

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22020381-01 Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Lexington, NC).

Pages or sheets covered by this seal: T27232832 thru T27232865

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 25,2022

Lee, Julius

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot	17-2316 Elev 'B' Permit	-Roof Truss
22020381-01	PB1C	GABLE	2	1			T27232832
Carter Components (Lexi	ngton), Lexington, NC - 272	 95, 15- 15-	8 ID:tQlj0K5bX -5-9 -5-9	.530 s Dec cobraOovc	Job Reference (option c 6 2021 MiTek Industr IZu2Jzzt7J5-Gp4sjld7N	ial) ies, Inc. Thu Mar 24 09 bfSX8FH6vhLf_6?iy0W):21:59 2022 Page 1 nDDkgZD4JrzXmNs
							Scale = 1:26.0
	x8 =			× 		4x8 =	0-10-13
3x5 =	14 13 2x4 3x8	12 3>	2 x8		11 3x8	10 2x4	3x5 =
<u> </u>			-5-9 -5-9				1
Plate Offsets (X,Y) [3:0-4-0,0-1-11], [7:0-4-0,0-1-11						
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.20 BC 0.12 WB 0.05 Matrix-S	DEFL.inVert(LL)n/aVert(CT)n/aHorz(CT)0.00	(loc) - - 10	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structur 2-0-0 oc Rigid ce	al wood sheathing dir purlins (10-0-0 max.) iling directly applied c	ectly applied or 6-0-0 (): 3-7. or 6-0-0 oc bracing.	oc purlins, except
REACTIONS. All bea (lb) - Max Ho Max Up Max Gr	arings 15-5-9. rz 1=16(LC 11) lift All uplift 100 lb or less at jc av All reactions 250 lb or less 24)	int(s) 1, 9, 2, 12, 11, 13 at joint(s) 1, 9, 2, 14, 10 except 12=34	42(LC 1), 11=262(LC	C 23), 13=	=265(LC		
FORCES. (Ib) - Max. (WEBS 5-12=	Comp./Max. Ten All forces 25	0 (lb) or less except when shown.					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi II; Exp B; Enclosed; N 13-5-9, Exterior(2E) / and forces & MWFR3 3) Truss designed for w Gable End Details as 4) Provide adequate dra 5) Gable requires contir 6) Gable studs spaced a 7) This truss has been will fit between the bc 9) Provide mechanical of 10) One RT7A MiTek co connection is for up 11) This truss is design referenced standard 12) See Standard Indus designer. 13) Graphical purlin rep 	loads have been considered fo IIt=120mph (3-second gust) Va IWFRS (directional) and C-C E 3-5-9 to 15-2-2 zone; cantileve 6 for reactions shown; Lumber I ind loads in the plane of the true applicable, or consult qualified inage to prevent water ponding uous bottom chord bearing. at 4-0-0 oc. lesigned for a 10.0 psf bottom of designed for a live load of 20.0 tom chord and any other mem connection (by others) of trues to onnectors recommended to con ift only and does not consider I: ad in accordance with the 2018 I ANSI/TPI 1. try Piggyback Truss Connection resentation does not depict the	 this design. sd=95mph; TCDL=6.0psf; BCDL=6.0ps xterior(2E) 0-3-8 to 2-0-1, Exterior(2R) r left and right exposed ; end vertical le DOL=1.60 plate grip DOL=1.60 ss only. For studs exposed to wind (nc building designer as per ANSI/TPI 1. . hord live load nonconcurrent with any psf on the bottom chord in all areas wheres. b bearing plate capable of withstanding nect truss to bearing walls due to UPLI aterational Residential Code section n Detail for Connection to base truss as a size or the orientation of the purlin alor 	sf; h=25ft; B=45ft; L) 2-0-1 to 6-2-15, Int eft and right expose ormal to the face), s other live loads. here a rectangle 3-6 g 100 lb uplift at join .IFT at jt(s) 2, 12, 11 hs R502.11.1 and Ri hs applicable, or con ing the top and/or bo	=24ft; ea erior(1) 6 d;C-C for ee Stand 6-0 tall by t(s) 1, 9. , and 13. 802.10.2 sult quali ottom cho	ve=4ft; Cat. -2-15 to members ard Industry 2-0-0 wide This and fied building rd.	Solution Sol	CAR DEAL 5183

March 25,2022

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.
- 9) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

15-5-9 Plate Offsets (X,Y)--[4:0-3-0,Edge], [6:0-3-0,Edge] 2-0-0 (loc) PLATES GRIP LOADING (psf) SPACING-CSL DEEL in l/defl L/d TCLL 20.0 Plate Grip DOL 1.15 тс 0.12 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.13 Vert(CT) n/a n/a 999 BCLL WB 0.04 0.0 Rep Stress Incr YES Horz(CT) 0.00 9 n/a n/a BCDL Code IRC2018/TPI2014 Weight: 55 lb FT = 20% 10.0 Matrix-S LUMBER-BRACING-TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 4-6.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

15-5-9

BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 15-5-9.

(lb) - Max Horz 1=-55(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 2, 8, 12, 10

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 11 except 2=269(LC 1), 8=269(LC 1), 12=269(LC 23), 10=269(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-8 to 3-3-8, Interior(1) 3-3-8 to 6-0-1, Exterior(2E) 6-0-1 to 9-5-9, Exterior(2R) 9-5-9 to 13-8-7, Interior(1) 13-8-7 to 15-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.
 One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 12, and 10. This
- connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			15-5-9					
Plate Offsets (X,Y)-	- [4:0-2-12,0-1-3], [6:0-2-12,0-1-3]		15-5-9					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.12 WB 0.05 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 OTHERS 2x4	SP No.2 SP No.2 SP No.3		BRACING- TOP CHORD BOT CHORD	Structu 2-0-0 c Rigid c	iral wood oc purlins eiling dire	sheathing dir (6-0-0 max.): ectly applied o	rectly applied or 6-0-0 4-6. or 10-0-0 oc bracing.	oc purlins, except
REACTIONS. A (lb) - Ma Ma Ma FORCES. (lb) - M WEBS 5	II bearings 15-5-9. Ix Horz 1=36(LC 11) Ix Uplift All uplift 100 lb or less at joint(s) Ix Grav All reactions 250 lb or less at joint Iax. Comp./Max. Ten All forces 250 (lb) of -11=-264/90	I, 9, 2, 8, 11 t(s) 1, 9, 2, 8 except 11=34 r less except when shown	46(LC 23), 12=266(LC 1) n.	, 10=266	6(LC 1)			
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-1 II; Exp B; Enclos Interior(1) 8-2-15 exposed; C-C for 3) Truss designed 1 Gable End Detai 4) Provide adequat 5) Gable requires c 6) Gable studs spa 7) This truss has bo 8) * This truss has will fit between th	live loads have been considered for this d 6; Vult=120mph (3-second gust) Vasd=95 ed; MWFRS (directional) and C-C Exterior 5 to 11-5-9, Exterior(2E) 11-5-9 to 15-2-2 z members and forces & MWFRS for reacti for wind loads in the plane of the truss only is as applicable, or consult qualified building e drainage to prevent water ponding. ontinuous bottom chord bearing. ced at 4-0-0 oc. the designed for a 10.0 psf bottom chord li been designed for a live load of 20.0psf on the bottom chord and any other members.	esign. nph; TCDL=6.0psf; BCDL: (2E) 0-3-8 to 3-3-8, Interio one; cantilever left and righ ons shown; Lumber DOL= . For studs exposed to wi g designer as per ANSI/Ti ve load nonconcurrent with the bottom chord in all are	=6.0psf; h=25ft; B=45ft; L rr(1) 3-3-8 to 4-0-1, Exteri ht exposed ; end vertical 1.60 plate grip DOL=1.60 nd (normal to the face), s PI 1. h any other live loads. eas where a rectangle 3-0	.=24ft; e ior(2R) 4 left and i) eee Stan 6-0 tall b	ave=4ft; (-0-1 to 8- right dard Indu y 2-0-0 w	Cat. 2-15, stry ide		CAF

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.
10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, and 11. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No 3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-9-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-9, 3=Mechanical, 4=Mechanical

Max Horz 5=79(LC 7)

Max Uplift 5=-43(LC 17), 4=-30(LC 5)

Max Grav 5=134(LC 3), 3=56(LC 1), 4=164(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 4 lb up at -1-10-10, and 1 lb down and 4 lb up at -1-10-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 2-3=-20(F=40) Concentrated Loads (lb)
 - Vert: 1=6(F=3, B=3) Trapezoidal Loads (plf)

Vert: 1=40(F=70, B=30)-to-2=0(F=50, B=10), 5=-47(F=-13, B=-13)-to-4=-108(F=-44, B=-44)

