

BUILDER	16d/3-1/2" 16d/3-1/2" 16d/3-1/2" 16d/3-1/2" cts	g Hatch Legend S Hatch Legend Padded HVAC S 2nd Floor Walls Tray Ceiling S Drop Beam Drop Beam S Iail Information Truss S	Cumberland	Num 2013 (2) 2013 (2)	requirem attached requirem size and reaction: 15000#. retained reaction Tables. retained reaction: Signatu	TI R Bearing deemed
JOB NAME	IE Lot 2 Hayes Farm	ADDRESS Hayes Road	4 5 6 7 8	MPER OF 14 804 90015 0,002 1 2 3	ments. Th d Tables (ments) to d number ns greater. A register d to design n that exc. A register d to design s that exc. ure	Reilly F Fayet Phon Fax
PLAT	Hickorv II "	Roof	102 121	ISED ON THE ISED O	The contribution of the contributicant of the contribution of the contribution of the	v Road ettevi one: (9 ax: (91
PLAN	HICKORY II "C" / ZGLF,		200 2750 5300	TABLES TUDS RE 545576 E E E E E E E E E E E E E E E E E E E	ntractor ved fro ermine 1 a 3000# design 1 e suppo those s design 1 e suppo 15000#	ES (id Inc /ille, I (910) (910) 8 (910) 8 (910) 8
SEAL DATE	TE N/A	DATE REV. 02/15/22	4	S ROOZEC COULER	or shall r om the p the min tuds req # but no profess ort syste specifie profess ort syste #. d La	& B dustr N.C.) 864 864-4
QUOTE #		DRAWN BY David Landry		(1) & (b) b 8 EA	refer to prescri nimum quired to t great sional s sem for ed in th sional s sem for anco ndr	BEA rial P 2834 1-878 4444
			13600	0) A END 0 NOLLY & UN 3400 6800 10200	to the riptive n found to sup ater tha I shall I or any the att: shall t or all dry	AM Park 309 '87 4
JOB #	J0222-0698	SALES REP. Lenny Norris	0 4 5	of 804 sques 4,688	dation oport an be achee be	S

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

			R Bearing of deemed to requirem attached	RO(RUS eilly R Fayett Phon Fax: reactions to comply ents. The Tables ()	OF & SES oad Ir teville e: (910) (910)	& FL & B ndustr , N.C.) 864- 864-4 or shall or shall or shall	I to 3000# tive Code refer to th prescriptiv	AS AS k are e re Code
8, 0,			size and reactions 15000#. / retained reaction Tables. A retained reactions Signatur	number of speaker A registered to design that excend a register to design to design to design to design that excended to design that excended	of wood s than 3000 red design the suppleds those ed design the suppled those design the suppled the suppled the suppled Davi	tuds req b# but no n profess bort syste e specific n profess oort syste d La d La DR JA(Es Rouz Ef REQUIRE	CK STL	upport than II be y ittached II be
16' 4"	_		1700 3400 5100 6800	5 6 7 8	その 長 長 長 5 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 5 10 10 10 10 10 10 10 10 10 10	2 3 3 4 5 5	136	00 1
	45' 6"	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall to truss dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise Considered Load Bearing Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 ft.	Spring Lake / Cumberland	Hayes Road	Roof	02/15/22	David Landry	Lenny Norris
2 1 2		Hip Line = 0 ft. Horiz. OH = 115.69 ft. Raked OH = 175.3 ft. Decking = 58 sheets Drop Beam Connector Information Sym Product Manuf Qty Supported Member HuS26 USP 12 NAI 16d/3-1/2" 16d/3-1/2"	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
	Į	Indext Indext	Weaver Development Co. Inc.	Lot 2 Hayes Farm	Hickory II "C" / 2GLF, CP	N/A		J0222-0698
			BUILDER SUILDER	JOB NAME			GRAM ON	

This IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

RE: J0222-0698 Lot 2 Hayes Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Lot/Block: 2 Address: Hayes Road City: Spring Lake

Project Name: J0222-0698 Model: Hickory II Subdivision: Hayes Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

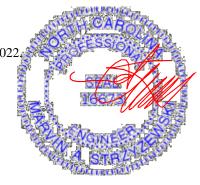
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16492049	A1	12/20/2021	21	E16492069	M2-GR	12/20/2021
2	E16492050	A1GE	12/20/2021	22	E16492070	V1GE	12/20/2021
3	E16492051	A2	12/20/2021	23	E16492071	V2	12/20/2021
4	E16492052	A3	12/20/2021	24	E16492072	V3	12/20/2021
5	E16492053	A4	12/20/2021	25	E16492073	V4	12/20/2021
6	E16492054	A5	12/20/2021	26	E16492074	V5	12/20/2021
7	E16492055	A5GE	12/20/2021	27	E16492075	V6	12/20/2021
8	E16492056	B1	12/20/2021	28	E16492076	V7	12/20/2021
9	E16492057	B1-GR	12/20/2021				
10	E16492058	B1GE	12/20/2021				
11	E16492059	B2	12/20/2021				
12	E16492060	B2GE	12/20/2021				
13	E16492061	C1	12/20/2021				
14	E16492062	C1GE	12/20/2021				
15	E16492063	D1-GR	12/20/2021				
16	E16492064	D1GE	12/20/2021				
17	E16492065	G1-GR	12/20/2021				
18	E16492066	M1	12/20/2021				
19	E16492067	M1GE	12/20/2021				

12/20/2021

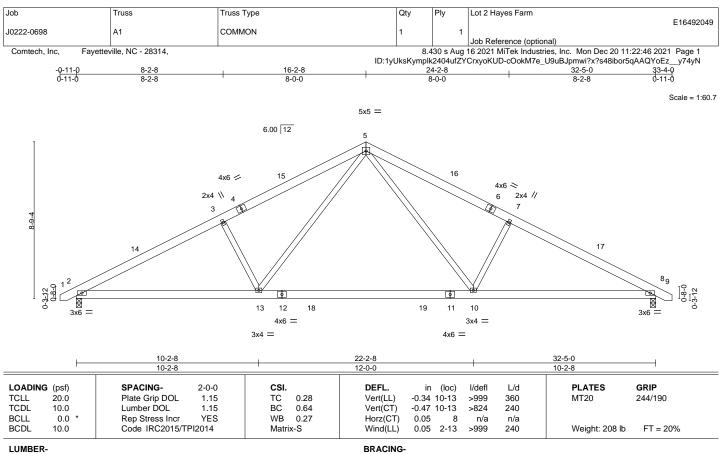
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

M2

based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Strzyzewski, Marvin

E16492068


20

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

TOP CHORD

BOT CHORD

TOP CHORD

2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13)

Max Grav 2=1337(LC 1), 8=1337(LC 1)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. FORCES.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

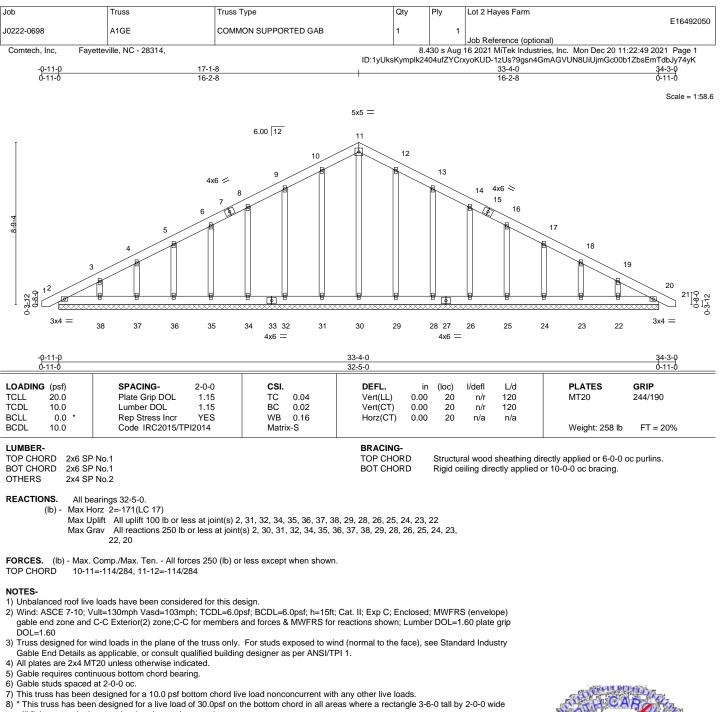
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

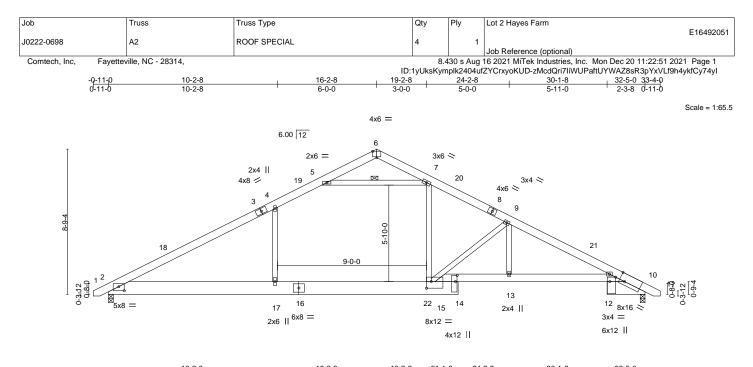
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.


6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

	10-2-8	16-2-8	19-2-8 21-1-	8 24-2-8	30-1-6	32-5-0	
	10-2-8	6-0-0	3-0-0 1-11-	0 3-1-0	5-11-0	2-3-8	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-3-4,Edge], [1	4:0-4-8,0-1-4], [15:0-3	8-8,0-4-12]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.75	Vert(LL) -0.21	17 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.67	Vert(CT) -0.38	17 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.70	Horz(CT) 0.09	10 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.17	2-17 >999	240	Weight: 247 lb	FT = 20%
BOT CHORD 2x10 10-15	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		rectly applied or	ectly applied or 4-0-8 o r 10-0-0 oc bracing. 7	oc purlins.
Max I	ze) 2=0-3-8, 10=0-3-8 Horz 2=110(LC 11) Uplift 2=-90(LC 12), 10=-90(LC 13)						

Max Grav 2=1393(LC 2), 10=1353(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2217/403, 4-5=-1870/483, 7-9=-2258/519, 9-10=-2889/551

- BOT CHORD 2-17=-193/1848, 15-17=-195/1860, 13-15=-371/2525, 10-13=-380/2525
- WEBS 4-17=-29/402, 7-15=-114/967, 9-15=-1075/232, 9-13=0/616, 5-7=-1955/459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

