

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 150_1910_B_Vo KB Home 150.1910.B Volume with gable

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I44316318 thru I44316332

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

January 12,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 12,2021

TRENGINEERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.B Volume with gable	
						I44316320
150_1910_B_VO	AG	COMMON GIRDER	1	2		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	430 s Nov	30 2020 MiTek Industries, Inc. Tue Jan 12 08:49:16 2021	Page 2
		ID:V	MD62rz1y	iHD_OqRt	bnrlFztQ8K-xlQesLU8fN2yWmEBjUBDXCrscr53aHji1oTIw	Dzw8wH

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-43, 3-5=-43, 1-5=-20 Concentrated Loads (lb)

Vert: 7=-1770(B) 10=-1773(B) 11=-1770(B) 12=-1770(B) 13=-1770(B) 14=-1770(B) 15=-1770(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

January 12,2021

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-11 to 3-4-11, Interior(1) 3-4-11 to 4-0-0, Exterior(2) 4-0-0 to 7-0-11, Interior(1) 7-0-11 to 7-7-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁹⁾ N/A

L	8-0-0 27-4-			0 48-0-0					0		
	8-0-0	1	19-4-0		1			20-8-	0	1	
Plate Offsets (Plate Offsets (X,Y) [4:0-1-9,Edge], [12:0-3-0,0-2-0], [17:0-3-0,0-2-0], [25:0-1-9,Edge], [36:0-4-0,0-4-8], [46:0-4-0,0-4-8], [51:0-3-0,0-1-4]										
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	sf) 20.0 16.5/15.0 10.0 0.0 *	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 014 Matri	0.14 0.19 0.19 ix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.02	(loc) 28 28 28	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 377 lb	GRIP 197/144 FT = 20%
	10.0			PRACIN	10-						
TOD OUODD	0.4 0D N = 0 == 0			TODOL		.		- I 4I- !			
TOP CHORD	2x4 SP No.2 or 2x	(4 SPF N0.2		TOP CF	IORD	Structura	I WOOD	sneathing	g directly ap	pplied of 6-0-0 oc purlins	, except
BOT CHORD	2x6 SP No.2 *Exc	ept*			:	2-0-0 oc	purlins	(6-0-0 ma	ax.): 12-17.		
	16-40: 2x4 SP No	.3		BOT CH	IORD	Rigid ceil	ling dire	ctly appli	ed or 10-0-	0 oc bracing, Except:	
OTHERS	2x4 SP No.3					6-0-0 oc	bracing	: 52-53.			
						1 Row at	midpt		16-41		
				WEBS		1 Row at	midpt		17-39.1	5-42, 14-43, 13-44, 18-3	8

REACTIONS. All bearings 48-0-0.

(lb) - Max Horz 2=-149(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 8-9=-86/274, 9-10=-100/315, 10-11=-114/357, 11-12=-129/396, 12-13=-113/372, 13-14=-113/372, 14-15=-113/372, 15-16=-113/372, 16-17=-114/374, 17-18=-129/400, 18-19=-115/363, 19-20=-100/320, 20-21=-86/280

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 4-0-0, Exterior(2) 4-0-0 to 20-0-0, Corner(3) 20-0-0 to 24-9-10, Exterior(2) 24-9-10 to 28-0-0, Corner(3) 28-0-0 to 32-9-10, Exterior(2) 32-9-10 to 48-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Bearing at joint(s) 41 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify Continue to the second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 2, 51, 40, 39, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 38, 37, 36, 35, 34, 33, 32, 31, 30, 41, 28

Max Grav All reactions 250 lb or less at joint(s) 2, 51, 40, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 38, 37, 36, 35, 34, 33, 32, 31, 30, 41, 28 except 53=315(LC 54)

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.B Volume with gable			
150 1010 B VO		Piggyback Base Supported Gable	1	1		144316323		
150_1910_B_VO		riggyback base Supported Gable			Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,		8.	430 s Nov	30 2020 MiTek Industries, Inc. Tue Jan 12 08:49:22 2021	Page 2		
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-mvnv6PZvFDo5EhhL3IIdnT50?FFJ_7fbQkwc8tzw8wB						

