

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22-1329-A JSJ-DEWBERRY B-WFS #46 ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I50546908 thru I50546927

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 3,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1	Attic	3	1	Job Reference (optional)	150546908

Scale =	1:77.3
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.89 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.32 -0.57 0.07 -0.19	(loc) 13-16 13-16 11 14-18	l/defl >880 >494 n/a >781	L/d 360 240 n/a 360	PLATES MT20 Weight: 198 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP 2400F 2.0E ⁻ No.3 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep No.2, 20-2,11-9:2x6 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly	*Except* 5-6:2x4 SP t* 18-14:2x4 SP No.2 t* 3-19,8-12,4-7:2x4 SP No.2 athing directly applied cept end verticals, an 0-0 max.): 5-6. applied or 10-0-0 oc	2) SP dor nd 3)	Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C 2-3-6 to 9-11 (2R) 13-11-8 zone; cantilev and right exp MWFRS for r grip DOL=1.6 TCLL: ASCE Plate DOL=1	7-16; Vult=130mpf h; TCDL=6.0psf; E ; Enclosed; MWFR 2 Exterior(2E) -0-8- -8, Exterior(2E) 9-1 to 18-2-15, Interior ver left and right ex- osed;C-C for mem eactions shown; Lt 0 7-16; Pr=20.0 psf (5): Pc=20.0 psf	h (3-sec 3CDL=6 RS (envi- 10 to 2 11-8 to r (1) 18- cposed bers an umber I (roof LL Pf=20 (ond gust) .0psf; h=25ft; elope) exteric -3-6, Interior - 13-11-8, Exte -2-15 to 24-7- end vertical d forces & DOL=1.60 pla :: Lum DOL=	; or (1) erior -10 left ate 1.15	LOAD	CASE(S)) Sta	ndard		
WEBS REACTIONS FORCES TOP CHORD	bracing. Except: 6-0-0 oc bracing: 14- 1 Row at midpt (lb/size) 11=1212/2/ Max Horiz 20=-288 (l Max Grav 11=1762 ((lb) - Maximum Com 1-2=0/40, 2-3=-1914 4-5=-109/552, 5-6=0 7-8=-1172/77, 8-9=-1 2-20=-1719/0 9-11=	-18 4-7, 17-19, 12-15 0-3-8, 20=1212/0-3-8 LC 14) (LC 48), 20=1762 (LC pression/Maximum I/0, 3-4=-1172/75, //801, 6-7=-109/551, 1915/0, 9-10=0/40, =-1720/0	3 4) C 48) 5) 6) 7) 8)	Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced s design. This truss ha load of 12.0 p overhangs no Provide adeq This truss ha chord live loa * This truss ha	.15); Pg=20.0 psr; ate DOL=1.15); Is= ; Ce=1.0; Cs=1.00 snow loads have b snow loads have b sof or 1.00 times fla on-concurrent with uate drainage to p s been designed for d nonconcurrent w as been designed a chord in all areas	Pt=20.4 =1.0; Rc ; Ct=1.1 een cor or greate at roof lo other liv revent v or a 10.0 <i>v</i> ith any for a liv	pst (Lum pugh Cat B; 0, Lu=50-0-0 isidered for the er of min roof pad of 15.4 ps ve loads. water ponding 0 psf bottom other live loa e load of 20.0.) his live sf on g. ds. Dpsf				WH CA	Route	
BOT CHORD WEBS	19-20=-293/884, 16- 12-16=0/3364, 11-12 17-18=-201/204, 15- 14-15=-208/211 18-19=0/597, 3-18=(8-14=0/808, 4-7=-19 9-12=-85/706, 17-19 15-16=-269/289, 13- 12-15=-2562/0	-19=0/3445, 2=-147/682, -17=-2510/0, 0/807, 12-14=0/597, 007/48, 2-19=-66/699 =-2579/0, 16-17=0/1 -15=-16/132,	9) 10) 35, 11)	3-06-00 tall b chord and an Ceiling dead b Bottom chord chord dead lo 15-17, 14-15) This truss is o International R802.10.2 ar	y 2-00-00 wide will y other members. load (10.0 psf) on l live load (40.0 psf) ad (5.0 psf) applie designed in accord Residential Code s d referenced stand	I fit betw membe f) and a ed only t lance w sections dard AN	r(s). 3-4, 7-8, dditional botto o room. 17-1 ith the 2018 R502.11.1 a ISI/TPI 1.	om 4-7 om 8, und		Contraction of		SEA 0363	22	
NOTES 1) Unbalance this design	nd roof live loads have I.	been considered for	12) 13]) Graphical pur or the orienta bottom chord) Attic room ch	rlin representation tion of the purlin al ecked for L/360 de	does no long the	ot depict the s top and/or	size		3		A. G. Marc	ER. K.	

- Unbalanced roof live loads have been considered for 1) this design.
- bottom chord. 13) Attic room checked for L/360 deflection.

March 3,2022

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y): [2:0-2-4,0-1-12], [4:0-1-13,0-2-0], [5:0-0-0,0-0-0], [6:0-0-0,0-0-0], [7:0-1-13,0-2-0], [9:0-2-4,0-1-12], [13:0-3-0,0-3-4]

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1A	Attic	3	1	Job Reference (optional)	150546909

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:48 ID:JROTCu?iiLboyF1K6OmmXAzf?JM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale :	= 1:7	7.3

Plate Offsets ((X, Y): [1:0-0-12,0-1-8]	l, [3:0-1-13,0-2-0], [4	1:0-2-4,0-2	-0], [5:0-0-0,0-0	0-0], [6:0-1-13,0-2-	0], [8:0-	2-4,0-1-12], [12:0-3-0	,0-3-4]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.89 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.32 -0.58 0.07 -0.19	(loc) 12-15 12-15 10 13-17	l/defl >871 >489 n/a >780	L/d 360 240 n/a 360	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP 2400F 2.0E ⁻ No.3 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep No.2, 19-1,10-8:2x6 Structural wood shea 6-0-0 oc purlins, exc	*Except* 4-5:2x4 SP t* 17-13:2x4 SP No. t* 2-18,7-11,3-6:2x4 SP No.2 athing directly applie cept end verticals, at	2) 2 SP ed or nd	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 3-2-12 to 9-1 (2R) 13-11-8 zone; cantile and right exp MWFRS for grip DQI =10	7-16; Vult=130mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF C Exterior(2E) 0-2- 1-8, Exterior(2E) 9 to 18-2-15, Interio ver left and right ex losed;C-C for mem reactions shown; L 50	h (3-sec 3CDL=6 RS (enve 12 to 3- 1-11-8 to r (1) 18- kposed (bers an umber [ond gust) .0psf; h=25ft; elope) exterior 2-12, Interior 13-11-8, Ext 2-15 to 24-7- end vertical d forces & DOL=1.60 pla	; or (1) terior -10 left ate	LOAD	CASE(S)	Star	ndard		
BOT CHORD	2-0-0 oc purlins (10- Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13- 1 Row at midpt (lb/size) 10-1213/(0-0 max.): 4-5. applied or 10-0-0 oc -17 3-6, 16-18, 11-14)-3-8, 19-1163/0-3-1	3) 8 4)	grp DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this										
EORCES	Max Horiz 19=-281 (I Max Grav 10=1763 (LC 12) LC 48), 19=1721 (L prossion/Maximum	5) C 48)	design. This truss ha load of 12.0	s been designed for psf or 1.00 times fla	or greate at roof lo	er of min roof bad of 15.4 ps	live sf on						
TOP CHORD	(ib) - Maximum Com Tension 1-2=-1894/0, 2-3=-1 ⁻¹ 4-5=0/814, 5-6=-105 7-8=-1917/0, 8-9=0/4 8-101721/0	175/75, 3-4=-106/56 /559, 6-7=-1173/77, 40, 1-19=-1675/0,	6) 50, 7) 8)	Provide adec This truss ha chord live loa * This truss h	quate drainage to p is been designed fo ad nonconcurrent v has been designed	orevent v or a 10.0 vith any for a liv	vater ponding) psf bottom other live loa e load of 20.0	g. Ids. Opsf				WITH CA	Boutto	
BOT CHORD	18-19=-276/679, 15- 11-15=0/3365, 10-11 16-17=-207/204, 14- 13-14=-206/213	18=0/3460, =-147/681, 16=-2517/0,	9) 10	3-06-00 tall b chord and ar Ceiling dead	by 2-00-00 wide will by other members. load (10.0 psf) on	I fit betw membe	r(s). 2-3, 6-7,	om , 3-6 om		4	A.	OR FESC		in the second seco
WEBS	17-18=0/570, 2-17=0 7-13=0/810, 3-6=-19 15-16=0/135, 16-18= 14-15=-269/296, 11- 8-11=-85/709	0/780, 11-13=0/599, 24/50, 1-18=-17/832 2579/0, 12-14=-17 14=-2565/0,	2, 7/131, 11	chord dead le 14-16, 13-14) This truss is International R802.10.2 a	designed in accord Residential Code and referenced stan	ance w sections	o room. 16-1 ith the 2018 R502.11.1 a ISI/TPI 1.	7, and		THE DAY		SEA 0363	22	winnin,
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12 13) Graphical pu or the orienta bottom chorc) Attic room ch	rlin representation ation of the purlin a l. necked for L/360 de	does no long the eflection	ot depict the s top and/or	size				AC A. G	ILBERT	L.L.

