

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22020379-01 Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Lexington, NC).

Pages or sheets covered by this seal: T27228507 thru T27228548

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 25,2022

Lee, Julius

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

LOADING TCLL TCDL	i (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Bop Stracs Lacr	CSI. TC 0.26 BC 0.13	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 4-7 >999 240 MT20 244/190 Vert(CT) -0.01 4-7 >999 180 MT20 244/190	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MP	Weight: 12 lb FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-6-5 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-14, 4=Mechanical

Max Horz 2=73(LC 7)

Max Uplift 2=-129(LC 7), 4=-57(LC 5)

Max Grav 3=43(LC 1), 2=116(LC 5), 4=82(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 4 lb up at -1-10-10, and 1 lb down and 4 lb up at -1-10-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 2-3=-20(F=40)
- Concentrated Loads (lb)
- Vert: 1=6(F=3, B=3)
- Trapezoidal Loads (plf)
 - Vert: 1=40(F=70, B=30)-to-2=12(F=56, B=16), 5=-33(F=-6, B=-6)-to-4=-72(F=-26, B=-26)

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-8 to 3-3-8, Interior(1) 3-3-8 to 7-8-13, Exterior(2R) 7-8-13 to 10-8-13, Interior(1) 10-8-13 to 15-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.
- 9) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

15-5-9 Plate Offsets (X,Y)--[4:0-3-0,Edge], [6:0-3-0,Edge] 2-0-0 (loc) PLATES GRIP LOADING (psf) SPACING-CSL DEFI in l/defl L/d TCLL 20.0 Plate Grip DOL 1.15 тс 0.12 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.13 Vert(CT) n/a n/a 999 BCLL WB 0.04 0.0 Rep Stress Incr YES Horz(CT) 0.00 9 n/a n/a BCDL Code IRC2018/TPI2014 Weight: 55 lb FT = 20% 10.0 Matrix-S LUMBER-BRACING-TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except TOP CHORD

BOT CHORD

2-0-0 oc purlins (6-0-0 max.): 4-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

15-5-9

BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS.

All bearings 15-5-9. Max Horz 1=-65(LC 10) (lb) ·

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 2, 8, 11, 12, 10

Max Grav

All reactions 250 lb or less at joint(s) 1, 9, 11 except 2=269(LC 1), 8=269(LC 1), 12=269(LC 23), 10=269(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-8 to 3-3-8, Interior(1) 3-3-8 to 6-0-1, Exterior(2E) 6-0-1 to 9-5-9, Exterior(2R) 9-5-9 to 13-8-7, Interior(1) 13-8-7 to 15-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9. 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 11, 12, and 10. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantietis and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the

						15-5-9						
Plate Offs	ets (X,Y)	[4:0-2-12,0-1-3], [6:0-2-12	,0-1-3]			19-9-8						
LOADING FCLL FCDL BCLL BCDL	i (psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.21 0.12 0.05 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHO BOT CHO DTHERS	WBER- P CHORD 2x4 SP No.2 T CHORD 2x4 SP No.2 HERS 2x4 SP No.3					BRACING- TOP CHOR BOT CHOR	D D	Structur 2-0-0 oc Rigid ce	al wood purlins	sheathing di (6-0-0 max.) ectly applied	rectly applied or 6-0-0 : 4-6. or 10-0-0 oc bracing.	oc purlins, except
REACTIO	NS. All be (lb) - Max H Max U Max G	earings 15-5-9. lorz 1=-42(LC 10) lplift All uplift 100 lb or les grav All reactions 250 lb c	s at joint(s) 1, or less at joint(, 9, 2, 8, 11, 1 (s) 1, 9, 2, 8 e	2, 10 except 11=34	46(LC 23), 12=266	(LC 1),	10=266	(LC 1)			
FORCES. WEBS	(lb) - Max. 5-11=	Comp./Max. Ten All forc =-264/114	es 250 (lb) or	less except v	when shown							
NOTES- 1) Unbala 2) Wind: A	nced roof live ASCE 7-16; V B: Enclosed:	e loads have been conside /ult=130mph (3-second gu: MWEPS (directional) and	red for this de st) Vasd=103r	esign. mph; TCDL=6 2E) 0-3-8 to 3	3.0psf; BCDI	L=6.0psf; h=25ft; B	=45ft; L	.=24ft; e	ave=4ft;	Cat.		

- II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-8 to 3-3-8, Interior(1) 3-3-8 to 4-0-1, Exterior(2R) 4-0-1 to 8-2-1 Interior(1) 8-2-15 to 11-5-9, Exterior(2E) 11-5-9 to 15-2-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.
 One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 11, 12, and 10. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

TENGINEERING BY AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.11 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) 0.	in (lo n/a n/a 00	nc) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	? No.2		BRACING- TOP CHORD	Stru	uctural wood	sheathing d	irectly applied or 3-10-2 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 1=3-9-11, 3=3-9-11 Max Horz 1=64(LC 9) Max Uplift 1=-4(LC 12), 3=-13(LC 9)

Max Uplift 1=-4(LC 12), 3=-13(LC 9) Max Grav 1=126(LC 1), 3=130(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 3. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY TREENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.53 BC 0.33 WB 0.00 Matrix-P	DEFL. i Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) a - a -) 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD	Struct	ural wood	sheathing d	irectly applied or 5-10-	2 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 1=5-9-11, 3=5-9-11 Max Horz 1=105(LC 9) Max Uplift 1=-7(LC 12), 3=-21(LC 9) Max Grav 1=206(LC 1), 3=212(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 5-8-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 3. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY EREENCED A MITEK Attillate 818 Soundside Road Edenton, NC 27932

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical Max Horz 2=65(LC 12) Max Uplift 3=-15(LC 12), 2=-70(LC 12), 4=-9(LC 9) Max Grav 3=36(LC 17), 2=183(LC 1), 4=30(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	H	1-10-8 1-10-8		<u>5-6-2</u> 3-7-10	<u></u>
Plate Offsets (X,Y)	[2:0-0-0,0-1-5]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI2	2-0-0 CSI. 1.15 TC 0.28 1.15 BC 0.95 NO WB 0.04 014 Matrix-MP	DEFL. in Vert(LL) 0.11 Vert(CT) -0.24 Horz(CT) 0.11	n (loc) l/defl L/d 9 7-8 >367 240 4 7-8 >291 180 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 25 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE	P No.2 P No.2 P No.3		BRACING- TOP CHORD	Structural wood sheathing dir except 2-0-0 oc purlins: 3-4. Bioid ceiling directly applied	rectly applied or 5-10-8 oc purlins,

WEDGE Left: 2x4 SP No.3

> REACTIONS. (size) 5=Mechanical, 2=0-3-0, 6=Mechanical Max Horz 2=70(LC 8) Max Uplift 5=-4(LC 8), 2=-144(LC 8), 6=-105(LC 5) Max Grav 5=9(LC 1), 2=356(LC 1), 6=232(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6 = 105
- 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 100 lb down and 29 lb up at 1-10-8 on top chord, and 80 lb down and 78 lb up at 1-10-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-5=-60, 6-9=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Rigid ceiling directly applied or 6-0-0 oc bracing.

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss
					T27228515
22020379-01	M2GR	JACK-OPEN GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexingt	on), Lexington, NC - 272	95.	8.	530 s Dec	6 2021 MiTek Industries, Inc. Wed Mar 23 16:45:12 2022 Page 2

ID:tQlj0K5bXobraOovdZu2Jzzt7J5-vwoLXfrI0ubMx5er2tCNDuaOUOmTPOYg4HCriszY?_L

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 8=-52(F)

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Ploto Offecto (X V)	[2:0 0 0 0 1 5]	3-10-8 3-10-8		5-10-8 2-0-0	
Flate Offsets (A, f)	[2.0-0-0,0-1-5]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. VFS	CSI. TC 0.28 BC 0.69 WB 0.04	DEFL. in Vert(LL) 0.21 Vert(CT) -0.17 Horz(CT) -0.13	(loc) l/defl L/d 6-9 >332 240 6-9 >404 180 4 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP	1012(01) 0.10	- 11/a 11/a	Weight: 25 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	• • No.2	· · ·	BRACING- TOP CHORD	Structural wood sheathing di	irectly applied or 5-10-8 oc purlins,

BOT CHORD

except

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-0, 5=Mechanical Max Horz 2=100(LC 12) Max Uplift 4=-25(LC 8), 2=-104(LC 12), 5=-66(LC 12) Max Grav 4=58(LC 1), 2=322(LC 1), 5=165(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 3-10-8, Exterior(2E) 3-10-8 to 5-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-0-0,0-0-13]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.53 BC 0.44 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.15 4-7 >456 240 Vert(CT) -0.12 4-7 >603 180 Horz(CT) -0.02 3 n/a n/a	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical Max Horz 2=132(LC 12)

Max Holz 2=162(LC 12) Max Uplift 3=-69(LC 12), 2=-87(LC 12), 4=-30(LC 12) Max Grav 3=153(LC 1), 2=322(LC 1), 4=109(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 5-9-12 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-10-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No 3

REACTIONS.