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 51, 40, 52, 53. 15) N/A
- 16) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 51, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53.17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.B Volume with gable				
450 4040 B VO	T 4		7			144316324			
150_1910_B_VO	14	PIGGYBACK BASE	1	1					
					Job Reference (optional)				
84 Components (Dunn),	Dunn, NC - 28334,		8.	430 s Nov	30 2020 MiTek Industries, Inc. Tue Jan 12 08:49:23 2021	Page 2			
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-E5LHKlaX?XwysrGXdTpsKgd_HfS3jUlkeOf9gJzw8wA							

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.B Volume with gable				
150 1010 B VO	T4A		2	1		144316325			
150_1910_B_VO	14A	ROOF TRUSS	3	- I	lob Reference (ontional)				
84 Components (Dunn),	Dunn, NC - 28334,		8.	430 s Nov	30 2020 MiTek Industries, Inc. Tue Jan 12 08:49:25 2021	Page 2			
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-AUT2IQbnX8Bg59QwktrKP5jLxT62BIY16i8GICzw8w8							

 Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces.

14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-0-0	14-0-0	20-0-0		25-3-0	-+	28-0-0	36-10-4		41-2-2	43-0-0	48-0-0	
Plate Offset	s (X,Y) [7:0-4-0,	0-2-8], [9:0-9-4,0-2-8], [12	:0-3-0,Edge],	[19:0-4-8,0-2	2-8], [21:0-	-5-8,0	0-5-0], [25:0-4-0	0,0-5-0], [26:0-2-/	4,0-1-8]	4-3-14	1-3-14	5-0-0	
LOADING TCLL (roof) Snow (Pf/Pg TCDL	(psf) 20.0 () 16.5/15.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.93 0.92		DEFL. Vert(LL) Vert(CT)	in (loc) -0.34 24-25 -0.69 24-25	l/defl >999 >636	L/d 240 180		PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TP	YES 12014	WB Matri	0.84 x-S		Horz(CT) Attic	0.35 14 -0.12 17-19	n/a 844	n/a 360		Weight: 383 lb	FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	D 2x4 SP No.2 or 9-12: 2x6 SP No. 2x6 SP No.2 *E 2-25,14-18: 2x6 2x4 SP No.3 *E 9-19: 2x10 SP N	2x4 SPF No.2 *Except* 5.2 xcept* 5 P DSS, 8-20: 2x4 SP No xcept* No.2	o.3			BR TOI BO ^T WE JOI	ACING- P CHORD T CHORD BS NTS	Structural wood except 2-0-0 oc purlins Rigid ceiling dira 2-2-0 oc bracing 1 Row at midpt 1 Row at midpt 1 Brace at Jt(s):	sheathir (3-5-2 m ectly app g: 24-25. 26	ng directly nax.): 7-9. lied or 10- 8-21 4-24, 6	applied c 0-0 oc br 5-22, 8-22	or 1-6-15 oc purlin acing, Except: 2	S,
REACTIONS. (size) 2=0-3-8, 17=0-3-8, 14=0-3-8 Max Horz 2=149(LC 16) Max Uplift 2=-90(LC 16), 17=-94(LC 17) Max Grav 2=1721(LC 2), 17=1399(LC 46), 14=1099(LC 2) EORCES (b) - Max Comp (Max Ten - All forces 250 (b) or less except when shown													
