

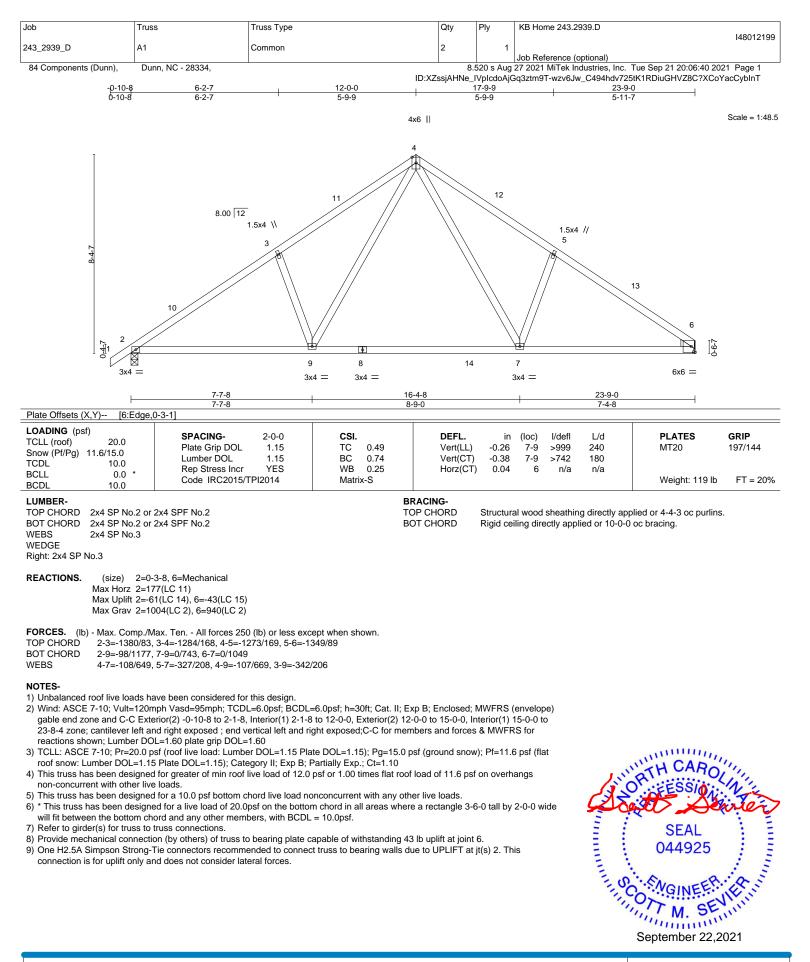
Trenco 818 Soundside Rd Edenton, NC 27932

Re: 243_2939_D KB Home 243.2939.D

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

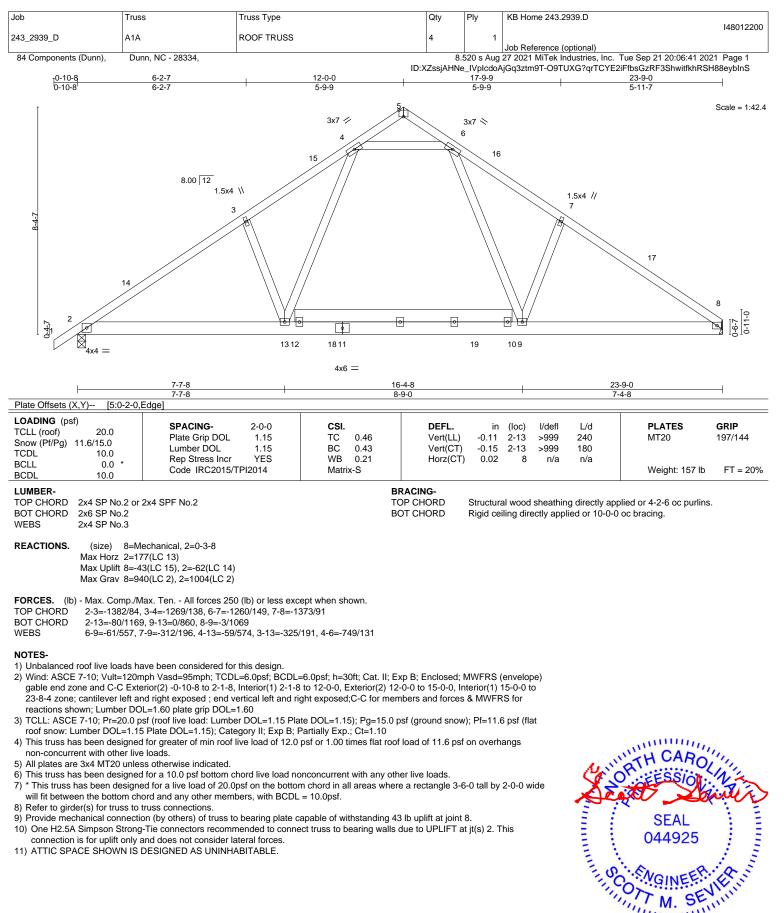
Pages or sheets covered by this seal: I48012199 thru I48012241

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

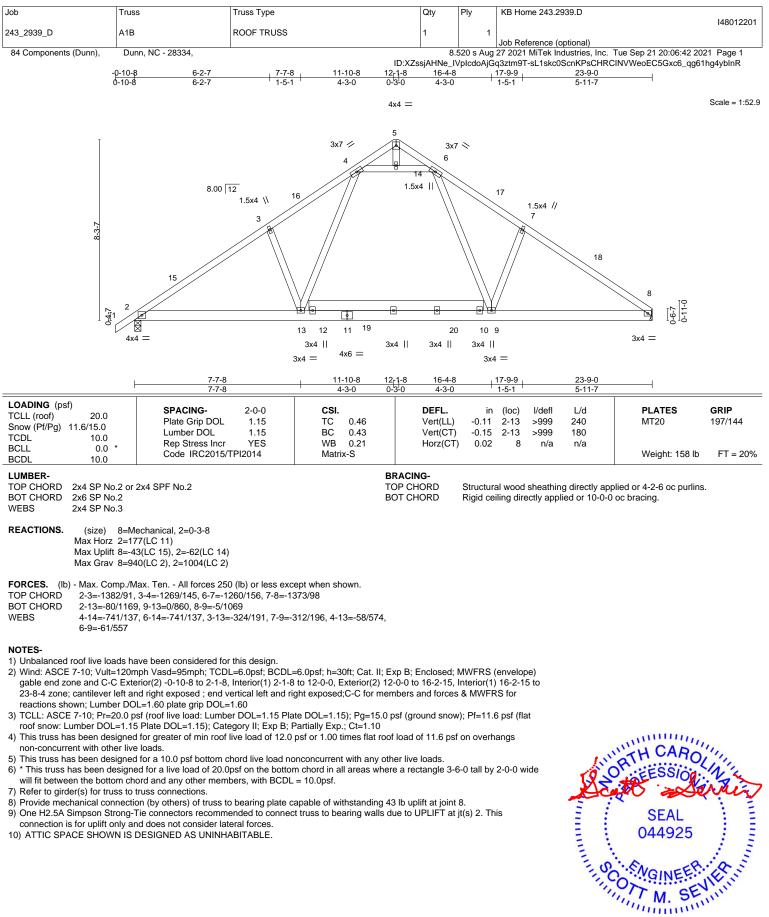
September 22,2021

Sevier, Scott

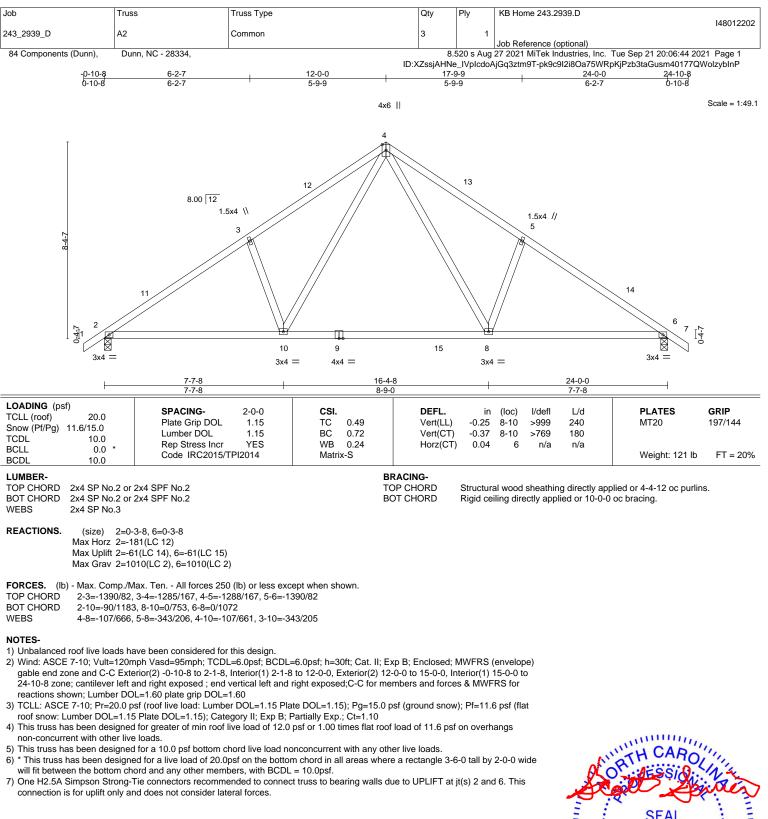

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

TRENCINE RIVER ATTILIATE AMITEK ATTILIATE 818 Soundside Road

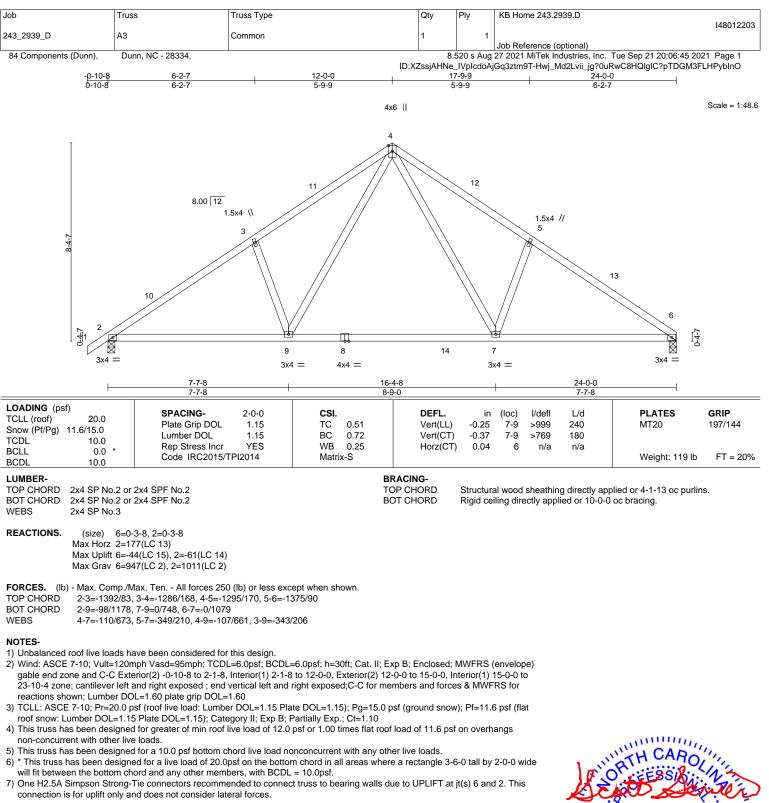
Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

