Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 31195 JOB: 22-1366-R01 JOB NAME: LOT 190 CROSSING @ ANDERSON CR Wind Code: 37 Wind Speed: Vult= 130mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. 28 Truss Design(s)

Trusses:

M01, M02, M03, M04, M05, M06, M07, PB01, PB02, R01, R02, R03, R04, R05, R06, R07, R09, R10, R11, R12, R13, R14, VT01, VT02, VT03, VT04, VT05, VT06

Warning !--- Verify design parameters and read notes before use.

- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- MININGRTH CAR BATH CAROL 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will PROFESSI fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 7, 9 lb uplift at joint 5 and 24 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates ATTERNA AND that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

22/2027 rd and for Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

2/22/2022

Max Horz 5=55(LC 11) Max Uplift4=-21(LC 14), 5=-63(LC 10) Max Grav4=118(LC 21), 5=-63(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10-11)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 4 and 63 lb uplift at joint 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Max Horz 7=45(LC 11) Max Uplift7=-38(LC 10), 5=-17(LC 10), 6=-52(LC 14)

Max Grav 7=195(LC 21), 5=88(LC 21), 6=217(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(13-16)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- In between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 7, 17 lb uplift at joint 5 12) This truss is designed in accordance with the 2018 International Residential Code sections BERG 11/2 standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	M03	Monopitch Supported Gable	1	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries. Inc. Wed Feb 23 15:04:28 2022 Page 2	

8.430 s Feb 12 2021 Mi Fek Industries, Inc. Wed Feb 23 15:04:28 2022 Page 2 ID:NQLeVDd4PWwD4SswrTSDr_y95ve-WSWRQeEGljdNOLCQnRVSsw10oi5ffO9?7mwt4lziEMn

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

NOTES- (10-13)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

- standard ANSI/TPI 1. 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are only graphical bearing condition.

- Bearing sylinious are only support the loads indicated.
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MAINIMALINA BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE CONSIDERATIONS.

LOAD CASE(S) Standard

22/202 'sd and fo Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

2/22/2022

LOADING (psi TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.25 1.25 YES PI2014	CSI. TC BC WB Matri	0.25 0.21 0.07 ix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.00	(loc) 1 1 8	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3					BRACING- TOP CHORD BOT CHORD	Struc end v Rigid MiT be i	tural wo rerticals ceiling ek reco nstalleo	ood shea directly mmends	athing direct applied or 6 s that Stabili truss erectic	ly applied or 6-0-0 oc -0-0 oc bracing. izers and required cro	purlins, except oss bracing h Stabilizer

Installation guide.

REACTIONS. All bearings 10-11-8.

(lb) - Max Horz 13=97(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 13, 8, 11, 12, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 13, 8, 11, 10, 9 except 12=274(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14-17)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 6-0-2, Corner(3E) 6-0-2 to 10-9-12 zone; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

- 10) First truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the 2018 between the bottom chord and any other members.
 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 "
 13) This truss is designed in accordance with the 2018 between the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the 2018 between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328	KENSINGTON DRIVE SPRIM
22-1366-R01	M05	Monopitch Supported Gable	2	1	Job Reference (optional)	# 31195
					8 430 s Feb 12 2021 MiTek Industries Inc. Wed Feb	23 15:04:29 2022 Page 2

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-_f3pd_Eu31mE0VncL81hP8aBA6OXOqJ8MQgQclziEMm

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

TO SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	M06	Monopitch	6	1	Job Reference (optional) # 31195	

8.430 s Feb 12 0201 MITek Industries, Inc. Wed Feb 23 15:04:30 2022 Page 2 ID:NQLeVDd4PWwD4SswrTSDr_y95ve-TrdBrKFWqLu5eeMpvsYwxL6I7WiC7Hola4P_8BziEMI

