

RE: 22-1333-A JSJ-PINEWOOD A-LOT #45 WFS ROOF

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: 22-1333-A Lot/Block: Address:

City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 26 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Seal# I47495932 I47495933 I47495934 I47495935 I47495936 I47495937 I47495938 I47495939 I47495940 I47495941 I47495943 I47495943 I47495944 I47495945 I47495946 I47495948 I47495949	Truss Name A1 A2 A3 A4 A5 A5A AE1 AE2 BE BG BV1 BV2 BV3 BV4 BV5 BV6 CE D1	Date 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021	No. 21 22 23 24 25 26	Seal# I47495952 I47495953 I47495954 I47495955 I47495956 I47495957	Truss Name EE F1 FE G1 G2 P1	Date 8/18/2021 8/18/2021 8/18/2021 8/18/2021 8/18/2021
18	147495949	D1	8/18/2021				
19 20	I47495950 I47495951	DE E1	8/18/2021 8/18/2021				

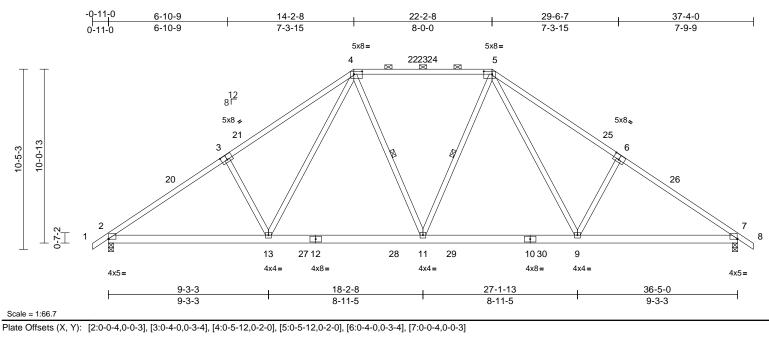
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Riverside Roof Truss.

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew

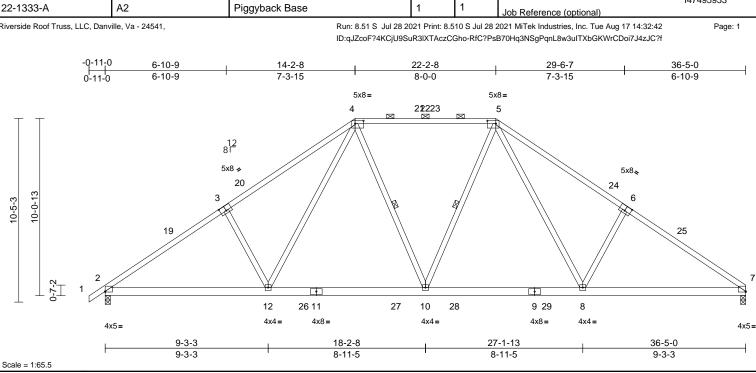
Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A1	Piggyback Base	4	1	Job Reference (optional)	147495932

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:39 ID:D6smUv9gg?6qSKQGoupM92zCGiT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

	A, f). [2.0-0-4,0-0-3],	, [3.0-4-0,0-3-4], [4.0-3	5-12,0-2-0], [5.0-5-12,0-2	2-0], [6.0-4-0,0-3-4	+j, [7.0-0	-4,0-0-3]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.89 0.59 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.23 0.06	(loc) 11-13 11-13 7	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 228 lb	GRIP 244/190 FT = 20%	
	2x6 SP No.2 2x4 SP No.3 Structural wood she 1-7-8 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt	2-0 max.): 4-5. applied or 10-0-0 oc 4-11, 5-11 -3-8, 7=1376/0-3-8 C 14) C 16), 7=-189 (LC 17 -C 39), 7=1681 (LC 3	2 d or 4) 5) 6) 7) 9)	DOL=1.15 P snow); Pf=20 Plate DOL=1 Ct=1.10, Lu= Uhbalanced design. This truss ha load of 12.0 U overhangs nu Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord of load ad ar	snow loads have to s been designed for on-concurrent with uate drainage to p s been designed f ad nonconcurrent to has been designed n chord in all area: y 2-00-00 wide wi y other members,	g=20.0 g ow: Lum Exp B; F been cor for greate lat roof lo other liv or a 10.0 with any I for a liv s where I fit betw with BC	esf (ground ber DOL=1.1 artially Exp.; asidered for the er of min roof bad of 15.4 p vater ponding by sf bottom other live loa e load of 20.0 a rectangle ceen the bott DL = 10.0ps	15 his f live sf on g. dds. 0psf om f.						
TOP CHORD	1-2=0/31, 2-4=-2533 5-7=-2533/489, 7-8=		,	bearing plate joint 2 and 18	hanical connectior capable of withst 39 lb uplift at joint	anding 1 7.	89 lb uplift at							
BOT CHORD WEBS	2-13=-280/2091, 11 9-11=-45/1449, 7-9= 3-13=-566/281, 4-13 4-11=-60/305, 5-11= 6-9=-566/281	-224/2037	,	International R802.10.2 ar Graphical pu	designed in accord Residential Code nd referenced star rlin representation ation of the purlin a	sections idard AN does no	R502.11.1 a ISI/TPI 1. ot depict the s			\wedge	- MAR	WITH CA	ROLIN	\
NOTES				bottom chord							-17	Eriatily	Minia	ム
 Unbalance this design Wind: ASC Vasd=103r 	d roof live loads have L E 7-10; Vult=130mph mph; TCDL=6.0psf; B B; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft;	LO	AD CASE(S)						U. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I		SEA 4584	• •	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A2	Piggyback Base	1	1	Job Reference (optional)	147495933

10-0-13

10-5-3

Plate Offsets (X, Y): [2:Edge,0-0-7], [3:0-4-0,0-3-4], [4:0-5-12,0-2-0], [5:0-5-12,0-2-0], [6:0-4-0,0-3-4], [7:Edge,0-0-7]

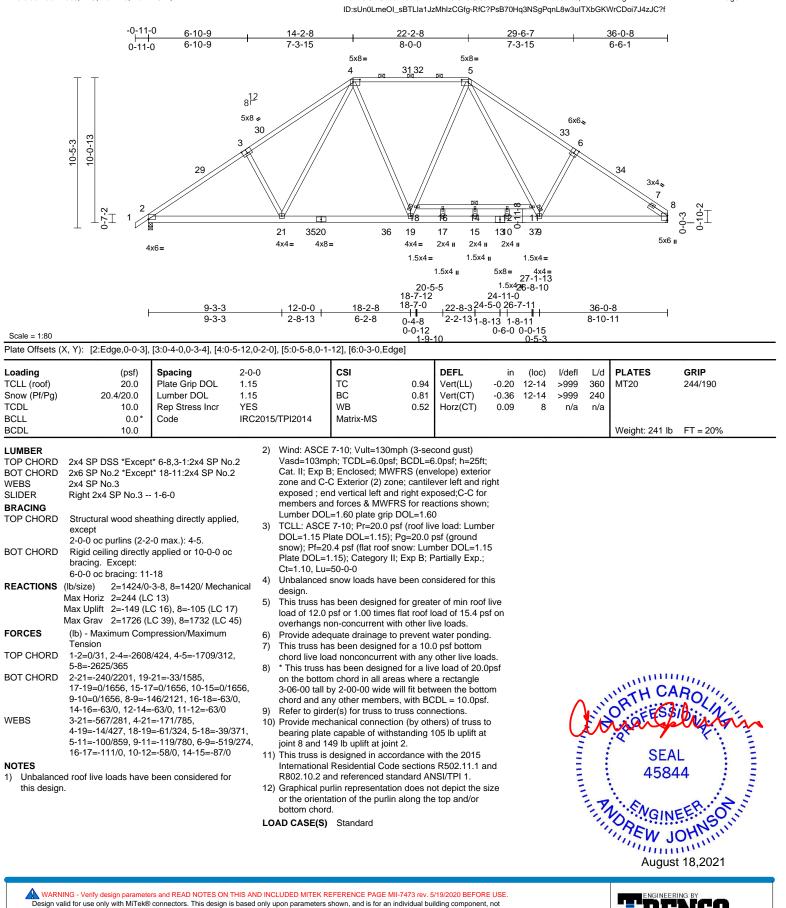
· · · · · · · · · · · · · · · · · · ·						1/1							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.89	Vert(LL)	-0.14	10-12	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.23	10-12	>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.37	Horz(CT)	0.06	7	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 226 lb	FT = 20%
	 1-7-8 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt 	athing directly applie ept -0 max.): 4-5. applied or 10-0-0 oc 4-10, 5-10 -3-8, 7=1329/0-3-8 C 13) C 16), 7=-169 (LC 17 -C 39), 7=1634 (LC 3	d or 4 5 6 7 7) 8	DOL=1.15 P snow); Pf=20 Plate DOL= ²¹ Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa a-06-00 tall li chord and an	5 7-10; Pr=20.0 psf late DOL=1.15); P 0.4 psf (flat roof sn 1.15); Category II; I =50-0-0 snow loads have t as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p as been designed f ad nonconcurrent v nas been designed m chord in all area: by 2-00-00 wide wi ny other members, hanical connection	g=20.0 g ow: Lum Exp B; F been cor for great lat roof lo other lin prevent v or a 10.0 with any I for a liv s where s where u lift betw with BC	esf (ground ber DOL=1 Partially Exp.; asidered for t er of min roof bad of 15.4 p ve loads. water pondin. D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	15 his f live sf on g. uds. 0psf om f.					
TOP CHORD	1-2=0/31, 2-4=-2534 5-7=-2537/492	4/490, 4-5=-1531/390	,		e capable of withsta 89 lb uplift at joint 2		69 lb uplift a	t					
BOT CHORD	2-12=-290/2084, 10- 8-10=-66/1450, 7-8=		1	0) This truss is	designed in accord	dance w		nd				TOTHE	u <i>r.</i>
WEBS NOTES	3-12=-566/281, 4-12		22, 1	 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									
 Unbalance this design 	ed roof live loads have	been considered for	L	OAD CASE(S)	Standard					U		:Q. 4	K.
	CE 7-10; Vult=130mph	(3-second gust)								=		SEA	L

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 $\overline{}$

₿

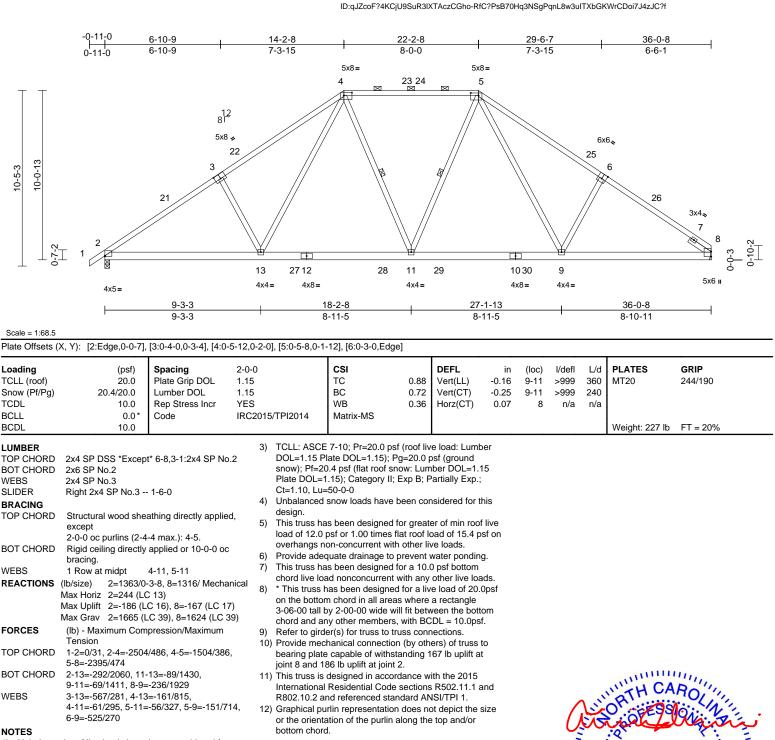
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A3	Piggyback Base	6	1	Job Reference (optional)	147495934