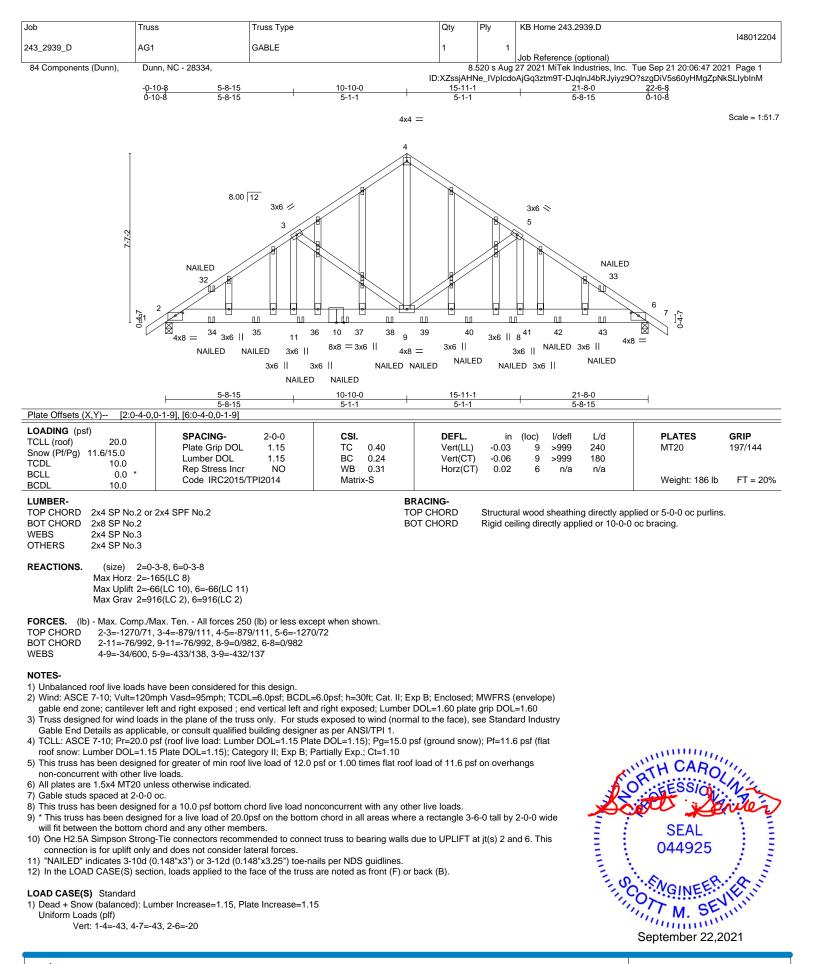
September 22,2021

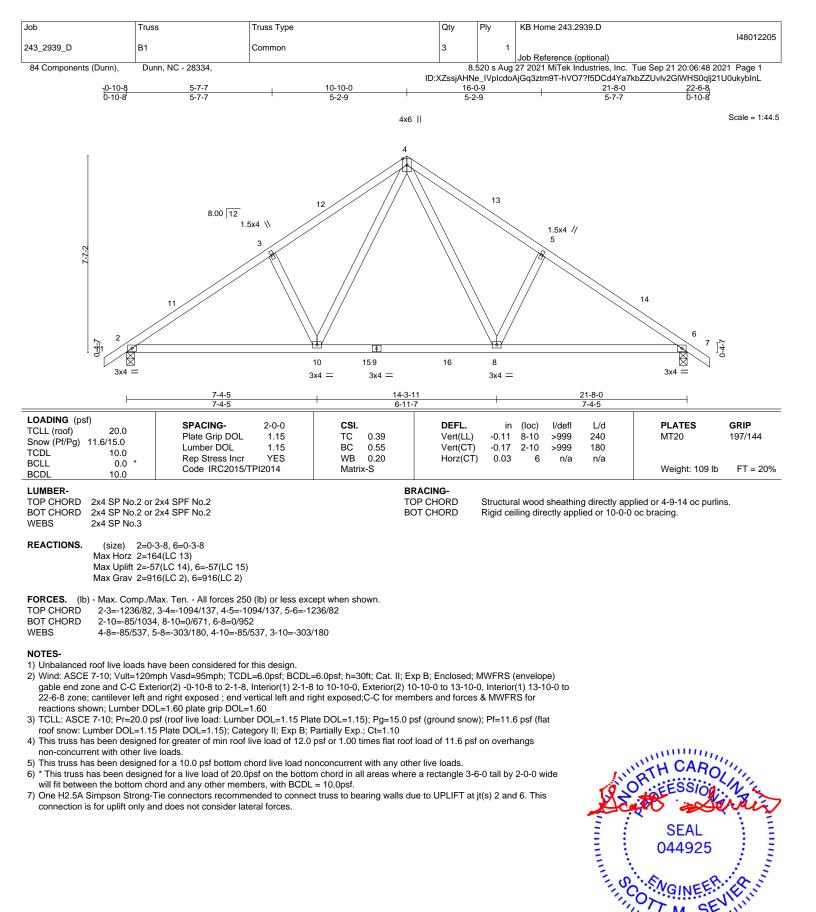

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 22,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate B18 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 22,2021

Plate Offsets (X,Y) [2:0-4-0,	0-1-9], [7:0-5-8,0-1-8], [8:0-6-0,0-6-4], [1	0:0-6-0,0-2-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.99 BC 0.94 WB 0.77	Vert(CT)	in (loc) -0.11 7-8 -0.22 7-8 0.05 6	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	Matrix-S	Horz(CT)	0.05 0	n/a	n/a	Weight: 289 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or BOT CHORD 2x8 SP No.2 *E 6-9: 2x8 SP DS: WEBS 2x4 SP No.3 *E 4-8: 2x4 SP No.	xcept* S	Т		tructural wood				
Max Horz 2=16 Max Uplift 6=-4	5-8, 2=(0-3-8 + TBE4 Simpson Strong- ⁻)0(LC 33) 77(LC 11), 2=-638(LC 10) 97(LC 2), 2=5193(LC 2)	Fie) (req. 0-4-1)						
TOP CHORD 2-3=-8505/996 BOT CHORD 2-10=-856/700	lax. Ten All forces 250 (lb) or less exc 5, 3-4=-6045/633, 4-5=-6047/633, 5-6=- 16, 8-10=-856/7006, 7-8=-533/7252, 6-7 5, 5-8=-2852/273, 5-7=-85/2782, 3-8=-2	8736/720 '=-533/7252)					
 Top chords connected as foll Bottom chords connected as Webs connected as follows: 2 All loads are considered equa ply connections have been pl Unbalanced roof live loads had Wind: ASCE 7-10; Vult=120n gable end zone; cantilever lef TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.15 This truss has been designed non-concurrent with other live This truss has been designed will fit between the bottom ch 	follows: 2x8 - 2 rows staggered at 0-7-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as ovided to distribute only loads noted as ave been considered for this design. nph Vasd=95mph; TCDL=6.0psf; BCDL= t and right exposed ; end vertical left an sf (roof live load: Lumber DOL=1.15 Pla 5 Plate DOL=1.15); Category II; Exp B; f I for greater of min roof live load of 12.0 e loads. I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the botton ord and any other members. nnectors recommended to connect trus	s front (F) or back (B) fac (F) or (B), unless otherw =6.0psf; h=30ft; Cat. II; E id right exposed; Lumber the DOL=1.15); Pg=15.0 p Partially Exp.; Ct=1.10 psf or 1.00 times flat root perconcurrent with any oth m chord in all areas when	ise indicated. xp B; Enclosed; MW DOL=1.60 plate grip osf (ground snow); P f load of 11.6 psf on her live loads. e a rectangle 3-6-0 t	VFRS (envelop p DOL=1.60 Pf=11.6 psf (fla overhangs tall by 2-0-0 w		and a support of the second se	SEAL 044925	021
Design valid for use only with MiT a truss system. Before use, the bi building design. Bracing indicate is always required for stability and	neters and READ NOTES ON THIS AND INCLUDE ek® connectors. This design is based only upon p aliding designer must verify the applicability of desi d is to prevent buckling of individual truss web and to prevent collapse with possible personal injury a tion and bracing of trusses and truss systems, see	arameters shown, and is for an ign parameters and properly inc /or chord members only. Additionand property damage. For gene	individual building compor orporate this design into the onal temporary and perma	onent, not the overall anent bracing ne	ponent	2	ENGINEERING BY A MITEK 818 Soundside Road	Affiliate

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
					148012206
243_2939_D	BG2	COMMON GIRDER	1	ົ	
				_	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:06:50 2021 Page 2
		ID:XZs	sjAHNe_I\	/plcdoAjGo	3ztm9T-duWtQL6TkEKGpRuzg_WNrK7TvJssUbD0WLz6ydybInJ

NOTES-

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.

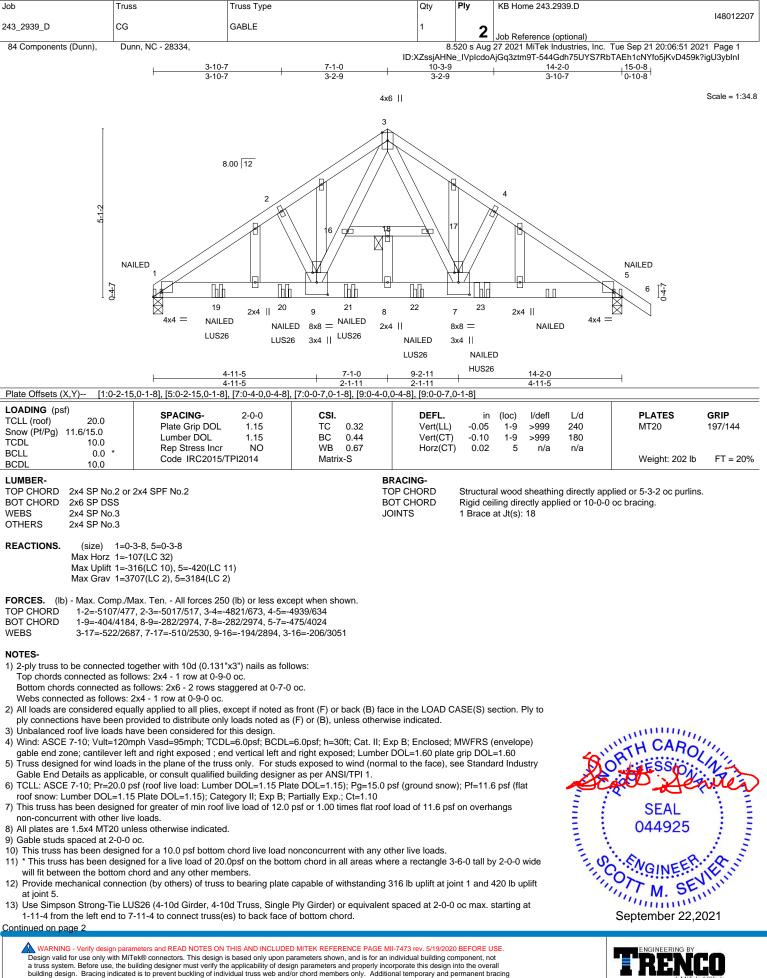
- Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 4-2-12 from the left end to connect truss(es) to back face of bottom chord.
 Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 12-6-8 oc max. starting at 6-2-12 from the left end to 20-9-4 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss) or equivalent at 9-8-4 from the left end to connect truss(es) to back face of bottom chord.

14) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 11-11-4 from the left end to 18-9-4 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


- Uniform Loads (plf)
- Vert: 1-4=-43, 4-6=-43, 2-6=-20

Concentrated Loads (lb)

Vert: 11=-1115(B) 12=-829(B) 13=-823(B) 14=-817(B) 15=-722(B) 16=-722(B) 17=-722(B) 18=-722(B) 19=-722(B) 20=-723(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
					148012207
243_2939_D	CG	GABLE	1	2	
				-	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:06:51 2021 Page 2
		ID:	XZssjAHN	e_IVpIcdo/	AjGq3ztm9T-544Gdh75UYS7RbTAEh1cNYfo5jKvD459k?igU3ybInI

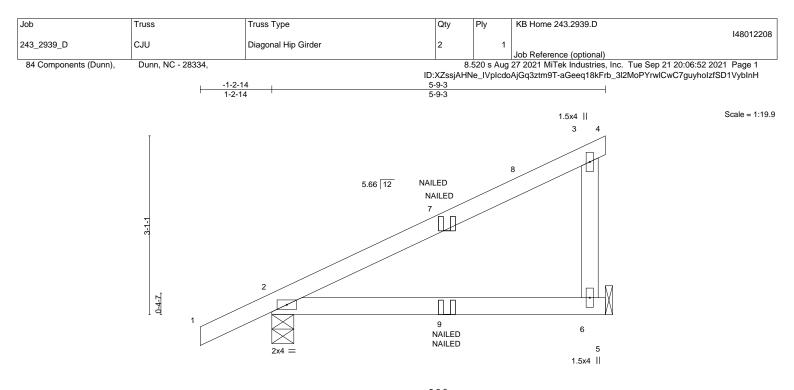
NOTES-

14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 9-11-4 from the left end to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-43, 3-6=-43, 1-5=-60(F=-40)

Concentrated Loads (lb)

Vert: 19=-722(B) 20=-740(B) 21=-760(B) 22=-829(B) 23=-1115(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>5-9-3</u> 5-9-3						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.56 BC 0.39 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 -0.00	(loc) 2-6 2-6 6	l/defl >999 >674 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	RACING-					Weight: 24 lb	FT = 20%

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 6=Mechanical, 2=0-4-9 (size) Max Horz 2=101(LC 11) Max Uplift 6=-34(LC 12), 2=-38(LC 12) Max Grav 6=212(LC 2), 2=309(LC 2)

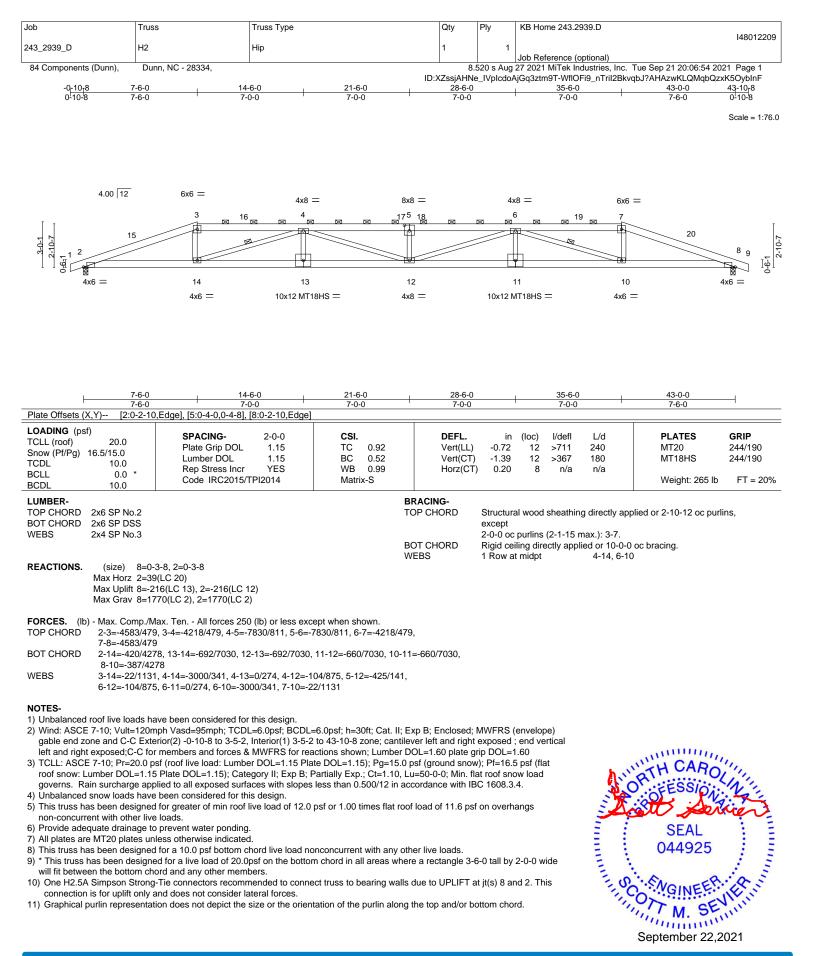
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

