

DATE REV. 02/15/22 DATE R		N)) 88 or prostational state of the second sta	Leville e: (91) (910) less tha vith the contract derived id determine f wood 3 design the suppeds those ad design the suppeds those ad design the supped ad design the supped the supped ad design the supped ad design the
	- 21 54-8 - 44 gual to rriptive session session session and ACK SECU: 1 SECU:	DATE REV. 02/15/22 1 3 4 2 9	E, ()) () () () () () () () () () () () ()
	CK		e, N.C. 0) 864- 1 86
Sada Sada Sada Sada Sada Sada Sada Sada		ar CK CK CK CK CK CK CK CK CK CK	e, N.C. 28 0) 864-84) 864-44 m or equal to e prescriptive for the minimum sespecified in in profession poort system id Land OR JACK LES ROULTED P 0 1 0 2 0 3 10 4 10 5 10 5
	8309 8787 444 to 3000i/ ve Codd fer to th escripti num for an in the - scripti num for an in the - action of an in the - scripti dry	A-8787 4444 al to 3000 prive Code refer to the sional shan tem for all andry ACK STI ACK STI A	e, N.C. 28309 0) 864-8787) 864-4444 in or equal to 3000 e prescriptive Code tor shall refer to the from the prescriptive studs required to 3 00 Landry id Landry OR JACK STU LES RODECU 2 (20) S REQUIRED 6 EA EN COLUMN BA 134 0 1 344 0 2 680 0 1 344 0 2 680 0 3 102 0 4 136 0 5 170 0 6 1 344 0 2 680 0 1 344 0 2 680 0 4 136 0 5 170 0 6 1 344 0 7 102 102 102 102 102 102 102 102 102 102
	2	al a	e, N.C. 2 0) 864-4 in or equal e prescript itor shall represcript itor shall represcript itor shall represent the pre- se specifier in profession I La I CR JAC I S RECENT I C S S S S S S S S S S S S S S S S S S
DATE REV. 02/15/22 DATE REV. 02/15/22 DATE REV. 02/15/22 DATE REV. 02/15/22 DATE REV. 02/15/22 DATE REV. 02/15/22 DATE NUMBER OF THE DEPENDENCE OF THE			
Hickory III Cu / 2010 Hickory IIII Cu / 2010 Hickory III Cu / 2010 Hickory IIII Cu / 2010 Hickory IIIII Cu / 2010 Hickory IIII Cu / 2010 Hickory IIII Cu / 2010 Hickory IIII Cu / 2010 Hickory IIII Cu / 2010 Hickory IIIII Cu / 2010 Hicko	Hickory II "C" Hickory II "C" Hickory II "C" Hickory II "C" An address Hickory II "C" An address Hickory II "C" An address Hickory II "C" Hickory II "C" A C I David L CU LASS A C I DAVIG A C I DAVIG	Hickory II "C" A C C C C C C C C C C C C C C C C C	
vetteville, N.C. 28 one: (910) 864-8: ax: (910) 864-444 ions less than or equal to imply with the prescriptive ions less than or equal to imply with the prescriptive is (910) 864-444 ions less than or equal to imply with the prescriptive is (910) 864-444 ions less than or equal to imply with the prescriptive is (determine the minimum is (determine the minim is (d	Vetteville, N.C. one: (910) 864 ions less than or equipply with the presc. ions less than or equipply with the presc. The contractor shales (derived from the n beer of wood studs in profession profession the support systexceeds those species istered design profession the support systexceeds those species istered design profession the support systexceed 15000#. David Li CHART FOR J. Masch on MELE SPORT F CACK STUDS REQUIDE Vetter and the support systematic syste	Vetteville, vetteville, one: (910) ax: (910) 8 ions less than of istered design istered design <	CHA A SED CHA A SED CHA CHA CHA CHA CHA CHA CHA CHA
David Land ADDERS ADD Col 4 Hayes Col 4 Hayes Col 4 Hayes Col 7 Hayes	Fayetteville, N.C. Phone: (910) 864 Fax: (910) 864 reactions less than or equiparticle termine the member of wood study of the support synthetexceed the support synthetexceed the support synthetexceed the support synthetexceed tesign te	Fayetteville, Phone: (910) Fax: (910) 8 Fractions less than to comply with the prestations less than to comply with the prestations less than to design the support that exceeds those Aregistered design to design the support to design the suppo	ADCHA Baseb Phanes Fractions I to comply constructions I to comply constructions I to comply constructions I to design that exceed A D CHA (MASED EER OF AND 1 2 3 4 5 6 7 8 9 Phanes Lange Phanes

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

		Bearing r deemed t requirem attached requirem	RO(RUS eilly R Fayett Phone Fax: reactions to comply ents. The Tables (ents) to	OF & SES oad Ir teville e: (91((910)	& FL & B dustr , N.C.) 864-4 864-4	I to 3000# tive Code efer to th prescriptiv imum fou	AS k are e re Code ndation
8. 0		size and reactions reactions 15000#. A retained freaction for Tables. A retained freactions Signature LOA	A register to design that exce to design that exce	of wood s than 3000 red design the suppled the suppled the suppled the suppled the suppled the suppled the suppled Davi Davi ART F(o CN TABLING HEADED	tuds required to the specific of the specific	ired to s t greater f ional sha m for any d in the a onal shall m for all mdry CK STU CK STU C a (b) 0 0 EA END	upport han II be / ttached I be
16' 4"		1700 3400 5100 6800	5 6 7 8	ຊັ ຍິຍິ 2550 5100 7650 10200 15300	2 3 4 5 5	136	0 1
45: 6"	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall to truss dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise Considered Load Bearing Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 ft. Hip Line = 0 ft. Horiz, OH = 115.69 ft. Horiz Hip Line = 0 ft.). Spring Lake / Cumberland	Hayes Road	Roof	. 02/15/22	Y David Landry	P. Lenny Norris
	Raked OH = 175.3 ft. Drop Beam Connector Information Nail Information Sym Product Manuf Qty Supported Member Husz6 USP 12 NA 16d/3-1/2" 16d/3-1/2" Products	nc. CITY / CO	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP
	PlotID Length Product Plies Net Qty Fab Type BM1 12'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM2 15'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12'0" 2x10 SPF No.2 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	Weaver Development Co. In	Lot 4 Hayes Farm	Hickory II "C" / 2GLF, CP	N/A		J0222-0694
		These tr	usses ar		ed as indi	# JLONO GRAM ON vidual bu	ilding

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

RE: J0222-0694 Lot 4 Hayes Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Lot/Block: 4 Address: Hayes Road City: Spring Lake

Project Name: J0222-0694 Model: Hickory II Subdivision: Hayes Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10

Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

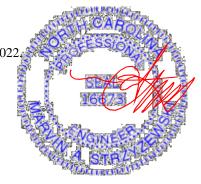
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16492049	A1	12/20/2021	21	E16492069	M2-GR	12/20/2021
2	E16492050	A1GE	12/20/2021	22	E16492070	V1GE	12/20/2021
3	E16492051	A2	12/20/2021	23	E16492071	V2	12/20/2021
4	E16492052	A3	12/20/2021	24	E16492072	V3	12/20/2021
5	E16492053	A4	12/20/2021	25	E16492073	V4	12/20/2021
6	E16492054	A5	12/20/2021	26	E16492074	V5	12/20/2021
7	E16492055	A5GE	12/20/2021	27	E16492075	V6	12/20/2021
8	E16492056	B1	12/20/2021	28	E16492076	V7	12/20/2021
9	E16492057	B1-GR	12/20/2021				
10	E16492058	B1GE	12/20/2021				
11	E16492059	B2	12/20/2021				
12	E16492060	B2GE	12/20/2021				
13	E16492061	C1	12/20/2021				
14	E16492062	C1GE	12/20/2021				
15	E16492063	D1-GR	12/20/2021				
16	E16492064	D1GE	12/20/2021				
17	E16492065	G1-GR	12/20/2021				
18	E16492066	M1	12/20/2021				
19	E16492067	M1GE	12/20/2021				

12/20/2021

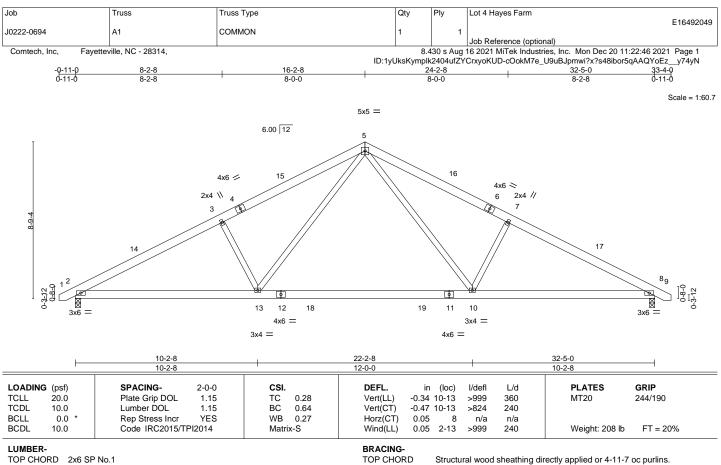
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

M2

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Strzyzewski, Marvin

E16492068


20

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

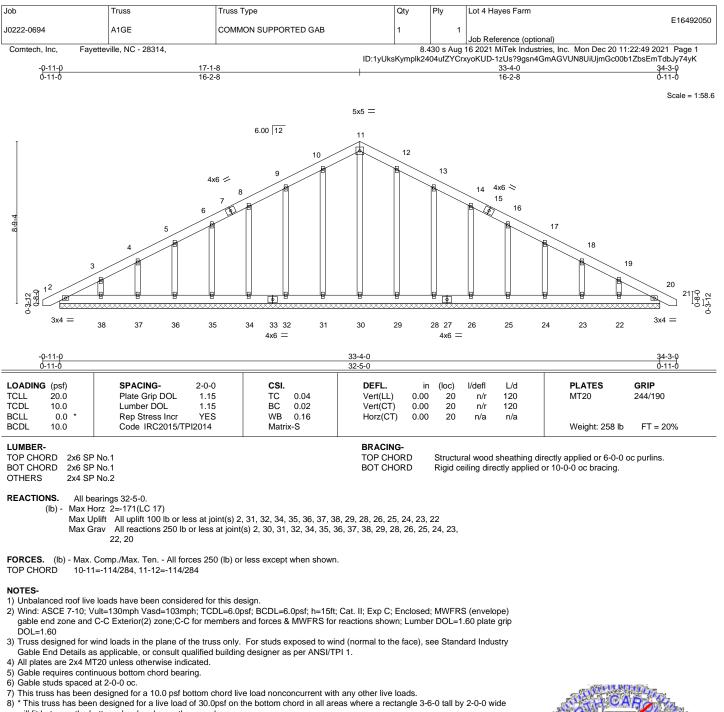
WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

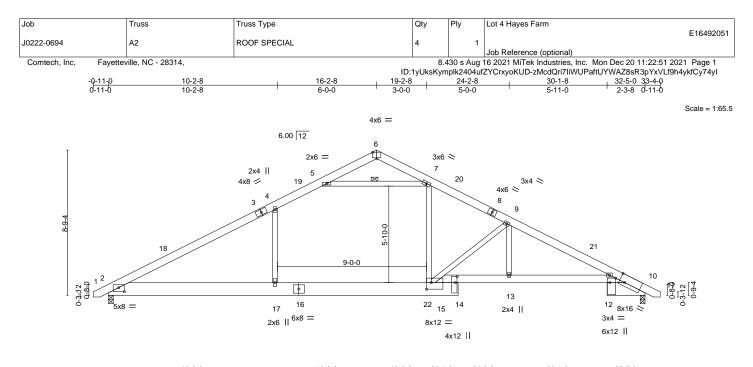
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

	10-2-8	16-2-8	19-2-8 21-1-	8 24-2-8	30-1-6	32-5-0	
	10-2-8	6-0-0	3-0-0 1-11-	0 3-1-0	5-11-0	2-3-8	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-3-4,Edge], [1	4:0-4-8,0-1-4], [15:0-3	8-8,0-4-12]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.75	Vert(LL) -0.21	17 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.67	Vert(CT) -0.38	17 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.70	Horz(CT) 0.09	10 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.17	2-17 >999	240	Weight: 247 lb	FT = 20%
BOT CHORD 2x10 10-15	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		rectly applied or	ectly applied or 4-0-8 o r 10-0-0 oc bracing. 7	oc purlins.
Max I	ze) 2=0-3-8, 10=0-3-8 Horz 2=110(LC 11) Uplift 2=-90(LC 12), 10=-90(LC 13)						