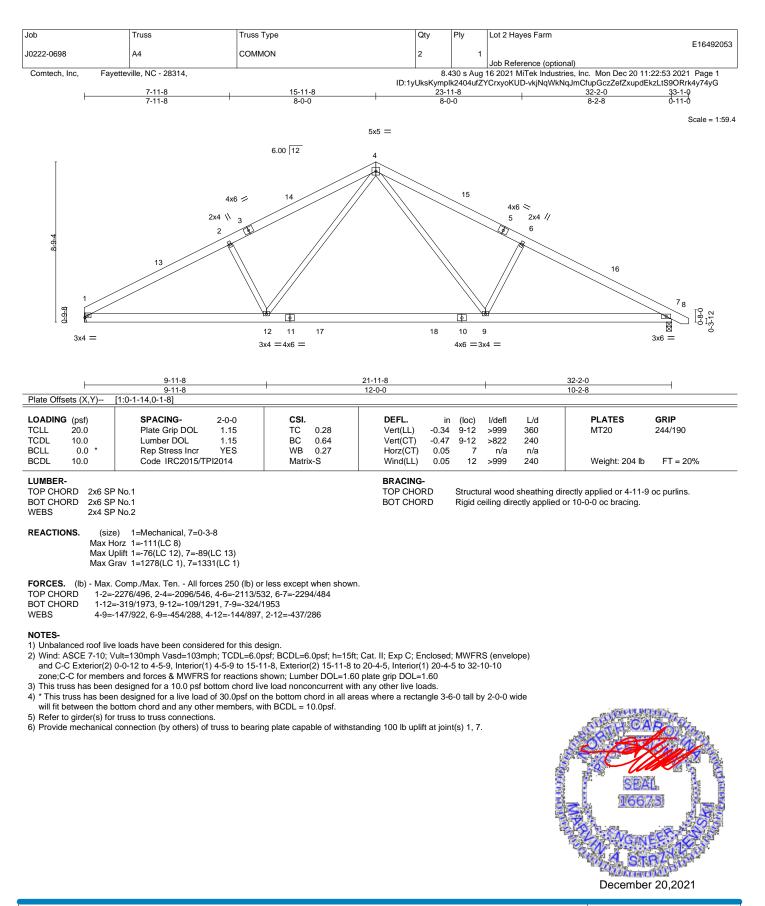
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

NOTES-

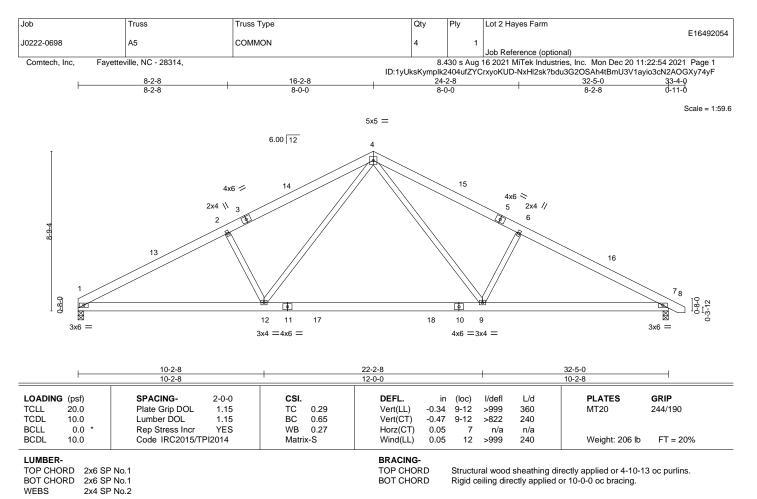
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

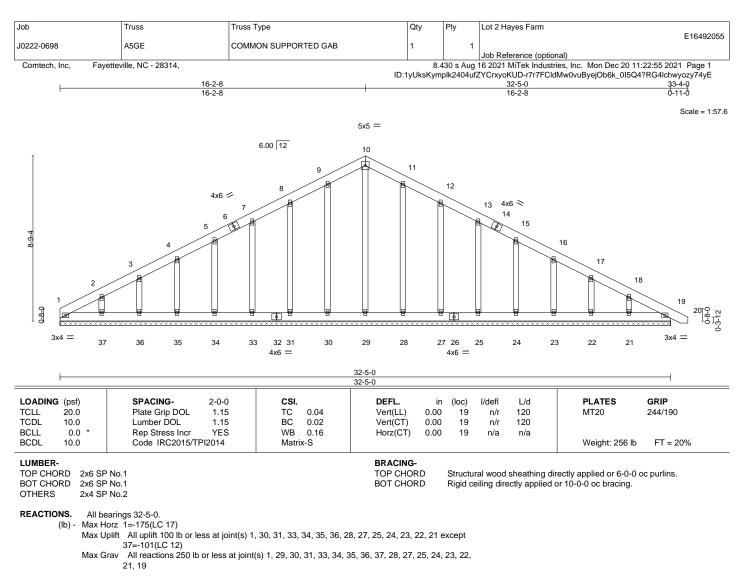
BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

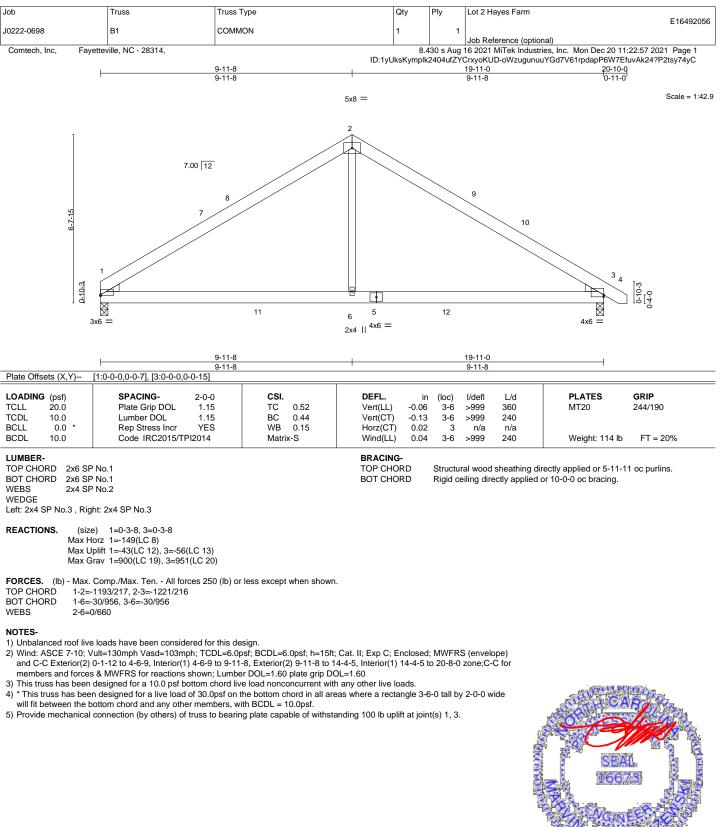
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

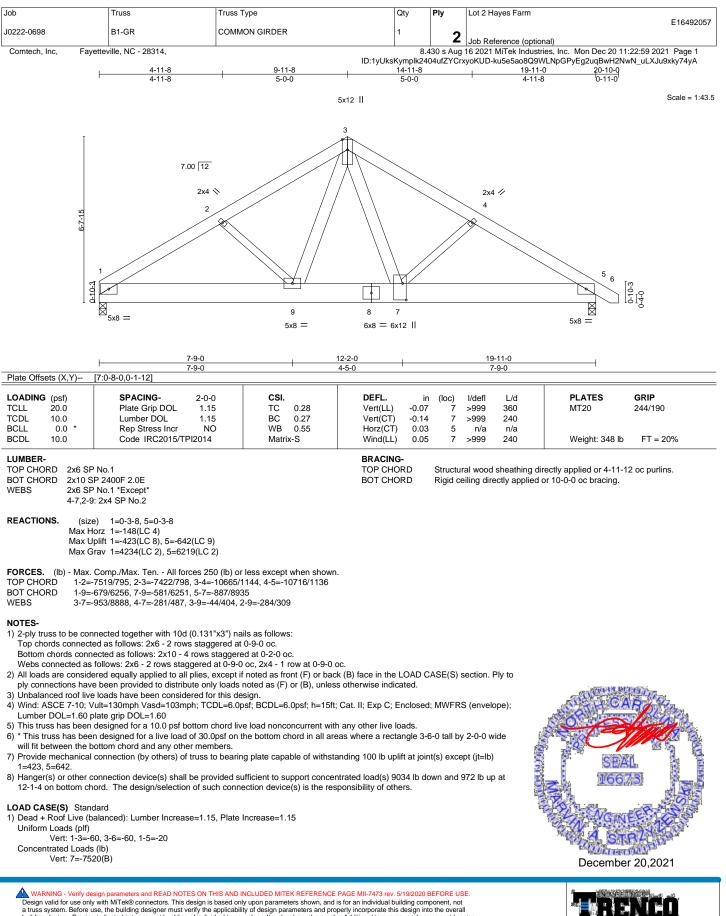
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

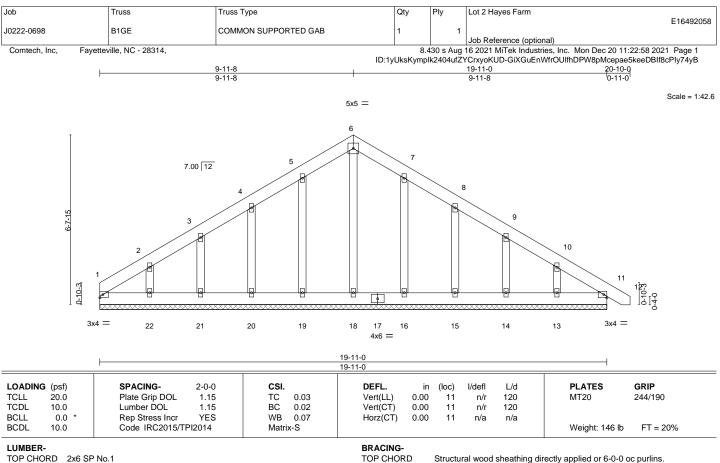
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 9-10=-114/284, 10-11=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.





Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BOT CHORD

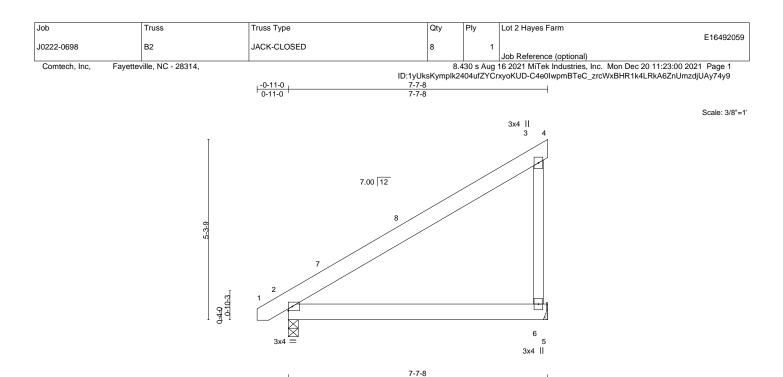
Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 1=-186(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12), 13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

			7-7-8						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.33	Vert(LL)	-0.04	2-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.21	Vert(CT)	-0.07	2-6	>999	240		
BCLL 0.0 '	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 48 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

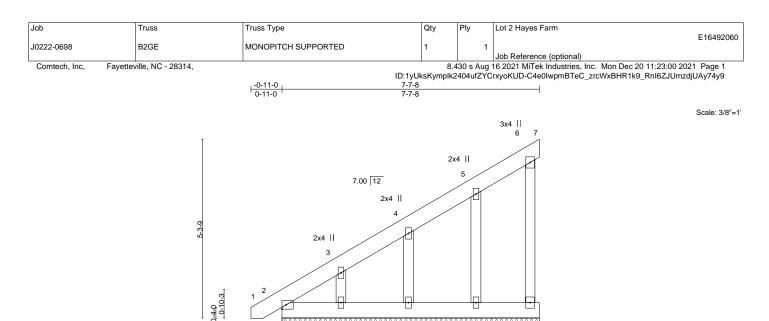
Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.03 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 1 1 7	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS OTHERS 2x4 SP No 2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

8 3x4 II

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-269/227

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

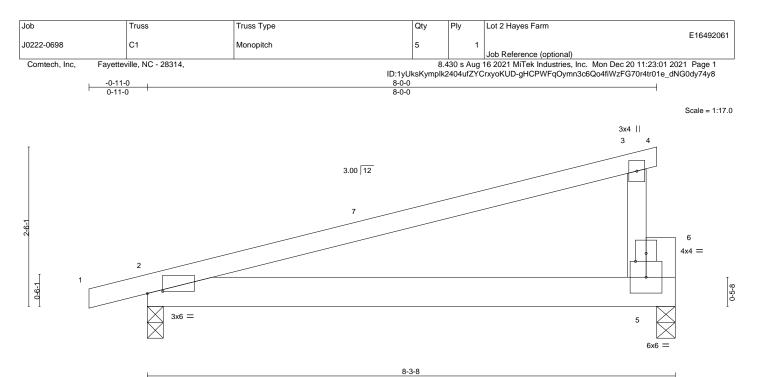
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (jt=lb) 11=117.

December 20,2021

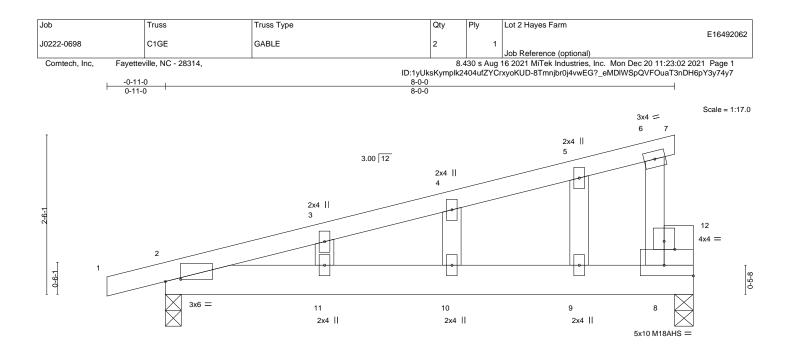
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

			8-3-8		
Plate Offsets (X,Y) [2:0-2-14,0-0-6], [6:0-2-0,0-1-8]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.84	Vert(LL) -0.05	5 2-5 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10) 2-5 >969 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10	0 2-5 >886 240	Weight: 37 lb FT = 20%
LUMBER-		1	BRACING-		
TOP CHORD 2x4 SP	No.1		TOP CHORD	Structural wood sheathing	g directly applied or 5-3-4 oc purlins,
BOT CHORD 2x6 SP	No.1			except end verticals.	
WEBS 2x4 SP	No.2		BOT CHORD	Rigid ceiling directly appli	ed or 10-0-0 oc bracing.
OTHERS 2x6 SP	No.1				-

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for
 - reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [8:Edge,0-2-0], [12:0-2	2-0,0-1-8]	8-3-8 8-3-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.09	n (loc) I/defi L/d 9 10-11 >999 240 8 10-11 >999 240 0 8 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 41 lb FT = 20%
	? No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

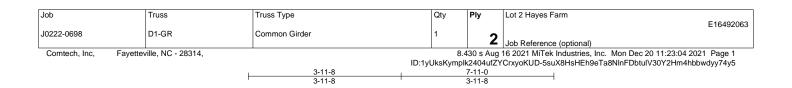
NOTES-

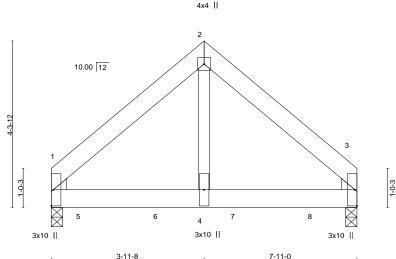
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

				3-1	1-8		3	-11-8				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.02	3-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.04	3-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.39	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	ix-P	Wind(LL)	0.01	3-4	>999	240	Weight: 100 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=91(LC 24)

Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

 FORCES.
 (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown.

 TOP CHORD
 1-2=-2418/177, 2-3=-2418/177

 BOT CHORD
 1-4=-100/1678, 3-4=-100/1678

WEBS 2-4=-154/3142

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-3-0 oc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

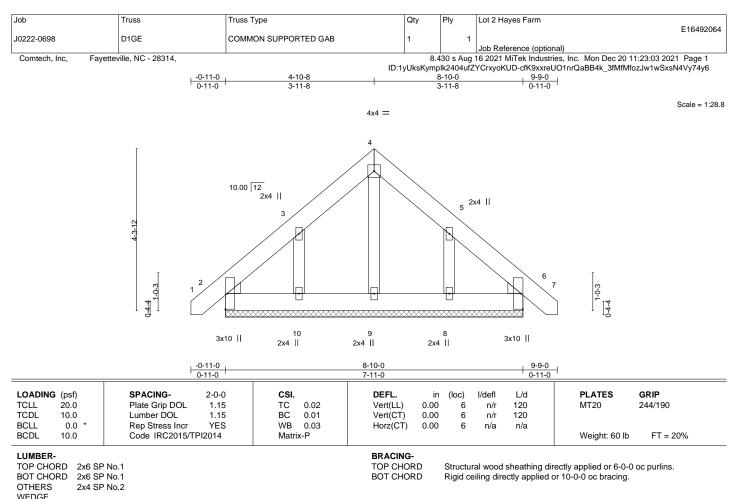
Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

STR

SEAL

Scale = 1:28.1

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

J	ob	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
Ι.		P / 0P				E16492063
J	0222-0698	D1-GR	Common Girder	1	2	
					-	Job Reference (optional)
_	Comtech, Inc, Fayettev	rille, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 2
			ID:1yl	JksKymplł	<2404ufZY	CrxyoKUD-5suX8HsHEh9eTa8NInFDbtulV30Y2Hm4hbbwdyy74y5

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

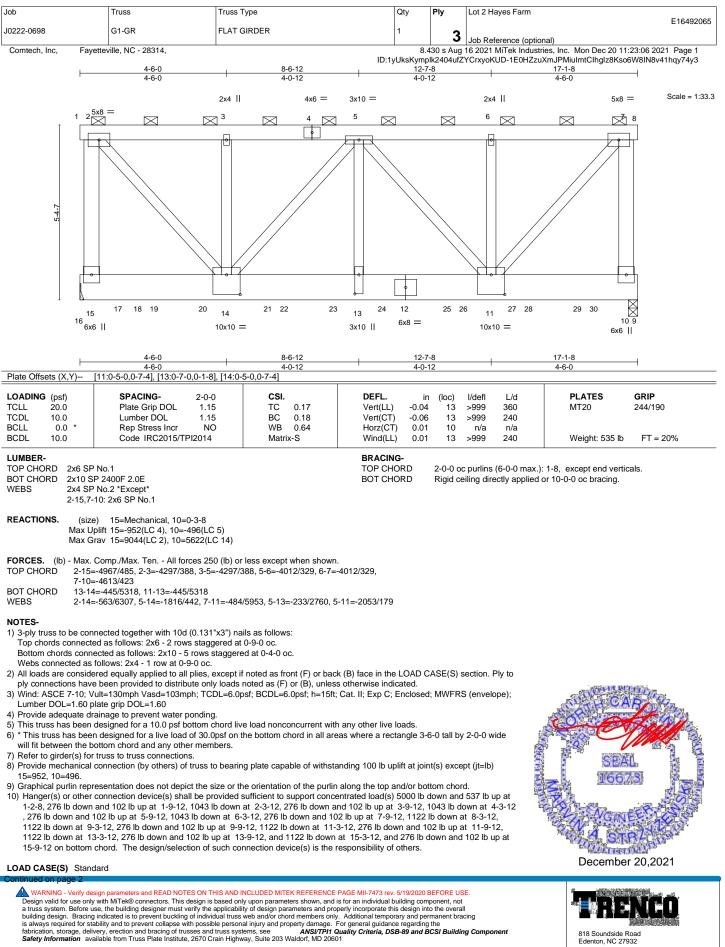
 (Ib) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pdt grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable End Details as applicable, or consult qualified building designer
 Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

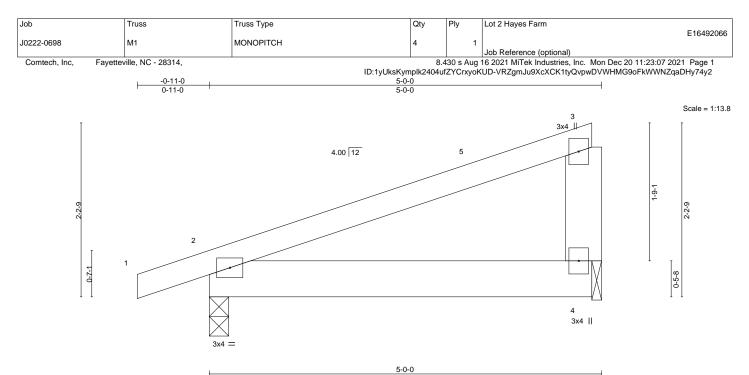
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152. 8=148.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
					E16492065
J0222-0698	G1-GR	FLAT GIRDER	1	3	Job Reference (optional)
	E				
Comtech, Inc,	Fayetteville, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:06 2021 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-1E0HZzuXmJPMiuImtClhgIz8Kso6W8IN8v41hqy74y3

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-

			1			5-0-0					1	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WEBS

BRACING-TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

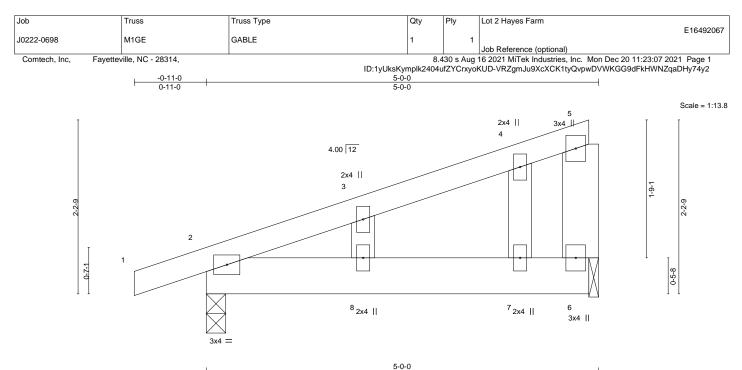
REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=63(LC 8)

Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

5-0-0											
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.01	8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 27 lb	FT = 20%

LUMBER-

2x4 SP No.1 2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WFBS OTHERS 2x4 SP No 2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8)

Max Grav 2=255(LC 1), 6=179(LC 1)