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:42 ID:sUn0LmeOl_sBTLIa1JzMhIzCGfg-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1


818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

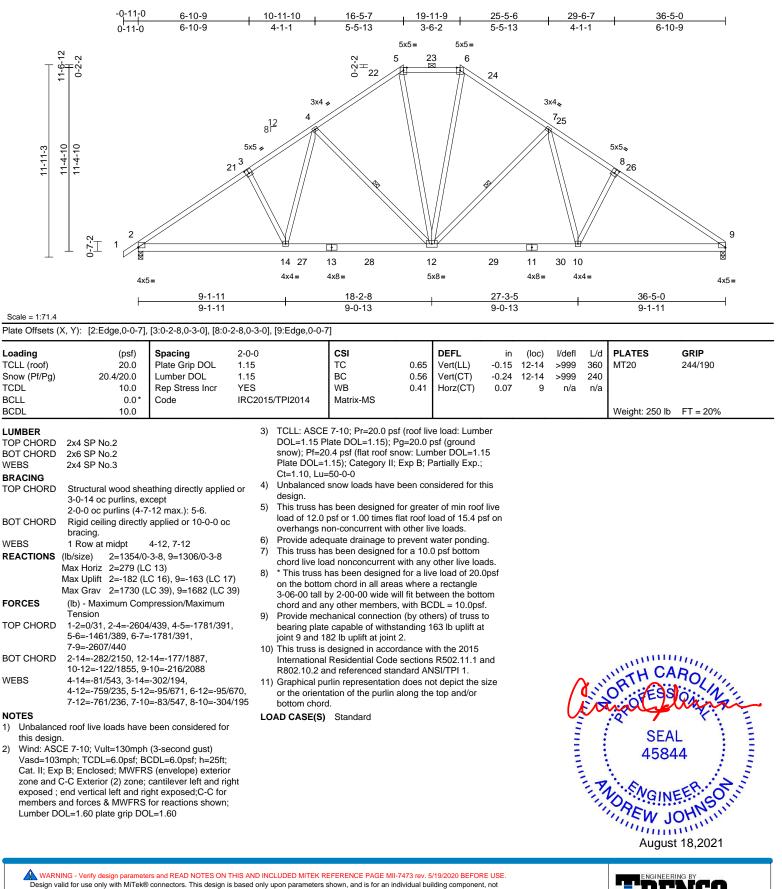
Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A4	Piggyback Base	3	1	Job Reference (optional)	147495935

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:43 ID:n JZnoE24KCii J9SuR3IXTArzCGho.RfC2PsR70Hr3NSOPpnJ 8w3uTXhGKWrCDniZ J4z IC26 Page: 1

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

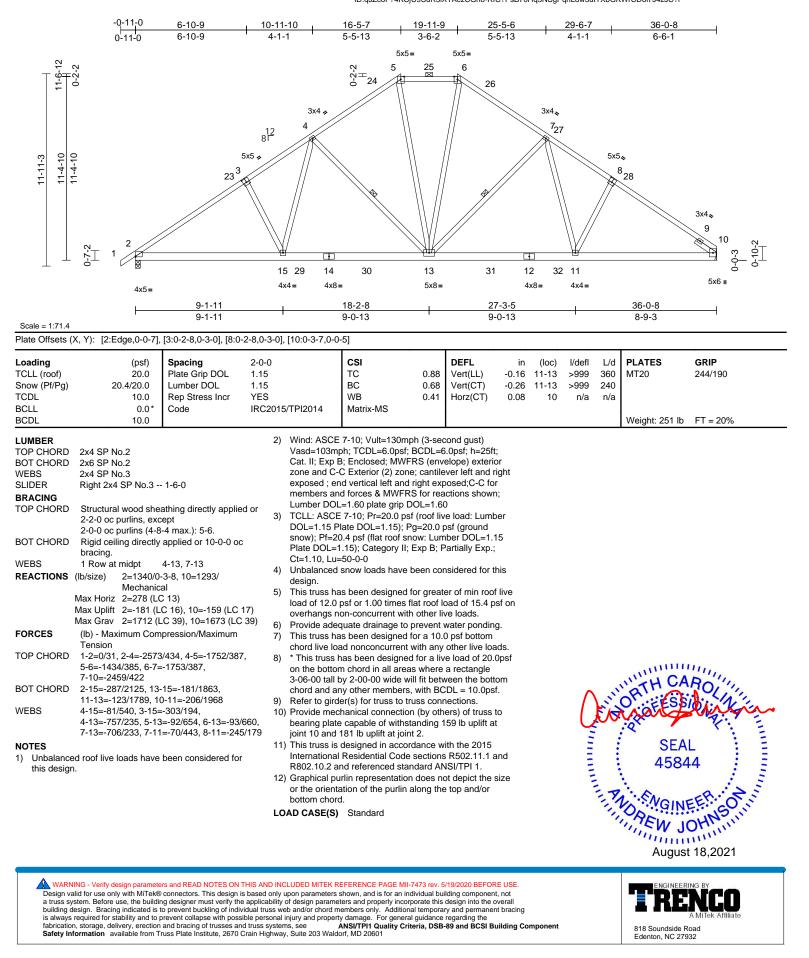
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A MiTek Affi 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A5	Нір	1	1	Job Reference (optional)	147495936

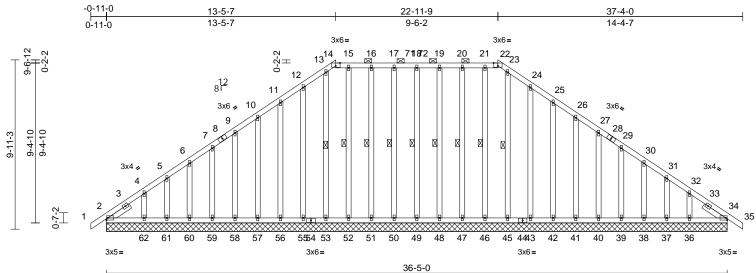
2)

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:44 ID:qJZcoF?4KCjU9SuR3IXTAczCGho-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	A5A	Нір	1	1	Job Reference (optional)	147495937


Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:44 ID:qJZcoF?4KCjU9SuR3IXTAczCGho-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	AE1	Hip Supported Gable	1	1	Job Reference (optional)	147495938

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:45 ID:ox0U1hUIpVgFs6e180DnW2zCGea-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.6	

Plate Offsets (X, Y): [14:0-3-0,Edge], [22:0-3-0,Edge]

	7, 1). [14.0	-5-0,Ľuye], [zz.0-5-0,∟uge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 20.0 .4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matr	ix-MS	0.07 0.05 0.15		in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 352 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	1-6-0 Structural 6-0-0 oc pi 2-0-0 oc pi	.2 No.3 wood she urlins, exc urlins (6-0	I-6-0, Right 2x4 SP f athing directly applie tept -0 max.): 14-22. applied or 10-0-0 oc	d or	Max Upl	36=-91 38=-45 40=-41 42=-44 46=-9 (l 48=-20 50=-20 52=-14 55=-44 57=-41	(LC 17), (LC 17), (LC 17), (LC 17), (LC 17), (LC 12), (LC 12), (LC 12), (LC 13), (LC 16), (LC 16),	34=-5 (LC 13) 34=-5 (LC 13) 39=-40 (LC 41=-41 (LC 41=-41 (LC 43=-44 (LC 1 7=-24 (LC 1) 51=-25 (LC 53=-4 (LC 1) 56=-43 (LC 58=-41 (LC 60=-45 (LC)	17), 17), 17), 2), 13), 12), 3), 16), 16),	TOP CF	IORD	5-6=-' 9-10= 11-12 13-14 15-16 17-18 19-20 21-22 23-24 25-26	144/142, 6-7=-13 -115/146, 10-11- =-157/191, 12-12 =-174/201, 14-12 =-171/201, 16-17 =-171/201, 18-19 =-171/201, 20-27 =-170/199, 22-22 =-190/218, 24-22 =-125/141, 26-27	3=-190/218, 5=-170/199, 7=-171/201, 9=-171/201, 1=-171/201, 3=-174/201, 5=-157/180,
WEBS	bracing. 1 Row at n	•	18-49, 17-50, 16-51 15-52, 13-53, 19-48 20-47, 21-46, 23-45		Max Gra	61=-21 63=-67 av 2=188 ((LC 16), (LC 12), LC 31), 3	62=-102 (LC 67=-5 (LC 1 34=149 (LC 2 , 37=105 (LC	5 16), 3) 2),					142/112, 34-35=0/30
REACTIONS		36=133/3/ 38=95/36- 40=92/36- 45=88/36- 45=88/36- 45=88/36- 51=105/3/ 53=88/36- 56=92/36- 58=92/36- 60=95/36- 62=133/3/ 67=130/3/	5-0, 34=130/36-5-0, 6-5-0, 37=77/36-5-0, 5-0, 33=91/36-5-0, 5-0, 43=91/36-5-0, 5-0, 43=91/36-5-0, 6-5-0, 48=104/36-5-0, 6-5-0, 50=104/36-5-0, 6-5-0, 50=104/36-5-0, 5-0, 55=91/36-5-0, 5-0, 55=91/36-5-0, 6-5-0, 63=130/36-5-0, 6-5-0, 63=130/36-5-0, 6-5-0, 63=227 (LC 15), 63=227 (LC 15	, , , FORCES	(Ib) - M Tensio	38=152 40=146 42=146 45=123 47=149 49=146 51=149 53=139 56=146 58=146 60=152 62=186 67=149 laximum Co	(LC 39), (LC 39), (LC 39), (LC 39), (LC 38), (LC 38), (LC 38), (LC 38), (LC 39), (LC 39), (LC 39), (LC 39), (LC 30), (LC 30),	39=145 (LC 41=146 (LC 43=149 (LC 46=134 (LC 55=149 (LC 55=149 (LC 55=149 (LC 55=149 (LC 55=146 (LC 63=188 (LC on/Maximum	 39), 39), 39), 38), 38), 38), 38), 39), 39), 39), 39), 31), 		Continue	A State State	SEA 4584	HA EER O

munn August 18,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	AE1	Hip Supported Gable	1	1	Job Reference (optional)	147495938

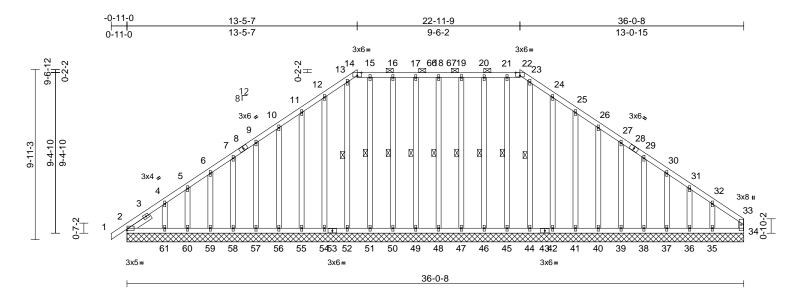
Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:45 ID:ox0U1hUIpVgFs6e180DnW2zCGea-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