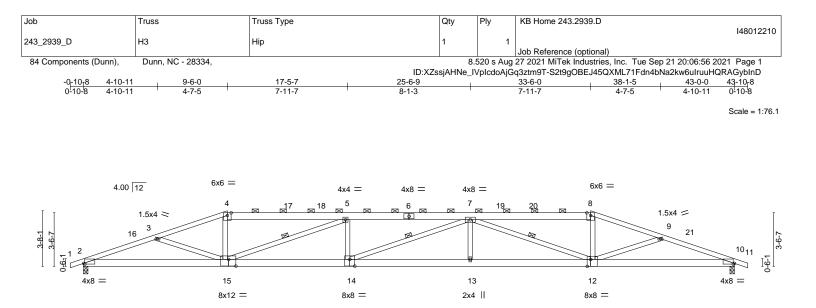
- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

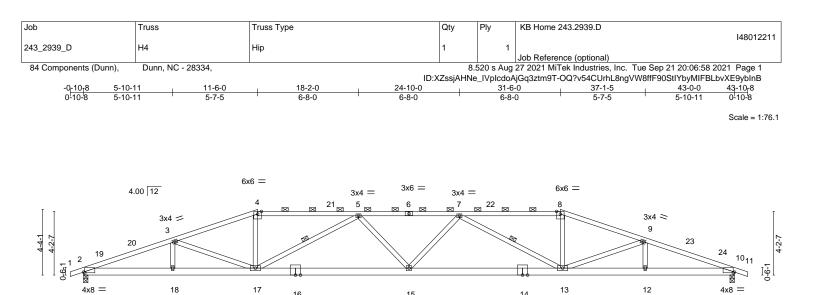
Vert: 1-3=-43, 3-4=-43, 2-5=-20



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Attiliat 818 Soundside Road Edenton, NC 27932



	9-6		<u>17-5-7</u> 7-11-7		<u>25-6</u> 8-1-		<u>33-6-0</u> 7-11-7			<u>43-0-0</u> 9-6-0	
Plate Offsets		,0-0-9], [10:0-0-15,0-0-9],		ge], [14:0-4-		-	7-11-7			9-0-0	
LOADING (p TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.69 0.88 0.89 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.49 13-14 -0.98 13-14 0.18 10	l/defl >999 >522 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 197/144 FT = 20%
-	10.0									_	
LUMBER-) 2x4 SP No 2 or	2x4 SPF No.2 *Except*				RACING- DP CHORD	Structural wood	sheathing	n directly apr	plied or 2-3-0 oc purlins	except
	4-6,6-8: 2x6 SP 2x6 SP No.2 *E: 14-15,12-14: 2x4 2x4 SP No.3	No.2 kcept*			BC	DT CHORD EBS	2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	(2-7-5 ma ectly appli	ix.): 4-8.	oc bracing.	олоорт
REACTIONS	Max Horz 2=-4 Max Uplift 10=-	0-3-8, 2=0-3-8 8(LC 17) 212(LC 13), 2=-212(LC 12 770(LC 2), 2=1770(LC 2)	/								
FORCES. (TOP CHORD	2-3=-4343/516	ax. Ten All forces 250 (6, 3-4=-4209/432, 4-5=-39 2, 9-10=-4339/518				,					
BOT CHORD WEBS	3-15=-242/255	27, 14-15=-561/5882, 13-1 5, 4-15=-7/923, 5-15=-220 9-12=-248/256	,		,						
 2) Wind: ASC gable end , Exterior(2 exposed;C 3) TCLL: ASC roof snow: governs. I 4) Unbalance 5) This truss non-concu 6) Provide ac 7) This truss 8) * This truss will fit betw 9) One H2.5/ connectior 	CE 7-10; Vult=120m zone and C-C Exte 2) 33-6-0 to 39-7-0, C-C for members an CE 7-10; Pr=20.0 p 1: Lumber DOL=1.15 Rain surcharge app ad snow loads have has been designed thrent with other live dequate drainage to has been designed is has been designed s has been designed as been designed the bottom che A Simpson Strong-1 h is for uplift only ar	ave been considered for the ph Vasd=95mph; TCDL= prior(2) -0-10-8 to 3-5-2, In Interior(1) 39-7-0 to 43-11 d forces & MWFRS for re- s f (roof live load: Lumber Plate DOL=1.15); Categ- blied to all exposed surface been considered for this for greater of min roof live bloads. prevent water ponding. for a 10.0 psf bottom cho- ed for a live load of 20.0ps ord and any other membe Fie connectors recommen id does not consider later- ion does not depict the size	6.0psf; BCDL= tterior(1) 3-5-2 0-8 zone; canti actions shown DOL=1.15 Plai ory II; Exp B; F es with slopes design. e load of 12.0 ord live load no if on the bottom rs. ded to connect al forces.	to 9-6-0, Ex lever left an ; Lumber DC te DOL=1.1t artially Exp. less than 0.1 psf or 1.00 ti nconcurrent n chord in al t truss to bea	tterior(2) 9-6-1 d right expos DL=1.60 plate 5); Pg=15.0 p ; Ct=1.10, Lu 500/12 in acc imes flat roof i with any other aring walls du	0 to 15-7-0, Inter ed ; end vertical e grip DOL=1.60 sf (ground snow =50-0-0; Min. fla cordance with IB load of 11.6 psf er live loads. e a rectangle 3-6 ue to UPLIFT at j	rior(1) 15-7-0 to 3 left and right); Pf=16.5 psf (fla at roof snow load C 1608.3.4. on overhangs 6-0 tall by 2-0-0 w it(s) 10 and 2. Th	33-6-0 at	and a second sec	SEAL 044925	HALL MANNER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 22,2021

15

4x4 =

16

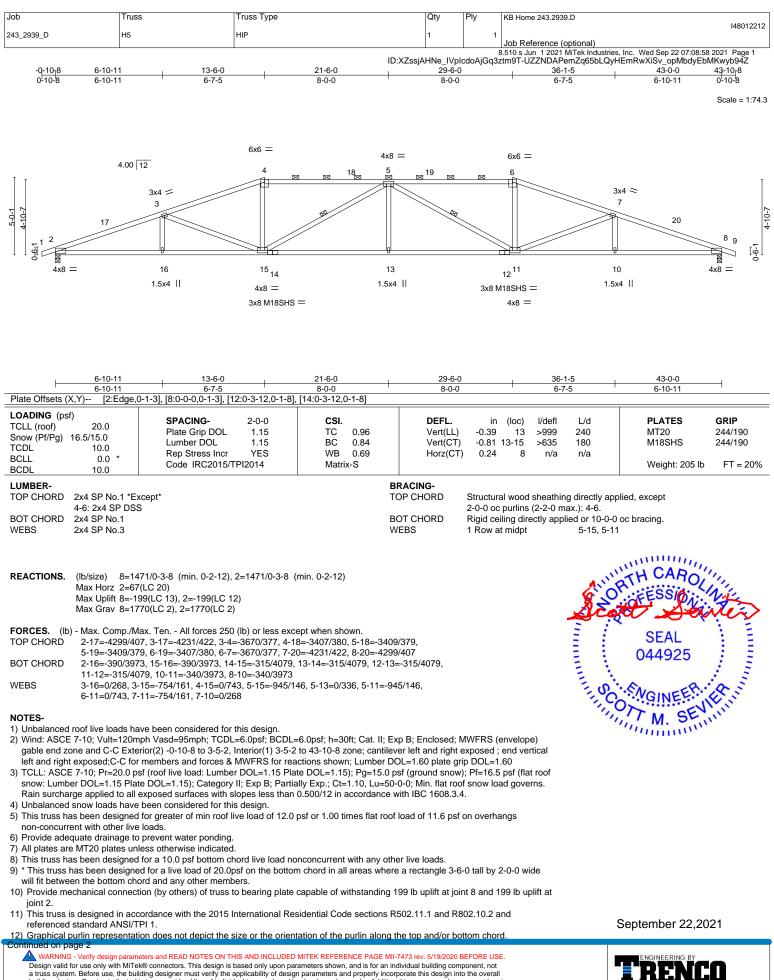
8x8 =

4x8 =

2x4 ||

14

8x8 =


4x8 =

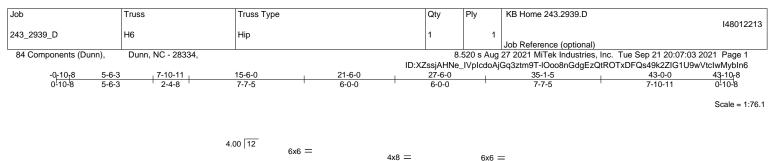
2x4 ||

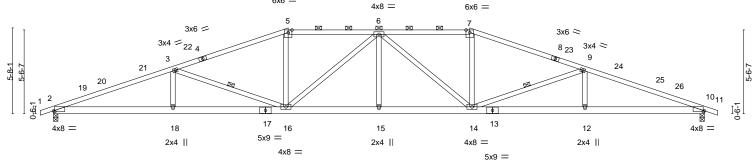
	5-10-11	11-6-0	21-6-0	. 3	1-6-0	I	37-1-5	43-0-0	1
	5-10-11	5-7-5	10-0-0	1 1	0-0-0	I	5-7-5	5-10-11	1
Plate Offsets		,0-0-9], [10:0-0-15,0-0-9]							
LOADING (p: TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0 16.5/15.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 CSI. 1.15 TC 0.84 1.15 BC 0.92 YES WB 0.45 2014 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.42 15 -0.84 15-17 0.19 10	l/defl >999 >610 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 238 lb	GRIP 197/144 FT = 20%
BCDL	10.0								
	2x4 SP No.2 or : 6-8,4-6: 2x4 SP 2x6 SP No.2 2x4 SP No.3	2x4 SPF No.2 *Except* DSS		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	(2-11-4 m	nax.): 4-8.	oc bracing.	
REACTIONS.	Max Horz 2=58 Max Uplift 10=-2	,							
FORCES. (I TOP CHORD BOT CHORD WEBS	2-3=-4373/450 8-9=-3959/410 2-18=-416/405 10-12=-372/40 3-17=-536/151	, 3-4=-3959/410, 4-5=-368 , 9-10=-4373/451 7, 17-18=-416/4057, 15-17 057) or less except when shown. 6/407, 5-7=-4754/452, 7-8=-3686/ '=-436/4666, 13-15=-407/4666, 12 3/209, 5-15=0/280, 7-15=0/280, 6/152	,					
 Wind: ASC gable end z left and rigl TCLL: ASC roof snow: governs. F Unbalance This truss f non-concur Provide ad This truss f * This truss f * This truss will fit betw One H2.5A connection 	E 7-10; Vult=120m zone and C-C Extent exposed;C-C for E 7-10; Pr=20.0 pr Lumber DOL=1.15 Rain surcharge app d snow loads have nas been designed rent with other live equate drainage to has been designed b has been designed b has been designed is has been designed is for uplift only ar	rior(2) -0-10-8 to 3-5-2, Inte members and forces & MV sf (roof live load: Lumber D Plate DOL=1.15); Categor lied to all exposed surfaces been considered for this d for greater of min roof live loads. prevent water ponding. for a 10.0 psf bottom chorr d for a live load of 20.0psf rd and any other members ie connectors recommend d does not consider lateral	Opsf; BCDL=6.0psf; h=30ft; Cat. I erior(1) 3-5-2 to 43-10-8 zone; car VFRS for reactions shown; Lumbe OL=1.15 Plate DOL=1.15); Pg=15 y II; Exp B; Partially Exp.; Ct=1.10 s with slopes less than 0.500/12 in esign. load of 12.0 psf or 1.00 times flat d live load nonconcurrent with any on the bottom chord in all areas w s.	tilever left and right or DOL=1.60 plate g 0 psf (ground snov 0, Lu=50-0-0; Min. fl a accordance with IE roof load of 11.6 psi other live loads. where a rectangle 3-4 ls due to UPLIFT at	exposed ; end ve rip DOL=1.60 /); Pf=16.5 psf (fla at roof snow load C 1608.3.4. f on overhangs 6-0 tall by 2-0-0 w jt(s) 10 and 2. Th	ertical at ride	Community States	SEAL 044925	A Sea Manual