Max Grav 2=1393(LC 2), 10=1353(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2217/403, 4-5=-1870/483, 7-9=-2258/519, 9-10=-2889/551

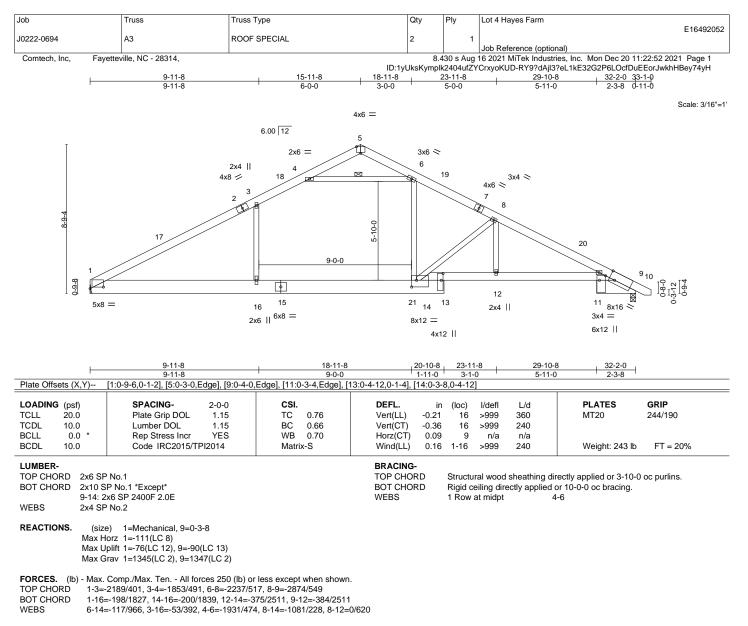
- BOT CHORD 2-17=-193/1848, 15-17=-195/1860, 13-15=-371/2525, 10-13=-380/2525
- WEBS 4-17=-29/402, 7-15=-114/967, 9-15=-1075/232, 9-13=0/616, 5-7=-1955/459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

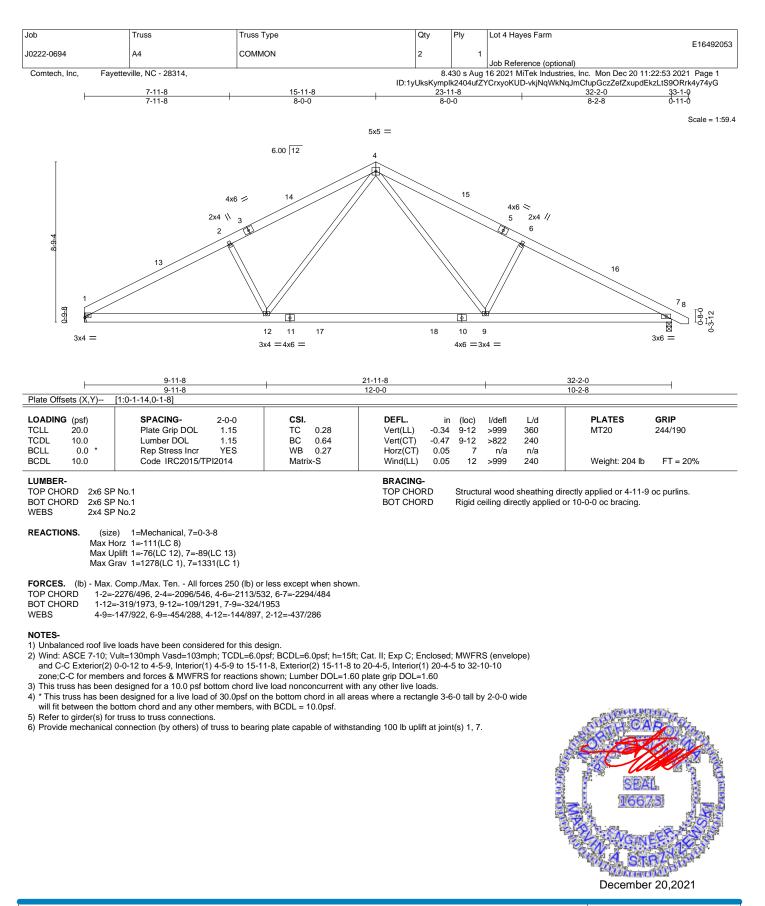
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

NOTES-

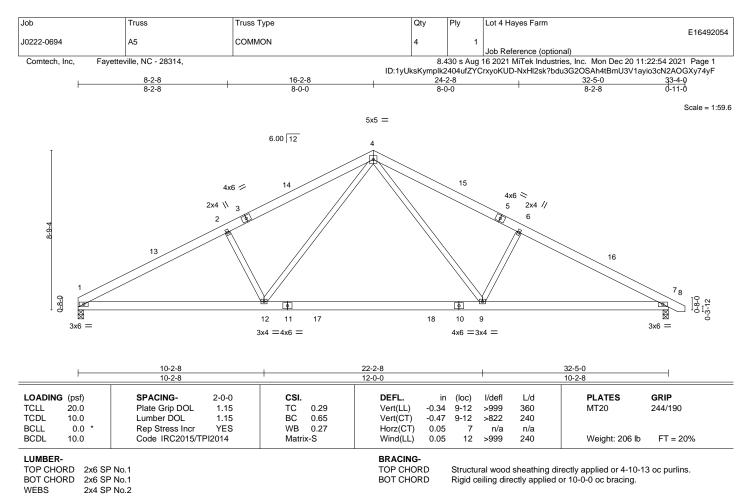
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

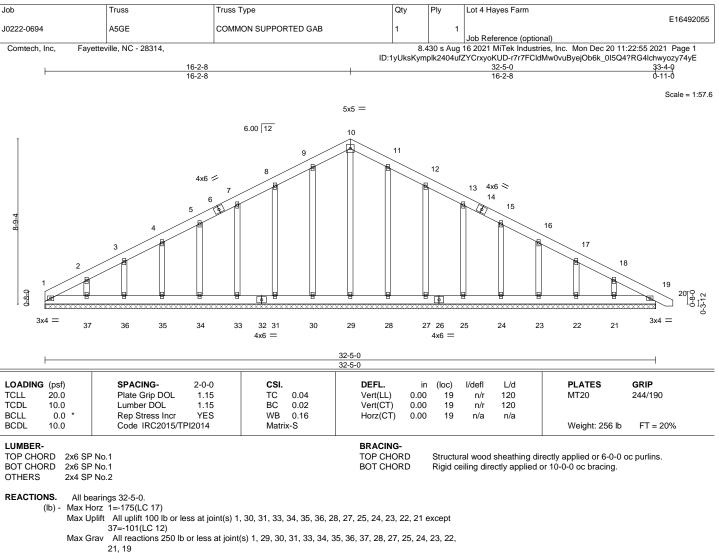
BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

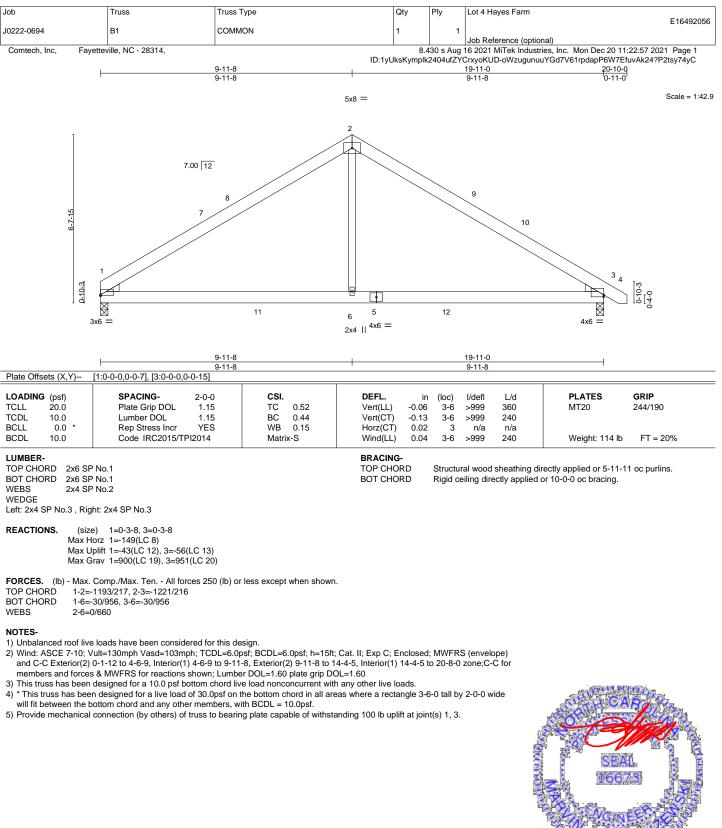
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

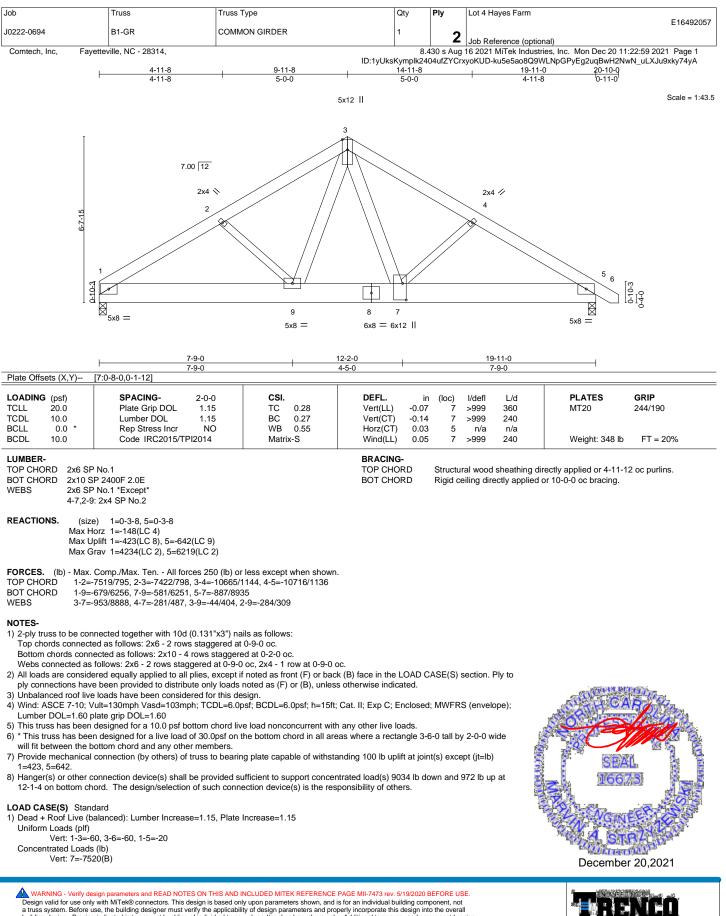
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

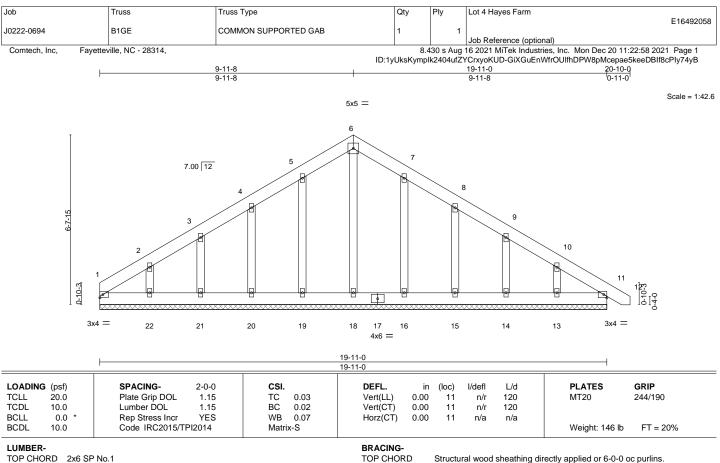
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 9-10=-114/284, 10-11=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.





Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BOT CHORD

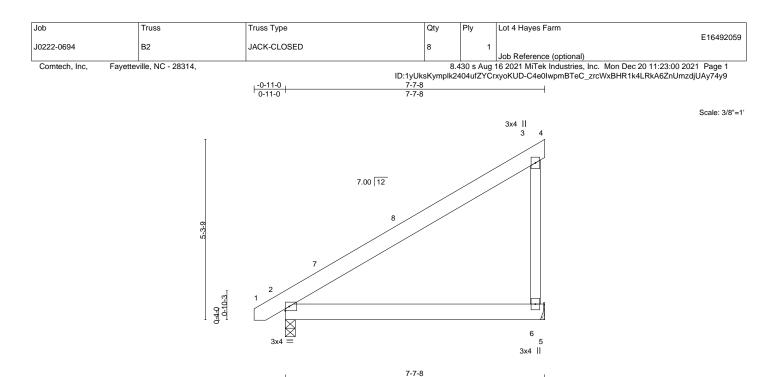
Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 1=-186(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12), 13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

		7-7-8			
SPACING- 2-0-0	CSI.	DEFL. in ((loc) l/defl	L/d	PLATES GRIP
Plate Grip DOL 1.15	TC 0.33	Vert(LL) -0.04	2-6 >999	360	MT20 244/190
Lumber DOL 1.15	BC 0.21	Vert(CT) -0.07	2-6 >999	240	
Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	n/a	n/a	
Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00	2 ****	240	Weight: 48 lb FT = 20%
	Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	Plate Grip DOL 1.15 TC 0.33 Lumber DOL 1.15 BC 0.21 Rep Stress Incr YES WB 0.00	SPACING- 2-0-0 CSI. DEFL. in Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 >999 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 >999 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a	Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 >999 360 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 >999 240 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone;C-C for members and forces & MWFRS for reactions shown;

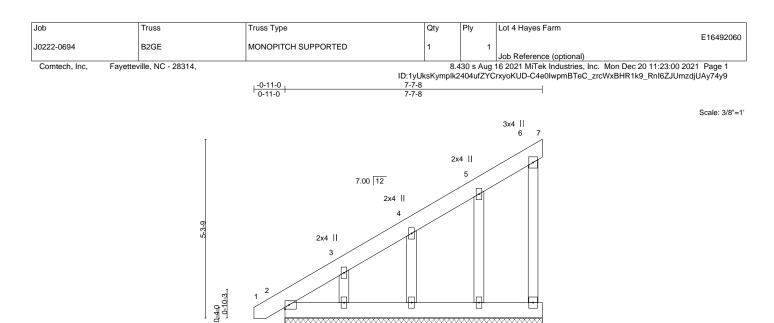
Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD Rig

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.03 Matrix-P	DEFL. i Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) -0.0) 1	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS OTHERS 2x4 SP No 2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

8 3x4 II

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-269/227

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

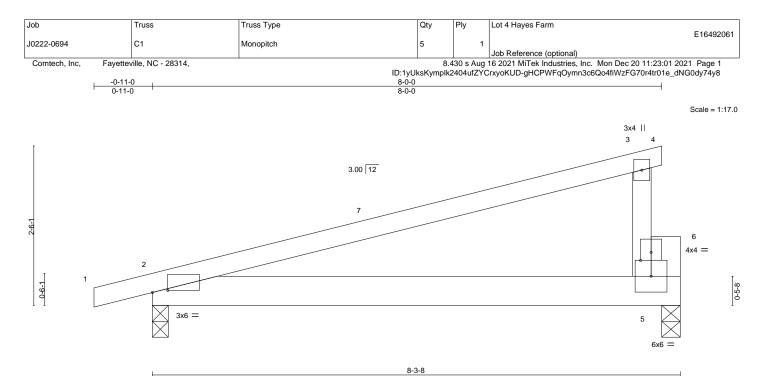
ł

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (jt=lb) 11=117.

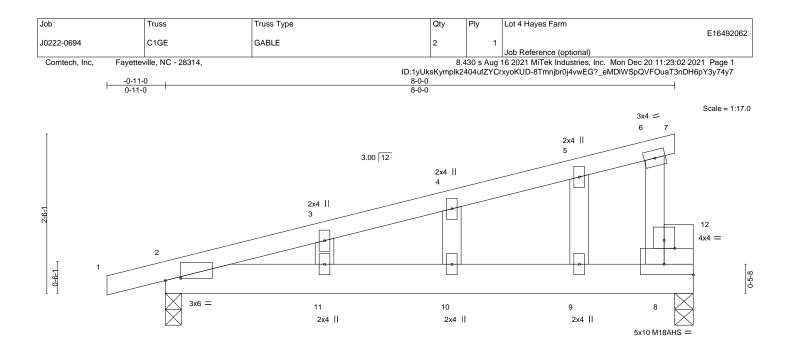
December 20,2021

¹¹¹¹¹

			8-3-8		
Plate Offsets (X,Y) [2:0-2-14,0-0-6], [6:0-2-0,0-1-8]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.84	Vert(LL) -0.05	5 2-5 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10) 2-5 >969 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10	0 2-5 >886 240	Weight: 37 lb FT = 20%
LUMBER-		1	BRACING-		
TOP CHORD 2x4 SP	No.1		TOP CHORD	Structural wood sheathing	g directly applied or 5-3-4 oc purlins,
BOT CHORD 2x6 SP	No.1			except end verticals.	
WEBS 2x4 SP	No.2		BOT CHORD	Rigid ceiling directly appli	ed or 10-0-0 oc bracing.
OTHERS 2x6 SP	No.1				-

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for
 - reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

8-3-8 8-3-8 8-3-8 9-100 8-3-8 9-200 12:0-2-14,0-0-6], [8:Edge,0-2-0], [12:0-2-0,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.09	n (loc) I/defi L/d 9 10-11 >999 240 8 10-11 >999 240 0 8 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 41 lb FT = 20%	
	? No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.	

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

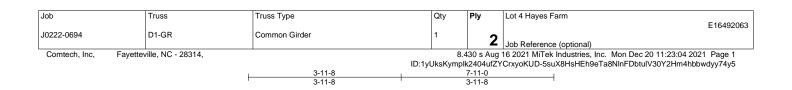
NOTES-

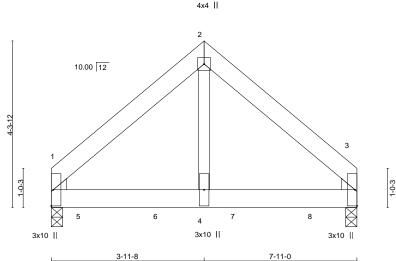
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

-OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.38	Vert(LL) -0.02 3-4 >999	360 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.57	Vert(CT) -0.04 3-4 >999	240
BCLL 0.0 *	Rep Stress Incr NO	WB 0.39	Horz(CT) 0.01 3 n/a	n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.01 3-4 >999	240 Weight: 100 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=91(LC 24)

Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 1-2=-2418/177, 2-3=-2418/177 1-4=-100/1678, 3-4=-100/1678 TOP CHORD

BOT CHURD	1-4=-100/1076, 3-4=-100/
WEBS	2-4=-154/3142

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- Bottom chords connected as follows: 2x6 2 rows staggered at 0-6-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

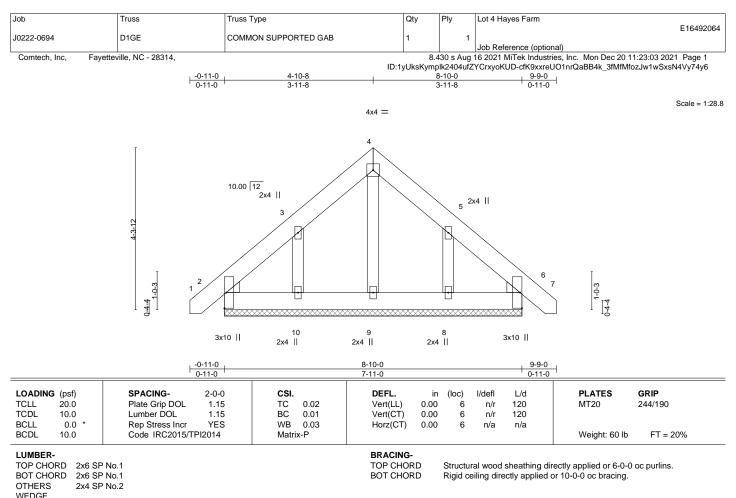
STR

SEAL

Scale = 1:28.1

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD BOT CHORD


Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Job		Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
10000 0004		D1 0D	Our and Old and			E16492063
J0222-0694		D1-GR	Common Girder	1	2	Job Reference (optional)
Comtech, Inc.	Favettev	/ille. NC - 28314.		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 2
,,	,		ID:1y			CrxyoKUD-5suX8HsHEh9eTa8NInFDbtulV30Y2Hm4hbbwdyy74y5

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

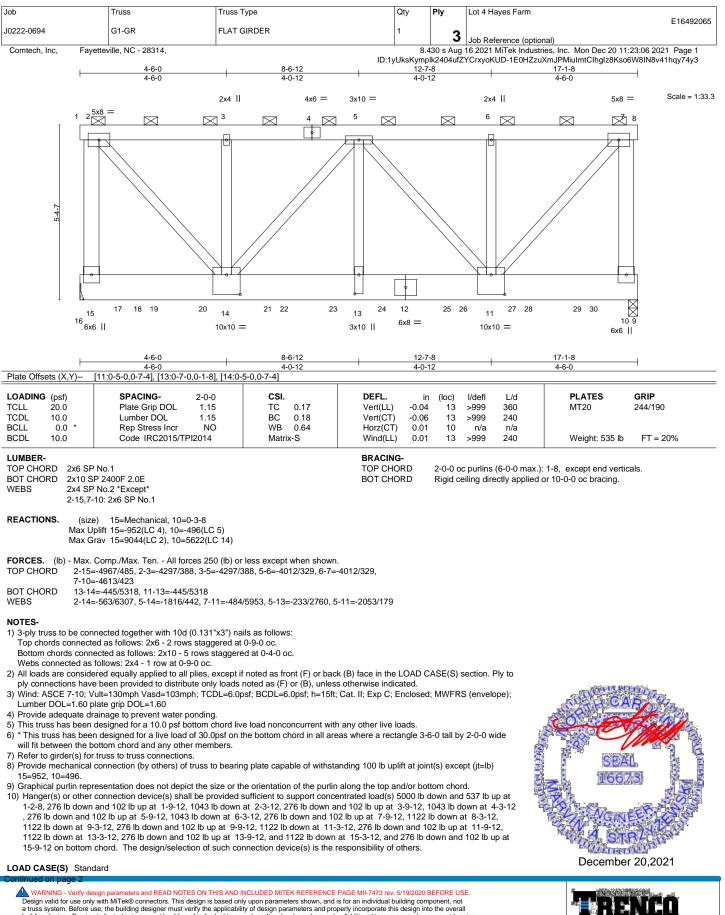
Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

 (Ib) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pdt grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable End Details as applicable, or consult qualified building designer
 Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- with the between the bottom choice and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152. 8=148.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

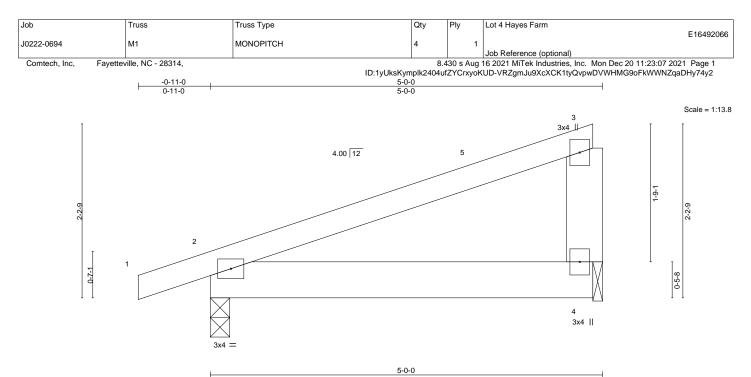
Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
10000 000 /	0.00				E16492065
J0222-0694	G1-GR	FLAT GIRDER	1	3	Job Reference (optional)
Comtech. Inc. Favet	eville. NC - 28314.		8.4	430 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:06 2021 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-1E0HZzuXmJPMiuImtClhgIz8Kso6W8IN8v41hqy74y3

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-

			1			5-0-0					1	
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

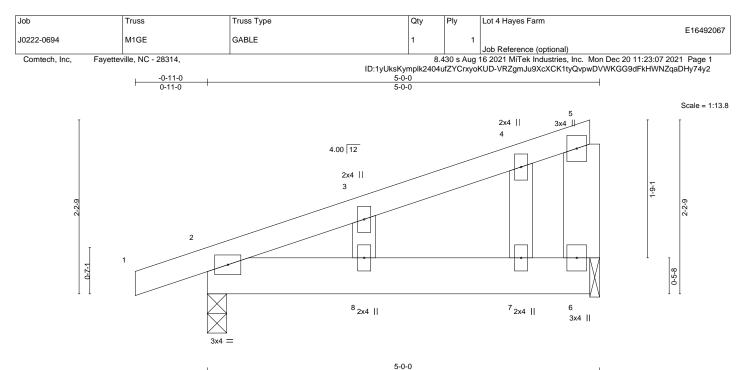
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface.

- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.



Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

					5-0-0						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.01	8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 27 lb	FT = 20%

LUMBER-

2x4 SP No.1 2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WFBS OTHERS 2x4 SP No 2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8)

Max Grav 2=255(LC 1), 6=179(LC 1)

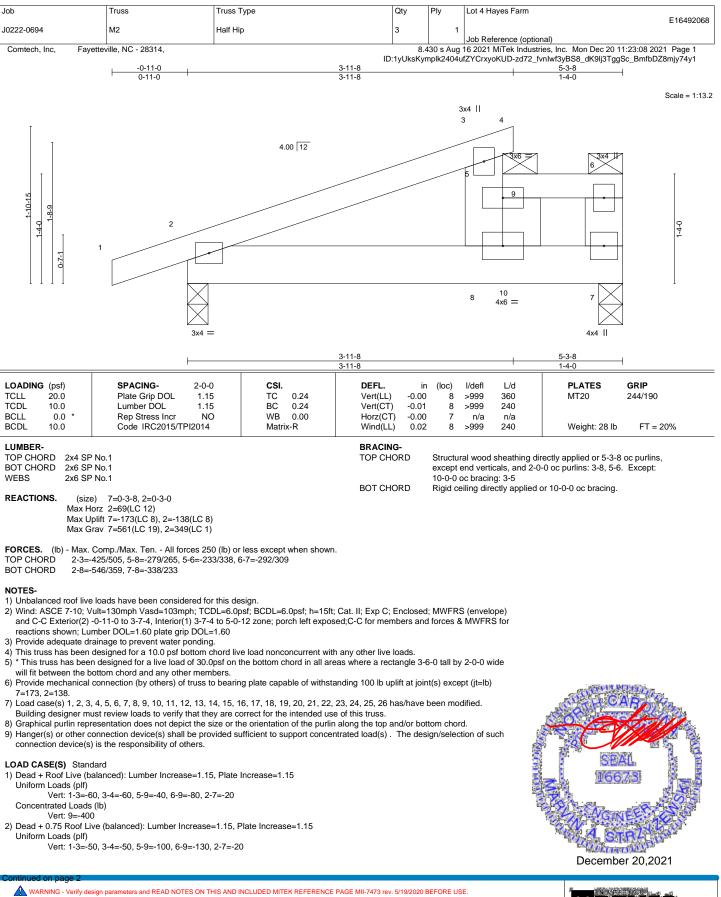
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

AWANING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER KEFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

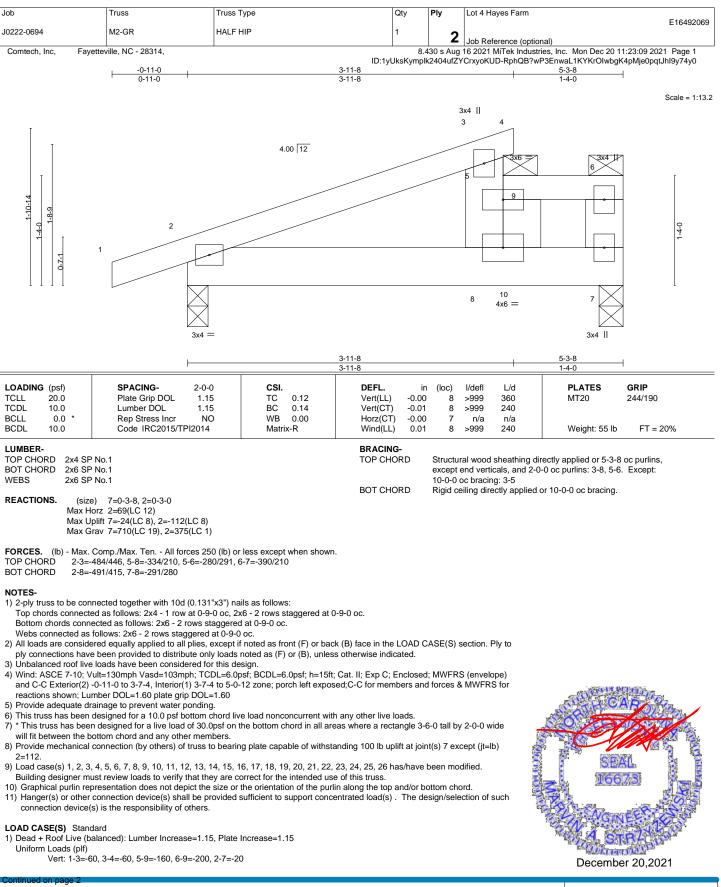
BIB Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
					E16492068
J0222-0694	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

	Concentrated Loads (lb) Vert: 9=-350
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40
	Concentrated Loads (lb) Vert: 9=-300
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55 Concentrated Loads (lb)
	Vert: 9=548
	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
	Concentrated Loads (lb)
6)	Vert: 9=566 Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
	Concentrated Loads (lb) Vert: 9=-420
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9 Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (lb)
	Vert: 9=-420
	Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (Ib)
9)	Vert: 9=154 Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (Ib)
	Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-34
	Concentrated Loads (lb)
44	Vert: 9=-339
) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Concentrated Loads (lb) Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb)
	Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb) Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
• •	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
	Vert: 9=43
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

LOAD CASE(S) Standard Concentrated Loads (Ib)



Job	Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
					E16492068
J0222-0694	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

		D:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnIwf3y
L	LOAD CASE(S) Standard	
-	Uniform Loads (plf)	
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12	
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
	Concentrated Loads (lb)	
	Vert: 9=43	
1	16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60)
	Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20	
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12	
	Concentrated Loads (Ib)	
	Vert: 9=-234	
1	17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	0
	Uniform Loads (plf)	
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20	
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0	
	Concentrated Loads (lb)	
1	Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
	Uniform Loads (plf)	
	Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20	
	Concentrated Loads (lb)	
	Vert: 9=-200	
1	19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber In	ncrease=1.60, Plate Increase=1.60
	Uniform Loads (plf)	
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3	
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26	
	Concentrated Loads (lb) Vert: 9=-454	
2	20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber	Increase=1.60 Plate Increase=1.60
	Uniform Loads (plf)	
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20	
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
	Concentrated Loads (lb)	
	Vert: 9=-375	
2	21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lu	imber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20	
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9	
	Concentrated Loads (Ib)	
	Vert: 9=-375	
2	22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lu	umber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)	
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20	
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
	Concentrated Loads (lb)	
2	Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
2	Uniform Loads (plf)	
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20	
	Concentrated Loads (lb)	
	Vert: 9=-400	
2	24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
	Uniform Loads (plf)	
	Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20	
	Concentrated Loads (Ib)	
2	Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
-	Uniform Loads (plf)	
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20	
	Concentrated Loads (Ib)	
	Vert: 9=-350	
2	26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
	Uniform Loads (plf)	
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20	
	Concentrated Loads (lb)	
	Vert: 9=-350	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BIB Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
J0222-0694	M2-GR	HALF HIP	1	2	E16492069
				–	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

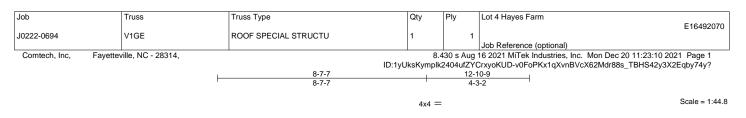
LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

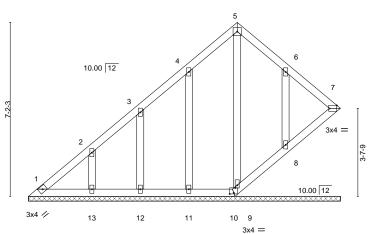
Uniform Loads (plf)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb)	
Vert: 9=-350	
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40	
Concentrated Loads (lb) Vert: 9=-300	
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52	
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55 Concentrated Loads (lb)	
Vert: 9=548	
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55	
Concentrated Loads (Ib)	
Vert: 9=566	
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51	
Concentrated Loads (Ib)	
Vert: 9=-420 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51	
Concentrated Loads (lb) Vert: 9=-420	
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10	
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7 Concentrated Loads (lb)	
Vert: 9=154	
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12	
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27	
Concentrated Loads (lb)	
Vert: 9=43 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34	
Concentrated Loads (lb) Vert: 9=-339	
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 9=-234	
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (lb)	
Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (lb) Vert: 9=43	
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60	

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15




Job	Truss	Truss Type	Qty	Ply	Lot 4 Hayes Farm
					E16492069
J0222-0694	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

	<u> </u>
LOAD CASE(S) Standard	
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (lb)	
Vert: 9=43	
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase	e=1.60
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (Ib)	
Vert: 9=43	4.00
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase	e=1.60
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb)	
Vert: 9=-234	
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase	e-1 60
Uniform Loads (plf)	50-1.00
Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20	
Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-234	
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-200	
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lur	nber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26	
Concentrated Loads (Ib)	
Vert: 9=-454	
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lu	umber increase=1.60, Plate increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-375	
21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Paral	lel): Lumber Increase=1.60. Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9	
Concentrated Loads (lb)	
Vert: 9=-375	
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Para	Ilel): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20	
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-375	
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-400	
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20	
Concentrated Loads (lb) Vert: 9=-400	
25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Inc	rease-1 15
Uniform Loads (plf)	stease=1.15
Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20	
Concentrated Loads (Ib)	
Vert: 9=-350	
26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Inc	crease=1.15
Uniform Loads (plf)	·····
Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20	
Concentrated Loads (lb)	
Concentrated Loads (lb) Vert: 9=-350	

8-6-5 Plate Offecte (V V) [7:0-3-11 Edge] [9:0-1-6 0-1-0] [10:0-2-0 0-0-10]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	ı (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) n/a	ı -	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a	ı -	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 75 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

12-10-9

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-4-4

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

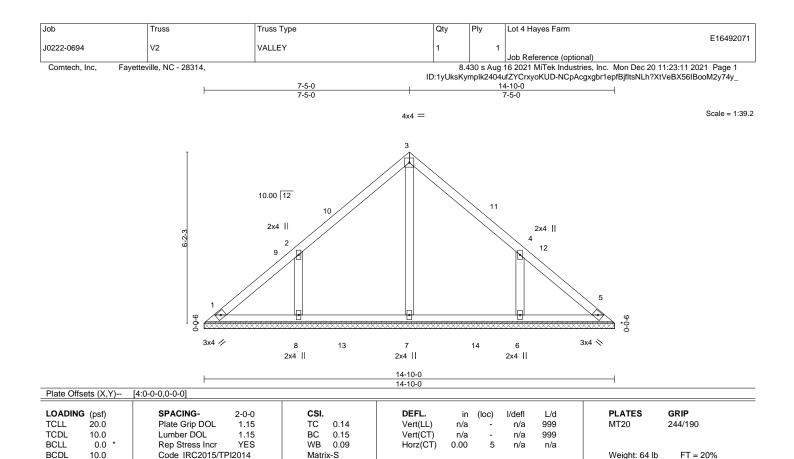
REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

8<u>-6-5</u>

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

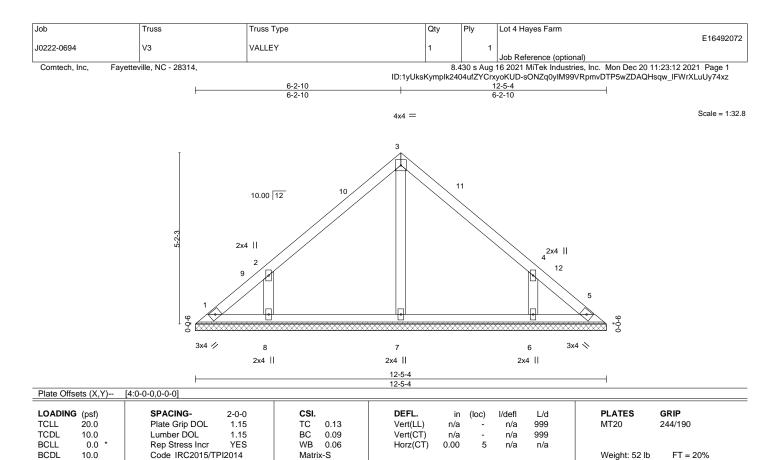
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

0001	

LOWIDER	
TOP CHORD	2x4 SP No.1

	2/1 01 110.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. All bearings 12-5-4.