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 	4-9-4	<u> </u>	16-7-13 5-10-7	22-8-0	
Plate Offsets (X,Y)	[4:0-5-8,0-2-0], [10:0-3-8,0-3-0], [14:0	-3-0,0-1-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.87 BC 0.82 WB 0.78 Matrix-MS	DEFL. in (loc) l/defl Vert(LL) -0.10 12 >999 Vert(CT) -0.23 12-13 >999 Horz(CT) 0.04 19 n/a	L/d PLATES 240 MT20 180 n/a Weight: 129 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 7-8: 2x BOT CHORD 2x4 SP 9-11: 2 WEBS 2x4 SP OTHERS 2x4 SP SLIDER Left 2x	No.1 *Except* 4 SP No.2 No.1 *Except* x4 SP No.2 No.3 No.3 4 SP No.3 1-6-0		BRACING- TOP CHORD Structural wood except end vert BOT CHORD Rigid ceiling dir WEBS 1 Row at midpt	I sheathing directly applied or 3-1-4 dicals, and 2-0-0 oc purlins (2-10-2 m ectly applied or 10-0-0 oc bracing. 6-14	oc purlins, iax.): 4-8.
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 19=0-3-8 orz 2=81(LC 8) plift 2=-137(LC 8), 19=-128(LC 5) rav 2=1516(LC 1), 19=1406(LC 1)				
FORCES. (lb) - Max. TOP CHORD 2-4=- BOT CHORD 2-13= WEBS 4-13= 10-14	Comp./Max. Ten All forces 250 (lb) 2096/157, 4-5=-2575/218, 5-6=-2575/ -162/1718, 12-13=-158/1725, 10-12= =0/302, 4-12=-81/968, 5-12=-578/181, I=-208/1876, 8-19=-1419/130	or less except when shown. 218, 8-14=-44/1162 -186/1981 6-12=-72/681, 6-14=-1942/ ²	158,		
NOTES- 1) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 2) Provide adequate dr 3) This truss has been will fit between the b 5) Bearing at joint(s) 19; capacity of bearing s 6) One RT7A MiTek coc uplift only and does 7) This truss is designer referenced standard 8) Graphical purlin repr 9) Hanger(s) or other co 2-10-0, 81 lb down are up at 9-7-4, 88 lb dr and 62 lb up at 17-7 down and 34 lb up at 17-74, 44 lb down are bottom chord. The co	ult=120mph (3-second gust) Vasd=95 MWFRS (directional); cantilever left a ainage to prevent water ponding. designed for a 10.0 psf bottom chord l n designed for a live load of 20.0psf or ottom chord and any other members. O considers parallel to grain value usin surface. nnectors recommended to connect tru not consider lateral forces. d in accordance with the 2018 Interna ANSI/TPI 1. resentation does not depict the size or onnection device(s) shall be provided ind 66 lb up at 4-9-4, 87 lb down and bwn and 62 lb up at 11-7-4, 88 lb dow '-4, and 88 lb down and 62 lb up at 15 t 2-10-0, 44 lb down at 15-7-4, 44 lb design/selection of such connection device of such connection device of such connection device to the such as the such a	mph; TCDL=6.0psf; BCDL= nd right exposed ; end vertic ive load nonconcurrent with n the bottom chord in all area g ANSI/TPI 1 angle to grain iss to bearing walls due to U tional Residential Code sect the orientation of the purlin sufficient to support concern 62 lb up at 5-7-4, 88 lb down n and 62 lb up at 13-7-4, 88 0-7-4, and 82 lb down and 62 down at 5-7-4, and 44 lb c vivice(s) is the responsibility of	6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; al left and right exposed; Lumber DOL=1 any other live loads. as where a rectangle 3-6-0 tall by 2-0-0 v formula. Building designer should verify PLIFT at jt(s) 2 and 19. This connection ions R502.11.1 and R802.10.2 and along the top and/or bottom chord. rated load(s) 93 lb down and 60 lb up at n and 62 lb up at 7-7-4, 88 lb down and b down and 62 lb up at 15-7-4, 88 lb do 2 lb up at 21-7-4 on top chord, and 103 l to 7-7-4, 44 lb down at 9-7-4, 44 lb down lown at 19-7-4, and 52 lb down at 21-7- of others.	Cat. 1.60 vide is for 62 lb lown lb n at -4 on	EAL 5183 JS LEEF. March 25,2022

MarkING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP/11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232837
22020381-01	H1GRB	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:39 2022 Page					6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:39 2022 Page 2
		ID:tQlj)K5bXobra	OovdZu2J	zzt7J5-szsIWvOa5S7H84kRxjKesmHQBu0s6_wo4SM0d0zXmOA

NOTES-

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 9-15=-20 Concentrated Loads (lb)

Vert: 4=-59(F) 7=-59(F) 13=-29(F) 20=-68(F) 21=-59(F) 22=-59(F) 23=-59(F) 25=-59(F) 26=-59(F) 27=-59(F) 28=-59(F) 29=-67(F) 30=-103(F) 31=-29(F) 32=-29(F) 33=-29(F) 34=-29(F) 35=-29(F) 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY REPRESSION A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

20-8-0

Plate Offsets (X,Y)	[8:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.15 BC 0.04 WB 0.08 Matrix-R	DEFL. in Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) 0.00	(loc) l/defl L/d 15 n/r 120 15 n/r 120 16 n/a n/a	PLATES GRIP MT20 244/190 Weight: 125 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2	1	BRACING- TOP CHORD	Structural wood sheath	ing directly applied or 10-0-0 oc purlins,

 BOT CHORD
 2x4 SP No.2
 TOP CHORD
 Structural wood shearing directly applied of 10-0-0 of except end verticals.

 BOT CHORD
 2x4 SP No.2
 except end verticals.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

 OTHERS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 20-8-0.

(lb) - Max Horz 28=131(LC 11)

Max Uplift All uplift 100 b or less at joint(s) 28, 16, 24, 25, 26, 27, 20, 19, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 28, 16, 23, 24, 25, 26, 27, 22, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 22-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28, 16, 24, 25, 26, 27, 20, 19, 18, and 17. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2 WEBS 2x4 SP No.3

BOT CHORD

Structural wood sheathing directly applied or 2-9-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=80(LC 12)

Max Uplift 5=-27(LC 12), 3=-21(LC 12)

Max Grav 5=217(LC 1), 3=58(LC 17), 4=46(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 2-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD

BOT CHORD

LUM	BE	R-
TOD	~	

BCDL

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

10.0

REACTIONS. (size) 7=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 7=81(LC 8)

Max Uplift 7=-51(LC 8), 4=-31(LC 5), 5=-14(LC 5)

Code IRC2018/TPI2014

Max Grav 7=340(LC 1), 4=128(LC 1), 5=128(LC 31)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MP

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 132 lb down and 37 lb up at 2-9-4 on top chord, and 128 lb down and 58 lb up at 2-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 3=-9(F) 6=-128(F)

Weight: 21 lb

Structural wood sheathing directly applied or 4-9-4 oc purlins.

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

FT = 20%

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		H	8-3-8 8-3-8				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.54 BC 0.52 WB 0.13 Matrix-AS	DEFL.inVert(LL)0.24Vert(CT)-0.24Horz(CT)0.00	(loc) 5-6 5-6 5	l/defl L/d >393 240 >395 180 n/a n/a	MT20 Weight: 44 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 6=0-5-4, 5=0-3-8 Max Horz 6=158(LC 12) Max Uplift 6=-68(LC 12), 5=-109(LC 12) Max Grav 6=417(LC 1), 5=312(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-321/92, 2-6=-331/113

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 8-1-12 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 5. This connection is for uplift only and does not consider lateral forces.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=108(LC 12)

Max Uplift 5=-16(LC 12), 3=-41(LC 12)

Max Grav 5=286(LC 1), 3=119(LC 1), 4=84(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 4-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 7-9=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232846
22020381-01	H1GRA	Half Hip Girder	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:37 2022 Page 2					
		ID:tQl	j0K5bXobr	aOovdZu2	Jzzt7J5-wakY5EMKZqtZvma2pIIAmLBAr5LPeAMVc8twY7zXmOC

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 4=-59(B) 6=-89(B) 8=-29(B) 5=-59(B) 13=-68(B) 14=-59(B) 15=-59(B) 17=-103(B) 18=-29(B) 19=-29(B) 20=-29(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	4-9-4			11-8-10)					18-8-0	
	4-9-4			6-11-6			1			6-11-6	I
Plate Offsets (X,	Y) [4:0-5-8,0-2-0]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.84 0.93 0.61	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.20 0.04	(loc) 7-8 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TF	PI2014	Matri	x-MS	()		-			Weight: 96 lb	FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2 *Except*			L	BRACING- TOP CHOR	RD.	Structu	ral wood	sheathing d	irectly applied or 3-4-1	3 oc purlins,

LOWIDER		DICAOINO		
TOP CHORD	2x4 SP No.2 *Except*	TOP CHORD	Structural wood sheathing	directly applied or 3-4-13 oc purlins,
	4-6: 2x4 SP No.1		except end verticals, and 2	-0-0 oc purlins (3-7-9 max.): 4-6.
BOT CHORD	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied	d or 10-0-0 oc bracing.
WEBS	2x4 SP No.3	WEBS	1 Row at midpt	5-7
SLIDER	Left 2x4 SP No.3 1-6-0			

REACTIONS. (size) 7=0-3-8, 2=0-3-8 Max Horz 2=104(LC 7) Max Uplift 7=-110(LC 5), 2=-118(LC 8) Max Grav 7=1125(LC 1), 2=1225(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1614/121, 4-5=-1700/149

BOT CHORD 2-10=-162/1314, 8-10=-158/1322, 7-8=-190/1700

WEBS 4-10=0/324, 4-8=-38/418, 5-8=0/341, 5-7=-1826/183

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 2. This connection is for uplift only and does not consider lateral forces.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 93 lb down and 60 lb up at 2-10-0, 81 lb down and 66 lb up at 4-9-4, 88 lb down and 62 lb up at 6-10-0, 88 lb down and 62 lb up at 8-10-0, 88 lb down and 62 lb up at 10-10-0, 88 lb down and 62 lb up at 12-10-0, and 88 lb down and 62 lb up at 14-10-0, and 88 lb down and 62 lb up at 16-10-0 on top chord, and 103 lb down and 34 lb up at 2-10-0, 44 lb down at 4-10-0, 44 lb down at 6-10-0, 44 lb down at 8-10-0, 44 lb down at 10-10-0, 44 lb down at 12-10-0, and 44 lb down at 14-10-0, and 44 lb down at 16-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232847
22020381-01	H1GR	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295,				.530 s Dec	c 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:36 2022 Page 2

ID:tQlj0K5bXobraOovdZu2Jzzt7J5-ROBAuuMioXliHc?sGanxE7fvYhzUvgpLOU8M0hzXmOD

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 4=-59(F) 10=-29(F) 15=-68(F) 17=-59(F) 18=-59(F) 19=-59(F) 21=-59(F) 22=-59(F) 23=-59(F) 24=-103(F) 25=-29(F) 26=-29(F) 27=-29(F) 28=-29(F) 30=-29(F) 30=-29(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-9-4	12-6-14	18-8-0
	6-9-4	5-9-10	6-1-2
Plate Offsets (X,Y)-	- [3:0-4-0,0-1-11]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFL. in TC 0.64 Vert(LL) -0.04 BC 0.47 Vert(CT) -0.09 WB 0.90 Horz(CT) 0.02 Matrix-AS Horz(CT) 0.02	(loc) l/defl L/d 7-9 >999 240 7-9 >999 180 6 n/a n/a Weight: 99 lb
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 2-1	SP No.2 SP No.2 SP No.3 *Except*): 2x6 SP No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5. Rigid ceiling directly applied.