Max Horz 5=92(LC 7)

Max Uplift 5=-58(LC 17), 3=-3(LC 7), 4=-41(LC 5)

Max Grav 5=134(LC 3), 3=55(LC 1), 4=168(LC 13)

(size) 5=0-4-9, 3=Mechanical, 4=Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 3 lb up at -1-10-10, and 1 lb down and 3 lb up at -1-10-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 2-3=-20(F=40) Concentrated Loads (lb) Vert: 1=5(F=2, B=2)
- Trapezoidal Loads (plf)
 - Vert: 1=40(F=70, B=30)-to-2=0(F=50, B=10), 5=-46(F=-13, B=-13)-to-4=-107(F=-44, B=-44)

March 25,2022

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid to less only with with twe contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid to less only with with twe contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

 	4-9-4	9-3-13 4-6-9	13-8-10 4-4-13	+ <u>18-1-7</u> 4-4-13		22-8-0 4-6-9	
Plate Offsets (X,Y)	[3:0-5-8,0-2-0], [8:0-3-8,0-3-0], [10:4)-5-12,0-3-0], [15:0-5-0,0-2-4]	, [16:0-3-0,0-1-6]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.52 BC 0.72 WB 0.69 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) l/defl).09 11-13 >999).18 11-13 >999).03 17 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF 2-15: 2 OTHERS 2x4 SF	 No.2 No.3 *Except* x6 SP No.2 No.3 		BRACING- TOP CHORD BOT CHORD	Structural wood except end vert Rigid ceiling dir	I sheathing direct icals, and 2-0-0 c ectly applied or 6	ly applied or 3-8-13 oc purlins (3-4-6 max -0-0 oc bracing.	oc purlins, ‹.): 3-8.
REACTIONS. (siz Max H Max U Max G	e) 15=0-3-8, 17=0-3-8 lorz 15=111(LC 8) iplift 15=-242(LC 8), 17=-217(LC 5) irav 15=1527(LC 1), 17=1389(LC 1						
FORCES. (ib) - Max. TOP CHORD 2-3=- 2-15= 2-15= BOT CHORD 14-10 WEBS 3-13= 8-10= 8-10=	Comp./Max. Ten All forces 250 (II -2021/276, 3-4=-2389/353, 4-5=-238 =-1434/251 5=-154/359, 13-14=-263/1660, 11-1/ =-126/900, 4-13=-424/185, 5-11=0/2 =-238/1673, 2-14=-159/1334, 8-17=	 or less except when shown 9/353, 5-7=-1511/236, 7-8=-1 3=-366/2337, 10-11=-366/233 85, 5-10=-1007/142, 7-10=-4 1400/219 	1473/220, 17 08/180,				
NOTES- 1) Wind: ASCE 7-16; W II; Exp B; Enclosed; plate grip DOL=1.60 2) Provide adequate di 3) This truss has been 4) * This truss has been 4) * This truss has been will fit between the b 5) Bearing at joint(s) 17 capacity of bearing 3 6) One RT7A MiTek cc for uplift only and dc 7) This truss is designer referenced standard 8) Graphical purlin repr 9) Hanger(s) or other of 2-10-0, 88 lb down a up at 9-7-4, 97 lb dd and 73 lb up at 17-7- down and 43 lb up at 11-7-4, 45 lb down a bottom chord. The of 10) In the LOAD CASE Continued on page 2-	'ult=130mph (3-second gust) Vasd= MWFRS (directional); cantilever left 'ainage to prevent water ponding. designed for a 10.0 psf bottom chor n designed for a live load of 20.0psf iottom chord and any other member 7 considers parallel to grain value us surface. innectors recommended to connect ies not consider lateral forces. ad in accordance with the 2018 Inter I ANSI/TPI 1. resentation does not depict the size connection device(s) shall be provide and 77 lb up at 4-9-4, 95 lb down ar own and 73 lb up at 11-7-4, 97 lb d t 2-10-0, 45 lb down at 4-10-0, 45 at 13-7-4, 45 lb down at 15-7-4, 45 design/selection of such connection E(S) section, loads applied to the fac	103mph; TCDL=6.0psf; BCDI and right exposed ; end verti on the bottom chord in all are s. ing ANSI/TPI 1 angle to grain truss to bearing walls due to I national Residential Code sec or the orientation of the purlin d sufficient to support concer d 74 lb up at 5-7-4, 97 lb dow wn and 73 lb up at 13-7-4, 9 19-7-4, and 90 lb down and 7 b down at 5-7-4, 45 lb down b down at 17-7-4, 45 lb down b down at 17-7-4, and 45 lb device(s) is the responsibility e of the truss are noted as fro	-=6.0psf; h=25ft; B=4 cal left and right expo h any other live loads. has where a rectangle of formula. Building de JPLIFT at jt(s) 15 and ctions R502.11.1 and h along the top and/or trated load(s) 102 lb wn and 73 lb up at 7- 73 lb up at 21-7-4 on at 7-7-4, 45 lb down down at 19-7-4, and of others. ont (F) or back (B).	-5ft; L=24ft; eave=4ft >sed; Lumber DOL=1 - > 3-6-0 tall by 2-0-0 v =signer should verify d 17. This connection R802.10.2 and - bottom chord. down and 72 lb up a -7-4, 97 lb down and up at 15-7-4, 97 lb d top chord, and 102 l at 9-7-4, 45 lb down 53 lb down at 21-7-	; Cat. 1.60 vide n is at 73 lb own b n at 4 on	SI OS SI OS SI OS SI OS	EAL 5183 NEEP. March 25,2022
WARNING - Verify Design valid for use a trus system. Befo building design. Bra is always required to fabrication, storage, Safety Information	/ design parameters and READ NOTES ON Thonly with MiTek® connectors. This design is the use, the building designer must verify the acing indicated is to prevent buckling of individ r stability and to prevent collapse with possibility and the prevent collapse with pos	IS AND INCLUDED MITEK REFEREN ased only upon parameters shown, a pplicability of design parameters and all truss web and/or chord members a personal injury and property damag russ systems, see <u>ANS/TP</u> in Highway, Suite 203 Waldorf, MD 2	CE PAGE MII-7473 rev. 5/1 ind is for an individual build properly incorporate this de only. Additional temporary le. For general guidance re 11 Quality Criteria, DSB-8 20601	9/2020 BEFORE USE. ting component, not esign into the overall or and permanent bracing egarding the 19 and BCSI Building Com	mponent	818 Soundsid Edenton, NC	ERING BY ENCO A Mi Tek Affiliate e Road 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss
					T27228520
22020379-01	H1GRB	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexingt	on), Lexington, NC - 272	95.	8.	530 s Dec	6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:55 2022 Page 2

ID:tQlj0K5bXobraOovdZu2Jzzt7J5-ufGwzree0gSnOUraYoPO1JNQ0Y07wY7AA7aSbLzY?_c

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-8=-60, 9-15=-20

Concentrated Loads (lb)

Vert: 3=-58(B) 14=-30(B) 13=-30(B) 4=-58(B) 11=-30(B) 5=-58(B) 18=-68(B) 19=-58(B) 20=-58(B) 23=-58(B) 24=-58(B) 25=-58(B) 26=-58(B) 27=-65(B) 28=-102(B) 29=-30(B) 30=-30(B) 31=-30(B) 32=-30(B) 33=-30(B) 33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

21-5-9

	6-0-1 6-0-1	<u>14-7-14</u> 8-7-13	17-0-15 2-5-1	20-6-4 20-8-0 3-5-5 0-1-12 0-9-8	25-1-2 26-7-8 3-7-10 1-6-6			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.72 BC 0.86 WB 0.80 Matrix-MS	DEFL. in Vert(LL) 0.10 Vert(CT) -0.33 Horz(CT) -0.02	(loc) l/defl L/d 10-11 >722 240 14-16 >737 180 10 n/a n/a	PLATES MT20 MT20HS Weight: 176 lb	GRIP 244/190 187/143 FT = 20%		
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Left: 2x4 SP No	2x4 SP No.2 *Except* 5-7: 2x4 SP 2400F 2.0E 2x6 SP No.2 *Except* 6-13,10-12: 2x4 SP No.1 2x4 SP No.3 *Except* 4-16,4-14: 2x4 SP No.1		BRACING- TOP CHORD BOT CHORD JOINTS	Structural wood sheathing c except end verticals, and 2- Rigid ceiling directly applied 1 Brace at Jt(s): 9, 17	lirectly applied or 4-1-5 o 0-0 oc purlins (6-0-0 ma or 3-0-14 oc bracing.	oc purlins, x.): 5-7, 8-9.		
REACTIONS.	REACTIONS. (size) 2=0-3-8, 13=0-3-8, 10=0-3-8 Max Horz 2=150(LC 7) Max Uplift 10=-718(LC 13) Max Grav 2=973(LC 31), 13=2427(LC 2), 10=163(LC 27)							
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./Max. Ten All forces 250 (lb) c 2-3=-1387/0, 3-4=-1266/0, 4-5=-541/0, 5-6= 2-16=0/1234, 14-16=0/623, 13-14=-520/0, 1 11-12=-1177/110, 10-11=-647/81 8-10=-33/961, 4-16=0/814, 3-16=-265/167, 5-17=-385/18, 6-14=0/1892, 7-11=-286/19,	r less except when shown. -467/0, 6-7=-13/1152, 7-8=-7 2-13=-2415/0, 6-12=-1947/0 4-17=-306/159, 14-17=-570/ [,] 8-11=-567/39, 12-14=-756/1	70/1342), 143, 92					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; porch right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 13, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=718.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss	
					T27228521	
22020379-01	H1GRS	ROOF SPECIAL GIRDER	1	1		
					Job Reference (optional)	
Carter Components (Lexingt	on), Lexington, NC - 272	95,	8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:56 2022 Page 2			
	ID:tQ	lj0K5bXob	raOovdZu	2Jzzt7J5-NrqIABfGn_ad0eQn6WwdaWwYmxKAfzIJOnK?7nzY?_b		

NOTES-

- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 133 lb down and 94 lb up at 21-5-8, and 39 lb down and 47 lb up at 23-4-12, and 31 lb down and 10 lb up at 25-4-12 on top chord, and 69 lb down and 39 lb up at 21-4-12, and 145 lb down and 66 lb up at 23-4-12, and 212 lb down and 105 lb up at 25-4-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 5-7=-60, 7-8=-60, 8-9=-60, 13-18=-20, 10-12=-20 Concentrated Loads (lb)

Vert: 7=-93(F) 11=-51(F) 24=-175 26=-175 27=-145(F) 28=-212(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 9-2-9, Exterior(2E) 9-2-9 to 11-5-7, Exterior(2R) 11-5-7 to 15-8-6, Interior(1) 15-8-6 to 22-0-0 zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Г					20-8-0						
Plate Offsets (X,	Y) [6:0-3-0,0-1-12], [10:0-3-	-0,0-1-12]									
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	15	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.01	15	n/r	120		
BCLL 0.0	* Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	16	n/a	n/a		
BCDL 10.0	Code IRC2018/T	PI2014	Matri	x-R						Weight: 116 lb	FT = 20%
LUMBER-	I				BRACING-						

20-8-0

LOWIDER-		DIVACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-10.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
OTHERS	2x4 SP No.3		

REACTIONS. All bearings 20-8-0.