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applieability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328	8 KENSINGTON DRIVE SPRINC		
22-1366-R01	R01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	# 31195		
8 430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:33 2022 Page 2 ID:NQLeVDd4PWwD4SswrTSDr y95ve-tQJKTMHP7GGgV65Oa 5dZ kuUjnQKdwkH1eelWziEMi								

NOTES- (15-18)

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- (Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 (Neter to BCS1 Guide to Good Practice for Handning, Instaining, Restraining & Bracing of Metar Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 (18) SEE BCSI-B3 SUMMARY SHEET PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SPRI
22-1366-R01	R02	Piggyback Base	1	1	Job Reference (optional) # 31195
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:34 2022 Page 2

8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:34 2022 Page 2 ID:NQLeVDd4PWwD4SswrTSDr_y95ve-Lctigil1uZOX6Gga8ics6BHtn7wE3uotVhNBHyziEMh

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Plate Offsets (<u>X,Y) [2:0-2</u> -	<u>-14,0-2-0], [4:0-4-0,0-3-0], [5:0-3-12,0</u>	<u>-2-0], [7:0-6-4,0-2-4], [</u> *	10:0-2-0,0-1-12], [17:0-4-8,0-2-0], [19:0-6-0,0-3-0]					
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL) 20.0 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.82 BC 0.92 WB 0.92 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.24 12-13 >999 240 -0.50 12-13 >799 180 0.17 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 239 lb FT = 20%				
LUMBER-				BRACING-						
TOP CHORD	2x4 SP No.2			TOP CHORD	Structural wood sheathing direc	tly applied or 2-2-0 oc purlins, except				
BOT CHORD	2x4 SP No.2	*Except*			end verticals.	10.0.0 so has size . Essent				
WEBS	B2,B4: 2x4 S	iP No.3 *Evcent*		BOT CHORD	Rigid celling directly applied or 7	10-0-0 oc bracing, Except:				
WEBO	W3: 2x4 SP	No.2			2-2-0 oc bracing: 12-13.					
					1 Row at midpt 6-17					
				WEBS	1 Row at midpt 9-12					
					MiTek recommends that Stabil be installed during truss erection Installation guide.	lizers and required cross bracing on, in accordance with Stabilizer				
REACTIONS.	(lb/size) 12	=1393/0-3-8 (min. 0-1-11), 21=1393/	0-3-8 (min. 0-2-1)		.					
	Max Horz 21	=-236(LC 12) = 187(LC 15) 21- 164(LC 14)								
	Max Grav 12	!=1448(LC 45), 21=1765(LC 41)								
	Max Grav 12=1448(LC 45), 21=1705(LC 41)									
FORCES. (lb)	- Max. Comp	o./Max. Ten All forces 250 (lb) or les	s except when shown.	04 25- 2462/401						
TOP CHORD	4-25=-2393	3/438, 3-223282/448, 3-232878/3	6-7=-1520/401 7-8=-	1788/407						
	8-9=-2043/	389, 9-26=-343/90, 10-26=-424/80, 2	21=-1677/285, 10-12=	-411/142						
BOT CHORD	3-19=-36/3	33, 18-19=-441/2976, 17-18=-206/21	05, 6-17=-491/147, 14-	15=-174/1800,						
WEBS	14-27=-174	1/1800, 13-27=-174/1800, 12-13=-251 260	/1/38 7=_125/810_15_17=_7/	/13/7						
WEBO	7-17=-105/3	331, 7-15=-111/392, 8-15=-657/189, 5	3-13=0/318, 2-19=-313	/2646,						
	9-12=-1729	0/326		,						
	11)									
1) Unbalanced	-14) I roof live load	ts have been considered for this desi	nn			MUMMINICITY				
2) Wind: ASCE	E 7-16; Vult=1	130mph (3-second gust) Vasd=103m	oh; TCDL=5.0psf; BCD	L=5.0psf; h=23ft;	Cat. II; Exp B; Enclosed; MWFRS	WINGTH CAROLIN				
(envelope) g	gable end zor	ne and C-C Exterior(2E) -0-10-8 to 3-	1-2, Interior(1) 3-11-2	to 7-5-2, Exterior(2	2R) 7-5-2 to 18-7-15, Exterior(2E)	SEESSID Nolly				
18-7-15 to 2	23-7-12, Interi	or(1) 23-7-12 to 29-7-14, Exterior(2E)	29-7-14 to 34-5-8 zon	e; end vertical left	and right exposed;C-C for	and the second				
3) TCLL · ASCE	= 7-16 [·] Pr=20	0 psf (roof 11 · 1 µm DOI = 1 25 Plate	DOL = 1.00 plate grip D	sf (I um DOI =1 15	5 Plate DOI =1 15): Is=1 0: Rough	SFAL				
Cat B; Partia	ally Exp.; Ce=	=1.0; Cs=1.00; Ct=1.10	2012			28147				
4) Unbalanced	snow loads l	have been considered for this design				1 5				
5) This truss ha	as been desig	gned for greater of min roof live load o	of 12.0 psf or 2.00 time	s flat roof load of 2	20.0 psf on overhangs	Non al I				
6) Provide ade	quate draina	ge to prevent water ponding.		VOINEE OS INT						
7) This truss ha	as been desig	gned for a 10.0 psf bottom chord live	oad nonconcurrent wit	h any other live lo	ads.	WINK K. MORMUN				
8) * This truss	an in the transferred and the									
between the	e bottom chor	d and any other members, with BCDL	= 10.0pst.	anding 100 lb unli	ft at joint(s) except (it-lb) 12-107	2/22/2022				
Warning!	erify design na	arameters and read notes before use. This	design is based only upor	a parameters shown.	and is for an individual building component	ent to be installed and loaded				
Continued on p	age 2	sign parameters and proper incorporation of	component is responsibilit	y of building designe	r – not truss designer or truss engineer.	Bracing shown is for lateral support				
of individual w	eb members on	ly. Additional temporary bracing to ensure	stability during construction	n is the responsibility	of the erector. Additional permanent b	pracing of the overall structure is the				