- this design.
- bottom chord. 13) Attic room checked for L/360 deflection.

March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1B	Attic	4	1	Job Reference (optional)	150546910

Plate Offsets (X, Y):	[1:0-0-12,0-1-8], [3:0-1-13,0-2-0], [4:0-0-0,0-0-0], [5:0-0-0,0-0-0], [6:0-1-13,0-2-0], [8:0-0-12,0-1-8], [11:0-3-0,0-3-4]

	(nsf)	Spacing	2-0-0	CSI		DEEL	in	(loc)	l/defl	I /d		GRIP
Total	(psi)	Spacing	2-0-0					(100)	i/uen	L/U	LAILO	
ICLL (roof)	20.0	Plate Grip DOL	1.15	IC	0.63	Vert(LL)	-0.33	11-14	>861	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.58	11-14	>484	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.63	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS		Attic	-0.19	12-16	>780	360		
BCDL	10.0										Weight: 193 lb	FT = 20%

LUMBER

Scale = 1:77.3

TOP CHORD	2x6 SP 2400F 2.0E "Except" 4-5:2x4 SP No.3
BOT CHORD	2x4 SP No.1 *Except* 16-12:2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 2-17,7-10,3-6:2x4 SP
	No.2, 18-1,9-8:2x6 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals, and
	2-0-0 oc purlins (10-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing. Except:
	6-0-0 oc bracing: 12-16
WEBS	1 Row at midpt 3-6, 15-17, 10-13
REACTIONS	(lb/size) 9=1164/0-3-8, 18=1164/0-3-8
	Max Horiz 18=266 (LC 15)
	Max Grav 9=1721 (LC 47), 18=1721 (LC 47)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1896/0, 2-3=-1176/74, 3-4=-101/568,
	4-5=0/825, 5-6=-101/567, 6-7=-1175/78,
	7-8=-1896/0, 1-18=-1677/0, 8-9=-1677/0
BOT CHORD	17-18=-285/667, 14-17=0/3451,
	10-14=0/3374, 9-10=-114/478,
	15-16=-206/205, 13-15=-2516/0,

12-13=-212/212 WEBS 16-17=0/572, 2-16=0/782, 10-12=0/572, 7-12=0/783, 3-6=-1937/50, 1-17=-18/836, 14-15=0/135, 15-17=-2582/0, 11-13=-17/132, 13-14=-272/292, 10-13=-2565/0, 8-10=-32/846

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior (1) 3-2-12 to 9-11-8, Exterior(2E) 9-11-8 to 13-11-8, Exterior (2R) 13-11-8 to 18-2-15, Interior (1) 18-2-15 to 23-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
 Unbalanced snow loads have been considered for this
- design.5) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (10.0 psf) on member(s). 2-3, 6-7, 3-6
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-16, 13-15, 12-13
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1C	Attic	2	1	Job Reference (optional)	150546911

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:50 ID:H_keA4gGDk_DWSarBNE77Gzf?HC-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.4

Plate Offsets (X, Y):	[3:0-1-13,0-2-0], [4:0-0-0,0-0-0],	[5:0-0-0,0-0-0], [6:0-1-	-13,0-2-0], [11:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	0.24	17	>592	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.31	16-18	>459	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS		Attic	0.17	12-17	>911	360		
BCDL	10.0										Weight: 193 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.2 *Except* 4-5:2x4 SP No.3
BOT CHORD	2x4 SP No.2 *Except* 17-12:2x4 SP No.3,
	11-19:2x4 SP DSS
WEBS	2x4 SP No.3 *Except* 2-18,7-10,3-6:2x4 SP
	No.2, 19-1,9-8:2x6 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-6-11 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc
	bracing. Except:
	6-0-0 oc bracing: 12-17
REACTIONS	(lb/size) 9=871/0-3-8, 14=577/0-3-8,
	19=880/0-3-8
	Max Horiz 19=266 (LC 13)
	Max Grav 9=1165 (LC 41), 14=1117 (LC 49),
	19=1177 (LC 41)
FORCES	19=1177 (LC 41) (Ib) - Maximum Compression/Maximum
FORCES	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension
FORCES	19=1177 (LC 41) (Ib) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287,
FORCES	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107,
FORCES	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0
FORCES TOP CHORD BOT CHORD	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695,
FORCES TOP CHORD BOT CHORD	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478,
FORCES TOP CHORD BOT CHORD	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209,
FORCES TOP CHORD BOT CHORD	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/226
FORCES TOP CHORD BOT CHORD WEBS	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/226 17-18=-121/142, 2-17=-72/289,
FORCES TOP CHORD BOT CHORD WEBS	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/226 17-18=-121/142, 2-17=-72/289, 10-12=-131/136, 7-12=-82/270,
FORCES TOP CHORD BOT CHORD WEBS	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/226 17-18=-121/142, 2-17=-72/289, 10-12=-131/136, 7-12=-82/270, 3-6=-1115/134, 1-18=-81/583, 15-16=-541/0,
FORCES TOP CHORD BOT CHORD WEBS	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/209, 13-15=-345/725, 12-13=-265/209, 13-15=-345/725, 12-13=-265/209, 10-12=-131/136, 7-12=-82/270, 3-6=-1115/134, 1-18=-81/583, 15-16=-541/0, 15-18=-284/842, 11-13=-635/3, 1-10=-100-100-100-100-100-100-100-100-10
FORCES TOP CHORD BOT CHORD WEBS	19=1177 (LC 41) (lb) - Maximum Compression/Maximum Tension 1-2=-1262/0, 2-3=-947/101, 3-4=-227/287, 4-5=-68/405, 5-6=-229/285, 6-7=-949/107, 7-8=-1248/0, 1-19=-1118/0, 8-9=-1110/0 18-19=-321/558, 16-18=-227/695, 14-16=-146/478, 10-14=-154/478, 9-10=-133/338, 15-17=-282/209, 13-15=-345/725, 12-13=-265/226 17-18=-121/142, 2-17=-72/289, 10-12=-131/136, 7-12=-82/270, 3-6=-1115/134, 1-18=-81/583, 15-16=-541/0, 15-18=-284/842, 11-13=-635/3, 13-16=-292/381, 10-13=-308/941, 0-00000000000000000000000000000000000

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior (1) 3-2-12 to 9-11-8, Exterior(2E) 9-11-8 to 13-11-8, Exterior (2R) 13-11-8 to 18-2-15, Interior (1) 18-2-15 to 23-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
 Unbalanced snow loads have been considered for this
- design.5) Provide adequate drainage to prevent water ponding.6) This truss has been designed for a 10.0 psf bottom
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (10.0 psf) on member(s). 2-3, 6-7, 3-6
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-17, 13-15, 12-13
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1E	Attic	1	1	Job Reference (optional)	150546912

Scale = 1:76.4

Plate Offsets (X, Y):	: [2:0-2-0,0-1-12], [6:0-1-13,0-2-0], [10:0-1-13,0-2-0], [14:0-2-0,0-1-12], [18:0-3-0,0-3-4]
-----------------------	--