REACTIONS. (size) 6=0-3-8, 10=0-3-8 Max Horz 10=139(LC 11) Max Uplift 6=-72(LC 9), 10=-43(LC 12) Max Grav 6=728(LC 1), 10=829(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-955/28, 3-4=-742/49, 2-10=-748/85

BOT CHORD 9-10=-95/725, 7-9=-97/722, 6-7=-100/740

WEBS 4-7=0/250, 4-6=-880/87

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-9-4, Exterior(2R) 6-9-4 to 11-0-3, Interior(1) 11-0-3 to 18-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 10. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-9-4	18-8-0	27-8-0	36-8-0	40-2-12	49-0-0	
Plate Offsets (X,Y)	[2:Edge,0-0-10], [10:0-4-0,0-2-0],	[12:Edge,0-0-10], [20:Edge,0-3	3-8], [22:0-5-8,Edge]	5-0-12	0-0-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.58 BC 0.95 WB 0.99 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.48 18-19 >999 -1.04 18-19 >568 0.34 12 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 329 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x4 SI 17-19 WEBS 2x4 SI 14-16 WEDGE Left: 2x4 SP No.3 , Rig	P No.2 P No.2 *Except* 2x4 SP 2400F 2.0E, 16-17: 2x4 S P No.3 *Except* 19-22: 2x4 SP No.2 ght: 2x4 SP No.3	SP No.1	BRACING- TOP CHOR BOT CHOR WEBS	D Structural wood 2-0-0 oc purlins / Rigid ceiling dire 1 Row at midpt	sheathing direct 2-8-5 max.): 4- ctly applied. 8-15	tly applied, except 10. 9, 8-16, 5-22	
REACTIONS. (siz Max H Max U Max C	e) 2=0-3-8, 12=0-3-8 Horz 2=-99(LC 10) Jplift 2=-48(LC 12), 12=-48(LC 12) Grav 2=2040(LC 1), 12=2040(LC 1))					
FORCES. (lb) - Max TOP CHORD 2-3= 9-11 9-12 BOT CHORD 2-22 12-1 12-1 WEBS 3-22 10-1	Comp./Max. Ten All forces 250 -3118/59, 3-4=-3061/54, 4-5=-264)=-4137/75, 10-11=-3044/61, 11-1 =0/2542, 20-22=0/417, 6-19=-452 4=0/2555 =0/267, 4-22=0/1115, 8-19=-392/0 6=0/2401, 10-14=-645/17, 5-22=-	(lb) or less except when showr 9/68, 5-6=-5160/84, 6-8=-5240, 2=-3124/63 /93, 18-19=0/5531, 16-18=0/55 0, 8-18=0/411, 8-16=-1555/8, 14 868/49, 19-22=0/3486, 5-19=0	n. /81, 8-9=-4188/72, /31, 9-16=-464/86, 4-16=0/2637, //1711				
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; II; Exp B; Enclosed , Interior(1) 13-0-31 end vertical left and DOL=1.60 3) Provide adequate of 4) All plates are MT20 5) This truss has beer 6) * This truss has beer 6) * This truss has beer 7) One RT7A MiTek c uplift only and does 8) This truss design referenced standam 9) This truss design re sheetrock be applie 10) Graphical purlin re	e loads have been considered for Vult=120mph (3-second gust) Vas MWFRS (directional) and C-C Ex o 40-2-12, Exterior(2R) 40-2-12 to right exposed;C-C for members a lrainage to prevent water ponding. plates unless otherwise indicated designed for a 10.0 psf bottom ch en designed for a live load of 20.0p obttom chord and any other memb onnectors recommended to conne not consider lateral forces. ed in accordance with the 2018 In d ANSI/TPI 1. quires that a minimum of 7/16" str d directly to the bottom chord. epresentation does not depict the s	this design. d=95mph; TCDL=6.0psf; BCDL terior(2E) -1-4-0 to 1-8-0, Interior 44-5-11, Interior(1) 44-5-11 to nd forces & MWFRS for reaction ord live load nonconcurrent with sef on the bottom chord in all ar- rers. ct truss to bearing walls due to ternational Residential Code se uctural wood sheathing be appl- ize or the orientation of the pur-	=6.0psf; h=25ft; B= for(1) 1-8-0 to 8-9-4 50-4-0 zone; cantil ons shown; Lumber th any other live loa eas where a rectan UPLIFT at jt(s) 2 ar ections R502.11.1 ar lied directly to the to lin along the top an	45ft; L=24ft; eave=6ft; C Exterior(2R) 8-9-4 to 1: ever left and right expose DOL=1.60 plate grip ds. gle 3-6-0 tall by 2-0-0 wi ad 12. This connection is ad R802.10.2 and op chord and 1/2" gypsu d/or bottom chord.	at. 3-0-3 ed ; de : for m	S S S S S S S S S S S S S S S S S S S	CAR EAL 5183 INEER. JS LEF. March 25,2022
WARNING - Veri	fv design parameters and READ NOTES ON			5/19/2020 BEFORE USE		ENGINE	-ERING BY

ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-747 ev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

KENLU

818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2	2316 Elev 'B' Permit-F	Roof Truss
22020381-01	H1B	PIGGYBACK BASE	1	1			127232852
Carter Components (Lexing	ton), Lexington, NC - 272	95,		8.530 s De	G 6 2021 MiTek Industries,	Inc. Thu Mar 24 09:2	21:29 2022 Page 1
1-1-1	7.5.6 . 12.0.4	18.6.12	ID:tQIj0K5bXob	raOovdZu2	Jzzt7J5-92GWQVGJRNtix	KzWLc9ISfsoKsbkmR	InJnuxVGbzXmOK
1-4-0 4-2-3-8 1-4-0 4-2-7 1-1-1	7-3-0 12-3-4 5-1-14 5-3-14	19-0-12 24-0-0 5-9-8 5-11-4 TOP CHORD UNE TO BE LATERALL PURLINS AT 2-0-1	USER PIGGYBACKS STIL-4 DER PIGGYBACKS Y BRACED BY 0 OC. MAX.	3	6-2-12 30-4-0 42-4-9 5-9-8 0-5-4 5-8-9	<u>49-0-0</u> 6-7-7	50:4-0 1-4-0 Scale = 1:91.3
	7.00 12 6x	8 = TYPICAL.	8x10 =	4x5 =	6x8 =		
		7 39 8	9	10 4 <u>0</u>	3x5 11 12		
	8x12 = 38					41 8x10 🔍	Ī
41 C1 8x10 = 6x8 ≠ 37 3 4						14	42
9 1 ²					<u>5x10</u> =		15 τω ΙΟ
	25	24 2x4 43 44 4-4-0 45	22 21 46	20	47 48	12-4-0	
5×9 II +	27 2x4 12-0-8	2x4 3x5 =	5x6 WB = 18-0-0	3x5 =	18 3¥5	5x6 =	8x10 =
5x6	= 8x12	MT20HS = 2x4	3x8 =		I		
+ 2-3-8 + 2-3-8 +	7-5-6 <u>12-9-4</u> 5-1-14 5-3-14	18-8-0 <u>14-4-0</u> <u>16-9-4</u> <u>18-6-12</u> <u>24-6-0</u> <u>1-6-12</u> <u>2-5-4</u> <u>1-9-8</u> <u>5-10-0</u> <u>0-1-4</u>	30-5-4 5-11-4	3	6-2-12 36-8-0 42-4-9 5-9-8 0 ¹ 5 ¹ 4 5-8-9	49-0-0 6-7-7	
Plate Offsets (X,Y) [2:E	-dge,0-0-10], [3:0-3-8,0-2-4],	[4:0-3-4,Edge], [5:0-6-0,0-4-8], [9:0-5	5-0,0-4-8], [13:0-4-4	,0-4-8], [15	b:Edge,0-3-8], [19:0-3-4,0	-2-12]	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15) CSI. 5 TC 0.51	DEFL. i Vert(LL) -0.3	n (loc) 5 22-23	l/defl L/d >999 240	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	5 BC 0.87	Vert(CT) -0.6	3 22-23	>930 180	MT20HS	187/143
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	11012(01) 0.4	0 15	11/a 11/a	Weight: 377 lb	FT = 20%
TOP CHORD 2x6 SP No. 13-16,1-5: BOT CHORD 2x4 SP No. 2-27: 2x4 3 WEBS 2x4 SP No. 17-19,3-26 OTHERS 2x6 SP No. WEDGE Left: 2x4 SP No.3 , Right: 2	0.2 *Except* 2x6 SP 2400F 2.0E 0.1 *Except* SP No.2, 28-29,29-30,23-30, 0.3 *Except* 5: 2x4 SP No.2 0.2 2x6 SP No.2	12-18: 2x4 SP No.3	TOP CHORD	Structur 2-0-0 oc Rigid ce	al wood sheathing directly purlins (3-6-8 max.): 7-1 illing directly applied.	y applied, except 1.	
REACTIONS. (size) Max Horz Max Uplift Max Grav	2=0-3-8, 15=0-3-8 2=-139(LC 10) 2=-48(LC 12), 15=-48(LC 12) 2=2287(LC 17), 15=2287(LC	2) C 18)					
FORCES. (lb) - Max. Cor	mp./Max. Ten All forces 25	0 (lb) or less except when shown.	0 4000/400				
ОР СНОКО 2-3=-271 9-10=-40	0/13, 3-4=-5/02/5, 4-6=-609 032/100, 10-11=-3818/99, 11	5/39, 6-7=-3743/84, 7-8=-3833/99, 8 -12=-3496/104, 12-14=-3673/82, 14-	-9=-4032/100, -15=-3574/51				
BOT CHORD 2-27=0/1 23-24=0/ WEBS 3-27=-18 6-26=0/1	925, 26-27=0/1435, 4-26=0/ /3184, 22-23=0/3885, 20-22= 369/0, 6-24=-925/54, 17-19=0 750, 7-24=0/769, 9-22=-358	577, 15-17=0/2951, 25-26=0/3973, 2 :0/3835, 19-20=0/3085)/2851, 14-19=0/326, 14-17=-378/64, /73, 8-23=-686/78, 10-20=-671/80, 7-	4-25=0/3976, , 3-26=0/4105, -23=-4/1178,				
8-22=-3/4	403, 10-22=-3/402, 11-20=-2	/1174, 11-19=-22/513				(1) !!	1111 Acc
NOTES- 1) Unbalanced roof live loa 2) Wind: ASCE 7-16; Vult=	ads have been considered fo 120mph (3-second gust) Va	r this design. sd=95mph; TCDL=6.0psf; BCDL=6.0	psf; h=25ft; B=45ft;	L=24ft; ea	ve=6ft; Cat.		ARD WALS
17-0-3, Interior(1) 17-0-3 exposed ; end vertical le	3 to 36-2-12, Exterior(2R) 36 eft and right exposed;C-C for	xterior(2E) -1-4-0 to 1-8-0, interior(1) -2-12 to 40-5-11, Interior(1) 40-5-11 t members and forces & MWFRS for r	to 50-4-0 zone; cant reactions shown; Lu	ilever left a mber DOL	and right =1.60 plate	SE	EAL
3) Provide adequate draina	age to prevent water ponding	J.			Ē	035	5183 🚦 🗄
4) All plates are M120 plat5) This truss has been des	es unless otherwise indicate	u. shord live load nonconcurrent with an	y other live loads.				
6) * This truss has been de will fit between the botto	esigned for a live load of 20.0 om chord and any other mem	opsf on the bottom chord in all areas v bers, with BCDL = 10.0psf.	where a rectangle 3	-6-0 tall by	2-0-0 wide	I. SNG	NEER
 One RT7A MiTek conner uplift only and does not 	ectors recommended to conn consider lateral forces	ect truss to bearing walls due to UPL	IFT at jt(s) 2 and 15	. This con	nection is for	11,0011	SLEE
8) This truss is designed in	accordance with the 2018 li	nternational Residential Code section	ns R502.11.1 and R	802.10.2 a	nd	11111	innin,
Continued on page 2							March 25,202
WARNING - Verify des Design valid for use only a truss system. Before us building design. Bracing is always required for sta	ign parameters and READ NOTES O with MiTek® connectors. This design se, the building designer must verify i indicated is to prevent buckling of in bility and to prevent collapse with po	N THIS AND INCLUDED MITEK REFERENCE P n is based only upon parameters shown, and is the applicability of design parameters and prop dividual truss web and/or chord members only. ssible personal injury and property damage. Fr	PAGE MII-7473 rev. 5/19/2 for an individual building erly incorporate this desi Additional temporary an or general guidance rega	020 BEFORE component, gn into the ov d permanent rding the	USE. not erall bracing		ERING BY ENCO A MiTek Affiliate
fabrication, storage, deliv	ery, erection and bracing of trusses	and truss systems, see ANSI/TPI1 QU	uality Criteria, DSB-89 a	nd BCSI Bui	Iding Component	818 Soundside	Road

a, Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 шy

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232852
22020381-01	H1B	PIGGYBACK BASE	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:30 2022 Page 2					
ID:tQlj0K5bXobraOovdZu2Jzzt7J5-dEpvdrHxCh?ZZhYivKgX_tPz4GwzVu1T?Yh2					u2Jzzt7J5-dEpvdrHxCh?ZZhYivKgX_tPz4GwzVu1T?Yh2o1zXmOJ

NOTES-

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232853
22020381-01	H1A	PIGGYBACK BASE	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295,			8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:28 2022 Page 2		
ID:tQlj0K5bXobraOovdZu2Jzzt7J5-gri8C9Fhh4lrJNOJovd3vSKdhTER1_VA				u2Jzzt7J5-gri8C9Fhh4lrJNOJovd3vSKdhTER1_VAYECxk8zXmOL	

NOTES-

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss	
					T27232854	
22020381-01	H1	PIGGYBACK BASE	1	1		
					Job Reference (optional)	
Carter Components (Lexington), Lexington, NC - 27295,			8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:25 2022 Page 2			
		ID:tQlj0K5bXobraOovdZu2Jzzt7J5-GG00a7DoO9NGSwfl6m4MHpi6vFDfqdtksHzH7pzXm0				

NOTES-

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss		
					T27232855		
22020381-01	T1D	PIGGYBACK BASE	3	1			
					Job Reference (optional)		
Carter Components (Lexington), Lexington, NC - 27295,			8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:22:09 2022 Page 2				
		ID:tQ	ID:tQlj0K5bXobraOovdZu2Jzzt7J5kgepAlP1gv1kh0Ch0sh35Wdo_Ew7WQCz7ecgGzXmNi				

NOTES-

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-4-0 16-9-3	18-8-0 24-6-0	32-2-13	36-8-0 40-8-0	49-0-0
Dioto Offecto (X V)	8-4-0 8-5-4	1-10-13 5-10-0	7-8-13	4-5-3 4-0-0	8-4-0
Plate Olisets (A, f)	[2.Euge,0-3-6], [5.0-6-4,0-3-0], [6.0-5-4	0-3-0], [12.Euge,0-3-0], [14.0-3-6,0-1-6], [16.0-6-12,0-4	-6], [20.0-7-0,0-4-6]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.54 BC 0.98 WB 0.72 Matrix-AS	DEFL. in (lo Vert(LL) -0.31 17-1 Vert(CT) -0.55 17-1 Horz(CT) 0.27 -	c) l/defi L/d 9 >999 240 9 >999 180 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 381 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP 6-21,9 WEBS 2x4 SP 20-22,0 OTHERS 2x4 SP WEDGE Left: 2x6 SP No.2, Rig	P No.2 P No.1 *Except* 15: 2x4 SP No.3, 18-20: 2x4 SP No.2 P No.3 *Except* 6-19,8-19,14-16: 2x4 SP No.2 P No.3 ht: 2x6 SP No.2		BRACING- TOP CHORD Stru 2-0- BOT CHORD Rig 1 R WEBS 1 R	uctural wood sheathing dire •0 oc purlins (4-0-8 max.): f id ceiling directly applied. I ow at midpt 6- ow at midpt 3-2	ctly applied, except 5-8. Except: 20 22, 5-22, 7-19, 9-17
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 12=0-3-8 orz 2=180(LC 11) plift 2=-48(LC 12), 12=-48(LC 12) rav 2=2334(LC 17), 12=2319(LC 18)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- 8-9=- BOT CHORD 2-24= 9-16= 9-16= WEBS 3-24= 7-19= 14	Comp./Max. Ten All forces 250 (lb) of 3646/61, 3-5=-2955/120, 5-6=-2797/12 3176/115, 9-11=-3793/93, 11-12=-3578 =0/3153, 22-24=0/3153, 6-20=-457/49, - =-1/838, 12-14=0/2954 =0/391, 3-22=-706/89, 5-22=-829/0, 20- =-483/94, 8-19=-13/584, 8-17=0/941, 9- 40-22/6	less except when shown 5, 6-7=-3005/126, 7-8=-30 /60 9-20=0/2878, 17-19=0/2 22=0/2932, 5-20=0/1750, 17=-932/55, 14-16=0/296	005/126, 728, 16-17=0/3201, 6-19=-8/514, 0, 11-16=0/440,		
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 21-0-2, Interior(1) 21 exposed; end vertic grip DOL=1.60 3) Provide adequate dr 4) This truss has been will fit between the b 6) One RT7A MiTek cc uplift only and does 7) This truss is designed referenced standard 8) This truss design red sheetrock be applied 9) Graphical purlin reputation 		sign. ph; TCDL=6.0psf; BCDL: 2E) -1-4-0 to 1-8-0, Interior 36-5-11, Interior(1) 36-5- rs and forces & MWFRS e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. s to bearing walls due to lo onal Residential Code ser l wood sheathing be appli- ne orientation of the purlir	=6.0psf; h=25ft; B=45ft; L=24f or(1) 1-8-0 to 16-9-3, Exterior(-11 to 50-4-0 zone; cantilever for reactions shown; Lumber h any other live loads. eas where a rectangle 3-6-0 ta UPLIFT at jt(s) 2 and 12. This ctions R502.11.1 and R802.10 ied directly to the top chord ar a along the top and/or bottom of	t; eave=6ft; Cat. 2R) 16-9-3 to left and right DOL=1.60 plate III by 2-0-0 wide connection is for 0.2 and id 1/2" gypsum chord.	SEAL 035183 WGINEER March 25,2022
WARNING - Verify Design valid for use a truss system. Befo building design. Bra is always required fo	y design parameters and READ NOTES ON THIS Al only with MiTek® connectors. This design is baser re use, the building designer must verify the applic icing indicated is to prevent buckling of individual tr r stability and to prevent collapse with possible per	ND INCLUDED MITEK REFEREN only upon parameters shown, a ability of design parameters and uss web and/or chord members sonal injury and property damage	ICE PAGE MII-7473 rev. 5/19/2020 BEI and is for an individual building compo properly incorporate this design into ti only. Additional temporary and perma le. For general guidance regarding th	FORE USE. nent, not he overall anent bracing e	A MITEK Affiliate

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss		
					T27232857		
22020381-01	T1A	PIGGYBACK BASE	1	1			
					Job Reference (optional)		
Carter Components (Lexington), Lexington, NC - 27295,		95,	8.530 s Dec 6 2021 MiTek Industries, Inc. Thu Mar 24 09:22:03 2022 Page 2				
ID:tQlj0K5bXobraOovdZu2Jzzt7J5-9aJNY7heRq9t0mZ2LImHqqGcwZB4jpYK				2Jzzt7J5-9aJNY7heRq9t0mZ2LlmHqqGcwZB4jpYKbBBISdzXmNo			