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SPRIN
22-1366-R01	R03	Piggyback Base	5	1	Job Reference (optional) # 31195
		ID:NG	LeVDd4P	WwD4Ssw	8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:38 2022 Page 2 vrTSDr_y95ve-EN6DW3LXyouybtzLNXhoG1Sb4kIT?iFTQJLPQjziEMd

NOTES- (11-14)

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- (a) Web blacing shown is for lateral support of individual web members only. Relief to BCS1 Guide to Good Plactice for Planting, Restraining & Blacing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 (a) SEE BCSI-B3 SUMMARY SHEET PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

	6-4-0		12-5-4	17-1-10	21-10-0	30-8-12	33-7-0			
Plate Offsets (X,Y)	6-4-0 4:0-4-0.0-3-0], [5:0-3-1	2.0-2-01. [6:0	-6-4.0-2-41 [9:0-	4-8-6 3-0.0-1-12]. [1	<u>4-8-6</u> 2:0-6-0.0-4-0]. [1;	8-10-12 3:0-1-12.0-2-0]. [19:0-2	2-10-4			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- Plate Grip Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.25 DL 1.25 Incr YES 018/TPI2014	CS CS CS CS CS CS CS CS CS CS CS CS CS C	I. 0.73 0.91 3 0.96 trix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.31 15-16 >999 -0.53 15-16 >751 0.32 11 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 245 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER- TOP CHORD 2x4 SF T4: 2x/ BOT CHORD 2x4 SF B1,B3: WEBS 2x4 SF W10: 2 SLIDER Left 2x	No.2 *Except* SP SS No.2 *Except* 2x6 SP No.2 No.3 *Except* x4 SP No.2 3 SP No.2 - 3-9-14				BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she end verticals. Rigid ceiling directly 6-0-0 oc bracing: 15 1 Row at midpt MiTek recommend be installed during	athing directly a applied or 10-(-18 6-18 is that Stabilize truss erection,	applied or 2-2-0 oc p 0-0 oc bracing. Exc ers and required cros in accordance with	ourlins, except ept: s bracing Stabilizer	
REACTIONS. (lb/size) 11=1488/0-3-8 (min. 0-1-8), 2=1473/0-3-8 (min. 0-1-14) Max Horz 2=-251(LC 8) Max Uplifft1=-143(LC 13), 2=-120(LC 12) Max Grav 11=1612(LC 21), 2=1592(LC 3)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2227/200, 3-21=-2134/207, 21-22=-2108/222, 4-22=-2043/225, 4-5=-1920/238, 5-6=-1539/249, 6-7=-2471/263, 7-23=-4659/464, 23-24=-4787/437, 8-9=-4834/311, 9-11=-1628/154 BOT CHORD 2-25=-105/1836, 20-25=-105/1836, 20-26=-105/1837, 19-26=-105/1837, 19-27=0/1644, 14-28=0/1644, 13-28=0/1644, 13-29=-32/2261, 12-30=-32/2261 WEBS 4-19=-349/220, 5-19=-2/735, 18-19=-252/101, 6-15=-91/1249, 13-15=-113/1132, 7-13=-638/271, 7-12=-311/2244, 9-12=-209/3904, 14-16=-259/0										
 WEBS 4:19=-349/220, 5:19=-2/735, 18-19=-252/101, 6:15=-91/1249, 13:15=-113/1132, 7:13=-638/271, 7:12=-311/2244, 9:12=-209/3904, 14:16=-259/0 NOTES- (12:15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7:16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0:-01-8 to 3:11-2; Interior(1) 3:11-2 to 5:7-13, Exterior(2R) 5:7-13 to 25:5-6, Interior(1) 25:5-6 to 29:7-14, Exterior(2E) 29:7-14 to 34:5-8 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions show; Lumber DOL=1.60 palse grip DOL=1.60 3) TCLL: ASCE 7:16; Pr=20.0 psf (roof LL: Lum DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) All plates are MT20 plates unless otherwise indicated. 7) This truss has been designed for a 10:0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10:0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10:0 psf on the bottom chord in all areas where a rectangle 3:6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity 2/22/2022 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except ([t=1b) 11=143 2/22/2022 2/22/2022 2/22/2022 2/22/2022 										

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RINC
22-1366-R01	R04	Piggyback Base	3	1	Job Reference (optional) # 31195	
		ID:NQL	_eVDd4PV	VwD4Sswi	8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:41 2022 Page 2 rTSDr_y95ve-eyoM85OQEjGXSLiw2gEVug46eyJIC3Ov6Ha312ziEMa	a

NOTES- (12-15)

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- (a) Web blacing shown is for lateral support of individual web members only. Relief to BCS1 Guide to Good Plactice for Planting, Restraining & Blacing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 (b) SEE BCSI-B3 SUMMARY SHEET PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SPR	ING
22-1366-R01	R05	Piggyback Base	3	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:44 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-2XUUn7QIXee6JoQVjooCWlicz9NEPWSMoFojeNziEMX

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	R06	Piggyback Base	6	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries. Inc. Wed Feb 23 15:04:46 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-?wbFBoSZ3FvqY6atrDqgbjn_bz10tPQfGZHqiGziEMV

- Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	R07	Piggyback Base Supported Gable	1	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:48 2022 Page 2	

8.430 s Feb 12 2021 Mi Fek Industries, Inc. Wed Feb 23 15:04:48 2022 Page 2 ID:NQLeVDd4PWwD4SswrTSDr_y95ve-xJj?cUTpbt9YoPkGyes8g8sS1mvdLPgxjtmxn8ziEMT