11111 September 22,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

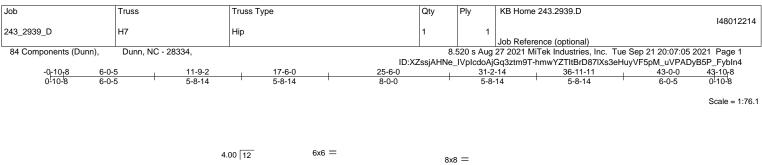
besign valid for use only with with with exercising is based only upon parameters shown, and is for an individual founded building doing ponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

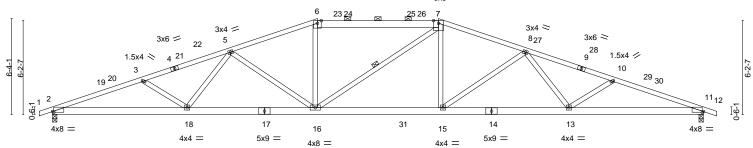

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
243_2939_D	H5	 HIP	1	1	148012212
243_2838_0	113			'	Job Reference (optional)


8.510 s Jun 1 2021 MiTek Industries, Inc. Wed Sep 22 07:08:58 2021 Page 2 ID:XZssjAHNe_IVplcdoAjGq3ztm9T-UZZNDAPemZq65bLQyHEmRwXiSv_opMbdyEbMKwyb94Z

LOAD CASE(S) Standard

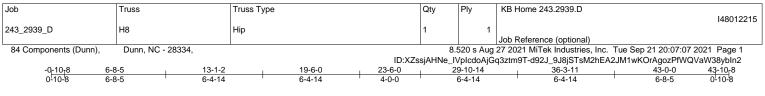
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



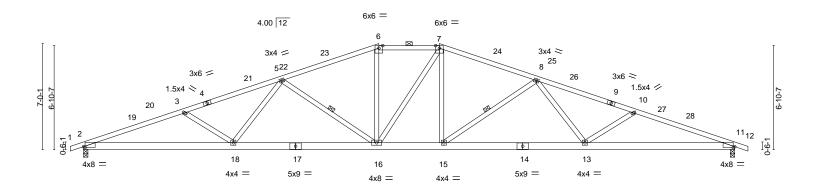

	7-10-11		21-6-0	27-6-0		35-1-5		43-0-0	_
Plate Offsets	7-10-11 (X Y) [2:0-0-15	<u>7-7-5</u> ,0-0-9], [10:0-0-15,0-0-9]	6-0-0	6-0-0	•	7-7-5		7-10-11	
LOADING (p TCLL (roof)	20.0	SPACING- 2-0-0	CSI.	DEFL.	in (loo		L/d	PLATES	GRIP
Snow (Pf/Pg)		Plate Grip DOL 1.15	TC 0.77	Vert(LL)		5 >999	240	MT20	197/144
TCDL	10.0	Lumber DOL 1.15	BC 0.91	Vert(CT)		5 >844	180		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.73	Horz(CT) 0.17 1	0 n/a	n/a	Mainhte 044 lb	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 244 lb	FT = 20%
LUMBER-			E	BRACING-					
TOP CHORD	2x4 SP DSS *E>		٦	FOP CHORD				plied or 2-2-0 oc purlins	, except
		2 or 2x4 SPF No.2			2-0-0 oc purli				
BOT CHORD				BOT CHORD	Rigid ceiling				
WEBS	2x4 SP No.3		١	WEBS	1 Row at mid	pt	3-16, 9-1	4	
REACTIONS.		2 8 10 0 2 8							
REACTIONS.	. (Size) 2=0- Max Horz 2=-7	3-8, 10=0-3-8 7(LC 21)							
		91(LC 12), 10=-191(LC 13)							
		70(LC 2), 10=1770(LC 2)							
		lax. Ten All forces 250 (lb) or less exce							
TOP CHORD		5, 3-5=-3505/341, 5-6=-3239/348, 6-7=-3	239/348, 7-9=-3505/34	-1,					
DOTOUODD	9-10=-4358/40								
BOT CHORD		39, 16-18=-375/4039, 15-16=-233/3565,	14-15=-233/3565, 12-1	4=-317/4039,					
WEBS	10-12=-317/4	039 -16=-980/181, 5-16=0/722, 6-16=-607/10	0 6 1/- 607/100 7 1/	1_0/722					
WEBS	9-14=-980/182		0, 0-14=-007/100, 7-12	+=0/722,					
	0 11 000,102	., 0 12-0/022							
NOTES-									
		ave been considered for this design.							
		nph Vasd=95mph; TCDL=6.0psf; BCDL=							
		erior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2							
		33-7-0, Interior(1) 33-7-0 to 43-10-8 zone				l right		, minining	
		nd forces & MWFRS for reactions shown sf (roof live load: Lumber DOL=1.15 Plat				(flot		"TH CARO	14
		5 Plate DOL=1.15); Category II; Exp B; P					a	R	114
		blied to all exposed surfaces with slopes				au		U. A SSIDA	Y have
		been considered for this design.					R	an El	iner
,		I for greater of min roof live load of 12.0	osf or 1.00 times flat roo	of load of 11.6 ps	f on overhangs		Ξ.	·Q (
non-concu	rrent with other live	e loads.			0		- E - E	SEAL	- 1 E
		prevent water ponding.						044005	- E - E -
		I for a 10.0 psf bottom chord live load no					= 1	044925	: z
		ed for a live load of 20.0psf on the bottom	n chord in all areas whe	ere a rectangle 3-	6-0 tall by 2-0-0) wide			1 2
		ord and any other members.	toward to be and a set of the		:(-) 0 10	T 1-1-	3.0	i.A. a	in S
		Fie connectors recommended to connect	truss to bearing walls	due to UPLIFT at	Jt(s) 2 and 10.	INIS	Summer Street	O VGINEE	A CONTRACTOR
		nd does not consider lateral forces. ion does not depict the size or the orient	ation of the nurlin along	the top and/or b	ottom chord		11	0	1.11
iu) Graphical	i punin representat	ion does not depict the size of the offent		y the top and/or b	onom chord.				11
								"In man	ē.
								Contombor 22.2	0.04

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 22,2021



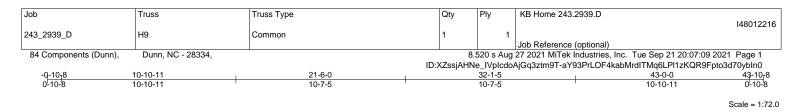
8-10-7			25-6- 8-0-		34-1-5 8-7-5			43-0-0	
8-10-7 Plate Offsets (X,Y) [2:0-0-15]	1 8-7-5 0-0-9], [11:0-0-15,0-0-9]		8-0-	0	8-7-5			8-10-11	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC BC WB Matr	0.76 0.90 0.69	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.31 15 -0.64 15-16 0.16 11	l/defl >999 >806 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 252 lb	GRIP 197/144 FT = 20%
BCDL 10.0		indu	_					1101gilli 20210	
LUMBER- TOP CHORD 2x4 SP No.2 or 2 6-7: 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3			тс	R ACING- DP CHORD DT CHORD EBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt	(3-3-1 ma ectly applie	x.): 6-7.	plied or 2-2-0 oc purlins) oc bracing.	, except
TOP CHORD 2-3=-4358/414 8-10=-4079/34 BOT CHORD 2-18=-402/404 WEBS 3-18=-295/163 8-15=-757/161 3-14	ax. Ten All forces 250 (lb) or les , 3-5=-4078/344, 5-6=-3257/316, 4, 10-11=-4358/414 3, 16-18=-290/3584, 15-16=-150/ , 5-18=0/473, 5-16=-756/161, 6-1 , 8-13=0/475, 10-13=-295/164	6-7=-3041/325, 7 3039, 13-15=-237	-8=-3256/316, 7/3584, 11-13=	=-337/4044					
 Wind: ASCE 7-10; Vult=120m gable end zone and C-C Exte 25-6-0, Exterior(2) 25-6-0 to 3 exposed;C-C for members an TCLL: ASCE 7-10; Pr=20.0 ps roof snow: Lumber DOL=1.15 governs. Rain surcharge app Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to This truss has been designed * This truss has been designed * This truss has been designed mit it between the bottom chc One H2.5A Simpson Strong-T connection is for uplift only an 	for greater of min roof live load of loads.	CDL=6.0psf; h=3 3-5-2 to 17-6-0, I 3 zone; cantileve hown; Lumber D 5 Plate DOL=1.1 p B; Partially Exp lopes less than 0 12.0 psf or 1.00 ad nonconcurren bottom chord in a 3CDL = 10.0psf. nnnect truss to be	Exterior(2) 17- r left and right OL=1.60 plate 5); Pg=15.0 p .; Ct=1.10, Lu .500/12 in acc times flat roof at with any other all areas where earing walls du	6-0 to 23-7-0, In exposed ; end v a grip DOL=1.60 sf (ground snow =50-0-0; Min. fla cordance with IB0 load of 11.6 psf er live loads. a rectangle 3-6 ue to UPLIFT at j	terior(1) 23-7-0 t ertical left and ri- troof snow load C 1608.3.4. on overhangs -0 tall by 2-0-0 w t(s) 2 and 11. Th	o ght at	Antonio Series	SEAL 044925	HE WINNING

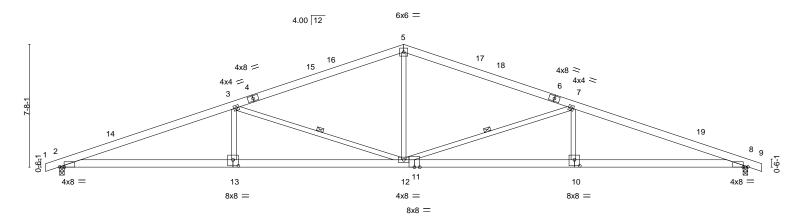

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Affilia 818 Soundside Road Edenton, NC 27932

September 22,2021

Scale = 1:76.1


	9-1	0-11	19-6-0			23-6-0	1	33-1-5		1	43-0-0	I.
		0-11	9-7-5		1	4-0-0	1	9-7-5		1	9-10-11	
Plate Offsets ((X,Y) [2:0-1-3,0	0-0-9], [11:0-1-3,0-0-9]										
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.91 0.94 0.31 x-S		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.33 13-15 -0.67 13-15 0.16 11	l/defl >999 >760 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 249 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2 or 2x6 SP No.2 2x4 SP No.3 (size) 2=0- Max Horz 2=96 Max Uplift 2=-1	3-8, 11=0-3-8)			TOP	CING- CHORD CHORD S	Structural wood 2-0-0 oc purlins Rigid ceiling dirr 1 Row at midpt	(3-3-13 r ectly appl	nax.): 6-7.) oc bracing.	
FORCES. (II TOP CHORD BOT CHORD WEBS	2-3=-4364/385 8-10=-4080/30 2-18=-378/406 3-18=-357/182	lax. Ten All forces 250 (I 5, 3-5=-4079/305, 5-6=-302 95, 10-11=-4365/385 97, 16-18=-252/3533, 15-1 2, 5-18=0/575, 5-16=-900/1 0-13=-356/182	24/281, 6-7=-27 6=-98/2785, 13	787/292, 7- 8-15=-196/3	8=-302 3533, 1 ⁻	1-13=-30						
 2) Wind: ASC gable end z 43-10-8 zor reactions sl 3) TCLL: ASC roof snow: governs. R 	E 7-10; Vult=120rr zone and C-C Externe; cantilever left a hown; Lumber DO E 7-10; Pr=20.0 p Lumber DOL=1.15 Rain surcharge app	ave been considered for thi ph Vasd=95mph; TCDL=6 prior(2) -0-10-8 to 3-5-2, Int and right exposed ; end ver L=1.60 plate grip DOL=1.6 sf (roof live load: Lumber I is Plate DOL=1.15); Catego plied to all exposed surface been considered for this of	6.0psf; BCDL=6 terior(1) 3-5-2 to rtical left and rig 50 DOL=1.15 Plate ory II; Exp B; Pa es with slopes le	o 19-6-0, E ght expose e DOL=1.15 artially Exp.	Exterior(d;C-C f 5); Pg= .; Ct=1.	(2) 19-6-0 or memb 15.0 psf (10, Lu=5) to 29-7-0, In ers and forces ground snow 0-0-0; Min. fla	terior(1) 29-7-0 t s & MWFRS for); Pf=16.5 psf (fla at roof snow load	o	in the second	TH CARO	
 5) This truss h non-concur 6) Provide add 7) This truss h 8) * This truss will fit betwee 9) One H2.5A connection 	has been designed rent with other live equate drainage to has been designed has been designed en the bottom ch- Simpson Strong- is for uplift only ar	I for greater of min roof live	e load of 12.0 p rd live load non i on the bottom rs. ded to connect t il forces.	concurrent chord in al truss to bea	t with ar Il areas aring w	ny other I where a alls due t	ive loads. rectangle 3-6 o UPLIFT at j	-0 tall by 2-0-0 w t(s) 2 and 11. Th		A STATE OF S	SEAL 044925	the summing


