

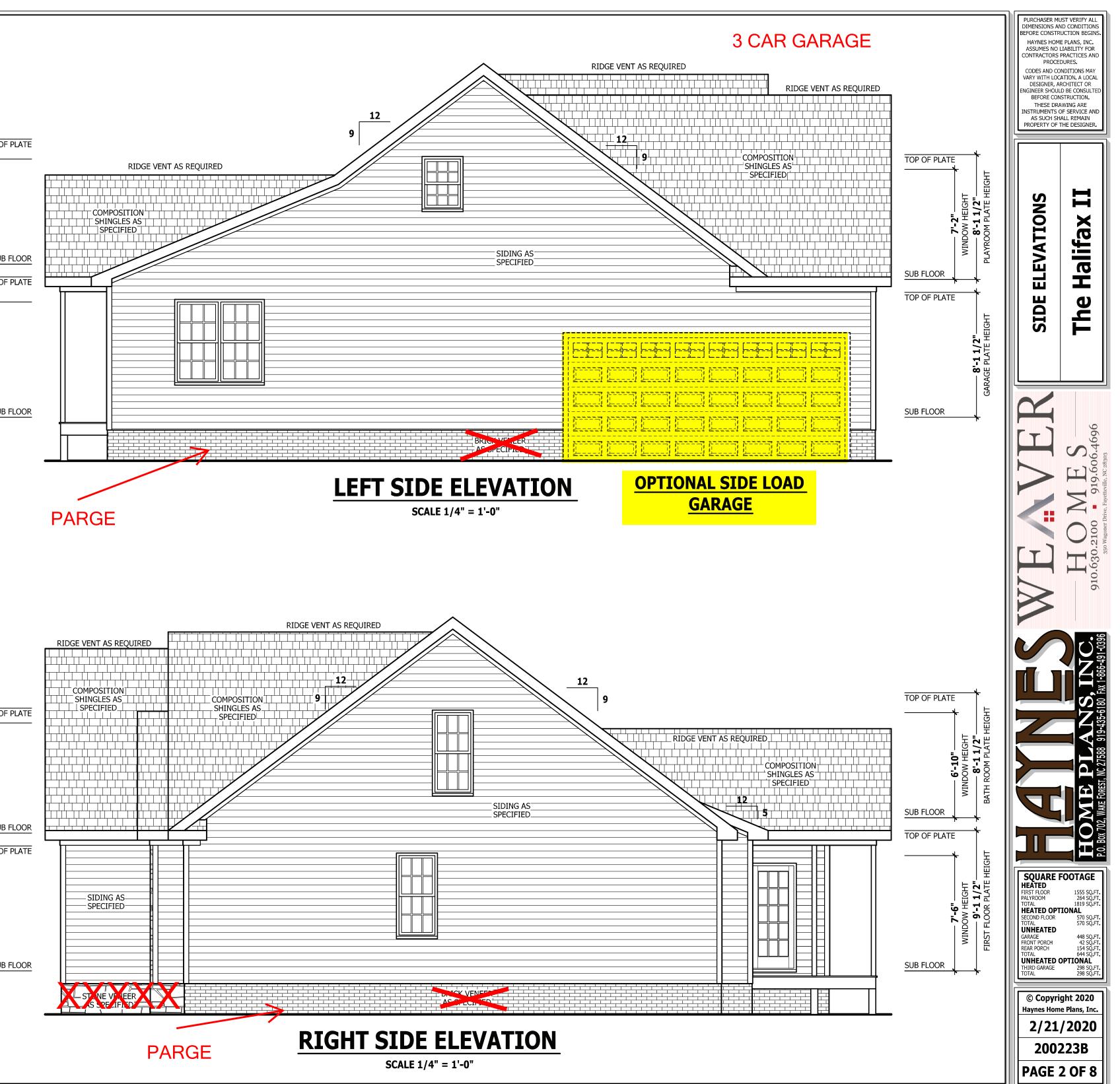
GUARD RAIL NOTES

SECTION R312

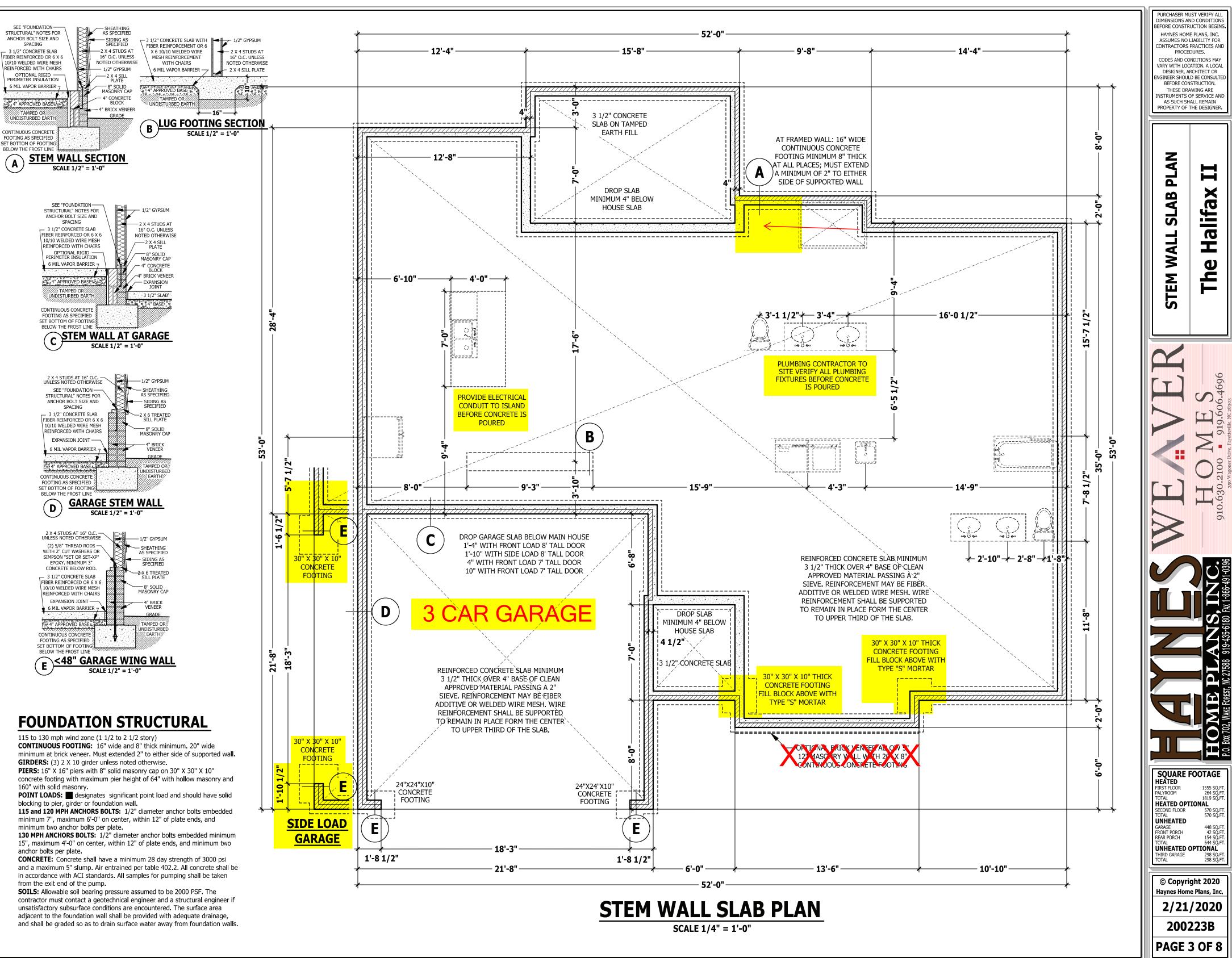
R312.1 Where required. *Guards* shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or *grade* below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a guard.

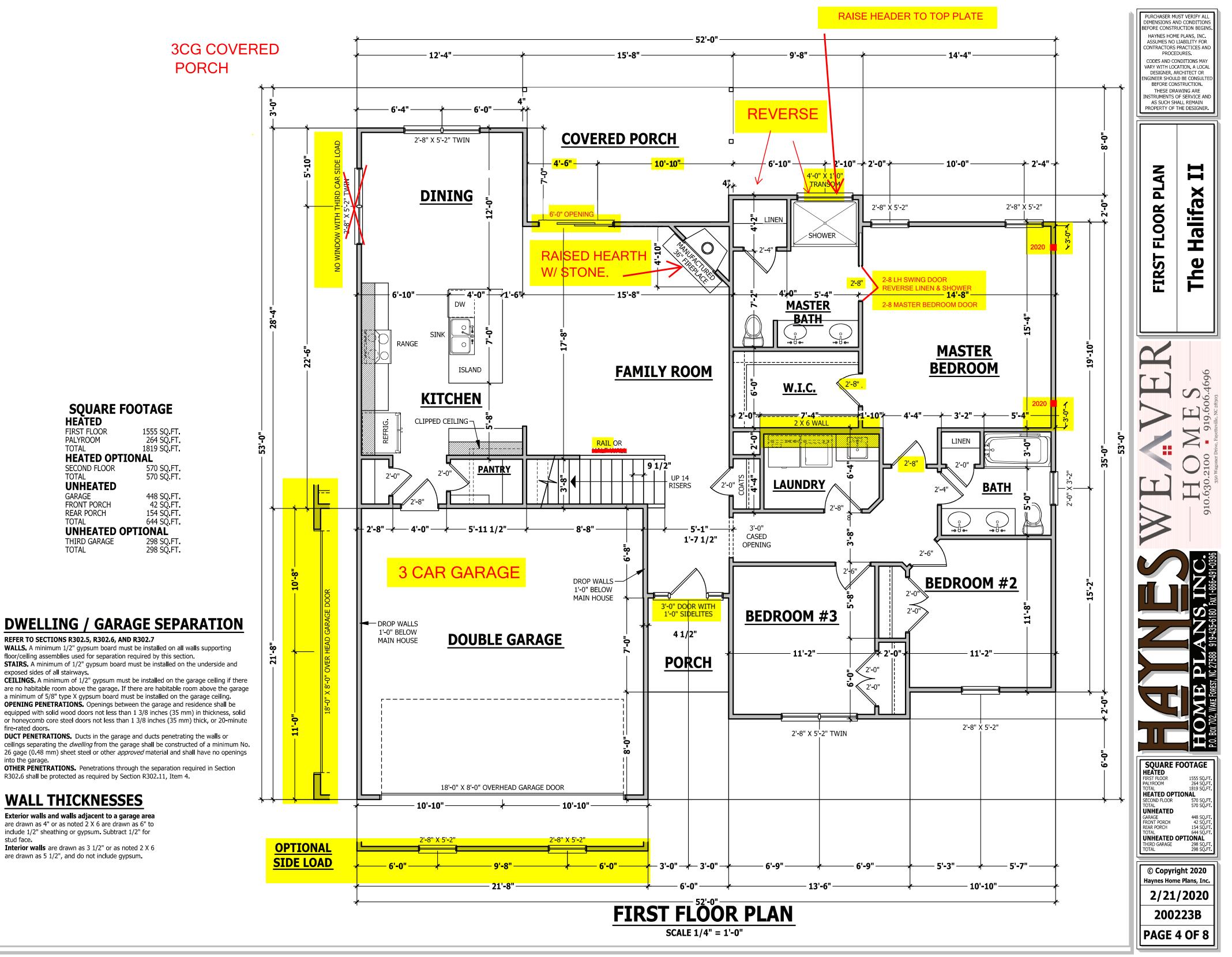
R312.2 Height. Required guards at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads. Exceptions:

1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.


2. Where the top of the *guard* also serves as a handrail on the open sides of stairs, the top of the *guard* shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

R312.3 Opening limitations. Required guards shall not have openings from the walking surface to the required *guard* height which allow passage of a sphere 4 inches (102 mm)in diameter


Exceptions:


1. The triangular openings at the open side of a stair, formed by the riser, tread and bottom rail of a *guard*, shall not allow passage of a sphere 6 inches (153 mm) in diameter. 2. *Guards* on the open sides of stairs shall not have openings which allow

passage of a sphere 4 3/8 inches (111 mm) in diameter.

Company, Inc\200223B Halifax II\200223B Halifax II Left.a velopment Dev Z:\Builder\Weaver

stud face. **Interior walls** are drawn as 3 1/2" or as noted 2 X 6 are drawn as 5 1/2", and do not include gypsum.

fire-rated doors.

into the garage.

STRUCTURAL NOTES

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code. JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All

members shall be framed, anchored, and braced in accordance with good construction practice and the building code. DESTONILOADS

DESIGN LOADS	LIVE LOAD	DEAD LOAD	DEFLECTION
USE	(PSF)	(PSF)	(LL)
Attics without storage	10		L/240
Attics with limited storage	20	10	L/360
Attics with fixed stairs	40	10	L/360
Balconies and decks	40	10	L/360
Fire escapes	40	10	L/360
Guardrails and handrails	200		
Guardrail in-fill components	50		
Passenger vehicle garages	50	10	L/360
Rooms other than sleeping	40	10	L/360
Sleeping rooms	30	10	L/360
Stairs	40		L/360
Snow	20		

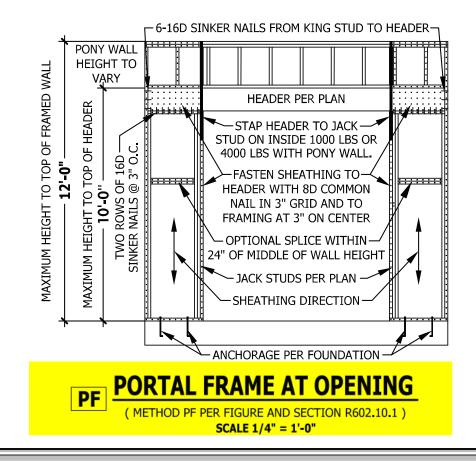
FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise. **ENGINEERED WOOD BEAMS:**

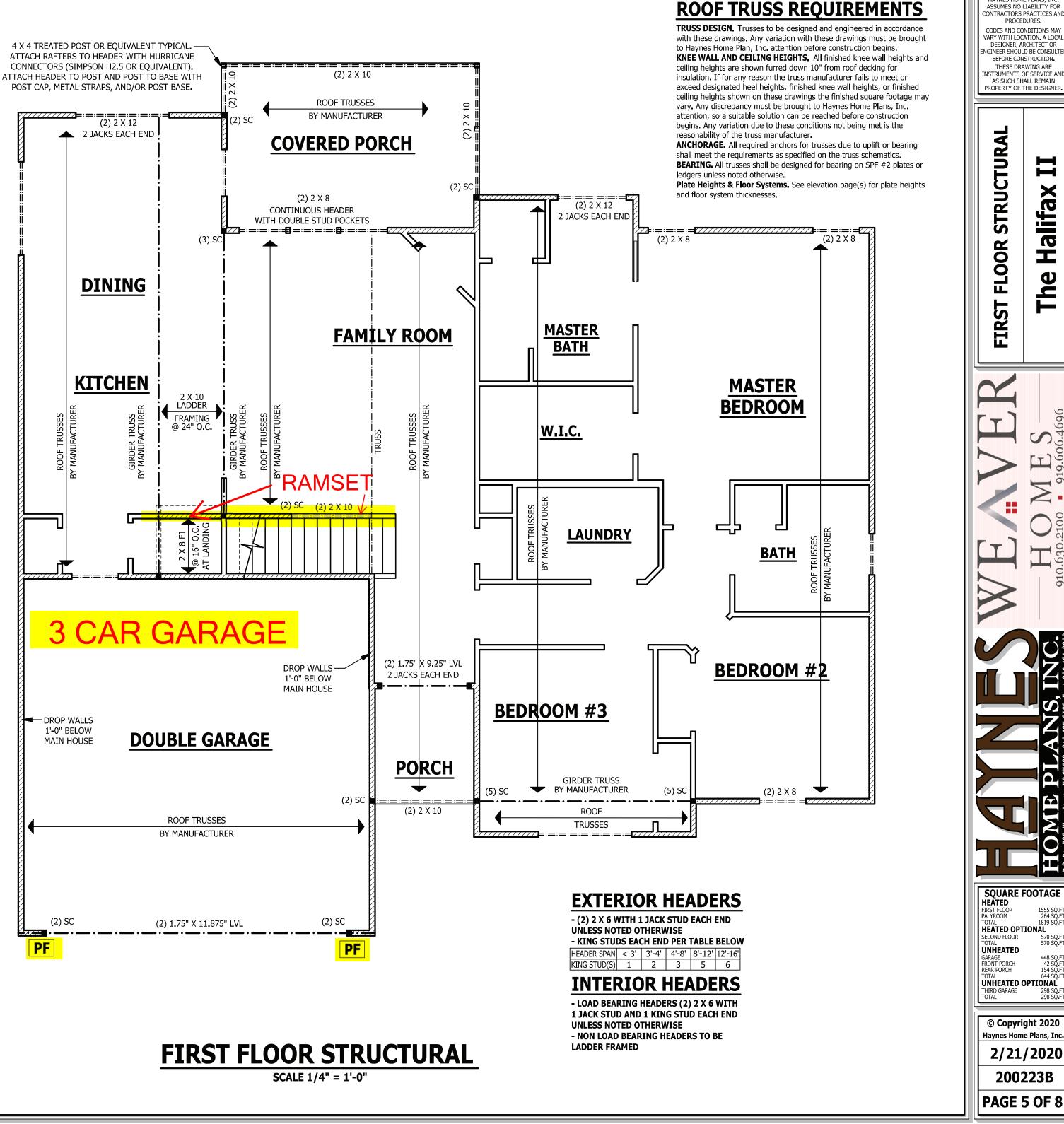
Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x10⁶ PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x106 PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. **LINTELS:** Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. **ROOF SHEATHING:** OSB or CDX roof sheathing minimum 3/8" thick. **CONCRETE AND SOILS:** See foundation notes.

BRACE WALL PANEL NOTES

EXTERIOR WALLS: All exterior walls to be sheathed with CS-WSP or CS-SFB in accordance with section R602.10.3 unless noted otherwise.


GYPSUM: All interior sides of exterior walls and both sides interior walls to have 1/2" gypsum installed. When not using method GB gypsum to be fastened per table R702.3.5. Method GB to be fastened per table R602.10.1.


REQUIRED LENGTH OF BRACING: Required brace wall length for each side of the circumscribed rectangle are interpolated per table R602.10.3. Methods CS-WSP and CS-SFB contribute their actual length. Method GB contributes 0.5 it's actual length. Method PF contributes 1.5 times its actual length. HD: 800 lbs hold down hold down device fastened to the edge

of the brace wall panel closets to the corner. Methods Per Table R602.10.1

CS-WSP: Shall be minimum 3/8" OSB or CDX nailed at 6" on center at edges and 12" on center at intermediate supports with 6d common nails or $8d(2 1/2" \log x 0.113" diameter)$. **CS-SFB:** Shall be minimum 1/2" structural fiber board nailed at 3" on center at edges and 3" on center at intermediate supports with 1 1/2" long x 0.12" diameter galvanized roofing nails.

