Exterior(2) 1-1-8 to 10-10-0, Corner(3) 10-10-0 to 13-10-0, Exterior(2) 13-10-0 to 23-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 1.5x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 11) will fit between the bottom chord and any other members.



818 Soundside Road

Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KRETERENCE PAGE MIL-74/3 fev. or 19/2/2/2 DEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





| 10-10                                                                                                                                                                                                    | -11                                                                                                                    | 2                                                                                                                        | 21-6-0                                                   |                                              | - 3                                                               | 32-1-5                                                  |                               |                                           | 43-0-0                                               |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------|
| 10-10<br>Plate Offsets (X,Y) [2:0-3-6,                                                                                                                                                                   | -11<br>,Edge], [8:0-3-6,Edge                                                                                           |                                                                                                                          | 0-7-5<br>[13:0-4-0,0-4-                                  | -8]                                          | <u> </u>                                                          | 10-7-5                                                  |                               |                                           | 10-10-11                                             |                                 |
| LOADING (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         11.6/15.0           TCDL         10.0           BCLL         0.0           BCDL         10.0                             | SPACING-<br>Plate Grip DC<br>Lumber DOL<br>Rep Stress Ir<br>Code IRC20                                                 | 2-0-0<br>DL 1.15<br>1.15<br>ccr YES<br>15/TPI2014                                                                        | CSI.<br>TC<br>BC<br>WB<br>Matrix                         | 0.87<br>0.99<br>0.95<br><-S                  | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                         | in (loc)<br>-0.26 12-13<br>-0.57 12-13<br>0.18 8        | l/defl<br>>999<br>>904<br>n/a | L/d<br>240<br>180<br>n/a                  | PLATES<br>MT20<br>Weight: 263 lb                     | <b>GRIP</b> 244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x6 SP No.2<br>BOT CHORD 2x6 SP No.2<br>WEBS 2x4 SP No.3                                                                                                                            |                                                                                                                        |                                                                                                                          |                                                          |                                              | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS                        | Structural wood<br>Rigid ceiling diru<br>1 Row at midpt | sheathin<br>ectly appl        | g directly a<br>lied or 2-2-(<br>7-12, 3- | applied or 2-2-0 oc purlins.<br>0 oc bracing.<br>-12 |                                 |
| REACTIONS. (size) 2=0<br>Max Horz 2=1<br>Max Uplift 2=-1<br>Max Grav 2=1                                                                                                                                 | -3-8, 8=0-3-8<br>06(LC 20)<br>161(LC 12), 8=-161(L<br>770(LC 2), 8=1770(L                                              | C 13)<br>C 2)                                                                                                            |                                                          |                                              |                                                                   |                                                         |                               |                                           |                                                      |                                 |
| FORCES.         (lb) - Max. Comp./h           TOP CHORD         2-3=-4272/30           BOT CHORD         2-13=-286/39           WEBS         5-12=0/1159,                                                | Max. Ten All forces<br>7, 3-5=-2850/205, 5- <sup>-</sup><br>59, 12-13=-288/3955<br>7-12=-1473/262, 7-1                 | 250 (lb) or less exc<br>7=-2850/205, 7-8=-4<br>, 10-12=-207/3955,<br>0=0/455, 3-12=-147                                  | ept when sho<br>4272/308<br>8-10=-204/3<br>73/261, 3-13= | own.<br>959<br>=0/455                        |                                                                   |                                                         |                               |                                           |                                                      |                                 |
| NOTES-<br>1) Unbalanced roof live loads h<br>2) Wind: ASCE 7-10; Vult=120r<br>gable end zone and C-C Ext<br>43-10-8 zone; cantilever left<br>reactions shown; Lumber DC<br>3) TCLL: ASCE 7-10: Pr=20.0 r | ave been considered<br>mph Vasd=95mph; T(<br>erior(2) -0-10-8 to 3-5<br>and right exposed ; e<br>DL=1.60 plate grip DC | for this design.<br>CDL=6.0psf; BCDL=<br>5-2, Interior(1) 3-5-2<br>and vertical left and<br>DL=1.60<br>mber DOL=1 15 Pla | =6.0psf; h=30<br>2 to 21-6-0, E:<br>right exposed        | Dft; Cat. II;<br>xterior(2) 2<br>d;C-C for n | Exp B; Enclosed; N<br>21-6-0 to 25-9-10, Ir<br>nembers and forces | IWFRS (envelop<br>nterior(1) 25-9-1<br>s & MWFRS for    | oe)<br>0 to                   |                                           |                                                      |                                 |

roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601







|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            | 9-7-9                                                                                                                                                                                                                                                                                                                                                                  | . 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0-7                                                                                                                                 | 21-8-                                                                                                           | 0                                             | 28-8-0                                 |                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            | 9-7-9                                                                                                                                                                                                                                                                                                                                                                  | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -15                                                                                                                                  | 2-7-                                                                                                            | 9                                             | 7-0-0                                  | -                                           |
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - [2:0-0-0,0-0-11                                                                                                                                                                                                                                                                          | ], [9:0-0-0,0-0-11]                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                 |                                               |                                        |                                             |
| LOADING (psf)<br>TCLL (roof)<br>Snow (Pf/Pg) 11.6/<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.0<br>/15.0<br>10.0<br>0.0 *<br>10.0                                                                                                                                                                                                                                                     | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TFI2014                                                                                                                                                                                                                                                                                    | <b>CSI.</b><br>TC 0.70<br>BC 0.85<br>WB 0.82<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                            | in (loc)<br>-0.27 14-16<br>-0.56 14-16<br>0.05 9                                                                | l/defl L/c<br>>953 240<br>>462 180<br>n/a n/a | d PLATES<br>D MT20<br>a Weight: 161 lb | <b>GRIP</b><br>197/144<br>FT = 20%          |
| LUMBER-BRACING-TOP CHORD2x4 SP No.2 or 2x4 SPF No.2TOP CHORDStructural wood sheathing directly applied or 3-7-0 oc purlins.BOT CHORD2x4 SP No.1BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.WEBS2x4 SP No.3JOINTS1 Brace at Jt(s): 28OTHERS2x4 SP No.3Image: Comparison of the comparison of t |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                 |                                               |                                        |                                             |
| REACTIONS. All<br>(Ib) - Maa<br>Maa<br>Maa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l bearings 7-3-8 e:<br>x Horz 2=-96(LC<br>x Uplift All uplift<br>x Grav All reaction<br>14=830(LC                                                                                                                                                                                          | xcept (jt=length) 2=0-3-8.<br>21)<br>100 lb or less at joint(s) 11, 9<br>ons 250 lb or less at joint(s) 7<br>C 1)                                                                                                                                                                                                                                                      | except 2=-115(LC 16), 13=-<br>12, 11 except 2=1091(LC 2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 722(LC 7)<br>9=688(LC 2), 14=                                                                                                        | 1134(LC 7),                                                                                                     |                                               |                                        |                                             |
| FORCES.(lb) - MaTOP CHORD2-BOT CHORD2-9-WEBS16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ax. Comp./Max. To<br>3=-1786/165, 3-5=<br>16=-163/1554, 14<br>11=-32/906<br>5-28=-20/702, 6-28                                                                                                                                                                                             | en All forces 250 (lb) or les<br>1522/137, 5-6=-1398/136, i<br>-16=-32/906, 13-14=-32/906<br>3=-13/699, 3-16=-385/185, 8-                                                                                                                                                                                                                                              | is except when shown.<br>6-8=-1076/156, 8-9=-1071/9;<br>, 12-13=-32/906, 11-12=-32/9<br>-14=-465/216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>906,                                                                                                                            |                                                                                                                 |                                               |                                        |                                             |
| NOTES-<br>1) Unbalanced roof<br>2) Wind: ASCE 7-10<br>gable end zone a<br>30-6-8 zone; cani<br>reactions shown;<br>3) Truss designed fo<br>Gable End Detail<br>4) TCLL: ASCE 7-10<br>roof snow: Lumbe<br>5) Unbalanced snow<br>6) This truss has be<br>non-concurrent w<br>7) All plates are 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | live loads have be<br>b; Vult=120mph Va<br>and C-C Exterior(2<br>tilever left and righ<br>Lumber DOL=1.6<br>or wind loads in th<br>s as applicable, oi<br>0; Pr=20.0 psf (roc<br>er DOL=1.15 Plate<br>v loads have been<br>een designed for g<br>vith other live loads<br>x4 MT20 unless o | een considered for this design<br>asd=95mph; TCDL=6.0psf; E<br>) -1-10-8 to 1-1-8, Interior(1)<br>tt exposed ; end vertical left a<br>0 plate grip DOL=1.60<br>e plane of the truss only. For<br>consult qualified building de<br>of live load: Lumber DOL=1.1<br>e DOL=1.15); Category II; Ex<br>considered for this design.<br>reater of min roof live load of<br>s. | n.<br>3CDL=6.0psf; h=30ft; Cat. II;<br>1-1-8 to 14-4-0, Exterior(2) '<br>and right exposed;C-C for more<br>signer as per ANSI/TPI 1.<br>15 Plate DOL=1.15); Pg=15.0;<br>p B; Partially Exp.; Ct=1.10<br>12.0 psf or 1.00 times flat recommended<br>12.0 psf or 1.00 times flat recommended<br>13.0 times flat recommended<br>14.0 times flat recommended<br>14.0 times flat recommended<br>15.0 time | Exp B; Enclosed; I<br>I4-4-0 to 17-4-0, In<br>embers and forces<br>mal to the face), so<br>0 psf (ground snow<br>of load of 11.6 psf | MWFRS (envelop<br>terior(1) 17-4-0 to<br>& MWFRS for<br>ee Standard Indu<br>); Pf=11.6 psf (fla<br>on overhangs | be)<br>o<br>stry<br>tt                        | SEAL                                   | Will we |