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10-10-		21-6-0		32-1-5			43-0-0	
10-10- Plate Offsets (X,Y) [2:0-3-6,]	11 Edge], [8:0-3-6,Edge], [10:0-4-0,0-4-8],	10-7-5	1	10-7-5			10-10-11	
	Lugej, [8:0-3-6,Lugej, [10:0-4-0,0-4-8],	[13.0-4-0,0-4-6]						
LOADING (psf) TCLL (roof) 20.0	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg) 11.6/15.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.87 BC 0.99	Vert(LL) Vert(CT)	-0.26 12-13 -0.57 12-13	>999 >904	240 180	MT20	244/190
TCDL 10.0	Rep Stress Incr YES	WB 0.95	Horz(CT)	0.18 8	>304 n/a	n/a		
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 263 lb	FT = 20%
LUMBER-			RACING-					
TOP CHORD 2x6 SP No.2							plied or 2-2-0 oc purlins	
BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3				Rigid ceiling dire 1 Row at midpt	ectly app	ied or 2-2-0 (7-12, 3-12		
WEBS 2X4 SF N0.5		v	EB3	i Row at miupt		7-12, 3-12	2	
Max Horz 2=10 Max Uplift 2=-1	3-8, 8=0-3-8)6(LC 20) 61(LC 12), 8=-161(LC 13) 770(LC 2), 8=1770(LC 2)							
TOP CHORD 2-3=-4272/307	lax. Ten All forces 250 (lb) or less ex 7, 3-5=-2850/205, 5-7=-2850/205, 7-8=- 39, 12-13=-288/3955, 10-12=-207/3955	4272/308						
	7-12=-1473/262, 7-10=0/455, 3-12=-14	,						
WEBS 5-12=0/1159,	1 12 = 1410/202, 1 10 = 0/400, 0 12 = 14							

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

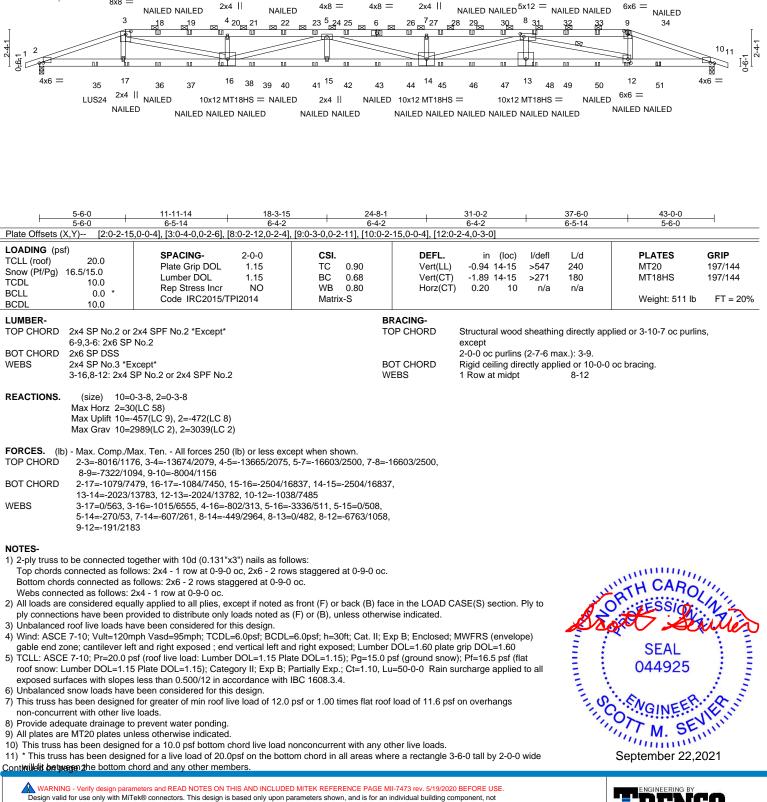
8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type		Qty	Ply	KB Home 243.2939.D			
									I48012217	
243_2939_D		HG	Hip Girder		1	2				
						_	Job Reference (optional)			
84 Components (Dunr),	Dunn, NC - 28334,	IC - 28334, 8.520 s Aug 27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:20 2021 Pag							
				ID	:XZssjAH	Ne_IVplcdo	oAjGq3ztm9T-lfKDjbTlfS60Q2BkRH2	P2fMckPAtW9AQ	P0Ei?tyblmr	
-Q-10 ₁ 8 5-6-0		11-11-14	18-3-15	24-8-1		31-0-2	37-6-0	43-0-0	43-10 ₀ 8	
0-10-8 5-6-0		6-5-14	6-4-2	6-4-2	1	6-4-2	6-5-14	5-6-0	0-10-8	

NAILED NAILED NAILED NAILED

NAILED


NAILED

NAILED NAILED

4.00 12

8x8 =

Scale = 1:73.4

besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
					148012217
243_2939_D	HG	Hip Girder	1	2	
				_	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:20 2021 Page 2
		ID	XZssjAHN	le_IVplcdc	AjGq3ztm9T-lfKDjbTlfS60Q2BkRH2P2fMckPAtW9AQP0Ei?tybImr

NOTES-

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 2. This connection is for uplift only and does not consider lateral forces.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 3-6-12 from the left end to connect truss(es) to back face of bottom chord. 15) Fill all nail holes where hanger is in contact with lumber.

16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

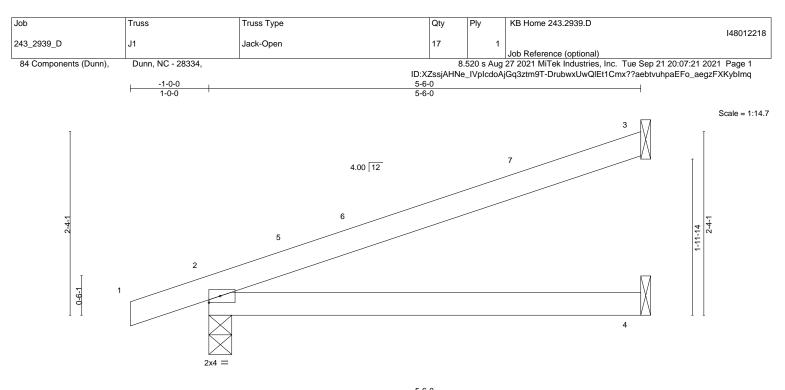
17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 110 lb down and 77 lb up at 5-5-12 on top chord. The

design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-43, 3-9=-53, 9-11=-43, 2-10=-20

Concentrated Loads (lb)

Vert: 3=-66(B) 9=-66(B) 17=-33(B) 12=-33(B) 18=-62(B) 19=-62(B) 20=-62(B) 21=-62(B) 22=-62(B) 23=-62(B) 25=-62(B) 25=-62(B) 26=-62(B) 28=-62(B) 29=-62(B) 23=-62(B) 23

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-6-0					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.35 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loo -0.05 2- -0.09 2- -0.00	4 >999	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 19 lb	FT = 20%
LUMBER-		BF	RACING-					

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=72(LC 12) Max Uplift 3=-66(LC 16), 2=-51(LC 12)

Max Grav 3=151(LC 2), 2=288(LC 2), 4=106(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-5-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

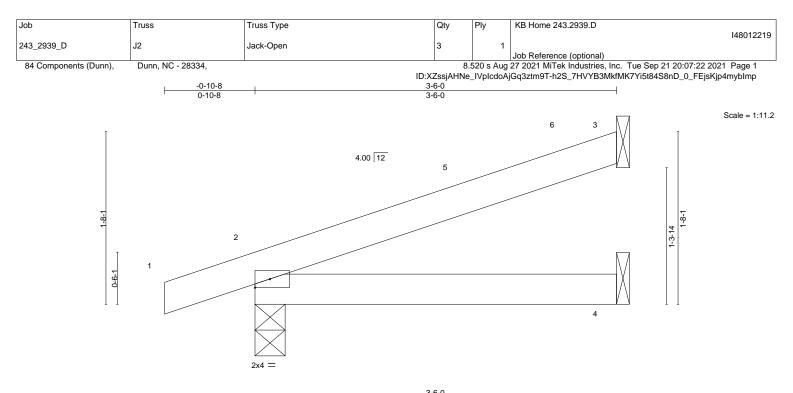
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 3.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			3-6-0						
I CLL (root) 20.0 P Snow (Pf/Pg) 11.6/15.0 L TCDL 10.0 L BCU 0.0 * R	PACING- 2-0-0 Plate Grip DOL 1.15 Jumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.16 BC 0.13 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 -0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%

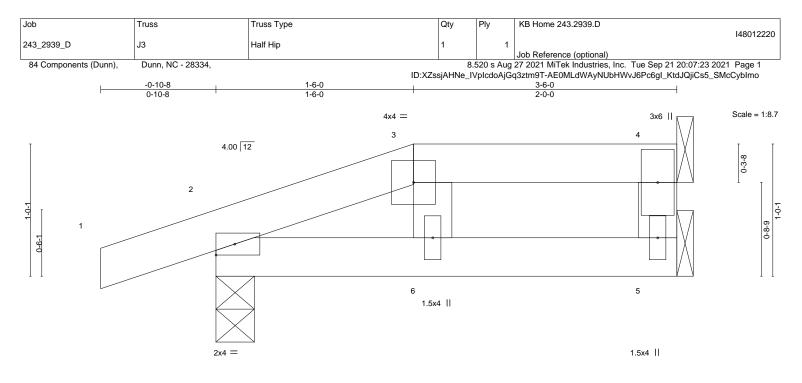
TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=48(LC 12) Max Uplift 3=-41(LC 16), 2=-43(LC 12)

Max Grav 3=89(LC 2), 2=202(LC 2), 4=66(LC 7)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 3.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	ŀ	1-6-0 1-6-0	<u>3-6-0</u> 2-0-0	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.18 WB 0.02 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 6 >999 240 Vert(CT) -0.02 6 >999 180 Horz(CT) 0.01 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 13 lb FT = 20%

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 WEBS
 2x4 SP No.3

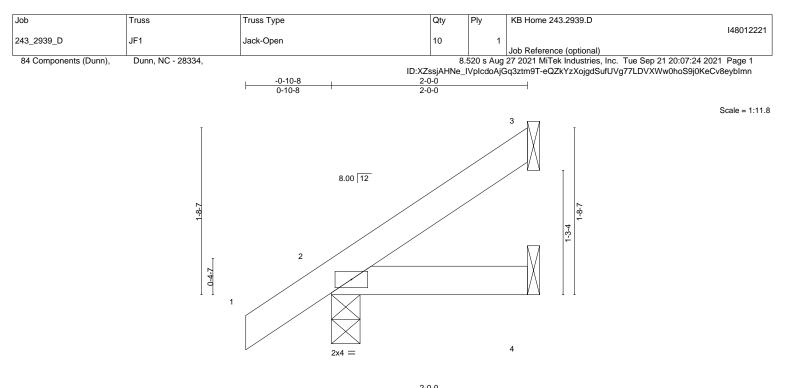
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=27(LC 13)

Max Uplift 2=-51(LC 12), 4=-19(LC 13) Max Grav 5=74(LC 7), 2=203(LC 36), 4=65(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			2-0-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.04 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 2 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=60(LC 14)

Max Uplift 3=-31(LC 14), 2=-13(LC 14) Max Grav 3=50(LC 26), 2=145(LC 2), 4=39(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

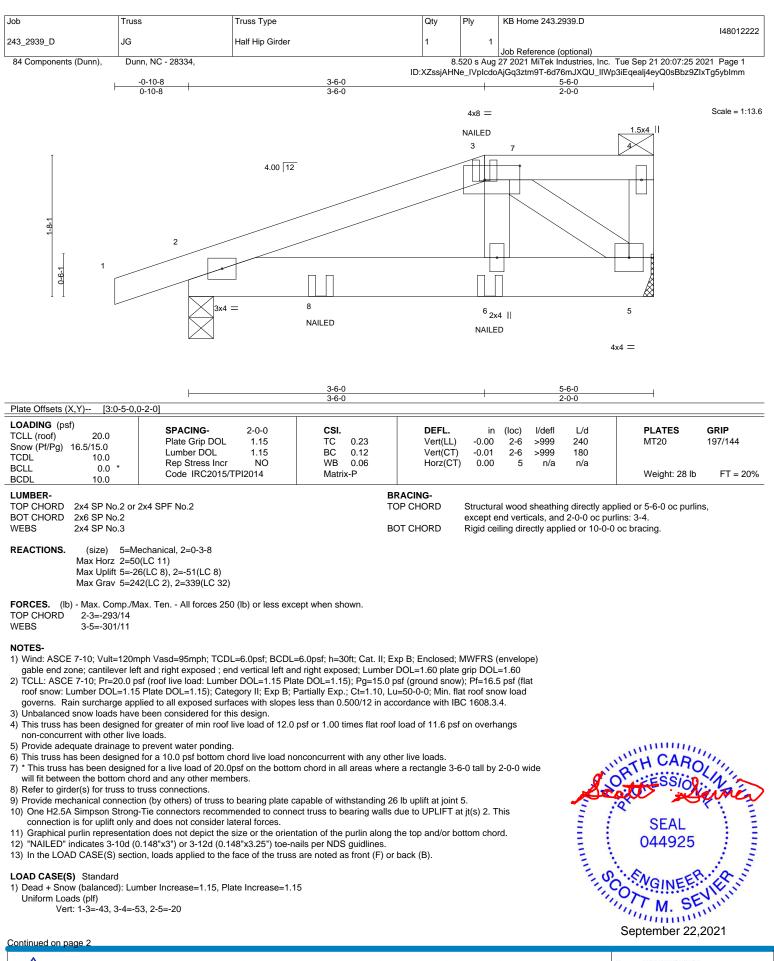
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 3.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
connection is for uplift only and does not consider lateral forces.