(lb) - Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

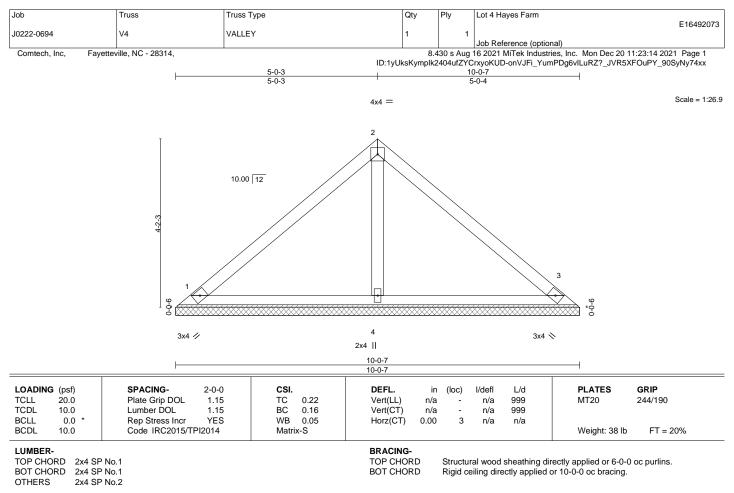
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

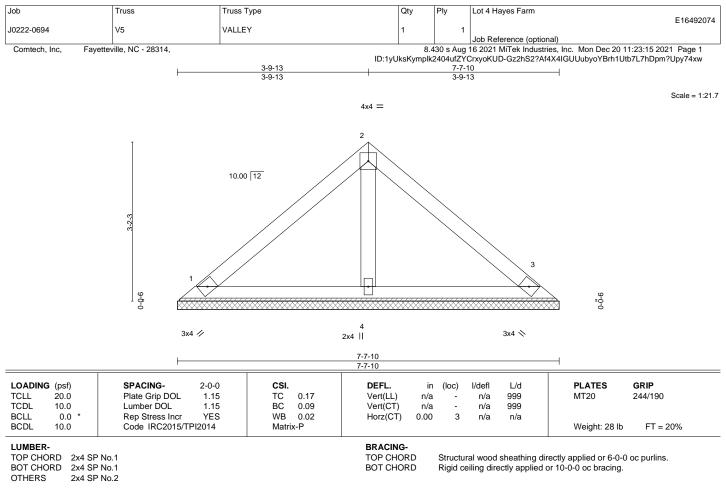
REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8) Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

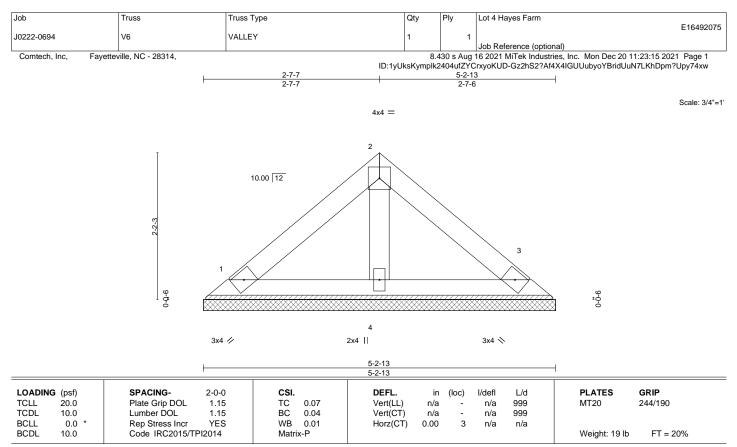
REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8)

Max Horz 1=-44(LC 8) Max Uplift 1=-15(LC 13), 3=-19(LC 13)

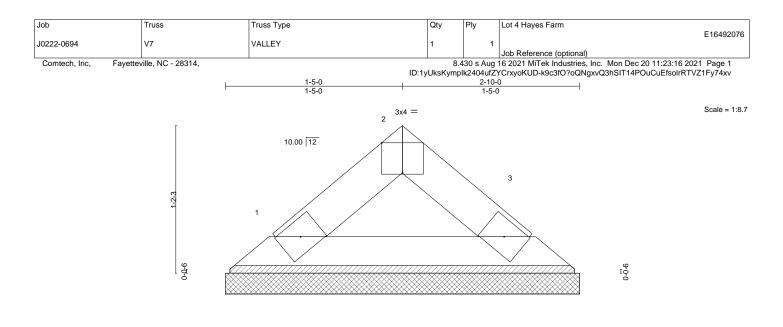
Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)


- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 🥢

3x4 📎

Plate Offsets (X,Y) [2:0-2-0,Edge]				2-10-0					1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-P						Weight: 8 lb	FT = 20%

2-10-0

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8)

Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

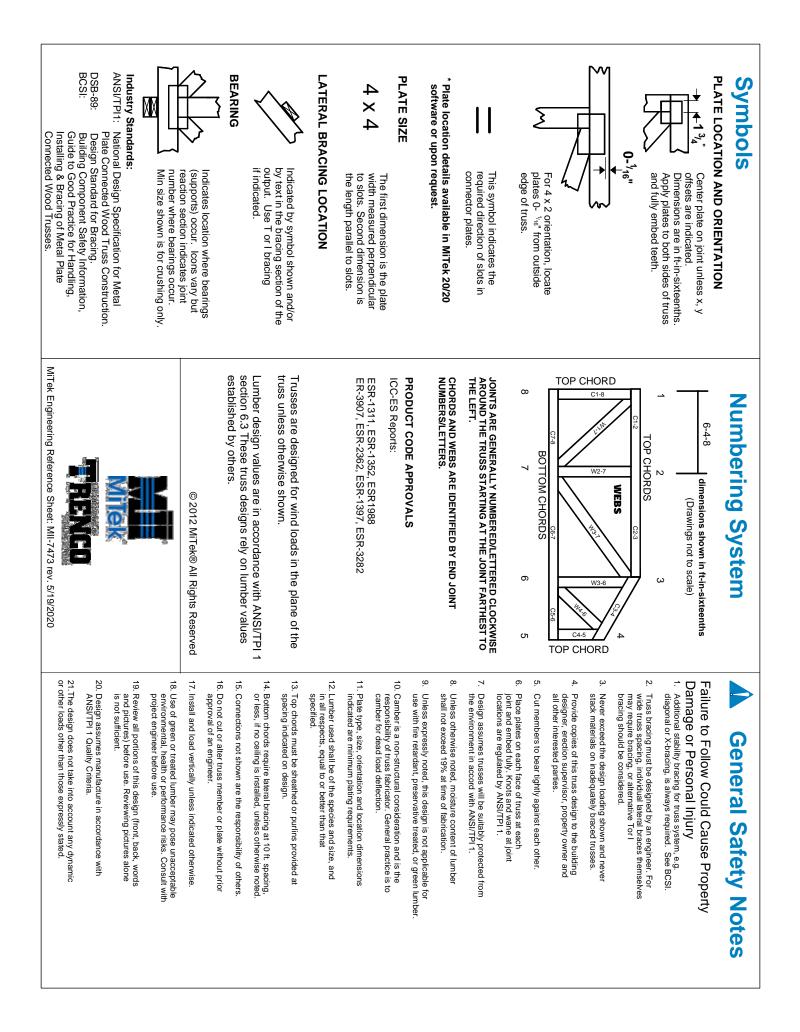
NOTES-

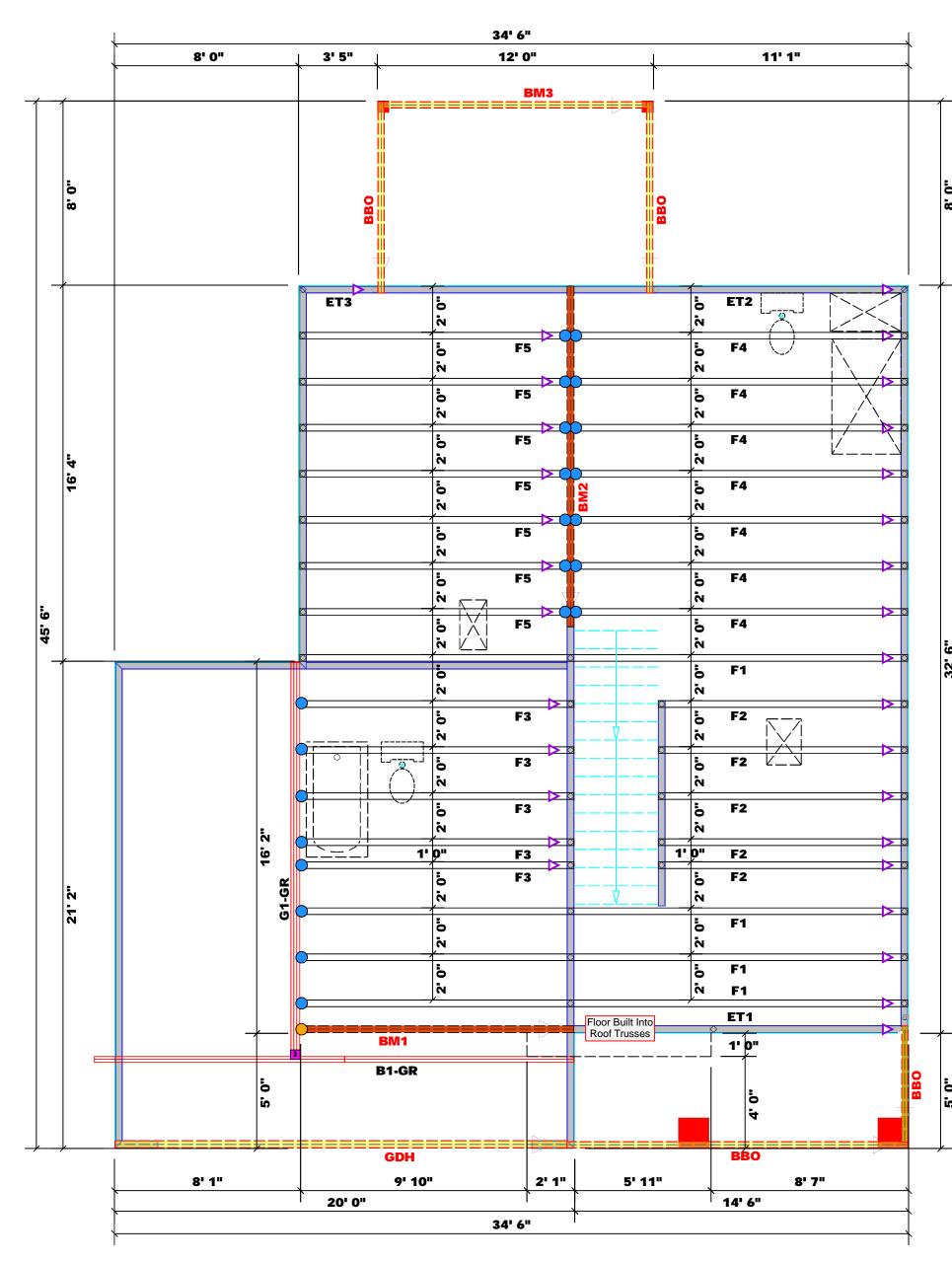
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-10-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

	Weaver Development Co. Inc.	CITY / CO.	CITY / CO. Spring Lake / Cumberland		retained	deemed requiren attached requiren size and reaction 15000#. retained reaction	F	Ľ
russes a	Lot 4 Hayes Farm	ADDRESS	Hayes Road	(BASE	to design s that exc	to compl nents. The Tables (nents) to number s greater A registe to design that exce	teilly F Fayet Phon Fax	
	Hickory II "C" / 2GLF, CP	MODEL	Floor	D ON TABL ACK STUDS	n the sup ceed 1500 Davi	y with the e contrac derived f determin of wood than 300 red desig n the sup eeds thos	Road li teville ie: (91 : (910)	OF 8
	E N/A	DATE REV.	02/15/22	AS RECEIPTING THE SECOND STATES AND A SECOND S	port syst)0#.	e prescrip tor shall from the he the min studs req 0# but no n profess port syst he specific	ndusti 2, N.C. 0) 864) 864-4	
# 31000		DRAWN BY	DRAWN BY David Landry	CK STU 1: 4 (6) 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	em for all andr	I to 3000# btive Code refer to th prescriptiv nimum fou uired to s it greater to sional sha en for an ed in the a sional sha	rial Par 28309 8787 1444	OOI BEAN
	J0222-0695	SALES REP.	SALES REP. Lenny Norris	001 S015 S02 S0115 S02		e ve Code indation upport than II be y attached	rk)	

design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes Plumbing drop locations shown are NOT exact.
 Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.