GB: Interior walls show as GB are to have minimum 1/2" gypsum board on both sides of the wall fastened at 7" on center at edges and 7" on center at intermediate supports with minimum 5d cooler nails or #6 screws. **PF**: Portal fame per figure R602.10.1

PURCHASER MUST VERIFY ALL IMENSIONS AND CONDITION FORE CONSTRUCTION BEGINS

HAYNES HOME PLANS, INC.

1555 SO.F

264 SQ F 1819 SQ F

570 SQ.F

42 SQ. 154 SO.

298 SQ FT 298 SQ FT

STRUCTURAL NOTES

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code. **JOB SITE PRACTICES AND SAFETY:** Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All members shall be framed, anchored, and braced in accordance with good construction practice and the building code.

DESIGN LOADS	LIVE LOAD	DEAD LOAD	DEFLECTION					
USE	(PSF)	(PSF)	(LL)					
Attics without storage	10		L/240					
Attics with limited storage	20	10	L/360					
Attics with fixed stairs	40	10	L/360					
Balconies and decks	40	10	L/360					
Fire escapes	40	10	L/360					
Guardrails and handrails	200							
Guardrail in-fill components	50							
Passenger vehicle garages	50	10	L/360					
Rooms other than sleeping	40	10	L/360					
Sleeping rooms	30	10	L/360					
Stairs	40		L/360					
Snow	20							
5.101	20		1					

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

ÈNGINEERED WOOD BEAMS:

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x10⁶ PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x10⁶ PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x10⁶ PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. **LINTELS:** Brick lintels shall be 3 $1/2" \times 3 1/2" \times 1/4"$ steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 $1/2" \times 3 1/2" \times 1/4"$ steel angle with 1/2"bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. **FLOOR SHEATHING:** OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. **ROOF SHEATHING:** OSB or CDX roof sheathing minimum 3/8" thick. **CONCRETE AND SOILS:** See foundation notes.

ROOF TRUSS REQUIREMENTS

TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. **KNEE WALL AND CEILING HEIGHTS.** All finished knee wall heights and

ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc. attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer.

ANCHORAGE. All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

Plate Heights & Floor Systems. See elevation page(s) for plate heights and floor system thicknesses.

ATTIC ACCESS

SECTION R807

R807.1 Attic access. An attic access opening shall be provided to attic areas that exceed 400 square feet (37.16 m2) and have a vertical height of 60 inches (1524 mm) or greater. The net clear opening shall not be less than 20 inches by 30 inches (508 mm by 762 mm) and shall be located in a hallway or other readily accessible location. A 30-inch (762 mm) minimum unobstructed headroom in the attic space shall be provided at some point above the access opening. See Section M1305.1.3 for access requirements where mechanical equipment is located in attics.

Exceptions:

1. Concealed areas not located over the main structure including porches, areas behind knee walls, dormers, bay windows, etc. are not required to have access.

2. Pull down stair treads, stringers, handrails, and hardware may protrude into the net clear opening.

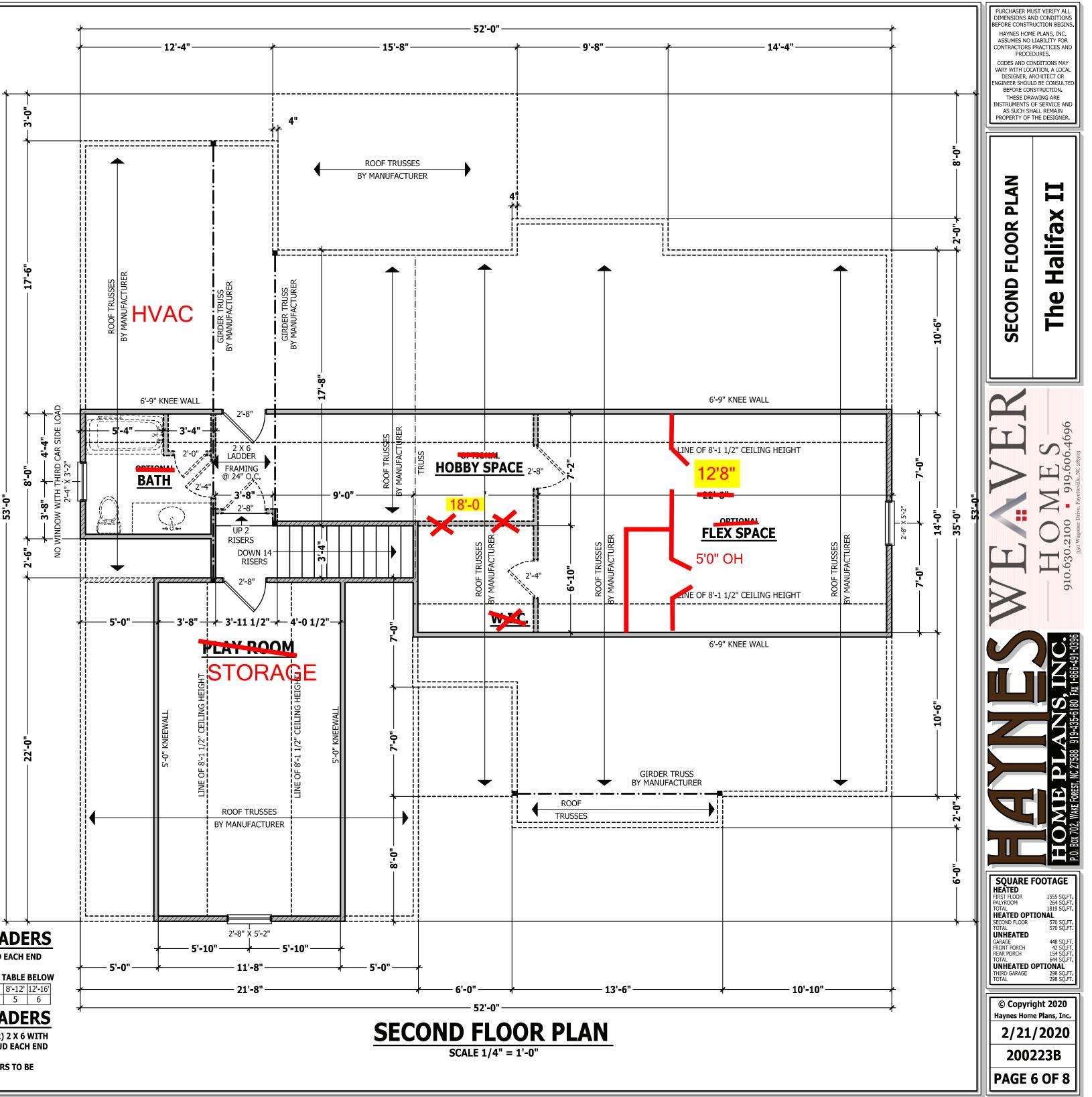
WALL THICKNESSES

Exterior walls and walls adjacent to a garage area are drawn as 4" or as noted 2 X 6 are drawn as 6" to include 1/2" sheathing or gypsum. Subtract 1/2" for stud face.

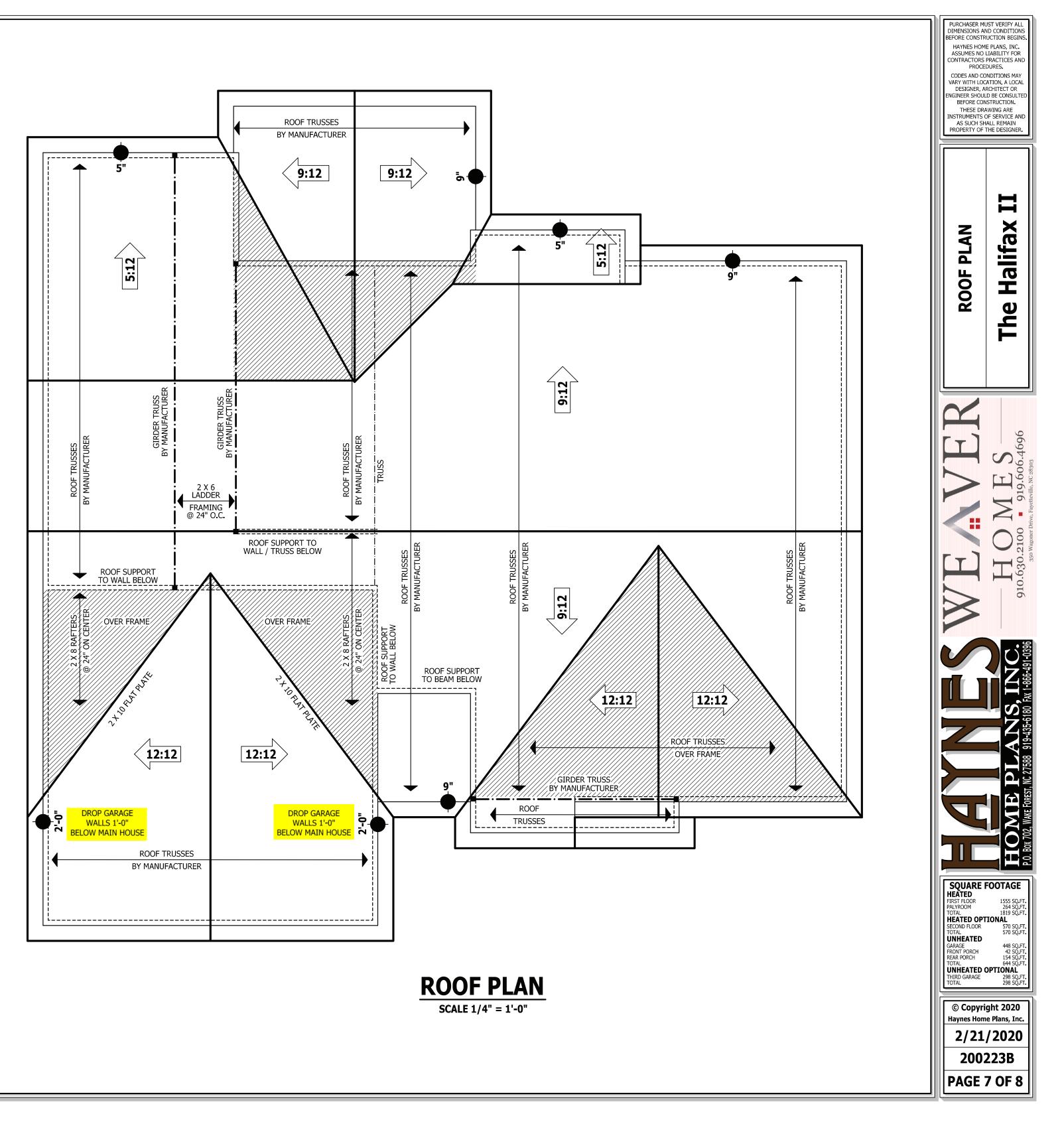
Interior walls are drawn as 3 1/2" or as noted 2 X 6 are drawn as 5 1/2", and do not include gypsum.

- (2) 2 X 6 WITH 1 JACK STUD EACH END

 UNLESS NOTED OTHERWISE


 - KING STUDS EACH END PER TABLE BELOW

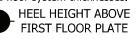
 HEADER SPAN
 3'
 3'-4'
 4'-8'
 8'-12'
 12'-16'


 KING STUD(S)
 1
 2
 3
 5
 6

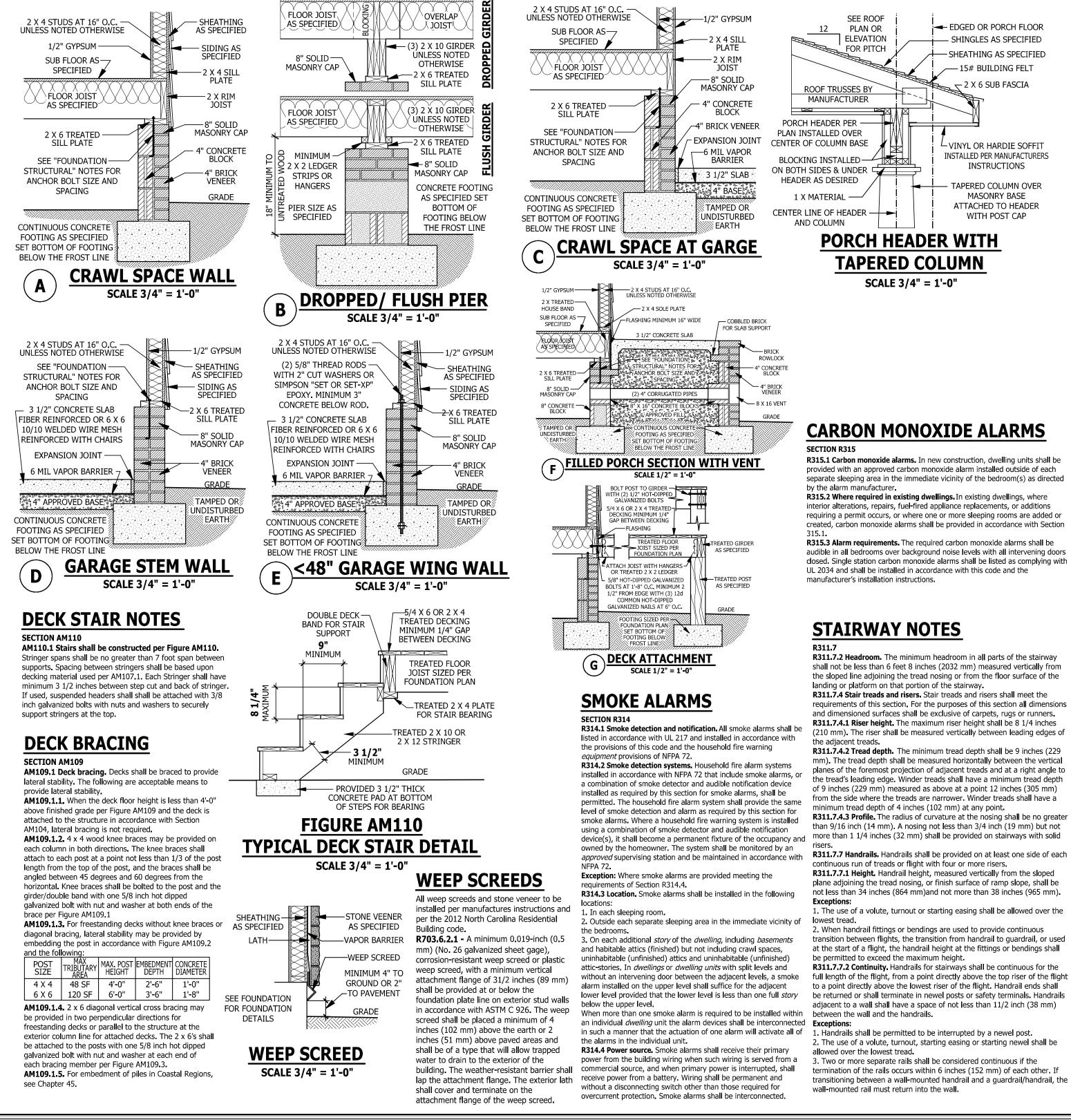
INTERIOR HEADERS

- LOAD BEARING HEADERS (2) 2 X 6 WITH 1 JACK STUD AND 1 KING STUD EACH END UNLESS NOTED OTHERWISE - NON LOAD BEARING HEADERS TO BE LADDER FRAMED

3 CAR GARAGE



ROOF TRUSS REQUIREMENTS


TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. **KNEE WALL AND CEILING HEIGHTS.** All finished knee wall heights and ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc. attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer.

ANCHORAGE. All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

Plate Heights & Floor Systems. See elevation page(s) for plate heights and floor system thicknesses.

HEEL HEIGHT ABOVE SECOND FLOOR PLATE

R315.1 Carbon monoxide alarms. In new construction, dwelling units shall be provided with an approved carbon monoxide alarm installed outside of each separate sleeping area in the immediate vicinity of the bedroom(s) as directed

interior alterations, repairs, fuel-fired appliance replacements, or additions requiring a permit occurs, or where one or more sleeping rooms are added or created, carbon monoxide alarms shall be provided in accordance with Section

audible in all bedrooms over background noise levels with all intervening doors closed. Single station carbon monoxide alarms shall be listed as complying with

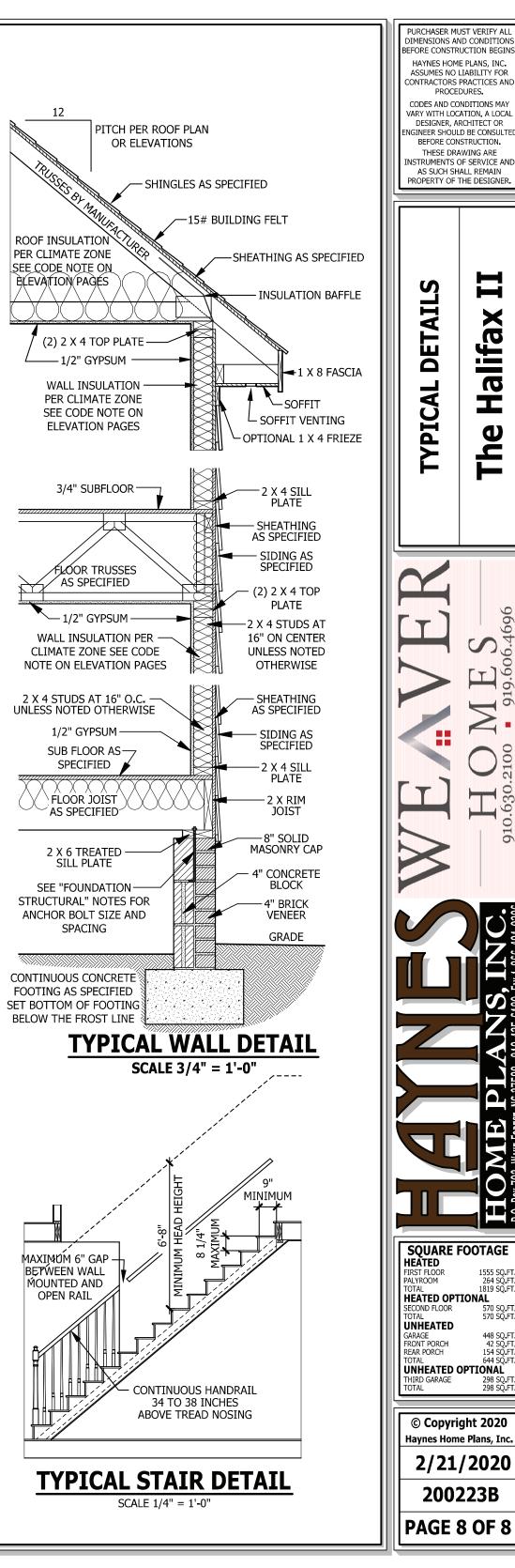
shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the

requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners. **R311.7.4.1 Riser height.** The maximum riser height shall be 8 1/4 inches (210 mm). The riser shall be measured vertically between leading edges of

R311.7.4.2 Tread depth. The minimum tread depth shall be 9 inches (229 mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. Winder treads shall have a minimum tread depth of 9 inches (229 mm) measured as above at a point 12 inches (305 mm) from the side where the treads are narrower. Winder treads shall have a

R311.7.4.3 Profile. The radius of curvature at the nosing shall be no greater than 9/16 inch (14 mm). A nosing not less than 3/4 inch (19 mm) but not more than 1 1/4 inches (32 mm) shall be provided on stairways with solid

R311.7.7.1 Height. Handrail height, measured vertically from the sloped plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm)and not more than 38 inches (965 mm).