FORCES. TOP CHOR	(lb) - Max. Comp./M D 2-3=-5542/35	1ax. Ten All forces 250 (5, 3-4=-5401/279, 4-6=-34	lb) or less exc 22/180, 6-7=-	ept when sh 2482/189, 7-	iown. -8=-2167/2	204,	700/00						
BOT CHOR	8-9=-2224/182 D 2-25=-416/490	2, 9-10=-1922/123, 10-11= 61, 24-25=-267/4728, 22-2	=-1963/139, 1 24=-73/2999, 2 1510	1-13=-1652/ 21-22=0/223	106, 13-14 9, 8-21=-3	1=-17 344/1	788/36 31,						
WEBS	4-25=-50/1303 8-22=-296/183 11-17=-711/20	8, 4-24=-1852/208, 6-24=- 3, 19-21=0/2032, 9-21=0/1 01, 11-16=-346/113	3/809, 6-22=- 780, 19-26=-`	1240/194, 7- 1298/19, 9-2	-22=0/807 6=-1265/4	, 12,							
NOTES-											111	Milling.	
 Unbalance Wind: AS gable end 28-0-0, E shown; L TCLL: AS 	ed roof live loads have CE 7-10; Vult=120r d zone and C-C Externation xterior(2) 28-0-0 to umber DOL=1.60 pl SCF 7-10; Pr=20 0 r	ave been considered for th nph Vasd=95mph; TCDL= erior(2) -0-10-8 to 2-1-8, Ir 32-2-15, Interior(1) 32-2-1. ate grip DOL=1.60 iss (roof live load: Lumber	his design. 6.0psf; BCDL: terior(1) 2-1-8 5 to 48-10-8 z DOI =1 15 Pla	=6.0psf; h=2 to 20-0-0, E one;C-C for	5ft; Cat. II Exterior(2) members	; Exp 20-0 and 0 ps	b B; Enclosed; N)-0 to 24-2-15, I forces & MWFF	MWFRS (envelop Interior(1) 24-2-1 RS for reactions	be) 5 to	Atta	NAT!	CAROL	Koiz
roof snov governs. 4) Unbalanc	: Lumber DOL=1.1 Rain surcharge app ed snow loads have	5 Plate DOL=1.15); Catego blied to all exposed surface been considered for this	ory II; Exp B; I es with slopes design.	Partially Exp	.; Ct=1.10, .500/12 in	, Lu= accc	=50-0-0; Min. fla prdance with IB	t roof snow load C 1608.3.4.	21	11111		SEAL 45844	
5) This truss non-cond	s has been designed urrent with other live	d for greater of min roof live e loads.	e load of 12.0	psf or 1.00 t	times flat r	oof l	oad of 11.6 psf	on overhangs		III P		a.	N. A.
 7) This truss 8) * This trus will fit bet 	 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord any other members with BCDL = 10 0psf 												
9) Ceiling de 10) Bottom	ead load (5.0 psf) or chord live load (40.0	n member(s). 10-11, 10-26) psf) and additional bottor	n chord dead	load (0.0 ps	f) applied (only	to room. 17-19				J	anuary 12,20	21
Continued or	n page 2										1		
Design val	NG - Verify design parame id for use only with MiTel	eters and READ NOTES ON THIS ® connectors. This design is bas	AND INCLUDED I ed only upon para	MITEK REFERE ameters shown,	NCE PAGE M and is for an	MII-74 n indivi	73 rev. 5/19/2020 Bl idual building comp	EFORE USE.					