	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

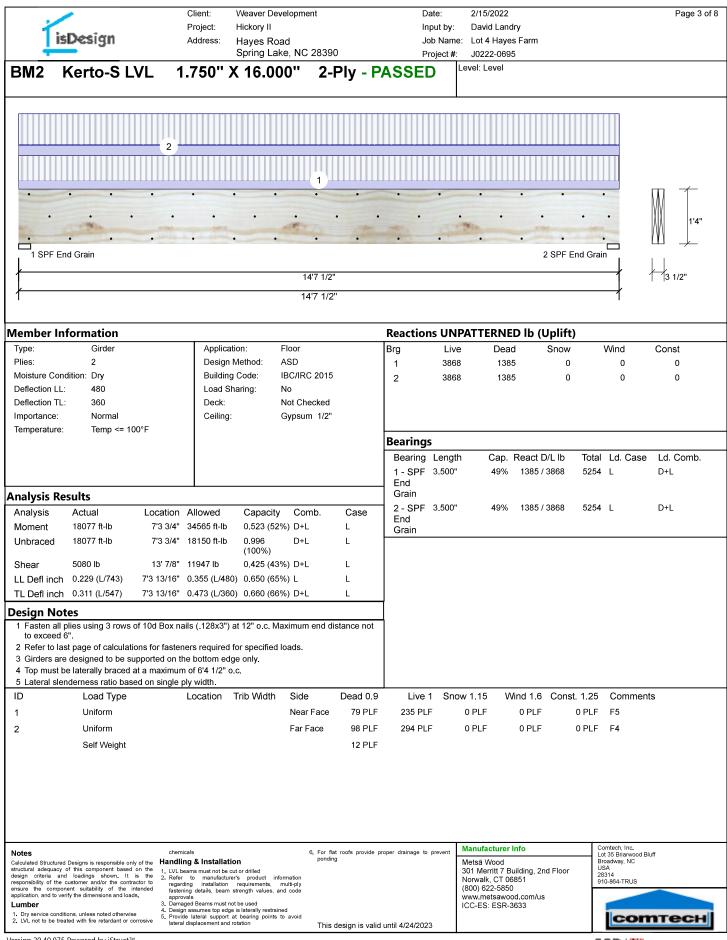
Truss Placement Plan -(1) **Scale: 1/4"=1**

▲ = Indicates Left End of Truss (Reference Engineered Truss Drawing) **Do NOT Erect Truss Backwards**

6

					m			
					OF 8 SES			
Ļ				Fayet Phon	oad In teville, e: (910 : (910)	, N.C. ()) 864	28309 -8787	
		_	deemed requiren attached requiren size and reaction Tables. retained	to comply nents. The Tables (nents) to number of s greater A register to design that exce A register to design	less than y with the e contract derived fr determine of wood s than 3000 red design the supp weds those ed design the supp weds 15000	prescrip or shall r rom the p tuds requ but not profess ort syste specifie professi port syste	tive Code efer to the prescriptivi imum fou uired to s t greater t ional shal em for any d in the a	e re Code ndation upport han II be / ttached
8. O			Signatu	re	Davi			y
			LO	AD CH	Davie ART FC			IDS
				NBER OF DA	CN TABLE KCK STUDST HEA(\ED)	REQUIRED GIRDER	9 EA END	
			^{NO} (0, 40) 1700 3400 5100 6800 8500	4	Z550 2550 5100 7650 10200 12750	2 3) 4	680 1020 1360	830Y2H A14 (F) 831Y2H A14 (F) 10 10 10 3 10 00 5
16' 4"			10200 11900 13600 15300	6 7 8	15300			
		Dimension Notes 1. All exterior wall to wall dimensions are to						
	45' 6"	face of sheathing unless noted otherwise2. All interior wall dimensions are to face offrame wall unless noted otherwise3. All exterior wall to truss dimensions are toface of frame wall unless noted otherwise	Cumberland					
		All Walls Shown Are Considered Load Bearing	Spring Lake / C	s Road	•	02/15/22	d Landry	Lenny Norris
		Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc.	co. Sprii	S Hayes	Floor	•	BY David	REP. Lenn
			CITY / (ADDRESS	MODEL	DATE REV	DRAWN	SALES F
21. 2"		Connector Information Nail Information Sym Product Manuf Qty Supported Member Header Truss	<u>5</u>	A	Σ	D	D	S
Ń		HUS410 USP 22 NA 16d/3-1/2" 16d/3-1/2"						
		THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2"						
		Products PlotID Length Product Plies Net Qty Fab Type BM1 12' 0" 1-3/4"x 16" LVL Kerto-S 2 2 FF	Co. Inc.		Ð			
		BM1 12' 0" 1-3/4"x 16" LVL Kerto-S 2 FF BM2 15' 0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12' 0" 2x10 SPF No.2 2 2 FF	lent C	_	2GLF,			
		GDH 20' 0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	elopm	Farm	"C" / 3			10
		Truss Placement Plan Scale: 1/4"=1"	r Dev	Hayes				-069
			Weaver Development	Lot 4 H	Hickory	N/A		J0222-0695
			ER	NAME		DATE	E #	
			BUILDER	JOB	PLAN	SEAL	QUOTE	JOB #
			THIS IS	A TRUSS	S PLACEM		GRAM ON	LY.

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

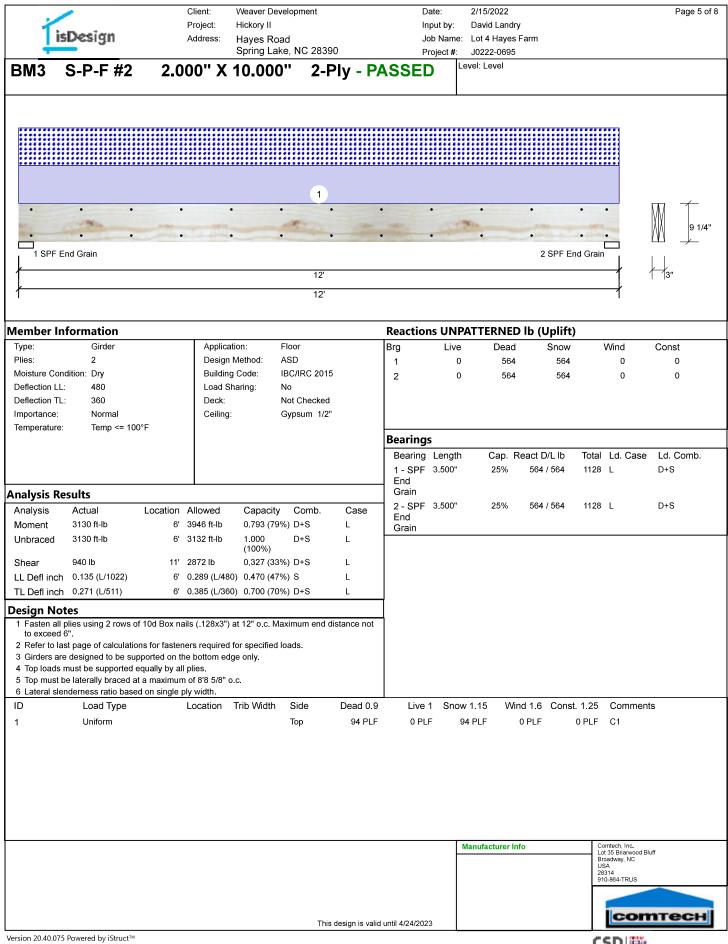

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

isl	Design	Client: Weaver Dev Project: Hickory II Address: Hayes Ro		Date Inpu Job		-		Page 1 of
	-	Spring Lal	ke, NC 28390	Proje	ect #: J0222-069			
3 M 1 K	Kerto-S LVL	1.750" X 16.00	0" 2-Ply -	PASSED	Level: Level			
	2	1						,
1 SPF	- Pin	11'11			2 SPF	• • •	,	1'4"
		11'11				\rightarrow		
ember Inf	ormation			Reactions	UNPATTERNE	D lb (Uplift)		
Гуре: Plies: Moisture Condi Deflection LL: Deflection TL: mportance:	Girder 2 ition: Dry 480 360 Normal	Design Method: Building Code: Load Sharing:	Floor ASD IBC/IRC 2015 No Not Checked Gypsum 1/2"	Brg 1 2	Live Dea 0 286 0 286	9 2079	Wind 0 0	Const 0 0
Temperature:	Temp <= 100°F			Bearings				
				Bearing Lu 1 - SPF 3.	.500" 95%	React D/L lb 2869 / 2079	Total Ld. Case 4948 L	Ld. Comb. D+S
nalysis Res	sults			2 - SPF 3.	.500" 95%	2869 / 2079	4948 L	D+S
Moment Unbraced Shear	13679 ft-lb 5'1 13679 ft-lb 5'1 3659 lb 1'	Allowed Capacity 1 1/2" 39750 ft-lb 0.344 (34 1 1/2" 13695 ft-lb 0.999 (100%) 6 5/8" 13739 lb 0.266 (27 1 1/2" 0.287 (L/480) 0.240 (24	%) D+S L D+S L %) D+S L					
TL Defl inch		1 1/2" 0.383 (L/360) 0.430 (43	%) D+S L	_				
to exceed 6" 2 Refer to last 3 Girders are of 4 Top loads m 5 Top must be	ies using 3 rows of 10d '. page of calculations fo	aximum of 8'8 1/4" o.c.		it				
D	Load Type	Location Trib Width	Side Dead 0			ind 1.6 Const.		S
	Uniform		Top 120 Pl		0 PLF 349 PLF		PLF Wall	
2	Uniform Self Weight		Top 349 Pl 12 Pl		049 FLF	VFLF (PLF A2	
ructural adequacy of esign criteria and sponsibility of the cu isure the component	Designs is responsible only of the this component based on the loadings shown. It is the stormer and/or the contractor to nt suitability of the intended the dimensions and loads.	chemicals Handling & Installation 1. UVL beams must not be cut or drilled 2. Refer to manufacturer's product inf regarding installation requirements, fastening details, beam strength values, a approvals	ponding ormation multi-ply	le proper drainage to pre	Metsä Wood	uilding, 2nd Floor 8851	Comtech, Inc. Lot 35 Briarwood Blu Broadway, NC USA 28314 910-864-TRUS	ff
. Umber . Dry service condition	ns, unless noted otherwise ad with fire retardant or corrosive Powered by iStruct™	 Damaged Beams must not be used Design assumes top edge is laterally restrain Provide lateral support at bearing points lateral displacement and rotation 	to avoid	alid until 4/24/2023	ICC-ES: ESR-3		CSD	тесн

Ţ.	sDesign	Client: Project: Address:	Weaver Developm Hickory II Hayes Road Spring Lake, NC			Date: Input by: Job Name: Project #:	2/15/2022 David Landry : Lot 4 Hayes Farm J0222-0695	Page 2 of 8
BM1	Kerto-S L	VL 1.750"	X 16.000"		- PASSE		evel: Level	
	• •	· · ·	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	1'4"
			11'11"					່
							-	
Multi-Ply A Fasten all p Capacity Load Yield Limit per I Yield Mode Edge Distance Min. End Distar Load Combinat Duration Factor	lies using 3 rov Foot Fastener nce tion	vs of 10d Box nails 0.0 % 0.0 PLF 245.6 PLF 81.9 lb. IV 1 1/2" 3" 1.00	; (.128x3") at 12"	o.c Maxim	num end dis	tance no	t to exceed 6"	
Notes		chemicals		6. For flat roofs pr	ovide proper drainage	to prevent	Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff
Calculated Structure structural adequacy design criteria ar responsibility of the	d Designs is responsible only of this component based nd loadings shown. It customer and/or the contra prent suitability of the its	y of the Handling & Install a on the 1. LVL beams must not b is the 2. Refer to manufac actor to regarding installatio	e cut or drilled urer's product information n requirements, multi-ply	ponding			Metsä Wood 301 Merritt 7 Building, 2nd Floo Norwalk, CT 06851 (800) 622-5850	Broadway, NC
application, and to ve Lumber 1. Dry service cond	onent suitability of the ir erify the dimensions and load litions, unless noted otherwise eated with fire retardant or co	tended s approvals 3. Damaged Beams mus 4. Design assumes top e	m strength values, and code t not be used dge is laterally restrained rt at bearing points to avoid	This desire "			(800) 622-5650 www.metsawood.com/us ICC-ES: ESR-3633	соттесн
Varian 20.40.07/	5 Powered by iStruct™	-		This design is	s valid until 4/24/2	023		