(lb) -Max Horz 27=120(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 27, 16, 22, 23, 25, 26, 20, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 27, 16, 22, 23, 24, 25, 26, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 7-4-1, Corner(3R) 7-4-1 to 10-4-0, Exterior(2N) 10-4-0 to 13-3-15, Corner(3R) 13-3-15 to 16-4-0, Exterior(2N) 16-4-0 to 22-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27, 16, 22, 23, 25, 26, 20, 18, and 17. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=93(LC 12)

Max Uplift 5=-41(LC 12), 3=-27(LC 12)

Max Grav 5=217(LC 1), 3=60(LC 17), 4=46(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 2-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-9-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

REACTIONS. (size) 7=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 7=95(LC 8)

Max Uplift 7=-74(LC 8), 4=-41(LC 5), 5=-22(LC 5)

Max Grav 7=339(LC 1), 4=128(LC 1), 5=132(LC 31)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 7. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 150 lb down and 91 lb up at 2-9-4 on top chord, and 129 lb down and 70 lb up at 2-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 3=-8(B) 6=-127(B)

Structural wood sheathing directly applied or 4-9-4 oc purlins.

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) SPACING-	GRIP
TCLL 2-0-0	244/190
Plate Grip DOL CSI. DEFL. in (loc) l/defl L/d PLATES TCDL 10.0 Lumber DOL 1.15 TC 0.48 Vert(LL) 0.34 5-6 >280 240 MT20 BCLL 0.0 * Rep Stress Incr YES WB 0.13 Horz(CT) -0.00 5 n/a Meight: 44 lt	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 6=0-3-8, 5=0-3-8 Max Horz 6=185(LC 12) Max Uplift 6=-100(LC 12), 5=-145(LC 12) Max Grav 6=417(LC 1), 5=312(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-317/104, 2-6=-331/144

BOT CHORD 5-6=-282/225

WEBS 3-5=-251/291

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 8-1-12 zone; cantilever left and right exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 5. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 7-7-3 oc bracing.

except end verticals.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=127(LC 12)

Max Uplift 5=-32(LC 12), 3=-52(LC 12)

Max Grav 5=286(LC 1), 3=121(LC 17), 4=85(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 4-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-5=-60, 6-8=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss
					T27228529
22020379-01	H1GRA	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexingto	on), Lexington, NC - 272	95,	8.	530 s Dec	6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:53 2022 Page 2
		ID:tG	Qlj0K5bXob	oraOovdZu	2Jzzt7J5-yG9AYAcNU3C39AhCQONwyuI?CkJdSjUtip5LXSzY?_e

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-58(F) 5=-87(F) 7=-30(F) 4=-58(F) 9=-68(F) 10=-58(F) 11=-58(F) 13=-102(F) 14=-30(F) 15=-30(F) 16=-30(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	4-9-4	11-8-10			18-8-0
	4-9-4	6-11-6		1	6-11-6
Plate Offsets (X,Y) [3:0-5-8,0-2-0], [10:0-4-12,0-2-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.81 BC 0.91 WB 0.59 Matrix-MS	DEFL. in Vert(LL) -0.09 Vert(CT) -0.19 Horz(CT) 0.03	(loc) I/defl L/d 6-7 >999 240 6-7 >999 180 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 101 lb FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x 2-	4 SP No.2 *Except* 5: 2x4 SP No.1 4 SP No.2 4 SP No.3 *Except* 10: 2x6 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir except end verticals, and 2-0- Rigid ceiling directly applied o 1 Row at midpt 4-	ectly applied or 4-4-10 oc purlins, 0 oc purlins (3-9-10 max.): 3-5. r 10-0-0 oc bracing. 6

REACTIONS. (size) 6=0-3-8, 10=0-3-8 Max Horz 10=127(LC 5) Max Uplift 6=-183(LC 5), 10=-206(LC 8) Max Grav 6=1109(LC 1), 10=1235(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1570/210, 3-4=-1662/255, 2-10=-1153/208

BOT CHORD 9-10=-176/301, 7-9=-245/1282, 6-7=-303/1662

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 10. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 102 lb down and 72 lb up at 2-10-0, 88 lb down and 77 lb up at 4-9-4, 97 lb down and 73 lb up at 6-10-0, 97 lb down and 73 lb up at 8-10-0, 97 lb down and 73 lb up at 10-10-0, 97 lb down and 73 lb up at 12-10-0, and 97 lb down and 73 lb up at 14-10-0, and 97 lb down and 73 lb up at 16-10-0 on top chord, and 102 lb down and 43 lb up at 2-10-0, 45 lb down at 4-10-0, 45 lb down at 6-10-0, 45 lb down at 8-10-0, 45 lb down at 12-10-0, and 45 lb down at 14-10-0, and 45 lb down at 16-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

WEBS 3-9=0/270, 3-7=-65/420, 4-7=0/336, 4-6=-1783/301, 2-9=-124/1027

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss
					T27228530
22020379-01	H1GR	HALF HIP GIRDER	1	1	
					Job Reference (optional)
Carter Components (Lexingt	on), Lexington, NC - 272	95,	8.	530 s Dec	6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:52 2022 Page 2
			ID:tQlj0K	5bXobraO	ovdZu2Jzzt7J5-U4bnKqcljl4CX06?tgshQglrFKxOjCyjT9Mo_0zY?_f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb)

Vert: 3=-58(B) 9=-30(B) 11=-68(B) 13=-58(B) 14=-58(B) 15=-58(B) 17=-58(B) 18=-58(B) 19=-58(B) 20=-102(B) 21=-30(B) 22=-30(B) 23=-30(B) 25=-30(B) 26=-30(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	6-9-	-4			12-6-14					18-8-0	
		6-9-	-4			5-9-10			1		6-1-2	1
Plate Offsets (X,	,Y) [3	3:0-4-0,0-1-11], [10:0-4-7,0-	-2-8]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI20	2-0-0 1.15 1.15 YES 014	CSI. TC 0.81 BC 0.45 WB 0.37 Matrix-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.01	(loc) 7-9 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP 2x4 SP 2x4 SP 2x4 SP 2-10: 2x	No.2 No.2 No.3 *Except* 6 SP No.2				BRACING- TOP CHOR BOT CHOR	D D	Structu except Rigid c	ral wood end verti eiling dire	sheathing direction of the set of	ectly applied or 4-5-4 -0 oc purlins (6-0-0 ma or 10-0-0 oc bracing.	oc purlins, ax.): 3-5.
REACTIONS.	(size) Max Ho Max Up Max Gra) 6=0-3-8, 10=0-3-8 rz 10=163(LC 11) lift 6=-122(LC 9), 10=-92(L av 6=728(LC 1), 10=829(Lt	.C 12) C 1)									
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. C 2-3=-9 9-10=- 4-7=-4	Comp./Max. Ten All forces 51/73, 3-4=-745/96, 4-5=-7 .148/720, 7-9=-150/716 .24/177, 5-7=-150/893	s 250 (lb) or le 743/95, 5-6=-6	ess except when s 75/150, 2-10=-75	shown. 1/134							
NOTES-												

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-9-4, Exterior(2R) 6-9-4 to 11-0-3 , Interior(1) 11-0-3 to 18-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 10. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [3:0-4-0,0-1-11]		
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. ir TCLL 20.0 Plate Grip DOL 1.15 TC 0.64 Vert(LL) -0.04 TCDL 10.0 Lumber DOL 1.15 BC 0.36 Vert(CT) -0.08 BCLL 0.0 * Rep Stress Incr YES WB 0.41 Horz(CT) 0.01 BCDL 10.0 Code IRC2018/TPI2014 Matrix-MS Matrix-MS Horz(CT) 0.01	n (loc) I/defi L/d PLATES GRIP 4 6-7 >999 240 MT20 244/190 3 6-7 >999 180 5 n/a n/a Weight: 63 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

L	UI	М	в	Е	R	-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 7=0-3-8, 5=0-3-8 Max Horz 7=162(LC 11) Max Uplift 7=-74(LC 12), 5=-77(LC 9)

Max Uplift 7=-74(LC 12), 5=-77(LC 9) Max Grav 7=576(LC 1), 5=476(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-533/81, 2-7=-517/162