1. The use of a volute, turnout or starting easing shall be allowed over the

transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall

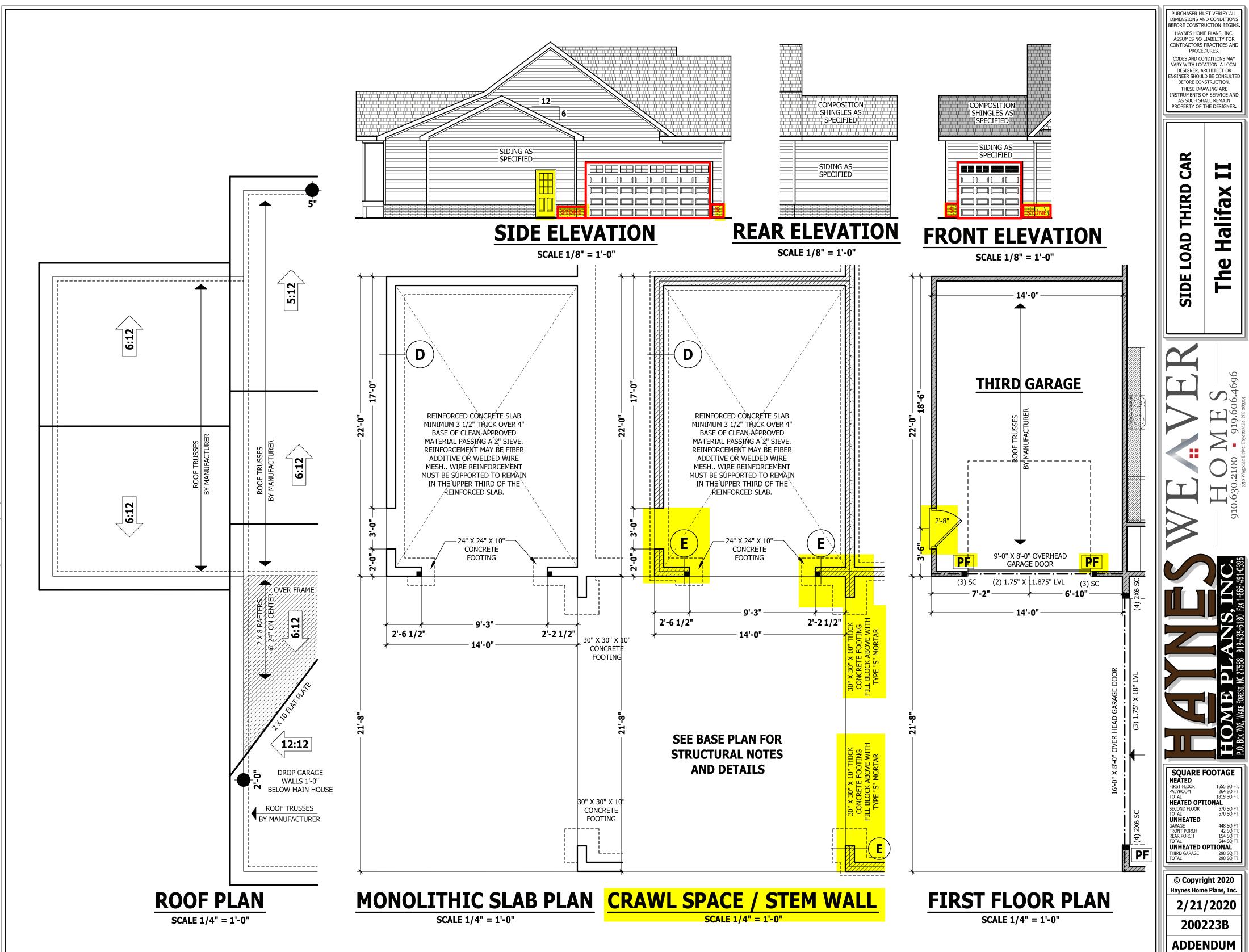
full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than 11/2 inch (38 mm)

2. The use of a volute, turnout, starting easing or starting newel shall be

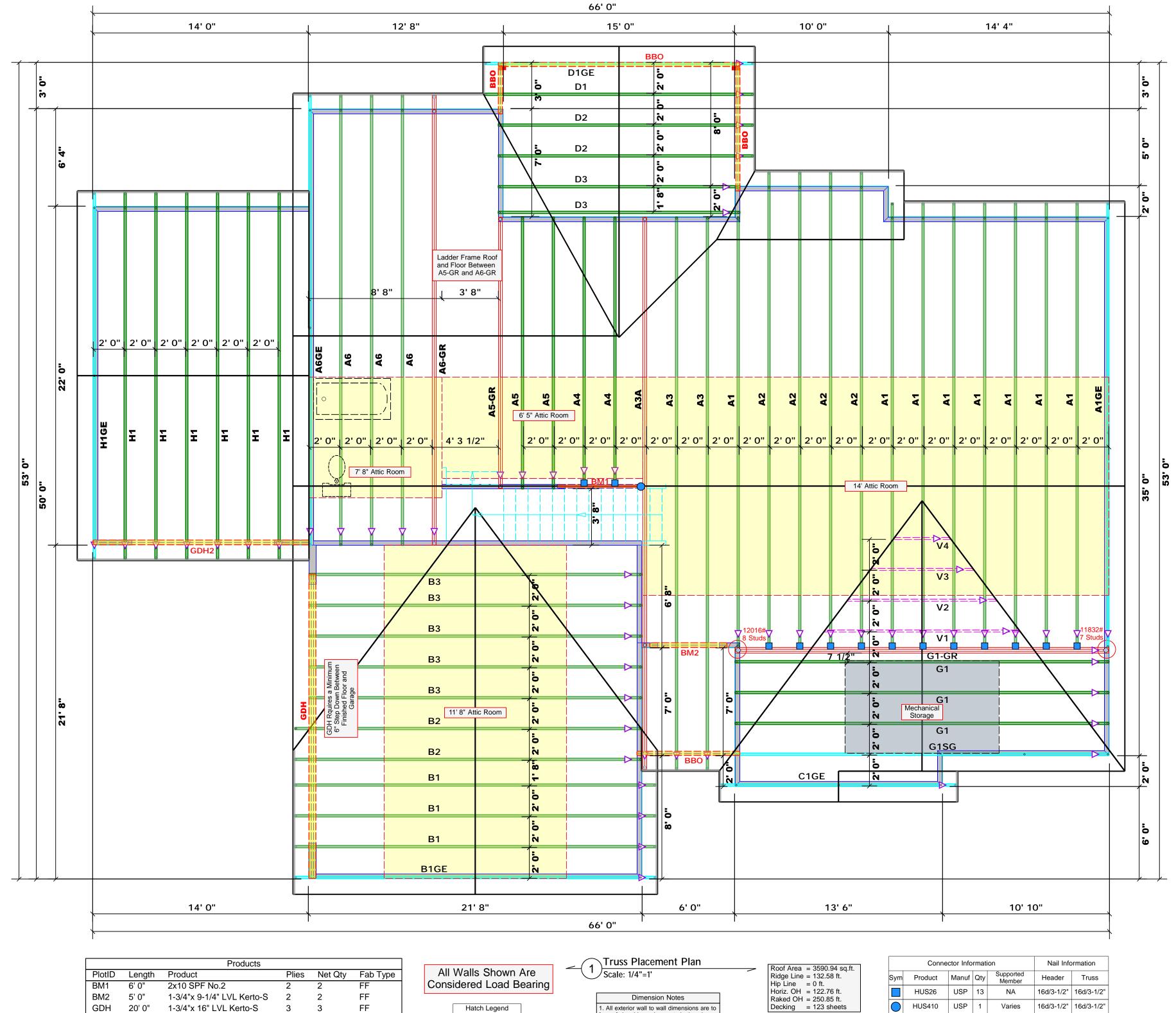
termination of the rails occurs within 6 inches (152 mm) of each other. If transitioning between a wall-mounted handrail and a guardrail/handrail, the

日

The


1555 SO.FT

264 SQ F 1819 SQ F

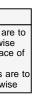

570 SQ.F

42 SQ.F 154 SO.F

298 SQ FT 298 SQ FT

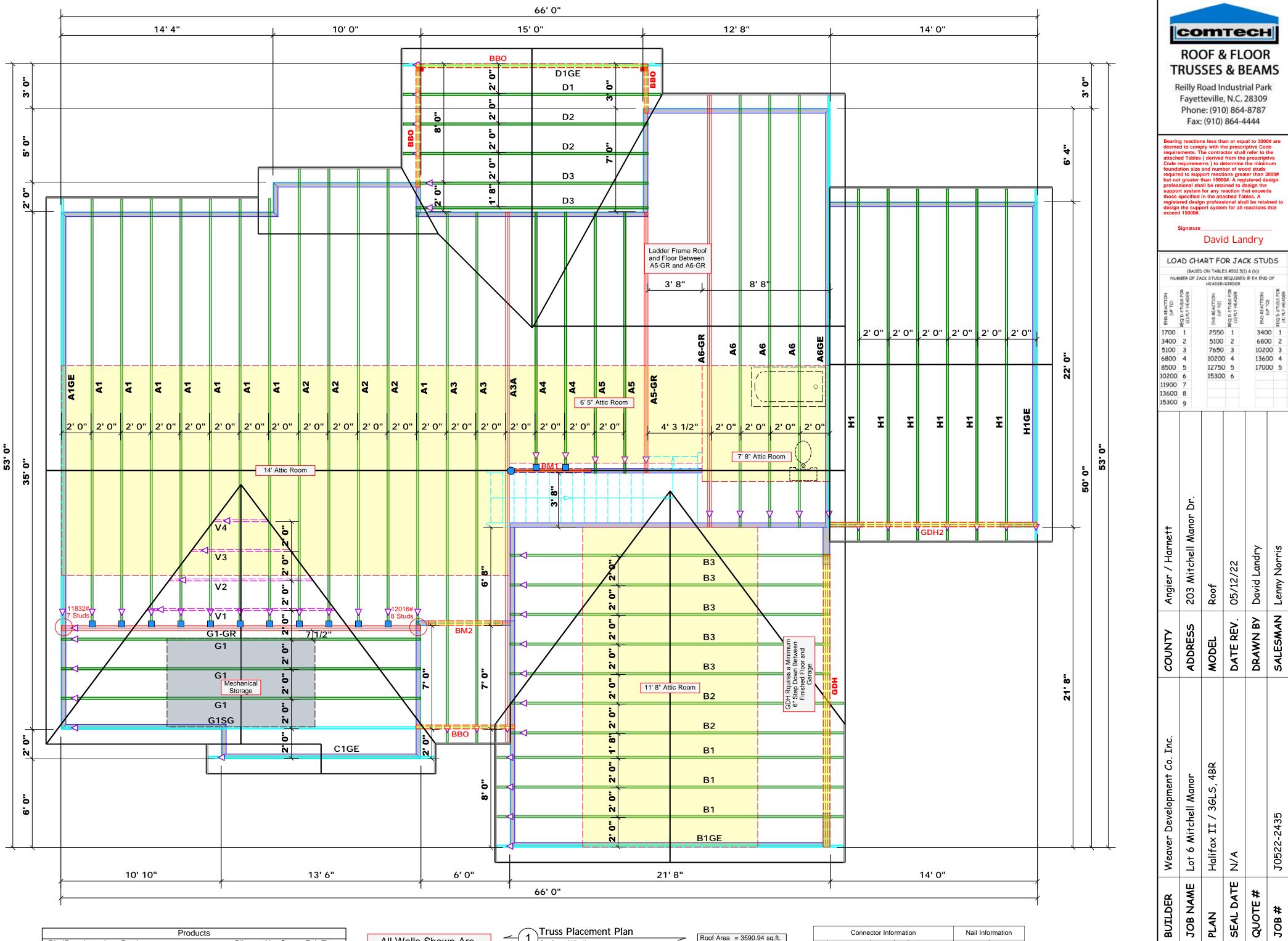
Z:\Builder\Weaver Development Company, Inc\200223B Halifax II\200223B Halifax II

Products							
PlotID	Length	Product	Plies	Net Qty	Fab Type		
BM1	6' 0"	2x10 SPF No.2	2	2	FF		
BM2	5' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2	FF		
GDH	20' 0"	1-3/4"x 16" LVL Kerto-S	3	3	FF		
GDH2	14' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2	FF		


Hatch Legend

Drop Beam

Padded HVAC


face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

Т	RO RUS eilly R Fayet Phon	OF & SES load Ir teville e: (91)	Te & FL & B ndustr 2, N.C. 0) 864 864-4	OOF EAN ial Par 28309 -8787	∕IS ™			
deeme require attache Code r founda require but no profes suppo those registe design exceed	d to com ements. T ed Tables requiremention size ed to supp t greater sional shart system specified ered desig	ply with t he contra (derivec ents) to d and num port react than 1500 all be reta for any r in the att yn profess	an or equ he prescr actor shall l from the letermine ber of wo tions grea 20#. A reg ained to d eaction th ached Tal sional sha im for all	iptive Cool refer to prescrip the minin od studs iter than 3 istered do esign the nat exceed bles. A all be reta	de the num 3000# esign ds ined to			
			d Lar					
	(BASED	ON TABL	OR JAC ES R502.5() REQUIRED /GIRDER	l) & (b))				
NOLLOVER (01 49) 1700 3400 5100 6800 8500 10200 11900 13600 15300	1 2 3 4 5 6 7 8 9	Ref (2) 第一 2550 5100 7650 10200 12750) 1) 2) 3 0 4 0 5	NOTECHINA 043 340 680 1021 1361 1700	00 1 00 2 00 3 00 4			
Angier / Harnett	203 Mitchell Manor Dr.	Roof	. 05/12/22	DRAWN BY David Landry	SALESMAN Lenny Norris			
COUNTY	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALESMAN			
Weaver Development Co. Inc.	Lot 6 Mitchell Manor	Halifax II / 3GLS, 3BR	N/A		J0522-2435			
BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #			
These t compor design See ind identifie designe perman for the support and col designe consult	B C C C C C THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the root and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com							

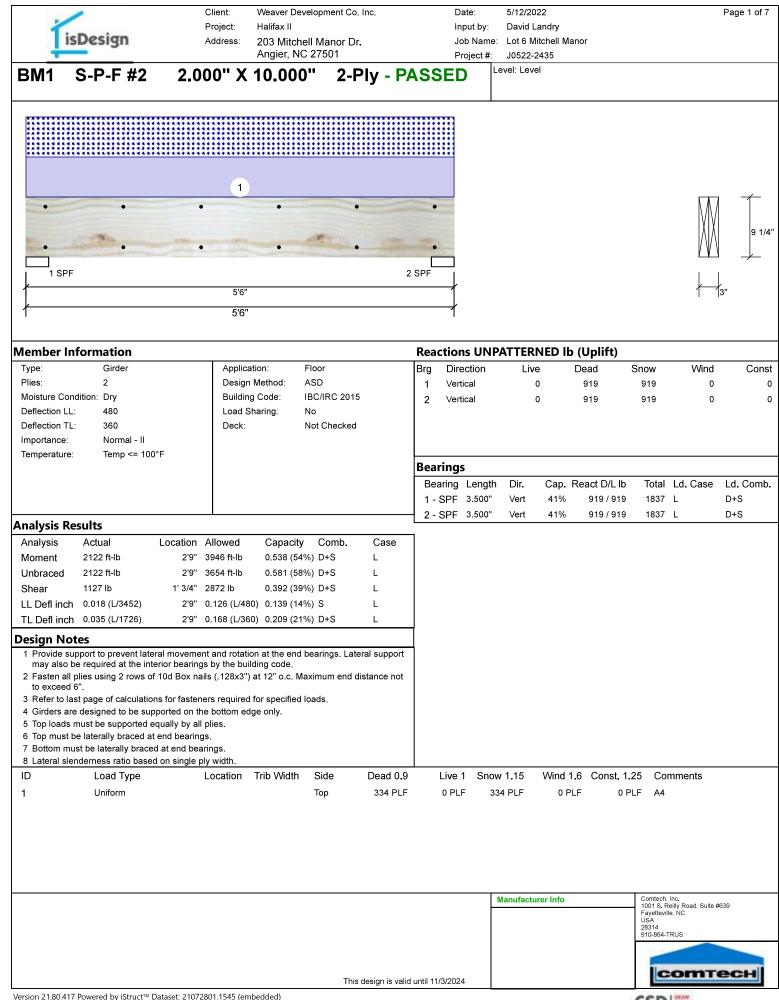
HUS410 USP 1 Varies

16d/3-1/2" 16d/3-1/2"

Products							
Length	Product	Plies	Net Qty	Fab Type			
6' 0"	2x10 SPF No.2	2	2	FF			
5' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2	FF			
20' 0"	1-3/4"x 16" LVL Kerto-S	3	3	FF			
14' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2	FF			
	6' 0" 5' 0" 20' 0"	Length Product 6' 0" 2x10 SPF No.2 5' 0" 1-3/4"x 9-1/4" LVL Kerto-S 20' 0" 1-3/4"x 16" LVL Kerto-S	Length Product Plies 6' 0" 2x10 SPF No.2 2 5' 0" 1-3/4"x 9-1/4" LVL Kerto-S 2 20' 0" 1-3/4"x 16" LVL Kerto-S 3	Length Product Plies Net Qty 6' 0" 2x10 SPF No.2 2 2 5' 0" 1-3/4"x 9-1/4" LVL Kerto-S 2 2 20' 0" 1-3/4"x 16" LVL Kerto-S 3 3			

Padded HVAC

Drop Beam


Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

	Roof Area = 3590.94 sq.ft.			Conne	ctor Info
-	Ridge Line = 132.58 ft. Hip Line = 0 ft.	,	Sym	Product	Manuf
7	Horiz. OH = 122.76 ft. Raked OH = 250.85 ft.			HUS26	USP
0	Decking = 123 sheets		\bigcirc	HUS410	USP

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	13	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	HUS410	USP	1	Varies	16d/3-1/2"	16d/3-1/2"

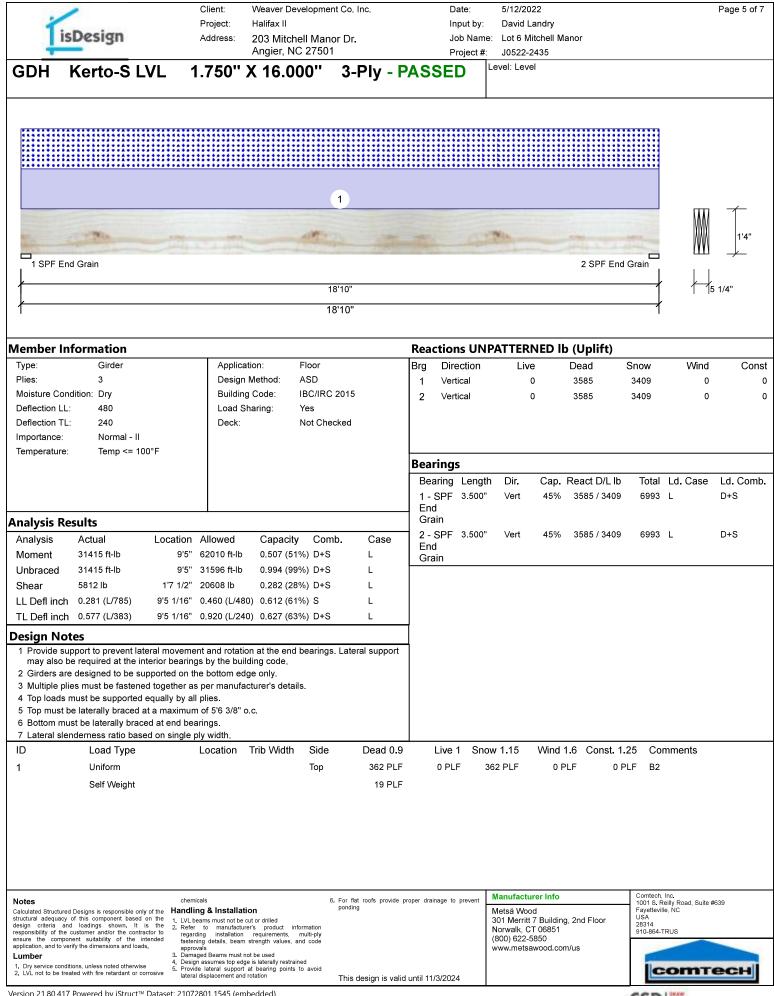
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.