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.59	Vert(LL)	-0.32	18-21	>888	360	MT20	244/190	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.56	18-21	>499	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.63	Horz(CT)	0.07	16	n/a	n/a			
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MS		Attic	-0.19	19-23	>781	360			
BCDL	10.0											Weight: 217 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP 2400F 2.0E No.3 2x4 SP No.1 *Excep No.2, 24-22,22-21,2 No.3 2x4 SP No.3 Structural wood she	*Except* 7-9:2x4 SP t* 23-19:2x4 SP No.; t* 25-2;16-14:2x6 SF 1-20;20-18;20-17:2x; athing directly applie	WE	BS 2	23-24=0/648, 5-23= 11-19=0/859, 6-30= 30-32=-1849/68, 31 10-31=-1877/76, 2- 28-29=-76/650, 24- 7-26=-109/645, 22 14-27=-102/645, 12 3-27=-28/147, 4-2 7-30=-71/259, 9-31 22-24=-2581/0, 21- 20-21=-228/248, 18	=0/858, =-1873/7 -32=-18 29=-83/ 29=-83/ 28=-90/ -27=-9! 27=-9! 27=-9! 27=-9! 22=0/13 -20=-9/	17-19=0/648, '3, 349/68, 639, 638, 5/657, 05/85, 84, 3-29=-26/ 8, 8-32=-141/ 55, 132,	144, 39,	 Prc All Trubra Trubra Ga Ga Thi Chc T2) * T1 on 3-0 Chc 	ovide ade plates ar iss to be ced agai ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a	equate e 1.5x fully s nst lat s space as bee bad not has be m cho by 2-0 ny oth	drainage to pre- 4 MT20 unless of heathed from or eral movement of ed at 2-0-0 oc. an designed for r nconcurrent with een designed for rd in all areas w 00-00 wide will fin er members.	vent water po otherwise indi e face or sec i.e. diagonal a 10.0 psf bot a any other liv r a live load o here a rectar between the	nding. icated. urely web). tom e loads. f 20.0psf gle bottom
BOT CHORD	2-0-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 19	-0-0 max.): 7-9. • applied or 10-0-0 oc	, NO 1)	TES Unbalanced this design.	17-20=-2564/0 roof live loads have	e been o	considered for		13) Cei 6-3 14) Bot chc	iling dead 0, 30-32 tom choi ord dead	d load , 31-32 rd live load ((10.0 psf) on me 2, 10-31 load (40.0 psf) a 5.0 psf) applied	mber(s). 5-6 and additional only to room.	, 10-11, bottom 22-23,
WEBS JOINTS REACTIONS	1 Row at midpt 1 Brace at Jt(s): 26, 28, 32 (lb/size) 16=1212/ Max Horiz 25=-284 (22-24, 17-20 0-3-8, 25=1212/0-3-8 (LC 14)	2)	 Vande 103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-10 to 2-3-6, Interior (1) 2-3-6 to 9-11-8, Exterior(2E) 9-11-8 to 13-11-8, Exterior (2D L2, 10 L2 This truss is International R802.10.2 a 							desig I Resid and ref	ned in accordar dential Code sec erenced standa	ce with the 2 tions R502.1 rd ANSI/TPI	018 1.1 and I.
FORCES	Max Grav 16=1766 (lb) - Maximum Com Tension 1-2=0/40 2-3=-1944	(LC 48), 25=1766 (L0 pression/Maximum 4/0_3-4=-1820/0	C 48)	zone; cantile and right exp MWFRS for	ver left and right ex osed;C-C for mem reactions shown; Li	bers an umber [end vertical I d forces & OOL=1.60 plat	eft te			m	WITH CA	ROLI	19
BOT CHORD	4-5=-1795/0, 5-6=-1 7-8=0/745, 8-9=0/74 10-11=-1170/77, 11- 12-13=-1820/0, 13-1 2-25=-1720/0, 14-16 24-25=-279/937, 21- 7, 21-0/2250, 45-1	171/76, 6-7=-236/48 15, 9-10=-236/482, -12=-1796/0, 14=-1945/0, 14-15=0, 5=-1721/0 -24=0/3422, 7_ 129/728	3, 3) /40, 4)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1	hed for wind loads i ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf .15); Pg=20.0 psf;	n the pl d (norm nd Detai igner as (roof LL Pf=20.4	ane of the tru al to the face) Is as applicat per ANSI/TP Lum DOL=1 psf (Lum	ss , ple, rl 1. .15		1 and a state of the state of t	2.A	SE/ 0363	AL 322	
	17-21=0/3339, 16-1 22-23=-167/174, 20 19-20=-174/181	/=-138/738, -22=-2506/0,	5) 6)	DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 p overhangs no	5 Plate DOL=1.15); Is=1.0; Rough Cat B; Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 ced snow loads have been considered for this s has been designed for greater of min roof live 2.0 psf or 1.00 times flat roof load of 15.4 psf on as non-concurrent with other live loads							EER.		

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

March 3,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1E	Attic	1	1	Job Reference (optional)	150546912

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:50 ID:QVxYq0JthKyg9kKQv_Fxsezf?LY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT1P	Piggyback	12	1	Job Reference (optional)	150546913

1-5-3

Riverside Roof Truss, LLC, Danville, Va - 24541,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 02 13:31:52 ID:T7pnPKHd9iiywQA1oZCTnDzf?La-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2-10-6 1

Scale = 1:30.6

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-0, Edge], [4:0-2-6,0-1-0]

	()) [,									-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP N 2x4 SP N 2x4 SP N Structura 4-0-0 oc [Rigid ceil bracing. (lb/size) Max Horiz Max Uplift 	lo.3 lo.2 l wood she purlins. ing directly 2=120/2-1 6=120/2-1 2=42 (LC 2=-14 (LC 6=-14 (LC	athing directly applie applied or 10-0-0 or 10-6, 4=120/2-10-6, 10-6, 9=120/2-10-6 15), 6=42 (LC 15) 2 16), 4=-14 (LC 17) 2 16), 9=-14 (LC 17)	ed or c	 Unbalanced design. This truss h load of 12.0 overhangs r Gable requi Gable studs This truss h chord live ld * This truss on the botto 3-06-00 tall chord and a 	d snow loads have as been designed psf or 1.00 times f non-concurrent with res continuous bot s spaced at 4-0-0 o as been designed bad nonconcurrent has been designed m chord in all area by 2-00-00 wide w iny other members obanical connection	been cor for great lat roof la n other lit tom chor c. for a 10.' with any d for a liv s where ill fit betv	Insidered for the sidered for the er of min roof bad of 15.4 ps we loads. It bearing. It b	live sf on ds. Dpsf Dm						
FORCES TOP CHORE BOT CHORE NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 Cat. II; E:	Max Grav (Ib) - Max Tension 1-2=0/19 2-4=-11/5 ced roof live m. GCE 7-16; Vu 3mph; TCDL xp B; Enclos	2=148 (LC 6=148 (LC cimum Com , 2-3=-75/5 7 loads have llt=130mph _=6.0psf; BC ed; MWFR:	2 23), 4=148 (LC 24 2 23), 9=148 (LC 24 pression/Maximum 2, 3-4=-75/63, 4-5=0 been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exteric	-), -) D/19 r ; pr	 bearing plat 2, 14 lb upli uplift at joinin 12) This truss is Internationa R802.10.2 <i>i</i> 13) See Standa Detail for Co consult qua LOAD CASE(S) 	e capable of withst ft at joint 4, 14 lb ut t 4. a designed in accor il Residential Code and referenced star rd Industry Piggyb onnection to base t lified building desig) Standard	dance w sections ndard AN ack Trus russ as a ner.	4 lb uplift at j nt 2 and 14 lk s R502.11.1 a SI/TPI 1. s Connection applicable, or	nd				ORTH CA	P LAT	. 7

- zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G

mmm

March 3,2022

SEAL 036322

CHILLING MANY

Manninnin,

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT2	Attic	6	1	Job Reference (optional)	150546914

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 02 13:31:53 ID:OJeNFoVHLcAoM?_I0m_nxazf_ka-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.9

Plate Offsets	(X, Y): [7:0-2-7,0-2-0],	[9:0-4-12,0-3-0], [15	5:0-5-8,0-1	-8], [23:0-5-8,	Edge]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.92 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.19 -0.36 0.02 0.13	(loc) 22-24 22-24 19 15-23	l/defl >976 >519 n/a >999	L/d 360 240 n/a 360	PLATES MT20 Weight: 27	GRIP 244/190 76 lb FT = 20%	6
BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD	10.0 2x6 SP No.2 *Excep 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep SP No.2 Left 2x4 SP No.3 - 2 Structural wood shee 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 1: 1 Row at midpt 1 Brace at Jt(s): 25 (lb/size) 2=729/0-3 19=1169/0 Max Horiz 2=368 (LC Max Grav 2=857 (LC 19=1942 ((lb) - Maximum Com Tension 1-2=0/26, 2-4=-1039 6-7=-551/130, 7-8=- 9-10=-734/198, 10-1 11-12=-141/160, 12- 2-24=-267/870, 22-2	t* 9-12:2x8 SP DSS t* 20-13:2x4 SP No.: t* 6-22,22-21,20-18: 2-6-0 athing directly applie cept end verticals, ar -0 max.): 8-9. applied or 3-3-7 oc 5-23 11-15, 12-13, 23-24 (-8, 14=901/0-3-8, -3-8 (-15) (-6) (-42), 14=1122 (LC 4 (-15)) (-6) (-242), 14=1122 (LC 4 (-15)) pression/Maximum (-46, 4-6=-525/104, 951/126, 8-9=-793/6 1=-599/105, 13=-508/40 (4=-479/3200, 7 10, 4090(510)	EBS Unbalanced this design. Wind: ASCI Vasd=103m Cat. II; Exp zone and C 2:3-7 to 14- (1) 18-8-7 to Interior (1) 2 right expose for member Lumber DO TCLL: ASC Plate DOL= DOL=1.15 I Partially Ex Unbalanced design.	22-23=-877/222, 14-15=-833/120, 7-25=-179/672, 1 12-15=-130/960, 16-19=-2024/0, 1 4-23=-698/234, 4 23-24=-2357/352 8-25=-130/171, 9 21-22=-492/2935 18-20=-237/3060 4 roof live loads hat 5 7-16; Vult=130m ph; TCDL=6.0psf B; Enclosed; MW -C Exterior(2E) -0 5-8, Exterior(2E) 0 22-5-8, Exterior(26-8-7 to 27-1-3 z ed; end vertical le s and forces & MV L=1.60 plate grip E 7-16; Pr=20.0 ps Plate DOL=1.15); p.; Ce=1.0; Cs=1.1 4 snow loads have	6-23=-66 11-15=-1: 0-25=-41 18-19=-1: 6-17=0/1! -24=-124- ; 13-15=- -25=0/48 , 20-21=- 1 ave been of the second ph (3-second ; BCDL=6 FRS (env -8-9 to 2- 7 4-5-8 to 2- 7 8-9 to 2- 8-9 to 2- 7 8-9 to 2- 7 8-9 to 2- 8-9 to 2- 8-10 to 2- 8-	7/139, 224/202, 0/204, 393/0, 50, 14-16=-11 98, 105/1334, 7, 901/72, considered for xond gust) 0.0psf; h=25ft; elope) exteric elope) exteric elope) exteric at c26-8-7, lever left and at exposed;C- reactions sho 2. : Lum DOL=: t psf (Lum pugh Cat B; 10, Lu=50-0-0 sidered for th	164/0, or ; or -C own; 1.15) his	 8) * Th on t 3-00 cho 9) Ceii 7-22 10) Bott cho 18-2 11) Pro bea 2. 12) This Inte R80 13) Gra or ti bott 14) Attid LOAD (his truss the botto 6-00 tall rd and a ling deat 5, 10-25 tom choo rd dead 21, 16-1 vide me rring plat s truss is rnationa 02.10.2 a phical p he orien tom choo c room c CASE(S	has be m cho by 2-0 ny oth d load (f 8, 15-1 chanic e capa d desig l Resid and ref urlin re tation o d.	Weight: 27 een designe- rd in all area 0-00 wide w er members (10.0 psf) or load (40.0 p 5.0 psf) appl 6 al connectio able of withs ned in accord dential Code erenced sta appresentation of the purlin d for L/360 of ndard	6 lb FT = 20% 1 for a live load of s where a recta- ill fit between the member(s). 6-7 sf) and additional- ied only to room n (by others) of the canding 25 lb up related only to room n (by others) of the sections R502. Indard ANSI/TPI n does not depice along the top and deflection.	5 of 20.0psf ngle e bottom 7, 10-11, al bottom 1. 21-23, truss to lift at joint 2018 11.1 and 1. x the size id/or	
	19-22=-2536/526, 1 14-17=-1089/519, 1 21-23=-3057/564, 1 16-18=-147/2822, 1	(~19=-1089/519, 3-14=-1220/114, 3-21=-124/92, 5-16=-122/1545	5) 6) 7)	This truss h load of 12.0 overhangs i Provide ade This truss h chord live lo	live sf on g. ids.		LI I I I I I I I I I I I I I I I I I I		03	6322 INEER.				