BOT CHORD 6-7=-152/372, 5-6=-154/368

WEBS 3-6=0/273, 3-5=-444/140

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-9-4, Exterior(2R) 6-9-4 to 11-0-3, Interior(1) 11-0-3 to 12-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 	8-9-4 18-6	0 2	27-8-0		36-8-0)	40-2-12	49-0-0	
Plate Offsets (X,Y)	[2:Edge,0-0-10], [10:0-4-12,0-2-8], [1	2:Edge,0-0-10], [16:0-5-12,0	0-3-0], [19:0-5-12,E	Edge], [20:Edge	,0-3-8]	5-0-12	0-5-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.62 BC 0.97 WB 0.87 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.46 -1.00 0.32	(loc) 18-19 18-19 12	l/defl >999 >588 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 329 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x4 S 2-21, WEBS 2x4 S 14-16 WEDGE Left: 2x4 SP No.3 , R	P No.2 P No.2 *Except* 17-19,16-17: 2x4 SP 2400F 2.0E P No.3 *Except* i,10-16,19-22: 2x4 SP No.2 ight: 2x4 SP No.3		BRACING- TOP CHOR BOT CHOR WEBS	D D	Structur 2-0-0 or Rigid ce 2-2-0 or 1 Row a	ral wood sh c purlins (2 eiling direct c bracing: at midpt	neathing dir -8-6 max.): Ily applied c 12-14. 8	rectly applied or 3-4-7 c 4-10. or 10-0-0 oc bracing, E -19, 8-16, 5-22	oc purlins, except Except:
REACTIONS. (si Max Max Max	ze) 2=0-3-8, 12=0-3-8 Horz 2=116(LC 11) Uplift 2=-161(LC 12), 12=-161(LC 12) Grav 2=2040(LC 1), 12=2040(LC 1)								
FORCES. (lb) Hat TOP CHORD 2-3 8-9 BOT CHORD 2-2 9-1 WEBS 4-2 10-	 Comp./Max. Ten All forces 250 (lb) =-3137/226, 3-4=-3064/215, 4-5=-2643 =-4182/306, 9-10=-4142/306, 10-11=-3 ≥=-104/2565, 20-22=0/359, 6-19=-450/ 6=-475/120, 12-14=-104/2563 ≥=-17/1144, 8-19=-401/12, 8-18=0/421 16=-132/2445, 10-14=-654/51, 5-22=-1 	or less except when shown 214, 5-6=-5166/369, 6-8=-5)43/226, 11-12=-3130/232 (25, 18-19=-204/5535, 16-1 8-16=-1567/83, 14-16=-3/2 380/156, 19-22=-143/3548,	n. 5236/371, 18=-204/5535, 2634, 5-19=-68/1712						
NOTES- 1) Unbalanced roof li 2) Wind: ASCE 7-16; II; Exp B; Enclosed , Interior(1) 13-0-3 end vertical left an DOL=1.60 3) Provide adequate 4) All plates are MT2 5) This truss has bee 6) * This truss has bee will fit between the will fit between the 7) One RT7A MiTek of uplift only and doe 8) This truss is design referenced standa 9) Graphical purlin re	ve loads have been considered for this Vult=130mph (3-second gust) Vasd=1 4; MWFRS (directional) and C-C Exterion to 40-2-12, Exterior(2R) 40-2-12 to 44- d right exposed;C-C for members and 1 drainage to prevent water ponding. D plates unless otherwise indicated. In designed for a 10.0 psf bottom chord en designed for a live load of 20.0psf of bottom chord and any other members. sonnectors recommended to connect tr s not consider lateral forces. The d in accordance with the 2018 Intern of ANSI/TPI 1. presentation does not depict the size o	design. 3mph; TCDL=6.0psf; BCDI r(2E) -1-4-0 to 1-8-0, Interio 5-11, Interior(1) 44-5-11 to 4 prces & MWFRS for reaction live load nonconcurrent with the bottom chord in all are uss to bearing walls due to 1 tional Residential Code sea the orientation of the purlir	L=6.0psf; h=25ft; E or(1) 1-8-0 to 8-9-4 50-4-0 zone; cantil ns shown; Lumber h any other live loa eas where a rectan UPLIFT at jt(s) 2 a ctions R502.11.1 a n along the top and	s=45ft; , Exteri ever lef DOL=' ds. gle 3-6 nd 12. ⁻ nd R80 /or bott	L=24ft; e ior(2R) 8 ft and rig 1.60 plat i-0 tall by This con)2.10.2 a com chor	eave=6ft; C 3-9-4 to 13- ht exposed e grip / 2-0-0 wid nection is f and d.	at. 0-3 1; e	S S S S S S S S S S S S S S S S S S S	EAL 5183

March 25,2022

818 Soundside Road Edenton, NC 27932

S minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	5-4-1	10-9-4	18-8	3-0 _I	2	7-8-0		36-8-0)	38-2-12	43-7-15	; <u> </u>	49-0-	0	
· · · · · · · · · · · · · · · · · · ·	5-4-1	5-5-4	7-10	-12	ç	9-0-0		9-0-0		1-6-12	5-5-4		5-4-1	'	
Plate Offsets (X,Y)	[2:0-3-0,0-0-	<u>-6], [9:0-4-12</u>	.,0-2-8], [11:Edg	je,0-3-8], [16	:0-5-4,Edge]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPAC Plate Lumb Rep S Code	CING- Grip DOL ber DOL Stress Incr IRC2018/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.62 0.86 0.88 :-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.87 0.30	(loc) 18-19 18-19 11	l/defl >999 >673 n/a	L/d 240 180 n/a	F N N	PLATES VIT20 VIT20HS Weight: (344 lb	GRIP 244/19 187/14 FT =	90 13 = 20%
LUMBER- TOP CHORD 2x6 3 BOT CHORD 2x4 4 5-20 WEBS 2x4 19-2 WEDGE Left: 2x4 SP No.3 , F	SP No.2 SP 2400F 2.0E ,8-15: 2x4 SP N SP No.3 *Excep 2,7-19,7-16,14 Right: 2x6 SP N	: *Except* No.3, 11-15∷ pt* -16,9-16: 2x∠ Io.2	2x4 SP No.1, 2 4 SP No.2	0-21: 2x4 SF	9 No.2	BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structur 2-0-0 or Rigid ce 6-0-0 or 1 Row a	ral wood s c purlins (eiling direc c bracing: at midpt	heathing dii 3-1-11 max. ttly applied of 15-16,14-15 7	rectly ap): 4-9. or 10-0-(5. 7-19, 7-1	oplied or 0 oc brad 16, 9-14	3-2-9 or	c purlin xcept:	s, except
REACTIONS. (s Max Max Max	size) 2=0-3-8, (Horz 2=-139(1 (Uplift 2=-161(1 (Grav 2=2258(, 11=0-3-8 LC 10) LC 12), 11=- (LC 17), 11=;	161(LC 12) 2270(LC 18)												
FORCES. (lb) Ma TOP CHORD 2-3 8-5 BOT CHORD 2-2 8-1 WEBS 19 14	ax. Comp./Max. 3=-3494/216, 3- 9=-3612/273, 9- 23=-90/2994, 22 16=-431/129, 13 -22=-25/2729, 4 -16=0/3290, 9-	Ten All for -4=-3286/239 -10=-3294/24 2-23=-90/299 3-14=-87/291 4-19=-108/21 16=-115/303	rces 250 (lb) or 9, 4-5=-4532/32 48, 10-11=-352 94, 5-19=-544/1 11, 11-13=-87/2 129, 7-19=-426 3, 9-14=-1512/	less except 28, 5-7=-4561 6/212 49, 18-19=-1 2911 /6, 7-18=0/52 11	when shown 1/326, 7-8=-3 117/4886, 16 29, 7-16=-15(3646/272, 3-18=-117/4886, 00/67,									
NOTES- 1) Unbalanced roof I 2) Wind: ASCE 7-16 II; Exp B; Enclose 15-0-3, Interior(1) exposed ; end ver grip DOL=1.60 3) Provide adequate 4) All plates are MT2 5) This truss has ber 6) * This truss is designed 7) One RT7A MTek uplift only and doc 8) This truss is designed 7) Graphical purlin referenced standi	ive loads have ; Vult=130mph d; MWFRS (dir 15-0-3 to 38-2- rtical left and rig drainage to pre 20 plates unless en designed for een designed for e bottom chord connectors rec es not consider gned in accorda ard ANSI/TPI 1. epresentation d	been conside (3-second gr rectional) and -12, Exterior(ght exposed; event water p s otherwise in r a 10.0 psf b or a live load and any othe commended i lateral force: ance with the does not depi	lered for this de ust) Vasd=103r d C-C Exterior(2 (2R) 38-2-12 to C-C for membe ponding. ndicated. oottom chord liv. I of 20.0psf on t er members, wi to connect truss s. 2018 Internatio ict the size or th	sign. mph; TCDL=(2E) -1-4-0 to 42-5-11, Inte rs and forces e load nonco he bottom ch th BCDL = 10 s to bearing w onal Residen the orientation	6.0psf; BCDL 1-8-0, Interic erior(1) 42-5- s & MWFRS nocurrent with hord in all are 0.0psf. walls due to L tial Code sec	L=6.0psf; h=25ft; F pr(1) 1-8-0 to 10-9 -11 to 50-4-0 zone for reactions show n any other live loa eas where a rectar UPLIFT at jt(s) 2 a ctions R502.11.1 a n along the top and	3=45ft; -4, Exte ; cantile vn; Lum ads. ngle 3-6 and 11. and R80	L=24ft; e rior(2R) ever left iber DOI i-0 tall by This con 02.10.2 a	eave=6ft; C 10-9-4 to and right _=1.60 pla r 2-0-0 wic nection is and d.	Cat. te le for	and and an and an and an			EAL	B.E.E.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss 1	уре	(Qty	Ply	Cameron Wood	s Lot 4-231	6 Elev 'A' Permi	t-Roof Truss	
22020379-01	H1B	PIGGY	BACK BASE		1	1		<i></i>		T272	28535
Carter Components (L	.exington), Lexingt	on, NC - 27295,			8	 .530 s Dec	Job Reference (6 2021 MiTek In	optional) dustries, In	c. Wed Mar 23 1	16:44:47 2022 Pag	e 1
	1-1-1			ID:tQ	lj0K5bX	obraOovdZ	Zu2Jzzt7J5-77nuH	6YcvDSvR	FE247GWjd233	JFj2sb_Kue1JozY?	_k
<u>1-4-0</u> 1-4-0	<u>2-3-8 8-5-9</u> 1-2-7 6-2-1 1-1-1	4-3-11	18-6-12 24-6-0 5-9-8 5-11-4		30-5-4 5-11-4		<u>36-2-12 36-8-0</u> 5-9-8 0-5-4	42-4-9 5-8-9	49-0 6-7	-0 <u>50-4-0</u> -7 1-4-0	
			TO BE LATERALLY BR PURLINS AT 2-0-0 OC	ACED BY MAX.						Scale	= 1:93.2
	7	.00 12 6x8 =	4x5 =	8x10 =		4x5 =	6	x8 = 3x5 Ⅲ			
Ŧ	6x10	7	8 98 8 8 8	9 🛛	M	10 4(2			
	4x6	"							4x6 <>		Ī
		5 6							⁴¹ 13 ^{4x5} 3 14		
3x6 8-7-77	x10 = 8 = 38							/			8-1-2
	3 4				_					42	
8 1 6 1	26	- 19 Sel	236		1	dar	19 e	5x10 -	-	15	စု (ဓ
0	₿ 27	25 24 2x4	43 44 2x4 45	3x8 = 22	21 46	20 3x5 =	47 18	48	17	₫ \	0 -
4	x5 =	12-0-8	2x4 $3x5 =$ $2x4 $ $3x5 =$		18-0-0		3*5	II	5x6 =	8x10 =	
	4x6 =	8x12 MT20	$HS = 2x4 \Pi$	5x6	WB =						
			18-8-0								
	2-3-8 8-5-9 2-3-8 6-2-1	12-9-4 14 4-3-11 1-6	4-0 16-9-3 18-6-12 24-6-0 -12 2-5-3 1-9-9 5-10-0		30-5-4 5-11-4		36-2-12 36-8-0 5-9-8 0-5-4	42-4-9 5-8-9	49-0	-7	
Plate Offsets (X,Y)	[2:Edge,0-1-8], [3:0-	0-5,0-2-4], [4:0-3-8,	0-1-4 Edge], [5:0-0-1,0-0-0], [9:0-5	5-0,0-4-8], [15	:Edge,0	-3-8], [19:	0-3-4,0-2-12]				
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	ir	n (loc)	l/defl L/d		PLATES	GRIP	
TCLL 20.0 TCDL 10.0	Plate Grip DO	DL 1.15 1.15	TC 0.52 BC 0.88	Vert(LL) Vert(CT)	-0.34 -0.62	22-23	>999 240 >949 180		MT20 MT20HS	244/190 187/143	
BCLL 0.0 *	Rep Stress Ir	ncr YES	WB 0.92	Horz(CT)	0.41	15	n/a n/a		Weight: 380 lk	ET = 20%	
		10/11/2014	Matrix-MO	554000					Weight. 300 h	D FT = 2076	
TOP CHORD 2x6 S	SP No.2 *Except*			TOP CHC	DRD	Structur	al wood sheathir	ng directly	applied or 3-1-0) oc purlins, excep	t
1-5,13 BOT CHORD 2x4 S	3-16: 2x6 SP 2400F 2 SP No.1 *Except*	.0E		BOT CHC	RD	2-0-0 oc Rigid ce	c purlins (3-6-11 eiling directly app	max.): 7-1 lied or 10-	1. 0-0 oc bracing.		
2-27: WEBS 2x4 S	2x4 SP No.2, 28-29,2 SP No.3 *Except*	29-30,23-30,12-18: 2	x4 SP No.3								
17-19 OTHERS 2v4 S	9,3-26: 2x4 SP No.2										
WEDGE											
SLIDER Left 2	2x4 SP No.3 1-2-3										
REACTIONS. (si	ize) 2=0-3-8, 15=0-3	3-8									
Max Max	Horz 2=163(LC 11) Uplift 2=-165(LC 12),	15=-160(LC 12)									
Max	Grav 2=2299(LC 17),	15=2292(LC 18)									
FORCES. (lb) - May	x. Comp./Max. Ten /	All forces 250 (lb) or	less except when shown.	2/201							
8-9: 	=-4011/303, 9-10=-40	11/303, 10-11=-380	3/291, 11-12=-3512/287, 12	2-14=-3664/25	9,						
BOT CHORD 2-2	15=-3578/217 7=-23/1680, 26-27=0/	1292, 4-26=0/460, 1	5-17=-78/2953, 25-26=-72/3	3770,							
24-2 WEBS 3-2	25=-71/3773, 23-24=- 7=-1653/0, 6-24=-828	5/3161, 22-23=-45/3 /96, 9-22=-352/97, 1	875, 20-22=-45/3827, 19-20 7-19=-72/2879, 14-19=-0/3	0=-10/3071 21,							
14- 8-2	17=-377/89, 3-26=-15 2=-19/407, 7-23=-60/1	0/4047, 6-26=-104/1 195, 10-22=-19/390	843, 7-24=-14/795, 8-23=-6 10-20=-672/120, 11-20=-5	695/123, 54/1177.					WTH	CARd	
11-	19=-62/565	,		,					Solar	Lasin M	14
NOTES-		poidored for this -	aian					1	a sel	NUOTU	A.
2) Wind: ASCE 7-16;	Ve loads have been co Vult=130mph (3-seco	onsidered for this de and gust) Vasd=103r	sign. nph; TCDL=6.0psf; BCDL=6	6.0psf; h=25ft;	B=45ft	; L=24ft; e	ave=6ft; Cat.			SEVI .	
II; Exp B; Enclosed 17-0-3, Interior(1)	d; MWFRS (directiona 17-0-3 to 36-2-12, Ext	I) and C-C Exterior(2 erior(2R) 36-2-12 to	PE) -1-4-0 to 1-8-0, Interior(1 40-5-11, Interior(1) 40-5-11	1) 1-8-0 to 12- to 50-4-0 zor	9-4, Ext ie; canti	erior(2R) lever left a	12-9-4 to and right	E	\mathbf{V}_{0}	35183	1 E
exposed ; end vert	tical left and right expo	sed;C-C for membe	rs and forces & MWFRS for	r reactions sho	wn; Lu	mber DOL	.=1.60 plate				
3) Provide adequate	drainage to prevent w	ater ponding.								CINEER	111
5) This truss has bee	n designed for a 10.0	psf bottom chord liv	e load nonconcurrent with a	ny other live lo	bads.				in Jui	SINEFE	and the second
 o) ^ I his truss has be will fit between the 	en designed for a live bottom chord and any	ioad of 20.0psf on t y other members, wi	ne pottom chord in all areas th BCDL = 10.0psf.	s where a recta	angle 3-	o-∪ tall by	2-0-0 wide		11111	US LE	
 One RT7A MiTek on uplift only and does 	connectors recommen s not consider lateral f	ded to connect trus	to bearing walls due to UP	PLIFT at jt(s) 2	and 15	. This con	nection is for			March	25,2022
Continued on page 2											
Design valid for us	rify design parameters and R se only with MiTek® connect	EAD NOTES ON THIS AN tors. This design is based	D INCLUDED MITEK REFERENCE only upon parameters shown, and	PAGE MII-7473 re is for an individua	ev. 5/19/20 I building	component,	USE. not		ENG		
building design. Be is always required	for stability and to prevent of	nt buckling of individual tru collapse with possible per	uss web and/or chord members only sonal injury and property damage.	y. Additional temp For general guida	orary and	d permanent	bracing			A MiTek Affiliate	