BOT CHORD	$\begin{array}{l} 2-62=-104/162,\ 61-62=-104/162,\\ 60-61=-104/162,\ 59-60=-104/162,\\ 58-59=-104/162,\ 57-58=-104/162,\\ 53-55=-104/162,\ 55-56=-104/162,\\ 53-55=-104/162,\ 52-53=-104/162,\\ 49-50=-104/162,\ 48-49=-104/162,\\ 49-50=-104/162,\ 48-49=-104/162,\\ 47-48=-104/162,\ 43-45=-104/162,\\ 42-43=-104/162,\ 41-42=-104/162,\\ 40-41=-104/162,\ 39-40=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 37-38=-104/162,\\ 38-39=-104/162,\ 31-55=-121/37,\\ 16-51=-123/45,\ 15-52=-108/29,\\ 13-53=-113/21,\ 12-55=-123/59,\\ \end{array}$
	13-50=-12/15, 12-53=-120/36, 13-56=-121/59, 10-57=-120/36, 9-58=-120/57, 7-59=-120/56, 6-60=-124/59, 5-61=-87/46, 4-62=-135/98, 19-48=-121/37, 20-47=-123/45, 21-46=-108/24, 23-45=-97/9, 24-43=-123/59, 25-42=-121/59, 26-41=-120/56, 27-40=-120/57, 29-39=-120/56, 30-38=-124/58, 31-37=-87/47, 32-36=-136/90

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 1.5x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 2, 5 lb uplift at joint 34, 19 lb uplift at joint 49, 20 lb uplift at joint 50, 25 lb uplift at joint 51, 14 lb uplift at joint 52, 4 lb uplift at joint 55, 43 lb uplift at joint 55, 43 lb uplift at joint 55, 43 lb uplift at joint 56, 41 lb uplift at joint 62, 20 lb uplift at joint 58, 40 lb uplift at joint 62, 20 lb uplift at joint 61, 102 lb uplift at joint 62, 20 lb uplift at joint 48, 24 lb uplift at joint 47, 9 lb uplift at joint 46, 44 lb uplift at joint 48, 44 lb uplift at joint 48, 44 lb uplift at joint 48, 24 lb uplift at joint 40, 40 lb uplift at joint 39, 45 lb uplift at joint 38, 24 lb uplift at joint 37, 91 lb uplift at joint 36, 67 lb uplift at joint 2 and 5 lb uplift at joint 34.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	AE2	Hip Supported Gable	1	1	Job Reference (optional)	147495939

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:46 ID:LZ1OXo5f2sz9soTe3W7VYbzCGdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	= 1	1.67.3

Plate Offsets (X, Y): [14:0-3-0,Edge], [22:0-3-0,Edge]

	A, 1). [14.0-3-0,Euge	-j, [zz.0-3-0,Euge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-	0.10 0.08 0.16 -MS	Vert(CT)	in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 348 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	eathing directly applie acept end verticals, an	nd	Max Uplift	2=-88 (LC 12), 3 35=-124 (LC 17), 37=-48 (LC 17), 39=-43 (LC 17), 41=-46 (LC 17), 45=-13 (LC 13), 47=-20 (LC 12), 49=-20 (LC 12), 51=-18 (LC 13), 54=-45 (LC 16), 56=-42 (LC 16), 58=-42 (LC 16),	I, 36=-17 (LC 38=-41 (LC 40=-42 (LC 42=-46 (LC 46=-26 (LC 48=-19 (LC 50=-27 (LC 52=-11 (LC 55=-45 (LC 57=-43 (LC 59=-47 (LC	(17), 17), 17), 17), 12), 13), 12), 13), 13), 16), 16), 16),	TOP CH		5-6=-' 9-10= 11-12 13-14 15-16 17-18 19-20 21-22 23-24 25-26 27-29	175/166, 6-7=-16 -140/175, 10-11 =-188/223, 12-1 =-200/227, 14-1 =-198/227, 16-1 =-198/227, 16-1 =-198/227, 20-2 =-196/225, 22-2 =-222/250, 24-2 =-154/170, 26-2 =-90/92, 29-30=	3=-222/250, 5=-196/225, 7=-198/227, 3=-198/227, 3=-200/227, 5=-188/211, 7=-122/131, 58/53, 30-31=-58/3	31,
WEBS REACTIONS	35=118/3 37=96/36 39=94/36 41=95/36 44=91/36 46=108/3 48=108/3 50=108/3 52=91/36 55=95/36 57=95/36 59=98/36	18-48, 17-49, 16-50 15-51, 13-52, 19-47 20-46, 21-45, 23-44 i-0-8, 34=62/36-0-8, i-0-8, 36=88/36-0-8, i-0-8, 36=84/36-0-8, i-0-8, 42=94/36-0-8, i-0-8, 45=103/36-0-8, i-0-8, 45=103/36-0-4, i-0-8, 45=103/36-0-4, i-0-8, 51=103/36-0-4, i-0-8, 51=103/36-0-8, i-0-8, 55=94/36-0-8, i-0-8, 56=94/36-0-8, i-0-8, 62=133/36-0-4, i-0-8, 62=133/36-0-4, i-0-8, 62=133/36-0-4, i-0-8, 62=241 (LC 1)	, 3, 3, 3, FORCES		60=-22 (LC 16), 62=-88 (LC 12) 2=207 (LC 31), 35=171 (LC 31), 37=155 (LC 39), 41=151 (LC 39), 44=129 (LC 53), 46=154 (LC 38), 50=154 (LC 38), 55=151 (LC 39), 55=151 (LC 39), 57=151 (LC 39), 61=194 (LC 30), ximum Compressi	34=111 (LC 3 36=117 (LC 40=151 (LC 40=151 (LC 42=154 (LC 45=138 (LC 49=151 (LC 51=138 (LC 51=138 (LC 54=154 (LC 56=151 (LC 58=150 (LC 60=108 (LC 62=207 (LC	33), 39), 39), 39), 39), 38), 38), 38), 38), 38), 39), 39), 39), 39), 39), 31)		Culture		WITH CA	L 44 EEP. SOLUT	

.10 minin August 18,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	AE2	Hip Supported Gable	1	1	Job Reference (optional)	147495939
Riverside Roof Truss, LL	C. Danville. Va - 24541.	Run: 8.51 S	Jul 28 2021 Print: 8.5	510 S Jul 28	2021 MiTek Industries, Inc. Tue Aug 17 14:32:46	Page: 2

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

bottom chord. LOAD CASE(S) Standard

ID:LZ1OXo5f2sz9soTe3W7VYbzCGdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Riverside Roof Truss LLC Danville Va - 24541

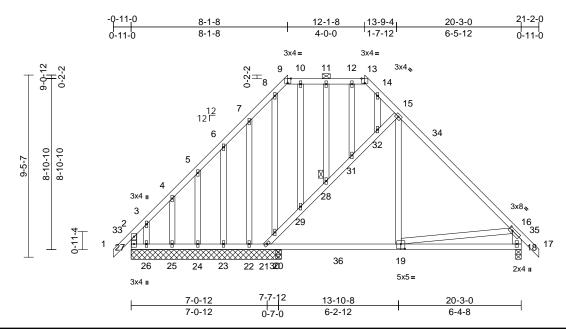
BOT CHORD	$\begin{array}{l} 2{\text{-}}61{\text{=}}{\text{-}}77/105, \ 60{\text{-}}61{\text{=}}{\text{-}}77/105, \\ 59{\text{-}}60{\text{=}}{\text{-}}77/105, \ 58{\text{-}}59{\text{=}}{\text{-}}77/105, \\ 57{\text{-}}58{\text{=}}{\text{-}}77/105, \ 56{\text{-}}57{\text{-}}77/105, \\ 52{\text{-}}54{\text{-}}77/105, \ 51{\text{-}}52{\text{-}}77/105, \\ 50{\text{-}}51{\text{-}}77/105, \ 51{\text{-}}52{\text{-}}77/105, \\ 48{\text{-}}49{\text{-}}77/105, \ 49{\text{-}}50{\text{-}}{\text{-}}77/105, \\ 48{\text{-}}49{\text{-}}77/105, \ 45{\text{-}}46{\text{-}}77/105, \\ 44{\text{-}}45{\text{-}}{\text{-}}77/105, \ 42{\text{-}}44{\text{-}}{\text{-}}77/105, \\ 41{\text{-}}42{\text{-}}{\text{-}}77/105, \ 38{\text{-}}39{\text{-}}{\text{-}}77/105, \\ 37{\text{-}}38{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{\text{-}}77/105, \\ 35{\text{-}}36{\text{-}}{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{\text{-}}77/105, \\ 35{\text{-}}36{\text{-}}{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{\text{-}}77/105, \\ 35{\text{-}}36{\text{-}}{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{\text{-}}77/105, \\ 35{\text{-}}36{\text{-}}{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{\text{-}}77/105, \\ 35{\text{-}}36{\text{-}}77/105, \ 36{\text{-}}37{\text{-}}{1}77/105, \ 36{\text{-}}37{\text{-}}{1}77/105, \ 36{\text{-}}37{\text{-}}{1}77/105, \ 36{\text{-}}37{\text{-}}{1}7/105, \ 36{\text{-}}37{\text{-}}{1}7/105, \ 36{\text{-}}38{\text{-}}{1}7/105, \ 36{\text{-}}38{\text{-}}{1}7/105, \ 36{\text{-}}38{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{3}{\text{-}}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{3}{\text{-}}{1}{1}7/105, \ 36{\text{-}}{3}{\text{-}}{3}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}$
WEBS	$\begin{array}{l} 35-36-77/103\\ 8-48=-124/36, 17-49=-124/38,\\ 16-50=-127/48, 15-51=-112/34,\\ 13-52=-121/32, 12-54=-127/61,\\ 11-55=-125/61, 10-56=-124/58,\\ 9-57=-124/58, 7-58=-124/58, 6-59=-128/60,\\ 5-60=-90/48, 4-61=-136/100, 19-47=-124/38,\\ 20-46=-127/48, 21-45=-112/29,\\ 23-44=-102/19, 24-42=-127/62,\\ 25-41=-125/62, 26-40=-124/58,\\ 27-39=-124/58, 29-38=-124/58,\\ 30-37=-127/61, 31-36=-92/46,\\ \end{array}$

NOTES

1) Unbalanced roof live loads have been considered for this design.