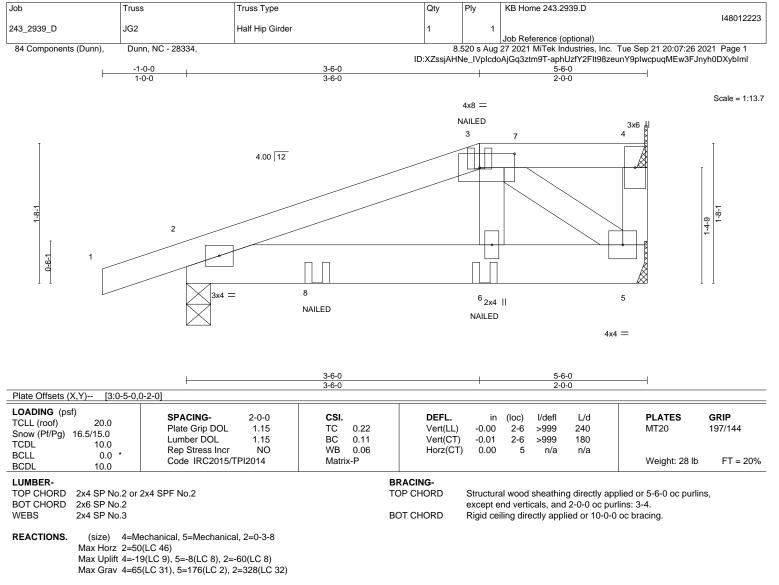
Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
					148012222
243_2939_D	JG	Half Hip Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:25 2021 Page 2


ID:XZssjAHNe_IVpIcdoAjGq3ztm9T-6d76mJXQU_IIWp3iEqealj4eyQ0sBbz9ZIxTg5ybImm

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 6=-13(F) 3=-16(F) 8=-43(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-274/17

WEBS 3-5=-274/14

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load

governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4 and 8 lb uplift at joint 5.

- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

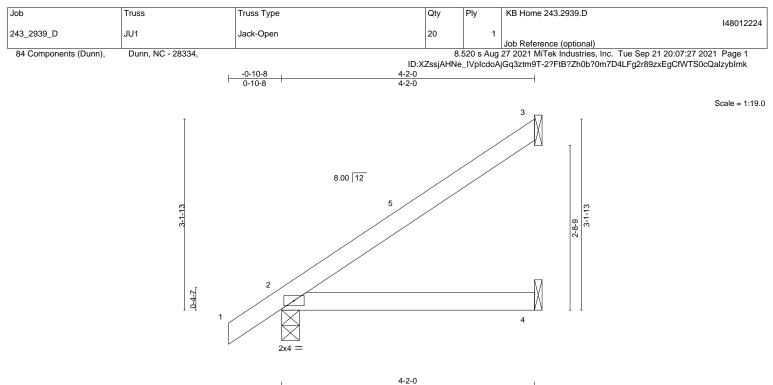
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
						I48012223
	243_2939_D	JG2	Half Hip Girder	1	1	
						Job Reference (optional)
	84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:27 2021 Page 2


ID:XZssjAHNe_IVpIcdoAjGq3ztm9T-2?FtB?Zh0b?0m7D4LFg2r89_eEhTfWVS0cQalzybImk

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-43, 3-4=-53, 2-5=-20 Concentrated Loads (lb) Vert: 6=-13(B) 3=-16(B) 8=-13(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			4-2-0	1			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.19 WB 0.00	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) -0.00	(loc) l/defl 2-4 >999 2-4 >999 3 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	1012(01) -0.00	5 11/a	n/a	Weight: 15 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

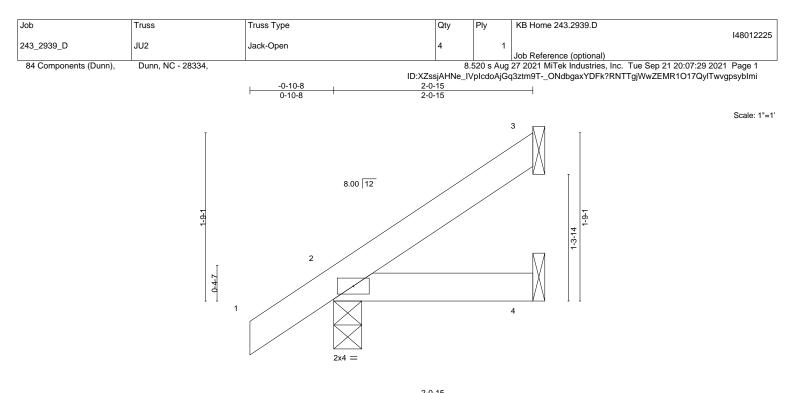
Max Horz 2=107(LC 14)

Max Uplift 3=-71(LC 14), 2=-5(LC 14) Max Grav 3=118(LC 26), 2=227(LC 2), 4=79(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 3.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.



Structural wood sheathing directly applied or 4-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			2-0-15						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.04 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 2 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

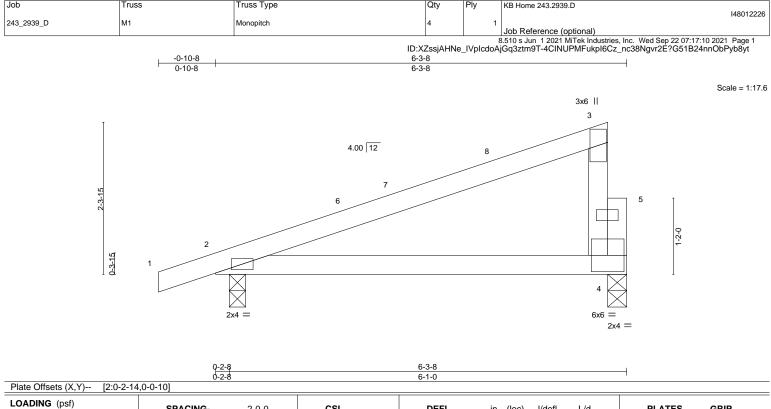
Max Horz 2=61(LC 14)

Max Uplift 3=-30(LC 14), 2=-14(LC 14) Max Grav 3=44(LC 26), 2=153(LC 2), 4=37(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.



Structural wood sheathing directly applied or 2-0-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCDL 0.0 * BCDL	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.72 BC 0.50 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT		>493	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or BOT CHORD 2x4 SP No.2 or	2x4 SPF No.2	Т	BRACING-	end verticals.		0 , 11	plied or 6-0-0 oc purlir	ns, except
WEBS 2x4 SP No.2 or 3-4: 2x4 SP No.	2x4 SPF No.2 *Except* 3	E	3OT CHORD		mends that uring trus	at Stabilizers) oc bracing. and required cross braction accordance with Stab	

REACTIONS. (lb/size) 4=1053/0-3-8 (min. 0-2-1), 2=254/0-3-0 (min. 0-1-8) Max Horz 2=76(LC 13) Max Uplift 4=-154(LC 16), 2=-59(LC 12) Max Grav 4=1334(LC 2), 2=328(LC 2)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 4-5=-1276/441, 3-5=-1275/441

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

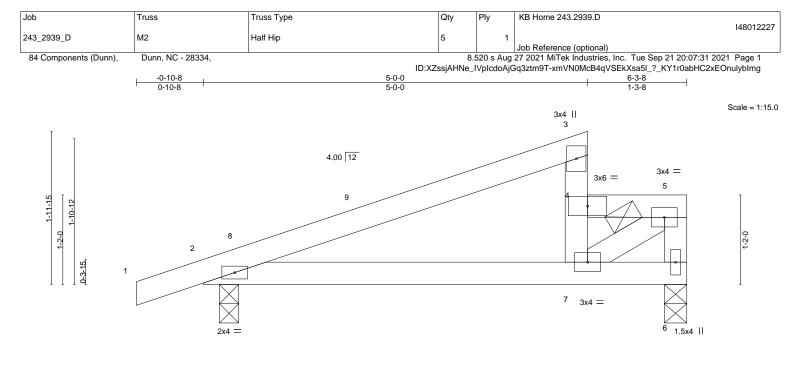
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 2-4=-20 Concentrated Loads (lb)

Vert: 3=-900(F)

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-2-8 0-2-8	5-0-0 4-9-8				-	6-3-8 1-3-8	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	TC 0.71 BC 0.29	DEFL. in Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.00	(loc) 2-7 2-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 6=0-3-8, 2=0-3-0 Max Horz 2=77(LC 16) Max Uplift 6=-28(LC 16), 2=-58(LC 12) Max Grav 6=408(LC 2), 2=377(LC 36)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-400/57, 4-5=-454/138, 5-6=-398/124 TOP CHORD 2-7=-132/336

BOT CHORD WEBS 5-7=-162/503

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat

roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 6 and 2. This

connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-43, 4-5=-68(F=-15), 2-6=-20

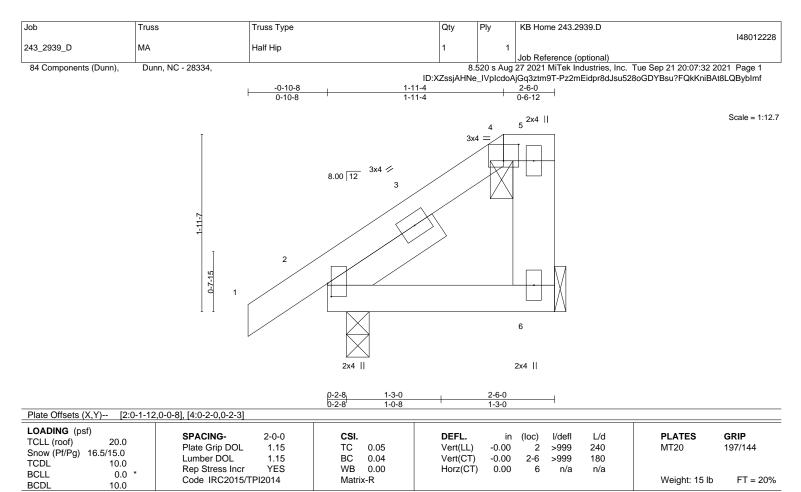
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-7, 4-5.


Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
					I48012227
243_2939_D	M2	Half Hip	5	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:31 2021 Page 2

ID:XZssjAHNe_IVplcdoAjGq3ztm9T-xmVN0McB4qVSEkXsa5I_?_KY1r0abHC2xEOnulybImg

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 4=-180(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

BRACING-TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 2-6-0 oc purlins, 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD except end verticals, and 2-0-0 oc purlins: 4-5. WEBS 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. SLIDER Left 2x4 SP No.3 1-4-11

REACTIONS. (size) 6=Mechanical, 2=0-3-0 Max Horz 2=57(LC 11) Max Uplift 6=-17(LC 11), 2=-17(LC 14)

Max Grav 6=81(LC 26), 2=153(LC 2)

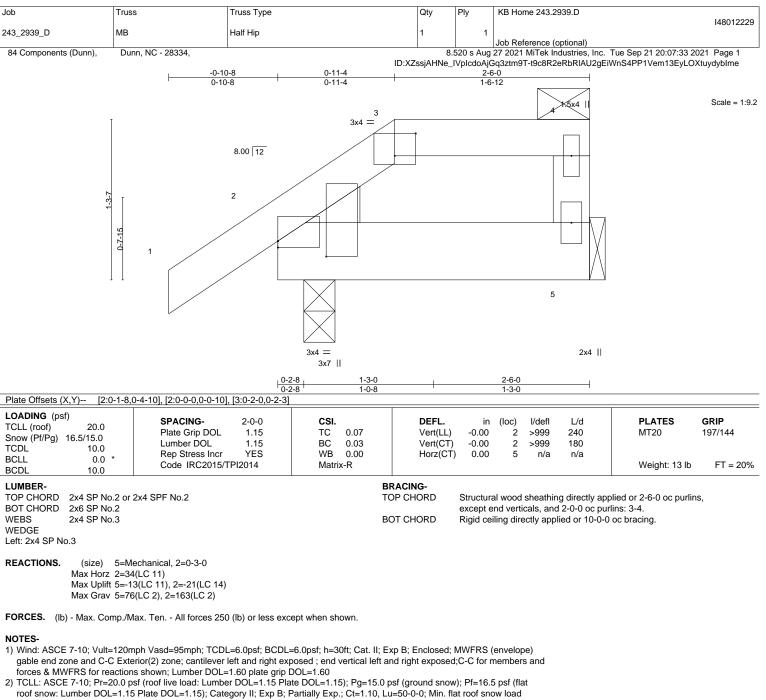
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 8) Refer to girder(s) for truss to truss connections.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

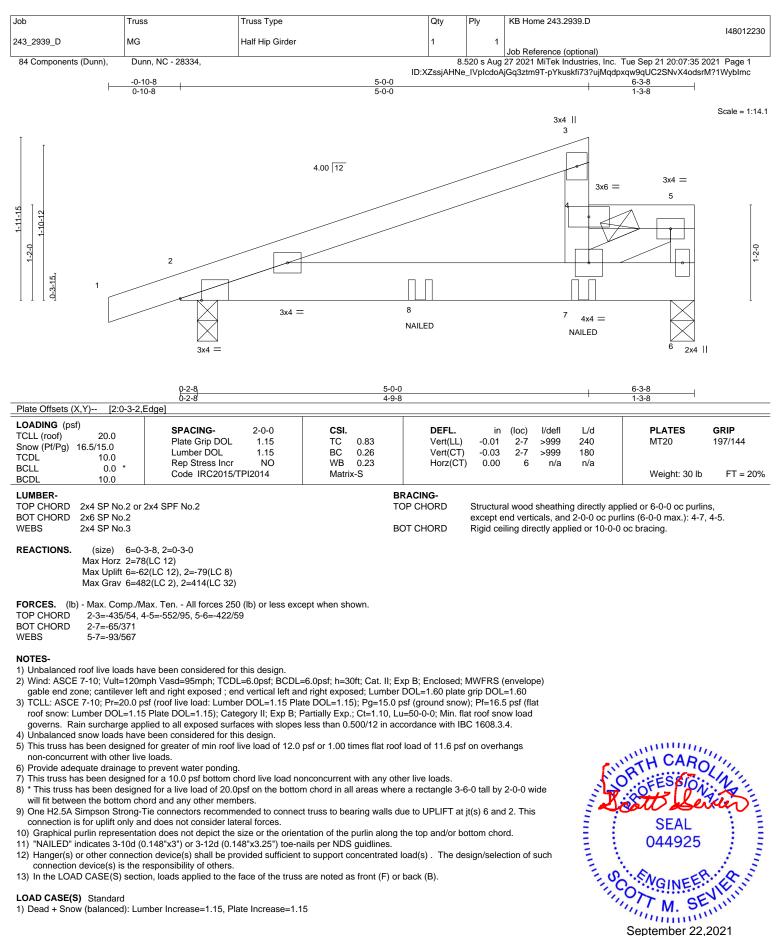
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.