is always required to stability and to prevent collapse with possible personal injuly and property damage. Pol general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss
					T27228535
22020379-01	H1B	PIGGYBACK BASE	1	1	
					Job Reference (optional)
Carter Components (Lexington), Lexington, NC - 27295		95,	8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:47 2022 Page 2		
		ID:t	Qlj0K5bXc	braOovdZ	u2Jzzt7J5-77nuH6YcvDSvRFE247GWjd233JFj2sb_Kue1JozY?_k

NOTES-

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss	
					T272285	36
22020379-01	H1A	PIGGYBACK BASE	1	1		
					Job Reference (optional)	
Carter Components (Lexington), Lexington, NC - 27295,		95,	8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:44:46 2022 Page 2			
	ID:tQlj0K5bXobraOovdZu2Jzzt7J5-fwEW4nX_8vK2p5fsWQIHAPVtmvtkJPvr5EvTnMz				Zu2Jzzt7J5-fwEW4nX_8vK2p5fsWQIHAPVtmvtkJPvr5EvTnMzY?_I	

NOTES-

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Edenton, NC 27932

	8-4-0 16-9-3 8-4-0 8-5-4	18-8-0 25-3-10 1-10-13 6-7-10	32-2-13 6-11-2	<u> </u>	8-0 49-0-0 I-0 8-4-0	
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-6-4,0-3-0], [8:0-5-4	0-3-0], [12:Edge,0-3-8], [14:0-3	3-8,0-1-8], [16:0-6-8	,0-3-0], [20:0-6-0,0-3-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.62 BC 0.99 WB 0.76 Matrix-MS	DEFL. in Vert(LL) -0.31 Vert(CT) -0.55 Horz(CT) 0.27	(loc) l/defl L/d 19-20 >999 240 19-20 >999 180 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 381 lb FT = 20%	
JUMBER- IOP CHORD 2x6 SP No.2 30T CHORD 2x4 SP No.1 *Except* 6-21,9-15: 2x4 SP No.3, 16-18: 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 20-22,6-19,8-19,14-16: 2x4 SP No.2 OTHERS 2x4 SP No.3 *Except* 20-22,6-19,8-19,14-16: 2x4 SP No.2 OTHERS 2x4 SP No.3 BCHCINDS (size) 2=0-3-8, 12=0-3-8						
Max H Max L Max C	$\begin{array}{l} \text{Max Horz} & 2=211(\text{LC 11}) \\ \text{Max Uplift } 2=-161(\text{LC 12}), 12=-161(\text{LC 12}) \\ \text{Max Grav} & 2=2347(\text{LC 17}), 12=2330(\text{LC 18}) \end{array}$					
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9= BOT CHORD 2-24 16-1 WEBS 3-24 7-19 11-1 11-1 11-1	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3665/228, 3-5=-2963/265, 5-6=-2819/276, 6-7=-3004/285, 7-8=-3004/285, 8-9=-3185/277, 9-11=-3725/278, 11-12=-3592/225 BOT CHORD 2-24=-72/3194, 22-24=-72/3194, 6-20=-519/82, 19-20=0/2910, 17-19=0/2721, 16-17=-14/3134, 9-16=-36/720, 12-14=-65/2964 WEBS 3-24=0//387, 3-22=-737/136, 5-22=-832/0, 20-22=0/2980, 5-20=-13/1848, 6-19=-29/460, 7-19=-475/126, 8-19=-35/630, 8-17=-17/935, 9-17=-853/109, 14-16=-56/2953, 11-14=-58/2953					
 11-16=0/353, 11-14=-585/91 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; (MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 16-9-3, Exterior(2R) 16-9-3 to 21-0-2, Interior(1) 21-0-2 to 32-2-13, Exterior(2R) 32-2-13 to 36-5-11, Interior(1) 36-5-11 to 50-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) One RT7A MITek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplif only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. March 25,2022 						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TCLL TCDL BCLL BCDL	20.0 10.0 0.0 * 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	TC 0.63 BC 0.97 WB 0.77 Matrix-MS	Vert(LL) -0.3 Vert(CT) -0.5 Horz(CT) 0.2	1 20-21 >999 240 5 20-21 >999 180 7 12 n/a n/a	MT20 Weight: 391 lb	244/190 FT = 20%
LUMBER TOP CHO BOT CHO	8- ORD 2x6 SF ORD 2x4 SF 6-22,9-	P No.2 P No.1 *Except* •15,26-28: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing c 2-0-0 oc purlins (4-0-0 max. Rigid ceiling directly applied	irectly applied or 3-1-7 (): 5-8. or 2-2-0 oc bracing. E	oc purlins, except