NOTES-

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-4-0 16-9-3	18-8-0 25-3-10	26-4-0 29-4-0 32-2-13 34-8-0 36-8-0 40-8-0	49-0-0
	8-4-0 8-5-4	1-10-13 6-7-10	1-0-6 3-0-0 '2-10-13 '2-5-3 '2-0-0' 4-0-0	8-4-0
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-6-4,0-3-0], [8:0-5-4	0-3-0], [12:Edge,0-3-8], [14:0)-3-8,0-1-8], [17:0-6-8,0-3-0], [21:0-6-0,0-3-8]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.55 BC 0.95 WB 0.76 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.30 20-21 >999 240 Vert(CT) -0.54 20-21 >999 180 Horz(CT) 0.27 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 391 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 6-22,9 WEBS 2x4 SF 21-23,1 WEDGE Left: 2x6 SP No.2 , Rig	9 No.2 9 No.1 *Except* 15,26-28: 2x4 SP No.3, 17-19: 2x4 SP 9 No.3 *Except* 6-20,8-20,14-17: 2x4 SP No.2 ht: 2x6 SP No.2	No.2	BRACING- TOP CHORD Structural wood sheathing dire 2-0-0 oc purlins (3-11-15 max. BOT CHORD Rigid ceiling directly applied. I 1 Row at midpt 6- 10-0-0 oc bracing: 15-17 WEBS 1 Row at midpt 3-	ectly applied, except): 5-8. Except: 21 23, 5-23, 7-20, 9-18
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 12=0-3-8 orz 2=-180(LC 10) plift 2=-42(LC 12), 12=-31(LC 12) rav 2=2353(LC 17), 12=2366(LC 18)			
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-25- 9-17- WEBS 3-25- 7-20- 9-18- 9-18- 9-18-	Comp./Max. Ten All forces 250 (lb) o 3679/50, 3-5=-2990/108, 5-6=-2844/11 3247/93, 9-11=-3811/57, 11-12=-3662/ =0/3181, 23-25=0/3181, 6-21=-495/56, 2 =0/779, 12-14=0/3025 =0/390, 3-23=-704/90, 5-23=-864/0, 21- =-467/91, 8-20=-16/600, 14-17=0/3016, =-894/36	less except when shown. 4, 6-7=-3047/109, 7-8=-3047, 30 20-21=0/2926, 18-20=0/2778 23=0/3005, 5-21=0/1839, 6-2 11-17=0/389, 11-14=-602/44	'109, 17-18=0/3226, 0=-4/476, , 8-18=0/972,	
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 21-0-2, Interior(1) 2' exposed; end vertic grip DOL=1.60 3) Provide adequate di 4) All plates are 2x4 M 5) This truss has been will fit between the b 7) One RT7A MiTek co uplift only and does 8) This truss is designer referenced standard 9) This truss design ref sheetrock be applied	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95n MWFRS (directional) and C-C Exterior(I-0-2 to 32-2-13, Exterior(2R) 32-2-13 tr al left and right exposed;C-C for member rainage to prevent water ponding. T20 unless otherwise indicated. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on nottom chord and any other members, w onnectors recommended to connect trus not consider lateral forces. ed in accordance with the 2018 Internati IANSI/TPI 1. quires that a minimum of 7/16" structura d directly to the bottom chord. presentation does not depict the size or	asign. aph; TCDL=6.0psf; BCDL=6.0 2E) -1-4-0 to 1-8-0, Interior(1 36-5-11, Interior(1) 36-5-11 ars and forces & MWFRS for the bottom chord in all areas ith BCDL = 10.0psf. s to bearing walls due to UPI conal Residential Code section I wood sheathing be applied the orientation of the purlin a	Dpsf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat.) 1-8-0 to 16-9-3, Exterior(2R) 16-9-3 to to 50-4-0 zone; cantilever left and right reactions shown; Lumber DOL=1.60 plate by other live loads. where a rectangle 3-6-0 tall by 2-0-0 wide LIFT at jt(s) 2 and 12. This connection is for hs R502.11.1 and R802.10.2 and directly to the top chord and 1/2" gypsum long the top and/or bottom chord.	SEAL 035183 WGINEER. March 25,2022
WARNING - Verify Design valid for use	y design parameters and READ NOTES ON THIS A only with MiTek® connectors. This design is base	ND INCLUDED MITEK REFERENCE I only upon parameters shown, and i	PAGE MII-7473 rev. 5/19/2020 BEFORE USE. for an individual building component, not adv incorrectate bits design into the ouverall	

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

. .

~~ ~ ~

.....

.....

	8-4-0 16-9-3	19-8-020-8-0 2	26-4-0 <u>32-2-13</u> 5-8-0 <u>5-10-13</u>	40-8-0	49-0-0
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-5-4,0-3-0], [8:0-5	4,0-3-0], [11:Edge,0-3-8], [1	7:0-2-8,0-3-4], [18:0-6-8	3,0-3-4]	0-4-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.55 BC 0.87 WB 0.67 Matrix-AS	DEFL. ir Vert(LL) -0.31 Vert(CT) -0.56 Horz(CT) 0.24	1 (loc) l/defl L/d 17-18 >999 240 5 17-18 >999 180 17-18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 376 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP 6-20,7- WEBS 2x4 SP 18-21,0 OTHERS 2x4 SP WEDGE Left: 2x6 SP No.2 , Rig	P No.2 P No.1 *Except* 16: 2x4 SP No.3 P No.3 *Except* 6-17,15-17,8-17: 2x4 SP No.2 P No.3 ht: 2x6 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathi 2-0-0 oc purlins (3-11-1 Rigid ceiling directly app 1 Row at midpt 10-0-0 oc bracing: 18-2 1 Row at midpt	ng directly applied, except 3 max.): 5-8. blied. Except: 6-18, 7-17 0 3-21, 5-21, 6-17, 8-15, 10-15
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 11=0-3-8 lorz 2=180(LC 11) lplift 2=-39(LC 12), 11=-42(LC 12) rav 2=2353(LC 17), 11=2335(LC 18)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-10= 2-23= 11-11 BOT CHORD 2-23= 11-11 WEBS 3-23= 15-17	Comp./Max. Ten All forces 250 (lb) -3684/46, 3-5=-2983/105, 5-6=-2935/1 -2954/109, 10-11=-3653/51 =0/3185, 21-23=0/3185, 6-18=-481/75 3=0/3024 =0/397, 3-21=-720/90, 5-21=-445/0, 12 7=0/2465, 8-17=0/1068, 8-15=-28/255	or less except when shown. 06, 6-7=-2982/112, 7-8=-29 17-18=0/3016, 7-17=-408/7 -21=0/2850, 5-18=0/1559, 6 10-15=-726/91, 10-13=0/38	71/113, 77, 13-15=0/3024, 6-17=-33/271, 96		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 21-0-2, Interior(1) 21 exposed ; end vertic grip DOL=1.60 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) One RT7A MiTek cc uplift only and does 7) This truss is design red 8) This truss design red 9) Graphical purlin repu	a loads have been considered for this /ult=120mph (3-second gust) Vasd=99 MWFRS (directional) and C-C Exterio 1-0-2 to 32-2-13, Exterior(2R) 32-2-13 cal left and right exposed;C-C for mem rainage to prevent water ponding. designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf o toottom chord and any other members, onnectors recommended to connect tr not consider lateral forces. ad in accordance with the 2018 Interna I ANSI/TPI 1. quires that a minimum of 7/16" structu d directly to the bottom chord. resentation does not depict the size of	design. mph; TCDL=6.0psf; BCDL= r(2E) -1-4-0 to 1-8-0, Interio to 36-5-11, Interior(1) 36-5- bers and forces & MWFRS f ive load nonconcurrent with the bottom chord in all are- with BCDL = 10.0psf. iss to bearing walls due to L tional Residential Code sec ral wood sheathing be applied the orientation of the purlin	6.0psf; h=25ft; B=45ft; L r(1) 1-8-0 to 16-9-3, Ext 11 to 50-4-0 zone; canti for reactions shown; Lur any other live loads. as where a rectangle 3- JPLIFT at jt(s) 2 and 11. tions R502.11.1 and R8 ed directly to the top cho along the top and/or bo	L=24ft; eave=6ft; Cat. erior(2R) 16-9-3 to lever left and right nber DOL=1.60 plate 6-0 tall by 2-0-0 wide This connection is for i02.10.2 and ord and 1/2" gypsum ttom chord.	SEAL 035183 WGINEER. March 25,2022
WARNING - Verify Design valid for use a truss system. Befo building design. Bra is always required fo	y design parameters and READ NOTES ON THIS only with MITek® connectors. This design is bar re use, the building designer must verify the app cing indicated is to prevent buckling of individue or stability and to prevent collapse with possible	AND INCLUDED MITEK REFERENC ed only upon parameters shown, ar icability of design parameters and truss web and/or chord members o ersonal injury and property damage	CE PAGE MII-7473 rev. 5/19/20 nd is for an individual building properly incorporate this design only. Additional temporary and e. For general guidance regar	120 BEFORE USE. component, not n into the overall t permanent bracing ding the	TRENGINEERING BY A MITEK Affiliate

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qui Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

. . .

....