CSD 🗱

Version 20.40.075 Powered by iStruct


Version 20.40.075 Powered by iStruct™

CSD 🚟

	/	Client:	Weaver Developme Hickory II	ent		ate:	2/15/2022 David Landry	Page 4 of 8
1	isDesign	Project: Address:	Hayes Road	28200	Jo	iput by: ob Name:	Lot 4 Hayes Farm	
BM2	Kerto-S L	VL 1.750"	Spring Lake, NC X 16.000''		- PASSEI	roject #:	J0222-0695 evel: Level	
				,				
	• •	• •	• •	• •	•	•	• •	
.	• •	• •	• •	•	• •		•	· · · \ \ \ \
	• •	• •	• •	• •	•	•	• •	
	⁼ End Grain							2 SPF End Grain
				4'7 1/2"				
			14	4'7 1/2"				1
Multi-Ply	y Analysis							
Fasten all Capacity	l plies using 3 rov	ws of 10d Box nails 79.8 %	s (.128x3") at 12"	o.c Maxim	um end dista	ince no	t to exceed 6"	
Load Yield Limit p	er Foot	196.0 PLF 245.6 PLF						
Yield Limit po Yield Mode		81.9 lb. IV						
Edge Distan Min. End Dis		1 1/2" 3"						
Load Combi	nation	D+L						
Duration Fac		1.00						
Notes		chemicals		6 For flat mate	wide proper drainage to	prevent	Manufacturer Info	Comtech, Inc.
structural adequ	ctured Designs is responsible on uacy of this component based	on the 1. LVL beams must not b	e cut or drilled	ponding	rras proper dramage to	prevent	Metsä Wood 301 Merritt 7 Building, 2	Lot 35 Briarwood Bluff Broadway, NC USA 2nd Floor 28314
responsibility of ensure the co	and loadings shown. It the customer and/or the contromponent suitability of the i to verify the dimensions and load	actor to regarding installation ntended fastening details bea	turer's product information on requirements, multi-ply am strength values, and code				Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/u	910-864-TRUS
Lumber 1. Dry service of	conditions, unless noted otherwis	3. Damaged Beams mus 4. Design assumes top e e 5. Provide lateral suppo	edge is laterally restrained ort at bearing points to avoid				ICC-ES: ESR-3633	соттесн
2. Evenier 20.40		orrosive lateral displacement a	nu rotation	This design is	valid until 4/24/202	3		

CSD 🗱

Version 20.40.075 Powered by iStruct™

CSD 🚟

Í	isDesign	Client: Project: Address		ad			2/15/2022 David Landry Lot 4 Hayes Farm	Page 6 of 8
BM3	S-P-F #2	2.000"	Spring Lak X 10.000	e, NC 28390	- PASSE	Project #:	J0222-0695 evel: Level	
	011 #2	2.000		2-1 19	TAGGE			
	• •	•	• •	•	•	•	• • •	
	• •	•			•	•		9 1/4"
	F End Grain						2 SPF End (
				12'				
1				12'				1
	y Analysis							
Capacity	l plies using 2 row	/s of 10d Box na	ils (.128x3") a	t 12" o.c Maxir 7	num end dist	tance not	t to exceed 6"	
Load Yield Limit pe		0.0 PLF 157.4 PLF						
Yield Limit pe Yield Mode	er Fastener	78.7 lb. IV						
Edge Distane Min. End Dis		1 1/2" 3"						
Load Combin Duration Fac	nation	1.00						
Durulion rue		1.00						
						F		Combab las
							Nanufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC
								USA 28314 910-864-TRUS
				This design	is valid until 4/24/20	023		соттесн

1.	Design	Pro	oject: ⊢	lickory II	elopment		Inp	ate: put by:	2/15/202: David La	ndry			Page 7
	Design	Ad		layes Roa Spring Lak	ad :e, NC 28390)		b Name:	Lot 4 Hay J0222-06				
DH I	Kerto-S L\	/L 1.7			0" 2-			·	evel: Level				
••••••							3						
		2											
					1								
				· · ·	at a second				Nin .				1'2"
· · 1 SPF End	• • • d Grain							•		• • • 2 S	• • • PF End Gr	ain	
					20'							\rightarrow	3 1/2"
<u>.</u>					20'							\rightarrow	
ember In ype:	formation Girder		Applicatio	n: I	Floor		Reaction Brg	Live	ATTERN De	ED Ib (Upl ad Sno		Wind	Const
lies:	2		Design M		ASD		1	0			96	0	0
loisture Cond	-		Building C		IBC/IRC 2015		2	0	17	50 1	41	0	0
eflection LL: eflection TL:			Load Sha Deck:	-	No Not Checked								
portance:	Normal		Ceiling:		Gypsum 1/2"								
emperature:	Temp <= 100	۴F											
							Bearings		0	De e et D/L I	- T-+-		
							Bearing 1 - SPF	-	040 19%	React D/L I 1804 / 19		Ld. Case	Ld. Comb. D+S
alysis Re	sults						End Grain						
nalysis	Actual	Location All		Capacity	Comb.	Case	2 - SPF End	3.500"	18%	6 1750 / 14	1 1891	L	D+S
loment	8592 ft-lb 9503 ft-lb	9'11 11/16" 24:		0.354 (35%	%) D D+S	Uniform L	Grain						
Inbraced	9503 11-10	9'11 1/2" 950		(100%)	D+3	L							
hear	1552 lb	1'4 3/4" 940		0.165 (16%	,	Uniform							
L Defl inch		9'11 1/16" 0.4				L							
	0.430 (L/546)	9'11 7/8" 0.6	51 (L/360)	0.660 (66%	%) D+S	L	}						
sign Not	tes plies using 3 rows of	10d Poy poils (129v2") of	12" o o Ma	wimum and di	stance not	4						
to exceed 6		TUU BOX Halls (.120x3) at	12 O.C. Ma	aximum end di	stance not							
	st page of calculation e designed to be sup				oads.								
Top loads r	nust be supported e	qually by all plie	s.	ony.									
•	e laterally braced at nderness ratio based												
)	Load Type		cation Tr	rib Width	Side	Dead 0.9	Live 1	1 Snow	/ 1.15	Wind 1.6 Co	onst. 1.25	Commen	ts
	Uniform				Тор	60 PLF	0 PLF	-	0 PLF	0 PLF	0 PLF	Wall	
	Uniform				Тор	90 PLF	0 PLF	-	0 PLF	0 PLF	0 PLF	B1GE	
	Tie-In	0-0-0 to 1	6-10-0 1-	0-0	Тор	20 PSF	0 PSF	= 2	0 PSF	0 PSF	0 PSF	Roof Load	
	Self Weight					11 PLF							
ites	Declary in	chemicals	Installation		6. For fla pondin	t roofs provide p	roper drainage to	prevent	Manufacture	er Info	1	Comtech, Inc. .ot 35 Briarwood Bl Broadway, NC	luff
uctural adequacy	I Designs is responsible only on of this component based or d loadings shown. It is	n the 1. LVL beams	must not be cut of manufacturer's	or drilled		-		3		Building, 2nd Fl	bor 2	Broadway, NC JSA 28314	
ponsibility of the o sure the compon	customer and/or the contract nent suitability of the inte	tor to regarding inded fastening d	installation re etails, beam stre	equirements, r	nulti-ply			(lorwalk, CT 800) 622-58	50	g	10-864-TRUS	
ımber	rify the dimensions and loads.	approvals 3. Damaged B	eams must not b imes top edge is	e used					vww.metsaw CC-ES: ESF	ood.com/us 2-3633			
Descendence and des	tions, unless noted otherwise ated with fire retardant or corr	5 Provide late	aral support at l	bearing points to	o avoid							Con	птесн

Client: Weaver Development Date: 2/15/2022	Page 8 of 8
Project: Hickory II Input by: David Landry	5
isDesign Address: Hayes Road Job Name: Lot 4 Hayes Farm	
Spring Lake, NC 28390 Project #: J0222-0695	
GDH Kerto-S LVL 1.750" X 14.000" 2-Ply - PASSED	
	_
	· √ 1′2″
	⊨¥ Ш ⊥́
1 SPF End Grain 2 SPF End Grain	
20'	3 1/2"
20'	•
	I
Multi-Ply Analysis	
Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c Maximum end distance not to exceed 6"	
Capacity 0.0 %	
Load 0.0 PLF Yield Limit per Foot 245.6 PLF	
Yield Limit per Fastener 81.9 lb.	
Yield Mode IV	
Edge Distance 1 1/2"	
Min. End Distance 3" Load Combination	
Duration Factor 1.00	
Notes chemicals 6. For flat roofs provide proper drainage to prevent Manufacturer Info Contect Lot 35 E	riarwood Bluff
Calculated Structured Designs is responsible only of the Handling & Installation ponding Metsä Wood Broadw Structured Designs is responsible only of the UV heave enverted the order defined USA	ay, NC
design criteria and loadings shown. It is the 2. Refer to manufacturer's product information responsibility of the customer and/or the contractor to regarding installation requirements, multi-ply (2001) (2	-TRUS
ensure the component suitability of the intended application, and to verify the dimensions and loads. approvals appr	
Lumber 3. Damaged Beams must not be used ICC-ES: ESR-3633	
2. LVL not to be treated with fire retardant or corrosive 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 4/24/2023	соттесн

RE: J0222-0695 Lot 4 Hayes Farm

Address: Hayes Road

City: Spring Lake

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Lot/Block: 4

Project Name: J0222-0695 Model: Hickory II Subdivision: Hayes Farm State: NC

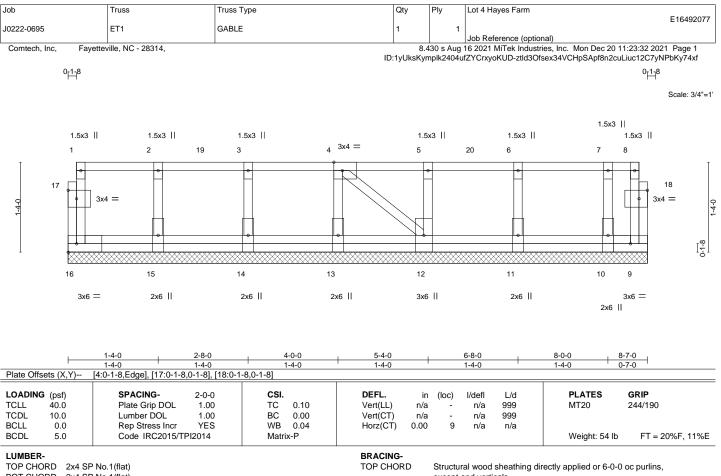
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7	Seal# E16492077 E16492078 E16492079 E16492080 E16492081 E16492082 E16492083	Truss Name ET1 ET2 ET3 F1 F2 F3 F4	Date 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021
7 8	E16492083 E16492084	F4 F5	12/20/2021 12/20/2021


The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Strzyzewski, Marvin My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs

into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

Strzyzewski, Marvin

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

 TOP CHORD
 Structural wood sheatning directly applied or 6-0-0 oc p

 except end verticals.
 BOT CHORD

 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

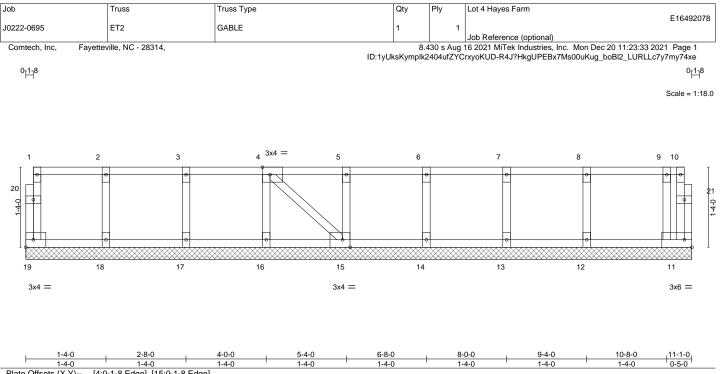
3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 4=-71 7=-77 19=-71 20=-71

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	11	n/a	n/a		
BCDL	5.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 54 lb	FT = 20%F, 11%E
LUMBER-						BRACING-						
TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)				TOP CHOR			ral wood	0	rectly applied or 6-0-0	oc purlins,		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

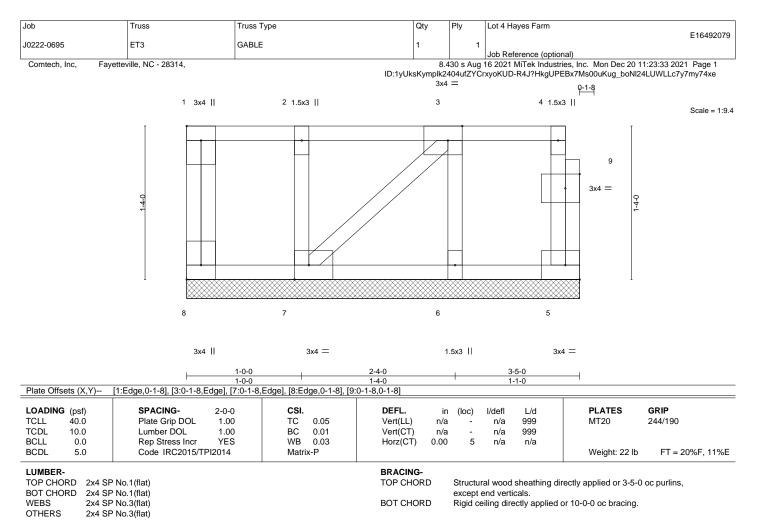
NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

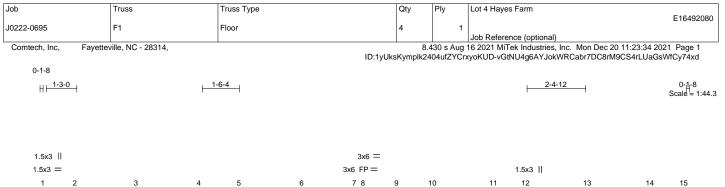
1) Plates checked for a plus or minus 1 degree rotation about its center.