8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

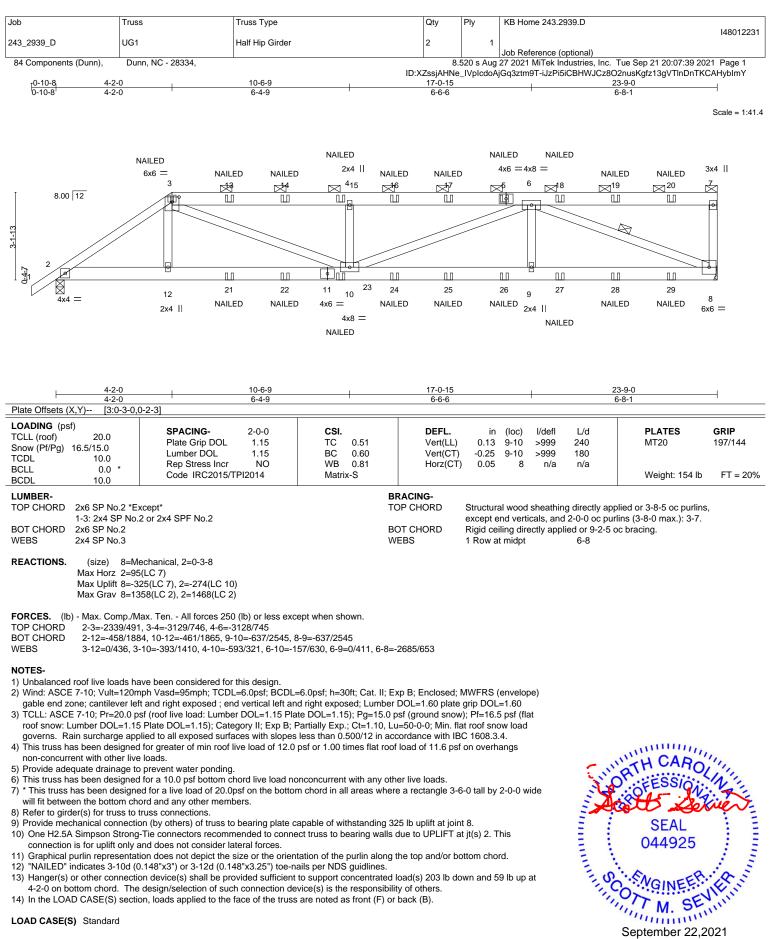
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D
						I48012230
	243_2939_D	MG	Half Hip Girder	1	1	
						Job Reference (optional)
	84 Components (Dunn),	Dunn, NC - 28334,		8.	520 s Aug	27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:35 2021 Page 2


ID:XZssjAHNe_IVpIcdoAjGq3ztm9T-pYkuskfi73?ujMqdpxqw9qUC2SNvX4odsrM?1WybImc

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-43, 4-5=-68(F=-15), 2-6=-20 Concentrated Loads (lb) Vert: 7=-47(F) 4=-180(F) 8=-50(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Continued on page 2

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BFFORF USF Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

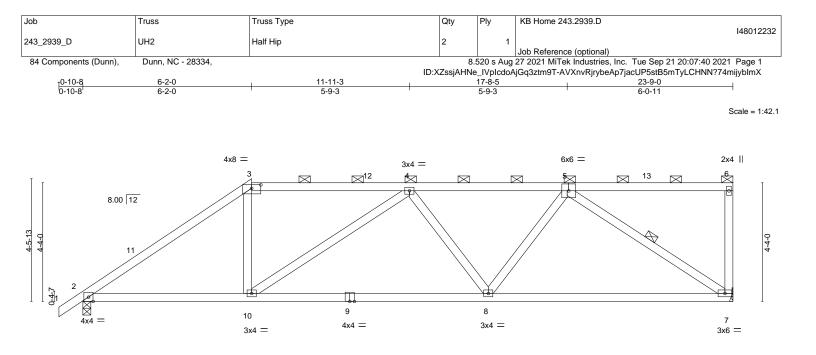
September 22,2021

Job	Truss	Truss Type	Qty	Ply	KB Home 243.2939.D	
					I48012231	
243_2939_D	UG1	Half Hip Girder	2	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.520 s Aug 27 2021 MiTek Industries, Inc. Tue Sep 21 20:07:39 2021 Page 2			

ID:XZssjAHNe_IVplcdoAjGq3ztm9T-iJzPi5iCBHWJCz8O2nusKgfz13gVTinDnTKCAHybImY

LOAD CASE(S) Standard

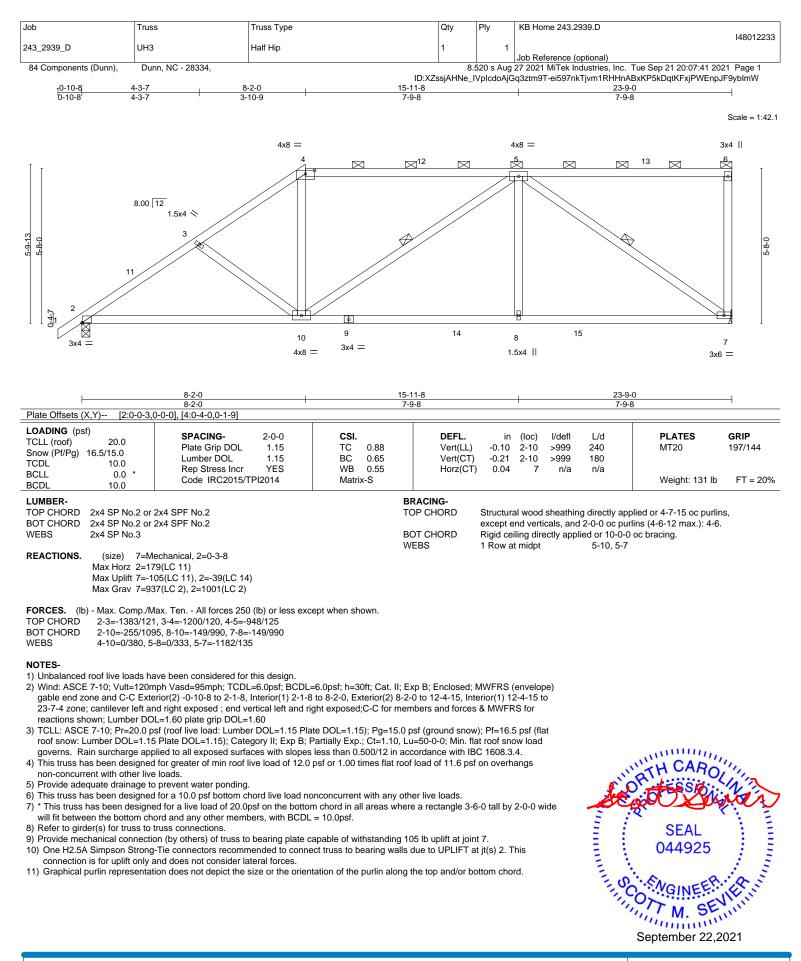
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-43, 3-7=-53, 2-8=-20

Concentrated Loads (lb)

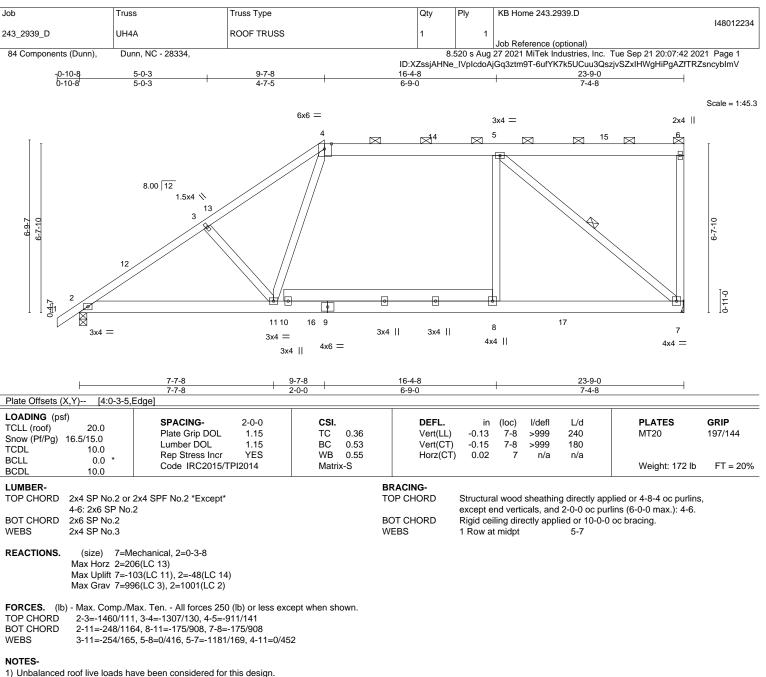
Vert: 3=-31(B) 5=-27(B) 12=-177(B) 13=-27(B) 14=-27(B) 15=-27(B) 16=-27(B) 17=-27(B) 18=-27(B) 19=-27(B) 20=-27(B) 21=-20(B) 22=-20(B) 23=-20(B) 24=-20(B) 25=-20(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



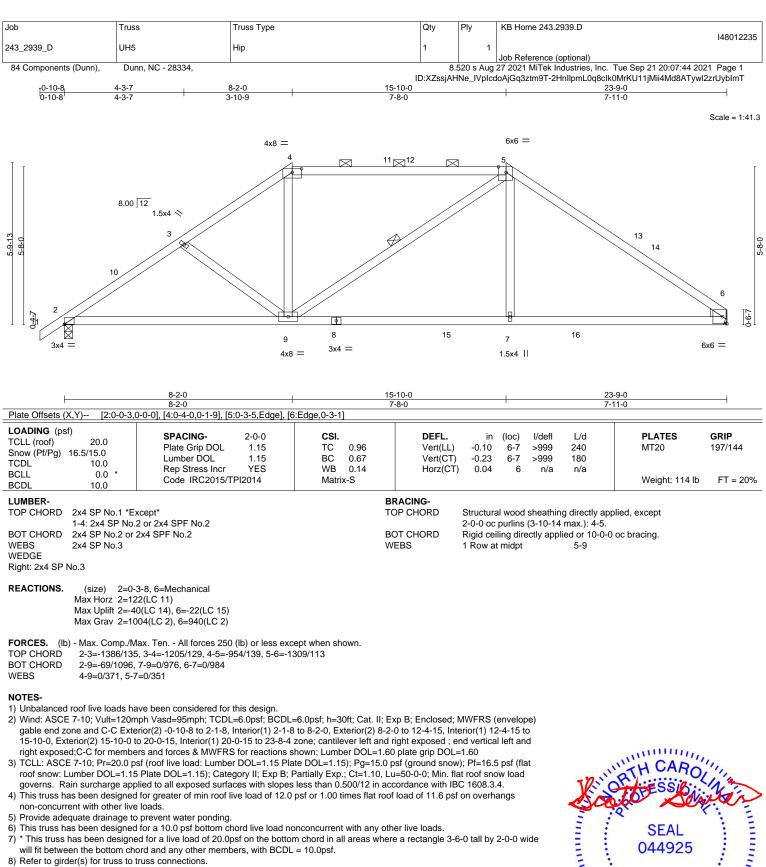
	6-2-0 6-2-0	<u>14-9-12</u> 8-7-12			23-9-0 8-11-4		
Plate Offsets (X,Y) [3:0-4-0,		8-7-12			8-11-4		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.64 Ve BC 0.82 Ve	FL. in t(LL) -0.15 t(CT) -0.31 z(CT) 0.05	(loc) l/defl 7-8 >999 7-8 >905 7 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or BOT CHORD 2x4 SP No.2 or WEBS 2x4 SP No.3 REACTIONS. (size) 7=M Max Horz 2=13 Max Uplift 7=-1	2x4 SPF No.2 echanical, 2=0-3-8	BRACING- TOP CHOR BOT CHOR WEBS	except en	d verticals, an ng directly app		lied or 3-8-8 oc purlins lins (4-10-1 max.): 3-6. oc bracing.	
 WEBS 3-10=0/454, 4 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-10; Vult=120n gable end zone and C-C Exte 23-7-4 zone; cantilever left ar reactions shown; Lumber DOL 3) TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.11 governs. Rain surcharge app 4) This truss has been designed non-concurrent with other live 5) Provide adequate drainage to 6) This truss has been designed will fit between the bottom ch 8) Refer to girder(s) for truss to 9) Provide mechanical connectii 10) One H2.5A Simpson Strong connection is for uplift only a 	prior(2) -0-10-8 to 2-1-8, Interior(1) 2 Ind right exposed ; end vertical left at L=1.60 plate grip DOL=1.60 sf (roof live load: Lumber DOL=1.11; 5 Plate DOL=1.15); Category II; Exp blied to all exposed surfaces with slid for greater of min roof live load of a loads. b prevent water ponding. If or a 10.0 psf bottom chord live load ed for a live load of 20.0psf on the b ord and any other members. truss connections. on (by others) of truss to bearing pla- Tie connectors recommended to c and does not consider lateral forces	CDL=6.0psf; h=30ft; Cat. II; Exp B; Encl 2-1-8 to 6-2-0, Exterior(2) 6-2-0 to 10-4- nd right exposed;C-C for members and 5 Plate DOL=1.15); Pg=15.0 psf (ground B; Partially Exp.; Ct=1.10, Lu=50-0-0; opes less than 0.500/12 in accordance of 12.0 psf or 1.00 times flat roof load of 1 ad nonconcurrent with any other live loa ottom chord in all areas where a rectan ate capable of withstanding 105 lb uplift connect truss to bearing walls due to UP	5, Interior(1) 10- orces & MWFRS snow); Pf=16.5 Jin. flat roof snow rith IBC 1608.3.4 .6 psf on overhar is. gle 3-6-0 tall by 2- at joint 7. .IFT at jt(s) 2. Thi	4-15 to 5 for psf (flat v load ngs -0-0 wide		SEAL 044925	New Manning