⁸¹⁸ Soundside Road Edenton, NC 27932

F	8-4-0	16-9-4	19-8-0 20-8-0	26-4-0	32-2-12	40-8-0	49-0-0	
	8-4-0	8-5-3	2-10-12 1-0-0	5-8-0	5-10-12 '	8-5-4	8-4-0	·
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-4-	4,0-3-0], [11:Edge	9,0-3-8], [17:0-2-8,0-3-4],	[18:0-6-12,0-3-0]				
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 1.15 1.15	CSI. TC 0.55 BC 0.87	DEFL. Vert(LL)	in (loc) -0.31 17-18	l/defl L/d >999 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2018	YES /TPI2014	WB 0.67 Matrix-AS	Horz(CT)	0.23 11	n/a n/a	Weight: 375 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 6-20,7 WEBS 2x4 SF 18-21,1 OTHERS 2x4 SF WEDGE Left: 2x6 SP No.2 , Rig REACTIONS. (siz Max H Max C	 No.2 No.1 *Except* -16: 2x4 SP No.3 No.3 *Except* 6-17,15-17,8-17: 2x4 S No.3 oht: 2x6 SP No.2 e) 2=0-3-8, 11=0-3-8 Horz 2=-178(LC 10) Jplift 2=-39(LC 12), 11= Stary 2=2352(LC 12), 11= 	P No.2 42(LC 12) 1-2334(1 C 18)		BRACING- TOP CHOR BOT CHOR WEBS	D Struct 2-0-0 D Rigid 1 Row 10-0-0 1 Row	ural wood sheathin oc purlins (3-11-7 r seiling directly appl at midpt oc bracing: 18-20 at midpt	g directly applied, except nax.): 5-8. ied. Except: 6-18, 7-17 3-21, 5-21, 6-17, 8-15,	10-15
FORCES. (ib) Max. TOP CHORD 2-3=: 8-10: BOT CHORD 2-23: 11-1: WEBS 3-23: 15-1:	Comp./Max. Ten All -3677/46, 3-5=-3009/10 =-2981/109, 10-11=-36 =0/3177, 21-23=0/3177 3=0/3017 =0/390, 3-21=-675/89, 1 7=0/2473, 8-17=0/1085	forces 250 (lb) or 04, 5-6=-2978/105 45/51 7, 6-18=-514/72, 1 5-21=-405/0, 18-2 5, 8-15=-31/251, 1	less except when shown , 6-7=-3026/111, 7-8=-3(7-18=0/3058, 7-17=-424/ 11=0/2851, 5-18=0/1535, 0-15=-678/90, 10-13=0/3	016/112, /78, 13-15=0/3017 6-17=-33/274, 887				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 21-0-3, Interior(1) 2⁻ exposed ; end vertic grip DOL=1.60 3) Provide adequate di 4) This truss has been will fit between the t 6) One RT7A MiTek cc uplift only and does 7) This truss is designer referenced standarce 8) This truss design re sheetrock be applie 9) Graphical purlin rep 	e loads have been cons /ult=120mph (3-second MWFRS (directional) a 1-0-3 to 32-2-12, Exteri cal left and right expose rainage to prevent wate designed for a 10.0 ps en designed for a live lo pottom chord and any o ponnectors recommende not consider lateral forn ed in accordance with the d ANSI/TPI 1. quires that a minimum d directly to the bottom resentation does not de	sidered for this de d gust) Vasd=95m and C-C Exterior(2 or(2R) 32-2-12 to d;C-C for member er ponding. f bottom chord liv ad of 20.0psf on t ther members, wi d to connect trust ces. he 2018 Internation of 7/16" structural chord. epict the size or th	sign. ph; TCDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interior 36-5-11, Interior(1) 36-5- rs and forces & MWFRS e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. s to bearing walls due to I onal Residential Code sec wood sheathing be appli e orientation of the purlin	=6.0psf; h=25ft; B= or(1) 1-8-0 to 16-9- -11 to 50-4-0 zone for reactions show h any other live loa eas where a rectan UPLIFT at jt(s) 2 a ctions R502.11.1 a ied directly to the to h along the top and	45ft; L=24ft; e 4, Exterior(2R cantilever lef n; Lumber DC ds. gle 3-6-0 tall b nd 11. This co nd R802.10.2 op chord and 1 /or bottom cho	ave=6ft; Cat.) 16-9-4 to t and right bL=1.60 plate by 2-0-0 wide nnection is for and 1/2" gypsum ord.		CAROLINE BEAL S5183 US LEF. March 25,202
WARNING - Verif Design valid for use a truss system. Beft building design. Bra is always required for forbination efforces	ty design parameters and REA only with MiTek® connectors ore use, the building designer acing indicated is to prevent colla or stability and to prevent colla	D NOTES ON THIS AN a. This design is based must verify the applica- uckling of individual tra- apse with possible per- a of trusses and trusses	D INCLUDED MITEK REFEREN only upon parameters shown, a biblity of design parameters and uss web and/or chord members sonal injury and property damag externs see	ICE PAGE MII-7473 rev. and is for an individual b properly incorporate th only. Additional tempo je. For general guidanc	5/19/2020 BEFOF uilding componen s design into the o ary and permanen e regarding the B co and BCCI	RE USE. t, not by bracing	TR	ENCO A MiTek Affiliate

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Scale = 1:91.0

Plate Offsets (X,Y) B02-4.0.2-0(1):13:600,0-0:10; 119:0-6:0.2-43; [20-2-12.0-2-8] LOADING (ps) SPACING: 2-0-0 CSI. DEFL In (loc) lidef U/d PLATES GRP LOADING (ps) 0.0 Plate Gip DoL 1.15 TC 0.34 Veri(CT) -0.11 117.18 >9692 200 Mice Sign DoL 1.00 EAG Meight 283:1b FT = 20% BCOL 0.00 Rep Stress incr YES WB 0.81 Horz(CT) 0.03 13 n/a Weight 283:1b FT = 20% LUMEER- 20-04 SP No.2 Structural wood sheating directly applied, except 2-04 SP No.2 Structural wood sheating directly applied, except 720 PCHORD 2-04 SP No.2 Structural wood sheating directly applied, except 720 7		6-0-2 14-7-14 6-0-2 8-7-12	20-8-0 4 -19-4 <u>19-8-0 20-6-4</u> 0-1-6 4-10-12 0 ⁻¹ 10-4 0-1-12	26-4-0 3 5-8-0 7	14-2-12 7-10-12	<u>40-7-15</u> 6-5-3	49-0-0 8-4-1	
LOADNES (ph) TCDL SPACING- (ph) (ph) TCDL 20-0 (ph) (ph) TCDL SPACING- (ph) TCDL 20-0 (ph) TCDL SPACING- (ph) TCDL PLATES PLATES (ph) TCDL	Plate Offsets (X,Y)	[9:0-2-4,0-2-0], [13:Edge,0-0-10], [19:0-	5-8,0-2-8], [20:0-2-12,0-2-	-8]			1	
LWBER- TOP CHORD 264 SP No.2 Tacagat' 24 SP No.3 Tacagat' 24 SP No.3 Tacagat' 119: 224 SP No.3 Tacagat' 119: 224 SP No.3 Tacagat' 119: 224 SP No.3 Tacagat' 110: 19: 224 SP No.3 Tacagat' 10: 122 SP No.3 Tacagat' 10: 10: 123 SP No.2 Tacagat' 10: 123 SP No	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.34 BC 0.65 WB 0.81 Matrix-AS	DEFL. ii Vert(LL) -0.1 Vert(CT) -0.2; Horz(CT) 0.0;	n (loc) l/defl l 17-18 >999 3 17-18 >999 3 13 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 383 lb	GRIP 244/190 FT = 20%
REACTIONS. (size) 2–0-3.4, 13–0-3.4, 21=0-3.4 Max Hojit 13–68(LC 12) Max Orgav 2–904(LC 17), 13–1193(LC 18), 21=2847(LC 17) FORCES. (lb) - Max. Comp.Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD X.23–1280(), 5–5–1161(0), 5–6–2871(0, 6–7–07/07, 7–8–07/06, 8-10=-278/176, 10–12=-9791(51, 12-13)–1528/99 BOT CHORD K.23–21429(0, 52–21-1428, 20-21–2824/0, 7-20–363/70, 19-20–0/278, 8-19=0/849, 15-17–0/1223, 13-15–0/1223 WEBS 5–24=0/738, 5-22=-657/0, 17-19=0/637, 10-19=–707/0, 10-17=0/597, 12-17=-65374, 12-15=0/311, 6-22=-0/1021, 20-22=-0/360, 6-20=-1444/0, 8-20=-1516/0 NOTES- 1) Unbalanced rool live loads have been considered for this design. 2) Winci: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; L=24ft; eave=6ft; Cat. II: Exp B: Incodesd; MWFRS (directional) and C-C Exterior(ZE) 1-4-0 to 13-9.0, Interior(1) 1-8-0 to 14-9-4. Exterior(2R) 14-9-4 to 19-0-3, Interior(1) 19-0-3 to 34-2-12, Exterior(ZE) 34-2-12 to 38-5-11, Interior(1) 38-5-11 to 50-40 care: camilever left and right exposed : end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate right DDL=1.60 3) 50.0lb ACD unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) 'This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) 'This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) 'This truss has been designed for a live load of 120.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will it between the bottom chord and any other members, with BCDL = 10.0psd. 7) The struss is designed increaser sparalle to grain value using ANS/TP1 1. Ingle to grain formula. Building designer should verify capacity o	LUMBER- TOP CHORD 2x6 Si BOT CHORD 2x4 Si 2-23,2 WEBS 2x4 Si 10-19: WEDGE Right: 2x4 SP No.3	P No.2 P No.2 *Except* 21-23: 2x6 SP No.2, 7-21,8-18: 2x4 SP N P No.3 *Except* : 2x4 SP No.2	0.3	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt 1 Row at midpt	sheathing d (6-0-0 max. ectly applied	irectly applied, except): 6-10. . Except: 7-20 10-19, 6-20, 8-20	
 FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-1289/0, 3-5=-1161/0, 5-6=-287/10, 6-7 =0/707, 7-8=0/706, 8-10=-278/176, 10-12=-979/151, 12-13=-1528/99 BOT CHORD 2-24=0/1158, 22-24=0/582, 20-21=-2824/0, 7-20=-363/70, 19-20=-0/278, 8-19=0/849, 15-17=0/1223, 13-15=0/311, 6-22=0/1021, 20-22=0/360, 6-20=-1444/0, 8-20=-1516/0 WEBS 5-24=0/783, 5-22=-657/0, 17-19=0/637, 10-19=-707/0, 10-17=0/597, 12-17=-653/74, 12-15=0/311, 6-22=0/1021, 20-22=0/360, 6-20=-1444/0, 8-20=-1516/0 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-40 to 1-8-0, Interior(1) 18-0 to 14-94. Exterior(2E) 14-94 to 19-0-3, Interior(1) 19-0-3 to 34-2-12; Exterior(2E) 1-40 to 15-80, Interior(1) 18-0 to 14-94. Exterior(2E) 14-94 to 19-0-3, Interior(1) 19-0-3 to 34-2-12; Exterior(2E) -14-04 to 13-80, Interior(1) 18-0 to 14-94. Exterior(2E) 1-40 to 18-0, Interior(1) 18-0 to 14-94. Exterior(2E) 1-40 to 18-0, Interior(1) 19-0-3 to 34-2-12; Exterior(2E) -14-04 to 15-80, Interior(1) 18-0 to 14-94. Exterior(2E) 14-94 to 19-0-3, Interior(1) 19-0-3 to 34-2-12; Exterior(2E) 14-04 to 13-80, Interior(1) 19-0-3 to 34-2-12; Exterior(2E) 14-04 to 170 to 901ts, 4-0-0 apart. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Dearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. On RT7A MTek connectors recommended to connect truss to bearing walls due to UPLIFT at j(s) 13. This connection is for uplift only and does not conside	REACTIONS. (siz Max H Max U Max C	ze) 2=0-3-8, 13=0-3-8, 21=0-3-8 Horz 2=159(LC 11) Jplift 13=-68(LC 12) Grav 2=904(LC 17), 13=1193(LC 18), 21	=2847(LC 17)					
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 1-4-0 to 1-8-0, Interior(1) 1-8-0 to 14-9-4, Exterior(2R) 14-9-4 to 19-0-3, Interior(1) 19-0-3 to 34-2-12, Exterior(2E) 1-4-0 to 1-8-0, Interior(1) 18-0-to 20ne; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DOL=1.60 3) 350.01b AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10:0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in a coordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum Constructed standard ANSI/TPI 1. 	FORCES. (lb) - Max TOP CHORD 2-3= 10-1 BOT CHORD 2-24 15-1 WEBS 5-24 12-1	. Comp./Max. Ten All forces 250 (lb) or 1289/0, 3-5=-1161/0, 5-6=-287/10, 6-7= 2=-979/151, 12-13=-1528/99 I=0/1158, 22-24=0/582, 20-21=-2824/0, 7 7=0/1223, 13-15=0/1223 I=0/793, 5-22=-657/0, 17-19=0/637, 10-1 5=0/311, 6-22=0/1021, 20-22=0/360, 6-2	less except when shown. 0/707, 7-8=0/706, 8-10=-2 -20=-363/70, 19-20=-0/27 9=-707/0, 10-17=0/597, 12 0=-1444/0, 8-20=-1516/0	278/176, 78, 8-19=0/849, 2-17=-653/74,				
	NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; II; Exp B; Enclosed 19-0-3, Interior(1) 1 exposed; end verti grip DOL=1.60 3) 350.0lb AC unit loa 4) Provide adequate of 5) This truss has beer will fit between the 7) Bearing at joint(s) 2 capacity of bearing 8) One RT7A MiTek of only and does not of 9) This truss is design referenced standard 10) This truss design Contisheet one bage 201	e loads have been considered for this de Vult=120mph (3-second gust) Vasd=95m ; MWFRS (directional) and C-C Exterior(9-0-3 to 34-2-12, Exterior(2R) 34-2-12 to cal left and right exposed; C-C for member d placed on the bottom chord, 10-4-0 froi trainage to prevent water ponding. n designed for a 10.0 psf bottom chord live an designed for a live load of 20.0psf on to bottom chord and any other members, we 21 considers parallel to grain value using surface. onnectors recommended to connect trus consider lateral forces. eed in accordance with the 2018 Internati d ANSI/TPI 1. requires that a minimum of 7/16" structur ied directly to the bottom chord.	sign. ph; TCDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interio 38-5-11, Interior(1) 38-5- irs and forces & MWFRS f n left end, supported at tw e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. ANSI/TPI 1 angle to grain s to bearing walls due to L onal Residential Code sec al wood sheathing be app	6.0psf; h=25ft; B=45ft; r(1) 1-8-0 to 14-9-4, Ex 11 to 50-4-0 zone; cant for reactions shown; Lu vo points, 4-0-0 apart. a any other live loads. as where a rectangle 3- formula. Building desig JPLIFT at jt(s) 13. This ttions R502.11.1 and R8 lied directly to the top c	L=24ft; eave=6ft; (terior(2R) 14-9-4 t ilever left and right mber DOL=1.60 p -6-0 tall by 2-0-0 w gner should verify connection is for u 302.10.2 and hord and 1/2" gyp	Cat. o t late ride sum	S S S S S S S S S S S S S S S S S S S	CAR EAL 5183 INEER JS LEF