March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT2C	Roof Special	1	1	Job Reference (optional)	150546915

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 02 13:31:54

Page: 1

Scale = 1:42.8 Plate Offsets (X, Y): [2:0-0-5,Edge], [4:0-2-15,0-1-8]

	· · · · · · · · · · · · · · · · · · ·												
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	0.22	5-11	>846	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.41	5-11	>456	240			
TCDL	10.0	Rep Stress Incr	NO	WB	0.13	Horz(CT)	0.21	4	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS									
BCDL	10.0										Weight: 66 lb	FT = 20%	
UMBER	ER 4) Unbalanced snow loads have been considered for this												

TOP CHORD	2x6 SP 24 No.2	400F 2.0E *Except* 3-4:2x4 SP
BOT CHORD	2x4 SP N	0.1
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 4-10-10 o	l wood sheathing directly applied or oc purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	1=565/0-3-8, 4=549/0-3-8
	Max Horiz	1=151 (LC 13)
	Max Uplift	1=-40 (LC 16), 4=-39 (LC 17)
	Max Grav	1=636 (LC 2), 4=620 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
TOP CHORD	1-2=-401/	78, 2-3=-1485/188, 3-4=-783/160
BOT CHORD	2-5=-261/	/1173, 4-5=-69/540

WFBS NOTES

Unbalanced roof live loads have been considered for 1) this design.

3-5=0/346

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-9-9, Exterior(2R) 8-9-9 to 11-9-9, Interior (1) 11-9-9 to 15-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

desian.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 40 lb uplift at joint 1 and 39 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT2M	Monopitch	1	1	Job Reference (optional)	150546916

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:55 ID:xauGqzTeQTnTW?5qS_EiX8zf_V7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.70 0.62 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.43 -0.02	(loc) 5-6 5-6 8	l/defl >517 >259 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 6=386/0-3 Max Horiz 6=290 (LC Max Uplift 6=-20 (LC Max Grav 6=439 (LC (lb) - Maximum Com	eathing directly applie cept end verticals. • applied or 10-0-0 or 3-8, 8=965/0-3-8 C 13) C 16), 8=-233 (LC 16 C 2), 8=1226 (LC 30 apression/Maximum	5) 6) ed or 7) 5 8)) 9) 10	This truss ha chord live lo. * This truss l on the botto 3-06-00 tall l chord and a Bearing at jo using ANSI/ designer sho Provide meo bearing plate 6 and 233 lb This truss is International R802.10.2 a	As been designed ad nonconcurrent nas been designe n chord in all are oy 2-00-00 wide v y other members init(s) 8 considers TPI 1 angle to gra- build verify capacito thanical connection thanical connection e capable of withs uplift at joint 8. designed in acco Residential Codu nd referenced star- other connection	I for a 10.0 t with any d for a liv as where will fit betw s. s parallel t ain formula ty of beari on (by oth standing 2 ordance w e sections andard AN n device(s) psf bottom other live loa e load of 20. a rectangle veen the bott o grain value a. Building ng surface. orl of truss 0 lb uplift at th the 2018 R502.11.1 a SI/TPI 1.) shall be	nds. Dpsf om to joint				weight: 75 ib	FT = 20%
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=100 Cat. II; Ex zone and 2-1-8 to 9 end vertic forces & M DOL=1.60 2) TCLL: AS Plate DOI DOL=1.15 Partially E	1-2=0/37, 2-3=-330/ 5-8=-131/296, 4-8=- 5-6=-280/327 3-5=-295/270, 3-6=- CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br φ B; Enclosed; MWFR φ B; Enclosed; MWFR C-C Exterior(2E) -0-10 -6-3 zone; cantilever le al left and right expose WWFRS for reactions s 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; F 5 Plate DOL=1.15); Is= ixp; Ce=1.0; Cs=1.00; br	124, 3-4=-202/162, 936/336, 2-6=-340/1 255/299 a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio >8 to 2-1-8, Interior 1 off and right exposed ad;C-C for members shown; Lumber (roof LL: Lum DOL=7 Pf=15.4 psf (Lum -1.0; Rough Cat B; Ct=1.10	81 11 1) 1) ; and 1.15	provided suf lb down and design/select responsibility) In the LOAD of the truss a DAD CASE(S) Dead + Sm. Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 4=-	ficient to support 170 lb up at 9-6. tition of such conn y of others. CASE(S) sectior are noted as front Standard ow (balanced): Lu .15 ads (lb/ft) =-51, 2-4=-51, 5- ed Loads (lb) 636 (F)	concentra -3 on top (nection de' n, loads ap t (F) or bac umber Inco -6=-20	ted load(s) & chord. The vice(s) is the oplied to the ck (B). rease=1.15,	lo1 face Plate		M. minner		SEA 0363	RO IO L 22

- 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILB

A. GILDIN

March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT3	Attic	7	1	Job Reference (optional)	150546917

Run: 8.53 E Dec 6 2021 Print: 8.530 E Dec 6 2021 MiTek Industries, Inc. Thu Mar 03 13:01:48 ID:YBNkzHY8MNpdAE3NsOiKMIzez9o-XtB3pZVBHqgUPLOP2K6bUf?xU2kV?oE7fG4unczedFX

LUMBER		TOP CHORD	2-3=-034/44, 3-42=-2730/14, 4-42=-2079/34,	Z)	wind. ASCE 7-16, vuit=150mph (5-second gust)
TOP CHORD	2x6 SP 2400F 2.0E *Except* 8-9,1-5:2x6 SP		4-5=-2278/46, 5-43=-2160/58,		Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;
	No.2, 12-16:2x4 SP No.2		43-44=-2085/73, 6-44=-2073/78,		Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior
BOT CHORD	2x4 SP DSS *Except* 21-15:2x4 SP No.2,		6-45=-1593/183, 7-45=-1574/208,		zone and C-C Exterior(2E) -0-8-9 to 3-6-15, Interior (1)
	24-19:2x4 SP No.1		7-8=-878/182, 8-46=-798/118,		3-6-15 to 14-5-8, Exterior(2R) 14-5-8 to 18-9-0, Interior
WEBS	2x4 SP No.3 *Except* 6-31,7-10:2x4 SP		46-47=-798/118, 47-48=-798/118,		(1) 18-9-0 to 22-5-8, Exterior(2R) 22-5-8 to 26-9-0,
	No.2, 11-21:2x4 SP No.1		48-49=-798/118, 9-49=-798/118,		Interior (1) 26-9-0 to 43-9-8 zone; cantilever left and
SLIDER	Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3		9-10=-787/265, 10-50=-1608/197,		right exposed ; end vertical left and right exposed;C-C
	2-6-0		11-50=-1785/178, 11-51=-2055/105,		for members and forces & MWFRS for reactions shown;
BRACING			12-51=-2070/56, 12-13=-2365/0,		Lumber DOL=1.60 plate grip DOL=1.60
	Structural wood sheathing directly applied or		13-52=-2321/0, 52-53=-2360/0,	3)	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
	2-7-13 oc purling except		14-53=-2376/0, 14-15=-837/0		Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum
	2-0-0 oc purling (5-11-7 max): 8-9	BOT CHORD	2-32=-143/2297, 31-32=-105/4322,		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B;
	Pigid colling directly applied or 10.0.0 co		29-31=0/5709, 27-29=0/5709, 25-27=0/5483,		Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0;
BOT CHORD	hracing Except:		23-25=0/3458, 22-23=0/3457,		Min. flat roof snow load governs. Rain surcharge
	6.0.0 co bracing: 21.22		21-22=-612/535, 17-18=0/2213,		applied to all exposed surfaces with slopes less than
	1 4 12 oc brocing: 15 17		15-17=0/2213, 28-30=-2788/254,		0.500/12 in accordance with IBC 1608.3.4.
	1-4-12 00 bracing: 13-17.		26-28=-4141/0, 24-26=-4278/0,	4)	Unbalanced snow loads have been considered for this
	2 0 0 oc bracing: 24 26		20-24=-101/2055, 19-20=0/438		design.
	2 1 0 oc bracing: 26 29	WEBS	30-31=0/579, 6-30=0/880, 19-21=-240/262,	5)	This truss has been designed for greater of min roof live
	10.0.0 oc bracing: 10.24		11-19=-215/382, 12-21=-953/26,		load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on
WERC	1 Pow at midpt 7 22 10 22 22 24		12-18=-353/205, 13-18=-304/774,		overhangs non-concurrent with other live loads.
	1 Braco at It(c): 20		13-17=-860/401, 7-33=-1432/85,		ILL CAP
301113	1 Diace at Ji(5), 30,		10-33=-1940/76, 4-30=-755/197, 4-32=0/331,		Nath Onno M
	33, 13, 20, 20, 24		30-32=-2047/87, 18-21=0/2259,		NO SESSIONANY
			20-22=-977/0, 20-21=-255/1764, 9-33=0/499,		in the thirty
REACTIONS	All bearings 0-3-8.		25-26=-393/0, 28-31=-2121/0,		an my
(lb) -	Max Horiz 2=-285 (LC 14)		26-27=-263/434, 24-25=0/2132,		
	Max Uplift All uplift 100 (lb) or less at joint(s)		22-24=-3882/0		E SEAL E
	15 except 17=-380 (LC 17)	NOTES			
	Max Grav All reactions 250 (lb) or less at joint	1) Unbalance	d roof live loads have been considered for		= 036322 =
	(s) except 2=1997 (LC 54),	this design			
	15=1130 (LC 31), 17=990 (LC 62),	and debigin	•		