besign value to be only with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

i renuu

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.B Volume with gable				
150 1010 B \/O	TEA		2			144316326			
150_1910_B_VO	ISA	ROOF TRUSS	3		lab Reference (antional)				
					Job Reference (optional)				
84 Components (Dunn),	Dunn, NC - 28334,		8	.430 s Nov	30 2020 MiTek Industries, Inc. Tue Jan 12 08:49:27 2021	Page 2			
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-6sboA6d23mROLTalsItoUWohNGm3fDgKZ0dNp4zw8w6							

 Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 17. This connection is for uplift only and does not consider lateral forces.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1	10-1-7	20-0-0	28-0-	0	34-7-1	40-0-0	42-4-4 47-8-8	48 ₁ 0-0
ſ	10-1-7	9-10-9	8-0-0)	6-7-1	5-4-15	2-4-4 5-4-4	0-3-8
Plate Offse	ts (X,Y) [6:0-3-0,	.0-2-7], [7:0-3-0,0-2-7]						
	(nsf)							
TCLL (roof)	200	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
Snow (Pf/P	(a) 165/150	Plate Grip DOL 1.15	TC 0.76	Vert(LL)	-0.18 18-20	>999 240	MT20	197/144
	g) 10.0/10.0 10.0	Lumber DOL 1.15	BC 0.69	Vert(CT)	-0.34 18-20	>999 180		
RCLI	10.0	Rep Stress Incr YES	WB 0.77	Horz(CT)	0.08 13	n/a n/a		
BOLL	10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 314 lb	FT = 20%
BCDL	10.0							
LUMBER-			В	RACING-				
TOP CHOP	RD 2x4 SP No.2 or	2x4 SPF No.2 *Except*	т	OP CHORD	Structural wood	sheathing directly a	applied or 2-5-10 oc purlir	ns,
	6-7: 2x6 SP No.	.2			except			
BOT CHOF	RD 2x6 SP No.2				2-0-0 oc purlins	(4-6-6 max.): 6-7.		
WEBS	2x4 SP No.3 *E	xcept*	В	OT CHORD	Rigid ceiling dire	ectly applied or 6-0-	-0 oc bracing.	
	7-18: 2x4 SP N	o.2 or 2x4 SPF No.2	v	/EBS	1 Row at midpt	5-18, 7	7-16, 8-14	
					•	,		
REACTION	IS. (size) 2=0-	-3-8. 11=0-3-0. 13=(0-3-8 + H10A Simp	son Strona-Tie) (rea. 0-3	-12)				
	Max Horz 2=14	48(LC 16)	3 , ()	,				
	Max Uplift 2=-1	02(LC 16), 11=-251(LC 56), 13=-75(LC	17)					
	Max Grav 2=16	695(C,2) 11=26(C,16) 13=2410(C,1)	3)					
			.,					
FORCES.	(lb) - Max. Comp./M	/ax. Ten All forces 250 (lb) or less exc	ept when shown.					
TOP CHOR	RD 2-3=-3041/23	9 3-5=-2781/240 5-6=-2011/274 6-7=-	1726/287 7-8=-1801/251	1				
	8-10606/82	10-1166/867	1120/201,1 0= 100 1/20	,				
	2-20226/26	, 10 11-00/007 15 18-2008/2186 16-18-0/1538 1/-	1636/1354 13-14697	7/00				
DOT CHOI	11-13-607/0	a	10=-30/1354, 13-14=-03/	755,				
WERS	2 20 225/19	ש 0 ב 20 - 2/בכב ב 19 - 7כ0/10/ ב 19 - 0/	EAT 7 18- 100/464 7 16	5 56/202				
WEDS	3-20=-323/10	0, 5-20=-3/500, 5-16=-709/194, 6-16=0/	347, 7-18=-102/464, 7-16	5=-50/292,				
	0-10=0/400,	10-13=-2397/140, 0-14=-1400/169, 10-1	4=-0/1001					
NOTES								
NUTES-								
1) Unbalan	ced roof live loads ha	ave been considered for this design.						
2) Wind: AS	SCE 7-10; Vult=120n	nph Vasd=95mph; TCDL=6.0psf; BCDL	=6.0psf; h=25ft; Cat. II; E	xp B; Enclosed; I	MWFRS (envelop	pe)		