8) Gable studs spaced at 2-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
   10) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Plate Offsets (X,Y) [3:0-1-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .,0-1-8], [8:0-5-13,0-1-0], [10:0-6-0,0-6-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ], [12:0-6-0,0-6-4]                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|
| LOADING (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         11.6/15.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI.<br>TC 0.92<br>BC 0.71<br>WB 0.98<br>Matrix-S                                                                                                                                                                                                                                                       | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                          | in (loc)<br>-0.15 1-12<br>-0.29 1-12<br>0.04 9                                                                   | l/defl<br>>999<br>>899<br>n/a              | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 370 lb                                                   | <b>GRIP</b><br>197/144<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 SP No.2 or<br>BOT CHORD 2x8 SP DSS<br>WEBS 2x4 SP No.3 *E<br>3-12: 2x4 SP No<br>REACTIONS. (size) 1=(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2x4 SPF No.2<br>xcept*<br>.2 or 2x4 SPF No.2<br>-3-8 + TBE4 Simpson Strong-Tie) (req.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BF<br>TC<br>BC<br>0-4-6), 7=0-3-8, 9=0-3-8                                                                                                                                                                                                                                                              | RACING-<br>DP CHORD S<br>DT CHORD F<br>(req. 0-8-1)                                                                                                                | Structural woo<br>Rigid ceiling di<br>SUPPLEMEN<br>OTHER MEAN                                                    | d sheathin<br>rectly appl<br>TARY BEAF     | g directly app<br>ied or 6-0-0 o<br>RING PLATES,<br>DW FOR THE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lied or 2-8-3 oc purlins<br>c bracing.<br>SPECIAL ANCHORAGE<br>IINIMUM REQUIRED SU | , OR<br>IPPORT                     |
| Max Horz 1=-8<br>Max Uplift 1=-2<br>Max Grav 1=55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59(LC 12), 7=-301(LC 31), 9=-581(LC 1<br>59(LC 3), 7=55(LC 27), 9=10259(LC 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3)                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | WIDTH (SUCH<br>ARE THE RES<br>OR THE BUIL                                                                        | HAS COLU<br>SPONSIBILI<br>DING DESI        | MN CAPS, BEA<br>TY OF THE TR<br>GNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ARING BLOCKS, ETC.)<br>USS MANUFACTURER                                            |                                    |
| FORCES.         (lb) - Max. Comp./N           TOP CHORD         1-2=-10214/52           6-7=-116/194'           BOT CHORD         1-12=-520/93'           WEBS         3-12=-158/500           6-9=-1229/172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ax. Ten All forces 250 (lb) or less exc<br>3, 2-3=-10111/488, 3-4=-4457/283, 4-5<br>9, 10-12=-349/6919, 9-10=-8/782, 8-9=<br>30, 3-10=-3838/245, 4-10=-157/3177, 5-<br>2, 6-8=-64/1481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ept when shown.<br>=-4457/295, 5-6=-173/35/<br>-2529/150, 7-8=-1750/11<br>10=-215/4497, 5-9=-7418                                                                                                                                                                                                       | 42,<br>5<br>5/407,                                                                                                                                                 |                                                                                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                    |
| <ul> <li>NOTES-</li> <li>1) 2-ply truss to be connected as foll<br/>Bottom chords connected as foll<br/>Bottom chords connected as foll<br/>Webs connected as follows: <i>2</i></li> <li>2) All loads are considered equa<br/>ply connections have been pl</li> <li>3) Unbalanced roof live loads hat</li> <li>4) Wind: ASCE 7-10; Vult=120m<br/>gable end zone; cantilever lef</li> <li>5) TCLL: ASCE 7-10; Vult=20m<br/>roof snow: Lumber DOL=1.15</li> <li>6) Unbalanced snow loads have</li> <li>7) This truss has been designed<br/>will fit between the bottom ch</li> <li>9) WARNING: Required bearing</li> <li>10) TBE4 Simpson Strong-Tie of<br/>Continued if mature and does not of</li> </ul> | igether with 10d (0.131"x3") nails as foll<br>Jws: 2x4 - 1 row at 0-9-0 oc.<br>follows: 2x8 - 2 rows staggered at 0-9-0<br>2x4 - 1 row at 0-9-0 oc.<br>Illy applied to all plies, except if noted as<br>ovided to distribute only loads noted as<br>ive been considered for this design.<br>uph Vasd=95mph; TCDL=6.0psf; BCDL=<br>t and right exposed ; end vertical left an<br>sf (roof live load: Lumber DOL=1.15 Plate<br>i Plate DOL=1.15); Category II; Exp B; I<br>been considered for this design.<br>I for a 10.0 psf bottom chord live load no<br>ad for a live load of 20.0psf on the botton<br>ord and any other members.<br>g size at joint(s) 9 greater than input beat<br>connectors recommended to connect tru<br>consider lateral forces. | ows:<br>I oc.<br>s front (F) or back (B) face<br>(F) or (B), unless otherwi<br>=6.0psf; h=30ft; Cat. II; E><br>d right exposed; Lumber<br>ite DOL=1.15); Pg=15.0 p<br>Partially Exp.; Ct=1.10<br>proconcurrent with any other<br>m chord in all areas where<br>ring size.<br>ss to bearing walls due to | e in the LOAD CAS<br>se indicated.<br>xp B; Enclosed; Mi<br>DOL=1.60 plate gi<br>sf (ground snow);<br>er live loads.<br>e a rectangle 3-6-0<br>uUPLIFT at jt(s) 1. | SE(S) section<br>WFRS (enveli<br>rip DOL=1.60<br>Pf=11.6 psf ( <sup>-</sup><br>0 tall by 2-0-0<br>. This connect | . Ply to<br>ope)<br>flat<br>wide<br>ion is | Contraction of the second seco | SEAL<br>044925<br>MGINEEF<br>January 21,2                                          |                                    |
| WARNING - Verify design para<br>Design valid for use only with MiT<br>a truss system. Before use, the bi<br>building design. Bracing indicate<br>is always required for stability and<br>fabrication, storage, delivery, erec<br>Safety Information available for                                                                                                                                                                                                                                                                                                                                                                                                                                        | neters and READ NOTES ON THIS AND INCLUDE<br>ek® connectors. This design is based only upon p<br>juliding designer must verify the applicability of desi<br>d is to prevent buckling of individual truss web and.<br>I to prevent collapse with possible personal injury a<br>tion and bracing of trusses and truss systems, see<br>m Truss Plate Institute, 2670 Crain Highway, Suite                                                                                                                                                                                                                                                                                                                                                                    | D MITEK REFERENCE PAGE MI<br>arameters shown, and is for an in<br>gn parameters and properly inco<br>(or chord members only. Additio<br>and property damage. For gener<br>e ANS/TPI1 Quality Cr<br>2 203 Waldorf, MD 20601                                                                              | I-7473 rev. 5/19/2020 B<br>ndividual building comp<br>ryporate this design into<br>nal temporary and perr<br>al guidance regarding i<br>riteria, DSB-89 and BC     | BEFORE USE.<br>ponent, not<br>o the overall<br>manent bracing<br>the<br>CSI Building Cor                         | nponent                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENGINEERING BY<br>A Miltek<br>818 Soundside Road<br>Edenton, NC 27932              |                                    |

| Job                   | Truss             | Truss Type    | Qty       | Ply       | KB Home 243.2939.B                                      |           |
|-----------------------|-------------------|---------------|-----------|-----------|---------------------------------------------------------|-----------|
|                       |                   |               |           |           |                                                         | 144459043 |
| 243_2939_B            | GG                | COMMON GIRDER | 1         | 2         |                                                         |           |
|                       |                   |               |           | <b>_</b>  | Job Reference (optional)                                |           |
| 84 Components (Dunn), | Dunn, NC - 28334, |               | 8.4       | 130 s Nov | 30 2020 MiTek Industries, Inc. Wed Jan 20 13:34:41 2021 | Page 2    |
|                       |                   | ID:XZs        | siAHNe IV | plcdoAjGo | 3ztm9T-DCWDijBX7d9TppdWhNSAad0WmyMtpRyy7gAEF            | P7ztS_i   |

## NOTES-

11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.

- 12) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces.
- 13) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-3-0 oc max. starting at 2-0-12 from the left end to 12-2-4 to connect truss(es) to back face of bottom chord.
- Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 12-11-4 from the left end to 26-11-4 to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.

### LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

- Uniform Loads (plf)
- Vert: 1-4=-43, 4-7=-43, 1-7=-20 Concentrated Loads (lb)

Vert: 11=-722(B) 8=-722(B) 15=-762(B) 16=-762(B) 17=-762(B) 18=-762(B) 19=-762(B) 20=-762(B) 21=-722(B) 22=-722(B) 23=-722(B) 24=-722(B) 25=-722(B) 26=-722(B) 26=-72(B) 26=-72(B) 26=-72(B) 26=-72(B) 26=-72(B) 26=-72(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





| 7-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-0-0                                                                                                                                                                                                                                                                                                                                                               | 26-2-0                                                                                                                                                                                                                                                | 28-6-0 35-6                                                                                                                                                                                                | -0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43-0-0                                     |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Plate Offsets (X,Y) [5:0-4-0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-4-8], [11:0-5-0,0-0-0], [15:0-5-0,0-0-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                   | 240 10                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                        |                                               |
| LOADING (psf)<br>TCLL (roof) 20.0<br>Snow (Pf/Pg) 16.5/15.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDI 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CSI.</b><br>TC 0.92<br>BC 0.52<br>WB 0.85<br>Matrix-S                                                                                                                                                                                                                                                                                                            | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                             | in (loc) l/defi<br>-0.73 13 >704<br>-1.41 13 >364<br>0.20 8 n/a                                                                                                                                            | L/d<br>240<br>180<br>a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLATES<br>MT20<br>MT18HS<br>Weight: 250 lb | <b>GRIP</b><br>244/190<br>244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 SP DSS *E<br>3-5,5-7: 2x6 SP<br>BOT CHORD 2x6 SP DSS<br>WEBS 2x4 SP No.3<br>REACTIONS. (size) 2=0<br>Max Horz 2=-3<br>Max Uplift 2=-2<br>Max Grav 2=1<br>FORCES. (lb) - Max. Comp.//<br>TOP CHORD 2-3=-4529/47<br>7-8=-4529/47<br>BOT CHORD 2-16=-417/42<br>8-10=-386/42<br>WEBS 3-16=-27/116<br>7-10=-27/116                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xcept*<br>No.2<br>-3-8, 8=0-3-8<br>38(LC 21)<br>216(LC 12), 8=-216(LC 13)<br>770(LC 2), 8=1770(LC 2)<br>Max. Ten All forces 250 (lb) or less exc<br>6, 3-4=-4155/474, 4-5=-7831/811, 5-6=-7<br>6<br>14, 14-16=-694/7029, 13-14=-694/7029,<br>214<br>7, 4-16=-3080/349, 4-13=-104/877, 6-13<br>7, 5-13=-424/141, 4-14=0/272, 6-12=0/2                                                                                                                                                                                                                                                                                                                                                                                                                                         | BI<br>TC<br>BC<br>W<br>2831/811, 6-7=-4155/475<br>12-13=-663/7029, 10-12<br>=-105/877, 6-10=-3080/3<br>72                                                                                                                                                                                                                                                           | RACING-<br>DP CHORD<br>DT CHORD<br>EBS<br>663/7029,<br>48,                                                                                                                                                                                            | Structural wood sheath<br>2-0-0 oc purlins (2-1-1<br>Rigid ceiling directly ap<br>2 Rows at 1/3 pts                                                                                                        | iing directly appli<br>5 max.): 3-7.<br>oplied or 10-0-0 o<br>4-16, 6-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed or 2-2-0 oc purlins                     | , except                                      |
| <ul> <li>NOTES-</li> <li>1) Unbalanced roof live loads h</li> <li>2) Wind: ASCE 7-10; Vult=120r<br/>gable end zone and C-C Ext<br/>, Exterior(2) 35-6-0 to 41-7-0<br/>exposed;C-C for members a</li> <li>3) TCLL: ASCE 7-10; Pr=20.0 p<br/>roof snow: Lumber DOL=1.1<br/>governs. Rain surcharge ap</li> <li>4) Unbalanced snow loads haw</li> <li>5) This truss has been designee<br/>non-concurrent with other liv</li> <li>6) Provide adequate drainage to<br/>7) All plates are MT20 plates ur</li> <li>8) This truss has been designee</li> <li>9) * This truss has been designed</li> <li>9) * This truss has been designed</li> <li>9) * This truss has been designed</li> <li>10) One H2.5A Simpson Strong<br/>connection is for uplift only</li> <li>11) Graphical purlin representa</li> </ul> | ave been considered for this design.<br>mph Vasd=95mph; TCDL=6.0psf; BCDL=<br>erior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2<br>, Interior(1) 41-7-0 to 43-10-8 zone; cant<br>nd forces & MWFRS for reactions showr<br>s6 (roof live load: Lumber DOL=1.15 Pla<br>5 Plate DOL=1.15); Category II; Exp B; F<br>plied to all exposed surfaces with slopes<br>a been considered for this design.<br>d for greater of min roof live load of 12.0<br>e loads.<br>o prevent water ponding.<br>nless otherwise indicated.<br>d for a 10.0 psf bottom chord live load no<br>ed for a live load of 20.0psf on the bottor<br>lord and any other members.<br>J-Tie connectors recommended to conne<br>and does not consider lateral forces.<br>tion does not depict the size or the orien | 6.0psf; h=30ft; Cat. II; E:<br>to 7-6-0, Exterior(2) 7-6-<br>ilever left and right expos<br>; Lumber DOL=1.60 plate<br>te DOL=1.15); Pg=15.0 p<br>Partially Exp.; Ct=1.10, Lu<br>less than 0.500/12 in acc<br>psf or 1.00 times flat roof<br>inconcurrent with any oth<br>n chord in all areas where<br>ct truss to bearing walls of<br>ation of the purlin along f | xp B; Enclosed; N<br>0 to 13-7-0, Inter<br>sed; end vertical<br>e grip DOL=1.60<br>ssf (ground snow<br>u=50-0-0; Min. fla<br>cordance with IB0<br>i load of 11.6 psf<br>e r live loads.<br>e a rectangle 3-6<br>due to UPLIFT at<br>the top and/or bo | MWFRS (envelope)<br>ior(1) 13-7-0 to 35-6-0<br>left and right<br>); Pf=16.5 psf (flat<br>tt roof snow load<br>C 1608.3.4.<br>on overhangs<br>-0 tall by 2-0-0 wide<br>t jt(s) 2 and 8. This<br>ttom chord. | Contraction of the second seco | SEAL<br>044925                             |                                               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road Edenton, NC 27932