 22=1933 (LC 23)

 FORCES
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

March 3,2022

4. GIL

Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	AT3	Attic	7	1	Job Reference (optional)	150546917

- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.10) Ceiling dead load (10.0 psf) on member(s). 6-7, 10-11,
- 11-12, 7-33, 10-3311) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-30,
- 26-28, 24-26, 20-24, 19-20
 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 17=379.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 E Dec 6 2021 Print: 8.530 E Dec 6 2021 MiTek Industries, Inc. Thu Mar 03 13:01:48 ID:YBNkzHY8MNpdAE3NsOiKMIzez9o-XtB3pZVBHqgUPLOP2K6bUf?xU2kV?oE7fG4unczedFX

Page: 2

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	ATG	Attic Girder	2	2	Job Reference (optional)	150546918

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:57 ID:2jV9i?VKiOO680cjmX1CPGzf_Bi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.9

Plate Offsets	(X, Y): [7:0-2-7,0-2-0],	[9:0-4-12,0-3-0], [15	:0-5-8,0-1	-8], [21:0-2-8,0)-1-12], [22:0-2-8,0)-1-12], [23:0-5-8,Edge	e]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.33 0.92 0.92	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.10 -0.29 0.02 0.07	(loc) 22-24 22-24 19 15-23	l/defl >999 >640 n/a >999	L/d 360 240 n/a 360	PLATES MT20 Weight: 552	GRIP 244/190 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x6 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	t* 9-12:2x8 SP DSS t* 6-22:2x4 SP No.2 2-6-0 athing directly applie cept end verticals, ar -0 max.): 8-9.	W d or nd No	EBS	22-23=-703/382, 6 14-15=-859/98, 11 7-25=-329/514, 10 16-17=-3/140, 18- 14-16=-809/322, 4 13-15=0/1703, 4-2 8-25=-219/93, 9-22 21-22=0/4424, 18-	-23=-500 -15=-14 -25=-742 19=-178 -24=0/69 3=-888/3 5=0/591, 20=0/42	0/292, 79/0, 2/0, 12-15=0/ [,] 1/0, 99, 23-24=-36 36, 16-19=-23 20-21=-1257 77	1326, 04/0, 78/0, 70,	6) Unl des 7) Thi load ove 8) Pro 9) Thi cho 10) * Ti	balanced sign. s truss h d of 12.0 erhangs i wide ade s truss h ord live lo nis truss	d snow as bee) psf or non-co equate as bee bad nor has be	loads have be n designed for 1.00 times fla ncurrent with drainage to p n designed for nconcurrent we en designed	→ an considered r greater of mir t roof load of 1 other live loads revent water pc ra 10.0 psf boi ith any other liv for a live load c	for this i roof live 5.4 psf on inding. itom ve loads. of 20.0psf
BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD	2-0-0 cc binns (or cc) Rigid cciling directly bracing. Except: 10-0-0 cc bracing: 1 1 Row at midpt 1 Brace at Jt(s): 25 (lb/size) 2=950/0-3 19=1646/ Max Horiz 2=368 (LC Max Grav 2=1078 (L 9=2417 (lb) - Maximum Com Tension 1-2=0/26, 2-4=-1379 6-7=-592/74, 7-8=-8 9-10=-588/338, 10-1 11-12=-101/208, 12: 2-24=-159/1132, 22: 19-22=-3604/676, 1	applied or 6-0-0 oc 5-23 12-13 3-8, 14=864/0-3-8, 0-3-8 C 15) C 42), 14=1085 (LC (LC 50) pression/Maximum //0, 4-6=-683/0, 80/192, 8-9=-657/19 1=-701/9, 1=2-701/9, 1-32-644/0 24=0/4695, 7-19=-1817/0,	1) 48), 2) 3, 3) 4)	2-ply truss to (0.131"x3") r Top chords of staggered at oc, 2x4 - 1 rr Bottom chor 0-9-0 oc. Web connec All loads are except if not CASE(S) se provided to o unless other Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp I zone and C-	b be connected tog hails as follows: connected as follows: (0-9-0 oc, 2x8 - 2) ow at 0-9-0 oc. ds connected as fol- ted as follows: 2x4 considered equal ed as front (F) or b tction. Ply to ply co distribute only load wise indicated. roof live loads hav 7-16; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0-6	yether wi ws: 2x6 - rows sta- billows: 2: 4 - 1 row ly applied wack (B) f nnection s noted : re been of bh (3-sec BCDL=6 BCDL=6 RS (env; 3-9 to 2-3	th 10d 2 rows ggered at 0-9 x4 - 1 row at at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for xond gust) .0psf; h=25ft; elope) exterio 3-7, Interior (1	-0 DAD r	on 3-0 chc 11) Cei 7-2 12) Bot chc 18- 13) Thi Inte R80	the botto 6-00 tall ord and a ling dea 5, 10-25 tom cho ord dead 21, 16-1 s truss is ernationa 02.10.2 a	om cho by 2-0 any oth d load rd live load (£ 8, 15-1 s desig al Resid and ref	rd in all areas 0-00 wide will er members. (10.0 psf) on i load (40.0 psf) 5.0 psf) applie 6 ned in accord dential Code s erenced stand	where a rectar fit between the nember(s). 6-7) and additional d only to room. ance with the 2 ections R502.1 dard ANSI/TPI	gle bottom , 10-11, I bottom 21-23, 018 1.1 and 1.
	14-17=-1817/0, 13-1 21-23=-4533/0, 18-2 16-18=0/3989, 15-1(4=-1564/0, 1=-125/66, 6=0/1999	5)	2-3-7 to 14-5 (1) 18-8-7 to Interior (1) 2 right expose for members Lumber DOL TCLL: ASCE Plate DOL=' DOL=1.15 P Partially Exp	5-8, Exterior(2R) 1 22-5-8, Exterior(2 6-8-7 to 27-1-3 zoi d ; end vertical left and forces & MW =1.60 plate grip D 7-16; Pr=20.0 psf 1.15); Pg=20.0 psf late DOL=1.15); Is .; Ce=1.0; Cs=1.0	4-5-8 to R) 22-5- ne; canti FRS for OL=1.60 f (roof LL ; Pf=20.4 s=1.0; Rc 0; Ct=1.1	18-8-7, Interic 8 to 26-8-7, lever left and tt exposed;C- reactions sho 0 :: Lum DOL=1 b psf (Lum bugh Cat B; 10, Lu=50-0-0	C wn; I.15		1111AAS		SE 036	AL 322 NEER GILBER	The second second

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	1505 (00 (0
22-1329-A	ATG	Attic Girder	2	2	Job Reference (optional)	150546918

- 14) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-6=-51, 6-7=-71, 7-8=-51, 8-9=-61, 9-10=-51, 10-11=-71, 11-12=-51, 13-26=-20, 15-23=-30,
 - 7-25=-20, 10-25=-20
 - Concentrated Loads (lb)

Vert: 22=-660

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:57 ID:2jV9i?VKiOO680cjmX1CPGzf_Bi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	ATP1	Piggyback	11	1	Job Reference (optional)	150546919