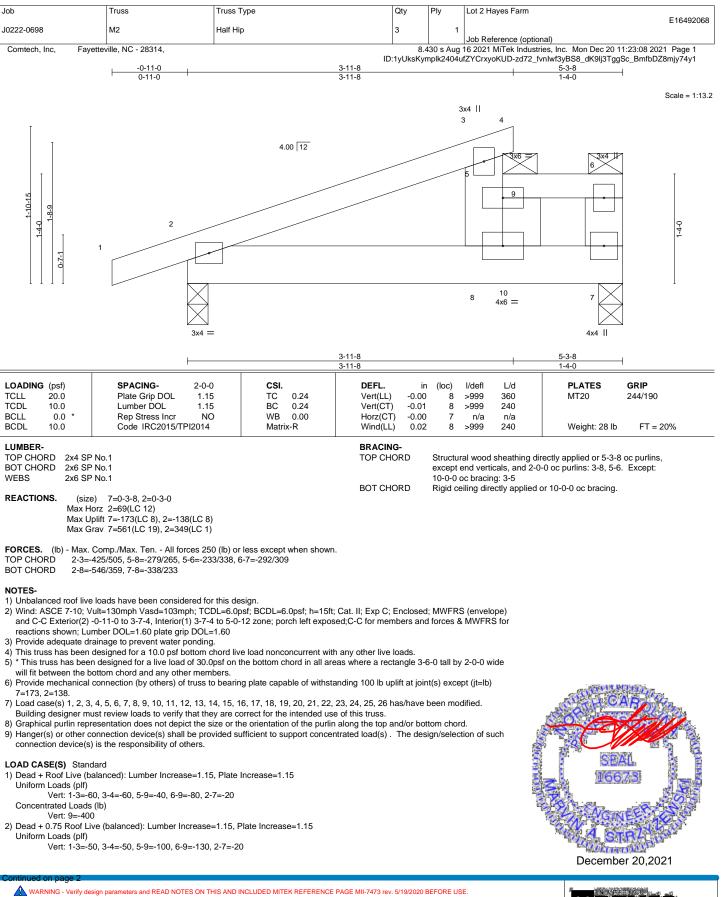
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

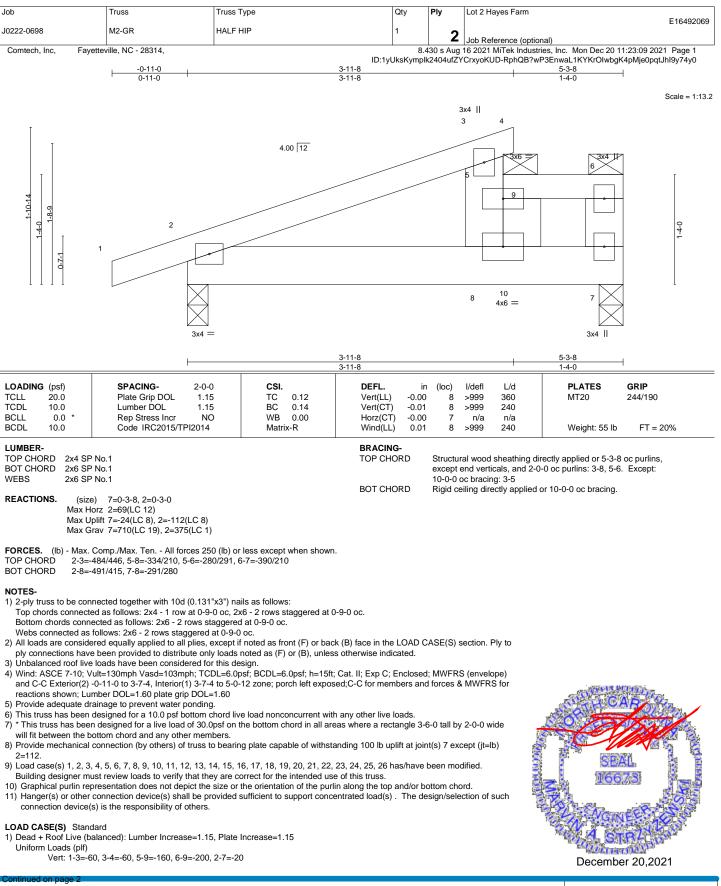
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

Job	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
					E16492068
J0222-0698	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayette	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2				

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

	Concentrated Loads (lb) Vert: 9=-350
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40
	Concentrated Loads (lb) Vert: 9=-300
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55 Concentrated Loads (lb)
	Vert: 9=548
	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
	Concentrated Loads (lb)
6)	Vert: 9=566 Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
	Concentrated Loads (lb) Vert: 9=-420
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9 Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (lb)
	Vert: 9=-420
	Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (Ib)
9)	Vert: 9=154 Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (Ib)
	Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-34
	Concentrated Loads (lb)
44	Vert: 9=-339
) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Concentrated Loads (lb) Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb)
	Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb) Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
• •	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
	Vert: 9=43
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

LOAD CASE(S) Standard Concentrated Loads (Ib)



	Job	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
						E16492068
	J0222-0698	M2	Half Hip	3	1	
						Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2						16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

	ID:1yUksKympik2404ut2YCrxyoKUD-zd/2_tvnlwt;
L	OAD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb) Vert: 9=43
16	ver 5=43 6) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (off)
	Vert: 1-2-6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
	Concentrated Loads (Ib)
	Vert: 9=-234
17	7) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
	Hor: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-234
18	8) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-200
19	9) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
	Concentrated Loads (b)
20	Vert: 9=-454 0) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
20	Uniform Loads (pf)
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (Ib)
	Vert: 9=-375
2	 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
	Concentrated Loads (lb)
	Vert: 9=-375
22	2) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	noiz. rz=rio, z=o=o, o=a=-i0, o=o=o Concentrated Loads (lb)
	Vert: 9375
23	 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-400
24	ver 95–400 4) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
-	Uniform Loads (pf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
	Concentrated Loads (Ib)
	Vert: 9=-400
25	5) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20 Concentrated Loads (lb)
	Vert 9=-350
26	6) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BIB Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
J0222-0698	M2-GR	HALF HIP	1	2	E16492069
				Z	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

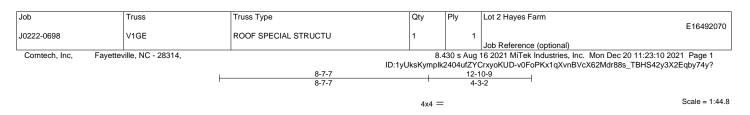
LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

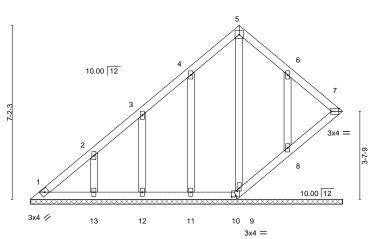
Uniform Loads (plf)

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20	
Concentrated Loads (lb) Vert: 9=-350	
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40	
Concentrated Loads (lb)	
Vert: 9=-300	
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55	
Concentrated Loads (Ib)	
Vert: 9=548	
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52	
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55	
Concentrated Loads (lb) Vert: 9=566	
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51	
Concentrated Loads (lb)	
Vert: 9=-420	
 Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51	
Concentrated Loads (lb)	
Vert: 9=-420	
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10	
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7 Concentrated Loads (lb)	
Vert: 9=154	
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12	
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27	
Concentrated Loads (lb)	
Vert: 9=43 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34	
Concentrated Loads (lb)	
Vert: 9=-339	
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20	
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 9=-234	
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.6	60
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)	
Vert: 9=43	
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.	60
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (lb)	
Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.6	30
Ty beau too www.to wind (ros. internation of rataliel. Lumber increase=1.00, ridle increase=1.0	

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15




Job	Truss	Truss Type	Qty	Ply	Lot 2 Hayes Farm
					E16492069
J0222-0698	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

	j, j, j
LOAD CASE(S) Standard	
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (lb)	
Vert: 9=43	4.00
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Incre	ease=1.60
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb)	
Vert: 9=43	
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Incre	ease=1.60
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12	
Concentrated Loads (lb)	
Vert: 9=-234	
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Incr	rease=1.60
Uniform Loads (plf)	
Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20	
Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0	
Concentrated Loads (lb) Vert: 9=-234	
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-200	
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left):	Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26	
Concentrated Loads (lb)	
Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right)): Lumber Increase-1.60. Plate Increase-1.60
Uniform Loads (plf)	. Lumber increase=1.00, Flate increase=1.00
Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20	
Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 9=-375	
21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Pa	arallel): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9	
Concentrated Loads (lb)	
Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd F	orallal): Lumber Increase, 1.60. Blate Increase, 1.60
Uniform Loads (plf)	araller). Lumber increase=1.00, Flate increase=1.00
Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20	
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-375	
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-400	
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20	
Concentrated Loads (lb) Vert: 9=-400	
 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate 	Increase-1 15
Uniform Loads (plf)	,
Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-350	
26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate	Increase=1.15
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-350	

Plate Offsets (X,Y)-- [7:0-3-11.Edge]. [9:0-1-6.0-1-0]. [10:0-2-0.0-0-10]

		0.01		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00 7 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 75 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

12-10-9

4-4-4

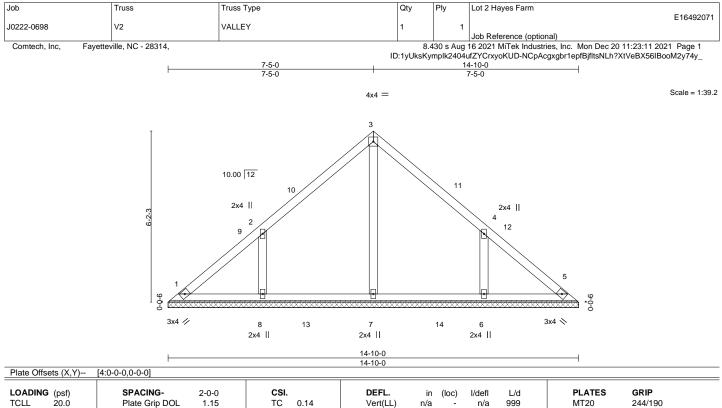
REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

8<u>-6-5</u>

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANS/ TPT 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 64 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1					BRACING- TOP CHOR		Structu	ral wood	sheathing d	irectly applied or 6-0-0	
BOT CHORD 2x4 SP No.1				BOT CHOR						oc punns.	

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No 2

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

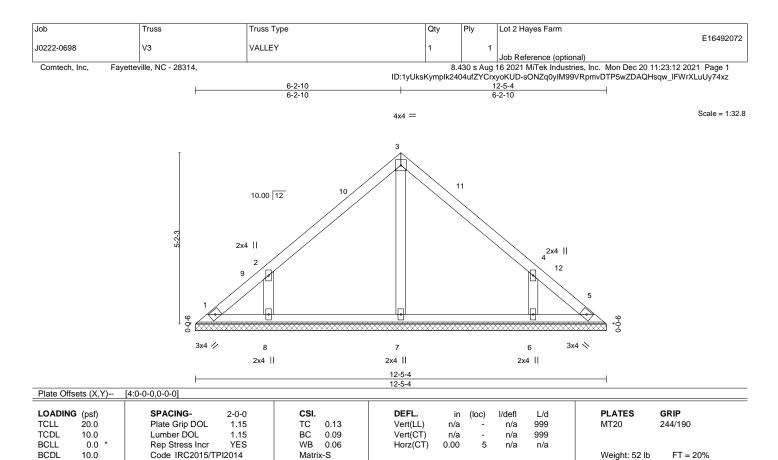
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCF 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135. 6=135.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BRACING-TOP CHORD

BOT CHORD

2022	

LOWIDER	
TOP CHORD	2x4

SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 12-5-4

(lb) - Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

1) Unbalanced roof live loads have been considered for this design.