| F                                                                   | 9-6-0                                            |                                                                  | 17-6-9                                                 | 2                                                        | 5-5-7                                    | 33-6-0                                              |                               |                          | 43-0-0                                     |                                               |
|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|
|                                                                     | 9-6-0                                            |                                                                  | 8-0-9                                                  | 7-                                                       | 10-13                                    | 8-0-9                                               |                               | 1                        | 9-6-0                                      | ·                                             |
| LOADING (psi<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | f)<br>20.0<br>16.5/15.0<br>10.0<br>0.0 *<br>10.0 | SPACING-<br>Plate Grip D<br>Lumber DO<br>Rep Stress<br>Code IRC2 | 2-0-0<br>DOL 1.15<br>L 1.15<br>Incr YES<br>015/TPI2014 | <b>CSI.</b><br>TC 0.72<br>BC 0.43<br>WB 0.92<br>Matrix-S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT | in (loc)<br>-0.48 14-15<br>-0.96 14-15<br>) 0.16 10 | l/defl<br>>999<br>>535<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>MT18HS<br>Weight: 257 lb | <b>GRIP</b><br>197/144<br>244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD                                                | 2x4 SP No.2 or 2x4<br>4-6,6-8: 2x6 SP No.2       | SPF No.2 *Exc<br>2                                               | cept*                                                  |                                                          | BRACING-<br>TOP CHORD                    | Structural wood except                              | sheathing                     | directly app             | lied or 2-3-10 oc purlin                   | IS,                                           |

|            | 4-6,6-8: 2x6 SP No.2     |           | except                                                   |                  |  |  |
|------------|--------------------------|-----------|----------------------------------------------------------|------------------|--|--|
| BOT CHORD  | 2x6 SP DSS               |           | 2-0-0 oc purlins (2-7-14 ma                              | ax.): 4-8.       |  |  |
| WEBS       | 2x4 SP No.3              | BOT CHORD | ORD Rigid ceiling directly applied or 10-0-0 oc bracing. |                  |  |  |
|            |                          | WEBS      | 1 Row at midpt                                           | 5-17, 7-15, 7-12 |  |  |
| REACTIONS. | (size) 2=0-3-8, 10=0-3-8 |           |                                                          |                  |  |  |
|            | Max Horz 2=48(LC 20)     |           |                                                          |                  |  |  |

Max Uplift 2=-212(LC 12), 10=-212(LC 13) Max Grav 2=1770(LC 2), 10=1770(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-4340/517, 3-4=-4206/433, 4-5=-3938/429, 5-7=-5894/631, 7-8=-3936/428, 8-9=-4204/433, 9-10=-4339/518
- BOT CHORD
   2-17=-478/4024, 15-17=-560/5894, 14-15=-533/5907, 12-14=-533/5907, 10-12=-440/4023

   WEBS
   3-17=-241/255, 4-17=-6/918, 5-17=-2214/284, 5-15=0/305, 7-14=0/308, 7-12=-2229/286, 8-12=-6/919, 9-12=-242/254

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2 to 9-6-0, Exterior(2) 9-6-0 to 15-7-0, Interior(1) 15-7-0 to 33-6-0, Exterior(2) 33-6-0 to 39-7-0, Interior(1) 39-7-0 to 43-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
  10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This
- connection is for uplify only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601







|                                 | 5-10-11                                                                       | 11-6-0                           | 21-6-0                             |                      | 3.                 | 1-6-0               |             | 37-1-5          | 43-0-0                   |          |  |
|---------------------------------|-------------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------------|--------------------|---------------------|-------------|-----------------|--------------------------|----------|--|
|                                 | 5-10-11                                                                       | 5-7-5                            | 10-0-0                             | I                    | 1(                 | 0-0-0               |             | 5-7-5           | 5-10-11                  | 1        |  |
| Plate Offsets                   | (X,Y) [2:0-0-15                                                               | ,0-0-9], [5:0-4-0,0-4-8], [8     | 0-0-15,0-0-9]                      |                      |                    |                     |             |                 |                          |          |  |
|                                 | ()                                                                            |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | SI)                                                                           | SPACING-                         | 2-0-0 CSI.                         |                      | DEFL.              | in (loc)            | l/defl      | L/d             | PLATES                   | GRIP     |  |
| ICLL (roof)                     | 20.0                                                                          | Plate Grin DOI                   | 1 15 TC                            | 0.93                 | Vert(LL)           | -0.44 1.3           | >999        | 240             | MT20                     | 197/144  |  |
| Snow (Pf/Pg)                    | 16.5/15.0                                                                     | Lumber DOL                       | 1.15                               | 0.00                 | Vort(CT)           | 0.97 12 15          | - 505       | 190             | 11120                    | 13//144  |  |
| TCDL                            | 10.0                                                                          | Lumber DOL                       | 1.15 BC                            | 0.99                 | Ven(CT)            | -0.87 13-15         | >586        | 180             |                          |          |  |
| BCLL                            | 00 *                                                                          | Rep Stress Incr                  | YES WB                             | 0.92                 | Horz(CT)           | 0.20 8              | n/a         | n/a             |                          |          |  |
| BCDI                            | 10.0                                                                          | Code IRC2015/TP                  | I2014 Matri                        | x-S                  |                    |                     |             |                 | Weight: 254 lb           | FT = 20% |  |
| BCDL                            | 10.0                                                                          |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
| LUMBER-                         |                                                                               |                                  |                                    | B                    | RACING-            |                     |             |                 |                          |          |  |
| TOP CHORD                       | 2x4 SP No 2 or 3                                                              | 2x4 SPE No 2 *Except*            |                                    | т                    | OP CHORD           | Structural wood     | sheathing   | n directly appl | lied or 2-2-0 oc purlins | except   |  |
|                                 | 4-5 5-6: 2v6 SP                                                               | No 2                             |                                    |                      | 0. 00              | 2-0-0 oc purline    | (2-2-0 mg   | y ). 1-6        |                          | , oncopt |  |
|                                 | 4-3,3-0. 2x0 3i                                                               | 110.2                            |                                    | D                    |                    | Z-0-0 00 putitis    | (2-2-0 m    | an.). 4-0.      |                          |          |  |
| BOICHORD                        | 2X6 SP NO.2                                                                   |                                  |                                    | B                    |                    | Rigia celling air   | ectly appli | ed or 2-2-0 of  | c bracing.               |          |  |
| WEBS                            | 2x4 SP No.3                                                                   |                                  |                                    | W                    | /EBS               | 1 Row at midpt      |             | 5-15, 5-11      |                          |          |  |
|                                 |                                                                               |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
| REACTIONS.                      | . (size) 2=0-3                                                                | 3-8, 8=0-3-8                     |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | Max Horz 2=57                                                                 | (I C 20)                         |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | Max Holift 2- 2                                                               | (2020)                           |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 |                                                                               | 100(10 12), 0=-200(10 13)        |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | Max Grav Z=17                                                                 | 70(LC 2), 8=1770(LC 2)           |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 |                                                                               |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
| FORCES. (I                      | b) - Max. Comp./M                                                             | ax. Ten All forces 250 (         | <li>b) or less except when sh</li> | own.                 |                    |                     |             |                 |                          |          |  |
| TOP CHORD                       | 2-3=-4367/449                                                                 | . 3-4=-4007/416. 4-5=-37         | 48/415. 5-6=-3748/414. 6-          | 7=-4007/415          | 5.                 |                     |             |                 |                          |          |  |
|                                 | 7-8-4367/450                                                                  | )                                | ,,.                                |                      | ,                  |                     |             |                 |                          |          |  |
|                                 | 2 16 414/405                                                                  | ,<br>1 15 16- 414/4051 12 1      | E 442/E020 11 12 442               | /F020 10 11          | 270/4054           |                     |             |                 |                          |          |  |
| BOT CHORD                       | 210=414/4031, 13-10=414/4031, 13-13=442/3030, 11-13=442/3030, 10-11=3/0/4031, |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | 8-10=-370/4051                                                                |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
| WEBS                            | 3-15=-485/150                                                                 | ), 4-15=0/800, 5-15=-1544        | /224, 5-13=0/412, 5-11=-`          | 1544/224, 6-1        | 11=0/800,          |                     |             |                 |                          |          |  |
|                                 | 7-11=-485/151                                                                 |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 |                                                                               |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
| NOTES-                          |                                                                               |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 | al reaf live leads he                                                         |                                  | ia design                          |                      |                    |                     |             |                 |                          |          |  |
| 1) Unbalance                    | d roof live loads ha                                                          | we been considered for th        | is design.                         |                      |                    |                     |             |                 |                          |          |  |
| <ol><li>Wind: ASC</li></ol>     | E 7-10; Vult=120m                                                             | <pre>iph Vasd=95mph; TCDL=</pre> | 6.0psf; BCDL=6.0psf; h=3           | 0ft; Cat. II; E      | xp B; Enclosed; I  | /WFRS (envelo       | be)         |                 |                          |          |  |
| gable end ;                     | zone and C-C Exte                                                             | erior(2) -0-10-8 to 3-5-2, In    | terior(1) 3-5-2 to 11-6-0, E       | Exterior(2) 11       | -6-0 to 17-7-0, In | terior(1) 17-7-0 t  | 0           |                 |                          |          |  |
| 31-6-0. Ext                     | terior(2) 31-6-0 to 3                                                         | 37-7-0. Interior(1) 37-7-0 to    | 43-10-8 zone: cantilever           | left and right       | t exposed : end v  | ertical left and ri | aht         |                 | MILLIN                   |          |  |
| exposed C                       | -C for members an                                                             | d forces & MWERS for re          | actions shown: Lumber D            | $\gamma = 1.60$ plat | a aria DOI = 1.60  |                     | <b>J</b>    |                 |                          | 11.      |  |
|                                 |                                                                               |                                  |                                    | SL = 1.00  plat      |                    | DE 40 E 6 /6        |             | 1               | "AH UARO                 | 14       |  |
| 3) TULL: ASU                    | JE 7-10; PI=20.0 p                                                            | si (rooi live load: Lumber       | JOL=1.15 Plate DOL=1.1             | 5); Pg=15.0 p        | si (ground show    | ); PI=16.5 pSI (II  | 11          | 1 1             | 8                        | 1.4      |  |
| roof snow:                      | Lumber DOL=1.15                                                               | Plate DOL=1.15); Catego          | ory II; Exp B; Partially Exp       | .; Ct=1.10, Lu       | u=50-0-0; Min. fla | it roof snow load   |             |                 | SIN                      |          |  |
| governs. F                      | Rain surcharge app                                                            | lied to all exposed surface      | es with slopes less than 0.        | 500/12 in acc        | cordance with IB   | C 1608.3.4.         |             | 74              |                          | Mon>     |  |
| 4) Unbalance                    | d snow loads have                                                             | been considered for this         | desian.                            |                      |                    |                     |             |                 |                          | i wy     |  |
| 5) This truss I                 | has been designed                                                             | for greater of min roof live     | a load of 12 0 psf or 1 00 t       | imes flat roof       | f load of 11 6 nsf | on overhands        |             | 2 2             | Q .                      |          |  |
|                                 | rrant with other live                                                         |                                  | c 1000 01 12:0 p31 01 1:00 1       | inico naciooi        | 100000111.0 p3     | on overhangs        |             |                 | OFAL                     |          |  |
|                                 |                                                                               | ioaus.                           |                                    |                      |                    |                     |             |                 | SEAL                     |          |  |
| <li>b) Provide ad</li>          | equate drainage to                                                            | prevent water ponding.           |                                    |                      |                    |                     |             | - <b>-</b>      | 044005                   | : =      |  |
| <ol><li>This truss h</li></ol>  | has been designed                                                             | for a 10.0 psf bottom cho        | rd live load nonconcurrent         | t with any oth       | ner live loads.    |                     |             |                 | 044925                   | 1 E      |  |
| 8) * This truss                 | s has been designe                                                            | ed for a live load of 20.0ps     | f on the bottom chord in a         | Il areas wher        | e a rectangle 3-6  | -0 tall by 2-0-0 w  | ride        |                 |                          | 100 C    |  |
| will fit betw                   | een the bottom cho                                                            | ord and any other membe          | rs.                                |                      | 0                  |                     |             |                 |                          | 1 S S    |  |
| 9) One H2 54                    | Simpson Strong T                                                              | Tie connectors recommon          | ded to connect trues to bo         | aring walls d        | ue to LIPLIET of i | t(s) 2 and 8 This   |             | 5.0             | · A. a                   | : a :    |  |
| 5) One 12.0A                    | is far unlift and                                                             |                                  |                                    | anny wans u          |                    | (3) Z anu 0. Thi    | ,           | 100             | VGINEE!                  | 6.5      |  |
| connection                      | i is for upliπ only an                                                        | iu uues not consider latera      | al lorces.                         |                      |                    |                     |             | 110             | 0                        | IN ST    |  |
| <ol><li>10) Graphical</li></ol> | I purlin representat                                                          | ion does not depict the siz      | e or the orientation of the        | purlin along         | the top and/or bo  | ttom chord.         |             | 11,             | TTN CE                   | 11       |  |
|                                 |                                                                               |                                  |                                    |                      |                    |                     |             |                 |                          |          |  |
|                                 |                                                                               |                                  |                                    |                      |                    |                     |             |                 | WI. 54                   | 11       |  |