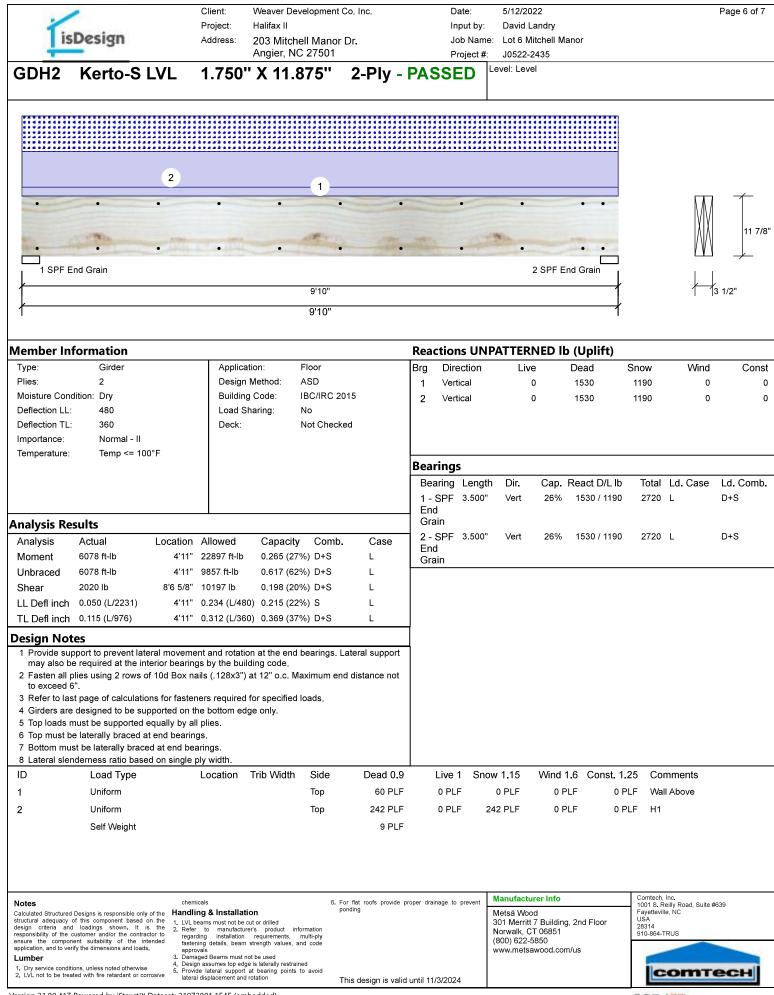
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

1	isDesign	Client: Project: Address:	Weaver Develop Halifax II 203 Mitchell M Angier, NC 275	anor Dr.	Date: Input by: Job Name: Project #:	5/12/2022 David Landry Lot 6 Mitchell Manor J0522-2435	Page 2 of 7
BM1	S-P-F #2	2.000" X	10.000"	2-Ply - PAS	SED Le	evel: Level	
•	•	•	•	•	•		M Í
	• PF	• 5'6"	•	• 2 SPF			9 1/4'
Multi-Ph	y Analysis	5'6"			/		

Fasten all plies using 2 rows of 10d Box nails (.128x3") at 12" o.c.. Maximum end distance not to exceed 6".

Capacity	0.0 %	
Load	0.0 PLF	
Yield Limit per Foot	157.4 PLF	
Yield Limit per Fastener	78.7 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination		
Duration Factor	1.00	


Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS


соттесн

		Client:	Weaver Development	Co. Inc.	Da	ite:	5/12/2022				Page 3 of 7
1		Project:	Halifax II		Inp	out by:	David Landry				5
IS	Design	Address:	203 Mitchell Mano Angier, NC 27501	r Dr.		b Name: oject #:	: Lot 6 Mitchell J0522-2435	Manor			
BM2	Kerto-S LVL	1 750'	-	2 DIv		-	evel: Level				
		. 1.750	X 9.230	2-r iy -	FASSE						
		1									
•		•	•	•						NA/	
	- mark	-	atter							Ă Ă	9 1
•	Automatical Automatical State									<u>v</u>	
1 SPF	End Grain		2 SPF End	Grain							
		4'8"								.l	3 1/2"
I		4'8"		I							
Member In	formation				Reaction	s UNF	PATTERNED	lb (Uplift)			
Туре:	Girder	Applica			Brg Dire		Live	Dead	Snow	Wind	Const
Plies: Moisture Con	2 dition: Drv	Design Building	Method: ASD Code: IBC/IRC 2	2015	1 Vertio		0	1526 1526	1510 1510	0	0
Deflection LL:	•	Load SI			2 00110	Cai	0	1320	1310	Ū	
Deflection TL:		Deck:	Not Chec	ked							
Importance:	Normal - II										
Temperature:	Temp <= 100°F				Bearings						
					Bearing		Dir. Cap	. React D/L	h Total	Ld. Case	Ld. Comb.
					1 - SPF	•	Vert 30%				D+S
Analysis Re	sults	I			End Grain						
Analysis		ation Allowed	Capacity Comb	. Case	2 - SPF End	3.500"	Vert 30%	6 1526 / 151	0 3036	L	D+S
Moment	2881 ft-lb	2'4" 14423 ft-lb	0.200 (20%) D+S	L	Grain						
Unbraced	2881 ft-lb	2'4" 12555 ft-lb	0.229 (23%) D+S 0.209 (21%) D+S	L							
Shear		7 1/4" 7943 lb 1/16" 0.105 (L/480	()	L 1							
) 0.215 (21%) D+S	L							
		1/10 0.140 (2/000	5) 0.210 (2170) 0.0	-	-						
Design Not 1 Provide su	tes pport to prevent lateral mo	ovement and rotatio	n at the end bearings.	Lateral support	4						
2 Fasten all p	e required at the interior to olies using 2 rows of 10d		-	nd distance not							
to exceed 6 3 Refer to las	o". st page of calculations for	fasteners required	for specified loads.								
	e designed to be supporte		ge only.								
•	must be supported equally le laterally braced at end l										
7 Bottom mu	st be laterally braced at e	nd bearings.									
8 Lateral sler	nderness ratio based on s Load Type		Trib Width Side	Dead 0.9	Live 1	Snov	w 1.15 Wind	11.6 Const.	1.25 Co	mments	
1	Uniform	Location	Тор	647 PLF	0 PLF) PLF A3		
	Self Weight			7 PLF							
Notes		chemicals		For flat roofs provide ponding	proper drainage to p	prevent	Manufacturer Info		Comtech, 1001 S. R Fayettevil	eilly Road, Suite #	639
structural adequacy	of this component based on the	Handling & Installati 1. LVL beams must not be c 2. Reference on manufacture	ut or drilled				Metsä Wood 301 Merritt 7 Buildi		USA 28314		
responsibility of the ensure the compor	customer and/or the contractor to nent suitability of the intended	 Refer to manufacture regarding installation fastening details, beam 	er's product information requirements, multi-ply strength values, and code				Norwalk, CT 06851 (800) 622-5850		910-864-	RUS	
application, and to ver Lumber	rify the dimensions and loads.	approvals 3. Damaged Beams must no	ot be used				www.metsawood.c	om/us			
 Dry service condit LVL not to be treat 	ions, unless noted otherwise ated with fire retardant or corrosive	 Design assumes top edge Provide lateral support lateral displacement and 	at bearing points to avoid	This design is valio	d until 11/3/2024				C	OMT	есн
ersion 21.80.417	Powered by iStruct™ Datase			addigir ið vallt		I			cen	DRAW	
2	Julia Sy lot det Dutase	(em	· · · · · · · · · · · · · · · · · · ·						CSD	DESIGN	

isDesign	Client: Project: Address:	Weaver Developmen Halifax II 203 Mitchell Mano Angier, NC 27501		Date: Input by: Job Name Project #:	5/12/2022 David Landry : Lot 6 Mitchell Manor J0522-2435	Page 4 of 7
BM2 Kerto-S LV	′L 1.750	" X 9.250"	2-Ply - PA	SSED ^L	Level: Level	
• •	•	•	•			
• •	•	٠	• 11/2"			9 1/
1 SPF End Grain	4'8"	2 SPF End	∟ Λ ∣Grain ↓			3 1/2"
1	4'8"		1			
Multi-Ply Analysis Fasten all plies using 2 rows o		(.128x3") at 12" o	.c Maximum end	distance no	ot to exceed 6".	
Load C Yield Limit per Foot 1 Yield Limit per Fastener 8 Yield Mode I	0.0 % 0.0 PLF 163.7 PLF 81.9 lb. V					
Min. End Distance 3 Load Combination	1/2" 3" .00					
	chemicals		For flat roofs provide proper dra		Manufacturer Info	Comtech, Inc.

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the	 LVA beams must not be cut or drilled Refer to manufacturer's product information installation requirements, multi-ply fastering details, beam strength values, and code approved Damaged Beams must not be used Design assumes top edge is laterally restrained Deroyne lateral, sunoart at bearing onisits to avoid 	ponding This design is valid until 11/3/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville, NC USA 28314 910-864-TRUS

Version 21.80.417 Powered by iStruct™ Dataset: 21072801.1545 (embedded)

			Client:	Weaver Developm	ent Co. Inc.	2	ate:	5/12/2022	Page 7 of 7
-			Project:	Halifax II			put by:	David Landry	Fage / OF /
Tie	Design		Address:		D			: Lot 6 Mitchell Manor	
12	spesign		Address.	203 Mitchell Ma Angier, NC 275					
				-			oject #:	J0522-2435	
GDH2	Kerto-S	LVL	1.750'	' X 11.875'	" 2-Pl∖	/ - PASSE	ED 🗠	evel: Level	
						, ,			
•	•	•	•	•	•	•	•	• • •	$\overline{1}$
									s ////
				-			-		
	•	•	•	•	•	•	•		
	End Grain							2 SPF End Grain	
				9'10					3 1/2"
				910	l'				3 1/2
1				9'10)"			ſ	
Multi-Ply A	Analysis								
Fasten all p	lies using 2 ro	ws of 10d	Box nails ((128x3") at 12"	o.c. Maxim	um end dista	nce no	t to exceed 6".	
Capacity		0.0 %	Box Halls (0.0				
Load		0.0 PLF							
Yield Limit per I	Foot	163.7 PL	F						
Yield Limit per I		81.9 lb.							
Yield Mode		IV							
Edge Distance		1 1/2"							
Min. End Distar		3"							
Load Combinat Duration Factor		1.00							
Duration Factor		1.00							
ļ									
Notes			nicals		6. For flat roofs pro	ovide proper drainage to	prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequacy	d Designs is responsible on of this component based	on the 1 IVI	ing & Installati beams must not be c		ponding			Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria an	Ind loadings shown. It customer and/or the contr	is the 2 Refe	r to manufacture	er's product information				Norwalk, CT 06851	28314 910-864-TRUS
ensure the compo	onent suitability of the i erify the dimensions and load	intended faste	ning details, beam	requirements, multi-ply strength values, and code				(800) 622-5850 www.metsawood.com/us	
Lumber		3. Dam	aged Beams must n	ot be used				www.metsaw000.com/uS	
1. Dry service cond 2. LVL not to be tre	itions, unless noted otherwis aated with fire retardant or c	5. Prov	ide lateral support	e is laterally restrained at bearing points to avoid rotation					соттесн
		latere	al displacement and		This design is	s valid until 11/3/2024	1		
			0004 45 45 4						

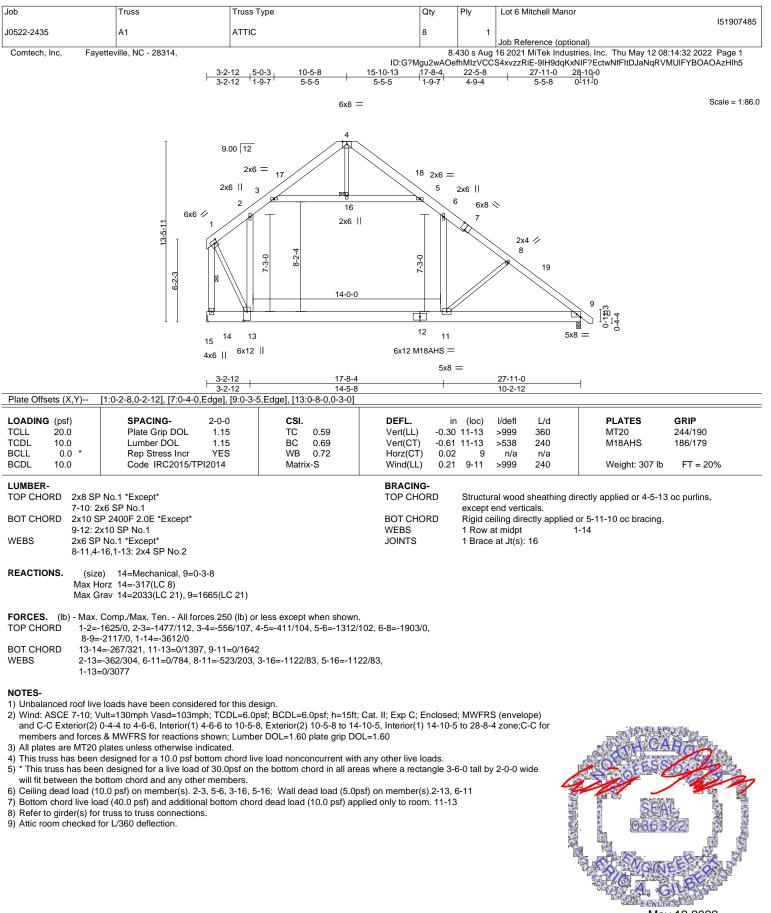
Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0522-2435 Lot 6 Mitchell Manor

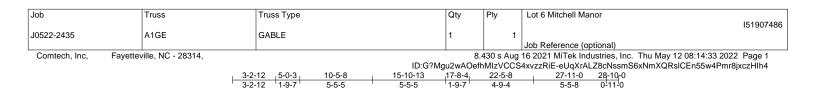
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I51907485 thru I51907513

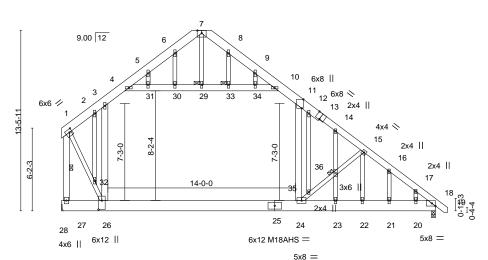
My license renewal date for the state of North Carolina is December 31, 2022.