32-35=-129/105

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 8) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Gable studs spaced at 1-4-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 2, 14 lb uplift at joint 34, 19 lb uplift at joint 48, 20 lb uplift at joint 49, 27 lb uplift at joint 50, 18 lb uplift at joint 51, 11 lb uplift at joint 52, 45 lb uplift at joint 54, 45 lb uplift at joint 55, 42 lb uplift at joint 56, 43 lb uplift at joint 57, 42 lb uplift at joint 58, 47 lb uplift at joint 59, 22 lb uplift at joint 60, 103 lb uplift at joint 61, 20 lb uplift at joint 47, 26 lb uplift at joint 46, 13 lb uplift at joint 45, 46 Ib uplift at joint 42, 46 lb uplift at joint 41, 42 lb uplift at joint 40, 43 lb uplift at joint 39, 41 lb uplift at joint 38, 48 Ib uplift at joint 37, 17 lb uplift at joint 36, 124 lb uplift at joint 35 and 88 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BE	Hip Structural Gable	1	1	Job Reference (optional)	147495940

Scale = 1:59.8

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:47 ID:7BKKzGAMqeXporwznBDwd3zC2F8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [9:0-2-0,Edge], [13:0-2-0,Edge], [16:0-2-4,0-1-8], [19:0-2-8,0-3-0]

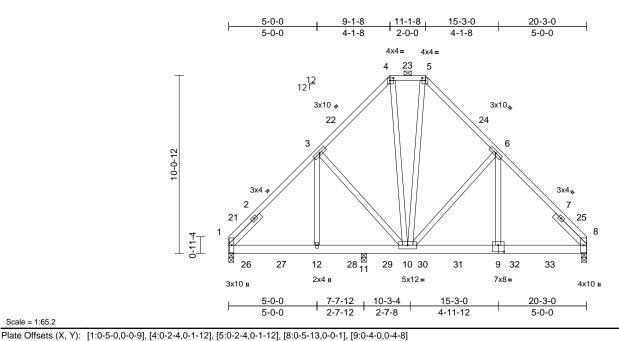
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)		19-20	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.06		>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.35	Horz(CT)	0.01	18	n/a	n/a		
BCLL	0.0	Code	IRC2015/	TPI2014	Matrix-MS								
BCDL	10.0					-						Weight: 176 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2	ept* 27-2:2x4 SP No.2 2		CHORD	26-27=-200/341, 24-25=-200/341, 22-23=-200/341, 20-21=-10/389, 1 16-19=-224/384, 29-30=-512/196, 28-31=-522/192,	23-24=-2 21-22=-2 8-20=-19 21-30=-5 28-29=-5 31-32=-4	00/341, 00/341, 2/401 75/201, 20/199, 92/173,		bra 10) Gal 11) This cho 12) * Th	ced agai ble studs s truss h rd live lo his truss	nst late space as bee ad nor has be	eral movement (i. ed at 1-4-0 oc. en designed for a nconcurrent with	any other live loads. a live load of 20.0psf
TOP CHORD	5-6-9 oc purlins, 6 2-0-0 oc purlins (6		nd		15-32=-562/227, 10-29=-9/25, 8-3 6-23=-117/84, 5- 3-26=-183/201, 1	0=-106/37 24=-139/8	7, 7-22=-183/ 37, 4-25=-144	102, 4/86,	cho 13) Pro	rd and a vide me	ný oth chanic	er members, with al connection (by	between the bottom n BCDL = 10.0psf. others) of truss to ng 195 lb uplift at
BOT CHORD	Rigid ceiling direct bracing.	ly applied or 10-0-0 or	; NO1	ES	0 20 100,201, 1	201 10	2.,		join	t 27, 39	lb uplif	ft at joint 18, 212	Ib uplift at joint 21, 73
JOINTS	1 Brace at Jt(s): 2	3			d roof live loads ha	ave been	considered fo	or	Ib uplift at joint 22, 69 Ib uplift at joint 23, 76 Ib uplift at joint 24, 49 Ib uplift at joint 25 and 418 Ib uplift at joint				
REACTIONS	21=77/7 23=72/7 25=115 27=443 Max Horiz 27=250 Max Uplift 18=-39 22=-73 24=-76 26=-411 Max Grav 18=842 21=280 23=138 25=178 27=710		2) 17), 6), 3) 5 14) 7), 47), 4) 47), 4)	Vasd=103n Cat. II; Exp zone and C exposed ; e members a Lumber DC Truss desi only. For s see Standa or consult c TCLL: ASC DOL=1.15 snow); Pf=2	E 7-10; Vult=130n nph; TCDL=6.0psf B; Enclosed; MW c-C Exterior (2) zois and vertical left am- nd forces & MWF DL=1.60 plate grip gned for wind load tuds exposed to w rd Industry Gable ualified building d E 7-10; Pr=20.0 p Plate DOL=1.15); 20.4 psf (flat roof s =1.15); Category II	f; BCDL=6 FRS (env ne; cantile d right exp RS for rea DOL=1.6 ds in the p vind (norm End Deta lesigner a st f (roof liv Pg=20.0 snow: Lun	6.0psf; h=25ft elope) exterior ver left and r possed;C-C fo ctions showr all to the face ils as applica s per ANSI/T ee load: Lumb osf (ground aber DOL=1.	or right r uss e), uble, PI 1. per 15	26. 14) This Inte R80 15) Gra or t	s truss is rnationa)2.10.2 a phical p	a desig I Resid and ref urlin re tation o d.	ned in accordance dential Code sect ierenced standard presentation doe of the purlin along	e with the 2015 tions R502.11.1 and d ANSI/TPI 1. as not depict the size g the top and/or
FORCES	(lb) - Maximum Co Tension	mpression/Maximum		Ct=1.10, Lu	i=50-0-0					E		JEA 458/	
TOP CHORD				Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated.			SEAL 45844 August 18,2021						

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design runst verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BE	Hip Structural Gable	1	1	Job Reference (optional)	147495940
Riverside Roof Truss, LLC, Danv	Run: 8.51 S Jul 28 20	021 Print: 8.5	10 S Jul 28 2	2021 MiTek Industries, Inc. Tue Aug 17 14:32:47	Page: 2	

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:47 ID:7BKKzGAMqeXporwznBDwd3zC2F8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BG	Hip Girder	1	3	Job Reference (optional)	147495941

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:48 ID:DvEGIKRDpWAkIGDk6Qh9?czC2If-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.2

Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.93 Vert(LL) -0.09 9-10 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.88 Vert(CT) -0.16 9-10 >968 240 TCDL Rep Stress Incr WB Horz(CT) 10.0 NO 0.69 0.03 8 n/a n/a BCLL 0.0 IRC2015/TPI2014 Matrix-MS Code Weight: 484 lb BCDL 10.0 FT = 20% LUMBER 1) 3-ply truss to be connected together with 10d 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and (0.131"x3") nails as follows: TOP CHORD 2x4 SP No.3 *Except* 4-5:2x4 SP No.2 Top chords connected as follows: 2x4 - 1 row at 0-9-0 R802.10.2 and referenced standard ANSI/TPI 1. 2x6 SP 2400F 2.0E *Except* 9-8:2x6 SP BOT CHORD No.2 00 12) Graphical purlin representation does not depict the size WEBS 2x4 SP No.3 Bottom chords connected as follows: 2x6 - 3 rows or the orientation of the purlin along the top and/or staggered at 0-4-0 oc. SLIDER Left 2x4 SP No.3 -- 2-6-0, Right 2x4 SP No.3 bottom chord. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. -- 2-6-0 13) Hanger(s) or other connection device(s) shall be All loads are considered equally applied to all plies, 2) provided sufficient to support concentrated load(s) 1721 BRACING except if noted as front (F) or back (B) face in the LOAD Ib down and 117 Ib up at 1-0-0, 1721 Ib down and 117 TOP CHORD Structural wood sheathing directly applied or CASE(S) section. Ply to ply connections have been Ib up at 3-0-0, 1721 lb down and 117 lb up at 5-0-0, 5-2-3 oc purlins, except provided to distribute only loads noted as (F) or (B), 1721 lb down and 117 lb up at 7-0-0, 1721 lb down and 2-0-0 oc purlins (6-0-0 max.): 4-5. unless otherwise indicated. 117 lb up at 9-0-0, 1721 lb down and 117 lb up at BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 3) Unbalanced roof live loads have been considered for 11-0-0, 1604 lb down and 179 lb up at 13-0-0, 1604 lb bracing. down and 179 lb up at 15-0-0, and 1604 lb down and this design. REACTIONS (lb/size) 1=6422/0-3-8, 8=6962/0-3-8, Wind: ASCE 7-10; Vult=130mph (3-second gust) 179 lb up at 16-2-4, and 1653 lb down and 171 lb up at 4) 11=4786/0-3-8 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 18-2-4 on bottom chord. The design/selection of such Max Horiz 1=227 (LC 60) connection device(s) is the responsibility of others. Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior Max Uplift 1=-514 (LC 16), 8=-694 (LC 17), zone and C-C Exterior (2) zone: cantilever left and right LOAD CASE(S) Standard 11=-339 (LC 17) exposed ; end vertical left and right exposed;C-C for Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Max Grav 1=6738 (LC 38), 8=7310 (LC 38), members and forces & MWFRS for reactions shown: Increase=1.15 11=4922 (LC 38) Lumber DOL=1.60 plate grip DOL=1.60 Uniform Loads (lb/ft) FORCES (lb) - Maximum Compression/Maximum 5) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber MILLIN DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground Tension ORTH TOP CHORD 1-3=-5604/557, 3-4=-4319/559, snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 4-5=-3198/479, 5-6=-4269/557, Plate DOL=1.15); Category II; Exp B; Partially Exp.; 6-8=-7959/861 Ct=1.10, Lu=50-0-0 BOT CHORD 1-12=-393/3999, 11-12=-393/3999, 6) Unbalanced snow loads have been considered for this (111111111111111111 Manuning . 10-11=-393/3999, 8-10=-495/5509 desian. WEBS 3-12=-93/1835, 3-10=-1617/285, 7) Provide adequate drainage to prevent water ponding. 4-10=-333/2772. 5-10=-329/2701. 8) This truss has been designed for a 10.0 psf bottom 6-10=-3797/585, 6-9=-517/5012 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf NOTES 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 514 lb uplift at joint 1, 694 lb uplift at joint 8 and 339 lb uplift at joint 11.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

minin

August 18,2021

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF		
22-1333-A	BG	Hip Girder	1	3	Job Reference (optional)	147495941	
Riverside Roof Truss, LLC, Dan	Run: 8.51 S Jul 28 2	021 Print: 8.5	510 S Jul 28	2021 MiTek Industries, Inc. Tue Aug 17 14:32:48	Page: 2		

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:48 ID:DvEGIKRDpWAkIGDk6Qh9?czC2lf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

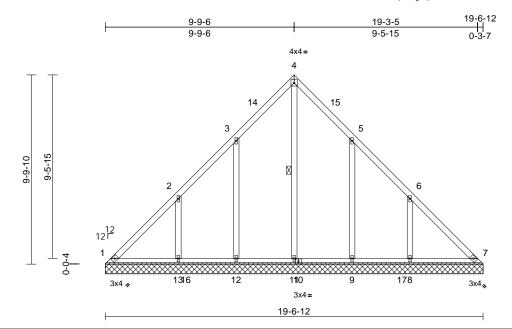
Vert: 1-4=-51, 4-5=-61, 5-8=-51, 13-17=-20

Concentrated Loads (lb)

Vert: 12=-1709 (B), 9=-1604 (B), 26=-1709 (B), 27=-1709 (B), 28=-1709 (B), 29=-1709 (B),

30=-1709 (B), 31=-1604 (B), 32=-1604 (B),

33=-1653 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV1	Valley	1	1	Job Reference (optional)	147495942

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:49 ID:VW_7I2aFUSDuMaPcEINB_EzCGfl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