January 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| F                                                                                                                                                                                                                                                                                                                                                                                          | 6-10-11                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              | 13-6-0                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                     | 21-6-0                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                            | 29-6-0                                                                                                                                                                                                                                 | )                                                                                                                     |                                                                                                       | 36-1                                | 1-5                                                         | 43-0-0                                        | _                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------|
| Plate Offsets (X                                                                                                                                                                                                                                                                                                                                                                           | (,Y) [2:0-0-15                                                                                                                                                                                                                                                                                                                                                                                                           | ,0-0-9], [5:0-4-0                                                                                                                                                                                                                                                                                                                            | 0,0-4-8], [8:                                                                                                                                                                                                                                                                                       | 0-0-15,0-0-9],                                                                                                                                                                                                                                                      | [12:0-3-12,0                                                                                                                                                                                   | D-0-0], [14                                                                                                                                                      | 4:0-3                                                                                                      | -12,0-0-0]                                                                                                                                                                                                                             |                                                                                                                       |                                                                                                       | 0-7                                 | -0                                                          | 0-10-11                                       |                        |
| LOADING (psf<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL                                                                                                                                                                                                                                                                                                                                        | 7)<br>20.0<br>16.5/15.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                          | SPACIN<br>Plate Gr<br>Lumber                                                                                                                                                                                                                                                                                                                 | <b>IG-</b><br>ip DOL<br>DOL                                                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>VES                                                                                                                                                                                                                                        | CSI.<br>TC<br>BC                                                                                                                                                                               | 0.78<br>0.88<br>0.67                                                                                                                                             |                                                                                                            | DEFL.<br>Vert(LL)<br>Vert(CT)                                                                                                                                                                                                          | in<br>-0.34<br>-0.69                                                                                                  | (loc)<br>13<br>13                                                                                     | l/defl<br>>999<br>>740              | L/d<br>240<br>180                                           | PLATES<br>MT20                                | <b>GRIP</b><br>244/190 |
| BCLL<br>BCDI                                                                                                                                                                                                                                                                                                                                                                               | 0.0 *<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                            | Code IF                                                                                                                                                                                                                                                                                                                                      | RC2015/TPI                                                                                                                                                                                                                                                                                          | 12014                                                                                                                                                                                                                                                               | Matri                                                                                                                                                                                          | 0.67<br>x-S                                                                                                                                                      |                                                                                                            | HOIZ(CT)                                                                                                                                                                                                                               | 0.16                                                                                                                  | 0                                                                                                     | n/a                                 | n/a                                                         | Weight: 253 lb                                | FT = 20%               |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                                                                                  | 2x4 SP No.1 *Ex<br>4-5,5-6: 2x6 SP<br>2x6 SP No.2<br>2x4 SP No.3                                                                                                                                                                                                                                                                                                                                                         | xcept*<br>No.2                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                  | BR<br>TO<br>BO<br>WE                                                                                       | ACING-<br>P CHORD<br>T CHORD<br>EBS                                                                                                                                                                                                    | Structura<br>2-0-0 oc<br>Rigid cei<br>1 Row at                                                                        | al wood<br>purlins<br>ling dire<br>t midpt                                                            | sheathin<br>(3-6-2 m<br>ectly appli | g directly app<br>ax.): 4-6.<br>ied or 10-0-0<br>5-15, 5-11 | blied or 2-2-0 oc purlins<br>oc bracing.<br>1 | , except               |
| REACTIONS.                                                                                                                                                                                                                                                                                                                                                                                 | (size) 2=0-<br>Max Horz 2=67<br>Max Uplift 2=-19<br>Max Grav 2=17                                                                                                                                                                                                                                                                                                                                                        | 3-8, 8=0-3-8<br>7(LC 16)<br>99(LC 12), 8=- <sup>-</sup><br>770(LC 2), 8=17                                                                                                                                                                                                                                                                   | 199(LC 13)<br>770(LC 2)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                                       |                                     |                                                             |                                               |                        |
| FORCES. (Ib)<br>TOP CHORD                                                                                                                                                                                                                                                                                                                                                                  | - Max. Comp./M<br>2-3=-4381/430                                                                                                                                                                                                                                                                                                                                                                                          | lax. Ten All fc<br>), 3-4=-3764/38                                                                                                                                                                                                                                                                                                           | orces 250 (l<br>33, 4-5=-350                                                                                                                                                                                                                                                                        | b) or less exc<br>05/386, 5-6=-3                                                                                                                                                                                                                                    | ept when sh<br>8505/386, 6-                                                                                                                                                                    | own.<br>7=-3764/                                                                                                                                                 | 383,                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                                       |                                     |                                                             |                                               |                        |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                  | 2-16=-397/406                                                                                                                                                                                                                                                                                                                                                                                                            | )<br>63, 15-16=-397/<br>63                                                                                                                                                                                                                                                                                                                   | /4063, 13-1                                                                                                                                                                                                                                                                                         | 5=-327/4211,                                                                                                                                                                                                                                                        | 11-13=-327                                                                                                                                                                                     | /4211, 10                                                                                                                                                        | )-11=                                                                                                      | -346/4063,                                                                                                                                                                                                                             |                                                                                                                       |                                                                                                       |                                     |                                                             |                                               |                        |
| WEBS                                                                                                                                                                                                                                                                                                                                                                                       | 3-15=-742/159<br>7-11=-742/160                                                                                                                                                                                                                                                                                                                                                                                           | ), 4-15=0/766, 5<br>)                                                                                                                                                                                                                                                                                                                        | 5-15=-988/1                                                                                                                                                                                                                                                                                         | 154, 5-13=0/3                                                                                                                                                                                                                                                       | 24, 5-11=-98                                                                                                                                                                                   | 38/153, 6                                                                                                                                                        | -11=(                                                                                                      | 0/766,                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                                       |                                     |                                                             |                                               |                        |
| NOTES-<br>1) Unbalanced<br>2) Wind: ASCE<br>gable end zc<br>29-6-0, Exte<br>exposed;C-C<br>3) TCLL: ASCE<br>roof snow: L<br>governs. Ra<br>4) Unbalanced<br>5) This truss ha<br>non-concurre<br>6) Provide aded<br>7) This truss ha<br>non-concurre<br>6) Provide aded<br>7) This truss ha<br>8) * This truss the<br>will fit betwee<br>9) One H2.5A S<br>connection is<br>10) Graphical p | roof live loads ha<br>7-10; Vult=120m<br>one and C-C Exte<br>rior(2) 29-6-0 to 2<br>for members an<br>7-10; Pr=20.0 p<br>umber DOL=1.15<br>in surcharge app<br>snow loads have<br>as been designed<br>ent with other live<br>quate drainage to<br>as been designed<br>ent with other live<br>quate drainage to<br>as been designed<br>en the bottom ch<br>Simpson Strong-T<br>s for uplift only an<br>purlin representat | ave been consider<br>apph Vasd=95mp<br>prior(2) -0-10-8<br>35-7-0, Interior(<br>di forces & MW<br>sf (roof live load<br>been consider<br>blied to all expo<br>been consider<br>for greater of r<br>loads.<br>prevent water<br>for a 10.0 psf<br>for a live load<br>ord and any oth<br>frie connectors<br>and does not con<br>ion does not de | dered for the<br>ph; TCDL=6<br>to 3-5-2, Ini<br>1) 35-7-0 to<br>(FRS for rea<br>d: Lumber I<br>15); Catego<br>sed surface<br>red for this of<br>min roof live<br>ponding.<br>bottom choo<br>d of 20.0pst<br>bottom choo<br>d of 20.0pst<br>ner member<br>recommend<br>sider latera<br>apict the siz | is design.<br>6.0psf; BCDL=<br>terior(1) 3-5-2<br>o 43-10-8 zonv<br>actions shown<br>DOL=1.15 Pla<br>ory II; Exp B; F<br>ss with slopes<br>design.<br>a load of 12.0<br>rd live load nc<br>f on the bottor<br>rs.<br>ded to connec<br>al forces.<br>e or the orient | 6.0psf; h=3<br>to 13-6-0, E<br>e; cantilever<br>f; Lumber D0<br>te DOL=1.1<br>Partially Exp.<br>less than 0.<br>psf or 1.00 t<br>nconcurrent<br>n chord in al<br>t truss to be<br>ation of the | 0ft; Cat. I<br>:xterior(2)<br>left and r<br>DL=1.60 J<br>5); Pg=15<br>; Ct=1.10<br>500/12 in<br>imes flat<br>; with any<br>I areas w<br>aring wall<br>purlin alo | I; Exp<br>) 13-6<br>ight c<br>plate<br>5.0 ps<br>), Lu=<br>0 a acco<br>roof I<br>o other<br>here<br>Is due | p B; Enclosed; M<br>6-0 to 19-7-0, In<br>exposed ; end v<br>grip DOL=1.60<br>sf (ground snow<br>=50-0-0; Min. fla<br>ordance with IB0<br>load of 11.6 psf<br>er live loads.<br>a rectangle 3-6<br>e to UPLIFT at j<br>ne top and/or bo | MWFRS (<br>terior(1) 1<br>ertical lef<br>troof snc<br>C 1608.3.<br>on overha<br>-0 tall by<br>t(s) 2 and<br>ttom choi | envelop<br>19-7-0 t<br>t and rig<br>5 psf (fla<br>w load<br>4.<br>angs<br>2-0-0 w<br>I 8. This<br>rd. | pe)<br>o<br>ght<br>at<br>ide        | Communities State                                           | SEAL<br>044925                                | Werner Manning         |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