North Carolina COA: C-0844

May 12,2022


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the

applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6x8 =

	3-2-12	17-8-4	22-5-8	27-11-0	
	3-2-12	14-5-8	4-9-4	5-5-8	
Offsets (X,Y)	[1:0-2-8,0-2-12], [11:0-7-14,Edge], [13	3:0-4-0,Edge], [18:0-3-5,Edge], [26:0-8-0,0-3-0]			

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.58 BC 0.67 WB 0.78 Matrix-S	Vert(LL) -0.28		PLATES MT20 M18AHS Weight: 352 lb	GRIP 244/190 186/179 FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x8 SI	P No.1 *Except*		TOP CHORD	Structural wood sheathing di	rectly applied or 5-0-7 o	oc purlins,
13-19:	2x6 SP No.1			except end verticals.		
	SP 2400F 2.0E *Except*		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing, E	Except:
	2x10 SP No.1			6-2-6 oc bracing: 26-27		
	P No.1 *Except*			6-6-8 oc bracing: 24-26.		
	7-29,1-26,15-22: 2x4 SP No.2		WEBS		1-27	
OTHERS 2x4 SI	P No.2		JOINTS	1 Brace at Jt(s): 29, 33, 36		
Max U	te) 27=Mechanical, 18=0-3-8 Horz 27=-432(LC 13) Jplift 18=-35(LC 13) Grav 27=2032(LC 21), 18=1669(LC 21)					

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-1613/0, 2-3=-1516/0, 3-4=-1471/166, 4-5=-656/111, 5-6=-453/132, 6-7=-432/188, 7-8=-345/181, 8-9=-399/132, 9-10=-401/114, 10-11=-1295/156, 11-12=-1925/44, 12-14=-1885/8, 14-15=-1743/0, 15-16=-2232/131, 16-17=-2287/79, 17-18=-2454/0, 1-27=-3565/0 BOT CHORD 26-27=-326/435, 24-26=0/1410, 23-24=0/1780, 22-23=0/1780, 21-22=0/1751,

 VEBS
 3-26=-407/1223, 11-24=0/1075, 24-35=-994/479, 35-36=-812/423, 15-36=-811/415, 4-31=-1087/103, 30-31=-1077/104, 29-30=-1078/104, 29-33=-1078/104, 33-34=-1078/104, 10-34=-1073/102, 1-32=-10/3046, 26-32=-19/3104, 5-31=-9/358, 12-35=-261/81, 14-36=-400/35, 23-36=-399/25, 15-22=-247/660

NOTES-

Plate O

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 2x6 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Ceiling dead load (10.0 psf) on member(s). 3-4, 10-11, 4-31, 30-31, 29-30, 29-33, 33-34, 10-34; Wall dead load (5.0psf) on member(s).3-26, 11-24

Contractor characterize load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 24-26

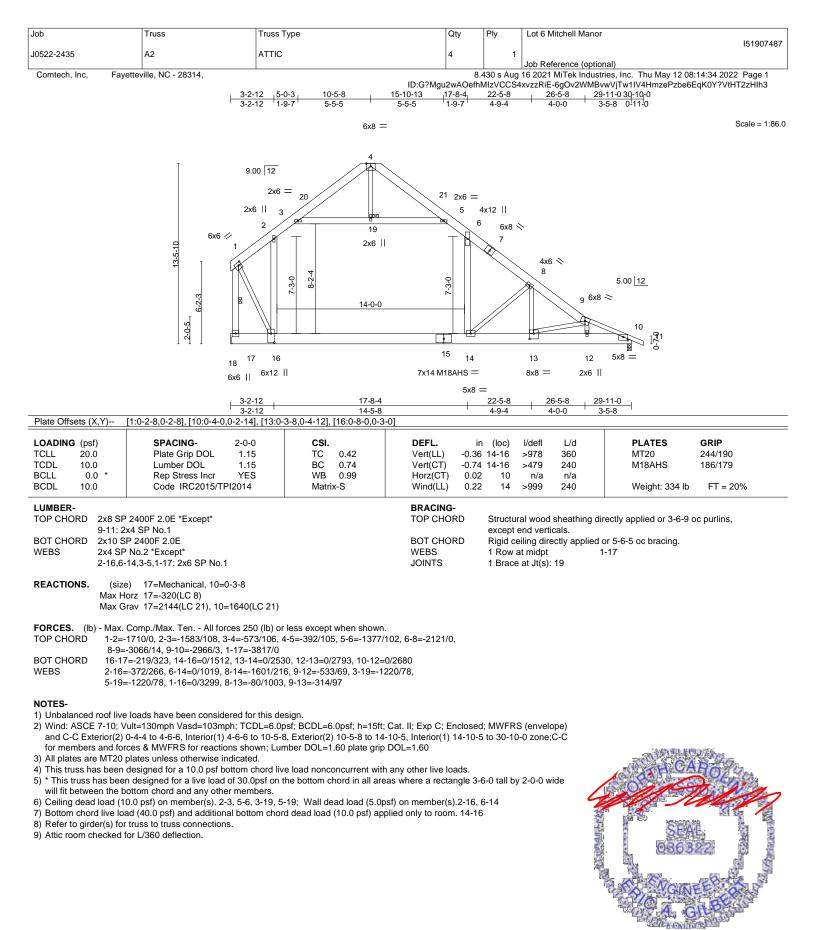
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Most/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 12,2022

Scale = 1:86.0

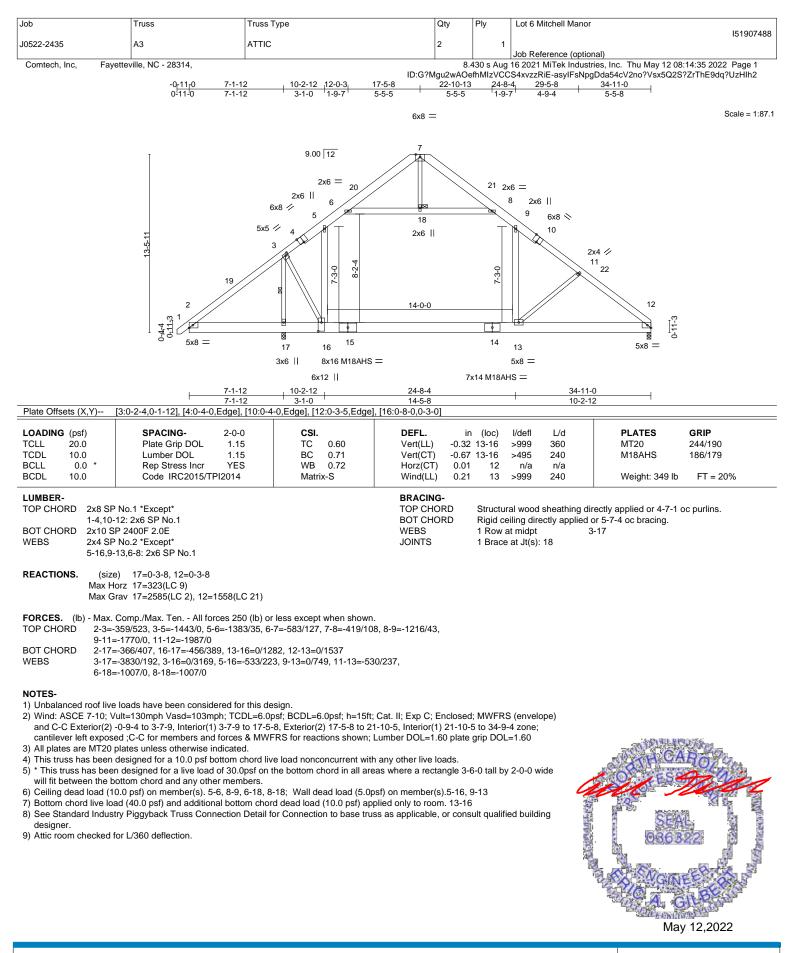
Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor		
J0522-2435	A1GE	GABLE	1	1	151907486		
					Job Reference (optional)		
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu May 12 08:14:33 2022 Page 2							
		ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-eUgXrALZ8cNssmS6xNmXQRsICEn55w4Pmr8ixczHlh4					

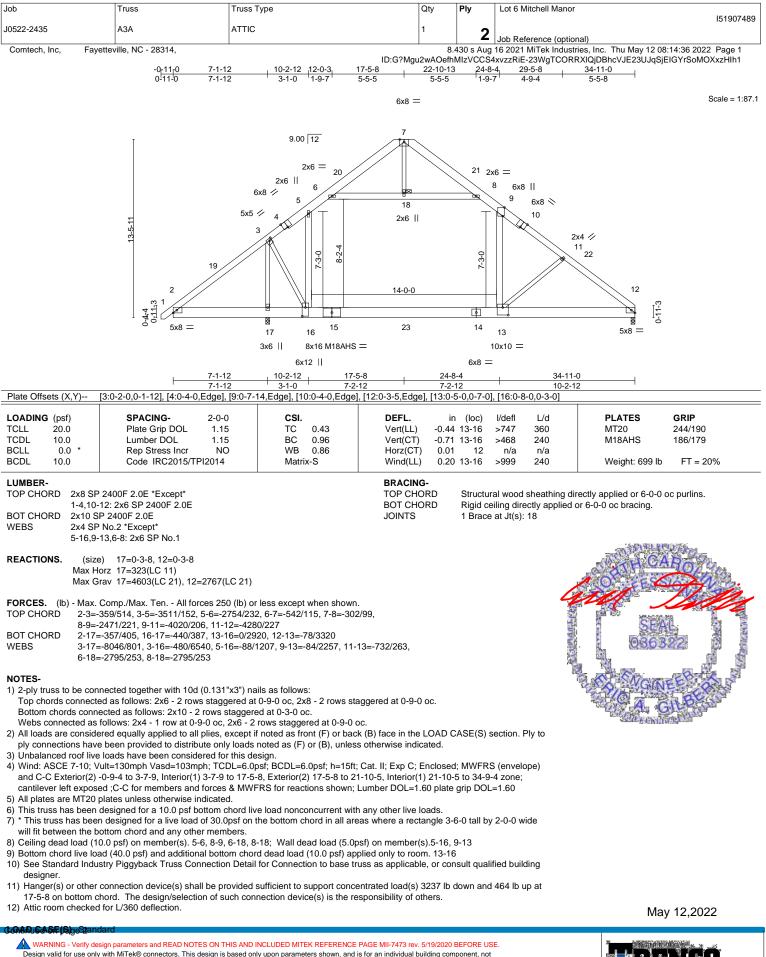
NOTES-


11) Refer to girder(s) for truss to truss connections.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18.

13) Attic room checked for L/360 deflection.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 May 12,2022

t 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH (Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor
					151907489
J0522-2435	A3A	ATTIC	1	2	
				2	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	430 s Aug	16 2021 MiTek Industries, Inc. Thu May 12 08:14:36 2022 Page 2

ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-23WgTCORRXIQjDBhcVJE23UJqSjEIGYrSoMOXxzHlh1

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-60, 5-6=-80, 6-7=-60, 7-8=-60, 8-9=-80, 9-12=-60, 2-16=-20, 13-16=-40, 12-13=-20, 6-8=-20 Drag: 5-16=-10, 9-13=-10

Concentrated Loads (lb)

Vert: 23=-1837(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor	
J0522-2435	A4	ROOF TRUSS	2	1		151907490
					Job Reference (option	
Comtech, Inc, Fay	etteville, NC - 28314,		ID:G?Mgu2wAOefh	hMIzVCCS	34xvzzRiE-WF42gYO40	ies, Inc. Thu May 12 08:14:37 2022 Page 1 CrtHKNmtACqTaH1RvrE71r1_hS6x4NzHIh0
		7-1-4	<u> </u>	<u>17-</u> 5-5		
		3x4				Scale = 1:78.0
		1				
	Ī	9.	00 12			
			2x6 =			
			² 2x6			
		3x10 =	3 6x8 🕅			
	13-11-3					
	t t			2x4 🥢		
		8-2-4	4.3-0	5 12		
			-	\mathbb{N}		
		6-3-4			6	
					<u>n</u>	
	l				0-11-3	
		9 8x8			5x8 =	
		6x12 M18AHS 7-1-4	5x8 =	-4-0		
Plate Offsets (X,Y)	[4:0-4-0,Edge], [6:0-3-5,Edge],	7-1-4		2-12	1	
LOADING (psf) TCLL 20.0	Plate Grip DOL 1.1		DEFL. ir Vert(LL) -0.16	n (loc) 3 6-7	l/defl L/d >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr YE		Vert(CT) -0.35 Horz(CT) 0.00		>572 240 n/a n/a	M18AHS 186/179
BCDL 10.0	Code IRC2015/TPI2014		Wind(LL) 0.15		>999 240	Weight: 203 lb FT = 20%
LUMBER-			BRACING-			
	PNo.1 *Except* 6 SP No.1		TOP CHORD		ral wood sheathing dir end verticals.	ectly applied or 6-0-0 oc purlins,
	P 2400F 2.0E No.1 *Except*		BOT CHORD	Rigid ce	eiling directly applied o	or 10-0-0 oc bracing.
	8 SP No.1, 5-7: 2x4 SP No.2					
	e) 9=Mechanical, 6=0-3-8					
	lorz 9=-422(LC 13) plift 9=-57(LC 13)					
	irav 9=1328(LC 21), 6=798(LC	21)				
		0 (lb) or less except when shown.				
	=-561/92, 1-10=-505/125, 1-2=- ·13/405, 6-7=0/578	19/538, 2-3=-259/134, 3-5=-535/8	32, 5-6=-746/90			
WEBS 3-7=-	-18/253, 5-7=-514/223, 2-10=-70	03/262				
NOTES-						
		DL=6.0psf; BCDL=6.0psf; h=15ft; to 17-2-4 zone;C-C for members				
Lumber DOL=1.60 p 2) All plates are MT20	plate grip DOL=1.60 plates unless otherwise indicate	d.				
		chord live load nonconcurrent with Opsf on the bottom chord in all are		6 0 tall by	(200) wide	THE REAL PROPERTY OF THE PARTY
will fit between the b	oottom chord and any other men	bers.	-	0-0 tall by	2-0-0 wide	CARO CARO
		0; Wall dead load (5.0psf) on men om chord dead load (10.0 psf) app				1 O SE COMV 2.
	truss to truss connections.	o bearing plate capable of withsta	nding 100 lb unlift at ioir	nt(c) Q	4	M. JAN
9) Attic room checked f		o bearing place capable of withsta	nung 100 ib upint at join	n(3) 3.		
						036322
						a a star a st
						2 PLANE CONST
						A. GILP
						May 12.2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lob	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor		
10522-2435	A5	ROOF TRUSS	2	1			151907491
	etteville, NC - 28314,			430 s Aug	Job Reference (optional) 16 2021 MiTek Industries,	Inc. Thu May 12.08	14-38 2022 Page 1
Contech, Inc, Pay	etteville, NC - 20314,	7-4-12 7-4-12		fhMlzVCC 17	-7-8 5-8		
		1 2					Scale = 1:75.9
		8x8 =		2x4 ⁄⁄ 6 13	7 5x8 =		
		7-4-12		-7-8 -2-12			
Plate Offsets (X,Y)	[5:0-4-0,Edge], [7:0-3-5,Edge],				1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	5 TC 0.73 5 BC 0.28 5 WB 0.34	C DEFL. ir Vert(LL) -0.16 Vert(CT) -0.35 Horz(CT) 0.00 Wind(LL) 0.15	7-8 7-8 7-8	l/defl L/d >999 360 >573 240 n/a n/a >999 240	PLATES MT20 M18AHS Weight: 205 lb	GRIP 244/190 186/179 FT = 20%
BOT CHORD 2x10 S WEBS 2x6 SP 2-10: 2 REACTIONS. (size Max H	No.1 *Except* 6 SP No.1 P 2400F 2.0E No.1 *Except* x8 SP No.1, 6-8: 2x4 SP No.2 e) 10=0-3-8, 7=0-3-8 orz 10=-432(LC 13)		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	except Rigid ce 1 Row a	ral wood sheathing directl end verticals. eiling directly applied or 10 at midpt 10-1 e at Jt(s): 11	0-0-0 oc bracing.	oc purlins,
Max G FORCES. (lb) - Max. TOP CHORD 10-11 6-7=- BOT CHORD 8-10=		0 (lb) or less except when shown. =-128/539, 3-4=-272/100, 4-6=-544/49),				
and C-C Exterior(2) Lumber DOL=1.60 p 2) All plates are MT20 3) This truss has been will fit between the b 5) Ceiling dead load (1 6) Bottom chord live load	0-1-0 to 4-5-13, Interior(1) 4-5-1 late grip DOL=1.60 plates unless otherwise indicate designed for a 10.0 psf bottom n designed for a live load of 30. ottom chord and any other men 0.0 psf) on member(s). 3-4, 3-1 ad (40.0 psf) and additional bott connection (by others) of truss	chord live load nonconcurrent with any Opsf on the bottom chord in all areas w	nd forces & MWFR r other live loads. r/here a rectangle 3- (s).4-8 only to room. 8-10	S for reac	tions shown;	H CA SEA OS63	12.2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lob	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor		
10522-2435	A5-GR	ROOF TRUSS	1	2			151907492
Comtech, Inc, Fay	etteville, NC - 28314,			430 s Aug	16 2021 MiTek Industries	s, Inc. Thu May 12 08	
		7-4-12	12-2-0	17-	S4xvzzRiE-SeCo5EQKkS -7-8	7?ahwGHdtxgi6qrfwu	VnTH9mb28GzHlh_
		7-4-12	4-9-4	5-	5-8		
		1 2					Scale = 1:75.
	Ī	3x4 9.00 1	12				
		3x10 =	2x0 11				
	, D		6x8 ∖				
	14-0-5						
		8-2-4		3x6 <>			
		8-2.		* 14			
		⊠ 6-3-4					
	4				ta (
	- <u>0</u> -9-4			Ŷ	0-11-3		
		6x12 =	9 5x8 = 2x	3 (6	5x8 =		
		1-2-0 7-4-12	12-2-0		-7-8		
late Offsets (X,Y)	[5:0-4-0,Edge], [7:0-3-5,Edge],	<u>1-2-0 6-2-12</u> [11:0-0-14,0-3-0]	4-9-4	5-	5-8		
OADING (psf)	SPACING- 3-0		DEFL. ir	n (loc)	l/defl L/d	PLATES	GRIP
CLL 20.0 CDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1	5 TC 0.45	Vert(LL) -0.10 Vert(CT) -0.22	9	>999 360 >930 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr N Code IRC2015/TPI2014	O WB 0.21	Horz(CT) 0.00 Wind(LL) 0.09) 7	n/a n/a >999 240	Weight: 421 lb	FT = 20%
.UMBER-		Matrix-5	BRACING-		2333 240		11 - 2070
OP CHORD 2x8 SF	No.1 *Except*		TOP CHORD		c purlins (6-0-0 max.), e		
OT CHORD 2x10 S			BOT CHORD	Rigid ce	ed from sheeted: Spacin eiling directly applied or	o ,	
	9 No.1 *Except* xx8 SP No.1, 6-9,6-8: 2x4 SP N	0.2	JOINTS	1 Brace	at Jt(s): 2, 12		
EACTIONS. (size	e) 11=0-3-8, 7=0-3-8					-386	BERG
	lorz 11=-648(LC 13) plift 11=-108(LC 13)				100	CR Seco	
	irav 11=2038(LC 21), 7=1193(I	.C 21)				M)	hu
		50 (lb) or less except when shown. =-189/707, 3-4=-412/149, 4-6=-738/83	5			C.C.A	
6-7=-	1755/32),		N Employing	0863	
	=-61/625, 8-9=0/1261, 7-8=0/12 =-945/393, 6-9=-1476/312, 6-8=						
OTES-						Non	
	nected together with 10d (0.13 ed as follows: 2x8 - 2 rows stag	l "x3") nails as follows: gered at 0-9-0 oc, 2x6 - 2 rows stagge	red at 0-9-0 oc.		1	210 -	BESS
	ected as follows: 2x10 - 2 rows follows: 2x6 - 2 rows staggered	staggered at 0-9-0 oc. at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.					
All loads are conside	ered equally applied to all plies,	except if noted as front (F) or back (B) ly loads noted as (F) or (B), unless oth		CASE(S) s	section. Ply to		
Wind: ASCE 7-10; V	/ult=130mph Vasd=103mph; T0	DL=6.0psf; BCDL=6.0psf; h=15ft; Cat	. II; Exp C; Enclosed				
Lumber DOL=1.60 p	plate grip DOL=1.60	13 to 17-5-12 zone;C-C for members a		5 Ior reac	uons snown;		
		chord live load nonconcurrent with any 0psf on the bottom chord in all areas v		6-0 tall by	2-0-0 wide		
	oottom chord and any other mer 0.0 psf) on member(s). 3-4, 3-1	nbers. 2; Wall dead load (5.0psf) on member	r(s).4-9				
) Bottom chord live lo	ad (40.0 psf) and additional bot	om chord dead load (10.0 psf) applied to bearing plate capable of withstandir	only to room. 9-11	nt(s) exce	pt (it=lb)		
11=108.		size or the orientation of the purlin alor			,		
0) Attic room checked			יש נווכ נטף מווע/טו 00		u.		
						May	/ 12.2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