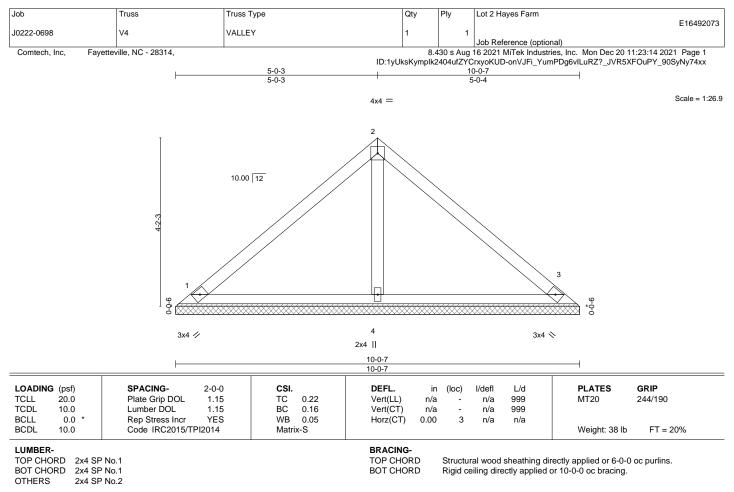
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123. 6=123.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

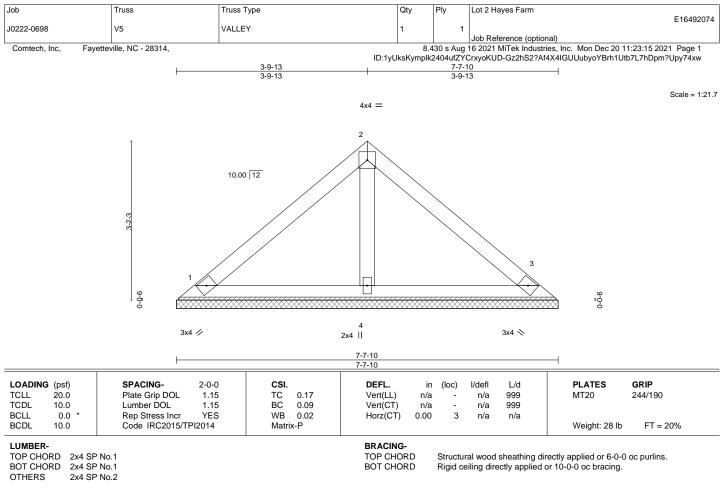
REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8) Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9) Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Oplift 1=-24(LC 13), 3=-30(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8)

Max Horz 1=-44(LC 8) Max Uplift 1=-15(LC 13), 3=-19(LC 13)

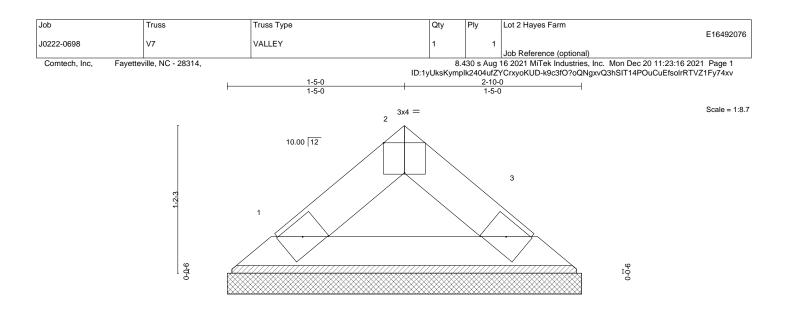
Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)


- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 🥢

3x4 📎

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.01		/a -	n/a	999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n	/a -	n/a	999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.0	0 3	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 8 lb FT = 20%

2-10-0

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8)

Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

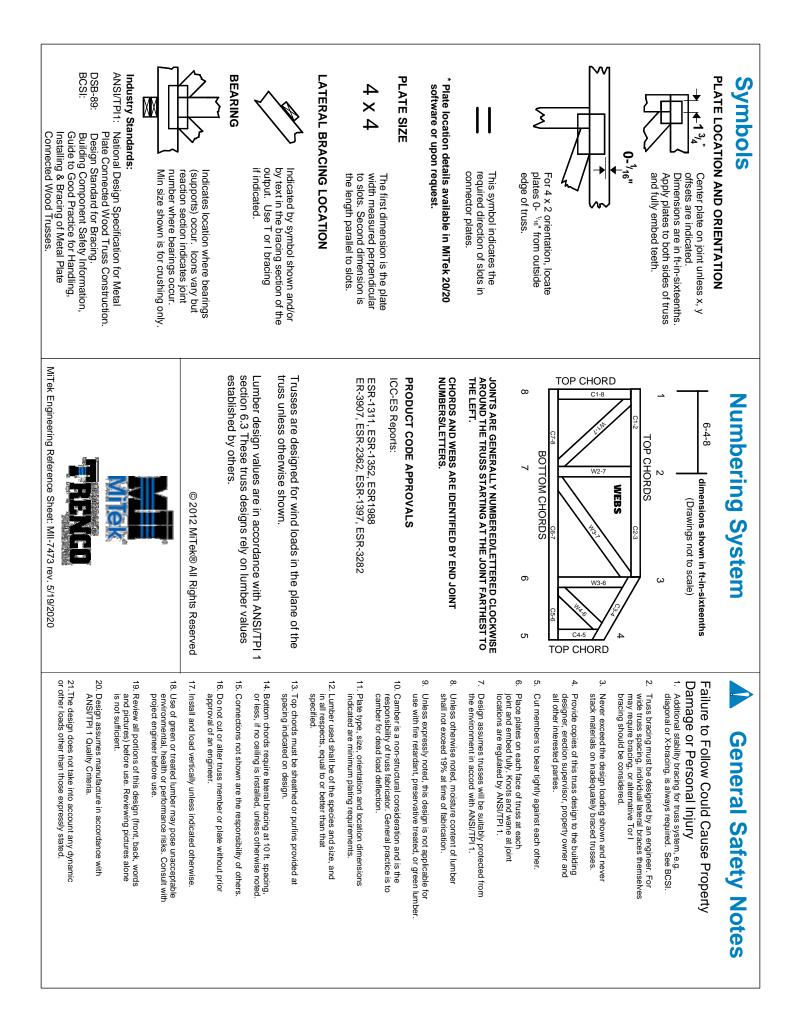
1) Unbalanced roof live loads have been considered for this design.

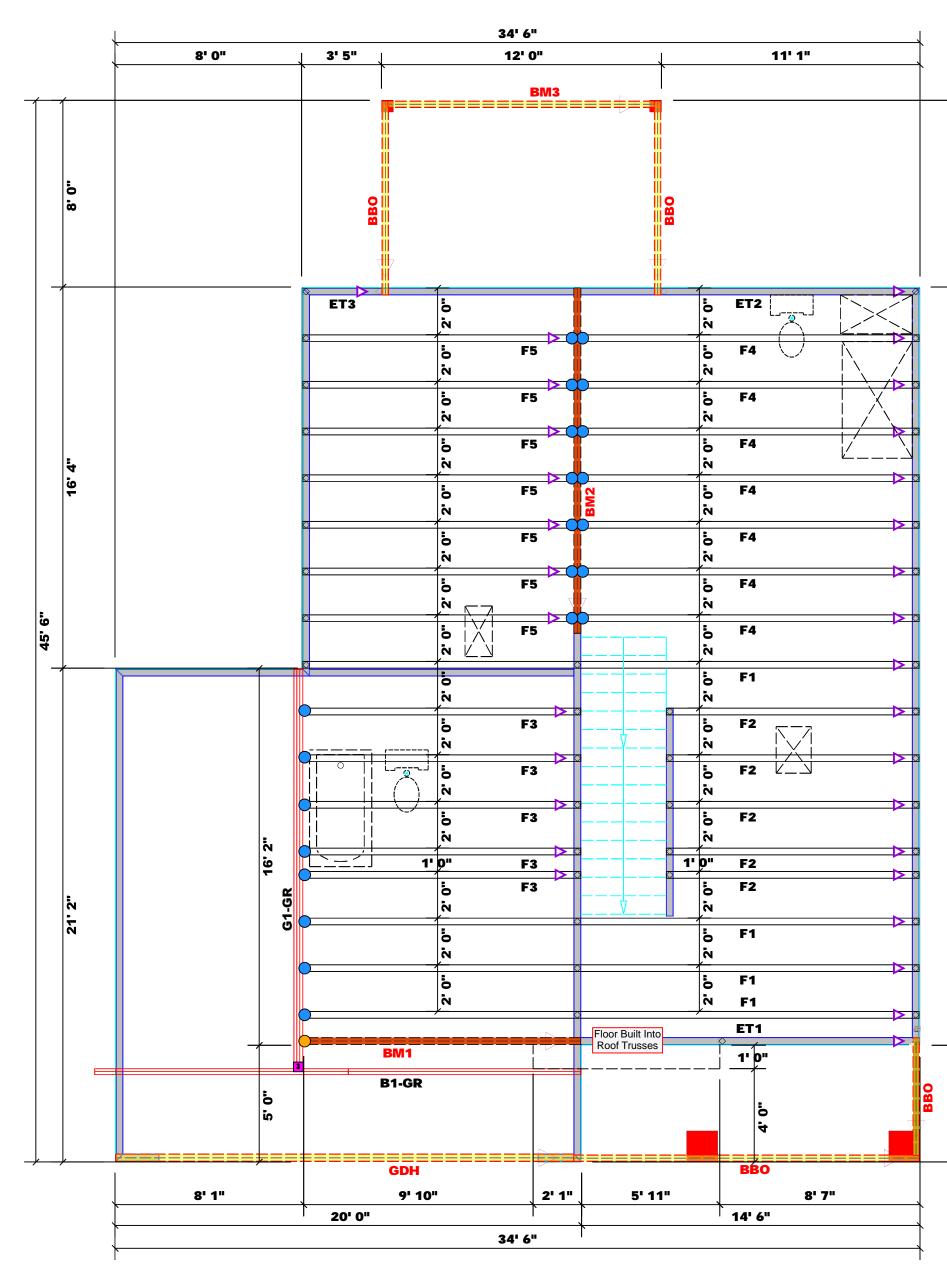
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.