## ENGINEERING BY A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

January 21,2021





|                                                                                                                                                                                                                                                                                              | <u>− 7-10-11</u><br>7-10-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          | <u>15-6-0</u><br>7-7-5                                                                                                                                                                                                                                                                                                                                                            | + 21-                                                                                                                                                                                               | -6-0<br>D-0                                                                                                                                                    |                                                                                            | 27-6-0                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                       | 35-1-5<br>7-7-5                       |                                                              | 43-0-0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plate Offsets                                                                                                                                                                                                                                                                                | (X,Y) [2:0-0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,0-0-9], [10:0-0-15,0                                                                                                                                                                                                                                                                                                                    | 0-0-9]                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                |                                                                                            | 000                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                                                       |                                       |                                                              | 1.0.11                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOADING (p<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                            | sf)<br>20.0<br>16.5/15.0<br>10.0<br>0.0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPACING-<br>Plate Grip Du<br>Lumber DOL<br>Rep Stress I<br>Code IRC20                                                                                                                                                                                                                                                                    | 2-0-0<br>OL 1.15<br>. 1.15<br>ncr YES<br>115/TPI2014                                                                                                                                                                                                                                                                                                                              | CSI.<br>TC<br>BC<br>WB<br>Matrix                                                                                                                                                                    | 0.77<br>0.91<br>0.73<br>x-S                                                                                                                                    |                                                                                            | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                   | in<br>-0.30<br>-0.61<br>0.17                                                                                                     | (loc)<br>15<br>15<br>10                                                                               | l/defl<br>>999<br>>844<br>n/a         | L/d<br>240<br>180<br>n/a                                     | PLATES<br>MT20<br>Weight: 244 lb                | <b>GRIP</b><br>197/144<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                                                                                                                                                                                       | 2x4 SP DSS *Ex<br>5-7: 2x4 SP No.2<br>2x6 SP No.2<br>2x4 SP No.3<br>. (size) 2=0-<br>Max Horz 2=-7<br>Max Uplit 2=-17<br>May Gray 2=-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xcept*<br>2 or 2x4 SPF No.2<br>3-8, 10=0-3-8<br>7(LC 21)<br>91(LC 12), 10=-191<br>720(L 2), 10=-191                                                                                                                                                                                                                                      | (LC 13)                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                | BR.<br>TOI<br>BO<br>WE                                                                     | ACING-<br>P CHORD<br>T CHORD<br>BS                                                                                                                                                                                                          | Structura<br>2-0-0 oc<br>Rigid cei<br>1 Row at                                                                                   | al wood<br>purlins<br>ling dire<br>midpt                                                              | sheathinı<br>(2-6-11 n<br>ectly appli | g directly app<br>nax.): 5-7.<br>ied or 10-0-0<br>3-16, 9-14 | plied or 2-2-0 oc purlins<br>) oc bracing.<br>4 | , except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FORCES. (<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                  | lb) - Max. Comp./M<br>2-3=-4358/405<br>9-10=-4358/40<br>2-18=-375/403<br>10-12=-317/4<br>3-18=0/322, 3<br>9-14=-980/182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lax. Ten All forces<br>5, 3-5=-3505/341, 5-<br>36<br>99, 16-18=-375/4039<br>039<br>-16=-980/181, 5-16=<br>2, 9-12=0/322                                                                                                                                                                                                                  | : 250 (lb) or less exc:<br>-6=-3239/348, 6-7=-3<br>9, 15-16=-233/3565,<br>=0/722, 6-16=-607/10                                                                                                                                                                                                                                                                                    | ept when sho<br>3239/348, 7-<br>14-15=-233/<br>08, 6-14=-60                                                                                                                                         | own.<br>9=-3505/3<br>/3565, 12-<br>)7/108, 7- <sup>-</sup>                                                                                                     | 341,<br>∙14≕<br>14=0                                                                       | -317/4039,<br>)/722,                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                       |                                       |                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTES-<br>1) Unbalance<br>2) Wind: ASC<br>gable end<br>27-6-0, Ex<br>exposed;C<br>3) TCLL: ASC<br>roof snow:<br>governs. I<br>4) Unbalance<br>5) This truss<br>non-concu<br>6) Provide ac<br>7) This truss<br>8) * This truss<br>will fit betw<br>9) One H2.5/<br>connectior<br>10) Graphica | ed roof live loads ha<br>E 7-10; Vult=120m<br>zone and C-C Exte<br>terior(2) 27-6-0 to 3<br>-C for members an<br>CE 7-10; Pr=20.0 p<br>Lumber DOL=1.15<br>Rain surcharge app<br>d snow loads have<br>has been designed<br>rrent with other live<br>lequate drainage to<br>has been designed<br>is has been designed<br>to have the bottom chu<br>A Simpson Strong-1<br>h is for uplift only ar | ave been considered<br>ph Vasd=95mph; T<br>rrior(2) -0-10-8 to 3-<br>33-7-0, Interior(1) 33<br>di forces & MWFRS<br>sf (roof live load: Lu<br>s Plate DOL=1.15);<br>blied to all exposed a<br>b been considered for<br>for a live load of 2<br>ord and any other m<br>fie connectors reco-<br>nd does not conside<br>ion does not depict | d for this design.<br>'CDL=6.0psf; BCDL=<br>5-2, Interior(1) 3-5-2<br>3-7-0 to 43-10-8 zone<br>is for reactions shown<br>mber DOL=1.15 Pla<br>Category II; Exp B; F<br>surfaces with slopes<br>or this design.<br>oof live load of 12.0<br>ding.<br>m chord live load no<br>20.0psf on the bottor<br>nembers.<br>mmended to connec<br>r lateral forces.<br>the size or the orient | =6.0psf; h=30<br>to 15-6-0, E<br>e; cantilever<br>; Lumber DC<br>te DOL=1.15<br>Partially Exp.<br>less than 0.9<br>psf or 1.00 ti<br>nconcurrent<br>n chord in al<br>t truss to bea<br>ation of the | Oft; Cat. II;<br>xterior(2)<br>left and ri-<br>DL=1.60 p<br>5); Pg=15;<br>; Ct=1.10,<br>500/12 in :<br>with any of<br>l areas wh<br>aring walls<br>purlin alor | ; Exp<br>15-6<br>ght e<br>late<br>0 ps<br>, Lu=<br>accc<br>oof l<br>oothe<br>nere<br>s due | b B; Enclosed; M<br>5-0 to 21-6-0, Int<br>exposed ; end ve<br>grip DOL=1.60<br>if (ground snow)<br>50-0-0; Min. flat<br>ordance with IBC<br>oad of 11.6 psf of<br>r live loads.<br>a rectangle 3-6-<br>to UPLIFT at jt<br>le top and/or bot | IWFRS (<br>erior(1) 2<br>ertical left<br>; Pf=16.5<br>t roof snc<br>c 1608.3.<br>on overha<br>0 tall by<br>(s) 2 and<br>tom chor | envelop<br>21-6-0 ti<br>t and rig<br>5 psf (fla<br>w load<br>4.<br>angs<br>2-0-0 w<br>I 10. Th<br>rd. | be)<br>o<br>ght<br>at<br>ide<br>is    | Summer Street                                                | SEAL<br>044925                                  | The summer of the second secon |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MiTek Affiliate 818 Soundside Road Edenton, NC 27932





| L 8-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 17-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34-1-5                                                                                                                                                                                             | 43-0-0                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 8-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 8-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-7-5                                                                                                                                                                                              | 8-10-11                                                 |
| Plate Offsets (X,Y) [2:0-0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,0-0-9], [11:0-0-15,0-0-9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                         |
| LOADING (psf)<br>TCLL (roof) 20.0<br>Snow (Pf/Pg) 16.5/15.0<br>TCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI.         DEFL.           TC         0.76         Vert(LL)           BC         0.90         Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in (loc) I/defl L/d<br>-0.31 15 >999 240<br>-0.64 15-16 >806 180                                                                                                                                   | PLATES         GRIP           MT20         197/144      |
| BCLL 0.0 *<br>BCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MB 0.69 Horz(CT)<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) 0.16 11 n/a n/a                                                                                                                                                                                  | Weight: 252 lb FT = 20%                                 |
| LUMBER-           TOP CHORD         2x4 SP No.2 or<br>6-7: 2x6 SP No.           BOT CHORD         2x6 SP No.2           WEBS         2x4 SP No.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x4 SPF No.2 *Except*<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Structural wood sheathing directly<br>2-0-0 oc purlins (3-3-1 max.): 6-7.<br>Rigid ceiling directly applied or 10-<br>1 Row at midpt 7-16                                                          | applied or 2-2-0 oc purlins, except<br>-0-0 oc bracing. |
| REACTIONS. (size) 2=0-<br>Max Horz 2=86<br>Max Uplift 2=-1<br>Max Grav 2=17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-8, 11=0-3-8<br>(LC 20)<br>82(LC 12), 11=-182(LC 13)<br>'70(LC 2), 11=1770(LC 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                         |
| FORCES. (lb) - Max. Comp./M<br>TOP CHORD 2-3=-4358/414<br>8-10=-4079/32<br>BOT CHORD 2-18=-402/40<br>WEBS 3-18=-295/163<br>8-15=-757/16<br>NOTES-<br>1) Unbalanced roof live loads ha<br>2) Wind: ASCE 7-10; Vult=120n<br>gable end zone and C-C Exte<br>25-6-0, Exterior(2) 25-6-0 to 3<br>exposed;C-C for members ar<br>3) TCLL: ASCE 7-10; PT=20.0 p<br>roof snow: Lumber DDL=1.1f<br>governs. Rain surcharge app<br>4) Unbalanced snow loads have<br>5) This truss has been designed<br>non-concurrent with other live<br>6) Provide adequate drainage to<br>7) This truss has been designed<br>will fit between the bottom ch<br>9) One H2.5A Simpson Strong-<br>connection is for uplift only ar<br>10) Graphical purifin represental | ax. Ten All forces 250 (lb) or less exc.<br>ax. Ten All forces 250 (lb) or less exc.<br>b. 3-5=-4078/344, 5-6=-3257/316, 6-7=-3<br>c. 4, 10-11=-4358/414<br>c. 4, 10-11=-4358/414<br>c. 5-18=0/473, 5-16=-756/161, 6-16=0/6<br>c. 7, 8-13=0/475, 10-13=-295/164<br>ave been considered for this design.<br>by Vasd=95mph; TCDL=6.0psf; BCDL=<br>crior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2<br>c. 7, Interior(1) 31-7-0 to 43-10-8 zone<br>d forces & MWFRS for reactions shown<br>sf (roof live load: Lumber DOL=1.15 Pla<br>considered for this design.<br>lifed to all exposed surfaces with slopes<br>been considered for this design.<br>for greater of min roof live load of 12.0<br>considered for this design.<br>for a 10.0 psf bottom chord live load no<br>cd for a live load of 20.0psf on the bottor<br>ord and any other members, with BCDL<br>connectors recommended to connect<br>in does not consider lateral forces. | apt when shown.<br>1041/325, 7-8=-3256/316,<br>13-15=-237/3584, 11-13=-337/4044<br>20, 7-16=-248/251, 7-15=0/619,<br>16.0psf; h=30ft; Cat. II; Exp B; Enclosed;<br>to 17-6-0, Exterior(2) 17-6-0 to 23-7-0, Ir<br>a; cantilever left and right exposed ; end v<br>; Lumber DOL=1.60 plate grip DOL=1.60<br>the DOL=1.15); Pg=15.0 psf (ground snow<br>tartially Exp.; Ct=1.10, Lu=50-0-0; Min. fk<br>less than 0.500/12 in accordance with IB<br>posf or 1.00 times flat roof load of 11.6 psf<br>nconcurrent with any other live loads.<br>n chord in all areas where a rectangle 3-f<br>= 10.0psf.<br>truss to bearing walls due to UPLIFT at<br>ation of the purlin along the top and/or br | MWFRS (envelope)<br>tterior(1) 23-7-0 to<br>vertical left and right<br>); Pf=16.5 psf (flat<br>at roof snow load<br>C 1608.3.4.<br>Ton overhangs<br>5-0 tall by 2-0-0 wide<br>jt(s) 2 and 11. This | SEAL<br>044925                                          |