B18 Soundside Road Edenton, NC 27932

ob	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor		
0522-2435	A6	ROOF TRUSS	3	1			151907493
Comtech, Inc, Fay	/ vetteville, NC - 28314,					ies, Inc. Thu May 12 08:14:4	
			ID:G?Mgu2wAOef 13-7-1 19-10-0 2-9-1 6-2-15		54xvzzRiE-wqlBJaRyVn 28-3-8 8-5-8	nGsBrUSrLOACvex736AE3 29-2-8 0-11-0	PRNQKbfizHIgz
			2-9-1 0-2-15		8-5-8	0-11-0	Scale = 1:86.5
		6x12 M18AHS =					Scale = 1.00.3
	9.00 12	-					
			6x8 II 4 5 5 8x8 = 2 11 20 21	00 12 2 6 6 10 66 =	19	8 =	
Plate Offsets (X,Y)	[4:0-7-14,Edge], [13:0-7-12,0-		7-0-0		10-5-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1	COL CSI. .15 TC 0.67 .15 BC 0.90 ES WB 0.94 4 Matrix-S	Vert(LL) -0.22 Vert(CT) -0.46 Horz(CT) 0.03	n (loc) 2 10-12 5 10-12 8 8 5 10-12	l/defl L/d >999 360 >736 240 n/a n/a >999 240	MT20 24 M18AHS 18	RIP 4/190 6/179 FT = 20%
3OT CHORD 2x8 SI 11-14: WEBS 2x6 SI 2-17,5	9: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	except e Rigid ce 1 Row a	end verticals. ailing directly applied o	ectly applied or 4-5-13 oc or 5-11-2 oc bracing. -15, 14-15	purlins,
Max H Max C FORCES. (Ib) - Max. TOP CHORD 1-2= 14-1 BOT CHORD 13-1 WEBS 13-1	Horz 14=-386(LC 13) Grav 14=1899(LC 21), 8=1327 . Comp./Max. Ten All forces 1 -46/909, 2-3=-81/883, 3-4=-84 6=-69/1026, 1-16=-13/598 4=0/1154, 12-13=0/1196, 10-1 5=0/1674, 4-12=0/1284, 15-16	250 (lb) or less except when shown. 5/0, 4-5=-1740/0, 5-6=-2479/0, 6-8=-	755/94,				
 Wind: ASCE 7-10; ' and C-C Exterior(2) shown; Lumber DO All plates are MT20 This truss has been This truss has been will fit between the l Ceiling dead load (⁷ 	0-2-12 to 8-2-13, Interior(1) 8- L=1.60 plate grip DOL=1.60 plates unless otherwise indica designed for a 10.0 psf bottor en designed for a live load of 30 pottom chord and any other me 10.0 psf) on member(s). 3-4, 4- pad (40.0 psf) and additional bo	CDL=6.0psf; BCDL=6.0psf; h=15ft; C 2-13 to 28-11-14 zone;C-C for memb ted. n chord live load nonconcurrent with 0.0psf on the bottom chord in all area	ers and forces & MWF any other live loads. s where a rectangle 3- d (5.0psf) on member(RS for re 6-0 tall by s).13-15,	actions '	SEAL 03632	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	ss Type	Qty	Ply	Lot 6 Mitchell Manor		
J0522-2435	A6-GR RO	OF TRUSS	1	2			151907494
Comtech, Inc, Fay	etteville, NC - 28314,		8.4	130 s Aua	Job Reference (option 16 2021 MiTek Industri	es. Inc. Thu May 12 08	:14:42 2022 Page 1
	3-10-0		0 13-7-1 <u>19-10-0</u>	AOefhMlz	28-3-8	C0NWaR8erzlQeHKkk 29-2-8	Dsr5izUjrkpikazHlgx
	3-10-0	5-9-0 1-3-0	2-9-1 6-2-15	1	8-5-8	0-11-0	
	9.00 12	6x8 =					Scale = 1:81.7
	9.00 12	2					
	4x8 1 4x8 1 3x10 = 15 16 15 15 15 15 15 15 15 15 15 15	**************************************	4x12	_	2x4 // 4x6 = 6 7 4 2 19	8 9 9 P	
	1 I I 📓 14	13		10		4x8 =	
	6x6 = 3x			×6 =		4.0 -	
	3-10-0		17-10-0		28-3-8		
Plate Offsets (X,Y)	[13:0-7-4,0-1-8]	7-0-0	7-0-0		10-5-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-3-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNO	CSI. TC 0.50 BC 0.74 WB 0.90	Vert(LL) -0.16	10-12	l/defl L/d >999 360 >981 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.11	10-12	>999 240	Weight: 644 lb	FT = 20%
5-7,7-9 BOT CHORD 2x8 SF 11-14: WEBS 2x6 SF	2x10 SP No.1 No.1 *Except* 12,5-10,6-10: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD JOINTS	(Switche Rigid ce	purlins (6-0-0 max.), ed from sheeted: Spac iling directly applied o at Jt(s): 1, 2, 5, 15	ing > 2-8-0).	
Max H	orz 14=-579(LC 13) rav 14=2848(LC 21), 8=1990(LC 2)					OFFESS	any
FORCES. (lb) - Max. TOP CHORD 1-2=- 14-16 BOT CHORD 13-14 WEBS 13-15	Comp./Max. Ten All forces 250 (lb) 69/1364, 2-3=-122/1324, 3-4=-1268// 6=-103/1539, 1-16=-19/897 I=0/1730, 12-13=0/1794, 10-12=0/25 5=-0/2510, 4-12=0/1926, 15-16=-1055 5=-5686/124, 2-17=-2094/382, 5-12=-	0, 4-5=-2610/0, 5-6=-3719/0, 94, 8-10=0/3601 /120, 15-17=-3012/199, 3-17	6-8=-4034/9, =-2632/140,			SEA DS63	
Top chords connect Bottom chords conn Webs connected as 2) All loads are considu ply connections haw 3) Unbalanced roof live 4) Wind: ASCE 7-10; V and C-C Exterior(2) shown; Lumber DOI 5) This truss has been will fit between the b 7) Ceiling dead load (1 8) Bottom chord live load	nected together with 10d (0.131"x3") ed as follows: 2x8 - 2 rows staggered ected as follows: 2x10 - 2 rows stagg follows: 2x6 - 2 rows staggered at 0- ered equally applied to all plies, excep a been provided to distribute only loa e loads have been considered for this (ult=130mph Vasd=103mph; TCDL=6 0-2-12 to 8-2-13, Interior(1) 8-2-13 to L=1.60 plate grip DOL=1.60 designed for a 10.0 psf bottom chord in designed for a live load of 30.0psf o ottom chord and any other members. 0.0 psf) on member(s). 3-4, 4-5, 15-1 ad (40.0 psf) and additional bottom chord resentation does not depict the size o	l at 0-9-0 oc, 2x6 - 2 rows sta lered at 0-9-0 oc, 2x8 - 2 row 9-0 oc, 2x4 - 1 row at 0-9-0 c ot if noted as front (F) or back ds noted as (F) or (B), unless design. 6.0psf; BCDL=6.0psf; h=15ft; 9.28-11-14 zone;C-C for mem l live load nonconcurrent with on the bottom chord in all are with BCDL = 10.0psf. 6, 15-17, 3-17; Wall dead lo nord dead load (10.0 psf) app	s staggered at 0-9-0 oc. c. (B) face in the LOAD C otherwise indicated. Cat. II; Exp C; Enclosed bers and forces & MWF any other live loads. as where a rectangle 3-6 ad (5.0psf) on member(s	; MWFRS RS for rea 6-0 tall by 6).13-15, 4	c (envelope) actions 2-0-0 wide	GA GA	

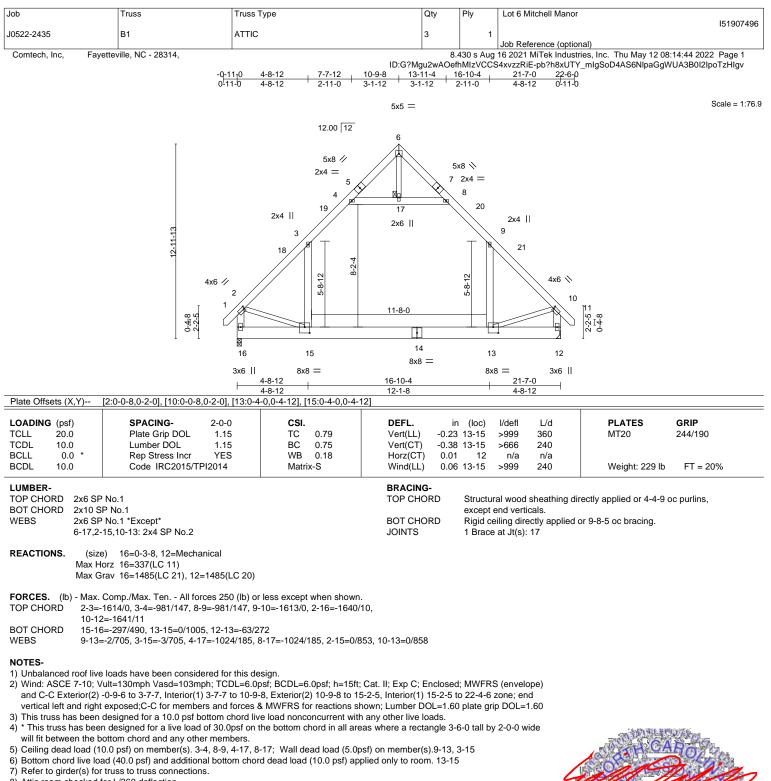
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor	
J0522-2435	A6GE	GABLE	1	1		151907495
Comtech, Inc, Fay	/etteville, NC - 28314,					nc. Thu May 12 08:14:41 2022 Page 1
		<u>3-10-0 9-7-0 10-10</u> 3-10-0 5-9-0 1-3-	ID:G?Mgu2wAO 0 <u>-0 13-7-1 19-10-0</u> -0 2-9-1 6-2-15	efhMIzVC	CS4xvzzRiE-P0JZWvRaG3C 28-3-8 29-2-6 8-5-8 0-11-0)jp?3fP2vPI7B8aTTPzafac449C8zHlgy 8 2
		6x12 M18AHS =	-0 2-9-1 0-2-15		0-0-0	Scale = 1:90.8
	9.00 12	-				
		2				
	5x8 3x10 = 29	1 28 30 30 35 36 6x6 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0 37 7.8-0	7 10x10 = 8 2x4 38 9 38 9 2 3x10 25 24 23 22 2		$\begin{array}{c} x4 \ 1/\\ 4x6 \approx \\ 12 \ 2x4 \ 1 \\ 13 \ 2x4 \ 1 \\ 14 \ 2x4 \ 1 \\ 15 \ 16\\ 20 \ 19 \ 18 \ 4x8 = \end{array}$	0.312 0.312 0.312
		5x8 = 3x10	6×8 —	в =	28-3-8	
Plate Offsets (X,Y)	[8:0-5-8,0-4-0], [21:0-4-0,0-3-8]	3-10-0 7-0-0	7-0-0		10-5-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI2014	0 CSI. 5 TC 0.56 5 BC 0.83 5 WB 0.68	Vert(LL) -0.17 Vert(CT) -0.37 Horz(CT) 0.03	23-25	l/defi L/d >999 360 >898 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 372 lb FT = 20%
BOT CHORD 2x8 SF 24-27: WEBS 2x6 SF 2-30,8 OTHERS 2x4 SF	2-17: 2x6 SP No.1 P No.1 *Except* 2x10 SP No.1 P No.1 *Except* -25,8-21,11-21: 2x4 SP No.2 P No.2		TOP CHORD BOT CHORD WEBS JOINTS	except Rigid ce 8-9-11 c 6-11-2 c 1 Row a	end verticals. eiling directly applied or 10- oc bracing: 26-27 oc bracing: 25-26.	
Max H Max U	e) 27=0-3-8, 16=0-3-8 lorz 27=-563(LC 13) Jplift 27=-62(LC 13), 16=-134(LC Grav 27=1798(LC 21), 16=1288(
TOP CHORD 1-2=- 7-8=- 13-14 BOT CHORD 26-22 WEBS 26-22 WEBS 26-24 35-30 8-37=	-128/768, 2-3=-152/797, 3-4=-1 -1553/0, 8-9=-2182/301, 9-10=-2 4=-2405/262, 14-15=-2401/211, 7=0/1083, 25-26=0/1123, 23-25 1=-104/2197, 19-20=-104/2197, 8=-65/1610, 6-25=-26/999, 28-2 6=-1524/241, 5-36=-1525/239, 2	0 (lb) or less except when shown 6/666, 4-5=-229/603, 5-6=-810/2 203/254, 10-11=-2244/236, 11-13 15-16=-2447/172, 27-29=-204/86 =0/1668, 22-23=0/1668, 21-22=0/ 18-19=-104/2197, 16-18=-104/21 9=-589/141, 28-30=-1741/298, 30 7-28=-3429/396, 2-30=-1299/326 -39=-311/673, 21-39=-325/714, 1	1, 6-7=-1473/0, 3=-2332/264, 38, 1-29=-80/527 (1668, 97)-35=-1523/241, 5, 25-37=-1571/470,			
 Wind: ASCE 7-10; V gable end zone and DOL=1.60 Truss designed for v Gable End Details a All plates are MT20 All plates are 2x6 M Gable studs spaced This truss has been will fit between the b Ceiling dead load (1 6-25 	I C-C Exterior(2) zone;C-C for m wind loads in the plane of the tru as applicable, or consult qualifier plates unless otherwise indicate T20 unless otherwise indicated. I at 2-0-0 oc. designed for a 10.0 psf bottom en designed for a live load of 30. bottom chord and any other men (0.0 psf) on member(s). 5-6, 28-	DL=6.0psf; BCDL=6.0psf; h=15ft; embers and forces & MWFRS for ss only. For studs exposed to wir building designer as per ANSI/Tf d. chord live load nonconcurrent with Dpsf on the bottom chord in all are	reactions shown; Lumbe nd (normal to the face), s Pl 1. h any other live loads. eas where a rectangle 3- all dead load (5.0psf) on	er DOL=1 see Stand 6-0 tall by member(.60 plate grip	May 12,2022
Design valid for use only a truss system. Before u building design. Bracing is always required for st fabrication, storage, deli	y with MiTek® connectors. This design is use, the building designer must verify the g indicated is to prevent buckling of indiv tability and to prevent collapse with possi ivery, erection and bracing of trusses and	HIS AND INCLUDED MITEK REFERENCE based only upon parameters shown, and i applicability of design parameters and proj dual truss web and/or chord members only ole personal injury and property damage. I truss systems, see ANSI/TPH O rain Highway, Suite 203 Waldorf, MD 2000	is for an individual building com perly incorporate this design in y. Additional temporary and pe For general guidance regarding Quality Criteria, DSB-89 and B	nponent, not to the overa rmanent bra g the	ll cing	BIB Soundside Road Edenton, NC 27932

Edenton, NC 27932

- [·	lob	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor			
						151907495			
	10522-2435	A6GE	GABLE	1	1				
						Job Reference (optional)			
	Comtech, Inc, Fayetteville, NC - 28314,		8.430 s Aug 16 2021 MiTek Industries, Inc. Thu May 12 08:14:41 2022 Page 2						
			ID:G?Mgu2wAQefhMlzVCCS4xyzzRiE-P0.JZWyRaG3Qip?3fP2yPl7B8aTTPzafac449C8zHlgy						

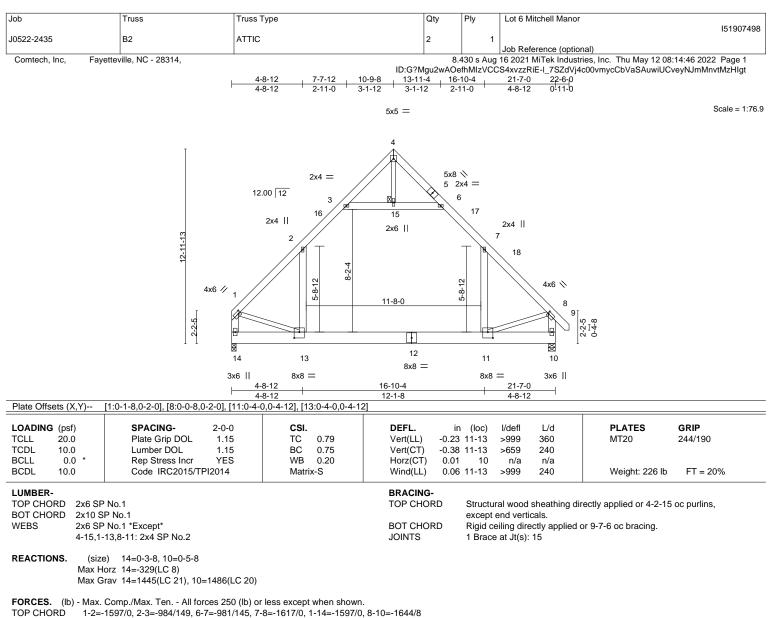

NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27 except (jt=lb) 16=134.

12) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8) Attic room checked for L/360 deflection.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor	
J0522-2435	B1GE	GABLE	1	1		151907497
Comtech, Inc, Fay	vetteville, NC - 28314,			430 s Aug	Job Reference (optiona 16 2021 MiTek Industrie	ıl) ıs, Inc. Thu May 12 08:14:45 2022 Page 1
	ottevnie, 140 - 20314,	0 11 0 4 9 12 7 7 12	ID:G?Mgu2wAOet		S4xvzzRiE-HoZ4MHV5J	lu9lcNQeu_LvzMnJ4sAvN2AXi2MLvzHlgu
		-0-11-0 4-8-12 7-7-12 0-11-0 4-8-12 2-11-0		11-0	<u>21-7-0</u> <u>22-6-</u> 0 <u>4-8-12</u> 0-11-0	
			5x5 =			Scale = 1:81.6
		12.00 12				
	T		8			
		4x8 // 6 5	24 23 27	3 🔨		
	0.48 2.2.5 *		x10 2x6 3x10 	2-8-12	12 13 4x6 28 29 14 15 50 7 1 15 57 10 7 7	0.4-8
		22 21 20 4x6 8x8 =	19 8x8 =	18 8x8 =	17 16 = 4x6	
		4x6 8x8 — 2x6		070 -	- 4x6 2x6	
		4-8-12	16-10-4		21-7-0	
Plate Offsets (X,Y)	[2:0-1-0,0-2-0], [14:0-1-0,0-2-	<u> </u>	12-1-8		4-8-12	
LOADING (psf) TCLL 20.0 TCDL 10.0	Plate Grip DOL 1	D-0 CSI. 15 TC 0.70 15 BC 0.72	Vert(LL) -0.21		l/defl L/d >999 360 >726 240	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0		ES WB 0.72	Horz(CT) 0.01	16	n/a n/a >999 240	Weight: 244 lb FT = 20%
WEBS 2x6 SF	SP No.1 P No.1 *Except* -20,14-18: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD JOINTS	except e Rigid ce	al wood sheathing dire and verticals. iling directly applied or at Jt(s): 23, 25, 28	ctly applied or 4-9-4 oc purlins, 10-0-0 oc bracing.
Max H	e) 22=0-3-8, 16=0-3-8 lorz 22=422(LC 11) Grav 22=1480(LC 21), 16=148	0(LC 20)				
TOP CHORD 2-3= 12-1: BOT CHORD 21-2: WEBS 12-1: 11-2 18-2:	-1601 ['] /0, 3-4=-1592/42, 4-5=-9 3=-1591/42, 13-14=-1600/0, 2 2=-379/571, 20-21=-379/571, 8=0/790, 4-20=0/790, 5-24=-1 7=-1075/235, 8-23=-438/0, 2-2	250 (lb) or less except when shown 95/179, 7-8=-26/326, 8-9=-26/326, 22=-1231/0, 14-16=-1232/0 18-20=0/1047, 17-18=-83/286, 16-1 075/235, 23-24=-1070/236, 23-27=- 26=-22/762, 25-26=-3/913, 20-25=-1 29=-29/767, 7-24=-10/475, 21-26=-	11-12=-995/179, 7=-83/286 1070/236, 9/874,			
 Wind: ASCE 7-10; N gable end zone and shown; Lumber DO Truss designed for v Gable End Details a All plates are 2x4 M Gable studs spaced This truss has been * This truss has been * This truss has been * This truss has been * Chiling dead load (1 4-20 	C-C Exterior(2) zone; end ver L=1.60 plate grip DOL=1.60 wind loads in the plane of the is applicable, or consult qualifi T20 unless otherwise indicate lat 2-0-0 oc. designed for a 10.0 psf bottor in designed for a live load of 3 bottom chord and any other m 0.0 psf) on member(s). 4-5, 1 ad (40.0 psf) and additional bo	CDL=6.0psf; BCDL=6.0psf; h=15ft; tical left and right exposed;C-C for n russ only. For studs exposed to wir ed building designer as per ANSI/TF d. n chord live load nonconcurrent with 0.0psf on the bottom chord in all are	nembers and forces & M Id (normal to the face), s I 1. any other live loads. as where a rectangle 3- all dead load (5.0psf) on	WFRS fo ee Standa 6-0 tall by member(s	r reactions ard Industry 2-0-0 wide	A GABO SEAL SEAL A GABO May 12,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- BOT CHORD 13-14=-289/422. 11-13=0/1007. 10-11=-63/273
- WFBS 7-11=-1/708, 2-13=-8/675, 3-15=-1030/189, 6-15=-1030/189, 1-13=0/914, 8-11=0/859

NOTES-

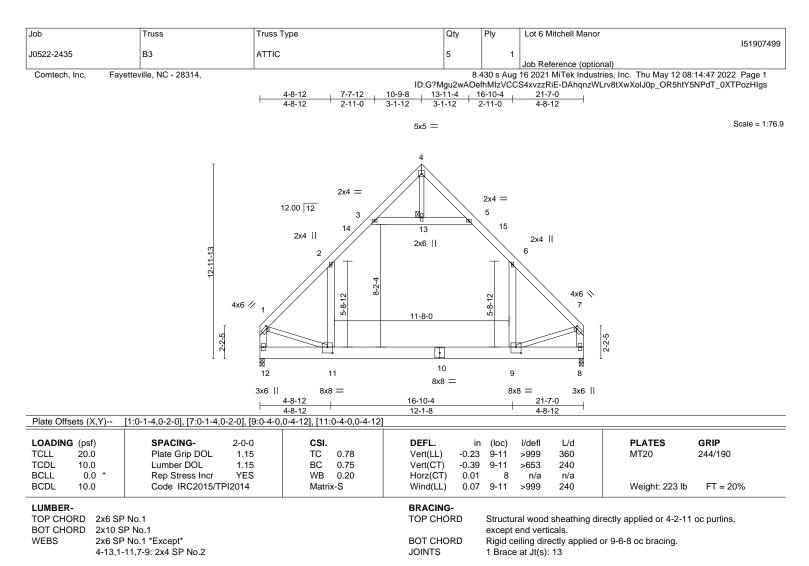
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-8-12, Interior(1) 4-8-12 to 10-9-8, Exterior(2) 10-9-8 to 15-2-5, Interior(1) 15-2-5 to 22-4-6 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 2-3, 6-7, 3-15, 6-15; Wall dead load (5.0psf) on member(s).7-11, 2-13

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13


7) Attic room checked for L/360 deflection.

May 12,2022

818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 12=0-3-8, 8=0-3-8 Max Horz 12=313(LC 11) Max Grav 12=1446(LC 21), 8=1446(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1600/0, 2-3=-984/147, 5-6=-984/147, 6-7=-1600/0, 1-12=-1600/0, 7-8=-1601/0

BOT CHORD 11-12=-303/406, 9-11=0/997

WEBS 6-9=-6/678, 2-11=-7/678, 3-13=-1036/187, 5-13=-1036/187, 1-11=0/915, 7-9=0/919

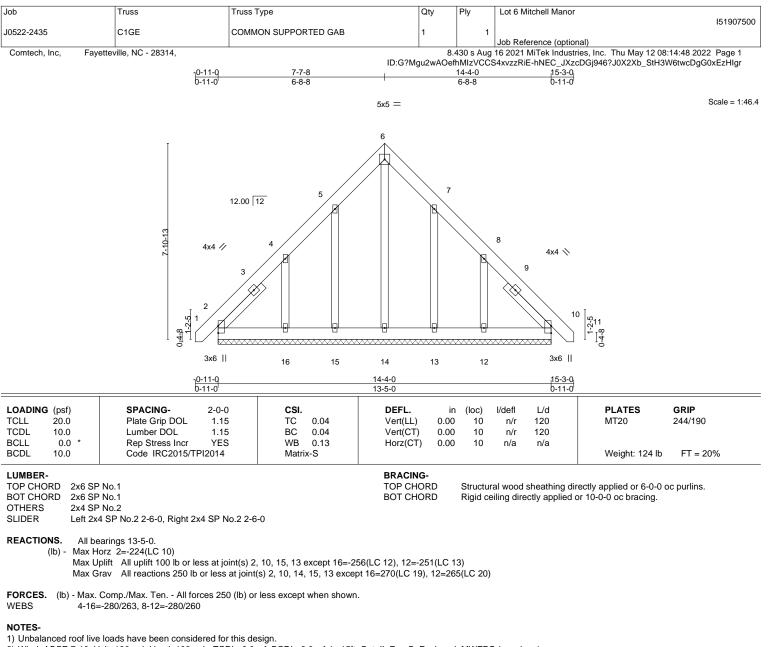
NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-8-12, Interior(1) 4-8-12 to 10-9-8, Exterior(2) 10-9-8 to 15-2-5, Interior(1) 15-2-5 to 21-4-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

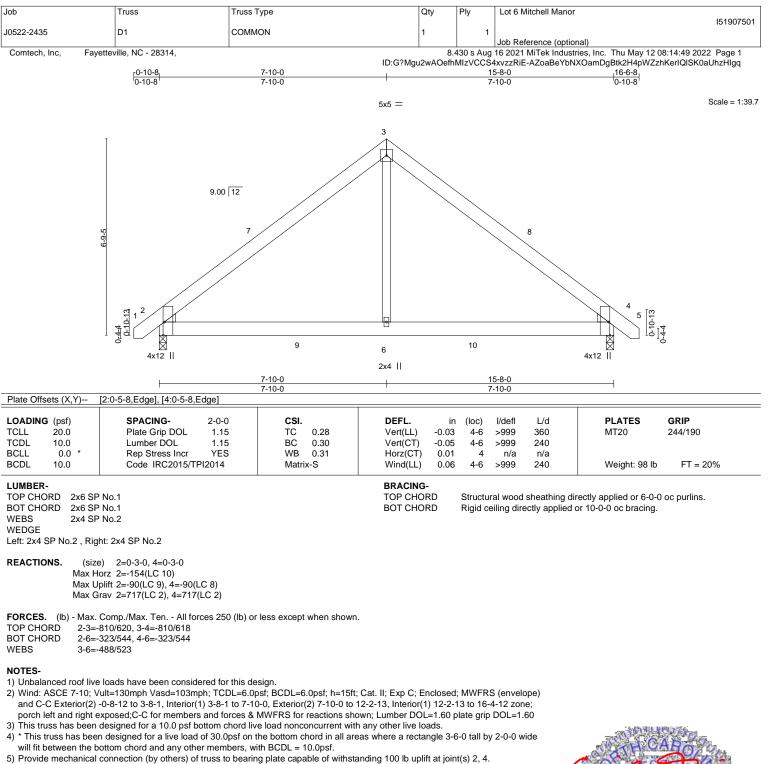
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-13, 5-13; Wall dead load (5.0psf) on member(s).6-9, 2-11

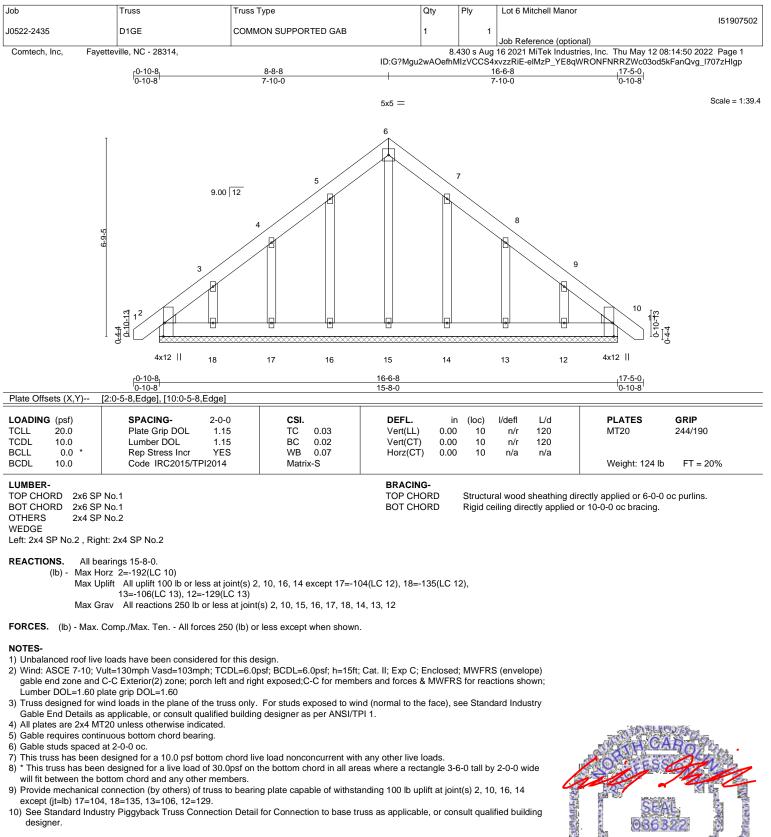

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11

7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

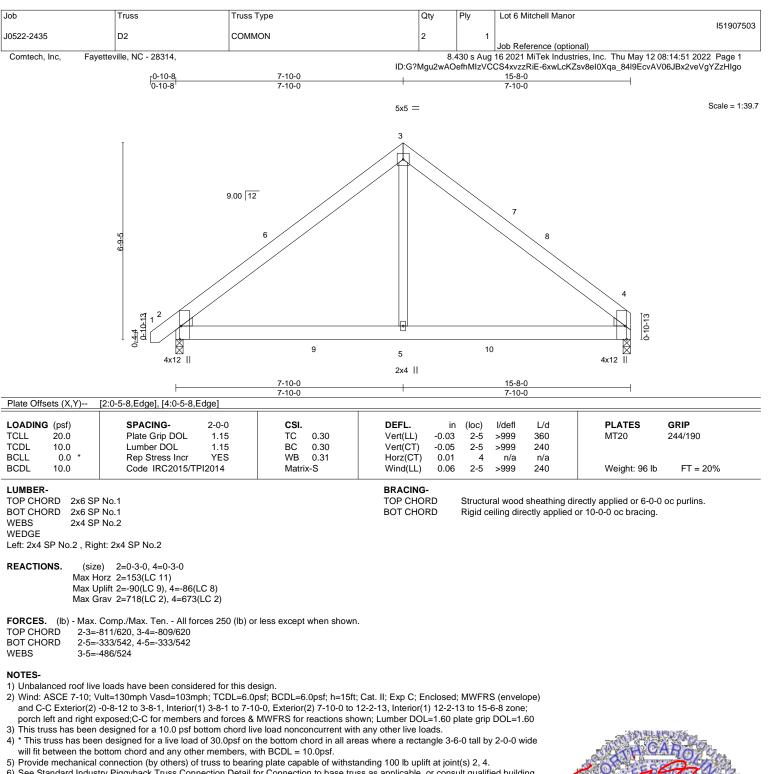

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 13 except (jt=lb) 16=256, 12=251.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

May 12,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

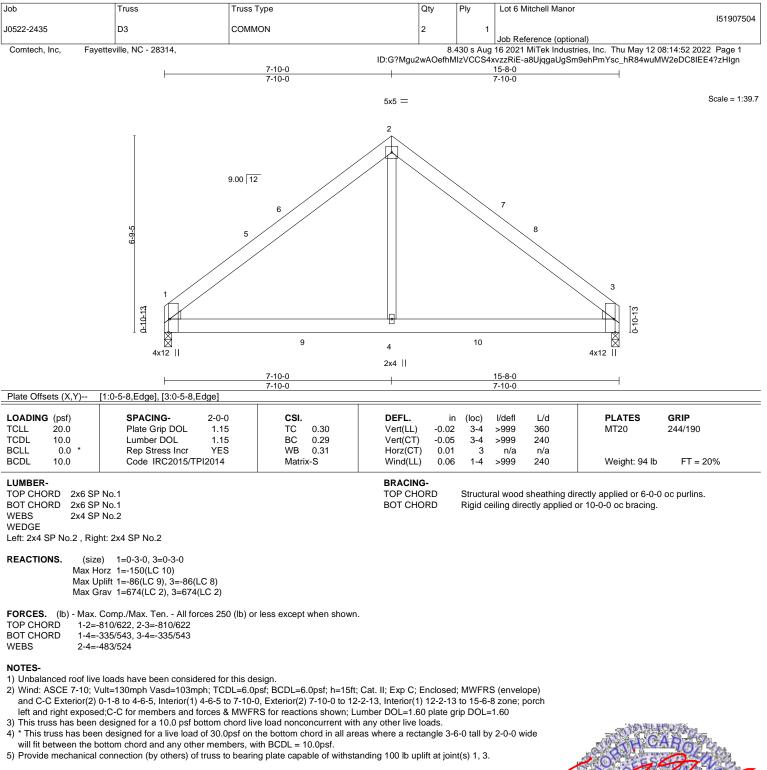
except (jt=lb) 17=104, 18=135, 13=106, 12=129. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building


designer.

Edenton, NC 27932

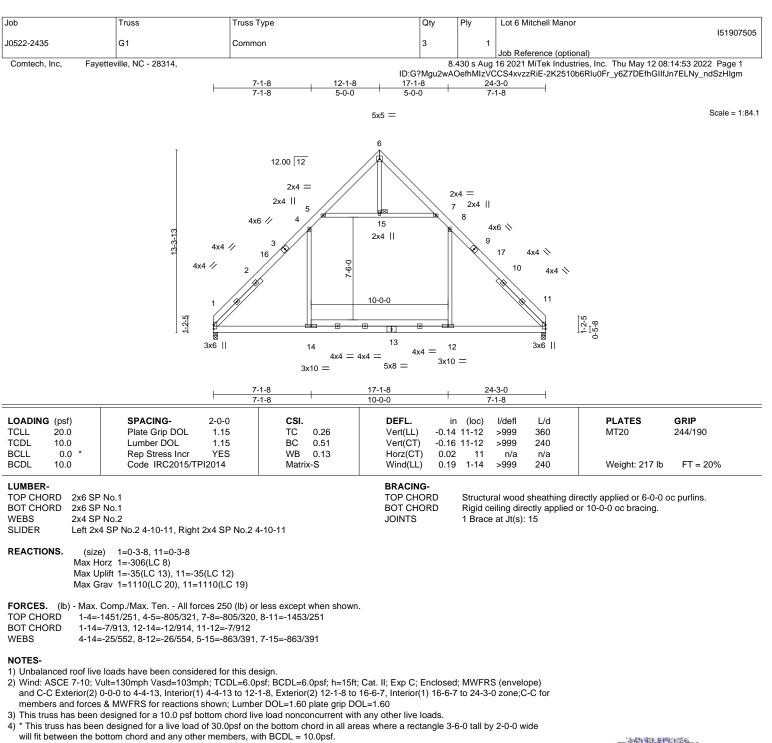
May 12,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11.