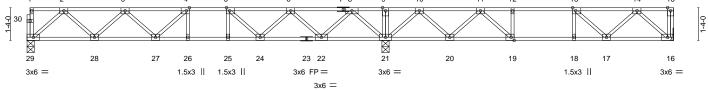
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

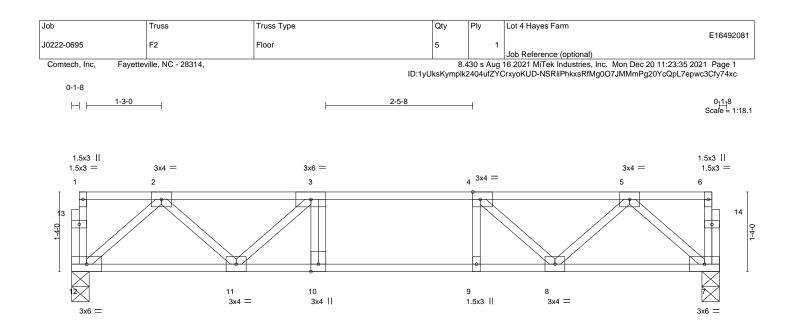
4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


<u> </u>	14-7-12 14-7-12				<u>26-5-</u> 11-9-		
Plate Offsets (X,Y)- LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.55	Vert(LL) -0.1	in (loc) l/defl 0 26-27 >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	BC 0.76 WB 0.44 Matrix-S	Vert(CT) -0.1 Horz(CT) 0.0	3 26-27 >999 3 16 n/a	360 n/a	Weight: 136 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4			BRACING- TOP CHORD BOT CHORD	except end ver	icals.	ectly applied or 6-0-0 o r 6-0-0 oc bracing.	oc purlins,
	(size) 29=0-3-8, 16=Mechanical, 21=0-3- ax Grav 29=727(LC 10), 16=1063(LC 4), 2						
TOP CHORD 1	lax. Comp./Max. Ten All forces 250 (lb) o 5-16=-537/0, 2-3=-1257/0, 3-4=-1883/0, 4- -9=0/1401, 9-10=0/1401, 10-11=-468/367,	5=-2002/0, 5-6=-1658/0, 6	6-8=-756/225,				
BOT CHORD 2 2	3-14=-884/0 8-29=0/771, 27-28=0/1717, 26-27=0/2002, 2-24=-34/1340, 21-22=-444/147, 20-21=-6: 7-18=0/1158, 16-17=0/586						
1	-29=-1023/0, 2-28=0/677, 3-28=-640/0, 8-2 3-17=-372/90, 10-21=-1064/0, 8-22=0/923, 0-20=0/687, 11-20=-690/0, 11-19=0/582, 1	6-22=-882/0, 6-24=0/527					
 All plates are 3x Plates checked f Refer to girder(s Recommend 2x6 Strongbacks to b 	r live loads have been considered for this d 4 MT20 unless otherwise indicated. for a plus or minus 1 degree rotation about) for truss to truss connections. 5 strongbacks, on edge, spaced at 10-0-0 e attached to walls at their outer ends or re ot erect truss backwards.	its center. oc and fastened to each ti		X 3") nails.		CA CA	
Uniform Loads (re (balanced): Lumber Increase=1.00, Plate plf) i-29=-10, 1-15=-100	e Increase=1.00				SEA 166	

Concentrated Loads (lb) Vert: 15=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletences, see fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ŀ			10-10-0 10-10-0			I
Plate Offsets (X,Y)	[4:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.46 WB 0.21 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01	10 >999 480 10 >999 360	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	,) oc purlins,	
REACTIONS. (size	e) 12=0-3-8, 7=0-3-8					

Max Grav 12=576(LC 1), 7=576(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

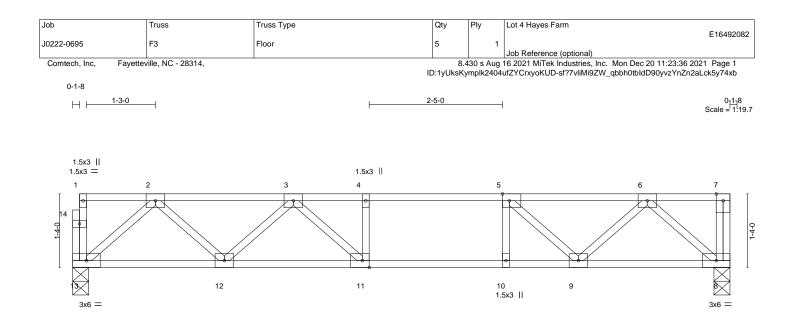
TOP CHORD 2-3=-923/0, 3-4=-1242/0, 4-5=-925/0

11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603 BOT CHORD

WEBS 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.


Plate checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletences, see fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			11-11-0			
I			11-11-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.60 BC 0.70 WB 0.27 Matrix-S	Vert(LL) -0.1	n (loc) I/defl L/d 3 11-12 >999 480 6 11-12 >894 360 2 8 n/a n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	 No.1(flat) No.1(flat) No.3(flat) 	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	<i>y</i> 11	oc purlins,	

11-11-0

REACTIONS. (size) 13=0-3-8, 8=0-3-8 Max Grav 13=635(LC 1), 8=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0

BOT CHORD 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659

WEBS 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/557, 5-9=-616/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

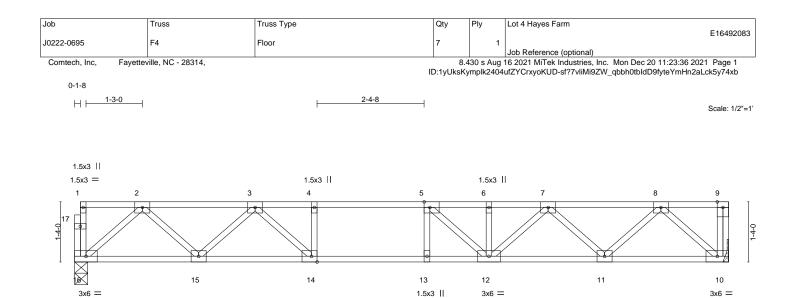
3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 8-13=-10, 1-7=-100 Concentrated Loads (lb)

Vert: 7=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-1-8,Edge]		14-6-0 14-6-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.62 BC 0.78 WB 0.35 Matrix-S	Vert(LL) -0.17	n (loc) l/defl L/d 12-13 >999 480 2.12-13 >790 360 3.10 n/a n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	⁹ No.1(flat) ⁹ No.1(flat) ⁹ No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	2 11	oc purlins,	

REACTIONS. (size) 16=0-3-8, 10=Mechanical

Max Grav 16=778(LC 1), 10=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0

 BOT CHORD
 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835

 WEBS
 2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0, 8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

NOTES-

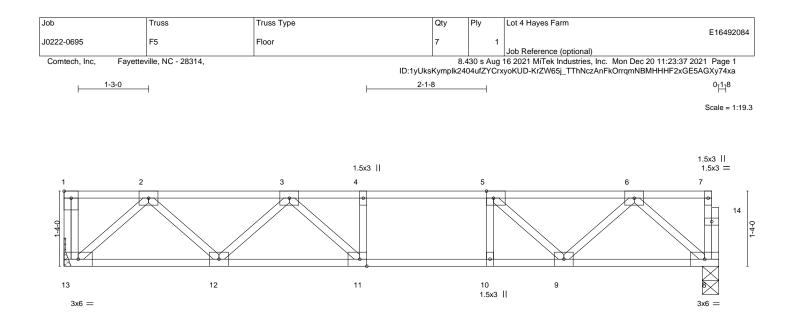
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	e,0-1-8], [5:0-1-8,Edge], [11:0-1-8	,Edge]				
TCLL 40.0 F TCDL 10.0 L BCLL 0.0 F	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.56 WB 0.25 Matrix-S	Vert(LL) -0.10	n (loc) I/defl L/d) 11-12 >999 480 3 11-12 >999 360 2 8 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(fia BOT CHORD 2x4 SP No.1(fia WEBS 2x4 SP No.3(fia	lat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	, ,,	oc purlins,	

Max Grav 13=626(LC 1), 8=619(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

 BOT CHORD
 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

 WEBS
 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526, 5-9=-570/0

NOTES-

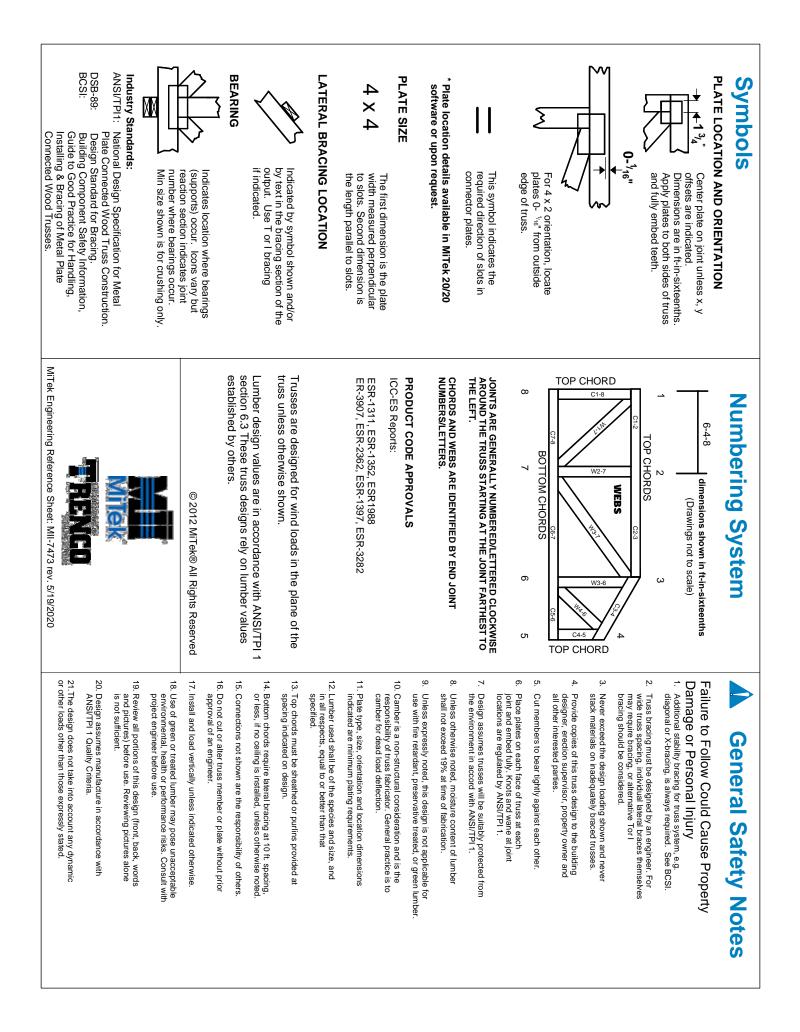
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletences, see fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