gable en	id zone and C-C Exte	erior(2) -0-10-8 to 3-11-2, Interior(1) 3-1	1-2 to 20-0-0, Exterior(2)	20-0-0 to 26-9-7,	, Interior(1) 26-9-	7 to	A MARTINE AND A MARTINE	
28-0-0, I	=xterior(2) 28-0-0 to	34-7-1, Interior(1) 34-7-1 to 48-10-8 zor	e;C-C for members and f	forces & MWERS	for reactions sho	own;	"AH CARO	11,
Lumber	DOL=1.60 plate grip	DOL=1.60				\wedge	all	ile.
3) TCLL: A	SCE 7-10; Pr=20.0 p	osf (roof live load: Lumber DOL=1.15 Pla	ate DOL=1.15); Pg=15.0	psf (ground snow); Pf=16.5 psf (fla	at 🔒 🕹	O' ESSIN	Vie
roof sno	w: Lumber DOL=1.1	5 Plate DOL=1.15); Category II; Exp B;	Partially Exp.; Ct=1.10, L	u=50-0-0; Min. fla	at roof snow load		MAN WWW	up is
governs.	. Rain surcharge app	plied to all exposed surfaces with slopes	s less than 0.500/12 in ac	cordance with IB	C 1608.3.4.		:0	1.1
4) Unbalan	ced snow loads have	e been considered for this design.						1
This trus	s has been designed	d for greater of min roof live load of 12.0	psf or 1.00 times flat roo	f load of 11.6 psf	on overhangs	z _ :	SEAL	: =
non-con	current with other live	e loads.				= :	15011	: =
6) Provide	adequate drainage to	o prevent water ponding.				5 1	, 45844	1 2
This trus	s has been designed	d for a 10.0 psf bottom chord live load ne	onconcurrent with any oth	ner live loads.		5 1	•	1 2
8) * This tru	uss has been design	ed for a live load of 20.0psf on the botto	m chord in all areas whei	re a rectangle 3-6	6-0 tall by 2-0-0 w	vide 📜 🚽		1 2 3
will fit be	tween the bottom ch	ord and any other members, with BCDL	. = 10.0psf.			1.11	1. SNOWEEK.	5:
9) H10A Si	mpson Strong-Tie co	onnectors recommended to connect trus	s to bearing walls due to	UPLIFT at it(s) 1	3. This connectio	on is 💋	GINE	
for uplift	only and does not co	onsider lateral forces.	Ū			1	AFIN IOHN	
10) One H2	2.5Å Simpson Strong	g-Tie connectors recommended to connectors	ect truss to bearing walls	due to UPLIFT a	t jt(s) 2 and 11. T	his	The JOIN	N
connec	tion is for uplift only	and does not consider lateral forces.	5		/		in manner in the second	
11) Graphi	cal purlin representa	tion does not depict the size or the orier	tation of the purlin along	the top and/or bo	ottom chord.		January 12,20	21
,			1				, , -	
🗥 WARN	IING - Verify design parame	eters and READ NOTES ON THIS AND INCLUDED	MITEK REFERENCE PAGE MII-	7473 rev. 5/19/2020 B	EFORE USE.		ENGINEERING BY	
Design va	alid for use only with MiTel	Re connectors. This design is based only upon par	ameters shown, and is for an inc	dividual building comp	onent, not			
a truss sy building d	stem. Before use, the build	aing aesigner must verify the applicability of design is to prevent buckling of individual truss web and/or	parameters and properly incorport	porate this design into al temporary and per	ne overall		I I REILL	U
is always	required for stability and to	o prevent collapse with possible personal injury an	d property damage For genera	Lauidance regarding t	he		A MiTek A	ffiliate