May 12,2022

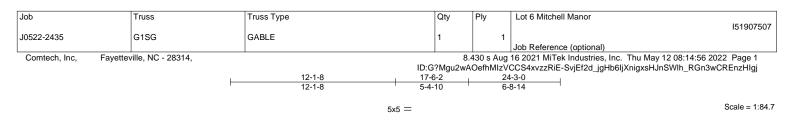
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

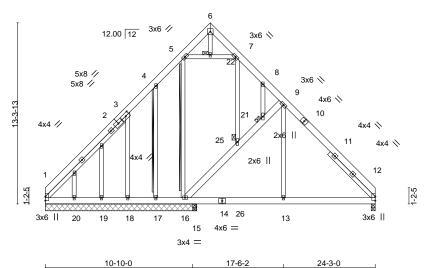
Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Mano	r	
J0522-2435	G1-GR	COMMON GIRDER	1				151907506
			'	3	Job Reference (optic		
Comtech, Inc, Faye	etteville, NC - 28314,					tries, Inc. Thu May 12 lbkC30tt?Z8gHeTnsEF	
	F	<u>4-1-8</u> <u>10-1-8</u> 4-1-8 <u>6-0-0</u>	+12-1-8 14-1-8 20-1 2-0-0 2-0-0 6-0-		<u>24-3-0</u> 4-1-8		
			4x6 =				Scale = 1:84.1
			4x0 —				
			6				
		12.00 12 4x12 1⁄2	4x12 ℕ				
		5	7				
		4x6 1/		\			
	13-3-13	3x10 //		8	4x6 ∕\ 9 3x10 ∕\		
	13-5	3		×.	9		
	8x8 1/1				8x8 🕅		
		2			10		
	1						
	1-2-5					1-2-5	
	⊠ 5x1	2 = 17 16 18 19	15 ^{20 14} 13 ²¹	22	12 23 $^{5x12} =$		
		4x12 10x1	10 = 6x8 =	4x*	12		
			10x10 =				
		4-1-8 10-1-8 4-1-8 6-0-0	<u>+ 14-1-8 20-1</u> 4-0-0 6-0-		24-3-0 4-1-8		
Plate Offsets (X,Y)	[1:Edge,0-2-4], [6:0-3-0,Edge],	11:Edge,0-2-4], [13:0-3-8,0-6-4]	, [15:0-3-8,0-6-4]				
LOADING (psf) TCLL 20.0	SPACING- 2-0- Plate Grip DOL 1.1			(loc) 12-13	l/defl L/d >999 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.1	5 BC 0.40	Vert(CT) -0.18	12-13	>999 240	WIZO	244/130
BCLL 0.0 * BCDL 10.0	Rep Stress Incr No Code IRC2015/TPI2014	D WB 0.56 Matrix-S	Horz(CT) 0.04 Wind(LL) -0.02		n/a n/a >999 240	Weight: 703 I	b FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP			TOP CHORD			irectly applied or 4-0-	8 oc purlins.
WEBS 2x4 SP	2400F 2.0E No.2		BOT CHORD	Rigiu ce	ning directly applied	or 10-0-0 oc bracing.	
SLIDER Left 2x4	4 SP No.2 2-9-4, Right 2x4 SP I	lo.2 2-9-4					
(e) 1=0-3-8, 11=0-3-8 orz 1=-304(LC 4)						
	rav 1=11831(LC 2), 11=12016(LC 2)					
FORCES. (lb) - Max.	Comp./Max. Ten All forces 2f	0 (lb) or less except when show	n.				
	13875/0, 3-5=-10297/0, 7-9=-10	310/0, 9-11=-14178/0)/7348, 12-13=0/9245, 11-12=0/9	0228				
WEBS 7-13=	0/6894, 9-13=-2492/0, 9-12=0/	1965, 5-15=0/6826, 3-15=-2232/					
5-7=-	7517/0						
NOTES- 1) 3-ply truss to be con	nected together with 10d (0.131	"x3") nails as follows:					
Top chords connecte	ed as follows: 2x6 - 2 rows stage	gered at 0-9-0 oc.					
	ected as follows: 2x8 - 2 rows s follows: 2x4 - 1 row at 0-9-0 oc.	aggered at 0-4-0 oc.					
		except if noted as front (F) or ba y loads noted as (F) or (B), unles		ASE(S) s	ection. Ply to		
 Unbalanced roof live 	loads have been considered fo	r this design.			. (A 8 40
Lumber DOL=1.60 p		DL=6.0psf; BCDL=6.0psf; h=15f	t; Cat. II; Exp C; Enclosed	; WWFRE	(envelope);		
		chord live load nonconcurrent wi opsf on the bottom chord in all ar		6-0 tall by	2-0-0 wide	Contraction of the second	19 Contraction
will fit between the b	ottom chord and any other men						
down at 4-0-12, 195	58 lb down at 6-0-12, 1958 lb do	own at 8-0-12, 1958 lb down at	10-0-12, 1958 lb down at	12-0-12,	1958 lb down	SE	AL I
		at 18-0-12, and 2068 lb down a ion device(s) is the responsibility		own at 22	D-12, 1958 lb 1958 lb down 2-0-12 on	. 036	322
	-	· · · (· , · · · · · · · · · · · · · · ·			4		
, ,	alanced): Lumber Increase=1.1	5, Plate Increase=1.15				A MGR	NEELON
Uniform Loads (plf) Vert: 1-6=-6	60, 6-11=-60, 1-11=-20					C A	GILB
						CALL STAN	Target Market
						M	ay 12,2022

B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 Mitchell Manor		
10500 0405	C1 CD			_	151907506		
J0522-2435	G1-GR	COMMON GIRDER	1	3	Job Reference (optional)		
Comtech, Inc, Fayette	/ille, NC - 28314,		8.		16 2021 MiTek Industries, Inc. Thu May 12 08:14:54 2022 Page 2		
	20014,	ID:G?Mgu2wAOefhMIz/CCS4xvzzRiE-WWcTFMbkC30tr728gHeTnsEFti0EWUhUbcjJuzHIgI					


LOAD CASE(S) Standard


Concentrated Loads (lb)

Vert: 13=-1547(B) 12=-1645(B) 15=-1547(B) 16=-1547(B) 17=-1547(B) 18=-1547(B) 19=-1547(B) 20=-1547(B) 21=-1645(B) 22=-1645(B) 23=-1645(B) 23=-1645(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL)	-0.02 13-15	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT)	-0.03 12-13	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.37	Horz(CT)	0.01 12	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.01 12-13	>999	240	Weight: 259 lb	FT = 20%

6-8-2

6-8-14

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.2 *Except*	WEBS	T-Brace: 2x4 SPF No.2 - 5-16, 4-17
	9-16: 2x6 SP No.1		Fasten (2X) T and I braces to narrow edge of web with 10d
OTHERS	2x4 SP No.2		(0.131"x3") nails, 6in o.c., with 3in minimum end distance.
SLIDER	Left 2x4 SP No.2 8-5-2, Right 2x4 SP No.2 4-8-11		Brace must cover 90% of web length.
		JOINTS	1 Brace at Jt(s): 21, 22, 25
REACTIONS.	All bearings 11-1-8 except (jt=length) 12=0-3-8, 15=0-3-8.		
(lb)	- Max Horz $1 - 382(1 - 10)$		

Max Holz 1=-302(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 17, 20 except 16=-205(LC 13), 18=-446(LC 12) Max Gray All reactions 250 lb or less at joint(s) 17, 19, 20 except 1-385(I C 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-503/279, 3-4=-349/173, 4-5=-269/210, 8-9=-311/176, 9-12=-683/95

- BOT CHORD 1-20=-204/371, 19-20=-204/371, 18-19=-204/371, 17-18=-205/372, 16-17=-205/372, 15-16=0/417, 13-15=0/417, 12-13=0/417
- WEBS 16-25=-528/327, 21-25=-506/310, 9-21=-552/358, 9-13=0/298, 3-18=-507/461

NOTES-

1) Unbalanced roof live loads have been considered for this design.

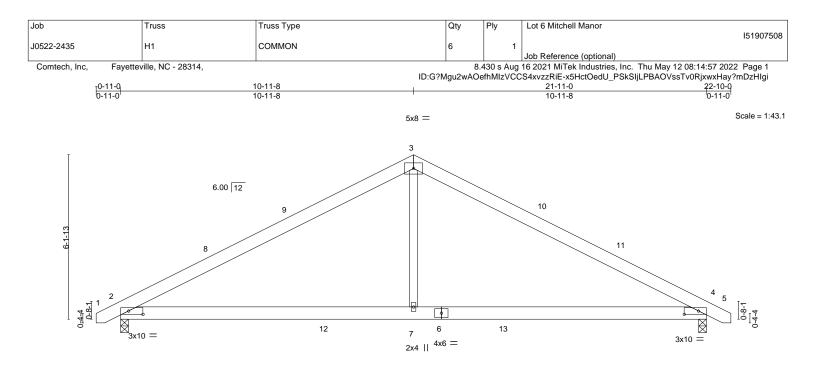
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

10-10-0

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.


- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 17, 20 except (jt=lb) 16=205, 18=446.

9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	10-11-8		1				1-11-0		
Plata Offacta (X X)	10-11-8		ı			1	0-11-8		1
Plate Offsets (X,Y)	[2:0-6-7,0-1-8], [4:0-6-7,0-1-8]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.63	Vert(LL)	-0.08	4-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.50	Vert(CT)	-0.18	4-7	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.15	Horz(CT)	0.02	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.06	2-7	>999	240	Weight: 122 lb	FT = 20%
LUMBER-			BRACING-						
TOP CHORD 2x6 SP No.1				TOP CHORD Structural wood sheathing directly applied or 5-6-0 oc purling					
BOT CHORD 2x6 SF	P No.1		BOT CHOR					or 10-0-0 oc bracing.	
WEBS 2x4 SF	P No.2				0	•			
	e) 2=0-3-8, 4=0-3-8								
	lorz 2=76(LC 11)								
	Jplift 2=-64(LC 12), 4=-64(LC 13)								
IVIAX C	Grav 2=953(LC 2), 4=953(LC 2)								
FORCES. (lb) - Max.	Comp./Max. Ten All forces 250 (lb) o	r less except when shown.							
· · /	-1379/292, 3-4=-1379/292								
	-93/1123, 4-7=-93/1123								
	0/655								
NOTES-									

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-11-8, Exterior(2) 10-11-8 to 15-4-5, Interior(1) 15-4-5 to 22-8-2 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

May 12,2022

			21-11-0						1
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.03 BC 0.02 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 12 12 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	BRACING-					Weight: 154 lb	FT = 20%
TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1			TOP CHOR BOT CHOR					lirectly applied or 6-0-0 o	oc purlins.

BOT CHORD 2x6 SP No 1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 21-11-0.

Max Horz 2=119(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except 23=-109(LC 12),

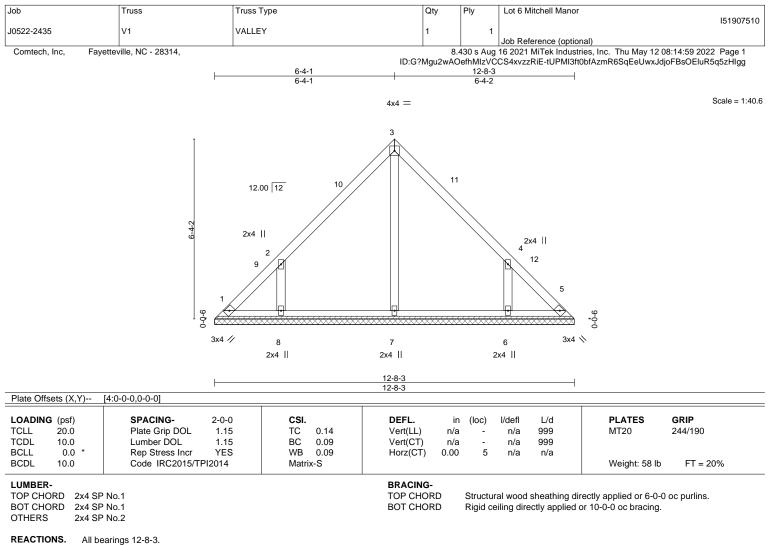
14=-106(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design


- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except (jt=lb) 23=109, 14=106.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(lb) - Max Horz 1=144(LC 9)

Max Upifit All upifit 100 bor less at joint(s) 1, 5 except 8=-161(LC 12), 6=-161(LC 13) Max Grav All reactions 250 b or less at joint(s) 1, 5, 7 except 8=342(LC 19), 6=342(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-356/291, 4-6=-355/291

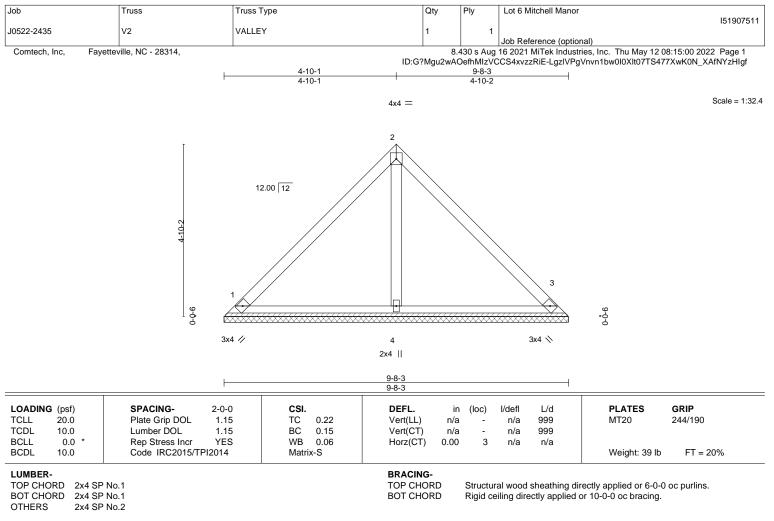
NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-4-1, Exterior(2) 6-4-1 to 10-8-14, Interior(1) 10-8-14 to 12-3-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=161, 6=161.

B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 1=9-8-3, 3=9-8-3, 4=9-8-3

Max Horz 1=-108(LC 8)

Max Uplift 1=-27(LC 13), 3=-27(LC 13)

Max Grav 1=204(LC 1), 3=204(LC 1), 4=311(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

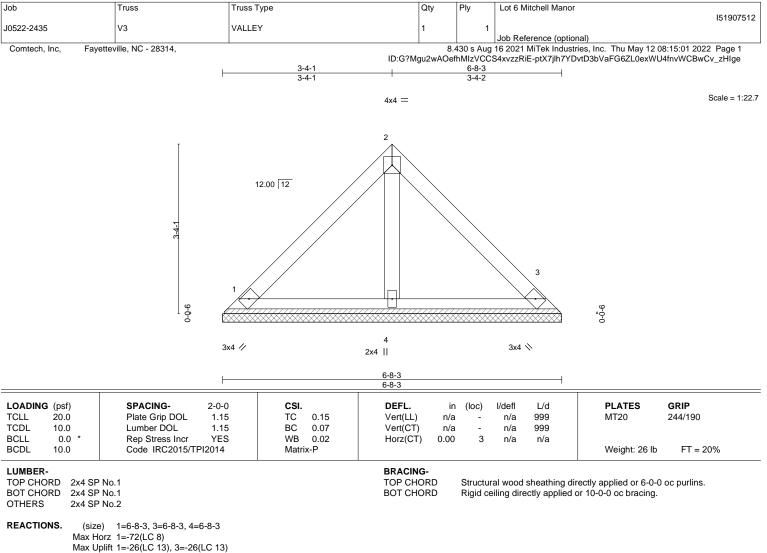
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

May 12,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=146(LC 1), 3=146(LC 1), 4=187(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

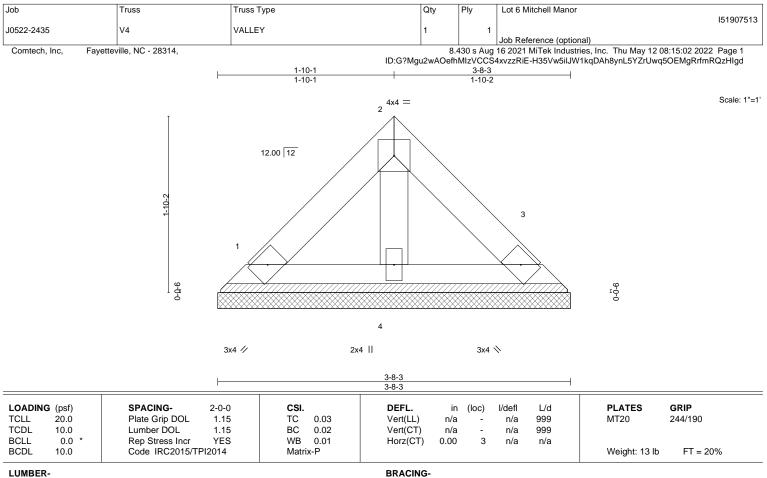
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-8-3, 3=3-8-3, 4=3-8-3

Max Horz 1=-36(LC 8)

Max Uplift 1=-13(LC 13), 3=-13(LC 13)

Max Grav 1=72(LC 1), 3=73(LC 1), 4=93(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

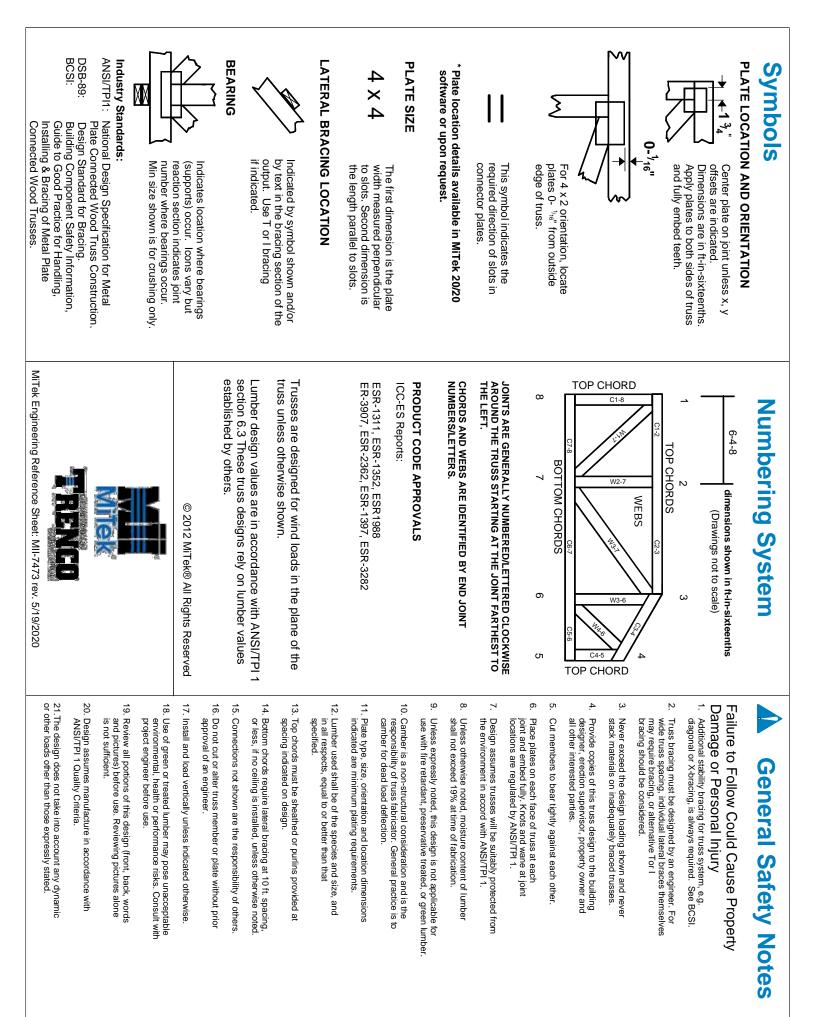
and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 3-8-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