BOT CHORD	ZX4 SF NU.T EXCEPT		2-0-0 00 putitis (4-0-0 i	nax.). 5-0.	
	6-22,9-15,26-28: 2x4 SP No.3	BOT CHORD	Rigid ceiling directly ap	plied or 2-2-0 oc bracing. Except:	
WEBS	2x4 SP No.3 *Except*		1 Row at midpt	6-21	
	21-23,6-20,8-20,14-17: 2x4 SP No.2		10-0-0 oc bracing: 15-1	7	
WEDGE		WEBS	1 Row at midpt	3-23, 5-23, 7-20, 9-18	
Left: 2x6 SP N	o.2 , Right: 2x6 SP No.2				

REACTIONS.	(size)	2=0-3-8, 12=0-3-8
	Max Horz	2=211(LC 11)
	Max Uplift	2=-155(LC 12), 12=-144(LC 12)
	Max Grav	2=2364(LC 17), 12=2378(LC 18)

FURCES. (ID) -	Max. Comp./Max. Ten All forces 250 (ib) of less except when shown.
TOP CHORD	2-3=-3697/217, 3-5=-2996/254, 5-6=-2853/264, 6-7=-3051/269, 7-8=-3051/269,
	8-9=-3255/253, 9-11=-3837/239, 11-12=-3676/195
BOT CHORD	2-25=-63/3221, 23-25=-63/3221, 6-21=-527/77, 20-21=0/2945, 18-20=0/2782,
	17-18=0/3232, 9-17=-11/791, 12-14=-40/3036
WEBS	3-25=0/386, 3-23=-735/137, 5-23=-849/0, 21-23=0/3012, 5-21=-3/1880, 6-20=-21/482,
	7-20=-475/126, 8-20=-42/607, 14-17=-18/3031, 11-17=0/393, 11-14=-607/78,
	8-18=0/989, 9-18=-917/87

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 16-9-3, Exterior(2R) 16-9-3 to 21-0-2, Interior(1) 21-0-2 to 32-2-13, Exterior(2R) 32-2-13 to 36-5-11, Interior(1) 36-5-11 to 50-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

L	8-4-0	16-9-3	19-8-0 20-8-0	26-4-0	32-2-13		40-	8-0	49-0-0	
1	8-4-0	8-5-3	' 2-10-13 1'-0-Ó	5-8-0	5-10-13		8-5	i-3	8-4-0	1
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-5-	4,0-3-0], [8:0-5-4,	0-3-0], [11:Edge,0-3-8], [[15:0-2-8,0-2-4]	, [17:0-2-4,	,Edge], [18:0-6-8,	0-3-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inci Code IRC2018	2-0-0 1.15 1.15 r YES VTPI2014	CSI. TC 0.64 BC 0.96 WB 1.00 Matrix-MS	DEFL. Vert(LL Vert(CT Horz(C	in -0.33) -0.59 Г) 0.24	(loc) 17-18 17-18 11	l/defl >999 >997 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 376 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 6-20,7 WEBS 2x4 SF 18-21, OTHERS 2x4 SF WEDGE Left: 2x6 SP NJ 2, Rig	P No.2 P No.1 *Except* -16: 2x4 SP No.3 P No.3 *Except* 6-17,8-17: 2x4 SP No.2 P No.3 ght: 2x6 SP No.2	2		BRACIN TOP CH BOT CH WEBS	i g- Iord Iord	Structur 2-0-0 or Rigid ce 1 Row a 10-0-0 1 Row a	ral wood : c purlins (eiling dire at midpt oc bracing at midpt	sheathing (3-11-15 m ctly applie g: 18-20	directly applied or 3-1-2 (nax.): 5-8. d or 2-2-0 oc bracing. E: 6-18, 7-17 3-21, 5-21, 6-17, 8-15,	oc purlins, except xcept: 10-15
REACTIONS. (siz Max H Max U Max C	e) 2=0-3-8, 11=0-3-8 Horz 2=211(LC 11) Jplift 2=-153(LC 12), 11 Grav 2=2365(LC 17), 1	3 I=-155(LC 12) 1=2347(LC 18)								
FORCES. (lb) - Max. TOP CHORD 2-3= 8-10 BOT CHORD 2-33 13-1 WEBS 3-23 15-1	Comp./Max. Ten All -3701/213, 3-5=-2989/2 2961/255, 10-11=-36 =-60/3224, 21-23=-60/2 5=-64/3039, 11-13=-64 =0/393, 3-21=-749/137 7=0/2471, 8-17=-16/10	forces 250 (lb) or 250, 5-6=-2944/26 70/218 3224, 6-18=-496/9 /3039 ; 5-21=-436/0, 18 89, 8-15=-20/266	less except when showr 0, 6-7=-2984/271, 7-8=- 9, 17-18=0/3034, 7-17=- 21=0/2848, 5-18=-2/157 10-15=-752/139, 10-13=	n. 2975/272, -417/107, 78, 6-17=-45/27 =0/392	3,					
 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 1-4-0 to 1-8-0, Interior(1) 1-8-0 to 16-9.3, Exterior(2R) 16-9-3 to 21-0-2, Interior(1) 21-0-2 to 32-2-13 to 36-5-11, Interior(1) 36-5-11 to 50-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplit only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ŀ	<u>8-4-0</u> 8-4-0	16-9-4	<u>19-8-0 20-8-0</u> 2-10-12 1-0-0	26-4-0	<u>32-2-12</u> 5-10-12		40-8-0 8-5-4	49-0-0	
Plate Offsets (X,Y)	[2:Edge,0-3-8], [5:0-4-4	4,0-3-0], [11:Edge	,0-3-8], [17:0-2-8,0-3-4],	[18:0-6-8,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC 0.63 BC 0.95 WB 0.66 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.32 17 -0.58 17 0.24	(loc) l/defl 7-18 >999 7-18 >999 11 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 375 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 6-20,7 WEBS 2x4 SF 18-21, OTHERS 2x4 SF WEDGE Left: 2x6 SP No.2, Rig	 No.2 No.1 *Except* -16: 2x4 SP No.3 No.3 *Except* 6-17,15-17,8-17: 2x4 S No.3 No.3 ph: 2x6 SP No.2 	P No.2		BRACING TOP CHOI BOT CHOI WEBS	₹D S 2 ₹D R 1 1 1	Structural woo 2-0-0 oc purlir Rigid ceiling d I Row at midp 10-0-0 oc brac I Row at midp	id sheathing is (3-11-11 n irectly applie t t cing: 18-20 it	directly applied or 3-1-9 nax.): 5-8. d or 2-2-0 oc bracing. E 6-18, 7-17 3-21, 5-21, 6-17, 8-15,	oc purlins, except xcept: 10-15
REACTIONS. (Siz Max H Max U Max C	e) 2=0-3-8, 11=0-3-8 lorz 2=-209(LC 10) Jplift 2=-155(LC 12), 11 Grav 2=2355(LC 17), 11	=-156(LC 12) I=2340(LC 18)							
FORCES. (lb) - Max. TOP CHORD 2-3= 8-10 2-23 BOT CHORD 2-23 13-1 3-23 WEBS 3-23 15-1 3-10	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3679/217, 3-5=-3000/255, 5-6=-2966/266, 6-7=-3013/275, 7-8=-3006/276, 8-10=-2978/258, 10-11=-3651/221 BOT CHORD 2-23=-63/3202, 21-23=-63/3202, 6-18=-532/96, 17-18=0/3056, 7-17=-432/109, 13-15=-66/3022, 11-13=-66/3022 WEBS 3-23=0/386, 3-21=-703/134, 5-21=-392/0, 18-21=0/2826, 5-18=-10/1535, 6-17=-43/280, 15-77=0/2480, 8-17=-19/1097, 8-15=-24/264, 10-15=-705/136, 10-13=0/383								
 15-17=0/2480, 8-17=-19/1097, 8-15=-24/264, 10-15=-705/136, 10-13=0/383 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 16-9-4, Exterior(2R) 16-9-4 to 21-0-3, Interior(1) 21-0-3 to 32-2-12, Exterior(2R) 32-2-12 to 36-5-11, Interior(1) 36-5-11 to 50-4-0 zone; cantiliever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 11. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. March 25,2022 									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

				2000						
	6-0-2	14-7-14	14-9-4 19-8-0	20-6- 4	26-4-0	34-2-12		40-7-15	49-0-0	
	6-0-2	8-7-12	0-1-6 4-10-12	0 10 4	5-8-0	7-10-12	r	6-5-3	8-4-1	1
				0-1-12						
Plate Offsets (X,)	') [9:0-2-4,0-2-0]], [13:Edge,0-0-10], [19	9:0-5-8,0-2-8], [20):0-2-12,0-2	2-8]					
	· · · · · · · · · · · · · · · · · · ·		1 1 1 1	,				1		
LOADING (psf)	SPACI	NG- 2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate G	Srip DOL 1.15	TC	0.37	Vert(LL)	-0.13 17-18	>999	240	MT20	244/190
TCDL 10.0	Lumbe	r DOL 1.15	BC	0.67	Vert(CT)	-0.26 17-18	>999	180		
BCLL 0.0	* Rep St	ress Incr YES	WB	0.84	Horz(CT)	0.03 13	n/a	n/a		
BCDL 10.0	Code I	IRC2018/TPI2014	Matrix-	MS	. ,				Weight: 383 lb	FT = 20%
LUMBER-	1				BRACING			I		