January 21,2021

ENGINEERING BY EREPACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





| L 9-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-11 19-6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 023-6-                                                                                                                                                                                                                                                                                                                                              | 0 33-1-5                                                                                                                                                                                                                                                                                                                            | 1                                                                                                    | 43-0-0                                       |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-11 9-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 4-0-0                                                                                                                                                                                                                                                                                                                                             | ) 9-7-5                                                                                                                                                                                                                                                                                                                             | 1                                                                                                    | 9-10-11                                      |                        |
| Plate Offsets (X,Y) [2:0-1-3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,0-0-9], [11:0-1-3,0-0-9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                              |                        |
| LOADING (psf)<br>TCLL (roof) 20.0<br>Snow (Pf/Pg) 16.5/15.0<br>TCDI 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CSI.</b><br>TC 0.91<br>BC 0.94                                                                                                                                                                                                                                                                                                                   | DEFL. in (I<br>Vert(LL) -0.33 13<br>Vert(CT) -0.67 13                                                                                                                                                                                                                                                                               | oc) l/defl L/d<br>.15 >999 240<br>.15 >760 180                                                       | PLATES<br>MT20                               | <b>GRIP</b><br>197/144 |
| BCLL 0.0 *<br>BCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WB 0.31<br>Matrix-S                                                                                                                                                                                                                                                                                                                                 | Horz(CT) 0.16                                                                                                                                                                                                                                                                                                                       | 11 n/a n/a                                                                                           | Weight: 249 lb                               | FT = 20%               |
| LUMBER-<br>TOP CHORD 2x4 SP No.2 or<br>BOT CHORD 2x6 SP No.2<br>WEBS 2x4 SP No.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x4 SPF No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BR<br>TO<br>BC<br>WE                                                                                                                                                                                                                                                                                                                                | ACING-<br>P CHORD Structural v<br>2-0-0 oc pu<br>T CHORD Rigid ceilin<br>EBS 1 Row at m                                                                                                                                                                                                                                             | rood sheathing directly a<br>rlins (3-3-13 max.): 6-7.<br>g directly applied or 2-2-<br>idpt 5-16, 8 | applied, except<br>-<br>0 oc bracing.<br>-15 |                        |
| Max Horz 2=90<br>Max Uplift 2=-1<br>Max Grav 2=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6(LC 16)<br>172(LC 12), 11=-172(LC 13)<br>770(LC 2), 11=1770(LC 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                              |                        |
| FORCES.         (lb) - Max. Comp./M           TOP CHORD         2-3=-4364/383           8-10=-4080/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. Ten All forces 250 (lb) or less exc<br>5, 3-5=-4079/305, 5-6=-3024/281, 6-7=-2<br>05, 10-11=-4365/385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ept when shown.<br>2787/292, 7-8=-3022/281,                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                              |                        |
| BOT CHORD 2-18=-378/400<br>WEBS 3-18=-357/182<br>8-13=0/577, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67, 16-18=-252/3533, 15-16=-98/2785, 1<br>2, 5-18=0/575, 5-16=-900/180, 6-16=-3/6<br>10-13=-356/182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-15=-196/3533, 11-13=-<br>662, 7-15=-28/660, 8-15=-                                                                                                                                                                                                                                                                                                | 305/4068<br>902/180,                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                              |                        |
| <ul> <li>NOTES-</li> <li>1) Unbalanced roof live loads in:</li> <li>2) Wind: ASCE 7-10; Vult=120n gable end zone and C-C Ext: 43-10-8 zone; cantilever left : reactions shown; Lumber DC</li> <li>3) TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.1! governs. Rain surcharge app</li> <li>4) Unbalanced snow loads have</li> <li>5) This truss has been designed non-concurrent with other live</li> <li>6) Provide adequate drainage tt</li> <li>7) This truss has been designed</li> <li>8) * This truss has been designed</li> <li>8) * This truss has been designed</li> <li>9) One H2.5A Simpson Strong-connection is for uplift only at</li> <li>10) Graphical purlin representation</li> </ul> | ave been considered for this design.<br>mph Vasd=95mph; TCDL=6.0psf; BCDL=<br>erior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2<br>and right exposed ; end vertical left and in<br>DL=1.60 plate grip DOL=1.60<br>sof (roof live load: Lumber DOL=1.15 Plate<br>5 Plate DOL=1.15); Category II; Exp B; F<br>plied to all exposed surfaces with slopes<br>e been considered for this design.<br>d for greater of min roof live load of 12.0<br>e loads.<br>o prevent water ponding.<br>d for a 10.0 psf bottom chord live load no<br>ed for a live load of 20.0psf on the bottor<br>ord and any other members.<br>Tie connectors recommended to connec<br>nd does not consider lateral forces.<br>tion does not depict the size or the orient | =6.0psf; h=30ft; Cat. II; Ex<br>to 19-6-0, Exterior(2) 19-0<br>right exposed;C-C for mer<br>te DOL=1.15); Pg=15.0 pc<br>Partially Exp.; Ct=1.10, Lu-<br>less than 0.500/12 in accor-<br>psf or 1.00 times flat roof l<br>onconcurrent with any other<br>n chord in all areas where<br>t truss to bearing walls du<br>tation of the purlin along the | p B; Enclosed; MWFRS (en<br>6-0 to 29-7-0, Interior(1) 29-<br>nbers and forces & MWFRS<br>sf (ground snow); Pf=16.5 p<br>50-0-0; Min. flat roof snow<br>ordance with IBC 1608.3.4.<br>load of 11.6 psf on overham<br>er live loads.<br>a rectangle 3-6-0 tall by 2-0<br>e to UPLIFT at jt(s) 2 and 1<br>ne top and/or bottom chord. | /elope)<br>7-0 to<br>for<br>sf (flat<br>load<br>gs<br>I-0 wide<br>1. This                            | SEAL<br>044925                               | Mee.                   |