15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT	190 CROSSING @ AND	ERSON CREEK 328 KENS	SINGTON DRIVE SPRING
22-1366-R01	R09	Common Supported Gable	1	1		#	31195
				Job 8.430	Reference (optional) s Feb 12 2021 MiTek Inc	Justries, Inc. Wed Feb 23 15	5:04:49 2022 Page 1
		-Q-10 ₇ 8 7-3-8	ID:NQLeVDd4PWwD45	SswrTSDr_y95ve 4-7-0 1ដូ	e-PVHNqqURMAHPP2 5-5₁8	ZJSWLONDMPaHABA4	oz5yXWUJaziEMS
		0-10-8 7-3-8	7	-3-8 0-	10-8		
			$4x4 \equiv$				Scale = 1:72.8
		-	6				
		16 00 12 5	JE L L				
				\ \			
		4 T		k ¹ 8			
		Ŧ	STT4	314	L		
		3×4 11 3	813 813	9			
				SII2 R	10		
				NP			
					∕∕] .		
		²⁰ ¹⁹ ¹⁸	17 16 15	14 13 12 22	2		
		3x4		3x4	1		
		<u> </u>	14-7-0				
LOADING (psf)			14-7-0	· · · ·			
TCLL (roof) 20.0	Plate Grip DOL	2-0-0 CSI. 1.25 TC 0.37	Vert(LL)	in (loc) -0.00 11	l/defl L/d n/r 180	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.25 BC 0.34 YES WB 0.41	Vert(CT) Horz(CT)	-0.01 11 0.00 12	n/r 80 n/a n/a		
BCLL 0.0 * BCDL 10.0	Code IRC2018/T	Pl2014 Matrix-R		0.00 12	ind ind	Weight: 132 lb	FT = 20%
LUMBER-			BRACING-	o			
BOT CHORD 2x4 SP N	No.2 No.3		TOP CHORD	end verticals	ood sheathing direct	ly applied or 6-0-0 oc p	ourlins, except
WEBS 2x4 SP M OTHERS 2x4 SP M	No.3 No 3		BOT CHORD WEBS	Rigid ceiling 1 Row at mid	directly applied or 6 ht 6-16 5	-0-0 oc bracing. i-17_7-15	
				MiTek reco	mmends that Stabili	zers and required cros	s bracing
				be installed Installation	during truss erectio	on, in accordance with	Stabilizer
(Ib) - Max Hor	rings 14-7-0. ⁊ 20=-320(I C 10)						
Max Upl	ift All uplift 100 lb or less at	t joint(s) except 20=-331(LC 8), 12	2=-309(LC 9), 17=-14	8(LC 12), 18=-	151(LC		
Max Gra	IZ), 19–-316(LC 12), 15– NV All reactions 250 lb or le	ss at joint(s) except 20=383(LC 1	1), 12=359(LC 10), 1	6=509(LC 13),	17=306(LC		
	20), 18=278(LC 20), 19=3	377(LC 10), 15=305(LC 21), 14=2	79(LC 21), 13=363(L	C 11)			
FORCES. (lb) - Max. C	omp./Max. Ten All forces 64/240_2-3=-280/282_4-5	250 (lb) or less except when sho	wn. 39/471 7-8=-221/330				
9-10=-2	261/263			3			
WEBS 0-100	5757412						
1) Unbalanced roof live	loads have been considere	d for this design.					
2) Wind: ASCE 7-16; Vi (envelope) gable end	ult=130mph (3-second gust I zone and C-C Corner(3E)) Vasd=103mph; TCDL=5.0psf; E -0-10-8 to 3-11-2_Corner(3R) 3-1	CDL=5.0psf; h=23ft; 1-2 to 10-7-14 Corne	Cat. II; Exp B; I er(3F) 10-7-14 f	Enclosed; MWFRS		