Structural wood sheathing directly applied or 2-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Weaver Development Co. Inc.	CITY / CO.	CITY / CO. Spring Lake / Cumberland		reaction Tables. retained	deemed requiren attached requiren size and reaction 15000#.	F	Ľ
trusses a	E Lot 2 Hayes Farm	ADDRESS	Hayes Road	(BASE	that exce A register to design s that exc	to compl nents. The Tables (nents) to I number s greater A registe	Fayet Phon	
	Hickory II "C" / 2GLF, CP	MODEL	Floor	D ON TABL ACK STUDS	eeds thos red desig n the sup ceed 1500 Davi	y with the e contrac derived f determin of wood than 300 red desig	teville	OF 8
	E N/A	DATE REV.	02/15/22	AS RECEIPTING THE SECOND STATES AND A SECOND S	e specifi n profess port syst 00#.	e prescrip tor shall from the ne the min studs req 0# but no n profess	2, N.C. 0) 864	
# 31000		DRAWN BY	DRAWN BY David Landry	CK STU 12 4 (b)) 0 0 0 4 0 N 12 4 0 12 4 0 12 4 0 13 40 102 13 6 170	ed in the a sional sha em for all andr	I to 3000# otive Code refer to the prescription nimum fou- uired to so the greater of sional sha em for an	rial Par 28309 8787 1444	OOI BEAN
	J0222-0699	SALES REP.	SALES REP. Lenny Norris	001 001 001 001 001 001 001 001	attached II be	e ve Code indation upport than II be		

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

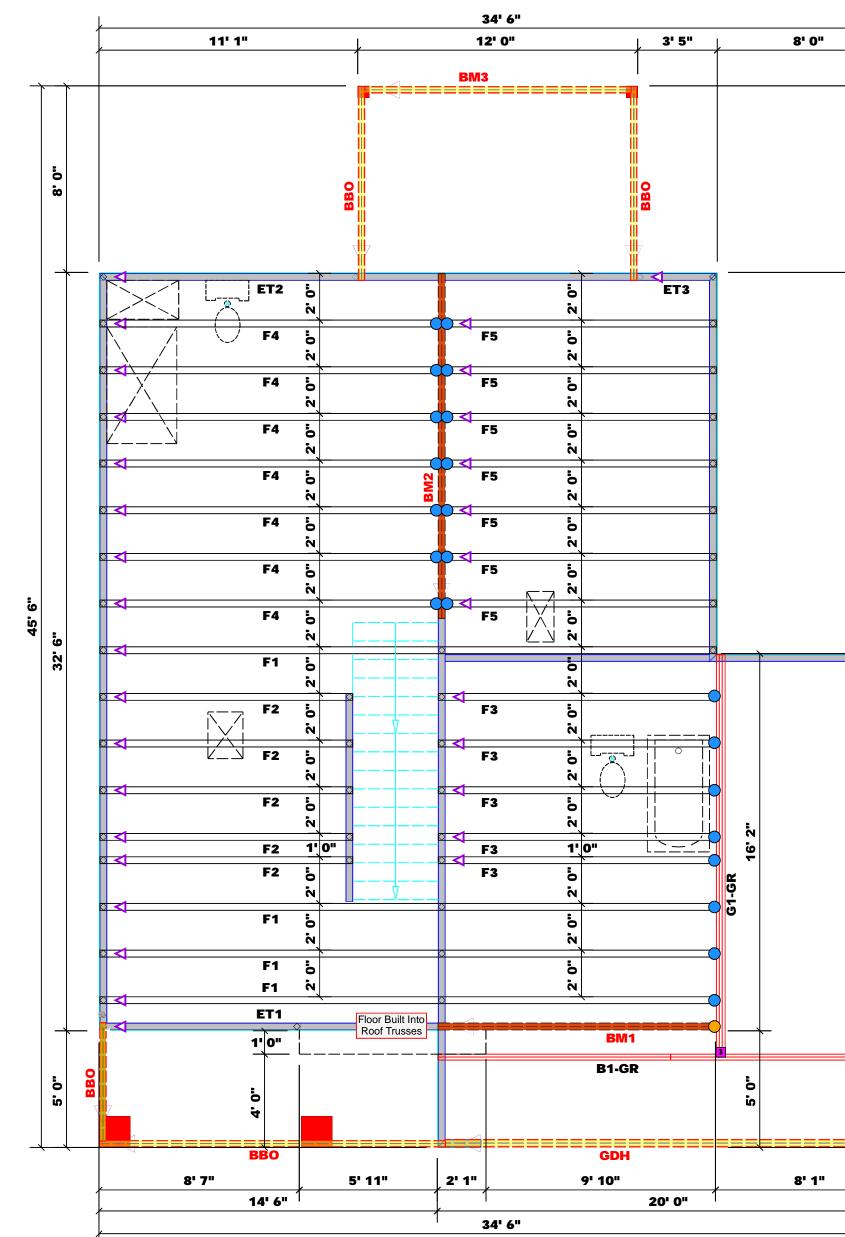
All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes
1. Plumbing drop locations shown are NOT exact.
2. Contractor to verify ALL plumbing drop
locations prior to setting Floor Trusses.
3. Adjust spacing as needed not to exceed 24"oc.

	Conne	ctor Info	rmati	ion	Nail Info	ormation
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

- 1 Scale: 1/4"=1"


Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

6

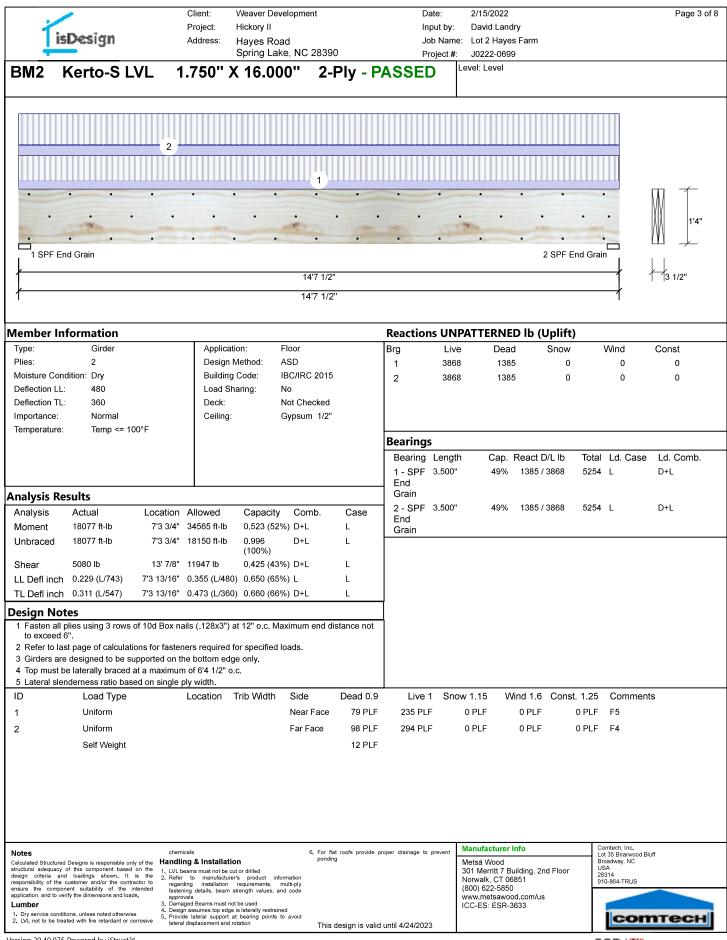
45

ā

<u>5</u>, 0.

		Scale: 1/4"=1"	BUILDER Weaver Development	JOB NAME Lot 2 Hayes	PLAN Hickory	SEAL DATE N/A	QUOTE #	JOB # J0222-0699
=		Indisering Indisering Indisering Indisering THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2" PlotID Length Product Plies Net Qty Fab Type BM1 12'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM2 15'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12'0" 2x10 SPF No.2 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	opment Co. Inc.	Farm	"C" / 2GLF, CP			
21' 2"		2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc. Connector Information Nail Information Sym Product Manuf Qty Supported Member Header Truss HUS410 USP 22 NA 16d/3-1/2"	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	CALES DED
	1 45' 6"	Dimension Notes 1. All exterior wall to wall dimensions are to face of frame wall unless noted otherwise 2. All interior wall ot utus dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise Considered Load Bearing Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. Plumbing drop locations shown are NOT exact.	Spring Lake / Cumberland	Hayes Road	Floor	02/15/22	David Landry	
16. 4"	<u> </u>			MPER OF 27 804 9001 9 001 9 0028 1 2 3 4 5 6 7 8	C N TABLE C N TABLE	REQUIRED GEOGRAPHICS ACCEP CONSTRUCTION ACCEP CONSTRUCTION ACCEP CONSTRUCTION CON	2011 2011 2011 2011 2011 2011 2011 2011	
8, 0,			15000#. retained reaction Tables. retained reaction Signatu	A registe to design that excr A registent to design s that exc re	red design n the supp seeds those red design n the supp ceed 1500 Davi Davi ART FC	n profess port syste e specific profess port syste 0#. d La DR JA(sional sha em for an ed in the a ional sha em for all andry ndry CK STL	attacl y attacl II be
	· · · · · · · · · · · · · · · · · · ·	_	Bearing deemed requiren attachee requiren size and	Fayet Phon Fax reactions to compl nents. The Tables (nents) to I number	teville e: (910) (, N.C. 0) 864 864-4 9 prescriptor shall rom the y e the min	28309 -8787 1444 I to 3000 titve Code refer to the prescription imum fou uired to s	# are e ne ve Co unda
			Т	RO RUS	OF 8 SES	k FL & B	oof Ean	R MS