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Truss Type                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qty                                                                                                                                                               | Ply                                                                                       | KB Home 243.29                                                                                | 939.B                                                       |                                                    | 144450054                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| 243_2939_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hip Girder                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                 | 2                                                                                         |                                                                                               |                                                             |                                                    | 144459051                                     |
| 84 Components (Dunn),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dunn, NC - 28334,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4                                                                                                                                                               | 130 s Nov 3                                                                               | Job Reference (o<br>30 2020 MiTek Ind                                                         | ptional)<br>lustries, Inc. We                               | ed Jan 20 13:35:30 20                              | 21 Page 1                                     |
| -0-10-8 5-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11-11-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18-3-15                                                                                                                                                                                                                                                                                                                                                    | <br>24-8-1                                                                                                                                                                                                                                                                                                                                                                                                                                              | D:XZssjAHNe                                                                                                                                                       | _IVplcdoAj<br>31-0-2                                                                      | Gq3ztm9T-Hdzk_                                                                                | TnGagKWBLtx3                                                | Aqg3yYuTi6eoeo9Oo                                  | XKcoztRzx                                     |
| 0-10-8 5-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-5-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-4-2                                                                                                                                                                                                                                                                                                                                                      | 6-4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 6-4-2                                                                                     |                                                                                               | 6-5-14                                                      | 5-6-0                                              | 0-10-8                                        |
| 4.00 12 NAIL<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ED NAIL<br>$x_8 = \frac{2}{3}$ NAILED NAILED 2<br>$x_{0} = \frac{2}{2}$ NAILED NAILED 2<br>NAILED | ED NAILED<br>x4    NAILED<br>4 22 23 24<br>1 22 24<br>1 24                                                                                                                                                                                                                                                                                                 | NAILED NAILED N/<br>8x8 = NAILED<br>$25 \frac{5}{26} 27 \times 28 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                      | AILED NAILED<br>2x4   <br>29 630 2<br>0 0 0 0                                                                                                                     | NAILED N<br>31 32                                                                         | NAILED<br>NAILED $8x12 = NA$                                                                  | AllED NAILED<br>3년 25<br>교 교                                | NAILED<br>6x6 =<br>9                               | Scale = 1:73.4                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | מאי עם עם איי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   | 0.0                                                                                       | Դանս _ տ                                                                                      |                                                             |                                                    |                                               |
| 4x6 = 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>19</sup> 37 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>18</sup> <sup>39</sup> 17 <sup>40</sup> 4                                                                                                                                                                                                                                                                                                             | 1 42 <sup>16</sup> 43 44                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 <sup>15</sup> 46                                                                                                                                               | 47                                                                                        | 14 48 <sup>13</sup> 49                                                                        | 50 51                                                       | <sup>12</sup> 52                                   | 4x6 =                                         |
| LUS24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2x4    NAILED NAILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10x12 MT18HS =                                                                                                                                                                                                                                                                                                                                             | 2x4    NAILED                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4x8 =                                                                                                                                                             | NAILED N                                                                                  | IAILED 2x4    NA                                                                              | AILED NAILED                                                | 6x6 = LUS24                                        |                                               |
| ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAILED 5x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 = NAILED                                                                                                                                                                                                                                                                                                                                                | NAILED NAILED NA                                                                                                                                                                                                                                                                                                                                                                                                                                        | AILED NAILED                                                                                                                                                      | 10x12 M                                                                                   | 1T18HS =                                                                                      | N                                                           | AILED                                              |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED NAILED                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   |                                                                                           | NAILED                                                                                        |                                                             |                                                    |                                               |
| <u>5-6-0</u><br>5-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>11-11-14</u><br>6-5-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18-3-15<br>6-4-2                                                                                                                                                                                                                                                                                                                                           | 24-8-1<br>6-4-2                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   | <u>31-0-2</u><br>6-4-2                                                                    |                                                                                               | <u>37-6-0</u><br>6-5-14                                     | 43-0-0                                             |                                               |
| Plate Offsets (X,Y) [2:0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2-15,0-0-4], [3:0-4-0,0-2-6],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [5:0-2-4,0-4-8], [7:                                                                                                                                                                                                                                                                                                                                       | 0-5-12,0-4-8], [9:0-3-0,0-2                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-11], [10:0-3-                                                                                                                                                   | 3,0-0-4], [                                                                               | 12:0-2-4,0-3-0], [                                                                            | 18:0-5-4,0-2-0                                              | ]                                                  |                                               |
| LOADING         (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         16.5/15.0           TCDL         10.0           BCLL         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code JBC2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>NO<br>TPI2014                                                                                                                                                                                                                                                                                                                     | <b>CSI.</b><br>TC 0.92<br>BC 0.69<br>WB 0.81<br>Matrix_S                                                                                                                                                                                                                                                                                                                                                                                                | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT                                                                                                                          | in<br>-0.95<br>-1.91<br>) 0.20                                                            | (loc) l/defl<br>15-16 >540<br>15-16 >268<br>10 n/a                                            | L/d<br>240<br>180<br>n/a                                    | PLATES<br>MT20<br>MT18HS<br>Weight: 511 lb         | <b>GRIP</b><br>197/144<br>244/190<br>FT = 20% |
| BCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1712014                                                                                                                                                                                                                                                                                                                                                    | Wath - S                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                           |                                                                                               |                                                             | weight. 511 b                                      | FT = 2076                                     |
| TOP CHORD 2x6 SP No.<br>1-3,9-11: 2:<br>BOT CHORD 2x6 SP DS:<br>WEBS 2x4 SP No.<br>3-18,7-12: 2:<br><b>REACTIONS.</b> (size)<br>Max Horz<br>Max Uplift<br>Max Grav<br>FORCES. (lb) - Max. Con<br>TOP CHORD 2-3=-806<br>7-9=-746<br>BOT CHORD 2-19=-102<br>13-15=-21<br>WEBS 3-19=-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 *Except*<br>x4 SP No.2 or 2x4 SPF No.:<br>S<br>3 *Except*<br>2x4 SP No.2 or 2x4 SPF Nc<br>2=0-3-8, 10=0-3-8<br>2=30(LC 58)<br>2=-477(LC 8), 10=-478(LC<br>2=3057(LC 2), 10=3063(LC<br>np./Max. Ten All forces 25<br>8/1190, 3-4=-13766/2102, 4<br>99/1137, 9-10=-8165/1202<br>92/7528, 18-19=-1096/7499<br>063/13942, 12-13=-2063/13<br>2: 3.18-11029(6600 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>9)<br>2)<br>0 (lb) or less excep<br>-5=-13762/2100, 5-<br>, 16-18=-2536/169;<br>942, 10-12=-1082/<br>-98/2/15, 5-18=-03;                                                                                                                                                                                                                              | TOP<br>BOT<br>WEB<br>-6=-16759/2545, 6-7=-167<br>73, 15-16=-2536/16973,<br>7637<br>276721 5-16=-0/508                                                                                                                                                                                                                                                                                                                                                   | CHORD<br>CHORD<br>S                                                                                                                                               | Structura<br>2-0-0 oc<br>Rigid cei<br>1 Row a                                             | al wood sheathin<br>purlins (2-6-7 m<br>ling directly appl<br>t midpt                         | g directly applid<br>ax.): 3-9.<br>ied or 10-0-0 or<br>7-12 | ed or 3-9-9 oc purlins<br>c bracing.               | s, except                                     |
| 5-15=-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/49, 6-15=-611/263, 7-15=-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -450/2970, 7-13=0/-                                                                                                                                                                                                                                                                                                                                        | 480, 7-12=-6794/1064,                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                           |                                                                                               |                                                             |                                                    |                                               |
| <ul> <li>5-15=-200<br/>9-12=-201</li> <li>9-12=-201</li> <li>9-12=-201</li> <li>NOTES-</li> <li>1) 2-ply truss to be connected<br/>Bottom chords connected as<br/>Bottom chords connected as follo</li> <li>2) All loads are considered<br/>ply connections have be</li> <li>3) Unbalanced roof live load</li> <li>4) Wind: ASCE 7-10; Vult=<br/>gable end zone; cantilev</li> <li>5) TCLL: ASCE 7-10; Pr=21<br/>roof snow: Lumber DOL=<br/>exposed surfaces with sl</li> <li>6) Unbalanced snow loads</li> <li>7) This truss has been desi<br/>non-concurrent with other</li> <li>8) Provide adequate draina</li> <li>9) All plates are MT20 plate</li> <li>10) This truss has been det</li> <li>11) * This truss has been det</li> <li>Marking - Verify design</li> </ul> | 20/49, 6-15=-611/263, 7-15=-<br>7/2237<br>ted together with 10d (0.131<br>s follows: 2x4 - 1 row at 0-9<br>d as follows: 2x6 - 2 rows sf<br>ws: 2x4 - 1 row at 0-9-0 oc.<br>equally applied to all plies,<br>en provided to distribute onl<br>ds have been considered fo<br>120mph Vasd=95mph; TCD<br>er left and right exposed ; e<br>0.0 psf (roof live load: Lumb<br>=1.15 Plate DOL=1.15); Cat<br>lopes less than 0.500/12 in<br>have been considered for ti<br>gned for greater of min roof<br>er live loads.<br>rige to prevent water ponding<br>es unless otherwise indicate<br>signed for a 10.0 psf bottom<br>lesigned for a live load of 20<br>om chord and any other me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "x3") nails as follow<br>0 oc, 2x6 - 2 rows<br>aggered at 0-9-0 o<br>except if noted as f<br>y loads noted as (F<br>r this design.<br>L=6.0psf; BCDL=6<br>nd vertical left and<br>er DOL=1.15 Plate<br>egory II; Exp B; Pa<br>accordance with IB<br>is design.<br>live load of 12.0 ps<br>g.<br>d.<br>chord live load noi<br>.0psf on the bottom<br>mbers. | <ul> <li>460, 7-12=-6734/1064,</li> <li>vs: staggered at 0-9-0 oc.</li> <li>c.</li> <li>ront (F) or back (B) face ir</li> <li>r) or (B), unless otherwise</li> <li>.0psf; h=30ft; Cat. II; Exp  </li> <li>right exposed; Lumber DC</li> <li>DOL=1.15); Pg=15.0 psf</li> <li>rtially Exp.; Ct=1.10, Lu=5</li> <li>C 1608.3.4.</li> <li>sf or 1.00 times flat roof loat</li> <li>nconcurrent with any othe</li> <li>n chord in all areas where</li> </ul> | n the LOAD C<br>indicated.<br>B; Enclosed;<br>DL=1.60 plate<br>(ground snov<br>00-00 Rain s<br>ad of 11.6 psl<br>ad of 11.6 psl<br>r live loads.<br>a rectangle 3 | ASE(S) so<br>MWFRS (<br>grip DOL<br>v); Pf=16.5<br>urcharge<br>f on overh<br>-6-0 tall by | ection. Ply to<br>envelope)<br>=1.60<br>5 psf (flat<br>applied to all<br>angs<br>y 2-0-0 wide |                                                             | SEAL<br>044925<br>MGINEE<br>January 21,2           | WIE HILL                                      |
| WarkNING - Venty design<br>Design valid for use only wi<br>a truss system. Before use,<br>building design. Bracing in<br>is always required for stabil<br>fabrication, storage, deliver<br>Safety Information availa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I parameters and KEAD NOTES ON<br>th MiTek® connectors. This design<br>the building designer must verify th<br>dicated is to prevent buckling of ind<br>ity and to prevent collapse with pos<br>y, erection and bracing of trusses a<br>ble from Truss Plate Institute, 2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is based only upon para<br>e applicability of design<br>vidual truss web and/or<br>sible personal injury and<br>nd truss systems, see<br>Crain Highway, Suite 20                                                                                                                                                                                           | MILER REFERENCE PAGE MIL-72<br>imeters shown, and is for an indiv<br>parameters and properly incorpo<br>chord members only. Additional<br>I property damage. For general <u>c</u><br>ANS/TP11 Quality Criter<br>33 Waldorf, MD 20601                                                                                                                                                                                                                    | */ 3 rev. 5/19/2021<br>vidual building co<br>prate this design i<br>temporary and p<br>guidance regardin<br>ria, DSB-89 and                                       | into the overa<br>ermanent brand the<br>BCSI Buildi                                       | SE.<br>at<br>aali<br>acing<br>ing Component                                                   |                                                             | A MiTek<br>818 Soundside Road<br>Edenton, NC 27932 |                                               |

| Job                   | Truss             | Truss Type | Qty     | Ply       | KB Home 243.2939.B                                      |           |
|-----------------------|-------------------|------------|---------|-----------|---------------------------------------------------------|-----------|
|                       |                   |            |         |           |                                                         | I44459051 |
| 243_2939_B            | HG1               | Hip Girder | 1       | 2         |                                                         |           |
|                       |                   |            |         | 2         | Job Reference (optional)                                |           |
| 84 Components (Dunn), | Dunn, NC - 28334, |            | 8.4     | 430 s Nov | 30 2020 MiTek Industries, Inc. Wed Jan 20 13:35:31 2021 | Page 2    |
|                       |                   | ID:XZ      | SsiAHNe | IVplcdoAj | Gq3ztm9T-lqX6BpouL SNpVR7duMvbA53C6RtX52JdSHt9          | EztRzw    |

## NOTES-

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 35-10-8 oc max. starting at 3-6-12 from the left end to 39-5-4 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

### LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-43, 3-9=-53, 9-11=-43, 2-10=-20

Concentrated Loads (lb)

Vert: 3=-67(B) 9=-67(B) 19=-33(B) 12=-33(B) 8=-62(B) 20=-62(B) 21=-62(B) 22=-62(B) 23=-62(B) 24=-62(B) 25=-62(B) 27=-62(B) 28=-62(B) 29=-62(B) 32=-62(B) 32=-62(B) 33=-62(B) 34=-62(B) 35=-62(B) 35=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





|                                                                                                                                                                              |                                                                                     |                                                   | 5-6-0                                           |                                               |                               |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LOADING (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         11.6/15.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | CSI.<br>TC 0.51<br>BC 0.35<br>WB 0.00<br>Matrix-P | DEFL.<br>Vert(LL) -<br>Vert(CT) -<br>Horz(CT) - | in (loc)<br>-0.05 2-4<br>-0.09 2-4<br>-0.00 3 | l/defl<br>>999<br>>675<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 18 lb | <b>GRIP</b><br>197/144<br>FT = 20% |

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=70(LC 12) Max Uplift 3=-66(LC 16), 2=-47(LC 12)

Max Grav 3=153(LC 2), 2=279(LC 2), 4=106(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932



|                                                                                                                                                                                | ł                                                                                |                                      |                                         |                             | 3-0-0                                     |                               |                          |                               |                          |                                 |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------|-------------------------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
|                                                                                                                                                                                |                                                                                  |                                      |                                         |                             | 3-0-0                                     |                               |                          |                               |                          |                                 |                                    |
| LOADING (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         11.6/15.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0 | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2015/TPI: | 2-0-0<br>1.15<br>1.15<br>YES<br>2014 | <b>CSI.</b><br>TC<br>BC<br>WB<br>Matriz | 0.16<br>0.13<br>0.00<br>x-P | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.01<br>-0.01<br>-0.00 | (loc)<br>2-4<br>2-4<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 12 lb | <b>GRIP</b><br>197/144<br>FT = 20% |

## LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=48(LC 12) Max Uplift 3=-41(LC 16), 2=-43(LC 12)

Max Grav 3=89(LC 2), 2=202(LC 2), 4=66(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





|                                                                                                                                                                                      | <u> </u>                                                                                                | -6-0<br>-6-0                                      |                                                               | 3-6-0<br>2-0-0                            |                          |                                 |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|--------------------------|---------------------------------|------------------------------------|
| LOADING         (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         16.5/15.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.08<br>BC 0.18<br>WB 0.02<br>Matrix-P | DEFL. in<br>Vert(LL) -0.01<br>Vert(CT) -0.02<br>Horz(CT) 0.01 | (loc) l/defl<br>6 >999<br>6 >999<br>4 n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 13 lb | <b>GRIP</b><br>197/144<br>FT = 20% |

## LUMBER-

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=27(LC 13)

Max Uplift 2=-51(LC 12), 4=-19(LC 13) Max Grav 5=74(LC 7), 2=203(LC 36), 4=65(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
   Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
   One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
- 10) One H2.5A Simpson Strong-Tile connectors recommended to connect truss to bearing wails due to OPLIFT at Jt(s) 2. If connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





|                                                                                                                                                                              |                                                                                                        | <u>3-6-0</u><br>3-6-0                             |                                                                                                                    | <u>5-6-0</u><br>2-0-0                                         |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|------------------------------------|
| LOADING (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         16.5/15.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.37<br>BC 0.20<br>WB 0.02<br>Matrix-S | DEFL.         in           Vert(LL)         -0.01           Vert(CT)         -0.03           Horz(CT)         0.00 | (loc) l/defl L/d<br>2-6 >999 240<br>2-6 >999 180<br>5 n/a n/a | PLATES<br>MT20<br>Weight: 26 lb | <b>GRIP</b><br>197/144<br>FT = 20% |

LUMBER-

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-6-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=Mechanical, 2=0-3-8 Max Horz 2=50(LC 9) Max Uplift 5=-26(LC 8), 2=-51(LC 8) Max Grav 5=242(LC 2), 2=339(LC 32)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
   Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 3-4=-53, 2-5=-20 Concentrated Loads (lb)

Vert: 3=-16(F) 6=-13(F) 8=-43(F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932



- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



|                                                                    |                                                                    | 0-3-8                                                                              |                                                   | 6-                                        | -8-8                                 |                                 |                                 |                              | 1                                           |                                    |
|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------------------|------------------------------------|
| Plate Offsets (                                                    | (X,Y) [4:Edge,0                                                    | )-2-0]                                                                             |                                                   |                                           |                                      |                                 |                                 |                              |                                             |                                    |
| LOADING (ps<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | sf)<br>20.0<br>11.6/15.0<br>10.0<br>0.0 *<br>10.0                  | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014 | CSI.<br>TC 0.26<br>BC 0.12<br>WB 0.05<br>Matrix-P | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>0.00<br>-0.01<br>0.00          | (loc)<br>1<br>1<br>5            | l/defl<br>n/r<br>n/r<br>n/a     | L/d<br>120<br>120<br>n/a     | PLATES<br>MT20<br>Weight: 27 lb             | <b>GRIP</b><br>197/144<br>FT = 20% |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS                | 2x4 SP No.2 or 2<br>2x4 SP No.2 or 2<br>2x4 SP No.3<br>2x4 SP No.3 | 2x4 SPF No.2<br>2x4 SPF No.2                                                       | <b>В</b><br>Т                                     | RACING-<br>OP CHORD<br>OT CHORD           | Structura<br>except ei<br>Rigid ceil | I wood<br>nd verti<br>ling dire | sheathin<br>cals.<br>ectly appl | g directly a<br>lied or 10-0 | pplied or 6-0-0 oc purlir<br>-0 oc bracing. | S,                                 |

REACTIONS. (size) 5=6-8-8, 2=6-8-8, 6=6-8-8 Max Horz 2=46(LC 20) Max Uplift 5=-27(LC 17), 2=-64(LC 12) Max Grav 5=107(LC 2), 2=288(LC 2), 6=266(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-10-8 to 1-1-8, Exterior(2) 1-1-8 to 3-11-0, Corner(3) 3-11-0 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) n/a

11) Non Standard bearing condition. Review required.



TRENGING BY A Mi Tek Attiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



January 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek 818 Soundside Road Edenton, NC 27932



| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8-0-11                                                                                                                                                                                                                                                                                                                                                                           | 15-11-                                                                                                                                                                      | 5                                                                                                                        |                                                                                  |                               | 24-0-0                         |                                         |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-0-11                                                                                                                                                                                                                                                                                                                                                                           | 7-10-1                                                                                                                                                                      | 0                                                                                                                        |                                                                                  |                               | 8-0-11                         | 1                                       |                                    |
| Plate Offsets (X,Y) [2:0-0-0,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1-8], [2:0-1-8,0-5-3], [6:0-0-0,0-1-8], [6                                                                                                                                                                                                                                                                                                                                      | :0-1-8,0-5-3]                                                                                                                                                               |                                                                                                                          |                                                                                  |                               |                                |                                         |                                    |
| LOADING         (psf)           TCLL (roof)         20.0           Snow (Pf/Pg)         11.6/15.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0                                                                                                                                                                                                                                                                                                       | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                              | <b>CSI.</b><br>TC 0.49<br>BC 0.70<br>WB 0.22<br>Matrix-S                                                                                                                    | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                | in (loc)<br>-0.15 8-10<br>-0.25 6-8<br>0.05 6                                    | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a       | <b>PLATES</b><br>MT20<br>Weight: 112 lb | <b>GRIP</b><br>197/144<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 SP No.2 or 2:<br>BOT CHORD 2x4 SP No.2 or 2:<br>WEBS 2x4 SP No.3<br>WEDGE<br>Left: 2x4 SP No.3 , Right: 2x4 SP                                                                                                                                                                                                                                                                                                                                                      | x4 SPF No.2<br>x4 SPF No.2<br>No.3                                                                                                                                                                                                                                                                                                                                               | BR<br>TC<br>BC                                                                                                                                                              | RACING-<br>OP CHORD S<br>OT CHORD F                                                                                      | Structural woo<br>Rigid ceiling di                                               | d sheathing<br>rectly appli   | g directly app<br>ed or 10-0-0 | lied or 4-1-9 oc purlins<br>oc bracing. |                                    |
| REACTIONS. (size) 2=0-3<br>Max Horz 2=-92<br>Max Uplift 2=-69<br>Max Grav 2=101                                                                                                                                                                                                                                                                                                                                                                                                              | -8, 6=0-3-8<br>(LC 17)<br>(LC 16), 6=-69(LC 17)<br>10(LC 2), 6=1010(LC 2)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                          |                                                                                  |                               |                                |                                         |                                    |
| FORCES.         (lb) - Max. Comp./Ma           TOP CHORD         2-3=-1586/112,           BOT CHORD         2-10=-114/1343           WEBS         4-8=-59/528, 5                                                                                                                                                                                                                                                                                                                             | ux. Ten All forces 250 (lb) or less exc<br>3-4=-1408/134, 4-5=-1408/134, 5-6=-1<br>3, 8-10=0/906, 6-8=-36/1343<br>8=-323/174, 4-10=-59/528, 3-10=-323/                                                                                                                                                                                                                           | ept when shown.<br>586/112<br>174                                                                                                                                           |                                                                                                                          |                                                                                  |                               |                                |                                         |                                    |
| <ul> <li>NOTES-</li> <li>1) Unbalanced roof live loads hav</li> <li>2) Wind: ASCE 7-10; Vult=120mp</li> <li>gable end zone and C-C Exteri</li> <li>24-10-8 zone; cantilever left ar</li> <li>reactions shown; Lumber DOL-</li> <li>3) TCLL: ASCE 7-10; Pr=20.0 psi</li> <li>roof snow: Lumber DOL=1.15 I</li> <li>4) Unbalanced snow loads have t</li> <li>5) This truss has been designed f</li> <li>non-concurrent with other live I</li> <li>6) This trues has been designed f</li> </ul> | ve been considered for this design.<br>bh Vasd=95mph; TCDL=6.0psf; BCDL=<br>ior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8<br>hd right exposed ; end vertical left and r<br>=1.60 plate grip DOL=1.60<br>f (roof live load: Lumber DOL=1.15 Pla<br>Plate DOL=1.15); Category II; Exp B; F<br>been considered for this design.<br>for greater of min roof live load of 12.0<br>loads. | =6.0psf; h=30ft; Cat. II; Ex<br>to 12-0-0, Exterior(2) 12-<br>ight exposed;C-C for mer<br>te DOL=1.15); Pg=15.0 p<br>'artially Exp.; Ct=1.10<br>psf or 1.00 times flat roof | p B; Enclosed; Mi<br>0-0 to 15-0-0, Inte<br>nbers and forces<br>sf (ground snow);<br>load of 11.6 psf o<br>ar live loads | WFRS (envelo<br>erior(1) 15-0-0<br>& MWFRS for<br>Pf=11.6 psf (f<br>on overhangs | ope)<br>to<br>                |                                | H CARO                                  | N. R.                              |

- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





ENGINEERING BY ERENCO A Millek Attiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



|                                                                    |                                                                                   |                                                                                    | 23                                                       | -8-8                                      |                                   |                                   |                                 |                                | 1                                           |                                    |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|--------------------------------|---------------------------------------------|------------------------------------|
| Plate Offsets (                                                    | X,Y) [2:0-0-0,0                                                                   | )-1-0], [2:0-1-8,0-5-3]                                                            |                                                          |                                           |                                   |                                   |                                 |                                |                                             |                                    |
| LOADING (ps<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | sf)<br>20.0<br>11.6/15.0<br>10.0<br>0.0 *<br>10.0                                 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014 | <b>CSI.</b><br>TC 0.05<br>BC 0.04<br>WB 0.09<br>Matrix-S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.00<br>-0.00<br>0.00      | (loc)<br>1<br>1<br>15             | l/defl<br>n/r<br>n/r<br>n/a     | L/d<br>120<br>120<br>n/a       | PLATES<br>MT20<br>Weight: 131 lb            | <b>GRIP</b><br>197/144<br>FT = 20% |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS                | 2x4 SP No.2 or 2<br>2x4 SP No.2 or 2<br>2x4 SP No.3<br>2x4 SP No.3<br>2x4 SP No.3 | 2x4 SPF No.2<br>2x4 SPF No.2                                                       |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD        | Structura<br>except e<br>Rigid ce | al wood<br>nd verti<br>iling dire | sheathin<br>cals.<br>ectly appl | g directly ap<br>ied or 10-0-0 | oplied or 6-0-0 oc purlins<br>0 oc bracing. | ,                                  |

23-8-8

WEDGE Left: 2x4 SP No.3

- REACTIONS. All bearings 23-8-8.
  - (lb) Max Horz 2=96(LC 16) Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 23, 25, 26, 27, 20, 19, 18,
    - 17, 16 Max Grav All reactions 250 lb or less at joint(s) 15, 2, 21, 22, 23, 25, 26, 27, 20, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 12-0-0, Corner(3) 12-0-0 to 15-0-0, Exterior(2) 15-0-0 to 23-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 TRENCO

818 Soundside Road Edenton, NC 27932



#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 4-0-0, Interior(1) 4-0-0 to 6-10-12, Exterior(2) 6-10-12 to 9-9-8, Interior(1) 9-9-8 to 13-0-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 4-5-15, Exterior(2) 4-5-15 to 7-5-15, Interior(1) 7-5-15 to 8-2-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