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:58 ID:_kyEdnSO2hoDVYFAKeR4Kyzf_kd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.09 DEFL 0.06 Vert(L 0.02 Horiz(in L) n/a L) n/a TL) 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0									Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	2) Wind: ASCI Vasd=103m Cat. II; Exp zone and C 3-4-9 to 4-0 7-0-5 to 7-7 end vertical forces & Mt DOL=1.60 [3) Truss desir	E 7-16; Vult=130mph ph; TCDL=6.0psf; BC B; Enclosed; MWFRS -C Exterior(2E) 0-4-9 -0, Exterior(2R) 4-0-0 -7 zone; cantilever lef left and right exposed VFRS for reactions sh plate grip DOL=1.60 med for wind loads in	(3-second gu: DL=6.0psf; h 6 (envelope) e to 3-4-9, Intel to 7-0-5, Intel t and right ex d;C-C for mer own; Lumber	st) =25ft; xterior ior (1) rior (1) posed ; ubers and he truss					
REACTIONS	(Ib/size) 1=-75/6-7 4=266/6- 6=133/6-7 10=266/6 Max Horiz 1=-64 (LC Max Uplift 1=-126 (L 4=-105 (L 7=-115 (L Max Grav 1=78 (LC 6=147 (LC 10=369 (I 10=369 (I	-5, 2=277/6-7-5, 7-5, 5=-73/6-7-5, -7-5, (14) C 30), 2=-115 (LC 16, C 17), 5=-120 (LC 24, C 16), 10=-105 (LC 24), C 24), 5=53 (LC 17), C 2), 7=380 (LC 23), C 24), 5=53 (LC 23), C 24)	 a) This design only. For sise standa or consult q 4) TCLL: ASC Plate DOL= 5), DOL=1.15 I 4), Partially Ex 5) Unbalanced design. 6) Gable requiration 7) Gable studes 8) This trues b 	uds exposed to wind rd Industry Gable End ualified building desig E 7-16; Pr=20.0 psf (r 1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=1 0.; Ce=1.0; Cs=1.00; (I snow loads have been res continuous botton s spaced at 4-0-0 oc.	(normal to the Details as ap ner as per Al oof LL: Lum I f=15.4 psf (LL .0; Rough Ca Ct=1.10 n considered n chord bearin	face), iface), ISI/TPI 1. ISI/TPI					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	chord live lo 9) * This truss	ad nonconcurrent wit	h any other live load of	ve loads. of 20 0psf				mm	unin.
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	1-2=-86/140, 2-3=-1 4-5=-52/99 2-6=-34/52, 4-6=-34 3-6=-80/3 ed roof live loads have n.	19/90, 3-4=-120/89, /52 been considered for	on the botto 3-06-00 tall chord and a 10) Provide me bearing plat joint 1, 120 lb uplift at jo at joint 4. 11) This truss is	m chord in all areas v by 2-00-00 wide will f ny other members. chanical connection (t e capable of withstan lb uplift at joint 5, 115 int 4, 115 lb uplift at jo a designed in accorda	where a rectain it between the by others) of t ding 126 lb up lb uplift at join point 2 and 105 nce with the 2	ngle bottom russ to blift at but 2, 105 b buplift 018		0.000	A.	ORTEESS SEA 0363	L 22
			Internationa R802.10.2 a 12) See Standa Detail for C	I Residential Code se and referenced standa rd Industry Piggyback onnection to base trus	ctions R502. ard ANSI/TPI Truss Conne is as applicat	1.1 and 1. ection le, or			in the second seco	S. SNGIN	EEREX

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

G

minin March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	ATP2	Piggyback	2	2	Job Reference (optional)	150546920

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:58 ID:9xGfsdSqe9tgfPJyXhzGFQzf_Bm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 3,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:28.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.03 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=-69/6-7 4=257/6- 6=139/6- 10=257/6 Max Horiz 1=-64 (LC Max Uplift 1=-118 (L 4=-102 (L 7=-112 (L Max Grav 1=76 (LC 4=357 (L 6=154 (L) 10=257/6	Pathing directly applied v applied or 10-0-0 oc 7-5, 2=267/6-7-5, 7-5, 5=-67/6-7-5, 7-5, 7=267/6-7-5, -7-5 C 12) .C 30), 2=-112 (LC 16 .C 17), 5=-111 (LC 24 .C 16), 10=-102 (LC 1 16), 2=367 (LC 23), C 24), 5=51 (LC 17), C 2), 7=367 (LC 23), .C 24), 5=51 (LC 23), .C 24), .C 2	3) 4) d or 5) ;), 6) 7) 7) 7)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C- 3-4-9 to 4-0- 7-0-5 to 7-7- end vertical I forces & MW DOL=1.60 pI Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1.15 PI Partially Exp Unbalanced design.	roof live loads hav 7-16; Vult=130mp b; TCDL=6.0psf; 8; Enclosed; MWF C Exterior(2E) 0-4 0, Exterior(2E) 4-4 7 zone; cantilever eft and right expos FRS for reactions ate grip DOL=1.6 hed for wind loads ds exposed to wind d Industry Gable E ailfied building de 7-16; Pr=20.0 psf (ate DOL=1.15); Is ;; Ce=1.0; Cs=1.0 snow loads have b	ve been ve bee	considered for cond gust) 5.0psf; h=25ft; elope) exterior -9, Interior (1) -5, Interior (1) right exposed for members a Lumber lane of the trus al to the face), ils as applicas s per ANSI/TP :: Lum DOL=1 4 psf (Lum ough Cat B; 10 sidered for thi	; and le, l 1. .15	14) See Deta cons LOAD C	Standa iil for Co sult qual ASE(S)	rd Indi onnect	ustry Piggyback T ion to base truss uilding designer. ndard	russ Connection as applicable, or
FORCES	(lb) - Maximum Con Tension 1-2=-86/136, 2-3=-1	16/88, 3-4=-116/88,	8) 9) 10)	Gable require Gable studs This truss ha chord live loa	es continuous bot spaced at 4-0-0 o s been designed f ad nonconcurrent	tom choi c. for a 10.4 with any	o bearing. D psf bottom other live load	ls.				TH CA	Rojin
BOT CHORD WEBS NOTES 1) 2-ply truss Top chord follows: 22 Bottom ch follows: 22 2) All loads a except if n CASE(S) : provided t unless oth	2-6=-27/50, 4-6=-27 3-6=-85/5 to be connected toge s connected with 10d (6 - 2 rows staggered ords connected with 1 (4 - 1 row at 0-9-0 oc. the considered equally oted as front (F) or basection. Ply to ply con o distribute only loads erwise indicated.	7/50 ether as follows: (0.131"x3") nails as at 0-9-0 oc. Od (0.131"x3") nails a applied to all plies, ick (B) face in the LOV nections have been noted as (F) or (B),	11) 12) s AD	* This truss I on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 111 lb upli uplift at joint joint 4. This truss is International R802.10.2 ar	has been designed in chord in all area by 2-00-00 wide w by other members, hanical connection capable of withst ft at joint 5, 112 lb 4, 112 lb uplift at j designed in accor Residential Code and referenced star	d for a liv s where ill fit betw n (by oth anding 1 o uplift at oint 2 ar dance w sections ndard AN	e load of 20.0µ a rectangle veen the bottor 18 lb uplift at j joint 2, 102 lb d 102 lb uplift ith the 2018 s R502.11.1 ar ISI/TPI 1.	osf m oint at		Contraction of the second seco		SEA 0363	L L L L BERING

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	ATPE	Piggyback	2	1	Job Reference (optional)	150546921

Scale = 1:26.2

6-8-0 to 7-9-1 zone; cantilever left and right exposed ;

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3)

end vertical left and right exposed;C-C for members and

Truss designed for wind loads in the plane of the truss

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

only. For studs exposed to wind (normal to the face),

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:59 ID:uR0NTvC_8NGWzB3cRytpQzzf?gL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