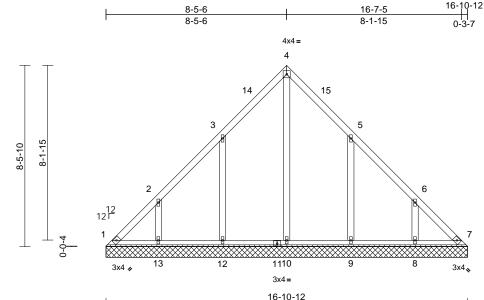
Page: 1

Scale = 1:59.7

Plate Offsets (X, Y): [10:0-1-14,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.16 0.10	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.01	7	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-S	0.10		0.01		1.00		1	
BCDL	10.0											Weight: 111 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=124/19 8=263/19 13=263/1 Max Horiz 1=-234 (I Max Uplift 1=-45 (L0 8=-197 (I 12=-160 Max Grav 1=198 (L 8=367 (L	LC 12) C 12), 7=-6 (LC 13), LC 17), 9=-159 (LC 1 (LC 16), 13=-197 (LC C 31), 7=178 (LC 32 C 30), 9=364 (LC 30 LC 32), 12=365 (LC	2, 4) 2, 4) 5-12, 7), 5) C 16) 6)), 7)), 8)	Vasd=103mj Cat. II; Exp E zone and C- exposed ; er members an Lumber DOL Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=1! Plate DOL=1 Ct=1.10 Unbalanced design. All plates are Gable requir Gable studs	7-10; Vult=130m ph; TCDL=6.0psf 3; Enclosed; MWI C Exterior (2) zor nd vertical left and d forces & MWFF =1.60 plate grip I ned for wind load dds exposed to w d Industry Gable alified building dd 7-10; Pr=20.0 pi late DOL=1.15); I 5.4 psf (flat roof s 1.15); Category II; snow loads have e 1.5x4 MT20 unli es continuous bo spaced at 3-0-0 as been designed	BCDL=6 FRS (envie; cantile I right exp S for rea DOL=1.60 s in the p ind (norm End Deta End Deta End Deta End Deta Signer as sf (roof liv Pg=20.0 p now: Lurr Exp B; F been cor ess other ttom chor pc.	.0psf; h=25ft elope) exterio ver left and r ososed;C-C foi ctions showr) lane of the tri al to the face s per ANSI/TI e load: Lumb uber DOL=1.1 artially Exp.; nsidered for th wise indicate d bearing.	or ight ; uss), ble, PI 1. er 5 nis				WHITH CA	111,,
FORCES	(lb) - Maximum Con	npression/Maximum	10		ad nonconcurrent nas been designe							"TH CA	RO
TOP CHORD	4-5=-184/180, 5-6=	-173/115, 3-4=-184/1 -131/59, 6-7=-228/14		3-06-00 tall b	m chord in all area by 2-00-00 wide v by other members	vill fit betv	veen the bott			6	1	NOFE	strations
BOT CHORD	1-13=-129/211, 12- 11-12=-129/211, 9- 8-9=-129/211, 7-8=	11=-129/211, -129/211	11) Provide mec bearing plate 1, 6 lb uplift	hanical connection capable of withs at joint 7, 160 lb u	on (by oth tanding 4 iplift at joi	ers) of truss t 5 lb uplift at j nt 12, 197 lb	o oint		CONTRACTOR OF CONTRACTOR		SEA	• •
WEBS	4-11=-168/85, 3-12 2-13=-288/230, 5-9	=-238/197, =-238/196, 6-8=-288/	/230	uplift at joint joint 8.	13, 159 lb uplift a	it joint 9 a	nd 197 lb up	ift at				4584	⁺⁴ : E
NOTES 1) Unbalance this design	ed roof live loads have n.	e been considered for		International	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	ind			I. P.	NO ENGIN	EERBOTI
			L	DAD CASE(S)	Standard							- COLINE	OHN

August 18,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV2	Valley	1	1	Job Reference (optional)	147495943

Scale - 1:53.9

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:49 ID:VW_7I2aFUSDuMaPcEINB_EzCGfl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-S								
BCDL	10.0										Weight: 91 lb	FT = 20%

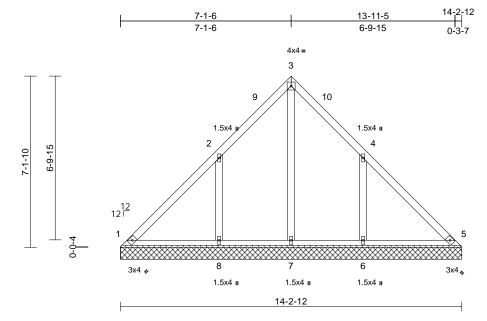
LUMBER TOP CHORD BOT CHORD OTHERS BRACING		0.2
TOP CHORD	Structural 6-0-0 oc p	I wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	1=78/16-10-12, 7=78/16-10-12, 8=199/16-10-12, 9=224/16-10-12, 10=147/16-10-12, 12=224/16-10-12, 13=199/16-10-12
	Max Horiz	1=201 (LC 13)
	Max Uplift	1=-62 (LC 14), 7=-28 (LC 15), 8=-149 (LC 17), 9=-174 (LC 17), 12=-174 (LC 16), 13=-149 (LC 16)
	Max Grav	
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	• = = • • •	/163, 2-3=-164/114, 3-4=-162/158, /154, 5-6=-128/66, 6-7=-214/135
BOT CHORD	1-13=-100 10-12=-10	6/178, 12-13=-106/178, 06/178, 9-10=-106/178, /178, 7-8=-106/178
WEBS	4-10=-146	6/59, 3-12=-258/212, 2/178, 5-9=-258/211, 6-8=-222/178
NOTES		

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 1.5x4 MT20 unless otherwise indicated. 6)
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 3-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 1, 28 lb uplift at joint 7, 174 lb uplift at joint 12, 149 lb uplift at joint 13, 174 lb uplift at joint 9 and 149 lb uplift at ioint 8.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

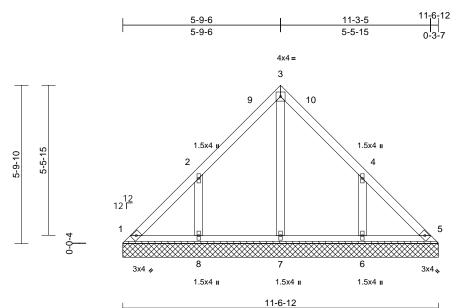
Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV3	Valley	1	1	Job Reference (optional)	147495944

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:50 ID:ziXWVObtFmLI_k_ooTuQXSzCGfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:48
---------	------

Loading		(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15	6.4/20.0	Lumber DOL	1.15	вс	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC2015/TPI2014	Matrix-S								
BCDL		10.0				_						Weight: 70 lb	FT = 20%
LUMBER				3) Truss desig	ned for wind load	ds in the p	lane of the tru	JSS					
TOP CHORD	2x4 SP No	o.2			uds exposed to w								
BOT CHORD	2x4 SP No	o.2			d Industry Gable								
OTHERS	2x4 SP No	0.3			ualified building c								
BRACING					E 7-10; Pr=20.0 p			er					
TOP CHORD	Structural 6-0-0 oc p		athing directly applie	snow); Pf=1	Plate DOL=1.15); 5.4 psf (flat roof s	snow: Lun	ber DOL=1.1						
BOT CHORD			applied or 10-0-0 oc	Ct=1.10	1.15); Category I								
REACTIONS	(lb/size)		-2-12, 5=128/14-2-12 -2-12, 7=117/14-2-12	, design	snow loads have	e been coi	nsidered for t	his					
		8=294/14		6) Gable requi	res continuous bo		d bearing.						
	Max Horiz				spaced at 3-0-0								
			; 12), 6=-224 (LC 17)		as been designed								
		8=-224 (L			ad nonconcurren								
			C 30), 5=149 (LC 29)		has been designer m chord in all are			Upst					
			C 30), 7=273 (LC 32)		by 2-00-00 wide			om					
		8=420 (LC		3-00-00 tail	ny other member								
FORCES	(lb) - Maxir	mum Com	pression/Maximum		chanical connecti								
	Tension				e capable of with								
TOP CHORD	1-2=-161/1	133, 2-3=-	143/131, 3-4=-143/1		lift at joint 8 and 2								
	4-5=-140/1				designed in acco								117.
BOT CHORD			1/149, 6-7=-91/149,	Internationa	I Residential Cod	le sections	s R502.11.1 a	nd				White CI	ND 111
	5-6=-91/14				and referenced st	andard Al	ISI/TPI 1.			^		NATH UN	NOI
WEBS	3-7=-123/4	47, 2-8=-3	25/258, 4-6=-325/25	B LOAD CASE(S	Standard					- / i	5	ON FESS	in Alle
NOTES										- 15	S R	1. in	Maran
 Unbalance this design 		oads have	been considered for							V		12	R. E
			(3-second gust)							Contraction of the second s		SEA	AL : E
			CDL=6.0psf; h=25ft;							=	:	458	• •••
			S (envelope) exterior cantilever left and ric							=		400	** : :
			antiever left and rig	hir							1		1 - E
			for reactions shown;								:7	·	Aiti
	OL=1.60 plat										11	GIN	EF
		5,									11	AF	aun in
											1.65	1,SW J	01
												11.	

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



August 18,2021

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV4	Valley	1	1	I47 Job Reference (optional)	7495945

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:50 ID:ziXWVObtFmLI_k_ooTuQXSzCGfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.2

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.11 0.06 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=102 Cat. II; Ex zone and exposed ; members	2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid cei bracing. (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-135 4-5=-118 1-8=-60/ 3-7=-110 ed roof live n. CE 7-10; Vu 3mph; TCDI cp B; Enclos C-C Exteric end vertica	lo.2 lo.3 l wood she purlins. ling directly 1=89/11- 6=224/11 8=224/11 1=-135 (I 6=-175 (I 1=-135 (I 6=292 (L 8=292 (L) 8=292 (L) 8	LC 12) C 12), 5=-3 (LC 13), LC 17), 8=-176 (LC 1), C 30), 5=-114 (LC 29) C 30), 7=170 (LC 32) C 29) npression/Maximum -124/107, 3-4=-119/1 50/111, 6-7=-60/111, 59/206, 4-6=-259/206 e been considered for h (3-second gust) SCDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ight exposed; C-C for for reactions shown;	4) d or 5) 2, 6) 7) 8) 3) 9) , 10 03, 11 03, 11	only. For stu see Standarr or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=15 Plate DOL=1 Ct=1.10 Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss for chord and ar Provide mec bearing plate 1, 3 lb uplift a uplift at joint) This truss is International	designed in accordential Coordential Coordential Coordential Coordential Coordential Coordential Statement and referenced st	vind (norm End Deta designer a: sof (roof liv Pg=20.0 j snow: Lum l; Exp B; F e been cor bttom chor oc. d for a 10. t with any ed for a liv eas where will fit betv 's. on (by oth standing 2 uplift at joi ordance w le sections	al to the face ils as applica is per ANSI/T e load: Lumb of (ground aber DOL=1. artially Exp.; asidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 26 lb uplift at nt 8 and 175 ith the 2015 a R502.11.1 a	.), ble, Pl 1. ber 15 his his dds. 0psf om to joint lb			Line Party	NITH CA	Rollin

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV5	Valley	1	1	Job Reference (optional)	147495946

4-5-6

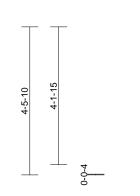
4-5-6

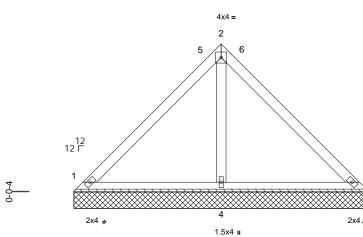
Riverside Roof Truss, LLC, Danville, Va - 24541.