20-8-0

LUMBER-		BRACING-			
TOP CHORD	2x6 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 5-9-10 oc purling		
BOT CHORD	2x4 SP No.2 *Except*		except		
	2-23,21-23: 2x6 SP No.2, 7-21,8-18: 2x4 SP No.3		2-0-0 oc purlins (6-0-0 max.): 6-10.		
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc bracing, Except:	
	10-19: 2x4 SP No.2		6-0-0 oc bracing: 21-2	22	
WEDGE			2-8-15 oc bracing: 20	-21.	
Right: 2x4 SP	No.3		1 Row at midpt	7-20	
		WEBS	1 Row at midpt	10-19, 6-20, 8-20	
REACTIONS.	(size) 2=0-3-8 13=0-3-8 21=0-3-8				

Max Horz	2=-186(LC 10)
Max Uplift	13=-131(LC 12)
Max Grav	2=911(LC 17), 13=1209(LC 18), 21=2854(LC 17)

FORCES. (lb) -	Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
TOP CHORD	2-3=-1299/0, 3-5=-1177/0, 5-6=-286/33, 6-7=0/713, 7-8=0/713, 8-10=-287/212,
	10-12=-996/209, 12-13=-1552/173
BOT CHORD	2-24=0/1192, 22-24=0/602, 20-21=-2830/0, 7-20=-364/96, 19-20=0/282, 8-19=0/848,
	15-17=-22/1241, 13-15=-22/1241
WEBS	5-24=0/802, 5-22=-673/32, 17-19=0/666, 10-19=-704/0, 10-17=0/614, 12-17=-674/119,
	12-15=0/309, 6-22=0/1036, 20-22=0/338, 6-20=-1454/0, 8-20=-1527/52

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 14-9-4, Exterior(2R) 14-9-4 to 19-0-3, Interior(1) 19-0-3 to 34-2-12, Exterior(2R) 34-2-12 to 38-5-11, Interior(1) 38-5-11 to 50-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Bearing at joint(s) 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface.8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

	6-0-2 14-7-14 6-0-2 8-7-12	20-8-0 15-10-6 19-8-0 20-6-4 1-2-8 3-9-10 0110-4 0-1-12	26-4-0 5-8-0	<u>36-2-12</u> 9-10-12	43-2-14 7-0-2	49-0-(<u>)</u> 3
Plate Offsets (X,Y)	[7:0-4-0,0-3-4], [15:Edge,0-0-10], [21:0-	5-8,0-2-8], [22:0-2-12,0-2-8	8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.34 BC 0.88 WB 0.86 Matrix-MS	DEFL. ir Vert(LL) -0.25 Vert(CT) -0.50 Horz(CT) 0.04	1 (loc) l/defl 19-20 >999 : 19-20 >678 1 15 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 394 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x4 SF 2-25,2: WEBS 2x4 SF WEDGE Right: 2x4 SP No.3	P No.2 P No.2 *Except* 3-25: 2x6 SP No.2, 8-23,9-20: 2x4 SP N P No.3	0.3	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sh except 2-0-0 oc purlins (6- Rigid ceiling direct 1 Row at midpt	eathing directly a 0-0 max.): 7-12. y applied or 2-8-1 11-21, 7	pplied or 5-8-14 5 oc bracing. '-22, 9-22	oc purlins,
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 15=0-3-8, 23=0-3-8 lorz 2=182(LC 11) lplift 15=-124(LC 12) irav 2=893(LC 17), 15=1160(LC 18), 23	=2860(LC 17)					
FORCES. (lb) - Max. TOP CHORD 2-3=- 11-11 1 BOT CHORD 2-26 17-11 1 WEBS 19-2' 5-27= 9-22	Comp./Max. Ten All forces 250 (lb) or -1267/0, 3-5=-1147/0, 5-6=-267/17, 7-8= 2=-896/203, 12-14=-1108/187, 14-15=-1 =0/1162, 24-26=0/570, 22-23=-2839/0, 8 9=-69/1289, 15-17=-69/1289 1=-16/554, 11-21=-727/56, 11-19=0/421 =-673/41, 24-27=-648/64, 22-24=-23/26 =-1596/71	less except when shown. 6/872, 8-9=0/871, 9-11=-2 586/173 3-22=-367/95, 21-22=-60/2 , 14-19=-513/122, 5-26=0/2 2, 7-22=-1486/0, 7-24=0/10	65/189, 69, 9-21=0/921, 804, 951,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; 15-10-6, Interior(1) ' exposed; end vertic grip DOL=1.60 3) 350.0lb AC unit load 4) Provide adequate di 5) This truss has been 6) * This truss has been will fit between the b 7) Bearing at joint(s) 22 capacity of bearing 3 8) One RT7A MiTek co only and does not co 9) This truss is designer referenced standard 10) Graphical purlin references	a loads have been considered for this de /ult=130mph (3-second gust) Vasd=103 MWFRS (directional) and C-C Exterior(15-10-6 to 36-2-12, Exterior(2R) 36-2-12 cal left and right exposed;C-C for member l placed on the bottom chord, 10-4-0 fro rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on vottom chord and any other members, w 3 considers parallel to grain value using surface. Donnectors recommended to connect trus onsider lateral forces. ed in accordance with the 2018 Internati I ANSI/TPI 1. presentation does not depict the size or	esign. mph; TCDL=6.0psf; BCDL= 2E) -1-4-0 to 1-8-0, Interior 2 to 39-2-12, Interior(1) 39- ors and forces & MWFRS for m left end, supported at two re load nonconcurrent with the bottom chord in all area ith BCDL = 10.0psf. ANSI/TPI 1 angle to grain s to bearing walls due to U onal Residential Code sect the orientation of the purlin	=6.0psf; h=25ft; B=45ft; (1) 1-8-0 to 14-3-13, E; 2-12 to 50-4-0 zone; ca or reactions shown; Lur o points, 4-0-0 apart. any other live loads. as where a rectangle 3- formula. Building desig PLIFT at jt(s) 15. This of ions R502.11.1 and R8 or along the top and/or b	L=24ft; eave=6ft; Ca derior(2E) 14-3-13 to ntilever left and right nber DOL=1.60 plate 6-0 tall by 2-0-0 wide gner should verify connection is for uplif i02.10.2 and iottom chord.	at.		EAL 5183 INEER JS LEFFILIUM March 25,202
WARNING - Verify Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage, Safety Information	y design parameters and READ NOTES ON THIS Al only with MiTek® connectors. This design is based re use, the building designer must verify the applic icing indicated is to prevent buckling of individual tr or stability and to prevent collapse with possible per delivery, erection and bracing of trusses and truss available from Truss Plate Institute, 2670 Crain H	D INCLUDED MITEK REFERENCE d only upon parameters shown, an ability of design parameters and p uss web and/or chord members o sonal injury and property damage systems, see ANS/TP11 ighway, Suite 203 Waldorf, MD 20	E PAGE MII-7473 rev. 5/19/20 d is for an individual building roperly incorporate this desig nly. Additional temporary anc . For general guidance regar Guality Criteria, DSB-89 ar 601	120 BEFORE USE. component, not n into the overall 1 permanent bracing ding the nd BCSI Building Compo	nent	818 Soundsid Edenton, NC	ERING BY ENCO A MITek Affiliate Je Road 27932

	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof Truss					
							T27228546		
	ROOF SPECIAL	1	1						
				Job Reference (or	otional)				
Lexington, NC - 272	95,	8.	530 s Dec	6 2021 MiTek Indu	ustries, Inc. Wed M	Mar 23 16:45:0	2 2022 Page 1		
-		ID:tQlj0K5bXob	oraOovdZu	2Jzzt7J5-B?BZRF	j1NpLnkZtwSn11p	nAg0MRq3dC	CnjnJLRzY?_V		
10-4-0 14	-3-13 17-10-6 20-8-0 2	6-4-0 J 32-3-	З I	38-2-12	43-8-0	49-0-0	50-4-0		
6-4-1 3-	11-13 3-6-9 2-9-10 5	-8-0 5-11-	6 I	5-11-6	5-5-4	5-4-1	1-4-0		
	Lexington, NC - 2729	Truss Type ROOF SPECIAL Lexington, NC - 27295, <u>10-4-0</u> + <u>14-3-13</u> + <u>17-10-6</u> + <u>20-8-0</u> + <u>24</u> <u>6-4-1</u> 3-11-13 + <u>3-6-9</u> + <u>29-910</u> 5	Truss Type Qty ROOF SPECIAL 1 Lexington, NC - 27295, 8.4 ID:tQlj0K5bXot 10:tQlj0K5bXot 6-4-1 3:11-13 3-6-9 20-8-0 26-4-0 32-34	Truss Type Qty Ply ROOF SPECIAL 1 1 Lexington, NC - 27295, 8.530 s Dec ID:tQlj0K5bXobraOovdZu ID:tQlj0K5bXobraOovdZu 4-0 14-3-13 17-10-6 26-8-0 26-4-0 32-3-6 6-4-1 3-11-13 3-6-9 2-9-10 5-8-0 5-11-6	Truss Type Qty Ply Cameron Woods ROOF SPECIAL 1 1 Job Reference (op Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Indi ID:tQlj0K5bXobraOovdZu2Jzzt7J5-B?BZRF 6-4-1 3-11-13 3-6-9 2-9-10 5-8-0 5-11-6 5-11-6	Truss Type Qty Ply Cameron Woods Lot 4-2316 Elev 'A ROOF SPECIAL 1 1 Job Reference (optional) Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Industries, Inc. Wed N ID:tQlj0K5bXobraOovdZu2Jzzt7J5-B?BZRFj1NpLnkZtwSn11p 6-4-1 3-11-13 36-9 2-9-10 5-8-0 5-11-6 5-11-6 5-5-4	Truss Type Qty Ply Cameron Woods Lot 4-2316 Elev 'A' Permit-Roof ' Job Reference (optional) Lexington, NC - 27295, 8.530 s Dec 6 2021 MiTek Industries, Inc. Wed Mar 23 16:45:0 ID:tQlj0K5bXobraOovdZu2Jzzt7J5-B?BZRFj1NpLnkZtwSn11pnAg0MRq3dCt 64-1 10-4-0 14-3-13 17-10-6 26-4-0 32-3-6 382-12 43-8-0 49-0-0 6-4-1 3-11-13 3-6-9 2-9-10 5-8-0 5-11-6 5-11-6 5-11-6		