billioning design. Bracing indicated is to prevent bucking of individual russ web analytic forto internoets only. Addutoral temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

ŀ	10-1-7	20-0-0		28-0-0	40-0-0	42-2-2	48-0-0				
Plate Offset	ts (X,Y) [6:0-3-0,	<u>9-10-9</u> 0-2-7], [7:0-3-0,0-2-7]		8-0-0	12-0-0	2-2-2	5-9-14				
LOADING TCLL (roof) Snow (Pf/P TCDL	(psf) 20.0 g) 16.5/15.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.81 BC 0.88 WB 0.37	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl -0.29 13-15 >999 -0.58 13-15 >992 0.14 11 n/a	L/d F 240 M 180 p/a	PLATES GRIP MT20 197/144				
BCLL BCDL	0.0 * 10.0	Code IRC2015/TPI2014	Matrix-S		0.11 1.00	V	Veight: 312 lb FT = 209	1%			
LUMBER- TOP CHOR BOT CHOR WEBS	2D 2x4 SP No.1 *E 6-7: 2x6 SP No. 2D 2x6 SP No.2 2x4 SP No.3 *E 7-17: 2x4 SP No	xcept* 2, 1-4: 2x4 SP No.2 or 2x4 SPF No.2 xcept* o.2 or 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (3-11-2 m Rigid ceiling directly applie 1 Row at midpt	directly applied or 2 ax.): 6-7. ed or 10-0-0 oc braci 5-17, 7-17, 8-15	2-2-0 oc purlins, except ing.				
REACTION	REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz 2=153(LC 16) Max Uplift 2=-99(LC 16), 11=-83(LC 17) Max Grav 2=1974(LC 2), 11=1911(LC 2)										
FORCES. TOP CHOR BOT CHOR WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3633/230, 3-5=-3385/231, 5-6=-2632/270, 6-7=-2278/282, 7-8=-2681/267, 8-10=-3645/246, 10-11=-3739/231 BOT CHORD 2-19=-224/3139, 17-19=-97/2733, 15-17=0/2318, 13-15=-90/2769, 12-13=-143/3255, 11-12=-143/3255 WEBS 3-19=-314/180, 5-19=-3/555, 5-17=-757/195, 6-17=0/814, 7-15=-34/896, 8-15=-748/219, 8-13=-24/679, 10-13=-289/193										
 NOTES- 1) Unbalan. 2) Wint: AS gable en 28-0-0, E shown; L 3) TCLL: AS roof snov governs. 4) Unbalann 5) This trus non-cond 6) Provide a 7) This trus 8) * This tru will fit be 9) Refer to 10) Provide 11) One H2 connect 11) One H2 connect 12) Graphic 	 WEBS 3-19=-014/100, 0-19=-3/230, 0-17=-1/3//190, 0-17=0/814, 1-15=-34/696, 8-15=-746/219, 8-13=-24/679, 10-13=-258/193 NOTES- Uhalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 20-0-10-8 to 21-8, Interior(1) 21-8 to 20-0, Exterior(2) 20-0-0 to 24-2-15, Interior(1) 24-2-15 to 28-0-0, Exterior(2) 28-0-10 s32-2-15, Interior(1) 23-2-15 to 47-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.06 lite load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15; Plate DOL=1.15; Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15; Plate DOL=1.15; Plate DOL=1.15); Pg=15.0 psf (or lice load; shave been considered for this design. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15; Plate DOL=1.15; Plate DOL=1.16) plate grip. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fib totween the bottom chord and any other members, with BCDL = 10.0psf. Refer to grider(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11. Oh Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11. Provide mechanical connection (by others) of truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. Provide mec										
Design va a truss sy	ING - Verify design parame lid for use only with MiTek stem. Before use, the build	ters and READ NOTES ON THIS AND INCLUDE ® connectors. This design is based only upon p fing designer must verify the applicability of des	D MITEK REFERENCE PA	GE MII-7473 rev. 5/19/2020 BE or an individual building comp ly incorporate this design into	EFORE USE. onent, not the overall						

A Mi Tek Affiliate A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			48-	0-0						
			48-	0-0						7
Plate Offsets (Plate Offsets (X,Y) [13:0-3-0,0-2-0], [17:0-3-0,0-2-0], [34:0-4-0,0-4-8], [40:0-4-0,0-4-8], [46:0-4-0,0-4-8]									
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 16.5/15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.19 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.01	(loc) 1 1 28	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 393 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 or 2 2x6 SP No.2 2x4 SP No.3	2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structura 2-0-0 oc Rigid cei 1 Row at	al wood purlins ling dire t midpt	sheathin (6-0-0 m ectly appl	g directly ap ax.): 13-17. ied or 10-0-0 17-38, 16 18-37	plied or 6-0-0 oc purlins) oc bracing. -39, 15-40, 14-41, 13-4	, except 2, 12-43,

REACTIONS. All bearings 48-0-0.

(lb) - Max Horz 2=153(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 37, 36, 35, 34, 33, 32, 31, 30, 29

Max Grav All reactions 250 lb or less at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 12-13=-94/254, 17-18=-94/256

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 20-0-0, Corner(3) 20-0-0 to 23-0-0, Exterior(2) 23-0-0 to 28-0-0, Corner(3) 28-0-0 to 31-0-0, Exterior(2) 31-0-0 to 48-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) N/A

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 6-0-12, Exterior(2) 6-0-12 to 9-0-12, Interior(1) 9-0-12 to 11-5-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 4-0-12, Exterior(2) 4-0-12 to 7-0-12, Interior(1) 7-0-12 to 7-5-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

2x4 💋

2x4 🔍

Structural wood sheathing directly applied or 4-1-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0₁0₁8 4-1-8 0-0-8 4-1-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-CSI. DEFL. PLATES GRIP 2-0-0 in (loc)l/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.06 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 11.6/15.0 999 Lumber DOL 1.15 BC 0.17 Vert(CT) n/a n/a TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-P Weight: 11 lb FT = 20% BCDI 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=4-0-8, 3=4-0-8 Max Horz 1=-10(LC 17) Max Uplift 1=-6(LC 16), 3=-6(LC 17) Max Grav 1=115(LC 2), 3=115(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