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232861
22020381-01	H1SA	HIP	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295,		95,	8	.530 s Dec	c 6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:43 2022 Page 2
			(5bXobraC	ovdZu2Jz	zt7J5-kk6pMHR58gejdh1CAYPb0cREVWPZ2oKN?4KEmnzXmO6

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:91.0

 	6-0-2 14-7-14 6-0-2 8-7-12	20-8-0 16-3-6 19-8-0 20-6-4 1-7-8 3-4-10 0-10-4 0-1 12	26-4-0 5-8-0	<u>36-2-12</u> 9-10-12	<u>42-4-6</u> 6-1-10	<u>49-0-0</u> 6-7-10		
Plate Offsets (X,Y)	[7:0-4-0,0-3-4], [9:0-5-0,0-4-8], [12:0-4-	8,0-4-8], [14:Edge,0-0-10]], [20:0-5-8,0-2-8], [21:0-	2-12,0-2-8], [23:0-6	6-0,0-3-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.30 BC 0.85 WB 0.74 Matrix-AS	DEFL. ir Vert(LL) -0.22 Vert(CT) -0.45 Horz(CT) 0.04	1 (loc) l/defl 2 18-19 >999 5 18-19 >752 4 14 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 394 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 2-24,2: WEBS 2x4 SF WEDGE Right: 2x4 SP No.3	P No.2 P No.2 *Except* 2-24: 2x6 SP No.2, 8-22,9-19: 2x4 SP N P No.3	0.3	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood : 2-0-0 oc purlins (Rigid ceiling dire 1 Row at midpt	sheathing directly (6-0-0 max.): 7-1 ctly applied. 10-20	y applied, except 1.), 7-21, 9-21		
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 14=0-3-8, 22=0-3-8 lorz 2=157(LC 11) lplift 14=-60(LC 12) irav 2=920(LC 17), 14=1170(LC 18), 22	e=2795(LC 17)						
FORCES. (lb) - Max. TOP CHORD 2-3=: 9-10: BOT CHORD 2-25: 16-11 WEBS 18-21 7-21: 7-21:	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1328/0, 3-5=-1197/0, 5-6=-342/0, 6-7=-283/0, 7-8=0/766, 8-9=0/763, 9-10=-319/150, 10-11=-917/139, 11-13=-1124/127, 13-14=-1562/92 BOT CHORD 2-25=0/1176, 23-25=0/613, 21-22=-2776/0, 8-21=-348/67, 20-21=0/325, 9-20=0/892, 16-18=0/1262, 14-16=0/1262 WEBS 18-20=-7/541, 10-20=-684/21, 10-18=0/377, 13-18=-483/80, 5-25=0/780, 5-23=-674/0, 7-21=-1409/0, 7-23=0/966, 9-21=-1559/0							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 16-3-6, Interior(1) 11 exposed; end vertic grip DOL=1.60 3) 350.0lb AC unit load 4) Provide adequate d 5) This truss has been will fit between the b 7) Bearing at joint(s) 2: capacity of bearing; 8) One RT7A MiTek co only and does not c: 9) This truss is designer referenced standard 10) This truss design r sheetrock be applii 11) Graphical purlin re	a loads have been considered for this de /ult=120mph (3-second gust) Vasd=95m MWFRS (directional) and C-C Exterior(6-3-6 to 36-2-12, Exterior(2R) 36-2-12 to cal left and right exposed;C-C for member d placed on the bottom chord, 10-4-0 fro rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on pottom chord and any other members, w 2 considers parallel to grain value using surface. Dennectors recommended to connect trus consider lateral forces. ed in accordance with the 2018 Internati i ANSI/TPI 1. equires that a minimum of 7/16" structur ed directly to the bottom chord. presentation does not depict the size or	esign. https://texture.com/stime/state/st	=6.0psf; h=25ft; B=45ft; l or(1) 1-8-0 to 14-6-5, Ext -12 to 50-4-0 zone; canti for reactions shown; Lur wo points, 4-0-0 apart. h any other live loads. eas where a rectangle 3- n formula. Building desig UPLIFT at jt(s) 14. This of ctions R502.11.1 and R8 blied directly to the top ch in along the top and/or b	.=24ft; eave=6ft; C erior(2E) 14-6-5 to lever left and right nber DOL=1.60 pla 6-0 tall by 2-0-0 wi gner should verify connection is for up 102.10.2 and hord and 1/2" gyps pottom chord.	ate de blift	S S S S S S S S S S S S S S S S S S S	CAR EAL 5183 INEER JS LEFT	
WARNING - Verif Design valid for use a truss system. Befc building design. Bra is always required fc fabrication, storage, Safety Information	y design parameters and READ NOTES ON THIS Al only with MiTek® connectors. This design is based re use, the building designer must verify the applic icing indicated is to prevent buckling of individual tr or stability and to prevent collapse with possible per delivery, erection and bracing of trusses and truss available from Truss Plate Institute, 2670 Crain H	ND INCLUDED MITEK REFEREN d only upon parameters shown, a ability of design parameters and uss web and/or chord members sonal injury and property damag systems, see <u>ANS/TF</u> ighway, Suite 203 Waldorf, MD 2	ICE PAGE MII-7473 rev. 5/19/20 and is for an individual building properly incorporate this desig only. Additional temporary and pe. For general guidance regar 7/1 Quality Criteria, DSB-89 at 20601	20 BEFORE USE. component, not n into the overall permanent bracing ding the nd BCSI Building Com	ponent	818 Soundsie Edenton, NC	EERING BY ENCO A MiTek Affiliate de Road 27932	