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:51 ID:ziXWVObtFmLI_k_ooTuQXSzCGfk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-7-5

4-1-15


8-10-12


Page: 1

2 5 6 12 12 Г 3 4 2x4 2x4 1.5x4 II 8-10-12 1 DEEL 2-0-0 l/dof (100) GRIP 244/190 FT = 20%b LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Scale = 1:34.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 7ES RC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.34 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=173/8-1 4=237/8-1 Max Horiz 1=-102 (L Max Uplift 1=-49 (LC	C 12)	or 5) 6) 7) 8) 9) 61	DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1.10 Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottoo 3-06-00 tall I chord and ar	7-10; Pr=20.0 ps late DOL=1.15); P 5.4 psf (flat roof sn 1.15); Category II; snow loads have I es continuous bott spaced at 3-0-0 or sis been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi by other members.	g=20.0 g ow: Lum Exp B; F been cor com chor c. for a 10.0 with any f for a liv s where s where	osf (ground aber DOL=1.' Partially Exp.; nsidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle ween the bott	15 his dds. 0psf om				
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-148/81, 2-3=-1: 1-4=-29/73, 3-4=-29/ 2-4=-158/46	33/65		bearing plate 1 and 49 lb ι) This truss is International	a capable of withst uplift at joint 3. designed in accor Residential Code nd referenced star	anding 4 dance w sections	9 lb uplift at j ith the 2015 8 R502.11.1 a	joint				

NOTES

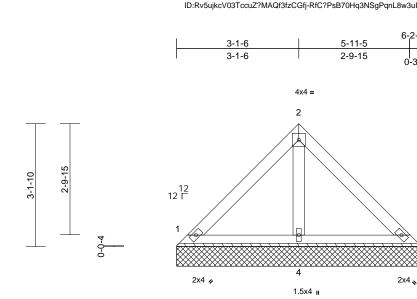
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

VIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	BV6	Valley	1	1	Job Reference (optional)	147495947

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:51 ID:Rv5ujkcV03TccuZ?MAQf3fzCGfj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


<u>6-2-1</u>2

3

Page: 1

GRIP 244/190

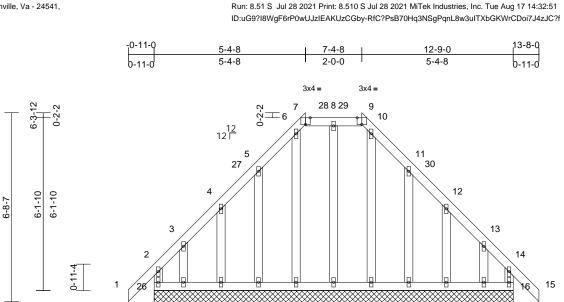
FT = 20%

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.15 0.08 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	G 2 F
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applied applied or 10-0-0 oc 2-12, 3=117/6-2-12,	6)	DOL=1.15 Pl snow); Pf=15 Plate DOL=1 Ct=1.10 Unbalanced design. Gable requiri Gable studs This truss ha	7-10; Pr=20.0 ps ate DOL=1.15); P .4 psf (flat roof sr .15); Category II; snow loads have es continuous bot spaced at 2-0-0 o s been designed	² g=20.0 µ now: Lum Exp B; F been cor tom chor c. for a 10.0	osf (ground aber DOL=1.1 Partially Exp.; Insidered for the d bearing. 0 psf bottom	15 his					
	4=160/6- Max Horiz 1=-69 (LC Max Uplift 1=-33 (LC Max Grav 1=134 (Li (LC 2) (lb) - Maximum Con Tension	2-12 C 12) C 17), 3=-33 (LC 17) C 2), 3=134 (LC 2), 4		* This truss h on the bottor 3-06-00 tall b chord and an) Provide mech bearing plate	ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members hanical connection capable of withst polify at joint 2	d for a liv is where ill fit betv n (by oth	re load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to					
TOP CHORD BOT CHORD WEBS	1-2=-100/54, 2-3=-9 1-4=-20/49, 3-4=-20 2-4=-107/34		11) This truss is International	plift at joint 3. designed in accor Residential Code nd referenced star	sections	s R502.11.1 a	ind					

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

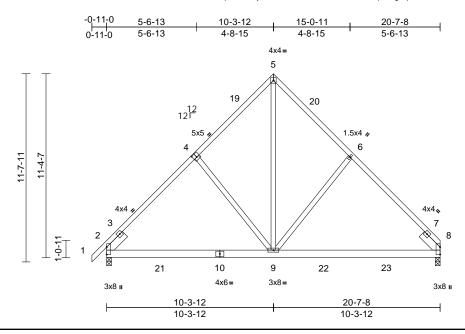
Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	CE	Hip Supported Gable	1	1	Job Reference (optional)	147495948

Page: 1

12-9-0

Scale = 1:40.9	
Plate Offsets (X, Y):	[7:0-2-0,Edge], [9:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code		015/TPI2014	Matrix-MR	0.00	11012(01)	0.00	10	n/ a	n/a		
BCDL	10.0	Code	111020	515/11/2014	Widula-Will							Weight: 100 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	applied or 6-0-0 oc	l or d	WEBS NOTES 1) Unbalanced this design.	25-26=-86/91, 24-2 22-23=-86/91, 21-2 19-20=-86/91, 21-2 19-20=-86/91 8-21=-132/20, 6-22 4-24=-145/92, 3-25 11-19=-143/91, 12- 13-17=-119/93 roof live loads have	2=-86/9 9=-86/9 =-125/1 =-114/9 18=-14 > been o	1, 20-21=-86/ 11, 17-18=-86/ 6, 5-23=-143/ 17, 10-20=-12 5/92, considered for	′91, ′91, ′91, 1/15,	12) This cho 13) * Th 3-0 cho 14) Pro bea join lb u	s truss h ord live lo nis truss the botto 6-00 tall ord and a wide me aring plat t 26, 92 uplift at jo	as bee bad nor has be om cho by 2-0 any oth chanic te capa Ib uplif bint 24,	een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by ble of withstandi t at joint 16, 78 lb 132 lb uplift at jo	any other live loads. a live load of 20.0psf
	18=101/1 20=100/1 22=100/1 24=101/1 26=107/1 Max Horiz 26=-180 (Max Uplift 16=-92 (L 18=-55 (L 23=-78 (L 25=-132 (18=174 (L 18=174 (L 20=147 (L 22=152 (L	LC 14) C 13), 17=-123 (LC 1 C 17), 19=-77 (LC 17 C 16), 24=-64 (LC 16 LC 16), 26=-124 (LC LC 47), 17=148 (LC 4 LC 39), 19=171 (LC 4 LC 51), 21=158 (LC 3 LC 53), 23=171 (LC 4 LC 39), 25=163 (LC 4	,),), 12) 9), 9), 8), 7), 7),	 Vasd=103m Cat. II; Exp I zone and C- exposed; er members an Lumber DOI Truss desig only. For sti see Standar or consult qi TCLL: ASCE DOL=1.15 P snow); Pf=2 Plate DOL= Ct=1.10, Lu= 	7-10; Vult=130mpl ph; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior (2) zone; d vertical left and r d forces & MWFRS =1.60 plate grip DC ned for wind loads i Jds exposed to wind d Industry Gable Er alified building des 5 7-10; Pr=20.0 psf late DOL=1.15); Pg 0.4 psf (flat roof snc 1.15); Category II; E =50-0-0 snow loads have b	CDL=6 S (envi ; cantile ight exp for rea DL=1.60 in the pi d (norm nd Deta igner as (roof liv g=20.0 p w: Lum Exp B; F	.0psf; h=25ft; elope) exterio ver left and rig ossed;C-C for ctions shown; ana of the tru al to the face) ils as applicat s per ANS/TF e load: Lumbo ssf (ground ber DOL=1.1; 'artially Exp.;	r ght ss ole, ole, ole, ole, ole, ole, ole, 5	17. 15) This Inte R80 16) Gra or t bott LOAD (s truss is ernationa 02.10.2 a aphical p he orien tom choi CASE(S	s desig al Resic and ref urlin re tation o rd.) Star	ned in accordance dential Code sector erenced standard presentation doe of the purlin along ndard	e with the 2015 ions R502.11.1 and d ANSI/TPI 1. is not depict the size the top and/or
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-26=-198/95, 1-2=0 3-4=-81/113, 4-5=-9 6-7=-135/168, 7-8=- 9-10=-135/168, 10-1	pression/Maximum)/77, 2-3=-124/126, 9/128, 5-6=-160/199, 132/168, 8-9=-132/16 13=-160/199, 13=-55/97, 13-14=-95,	8, /96	 load of 12.0 overhangs n Provide ade All plates are Gable requir Truss to be to a set of the set o	as been designed for psf or 1.00 times fla on-concurrent with quate drainage to p e 1.5x4 MT20 unles es continuous botto fully sheathed from nst lateral movemen	at roof lo other liv revent v s other om chor one fac	bad of 15.4 ps ve loads. water ponding wise indicated d bearing. the or securely	f on I. I.		1111112	P	SEA 4584	EER. ON INTERNAL


August 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	D1	Common	3	1	Job Reference (optional)	147495949

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:52 ID:sNcDmpk_vh1WyT3Jw6X6UKzCHk_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:71.3

Plate Offsets ()	(, Y):	[4:0-2-8,0-3-0]
------------------	--------	-----------------

						_							
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.30	DEFL Vert(LL)	in -0.07	(loc) 9-13	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.12	9-13	>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.57	Horz(CT)	0.02	2	n/a	n/a	-	
BCLL	0.0*	Code	IRC201	15/TPI2014	Matrix-MS								
BCDL	10.0					-						Weight: 139 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exp zone and C exposed ; members a Lumber DC 3) TCLL: ASC DOL=1.15 snow); Pf=	Max Horiz 2=270 (LC Max Uplift 2=-79 (LC Max Grav 2=893 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-5=-894/ 6-8=-894/204 2-9=-206/700, 8-9=- 5-9=-253/726, 6-9=-	athing directly applie applied or 10-0-0 oc 3-8, 8=729/0-3-8 C 15) C 16), 8=-70 (LC 16) C 30), 8=853 (LC 30) apression/Maximum 272, 5-6=-741/272, 76/602 308/255, 4-9=-308/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposec(C-C for for reactions shown; JL=1.60 roof live load: Lumbe =20.0 psf (ground	6 d or 7 8 9 54 54	 design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall to chord and ar Provide mec bearing platte 8 and 79 lb (L) This truss is International 	snow loads have as been designed psf or 1.00 times on-concurrent wi as been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide v hanical connective capable of withs uplift at joint 2. designed in acco Residential Cod nd referenced sta Standard	I for great flat roof I th other li I for a 10. t with any ed for a liv as where will fit betw s, with BC on (by oth standing 7 ordance w e sections	er of min roo bad of 15.4 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 70 lb uplift at ith the 2015 s R502.11.1 a	f live osf on ads. Opsf tom if. to joint				SEA 4584	ROLING CONTINUES

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 18,2021

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	DE	Hip Supported Gable	1	1	Job Reference (optional)	147495950

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:52 ID:nnwHxZUxUsjmG1QlaljjVJzCHmt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1:60.1