∟oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	n/a	-	n/a	999		
FCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	11	n/a	n/a		
3CLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MR								
3CDL	10.0											Weight: 23 lb	FT = 20%
LUMBER			4)	TCLL: ASCE	7-16; Pr=20.0 p	sf (roof LL	.: Lum DOL=	1.15					
FOP CHORD	2x4 SP No.3			Plate DOL=1	.15); Pg=20.0 ps	sf; Pf=20.4	1 psf (Lum						
3OT CHORD	2x4 SP No.2			DOL=1.15 P	ate DOL=1.15);	ls=1.0; Ro	ough Cat B;						
BRACING				Partially Exp	; Ce=1.0; Cs=1.	00; Ct=1.	10, Lu=50-0-0)					
FOP CHORD	Structural wood she	athing directly applie	dor ⁵⁾	Unbalanced	snow loads have	e been cor	nsidered for the	nis					
	4-8-7 oc purlins, exc	ept		design.									
	2-0-0 oc purlins (5-0	-6 max.): 3-4.	6)	This truss ha	s been designed	for great	er of min roof	live					
3OT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		load of 12.0	ost or 1.00 times	flat root le	bad of 15.4 p	st on					
	bracing.			Overnangs n	on-concurrent wi	In other in	ve loads.	~					
REACTIONS	(lb/size) 2=284/6-7	′- 5, 5=291/6-7-5,	<i>()</i>	The Febricet	ion Toloronoo of	ioint 2	water ponding	J.					
	7=284/6-7	7-5, 11=291/6-7-5	0)	120/	ion rolerance at	joint 3 =	12%, j0int 4 =						
	Max Horiz 2=-20 (LC	: 14), 7=-20 (LC 14)	0)	Gable requir	e continuous bo	ttom chor	d bearing						
	Max Uplift 2=-39 (LC	: 16), 5=-32 (LC 17),	9) 10)) Gable require	snaced at 2-0-0		u bearing.						
	7=-39 (LC	; 16), 11=-32 (LC 17)	11) This truss ha	s heen designed	00. I for a 10 (0 nsf hottom						
	Max Grav 2=353 (LC	C 40), 5=360 (LC 40)	,	chord live loa	d nonconcurrent	t with any	other live loa	ds					
	7=353 (LC	C 40), 11=360 (LC 40	⁾⁾ 12	2) * This truss h	as been designe	ed for a liv	e load of 20.0	Dosf					
FORCES	(lb) - Maximum Com	pression/Maximum		on the bottor	n chord in all are	as where	a rectangle						
	Tension			3-06-00 tall b	y 2-00-00 wide v	will fit betw	veen the bott	om					
FOP CHORD	1-2=0/26, 2-3=-721/2	220, 3-4=-731/196,		chord and ar	y other members	s.							
	4-5=-722/220, 5-6=0	/26	13	3) Provide mec	hanical connection	on (by oth	ers) of truss t	0					
30T CHORD	2-5=-154/731			bearing plate	capable of with	standing 3	39 lb uplift at j	oint				mun	11111
NOTES				2, 32 lb uplift	at joint 5, 39 lb u	uplift at joi	int 2 and 32 I	C			-	W'TH CA	Rollin
 Unbalanc^a 	ed roof live loads have	been considered for		uplift at joint	5.						1.5	R	
this desig	n.		14	I) This truss is	designed in acco	ordance w	ith the 2018			/	S.	OFESS	On V
Wind: AS	CE 7-16; Vult=130mph	(3-second gust)		International	Residential Cod	e sections	S R502.11.1 a	ind		2	1		2
Vasd=103	3mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;		R802.10.2 ai	nd referenced sta	andard AN	NSI/TPI1.				-	:0	- · ·
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterior	15) See Standar	a industry Piggyt	DACK I TUS	s connection					CEA	a 1.
zone and	C-C Exterior(2E) 0-2-1	5 to 1-4-0, Exterior(2	K)	Detail for Co	finection to base	iruss as a	applicable, or			=		SEA	

consult qualified building designer. 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

036322

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	B1	Roof Special	7	1	Job Reference (optional)	150546922

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 02 13:31:59 ID:cj0OBU5YhU?Fdr?klkq20xzeywu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:92 Plate Offsets (X, Y): [4:0-2-8.0-3-0], [8:0-5-4.0-3-0], [10:0-2-8.0-1-12]

	() , E	[=====],[===],[===	,	1									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-MS	0.89 0.93 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.48 0.10	(loc) 8-14 8-14 7	l/defl >990 >528 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, exi Rigid ceiling directly bracing. (lb/size) 7=701/ Mi Max Horiz 10=412 (L Max Uplift 7=-157 (L Max Gray, 7=942 (LC	athing directly applie cept end verticals. applied or 2-2-0 oc echanical, 10=1128/ .C 16) C 16), 10=-74 (LC 1 2 30), 10=-1354 (LC 1	4) ed or 5) /0-3-8 6) 6) 7) 30)	Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss f on the botton	(15); Pg=20.0 psf; late DOL=1.15); ls ;; Ce=1.0; Cs=1.0; snow loads have t as been designed f psf or 1.00 times fl on-concurrent with as been designed f ad nonconcurrent t has been designed n chord in all area.	Pf=15.4 =1.0; Re 	 psf (Lum bugh Cat B; 10 nsidered for the er of min roof bad of 15.4 p ve loads. psf bottom other live load e load of 20.1 a rectangle 	his flive sfon dds. 0psf					
F ORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-176/, 5-6=-1709/573, 6-7= 10-11=-37/40, 9-10= 8-9=-666/1595, 7-8= 3-10=-1110/358, 3-9 4-9=-544/198, 4-8=- 6-8=-538/1546-2=-10	pression/Maximum 333, 3-5=-1738/421, 1168/321, 2-11=-8(531/193, 178/907)=-197/1300, 22/271, 5-8=-339/22 230/226	8) 9) 0/73 10 26,	3-06-00 fail f chord and ar Refer to gird Provide mec bearing plate joint 7 and 7 I) This truss is International R802.10.2 a	y 2-00-00 wide wi hy other members, er(s) for truss to tru- hanical connections a capable of withst: 4 lb uplift at joint 11 designed in accorr Residential Code nd referenced star	with BC uss conr (by oth anding 1 0. dance w sections idard AN	when the bold DL = 10.0 psi hections. ers) of truss to 57 lb uplift at ith the 2018 is R502.11.1 at ISI/TPI 1.	to to t					1000
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: Cat. II; Ex- zone and 2-1-8 to 1 (1) 21-5-6 exposed ; members Lumber D	ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B4 p B; Enclosed; MWFR; C-C Exterior(2E) -0-10 s-5-8, Exterior(2E) -0-10 to 25-3-0 zone; cantile end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio -8 to 2-1-8, Interior (5-8 to 21-5-8, Interior ever left and right ght exposed;C-C for for reactions shown -1-1.60	LC r (1) pr ;	DAD CASE(S)	Standard					Man Inter		SEA 0363	L 22 EF. BERTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G 11111111 March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	B2	Roof Special	2	1	Job Reference (optional)	150546923

Scale = 1:95.7

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:31:59 ID:rGe4n?qBZwZlq3bGGLv7Sbzeyvy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-2-8,0-3-4], [7:0-5-0,0-0-5], [8:0-5-4,0-3-0], [40?013-0,0-2-2]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.91 0.96 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.49 0.12	(loc) 8-15 8-15 7	l/defl >999 >564 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 7=806/ Me Max Horiz 11=412 (L Max Uplift 7=-164 (L/ Max Grav 7=1069 (L	athing directly applie cept end verticals. applied or 2-2-0 oc echanical, 11=1023/ C 16) C 16), 11=-67 (LC 16 C 30), 11=-255 (LC	3) 4) d or 5) 0-3-8 6) 6) 7) 30)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp Unbalanced design. This truss ha load of 12.0 J overhangs no This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is: .; Ce=1.0; Cs=1.00 snow loads have b s been designed for portion for 1.00 times flip on-concurrent with s been designed for ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide will	(roof LI Pf=15.4 =1.0; Re); Ct=1.7 or great at roof li other lin or a 10.1 vith any for a liv s where Il fit betw	:: Lum DOL= bpsf (Lum pugh Cat B; 10 sisidered for the er of min roof pad of 15.4 p ve loads.) psf bottom other live loa e load of 20.1 a rectangle veen the botto	1.15 his f live sf on ads. Opsf om						
FORCES	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-88/2 5-6=-2050/591, 6-7=	pression/Maximum 54, 3-5=-2083/443, -1377/333, 2-12=-33	8) 9) 3/28	chord and an Refer to gird Provide mec bearing plate	ny other members, er(s) for truss to tru hanical connection e capable of withsta	with BC uss conr (by oth anding 1	DL = 10.0psi nections. ers) of truss t 64 lb uplift at	f. to t						
BOT CHORD WEBS	11-12=-14/50, 10-11 9-10=-465/855, 8-9= 7-8=-187/1075 3-11=-1269/84, 3-10 3-9=-186/1097, 4-9=	=-368/637, 698/2199, =-328/319, 414/191, 4-8=-123/	10 189, LC	joint 7 and 6)) This truss is International R802.10.2 ar DAD CASE(S)	7 lb uplift at joint 11 designed in accord Residential Code s nd referenced stan Standard	1. Jance w sections dard AN	ith the 2018 8 R502.11.1 a ISI/TPI 1.	and				TH CA	ROUL	
	5-8=-335/225, 6-8=-	556/1891, 2-11=-179	9/129								1	R	A LINE	
	ad roof live loade have	haan annaidarad far									22	Y SFESS	DN.V.	-
this design	a roor live loads have	Deen considered for								4	0		the.	/
 Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 11 (1) 21-5-8 exposed ; members Lumber D 	 CE 7-16; Vult=130mph imph; TCDL=6.0psf; B(p B; Enclosed; MWFR8; C-C Exterior(2E) -0-10 5-58, Exterior(2R) 18-1 to 25-3-0 zone; cantile end vertical left and rig and forces & MWFRS ³ OL=1.60 plate grip DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (5-8 to 21-5-8, Interior ever left and right ht exposed;C-C for for reactions shown; L=1.60	r 1) r							THILLIN'S		SEA 0363	22 EREAL	WILLING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G minin March 3,2022

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	C1	Common	4	1	Job Reference (optional)	150546924