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

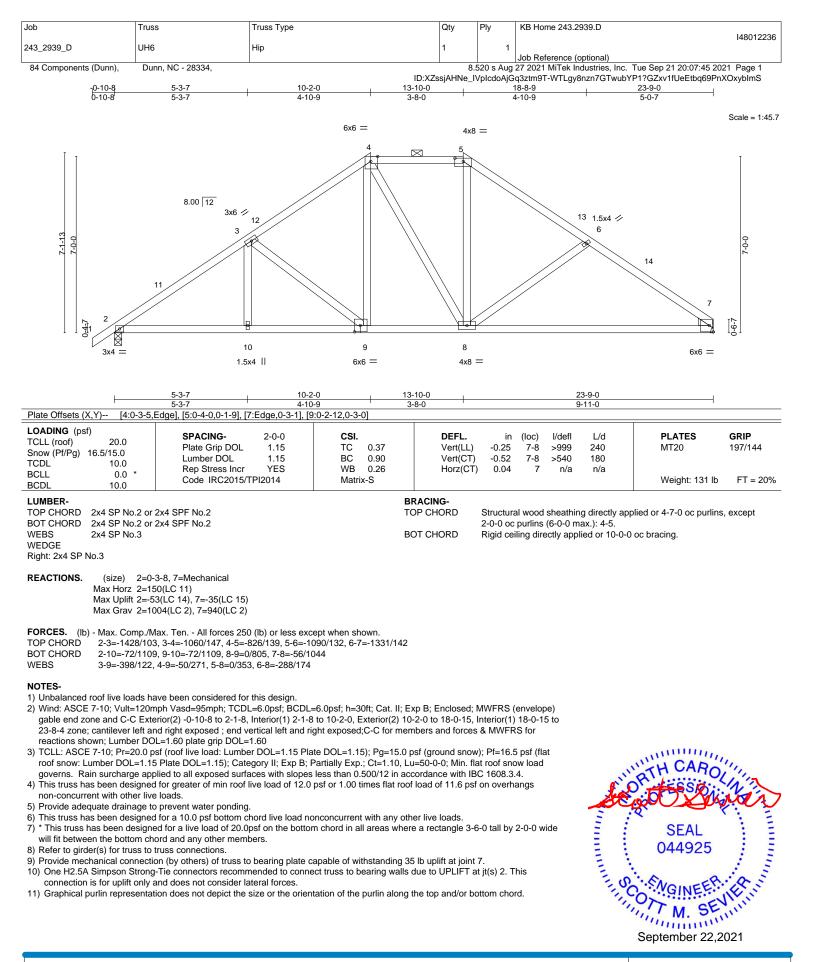
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 9-7-8, Exterior(2) 9-7-8 to 13-10-7, Interior(1) 13-10-7 to 23-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=16.5 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 7.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

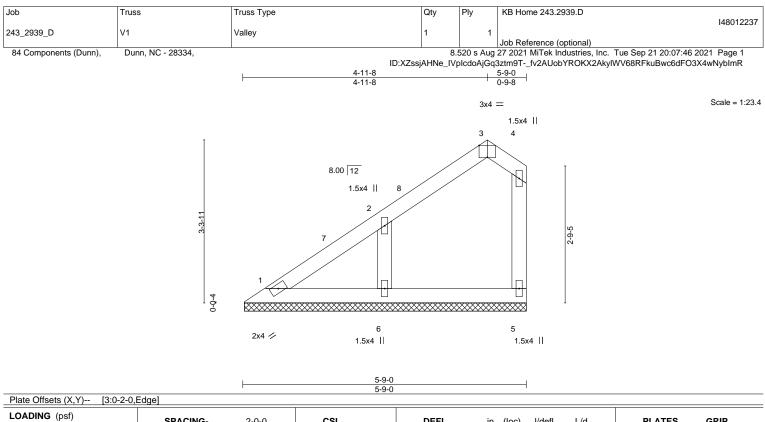
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 6.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.16 BC 0.11 WB 0.04 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - -0.00 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3		TC		Structural wood except end verti Rigid ceiling dire	cals.	0 , 1	oplied or 5-9-0 oc purlin 0 oc bracing.	ıs,

REACTIONS. (size) 1=5-8-10, 5=5-8-10, 6=5-8-10 Max Horz 1=91(LC 11) Max Uplift 5=-7(LC 15), 6=-60(LC 14) Max Grav 1=88(LC 26), 5=94(LC 2), 6=247(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

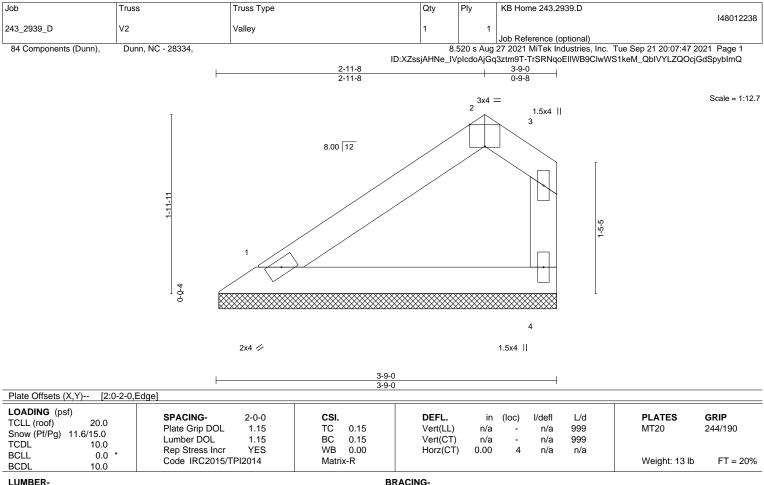
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-11-8, Exterior(2) 4-11-8 to 5-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LL	JM	BF	R-

TOP CHORD 2x4 SP No.3 BOT CHORD

2x4 SP No.3 WEBS 2x4 SP No.3

REACTIONS. (size) 1=3-8-10, 4=3-8-10 Max Horz 1=48(LC 11) Max Uplift 1=-6(LC 14), 4=-13(LC 14)

Max Grav 1=125(LC 2), 4=125(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

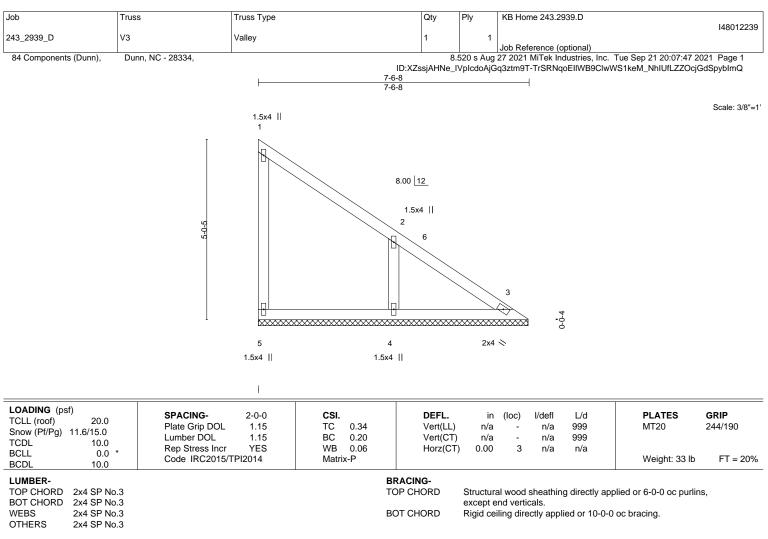
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


Structural wood sheathing directly applied or 3-9-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 5=7-6-2, 3=7-6-2, 4=7-6-2

Max Horz 5=-148(LC 10) Max Uplift 5=-25(LC 10), 3=-1(LC 11), 4=-102(LC 15)

Max Grav 5=125(LC 26), 3=119(LC 25), 4=358(LC 26)

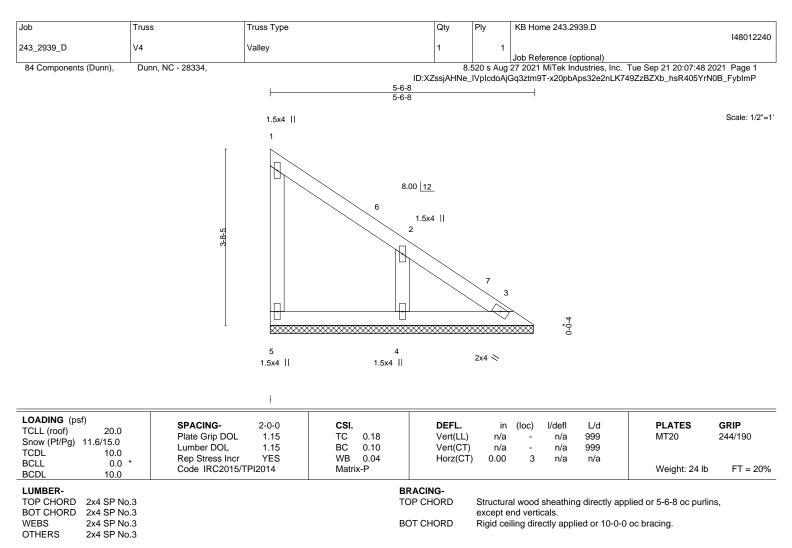
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-272/155

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 4-4-11, Interior(1) 4-4-11 to 7-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 5=5-6-2, 3=5-6-2, 4=5-6-2

Max Horz 5=-105(LC 10) Max Uplift 5=-18(LC 10), 3=-2(LC 11), 4=-72(LC 15)

Max Grav 5=91(LC 26), 3=83(LC 25), 4=255(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

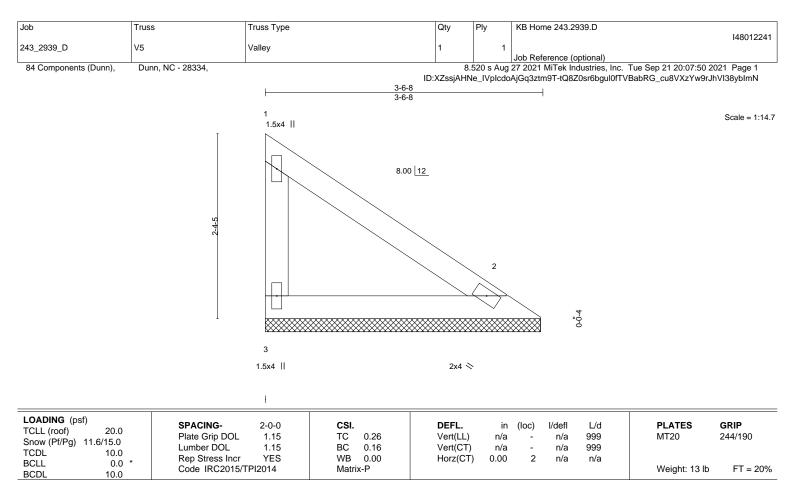
NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 4-4-11, Interior(1) 4-4-11 to 5-0-12 zone; cantilever left and right exposed; end vertical

left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

REACTIONS.

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3WEBS2x4 SP No.3

BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-8 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

(size) 3=3-6-2, 2=3-6-2 Max Horz 3=-62(LC 10)

Max Uplift 3=-24(LC 15), 2=-2(LC 15)

Max Grav 3=125(LC 26), 2=117(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