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

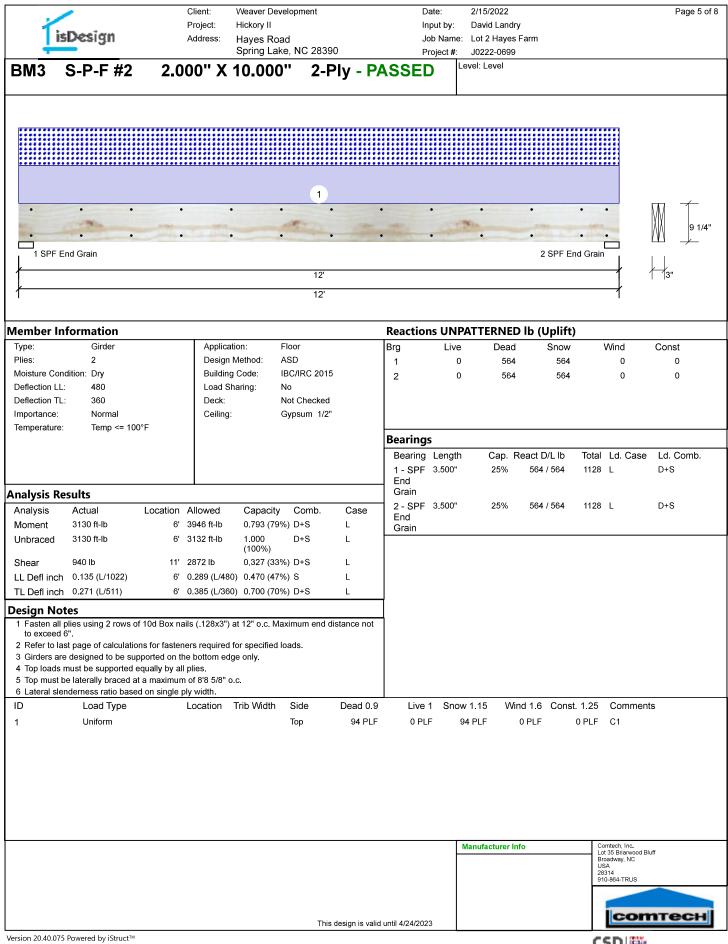

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

isl	Design	Client: Weaver Dev Project: Hickory II Address: Hayes Ro			e: 2/15/2022 It by: David Lar Name: Lot 2 Hay	ndry		Page 1 of
	-	Spring Lal	ke, NC 28390	Proj	ect #: J0222-06			
3 M 1 K	Kerto-S LVL	1.750" X 16.00	0" 2-Ply -	PASSED	Level: Level			
	2							
		1						π
	The	11'11	100 A	-	2 SP			1'4"
1		11'11	ı			\rightarrow		
lember Info Type:	ormation Girder	Application:	Floor	Reactions Brg	Live De		Wind	Const
Plies: Moisture Condi Deflection LL: Deflection TL: mportance:	2 ition: Dry 480 360 Normal	Design Method: Building Code: Load Sharing:	ASD IBC/IRC 2015 No Not Checked Gypsum 1/2"	1 2	0 28	69 2079	0	0
Temperature:	Temp <= 100°F			Bearings				
				Bearing L 1 - SPF 3	.500" 95%		Total Ld. Case 4948 L	Ld. Comb. D+S
nalysis Res	sults	I		2 - SPF 3	.500" 95%	2869 / 2079	4948 L	D+S
Moment Unbraced Shear	13679 ft-lb 5'1 13679 ft-lb 5'1 3659 lb 1'	Allowed Capacity 1 1/2" 39750 ft-lb 0.344 (34) 1 1/2" 13695 ft-lb 0.999 (100%) 6 5/8" 13739 lb 0.266 (27) 1 1/2" 0.287 (L/480) 0.240 (24)	%) D+S L D+S L %) D+S L					
TL Defl inch		1 1/2" 0.383 (L/360) 0.430 (43	%) D+S L					
to exceed 6" 2 Refer to last 3 Girders are of 4 Top loads m 5 Top must be	ies using 3 rows of 10d '. page of calculations fo	aximum of 8'8 1/4" o.c.		ot				
D	Load Type	Location Trib Width	Side Dead 0			Wind 1.6 Const	. 1.25 Comment	s
	Uniform		Top 120 P		0 PLF 349 PLF		0 PLF Wall	
2	Uniform Self Weight		Top 349 P 12 P		349 MLF	VFLF	0 PLF A2	
tructural adequacy of esign criteria and esponsibility of the cu nsure the compone	Designs is responsible only of the this component based on the loadings shown. It is the stormer and/or the contractor to nt suitability of the intended the dimensions and loads.	chemicals Handling & Installation 1. UVL beams must not be cut or drilled 2. Refer to manufacturer's product inf regarding installation requirements, fastening details, beam strength values, a approvals	ponding ormation multi-ply	de proper drainage to pr	Metsä Wood	Building, 2nd Floor 06851 50	Comtech, Inc. Lot 33 Briarwood Bli Broadway, NC USA 28314 910-864-TRUS	ıff
.umber . Dry service condition	, ns, unless noted otherwise ad with fire retardant or corrosive Powered by iStruct™	 Damaged Beams must not be used Design assumes top edge is laterally restrain Provide lateral support at bearing points lateral displacement and rotation 	to avoid	alid until 4/24/2023	ICC-ES: ESR		CSD 🗱	тесн

Client: Project: Address:	Weaver Development Hickory II Hayes Road Spring Lake, NC 28390	Date: 2/15/2022 Input by: David Landry Job Name: Lot 2 Hayes Farm Project #: J0222-0699	Page 2 of 8
BM1 Kerto-S LVL 1.750"	X 16.000" 2-Ply - PA		
	· · · · ·	· · · · · · · · · · · · · · · · · · ·	1'4"
1 SPF	11'11"		↓ ↓ 3 1/2"
ł	11'11"		1 10
Multi-Ply Analysis Fasten all plies using 3 rows of 10d Box nail: Capacity 0.0 % Load 0.0 PLF Yield Limit per Foot 245.6 PLF Yield Mode IV Edge Distance 1 1/2" Min. End Distance 3" Load Combination Duration Factor Duration Factor 1.00	<u>s (.128x3") at 12</u> " o.c Maximum en	d distance not to exceed 6"	
ensure the component suitability of the intended fastening datale has		drainage to prevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC USA 28314 910-864-TRUS
application, and to verify the dimensions and loads. Lumber 3. Damaged Beams mu: 4. Design assumes too	t not be used dge is laterally restrained rt at bearing points to avoid	www.metsawood.com/us ICC-ES: ESR-3633	соттесн

CSD 🗱

Version 20.40.075 Powered by iStruct^T



Version 20.40.075 Powered by iStruct™

Project: Hickory II Input by: David Landry Address: Hayes Road Job Name: Lot 2 Hayes Farm Spring Lake, NC 28390 Project #: J0222-0699 BM2 Kerto-S LVL 1.750'' X 16.000'' 2-Ply - PASSED Level: Level	
	1
	1'4"
1 SPF End Grain 2 SPF End Grain	
14'7 1/2" 14'7 1/2" 14'7 1/2"	"
Multi-Ply Analysis	
Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c Maximum end distance not to exceed 6" Capacity 79.8 %	
Load 196.0 PLF Yield Limit per Foot 245.6 PLF	
Yield Limit per Fastener 81.9 lb. Yield Mode IV	
Edge Distance 1 1/2" Min. End Distance 3"	
Load Combination D+L Duration Factor 1.00	
Notes chemicals 6. For flat roofs provide proper drainage to prevent Manufacturer Info Comtech, Inc. Lot 35 Briarwood Bluff	
Calculated Structured Designs is responsible only of the structured Designs is responsible only of the structural adequacy of this component based on the 1. UVL beams must not be cut or drilled design on training shown. It is the 2. Refer to manufacturer's product information Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible only of this component based on the 1. Structured Designs is responsible on the 1. Structured D	
regarding installation requirements, multiply ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 3. Damaged Beams must not be used 3. Damaged Beams must	
1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 4/24/2023	СН

CSD 🗱

Version 20.40.075 Powered by iStruct™

isDesign	Project: H Address:	Veaver Development lickory II Hayes Road	Date: 2/15/2022 Input by: David Landry Job Name: Lot 2 Hayes Farm	Page 6 of 8
BM3 S-P-F #2	2.000" X 1	Spring Lake, NC 28390 0.000'' 2-Ply - PA	Project #: J0222-0699 Level: Level	
	• •	• • •	• • •	· · · · · · · · · · · · · · · · · · ·
	• •			• • • • • • • • • • • • • • • • • • •
1 SPF End Grain				2 SPF End Grain
		12' 12'		/ /3"
		12		Ι
Multi-Ply Analysis				
Capacity	0.0 %	[28x3") at 12" o.c Maximum (end distance not to exceed 6"	
Load Yield Limit per Foot	0.0 PLF 157.4 PLF			
Yield Limit per Fastener Yield Mode	78.7 lb. IV			
Edge Distance Min. End Distance	1 1/2" 3"			
Load Combination				
Duration Factor	1.00			
			Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC
				USA 28314 910-864-TRUS
		This design is valid t	until 4/24/2023	соттесн

	Destau	Client: Project:	Weaver Developme Hickory II		Date Inpu	tby: Dav	vid Landry			Page 7
	Design	Address:	Hayes Road Spring Lake, NC	28390			2 Hayes Farm 22-0699			
	Kerto-S LVL	1.750"	X 14.000"			Level:				
					3 1					
		2								
				1						m /
			15		·	C. Par				1'2"
1 SPF End	Grain		• • • •		• •	• •	• • • 2 S	• • PF End Gra	ain	
,				20'					\rightarrow	3 1/2"
				20'					\neg	
ember Inf	ormation				Reactions	UNPATT	ERNED lb (Upl	ift)		
ype:	Girder	Applica			Brg	Live	Dead Sn	ow	Wind	Const
lies: loisture Cond	2 lition: Dry	-	Method: ASD g Code: IBC/IRC	2015	1	0 0		96 41	0 0	0 0
eflection LL:	480	Load S			2	0	1100		Ū	0
eflection TL:	360	Deck:	Not Ch							
nportance: emperature:	Normal Temp <= 100°F	Ceiling	: Gypsur	11 1/2						
	p				Bearings					
					Bearing L	ength	Cap. React D/L	b Total	Ld. Case	Ld. Comb.
					1 - SPF 3.	.500"	19% 1804 / 19	6 2000	L	D+S
alysis Res	sults				End Grain					
nalysis		ocation Allowed	Capacity Cor	nb. Case	2-SPF 3.	.500"	18% 1750 / 14	1 1891	L	D+S
loment	8592 ft-lb 9'11	1 11/16" 24299 ft-lb	0.354 (35%) D	Uniform	End Grain					
Inbraced	9503 ft-lb 9	'11 1/2" 9506 ft-Ib	1.000 D+S (100%)	i L						
hear	1552 lb	1'4 3/4" 9408 lb	0.165 (16%) D	Uniform						
	0.041 (L/5726) 9'1	11 1/16" 0.489 (L/48		L						
L Defl inch	0.430 (L/546) 9	'11 7/8" 0.651 (L/36	0) 0.660 (66%) D+S	i L						
esign Not	es									
	lies using 3 rows of 10	d Box nails (.128x3")	at 12" o.c. Maximum	end distance not	1					
to exceed 6 Refer to las	t page of calculations f	or fasteners required	for specified loads.							
	designed to be suppor		ge only							
•	nust be supported equate laterally braced at a r									
Lateral slen	derness ratio based or	÷ , ,								
)	Load Type	Location	Trib Width Side		Live 1	Snow 1.1			Comments	S
	Uniform		Тор	60 PLF	0 PLF	0 PLI		0 PLF	Wall	
	Uniform		Тор	90 PLF	0 PLF	0 PLI		0 PLF	B1GE	
	Tie-In	0-0-0 to 16-10-0	1-0-0 Тор	20 PSF	0 PSF	20 PSI	= 0 PSF	0 PSF	Roof Load	
	Self Weight			11 PLF						
4		chemicals		C Fox flat roof-	ronor drain *-	Manuf	acturer Info	с	Comtech, Inc.	
otes Iculated Structured I	Designs is responsible only of the	Handling & Installat	ion	For flat roofs provide p ponding	roper grainage to pre	Metsä	Wood	В	ot 35 Briarwood Blut Iroadway, NC ISA	ff
sign criteria and	f this component based on the loadings shown. It is the ustomer and/or the contractor to	9 2 Refer to manufactu	er's product information			Norwa	erritt 7 Building, 2nd Fl lk, CT 06851	28	8314 10-864-TRUS	
sure the compone	ant suitability of the intended fy the dimensions and loads.		requirements, multi-ply strength values, and code			(800) 6	22-5850 netsawood.com/us	F		
	-	 Damaged Beams must r 	ot be used				S: ESR-3633	I		
umber	ons, unless noted otherwise	Design assumes top edg	e is laterally restrained at bearing points to avoid			ICC-E	5. ESK-3033		1	тесн