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:32:00 ID:SVXDsQPIFgcxbRFU4QmNPizeyvC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.25 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 8-11 8-11 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=313/0-3 Max Horiz 2=-111 (L Max Uplift 2=-35 (LC Max Grav 2=392 (LC Max Grav 2=392 (LC	1-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 8-8, 6=313/0-3-8 C 14) : 16), 6=-35 (LC 17) C 23), 6=392 (LC 24)	4 5 No.3 6 d or 7 5 8 9	 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa This truss for on the bottor 3-06-00 tall th chord and ar Provide mec bearing plate 2 and 35 lb to This truss is International 	snow loads have as been designer psf or 1.00 times on-concurrent w as been designer ad nonconcurrer as been design n chord in all are by 2-00-00 wide y other member hanical connecti e capable of with uplift at joint 6. designed in acco Residential Coo	e been cor d for great s flat roof l ith other li d for a 10. It with any ed for a 10. It with any ed for a li eas where will fit betw rs. ion (by oth standing 3 ordance w le sections	er of min roo pad of 15.4 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss 35 lb uplift at ith the 2018 s R502.11.1 a	his f live osf on ads. Opsf to joint and					
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/43, 2-4=-284/ 6-7=0/43	153, 4-6=-284/153,	L	R802.10.2 a OAD CASE(S)	nd referenced st Standard	andard AN	NSI/TPI 1.						
BOT CHORD WEBS NOTES 1) Unbalance	2-8=0/163, 6-8=0/16 4-8=-58/160 d roof live loads have	been considered for										WITH CA	RO

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-10-0, Exterior(2R) 3-10-0 to 6-10-0, Interior (1) 6-10-0 to 8-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	CE	Hip Supported Gable	1	1	Job Reference (optional)	150546925

Run: 8 53 F. Dec. 6 2021 Print: 8 530 F. Dec. 6 2021 MiTek Industries. Inc. Thu Mar 03 13:03:37 ID:wE9SCOqF0Q0zHpRDdHuaJ5zeyuf-qrHHhrqYcKP0_6DLwjZ9Pe0jD_9C1KoAjj_96ozedDq

Page: 1

Scale = 1:29.5

Plate Offsets (X, Y): [2:Edge,0-0-7],	[4:0-2-14,Edge], [6	:0-2-14,Edge], [8:Edge,0	-0-7], [8:0-0-0,0-0	0-0]							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	21	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 42 lb	FT = 20%

LUMBER TOP CHORD	2x4 SP No	5.2	3)
BOT CHORD	2x4 SP No	0.2	
SLIDER	Left 2x4 SP No 1-6-0	p.o. P No.3 1-6-0, Right 2x4 SP No.3	4)
BRACING TOP CHORD	Structural 7-8-0 oc p 2-0-0 oc p	wood sheathing directly applied or ourlins, except ourlins: 4-6.	
BOT CHORD	Rigid ceili bracing.	ng directly applied or 6-0-0 oc	5)
REACTIONS	All bearings	s 7-8-0.	6)
(lb) -	Max Horiz Max Uplift	2=62 (LC 15), 13=62 (LC 15) All uplift 100 (lb) or less at joint(s) 2, 8, 10, 11, 12, 13, 21	7)
	Max Grav	(s) 2, 13 except 10=384 (LC 41), 11=280 (LC 40), 12=361 (LC 41)	8) 9) 1(
FORCES	(lb) - Max. (lb) or less	Comp./Max. Ten All forces 250	1.
TOP CHORD	3-4=-82/2	86, 6-7=-64/284	
WEBS	6-10=-269 4-12=-272	9/106, 5-11=-252/123, 2/132	
NOTES			12
1) Unbalance	ed roof live l	oads have been considered for	

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. Unbalanced snow loads have been considered for this desian.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc.
- 0) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 1) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 10, 11, 12, 2, 8.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	CG	Common Girder	1	2	Job Reference (optional)	150546926

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:32:01 ID:HTUmqv52qBorwC6RvuHICkzeyuJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.9

Plate Offsets (X, Y): [1:Edge,0-0-1]	, [3:Edge,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.47 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 4-10 4-10 1	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	4) ed or c 5)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 3-0-0 to 3-10 (1) 6-10-0 to exposed ; en members an Lumber DOL TCLL: ASCE	7-16; Vult=130m bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) 0-C 1-0, Exterior(2R) 3 7-8-0 zone; canti d vertical left and d forces & MWFR =1.60 plate grip I : 7-16; Pr=20.0 ps	ph (3-sec BCDL=6 RS (env)-0 to 3-0 i-10-0 to lever left right exp S for rea DOL=1.60 if (roof LL	cond gust) .0psf; h=25ft elope) exterior -0, Interior (1 6-10-0, Interii and right oosed;C-C foi ctions showr) .: Lum DOL=	; or) or r 1,15	Ur Co	hiform Lo Vert: 1-; oncentra Vert: 7= (B)	oads (ll 2=-51, ited Lo 701 (l	b/ft) 2-3=-51, 5-8=-2(ads (lb) B), 13=-695 (B),) 14=-695 (B), 15=-786
REACTIONS	ACTIONS (lb/size) 1=1855/0-3-8, 3=1564/0-3-8 Max Horiz 1=90 (LC 13) Max Uplift 1=-397 (LC 17), 3=-321 (LC 16) Max Grav 1=2381 (LC 30), 3=1999 (LC 29)				.15); Pg=20.0 ps late DOL=1.15); late DOL=1.0; Cs=1.0 .; Ce=1.0; Cs=1.0 snow loads have	; Pf=15.4 s=1.0; Ro 0; Ct=1.4 been cor	l psf (Lum bugh Cat B; 10 nsidered for tl	his					
TOP CHORD BOT CHORD WEBS	(ib) - Maximum Con Tension 1-2=-1688/416, 2-3= 1-4=-213/1162, 3-4= 2-4=-425/2082	=-1667/414 =-176/1162	7) 8)	aesign. This truss ha chord live loa * This truss h	is been designed ad nonconcurrent has been designed	for a 10.0 with any d for a liv) psf bottom other live loa e load of 20.0	ads. Opsf					
NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch	to be connected toge) nails as follows: s connected as follows ords connected as follows	ther with 10d s: 2x4 - 1 row at 0-9- lows: 2x6 - 2 rows	9) 0 10	3-06-00 tall b chord and ar Provide mec bearing plate joint 1 and 32) This truss is	by 2-00-00 wide w by other members hanical connectio e capable of withs 21 lb uplift at joint designed in accol	n (by oth tanding 3 3. rdance w	veen the both ers) of truss t 197 lb uplift at ith the 2018	om to t			I.I.I	NITH CA	ROUNT

staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 11) Hanger(s) or other connection device(s) shall be provided aufficient to support ecceptrated lend(c) 021
- provided sufficient to support concentrated load(s) 931 Ib down and 165 Ib up at 0-4-14, 925 Ib down and 169 Ib up at 2-4-14, and 925 Ib down and 169 Ib up at 4-4-14, and 1050 Ib down and 176 Ib up at 6-4-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

March 3,2022

G

mmm

SEAL

036322

WWWWWWW

A THE CONTRACTOR OF THE STREET

Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ-DEWBERRY B-WFS #46 ROOF	
22-1329-A	M1	Monopitch	3	1	Job Reference (optional)	150546927

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 02 13:32:01 ID:_CgqdmqJTwUBIaHA_Ct2BbzeytM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.7

Plate Offsets (X, Y): [2:0-3-14,0-0-2]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.88 0.62 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.20 -0.38 0.06	(loc) 5-8 5-8 2	l/defl >468 >248 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and 2-1-8 to 7- end vertic: forces & M DOL=1.6C 2) TCLL: AS: Plate DOL DOL=1.15 Partially E 3) Unbalance design. 4) This truss load of 12 overhangs	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 - 2 Structural wood shee 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 2=325/0-3 Max Horiz 2=127 (LC Max Uplift 2=-73 (LC Max Uplift 2=-73 (LC (Max Uplift 2=-73 (LC (Max Grav 2=375 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-4=-506/9 2-5=-487/352 CE 7-16; Vult=130mph imph; TCDL=6.0psf; BK p B; Enclosed; MWFRS C-C Exterior(2E) -0-10 10-4 zone; cantilever I al left and right expose IWFRS for reactions s1 0 plate grip DOL=1.60 CE 7-16; Pr=20.0 psf; P 5 Plate DOL=1.15); Is=- xp.; Ce=1.0; Cs=1.00; ad snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with o	2-6-0 athing directly applie- cept end verticals. applied or 10-0-0 oc 1-8, 5=276/0-1-8 2 15) 12), 5=-61 (LC 16) 2 23), 5=364 (LC 23) pression/Maximum 92, 4-5=-255/200 (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) exterior -8 to 2-1-8, Interior (eft and right exposec d;C-C for members a hown; Lumber roof LL: Lum DOL=1. 2f=15.4 psf (Lum 1.0; Rough Cat B; Ct=1.10 en considered for thi : greater of min roof I roof load of 15.4 psf ther live loads.	5) 6) d or 7) 8) 9) LOA 1) 1; and .15 s ive on	This truss ha chord live loa * This truss h on the botton 3-06-00 tall bb chord and an Provide mecl bearing plate 5 and 73 lb u This truss is of International R802.10.2 ar AD CASE(S)	s been designed fo d nonconcurrent w as been designed fo h chord in all areas y 2-00-00 wide will y other members. nanical connection at joint(s) 5. nanical connection capable of withstar plift at joint 2. designed in accorda Residential Code s ad referenced stand Standard	r a 10.(i ith any ior a liv where fit betw (by oth (by oth nding 6 ance w ections lard AN	 psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 1 lb uplift at joint ith the 2018 R502.11.1 a ISI/TPI 1. 	ds.)psf o o oint nd				SEA 0363	L L L B H B H H H H H H H H H H H H H H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 3,2022