		6-0-2	14-7-14	17-10-6	20-4-8	26-4-0	32-3-6	38-2-12	43-8-0 . 40	2-0-0
		6-0-2	8-7-12	3-2-8	1-9-10 0-3-8	5-8-0	5-11-6	5-11-6	5-5-4 5	-4-1
					0-8-8					
Plate Offs	ets (X,Y)	[7:0-4-0,0-3-4], [14:Edge	,0-0-10], [21:0-	5-8,0-2-8], [2	22:0-2-12,0-2	2-8]				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.35	Vert(LL)	-0.07 17-19	>999 240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.22 24-26	>999 180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.04 14	n/a n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-MS				Weight: 383 lb	o FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 5-7-13 oc purlins,
BOT CHORD	2x4 SP No.2 *Except*		except
	2-25,23-25: 2x6 SP No.2, 8-23,9-20: 2x4 SP No.3		2-0-0 oc purlins (6-0-0 max.): 7-12.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
WEDGE			6-0-0 oc bracing: 23-24,21-22
Right: 2x4 SP	No.3		2-9-6 oc bracing: 22-23.
-		WEBS	1 Row at midpt 12-19, 9-22
REACTIONS.	(size) 2=0-3-8, 14=0-3-8, 23=0-3-8		

- Max Horz 2=-182(LC 10) Max Uplift 14=-127(LC 12)
- Max Grav 2=908(LC 17), 14=1182(LC 18), 23=2807(LC 17)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1292/0, 3-5=-1166/0, 5-6=-285/30, 7-8=0/981, 8-9=0/982, 9-11=-388/204, 11-12=-911/217, 12-13=-1264/200, 13-14=-1624/173

 BOT CHORD
 2-26=0/1183, 24-26=0/595, 22-23=-2791/0, 8-22=-329/74, 21-22=-46/392, 9-21=0/884, 17-19=-0/1003, 16-17=-71/1316, 14-16=-71/1316

 WEBS
 5-26=0/800, 19-21=-5/874, 11-21=-801/20, 11-19=0/290, 12-17=0/445, 13-17=-373/86, 5-27=-669/41, 24-27=-658/81, 7-24=0/1234, 22-24=-254/188, 7-22=-1410/0,

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 14-3-13, Exterior(2R) 14-3-13 to 17-3-13, Interior(1) 17-3-13 to 38-2-12, Exterior(2R) 38-2-12 to 41-2-12, Interior(1) 41-2-12 to 50-4-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.

9-22=-1710/75

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) 23 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface.8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 25,2022

Job	Truss	Truss Type	Qty	Ply	Cameron Woods Lot 4-2316 Elev 'A' Permit-F			uss
								T27228547
22020379-01	H1SD	ROOF SPECIAL	1	1				
					Job Reference (optional)			
Carter Components (Lexingt	on), Lexington, NC - 2	295,	8.	530 s Dec	6 2021 MiTek Industries,	Inc. Wed Mar 2	23 16:45:04	2022 Page 1
			ID:tQlj0K5bXobra	OovdZu2Jz	zzt7J5-8OJKswlHuRbVzs ⁻	1JaB3VvCF1W	A4uXZeUE1	GQQJzY?_T
1-4-0 3-11	-15 10-4-0 i	2-4-14 16-2-12 19-10-6 20-4-8 2	26-4-0 33	-3-6	40-2-12	44-5-10	49-0-0	50-4-0
1-4-0 ⁰ 3-11	-15 6-4-1	-0-14 3-9-14 3-7-10 0-6-2 5	5-11-8 6-1	11-6	6-11-6	4-2-14	4-6-6	1-4-0 ¹

				2004						
L	6-0-2	14-7-14	19-10-6	6 20 ₁ -4 ₁₁ 8	26-4-0	33-3-6		40-2-12	49-0-0	
	6-0-2	8-7-12	5-2-8	01615	5-9-12	6-11-6	1	6-11-6	8-9-4	
				0-1-12						
Plate Offsets (X,Y)	[8:0-3-12,0-3-5], [15:Ed	lge,0-0-10], [21:0-	5-8,0-2-8], [2	2:0-3-0,0-3	-0]					
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.09 19-20	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.23 24-26	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.87	Horz(CT)	0.06 15	n/a	n/a		
BCDL 10.0	Code IRC2018/	TPI2014	Matrix-	MS					Weight: 372 lb	FT = 20%
LUMBER-	·				BRACING-				•	
TOP CHORD 2x6 S	P No.2				TOP CHOP	RD Struct	tural wood	sheathing di	rectly applied or 5-8-4 o	oc purlins, except
BOT CHORD 2x4 S	P No.2 *Except*					2-0-0	oc purlins	(6-0-0 max.)	: 6-7, 8-13.	
0.05.0									1000 1 1	

20-6-4

TOP CHORD	2X6 SP NO.2	TOP CHORD	Structural wood sheatr	ning directly applied or 5-8-4	oc puriins, except		
BOT CHORD	2x4 SP No.2 *Except*		2-0-0 oc purlins (6-0-0 max.): 6-7, 8-13.				
	2-25,23-25: 2x6 SP No.2, 10-20: 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:				
WEBS	2x4 SP No.3		6-0-0 oc bracing: 23-2-	4.			
WEDGE		WEBS	1 Row at midpt	7-22, 9-23, 10-22			
Right: 2x4 SP N	No.3	JOINTS	1 Brace at Jt(s): 27				

REACTIONS.	(size)	2=0-3-8, 15=0-3-8, 23=0-3-8
	Max Horz	2=-158(LC 10)
	Max Uplift	15=-109(LC 12)
	Max Grav	2=1019(LC 17), 15=1221(LC 18), 23=2591(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1497/0, 3-5=-1380/0, 5-6=-516/0, 6-7=-431/0, 7-8=0/912, 8-9=0/729, 9-10=0/730, 10-12=-751/132, 12-13=-1339/177, 13-14=-1476/153, 14-15=-1649/164

BOT CHORD 2-26=0/1336, 24-26=0/750, 23-24=-411/0, 21-22=0/762, 10-21=0/790, 17-19=0/1214, 15-17=-65/1350

WEBS 19-21=-3/1251, 12-21=-715/57, 13-17=0/343, 5-26=0/794, 5-27=-589/67, 24-27=-556/75, 7-24=0/904, 22-24=0/661, 7-22=-1726/0, 22-23=-2594/0, 10-22=-1831/104, 8-22=0/258

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 12-4-14, Exterior(2R) 12-4-14 to 15-4-14, Interior(1) 15-4-14 to 16-2-12, Exterior(2R) 16-2-12 to 19-2-12, Interior(1) 19-2-12 to 40-2-12, Exterior(2R) 40-2-12 to 43-2-12, Interior(1) 43-2-12 to 50-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift
- 7) One RT/A winter connectors recommended to connect truss to bearing waits due to OPLIFT at Jt(s) 15. This connection is for only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X	<u>3-1</u> 3-1 (,Y) [1-15 + 6-0-2 1-15 + 2-0-3 + 2:0-0-0,0-0-9],	<u>10-4-14</u> 4-4-12 [4:0-4-0,0-3	+ 14-7-14 4-3-0 3-5], [7:0-4-0,0	<u>20-4-8</u> 5-8-10 D-3-4], [12:E	21-10-6 20 <u>7</u> 8-0 0-3L8 1-2-6 dge,0-0-10],	26-7-8 4-9-2 18:0-2-12,0-2-8],	<u>34-5-2</u> 7-9-10 [19:0-2-12,0-2	-8]	<u>42-2-12</u> 7-9-10	<u>49-0</u> 6-9-	-0 4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *)	SPACIN Plate Gri Lumber Rep Stre Code IR	G- ip DOL DOL ess Incr C2018/TPI2	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.39 0.66 0.81 MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.09 16-17 -0.22 21-23 0.03 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 348 II	GRIP 244/190 p FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Right: 2x4 SP N	2x6 SP 2x4 SP 2-22,20 2x4 SP Io.3	No.2 No.2 *Except* -22: 2x6 SP No No.3	o.2, 6-20,8-1	17: 2x4 SP No	o.3		BRACING- TOP CHOR BOT CHOR WEBS	RD Structu except 2-0-0 c RD Rigid c 6-0-0 c 1 Row	ural wood oc purlins ceiling dire oc bracing at midpt	sheathing dire (6-0-0 max.): 4 ectly applied or g: 20-21,18-19. 10	ctly applied or 5-4-^ I-5, 7-11. 10-0-0 oc bracing, -18	12 oc purlins, Except:

REACTIONS. All bearings 0-3-8 except (jt=length) 19=5-11-8, 18=5-11-8, 18=5-11-8.

(lb) - Max Horz 2=135(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 12, 20 except 18=-106(LC 12) Max Grav All reactions 250 lb or less at joint(s) 20 except 2=1140(LC 17), 19=1309(LC 17), 18=1366(LC 18), 18=1278(LC 1), 12=1004(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1707/0, 3-4=-1584/0, 4-5=-691/0, 5-6=0/305, 6-7=0/293, 7-8=0/370, 8-10=0/379, 10-11=-1056/140, 11-12=-1279/115
- BOT CHORD 2-23=0/1498, 21-23=0/938, 8-18=-417/114, 14-16=-7/1011, 12-14=-4/1020
- WEBS 19-21=0/413, 5-19=-1265/0, 16-18=-17/960, 10-18=-1500/94, 11-14=0/275, 4-23=0/769, 4-21=-353/74, 5-21=0/880

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 10-4-14, Exterior(2R) 10-4-14 to 13-4-14, Interior(1) 13-4-14 to 18-2-12, Exterior(2R) 18-2-12 to 21-2-12, Interior(1) 21-2-12 to 42-2-12, Exterior(2R) 42-2-12 to 45-2-12, Interior(1) 45-2-12 to 50-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 350.0lb AC unit load placed on the bottom chord, 10-4-0 from left end, supported at two points, 4-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18, 12, and 20. This connection
- 7) One KT/A MITEK connectors recommended to connect truss to bearing wails due to UPLIFT at Jt(s) 18, 12, and 20. This connectise for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 25,2022

TEREFING BY A MITER ATTILIATE 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