Plate Offsets (X, Y): [10:0-1-8,Edge], [13:0-1-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20	(psf) 20.0 .4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.11 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00		- n/a - n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0		_									Weight: 183 lb	FT = 20%
LUMBER					FORCES	(lb) - Maximum C	ompressi	on/Maximum		3) 1	Fruss desi	gned fo	or wind loads in th	ne plane of the truss
TOP CHORD 2 BOT CHORD 2 WEBS 2 OTHERS 2 BRACING 5 BOT CHORD 4 WEBS (III) WEBS (III)	6-0-0 oc p 2-0-0 oc p Rigid ceilir bracing. 1 Row at r b/size) lax Horiz lax Uplift lax Grav	.2 .3 .3 wood shea urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc 21=121/20- 23=98/20- 23=98/20- 23=28/20- 23=28/20- 23=28/20- 23=264 (LI 27=-36 (LI 27=-36 (LI 23=-70 (LI 33=-70 (LI 33=-70 (LI 33=-70 (LI 33=-70 (LI 23=-70 (LI))))))))))))))))))))))))))))))))))))	LC 15), 22=-281 (LC C 17), 24=-73 (LC 1 C 17), 26=-86 (LC 1 C 52), 29=-10 (LC 1 C 52), 32=-84 (LC 10 C 50), 32=-84 (LC 10 C 16), 34=-73 (LC 10 C 16), 36=-309 (LC	d or nd (17), (7), (7), (7), (7), (7), (7), (7), (TOP CHORD BOT CHORD WEBS 1) Unbalancer this design. 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; e members a	Tension 2-37=-238/174, 1 3-4=-164/154, 4-4 7-8=-139/180, 8-9 10-11=-184/227, 14-15=-208/251, 16-17=-92/19, 1 18-19=-123/112, 20-21=-209/154 36-37=-111/123, 32-33=-111/123, 29-30=-111/123, 27-28=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-111/123, 21-22=-136/86, 4-23, 14-27=-123/22, 1 16-25=-137/87, 1 18-23=-142/91, 1 d roof live loads ha	-2=0/45, ; 5=-139/13 =-208/25 11-12=-11 13-14=-2 15-16=-11 7-18=-10 19-20=-2 35-36=-1 33-34=-1 33-34=-1 33-34=-1 33-34=-1 26-27=-1 24-25=-1 22-23=-11 22-23=-1 22-23=	2-3=-269/224, 3, 5-7=-124/1: 1, 9-10=-213/: 34/227, 13/258, 13/169, 7/90, 18/179, 11/123, 11/	89, 258, /87, 155,	o s o 4) T C S P C C 5) U d 6) T k c 7) P 6) T 6) T 8) A 6) T 8) A 9) G 7) P 8) A 11) G 72 C c	nly. For s ee Standar r consult c CLL: ASC JOL=1.15 Now); Pf=2 late DOL= :t=1.10, LL Inbalanced esign. his truss h bad of 12.0 verhangs provide add II plates an able raced aga able stud: his truss h hord live lo	tuds ev rd Indu jualifieue E 7-10 Plate E	coosed to wind (n istry Gable End I d building design (); Pr=20.0 psf (roo)DL=1.15); Pg=21 if (flat roof snow: Category II; Exp 0 loads have beer en designed for g 1.00 times flat ro ncurrent with oth drainage to prev 4 MT20 unless o ntinuous bottom one eral movement (i ed at 1-4-0 oc. en designed for a nconcurrent with	ormal to the face), betails as applicable, er as per ANSI/TPI 1. of live load: Lumber 0.0 psf (ground Lumber DOL=1.15 B; Partially Exp.; a considered for this reater of min roof live bof load of 15.4 psf on er live loads. ent water ponding. therwise indicated. shord bearing. e face or securely e. diagonal web).

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design rm must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH1 Quality Oriteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	DE	Hip Supported Gable	1	1	Job Reference (optional)	147495950

- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 287 lb uplift at joint 37, 261 lb uplift at joint 21, 10 lb uplift at joint 29, 40 lb uplift at joint 30, 84 lb uplift at joint 32, 70 lb uplift at joint 33, 73 lb uplift at joint 34, 61 lb uplift at joint 35, 309 lb uplift at joint 36, 36 lb uplift at joint 27, 86 lb uplift at joint 26, 70 lb uplift at joint 25, 73 lb uplift at joint 26, 44 lb uplift at joint 23 and 281 lb uplift at joint 22.
- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:52 ID:nnwHxZUxUsjmG1QlaljjVJzCHmt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	E1	Monopitch	7	1	Job Reference (optional)	147495951

7-4-0

7-4-0

12 3.5 ∟

10

-0-11-0

0-11-0

2

Riverside Roof Truss LLC Danville Va - 24541

2)

3)

4)

2-8-8

-3-13

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:53 ID:oNzYfuWlu3oTrAmDZZ7k?dzCHdp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 u

2-5-8

GRIP

244/190

FT = 20%

MANANA MANANA

34 0

> 0 6 5


1.5x4 I 3x4 : 7-1-8 7-1-8 Scale = 1:29.4 Plate Offsets (X, Y): [2:0-3-3,Edge] PLATES Loading Spacing 2-0-0 CSI DEFL in l/defl L/d (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.78 Vert(LL) 0.13 6-9 >678 360 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.63 Vert(CT) -0.27 6-9 >317 240 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MP Weight: 27 lb BCDL 10.0 LUMBER 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No 2 * This truss has been designed for a live load of 20.0psf BOT CHORD 2x4 SP No 2 6) WEBS 2x4 SP No.3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom BRACING chord and any other members. TOP CHORD Structural wood sheathing directly applied or 7) Refer to girder(s) for truss to truss connections. 6-0-0 oc purlins, except end verticals. Provide mechanical connection (by others) of truss to 8) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bearing plate capable of withstanding 59 lb uplift at joint bracing. 6 and 85 lb uplift at joint 2. REACTIONS (lb/size) 2=302/0-3-8, 6=264/ Mechanical This truss is designed in accordance with the 2015 Max Horiz 2=93 (LC 15) International Residential Code sections R502.11.1 and Max Uplift 2=-85 (LC 12), 6=-59 (LC 16) R802.10.2 and referenced standard ANSI/TPI 1. Max Grav 2=343 (LC 2), 6=290 (LC 2) LOAD CASE(S) Standard FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/15, 2-3=-173/64, 3-4=-4/0, 3-6=-191/145 BOT CHORD 2-6=-91/158, 5-6=0/0 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Contraction of the TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground SEAL snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 5844 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this desian. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. minin August 18,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	EE	Monopitch Supported Gable	1	1	Job Reference (optional)	147495952

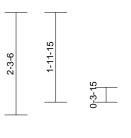
Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:53 ID:J8Qmsruei_t4j6R50BpTKGzCHmM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

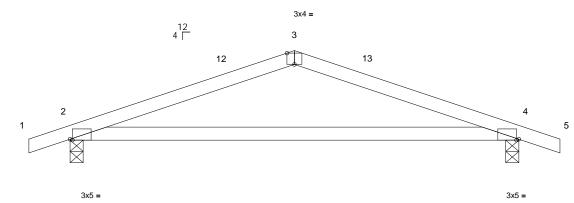
Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:32.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.09 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=151/7- 8=34/7-4 10=32/7- 12=151/7 Max Horiz 2=93 (LC Max Uplift 2=-50 (LC (LC 16), 12), 11=- 12) Max Grav 2=174 (L (LC 23),	y applied or 10-0-0 oc 4-0, 7=5/7-4-0, -0, 9=111/7-4-0, 4-0, 11=229/7-4-0, -4-0 13), 12=93 (LC 13) C 12), 7=-4 (LC 13), 8 9=-26 (LC 16), 10=-13 55 (LC 16), 12=-50 (L	d or 4) 5) =-8 7) 3 (LC 9) 39 1((LC	 only. For stuse Standard or consult qu TCLL: ASCE DOL=1.15 Plate DOL=1 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 yoverhangs n All plates are Gable require Gable rstuds This truss ha chord live loa This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b 	ned for wind loads dis exposed to wild a Industry Gable E alified building de 7-10; Pr=20.0 ps late DOL=1.15); F 5.4 psf (flat roof sr .15); Category II; snow loads have is been designed pon-concurrent with 1.5x4 MT20 unle scontinuous bot spaced at 1-4-0 o is been designed ad nonconcurrent nas been designed no chord in all area y 2-00-00 wide w	nd (norm End Deta ssigner as of (roof liv g=20.0 f g=20.0 f ow: Lum Exp B; F been cor for great flat roof l h other liv ess other tom chor for a 10. with any d for a liv as where vill fit betw	al to the face ils as applica is per ANSI/TI ver load: Lumb sof (ground aber DOL=1.1 artially Exp.; nsidered for the er of min roof bad of 15.4 p ve loads. wise indicated d bearing. D psf bottom other live load e load of 20.0 a rectangle), ble, PI 1. eer 5 fis fis sf on d. d. Dpsf					
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/15, 2-3=-117/72, 3-4=-79/46, 4-5=-62/47, 5-6=-39/35, 6-7=-3/2, 6-8=-32/28 BOT CHORD 2-11=-37/51, 10-11=-37/40, 9-10=-37/40, 8-9=-37/40 WEBS 5-9=-89/68, 4-10=-43/45, 3-11=-166/112 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60				 Provide mec bearing plate 4 lb uplift a joint 9, 13 lb 50 lb uplift at This truss is International 	designed in accor Residential Code nd referenced stat	n (by oth tanding 5 ft at joint 55 lb uplif rdance w sections	50 lb uplift at j 8, 26 lb uplift t at joint 11 a ith the 2015 5 R502.11.1 a	oint at nd		L'unite	the	SEA 4584 VONEW J	HA EEP. 60


- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job		Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-	A	F1	Common	5	1	Job Reference (optional)	147495953

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:54 ID:XMhiY2pnjMoc0a6spUGu57ynHSq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

10-11-0 0-11-0

5-0-0 10-0-0 5-0-0 5-0-0

10-0-0

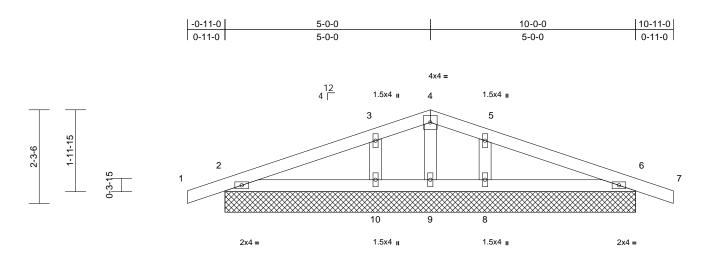
Scale = 1:25.7

Plate Offsets (X_Y); [2:0-0-10.Edge], [3:0-2-0.Edge], [4:0-0-10.Edge]

-0-11-0

0-11-0

	., Y): [2:0-0-10,Edge]	, [3:0-2-0,Edge], [4:0	0-0-10,E	agej								-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.61 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.34 0.01	(loc) 8-11 8-11 4	l/defl >794 >356 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS (P FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=103m Cat. II; Exp zone and C exposed ; e members a Lumber DO 3) TCLL: ASC DOL=1.151 Snow); Pf=1 Plate DOL= Ct=1.10	2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. Ib/size) 2=401/0-3 Max Horiz 2=-33 (LC Max Uplift 2=-94 (LC Max Grav 2=455 (LC (lb) - Maximum Comp Tension 1-2=0/17, 2-3=-619/2 4-5=0/17	applied or 10-0-0 oc -8, 4=401/0-3-8 17) 12), 4=-94 (LC 13) 2), 4=455 (LC 2) pression/Maximum 248, 3-4=-619/248, been considered for (3-second gust) DDL=6.0psf; h=25ft; 5 (envelope) exterior cantilever left and rig yht exposed;C-C for for reactions shown; L=1.60 roof live load: Lumbe -20.0 psf (ground v: Lumber DOL=1.15; p B; Partially Exp.;	e dor , s L	 load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 2 and 94 lb u This truss is International 	s been designed for on-concurrent with s been designed for ad nonconcurrent with s been designed n chord in all areas y 2-00-00 wide wit y other members. hanical connection capable of withsta plift at joint 4. designed in accord Residential Codes and referenced stan Standard	at roof k other liv or a 10.0 for a liv for a liv s where l fit betv (by oth anding S dance w sections	bad of 15.4 p re loads.) psf bottom other live load e load of 20.1 a rectangle reen the bott ers) of truss t 4 lb uplift at j th the 2015 R502.11.1 a	sf on ads. Opsf om to joint		Continue		NITH CA	ROL H4 EEF.R. 50 H111 0HN5 H111 H111 H111 H111 H111 H111 H111 H

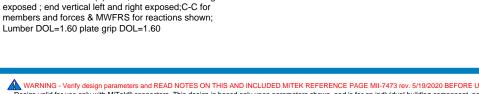


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	FE	Common Supported Gable	1	1	Job Reference (optional)	147495954

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:54 ID:7J3Q2fBEQtiCEL_q7UJ9sfynHSL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