Scale = 1:91.0

 	6-0-2 14-7-14 6-0-2 8-7-12	20-4-8 18-3-6 19-8-0 3-7-8 1-4-10 0-8-8	26-4-0 32-3 5-11-8 5-11-	<u>-6 38-2-12</u> -6 5-11-6	43-8-0 5-5-4	49-0-0 5-4-1	
Plate Offsets (X,Y)	[7:0-4-0,0-3-4], [14:Edge,0-0-10], [21:0-3	5-8,0-2-8], [22:0-2-8,0-2-8	8], [24:0-6-0,0-3-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.32 BC 0.61 WB 0.90 Matrix-AS	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.21 Horz(CT) 0.04	n (loc) l/defl ' 17-19 >999 2 1 24-26 >999 1 4 14 n/a	L/d PLATES 240 MT20 180 n/a Weight: 3	GRIP 244/190 384 lb FT = 20%	
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP 2-25,23 WEBS 2x4 SP WEDGE Right: 2x4 SP vo.3	2 No.2 2 No.2 *Except* 3-25: 2x6 SP No.2, 8-23,9-20: 2x4 SP No 2 No.3	o.3	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she 2-0-0 oc purlins (6- Rigid ceiling directly 1 Row at midpt	eathing directly applied, ex 0-0 max.): 7-12. y applied. 12-19, 6-24, 9-22	ccept	
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 14=0-3-8, 23=0-3-8 orz 2=-157(LC 10) plift 14=-60(LC 12) rrav 2=927(LC 17), 14=1186(LC 18), 23	=2757(LC 17)					
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1341/0, 3-5=-1210/0, 5-6=-359/0, 6-7=-298/0, 7-8=0/879, 8-9=0/879, 9-11=-400/147, 11-12=-939/141, 12-13=-1269/121, 13-14=-1633/82 BOT CHORD 2-26=0/1188, 24-26=0/624, 22-23=-2742/0, 8-22=-324/49, 21-22=0/405, 9-21=0/860, 17-19=0/1024, 16-17=-3/1324, 14-16=-3/1324 WEBS 5-26=0/779, 19-21=0/879, 11-21=-763/0, 11-19=0/260, 12-17=0/434, 13-17=-351/58, 5-24=-663/0, 7-24=0/1211, 7-22=-1339/0, 9-22=-1677/2							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 17-6-5, Interior(1) 17 exposed; end vertic grip DOL=1.60 3) 350.0Ib AC unit load 4) Provide adequate dr 5) This truss has been will fit between the b 7) Bearing at joint(s) 23 capacity of bearing s 8) One RT7A MiTek co only and does not co 9) This truss is designer referenced standard 10) This truss design references and the second 10) This truss design references and the second 10 This truss and	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95m MWFRS (directional) and C-C Exterior(2 7-6-5 to 38-2-12, Exterior(2R) 38-2-12 to ial left and right exposed;C-C for member l placed on the bottom chord, 10-4-0 fror rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t oottom chord and any other members, wi 3 considers parallel to grain value using a surface. onsider lateral forces. d in accordance with the 2018 Internation I ANSI/TPI 1. equires that a minimum of 7/16" structure	sign. ph; TCDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interio 41-2-12, Interior(1) 41-2- rs and forces & MWFRS n left end, supported at tv e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. ANSI/TPI 1 angle to grain s to bearing walls due to I onal Residential Code sec al wood sheathing be app	=6.0psf; h=25ft; B=45ft; r(1) 1-8-0 to 14-6-5, Ext -12 to 50-4-0 zone; canti for reactions shown; Lui wo points, 4-0-0 apart. n any other live loads. eas where a rectangle 3- n formula. Building desig UPLIFT at jt(s) 14. This of ctions R502.11.1 and R8 blied directly to the top cl	.=24ft; eave=6ft; Cat. erior(2R) 14-6-5 to lever left and right mber DOL=1.60 plate 6-0 tall by 2-0-0 wide gner should verify connection is for uplift 302.10.2 and hord and 1/2" gypsum	HIO IS STATISTICS	SEAL 035183	
sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. March 25,20							

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:92.7

H	6-0-2 6-0-2	<u>14-7-14</u> 8-7-12	20-6-4 20-3-6 20-4-8 5-7-8 0-1-2	26-4-0 5-9-12	<u>33-3-6</u> 6-11-6	40-2-12 6-11-6	49-0-0 8-9-4	
Plate Offsets (X,Y)	[7:0-2-4,0-3-8], [13:Ed	lge,0-0-10], [19:0-5-	0-1-12 8,0-2-8], [20:0-4-8,0-2	-8], [23:0-5-0,0-2-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2018	2-0-0 1.15 1.15 r YES 3/TPI2014	CSI. TC 0.28 BC 0.71 WB 0.78 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l -0.08 17-18 > -0.22 23-25 > 0.06 13	/defl L/d •999 240 •999 180 n/a n/a	PLATES MT20 Weight: 368 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 2-24,2 WEBS 2x4 SF WEDGE Right: 2x4 SP No.3	P No.2 P No.2 *Except* 1-24: 2x6 SP No.2, 8-1 P No.3	8,20-21: 2x4 SP No	0.3	BRACING- TOP CHOF BOT CHOF WEBS	2-0-0 oc p 2-0-0 oc p Rigid ceili 1 Row at	l wood sheathing d ourlins (6-0-0 max.) ing directly applied midpt	irectly applied, except : 7-11. 8-20, 6-20	
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 13=0-3-8 łorz 2=-157(LC 10) Jplift 13=-37(LC 12) Grav 2=1047(LC 17), 1	3, 21=0-3-8 3=1238(LC 18), 21=	-2527(LC 17)					
FORCES. (lb) - Max. TOP CHORD 2-3=- 10-11 BOT CHORD BOT CHORD 2-25= 20-22 WEBS 17-11 20-22	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1532/0, 3-5=-1397/0, 5-6=-570/0, 6-7=0/722, 7-8=0/561, 8-10=-864/40, 10-11=-1407/72, 11-12=-1518/60, 12-13=-1679/63 BOT CHORD 2-25=0/1366, 23-25=0/819, 19-20=0/892, 8-19=0/740, 15-17=0/1261, 13-15=0/1374, 20-21=-2198/0 WEBS 17-19=0/1274, 10-19=-644/41, 11-15=0/330, 5-25=0/756, 5-23=-645/0, 8-20=-1776/33, 20-23=-052, 6-20=-1624/0, 6-23=0/1002, 20-22=-396/0							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 17-6-5, Interior(1) 11 exposed ; end vertic grip DOL=1.60 3) 350.0lb AC unit load 4) Provide adequate di 5) This truss has been (a) * This truss has been (b) * This truss has been (c) * This truss has been	e loads have been con /ult=120mph (3-second MWFRS (directional) 7-6-5 to 40-2-12, Exter cal left and right expose d placed on the bottom rainage to prevent wat d designed for a 10.0 ps en designed for a 10.0 ps en designed for a live lo outtom chord and any of 1 considers parallel to surface. onnectors recommende onsider lateral forces. ed in accordance with fi d ANSI/TPI 1. requires that a minimur ied directly to the bottom presentation does not	sidered for this desi 1 gust) Vasd=95mpl and C-C Exterior(2E ior(2R) 40-2-12 to 4 ad;C-C for members chord, 10-4-0 from er ponding. if bottom chord live ad of 20.0psf on the ther members, with grain value using Al ad to connect truss 1 the 2018 Internation m of 7/16" structural m chord. depict the size or th	gn. 1; TCDL=6.0psf; BCDI 2) -1-4-0 to 1-8-0, Inter 3-2-12, Interior(1) 43-3 and forces & MWFRS left end, supported at load nonconcurrent wi e bottom chord in all al BCDL = 10.0psf. NSI/TPI 1 angle to gra to bearing walls due to al Residential Code so wood sheathing be ap e orientation of the pu	L=6.0psf; h=25ft; B= ior(1) 1-8-0 to 14-6 2-12 to 50-4-0 zone S for reactions show two points, 4-0-0 ap ith any other live loa reas where a rectar in formula. Building 0 UPLIFT at jt(s) 13. ections R502.11.1 a oplied directly to the rlin along the top ar	=45ft; L=24ft; eave 5, Exterior(2R) 14 ; cantilever left an m; Lumber DOL= part. dds. g designer should This connection i and R802.10.2 and top chord and 1/2 d/or bottom chord	e=6ft; Cat. 4-6-5 to d right 1.60 plate 2-0-0 wide verify is for uplift d 2" gypsum d.		CAR EAL 5183 NEER. March 25,2022
WARNING - Verif Design valid for use a truss system. Befc building design. Bra is always required fc fabrication, storage, Safety Information	ty design parameters and REA only with MITek® connector ore use, the building designer acing indicated is to prevent to or stability and to prevent coll delivery, erection and bracin available from Truss Plate I	D NOTES ON THIS AND s. This design is based on must verify the applicabi- buckling of individual trus: apse with possible perso- g of trusses and truss sy Institute, 2670 Crain High	INCLUDED MITEK REFERE hly upon parameters shown, lity of design parameters an s web and/or chord member hal injury and property dams stems, see ANSI7 way, Suite 203 Waldorf, MD	NCE PAGE MII-7473 rev and is for an individual k d properly incorporate th s only. Additional tempo age. For general guidant PI1 Quality Criteria, DS 20601	5/19/2020 BEFORE U building component, no is design into the over- rary and permanent br re regarding the B-89 and BCSI Build	ISE. ot all acing <i>Component</i>	B18 Sounds	EERING BY EENCEO A MITEK Affiliate de Road 2.7932

	G (psf)	SPACING- 2-	0-0 CSI.	DE	EFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.15 TC	0.34 Ve	ert(LL) -0.08	15-17	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1	.15 BC	0.65 Ve	ert(CT) -0.23	22-24	>999	180		
BCLL	0.0 *	Rep Stress Incr Y	'ES WB	0.71 Ho	orz(CT) 0.03	13	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI201	14 Matri	ix-AS					Weight: 355 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.2	TOP CHORD	Structural wood shear	thing directly applied, except
BOT CHORD	2x4 SP No.2 *Except*		2-0-0 oc purlins (6-0-0	0 max.): 8-12.
	2-23,21-23: 2x6 SP No.2, 7-21,9-18: 2x4 SP No.3	BOT CHORD	Rigid ceiling directly a	applied.
WEBS	2x4 SP No.3	WEBS	1 Row at midpt	11-19
WEDGE				

Right: 2x4 SP No.3

REACTIONS. All bearings 6-3-0 except (jt=length) 2=0-3-8, 13=0-3-8, 19=0-3-8.

Max Horz 2=-157(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 13, 21, 21, 19

Max Grav All reactions 250 lb or less at joint(s) 18, 21 except 2=1136(LC 17), 20=1286(LC 17), 13=997(LC 18), 19=1258(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1694/0, 3-5=-1559/0, 5-6=-688/0, 6-7=-718/0, 8-9=0/356, 9-11=0/364, TOP CHORD

11-12=-1052/76. 12-13=-1282/54

- BOT CHORD 2-24=0/1500, 22-24=0/961, 7-20=-1274/0, 9-19=-407/86, 15-17=0/1019, 13-15=0/1027
- WEBS 17-19=0/937, 11-19=-1488/19, 12-15=0/277, 5-24=0/759, 5-22=-645/0, 7-22=0/968,
- 6-22=0/440

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 14-6-5, Exterior(2R) 14-6-5 to 17-6-5, Interior(1) 17-6-5 to 42-2-12, Exterior(2R) 42-2-12 to 45-2-12, Interior(1) 45-2-12 to 50-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.
- 4) N/A
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 20, 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 21. This connection is for uplift only and does not consider lateral forces.
- 10) Two SBP4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 17-2316 Elev 'B' Permit-Roof Truss
					T27232865
22020381-01	H1SE	ROOF SPECIAL	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295,			8	.530 s Dec	6 2021 MiTek Industries, Inc. Thu Mar 24 09:21:50 2022 Page 2
			K5bXobra(DovdZu2Jz	zt7J5-141SqgWUVqWjym3Y4W1Eo4ERiKoCB_kPcfX6WtzXmO?

NOTES-

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