vertical left and right	exposed;C-C for members	and forces & MWFRS for reaction	ns shown; Lumber DC	DL=1.60 plate g	rip DOL=1.60		
Gable End Details as	applicable, or consult qual	ified building designer as per AN	SI/TPI 1.				
4) TCLL: ASCE 7-16; P Cat B; Partially Exp.;	r=20.0 psf (roof LL: Lum DC Ce=1.0; Cs=1.00; Ct=1.10	DL=1.25 Plate DOL=1.25); Pf=20.	0 psf (Lum DOL=1.1	o Plate DOL=1.	15); Is=1.0; Rough	MARTINIA CASHAN	
 This truss has been a non-concurrent with a 	designed for greater of min other live loads.	roof live load of 12.0 psf or 2.00 t	imes flat roof load of :	20.0 psf on ove	rhangs	IN BTH CAHOLA	1111
6) All plates are 2x4 MT	20 unless otherwise indication	ted.			inni	A POPLOS PAR	S IIII
8) Truss to be fully shea	athed from one face or secu	,. irely braced against lateral mover	nent (i.e. diagonal we	:b).	1111	SEAL	
9) Gable studs spaced a 10) This truss has been	at 2-0-0 oc. designed for a 10.0 psf bo	ttom chord live load nonconcurrer	nt with any other live I	oads.	UIUII	28147	1
11) * This truss has bee fit between the botto	en designed for a live load o om chord and any other me	f 30.0psf on the bottom chord in a mbers, with BCDL = 10.0psf.	all areas where a rect	angle 3-6-0 tall	by 1-0-0 wide will	A SNOWER !!	Mun .
12) Provide mechanical	connection (by others) of the	russ to bearing plate capable of w	/ithstanding 331 lb up	lift at joint 20, 3	809 lb uplift at joint	ARK & MORRIS	man
at joint 13.			upini ai juni 15, 152		i⊶anu sizib upliπ	White the state of	
13) This truss is design standard ANSI/TPI	ed in accordance with the 2 1	018 International Residential Coo	le sections R502.11.1	and R802.10.	2 and referenced	2/22/2022	
Warning !Verify desig Continued on page 2	gn parameters and read notes	before use. This design is based only	upon parameters shown, a	and is for an indiv	ridual building compone	ent to be installed and load	led
of individual web member	on uesign parameters and proper	incorporation of component is response racing to ensure stability during constru-	whith or building designe	x – not truss design of the erector	ditional permanent by	Dracing snown is for latera	11 support