1.5x4 u

10-0-0

Scale = 1:28.1

-																
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190			
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999					
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	6	n/a	n/a					
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MS											
BCDL	10.0					_						Weight: 39 lb	FT = 20%			
LUMBER			3) Truss desig	ned for wind load	ds in the p	lane of the tr	uss								
TOP CHORD	2x4 SP No.2				uds exposed to w											
BOT CHORD	2x4 SP No.2				d Industry Gable											
OTHERS	2x4 SP No.3				alified building c											
BRACING			4		7-10; Pr=20.0 p			ber								
TOP CHORD	Structural wood she	athing directly applie	d or		late DOL=1.15); 5.4 psf (flat roof s			E								
	6-0-0 oc purlins.				1.15); Category I											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		Ct=1.10	, Calegoly I	, слр В, Г	araany Exp.,									
	bracing.		F		snow loads have	e been cor	nsidered for t	his								
REACTIONS		-0-0, 6=161/10-0-0,		design.												
	8=271/10-0-0, 9=-65/10-0-0,				6) This truss has been designed for greater of min roof live											
		0-0-0, 11=161/10-0-0),	load of 12.0	psf or 1.00 times	flat roof lo	oad of 15.4 p	sf on								
	15=161/1 Max Horiz 2=-33 (LC			overhangs n	on-concurrent w	ith other liv	/e loads.									
	Max Uplift 2=-62 (LC				es continuous bo		d bearing.									
		(LC 13), 9=-72 (LC 2),	8		spaced at 1-4-0											
		C 16), 11=-62 (LC 12	2). 9		as been designed											
	15=-66 (L				ad nonconcurren											
	Max Grav 2=185 (LC		=306 1		has been design			0psf								
	(LC 2), 9=	=35 (LC 13), 10=306	(LC		m chord in all are											
	2), 11=18	5 (LC 2), 15=185 (LC	2)		by 2-00-00 wide by other member		veen the bott	om								
FORCES	(lb) - Maximum Com	pression/Maximum	1		hanical connecti		ore) of truce	to								
	Tension				e capable of with							UNITH CA	in the			
TOP CHORD	1-2=0/17, 2-3=-47/4				t at joint 6, 72 lb						. ("TH CA	Roil			
	4-5=-38/70, 5-6=-46	,			6 lb uplift at joint					1	1.5	R	sin VIA	11		
BOT CHORD	2-10=-7/38, 9-10=-7			66 lb uplift at	t joint 6.						12	U	QA: V	12		
WEBS	4-9=-35/32, 3-10=-1	94/122, 5-8=-194/12	21	2) Beveled plat	e or shim require	ed to provi	de full bearin	g				hang	sun	na		
NOTES					truss chord at jo							.Q.		-		
,	ed roof live loads have	been considered for	1		designed in acco						1	SEA	a	=		
this desigr					Residential Cod			and		=			•	Ξ.		
	CE 7-10; Vult=130mph				nd referenced st	andard AN	ISI/TPI 1.				6 E	458	44 🤅	5		
	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right				Standard					-		1	:	-		
											- 0	1. A.	a 12	25		
	exposed ; end vertical left and right exposed;C-C										2.1	V. SNGIN	FERIO	10		
	and forces & MWFRS										11	OPLAIN		1		
110110013		ior reactions showin,										A TITLE				

August 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-/	A	G1	Half Hip	7	1	Job Reference (optional)	147495955

-0-11-0

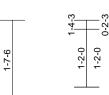
0-11-0

Riverside Roof Truss, LLC, Danville, Va - 24541,

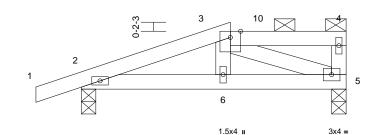
Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:55 ID:Mh0M1bOepkBTQlfPwborRizAdh3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5x5 =

5-4-0


2-4-0

1.5x4 u



Page: 1

-2-0

-4-3

3-0-0

3-0-0

12 4 Г

Scale = 1:23.2

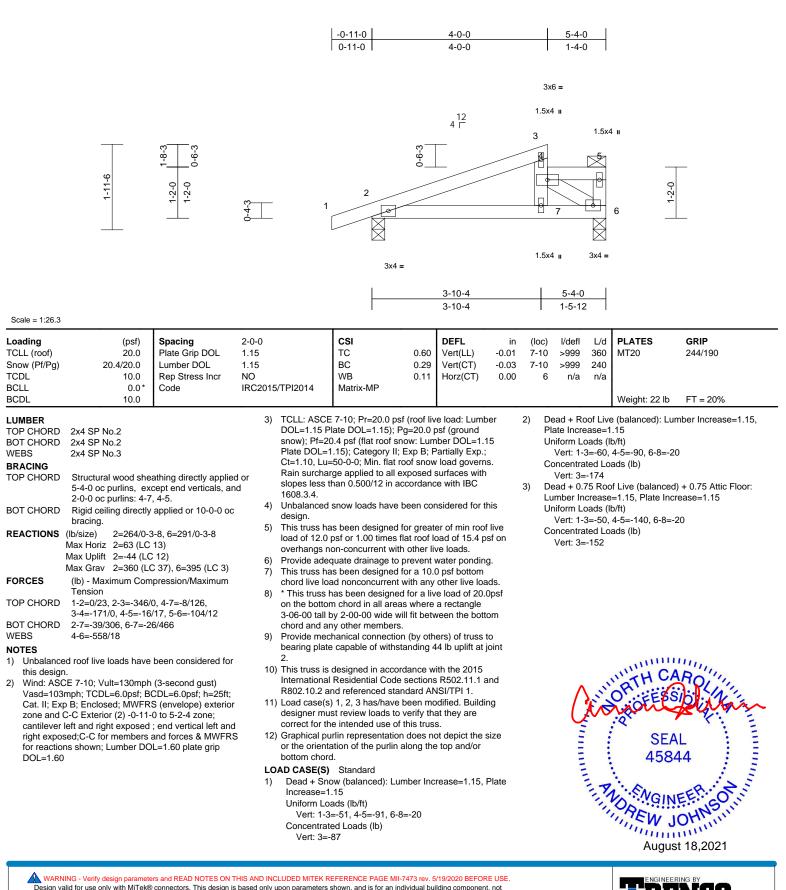
Scale = 1:23.2														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.20 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 6-9 6-9 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 23 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	OP CHORD 2x4 SP No.2 OT CHORD 2x4 SP No.2 VEBS 2x4 SP No.3 RACING OP CHORD Structural wood sheathing directly applied of 5-4-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. OT CHORD Rigid ceiling directly applied or 10-0-0 oc				 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf 3) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15, Uniform Loads (lb/t) Vert: 1-3=-50, 3-4=-98, 5-7=-20 Concentrated Loads (lb) Vert: 3=-152 									
REACTIONS	bracing.	3-8, 5=275/0-3-8 15) C 12)		 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2. 										
FORCES	(lb) - Maximum Com Tension 1-2=0/23, 2-3=-554/			 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 										
BOT CHORD WEBS	4-5=-124/36 2-6=-17/517, 5-6=-5 3-6=0/104, 3-5=-556			 Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 										
this design			r	or the orienta bottom chore				size				UNITH CA	ROUL	
Vasd=103r Cat. II; Exp zone and C exposed ; o members a	E 7-10; Vult=130mph mph; TCDL=6.0psf; B B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig ght exposed;C-C for for reactions shown;	1) r ght	bottom chord. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-51, 3-4=-77, 5-7=-20 Concentrated Loads (lb) Vert: 3=-87 2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-60, 3-4=-76, 5-7=-20 Concentrated Loads (lb)								• •		
DOL=1.15 snow); Pf= Plate DOL: Ct=1.10, L Rain surch	CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg 20.4 psf (flat roof sno =1.15); Category II; E u=50-0-0; Min. flat roo arge applied to all exp s than 0.500/12 in acc	=20.0 psf (ground w: Lumber DOL=1.1 xp B; Partially Exp.; of snow load governs posed surfaces with	5	Dead + Roo Plate Increa Uniform Loa Vert: 1-3	of Live (balanced) ase=1.15 ads (lb/ft) =-60, 3-4=-76, 5-7 ed Loads (lb)		r Increase=1.	15,		1000	N. A.	4584 VOREW J	EERCOL	

- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Plate Increase=1.15 Uniform Loads (lb/ft)
- Vert: 1-3=-60, 3-4=-76, 5-7=-20 Concentrated Loads (lb)
 - Vert: 3=-174

818 Soundside Road Edenton, NC 27932

August 18,2021

mann


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	G2	Half Hip	4	1	Job Reference (optional)	147495956

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:55 ID:oQvvC74q4Silb6n6aInRa0zAdeu-RfC?PsB70Hq3NSgPqnL8w3UITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JSJ-PINEWOOD A-LOT #45 WFS ROOF	
22-1333-A	P1	Piggyback	14	1	Job Reference (optional)	147495957

12 8 Г

Riverside Roof Truss, LLC, Danville, Va - 24541.

2-8-0

(psf)

20.0

15 4/20 0

2-6-6

Run: 8.51 S Jul 28 2021 Print: 8.510 S Jul 28 2021 MiTek Industries, Inc. Tue Aug 17 14:32:56 ID:oXBest6oN4kFbtih7mGfXQzCGIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x4 = 3

Ľ

6

6-5-12

1.5x4 u

in

n/a

n/a

0.00

(loc)

4

2x4 =

L/d

PLATES

Weight: 27 lb

MT20

GRIP

244/190

FT = 20%

l/defl

n/a 999

n/a 999

n/a n/a

Spacing 2-0-0 CSI DEFL Plate Grip DOL 1.15 TC 0.13 Vert(LL) BC 1 15 Lumber DOL 0.14 Vert(CT) Rep Stress Incr YES WB 0.02 Code IRC2015/TPI2014 Matrix-MP 4) Ct=1.10

2

2x4 =

- load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- chord live load nonconcurrent with any other live loads.
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- bearing plate capable of withstanding 39 lb uplift at joint 2, 47 lb uplift at joint 4, 39 lb uplift at joint 2 and 47 lb uplift at joint 4.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Scale = 1:27

Loading

TCLL (roof)

Snow (Pf/Pg) TCDL 10.0 Horz(CT) BCLL 0.0 BCDL 10.0 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber LUMBER DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground TOP CHORD 2x4 SP No.2 snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 BOT CHORD 2x4 SP No.2 2x4 SP No.3 Plate DOL=1.15); Category II; Exp B; Partially Exp.; OTHERS BRACING Unbalanced snow loads have been considered for this 5) TOP CHORD Structural wood sheathing directly applied or desian. 6-0-0 oc purlins. 6) This truss has been designed for greater of min roof live BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=156/6-5-12, 4=156/6-5-12, Gable requires continuous bottom chord bearing. 7) 6=198/6-5-12, 7=156/6-5-12, Gable studs spaced at 2-0-0 oc. 8) 11=156/6-5-12 This truss has been designed for a 10.0 psf bottom 9) Max Horiz 2=-62 (LC 14), 7=-62 (LC 14) Max Uplift 2=-39 (LC 16), 4=-47 (LC 17), 10) * This truss has been designed for a live load of 20.0psf 7=-39 (LC 16), 11=-47 (LC 17) Max Grav 2=178 (LC 2), 4=178 (LC 2), 6=221 (LC 2), 7=178 (LC 2), 11=178 (LC 2) 11) Provide mechanical connection (by others) of truss to FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/17, 2-3=-111/64, 3-4=-109/65, TOP CHORD 4-5=0/1712) This truss is designed in accordance with the 2015 BOT CHORD 2-6=-18/58, 4-6=-8/58 WEBS 3-6=-92/12 13) See Standard Industry Piggyback Truss Connection NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