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	R09	Common Supported Gable	1	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries. Inc. Wed Feb 23 15:04:49 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-PVHNqqURMAHPPZJSWLONDMPaHABA4oz5yXWUJaziEMS

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SPR	ING
22-1366-R01	R11	Roof Special Structural Gable	1	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:51 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-LtP8FWVhuoX6ftTrdmQrImUoQ_sJYI?OPr?bOTziEMQ

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	R12	Roof Special	2	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:52 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-p4yWSsWKf5fzG121BUx4q_1z_NBdH6JXeVk8wvziEMP

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIV	E SPRING
22-1366-R01	R13	Roof Special	1	1	Job Reference (optional) # 31195	
					8 430 s Feb 12 2021 MiTek Industries Inc. Wed Feb 23 15:04:53 2022 F	age 2

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-HGWufCXyQPnquBcEIBSJNBZAUnX_0Zfgt9UiSMziEMO

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 190 CROSSING @ ANDERSON CREEK 328 KENSINGTON DRIVE SP	RING
22-1366-R01	R14	ROOF SPECIAL	1	1	Job Reference (optional) # 31195	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Feb 23 15:04:55 2022 Page 2	

ID:NQLeVDd4PWwD4SswrTSDr_y95ve-Efee4tYCx01Y8UmcscUnScfWkbCUUT5zKTzpXEziEMM

- Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and rotat inter origination of component is responsibility of building designer – not truss designer or truss engineer. Bracing of he overall structure is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer outrous design are used only open parameters and run nurrique outrong component to be instanted and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.