	-		Client:	Weaver Developm	ent	Date:	2/15/2022		Page 8 of 8
2			Project:	Hickory II		Input by			. age e ei e
	isDesign		Address:	Hayes Road		Job Nan			
•				Spring Lake, NC	28390	Project #	#: J0222-0699		
GDH	Kerto-S	LVL	1.750"	X 14.000"	2-Plv -	PASSED	Level: Level		
					_ · · ,				
	• • •	•	• •	• • •	• •	• • •	• • • •		$\Pi \neq$
.								$\cdot \cdot \cdot = \sum_{i=1}^{n}$	M
			• •		• •			<u>· · · · · · · · · · · · · · · · · · · </u>	
1 SPF	End Grain						2 SPF E	nd Grain	,
					001				
					20'				3 1/2"
1					20'			1	
Multi-Plv	y Analysis								
-				(100 01) (101					
	I plies using 3 r			(.128x3") at 12"	o.c Maximu	m end distance r	not to exceed 6"		
Capacity Load		0.0 0.0							
Yield Limit p	er Foot		.6 PLF						
Yield Limit p	er Fastener	81.9	9 lb.						
Yield Mode		IV	01						
Edge Distan Min. End Dis		1 1/. 3"	2"						
Load Combin		5							
Duration Fac		1.00)						
Notes			chemicals		6. For flat roofs provid	le proper drainage to prevent	Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bl	uff
Calculated Struc structural adequ	ctured Designs is responsible uacy of this component bar	sed on the	Handling & Installa 1. LVL beams must not be		ponding		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Broadway, NC USA	
design criteria responsibility of	and loadings shown. the customer and/or the c	It is the : ontractor to	Refer to manufactule	a cut or drilled urer's product information n requirements, multi-ply			Norwalk, CT 06851	28314 910-864-TRUS	
ensure the co	omponent suitability of the to verify the dimensions and	e intended loads.	fastening details, bear approvals	n strength values, and code			(800) 622-5850 www.metsawood.com/us		
Lumber	conditions, unless noted othe		 Damaged Beams must Design assumes top ed 	lge is laterally restrained			ICC-ES: ESR-3633		
2. LVL not to b	conditions, unless noted other be treated with fire retardant (rwise	 Provide lateral suppor lateral displacement an 	t at bearing points to avoid	This desian is va	alid until 4/24/2023		con	птесн
Version 20.40	.075 Powered by iStrue	ct™			3		1	CCD IN	
								CSD 🚟	

RE: J0222-0699 Lot 2 Hayes Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Lot/Block: 2 Address: Hayes Road City: Spring Lake

Project Name: J0222-0699 Model: Hickory II Subdivision: Hayes Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

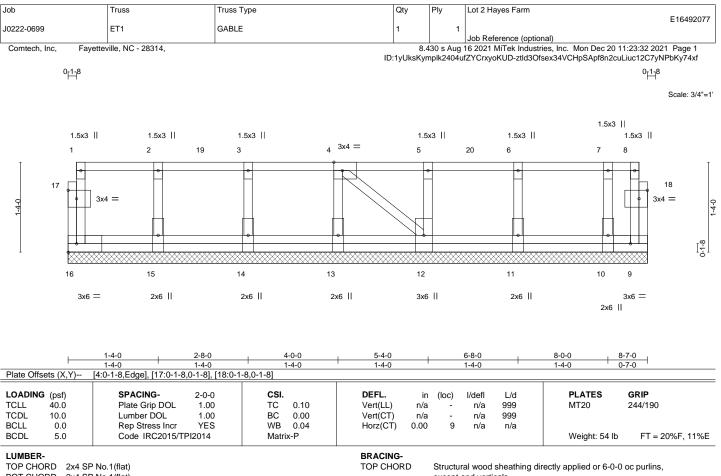
Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7	Seal# E16492077 E16492078 E16492079 E16492080 E16492081 E16492082 E16492083	Truss Name ET1 ET2 ET3 F1 F2 F3 F4	Date 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021
7 8	E16492083 E16492084	F4 F5	12/20/2021 12/20/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Strzyzewski, Marvin My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer


should verify applicability of design parameters and properly incorporate these designs

into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

Strzyzewski, Marvin

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

 TOP CHORD
 Structural wood sheatning directly applied or 6-0-0 oc p

 except end verticals.
 BOT CHORD

 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

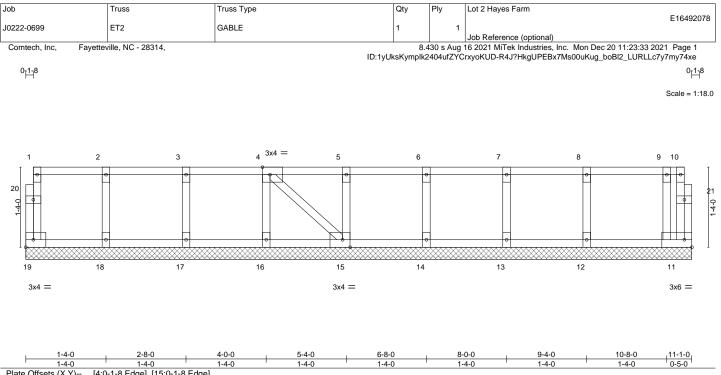
3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 4=-71 7=-77 19=-71 20=-71

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.06	Vert(LL) n/		999	MT20	244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr YES	BC 0.01 WB 0.03	Vert(CT) n/ Horz(CT) 0.0		999 n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 54 lb	FT = 20%F, 11%E
LUMBER-			BRACING-				
	SP No.1(flat) SP No.1(flat)		TOP CHORD	Structural woo except end ve	0	ectly applied or 6-0-0	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

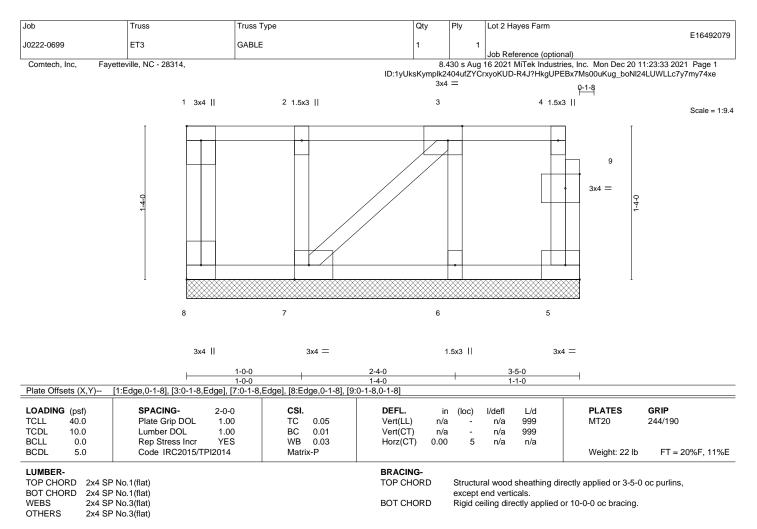
NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

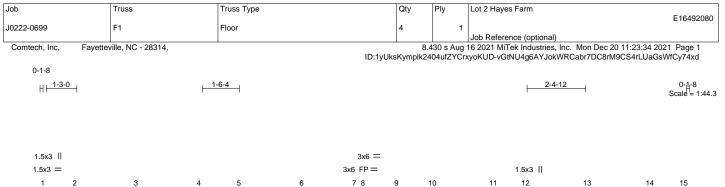
1) Plates checked for a plus or minus 1 degree rotation about its center.

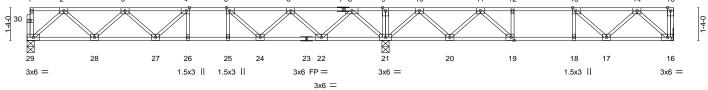
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

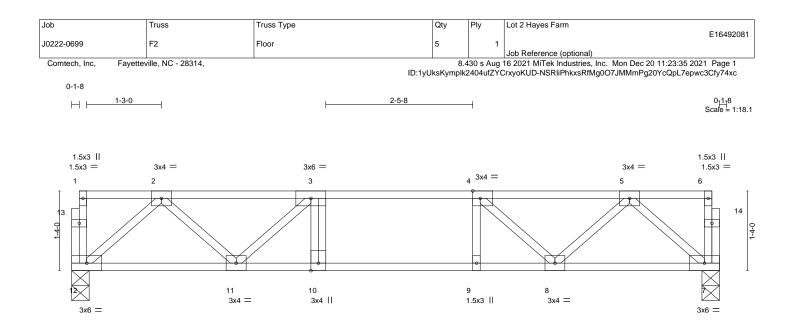
4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


 	<u>14-7-12</u> 14-7-12				<u>26-5-0</u> 11-9-4		
Plate Offsets (X,		8,Edge], [19:0-1-8,Edge]			11-9	+	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.55 BC 0.76 WB 0.44	Vert(LL) -0.1	in (loc) l/defl 10 26-27 >999 13 26-27 >999 03 16 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 136 lb	FT = 20%F, 11%I
BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	ctly applied or 6-0-0 o	oc purlins,
REACTIONS.	(size) 29=0-3-8, 16=Mechanical, 21=0-3- Max Grav 29=727(LC 10), 16=1063(LC 4), 21						
FORCES. (Ib) TOP CHORD	- Max. Comp./Max. Ten All forces 250 (lb) o 15-16=-537/0, 2-3=-1257/0, 3-4=-1883/0, 4-5 8-9=0/1401, 9-10=0/1401, 10-11=-468/367, 13-14=-884/0	5=-2002/0, 5-6=-1658/0, 6	6-8=-756/225,				
BOT CHORD	28-29=0/771, 27-28=0/1717, 26-27=0/2002, 22-24=-34/1340, 21-22=-444/147, 20-21=-63 17-18=0/1158, 16-17=0/586						
WEBS	2-29=-1023/0, 2-28=0/677, 3-28=-640/0, 8-2 13-17=-372/90, 10-21=-1064/0, 8-22=0/923, 10-20=0/687, 11-20=-690/0, 11-19=0/582, 12	6-22=-882/0, 6-24=0/527					
 All plates are Plates checked Refer to girde Recommend Strongbacks 	loor live loads have been considered for this d 3x4 MT20 unless otherwise indicated. ed for a plus or minus 1 degree rotation about r(s) for truss to truss connections. 2x6 strongbacks, on edge, spaced at 10-0-0 of to be attached to walls at their outer ends or re o not erect truss backwards.	its center.		X 3") nails.	k	CA CA	
Uniform Load	Live (balanced): Lumber Increase=1.00, Plate ls (plf) 16-29=-10, 1-15=-100	Increase=1.00			- Alexandra	SEA 166	

Concentrated Loads (lb) Vert: 15=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H			10-10-0 10-10-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.46 WB 0.21 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01	10 >999 480 10 >999 360	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	2 11) oc purlins,	
REACTIONS. (size	e) 12=0-3-8, 7=0-3-8					

Max Grav 12=576(LC 1), 7=576(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

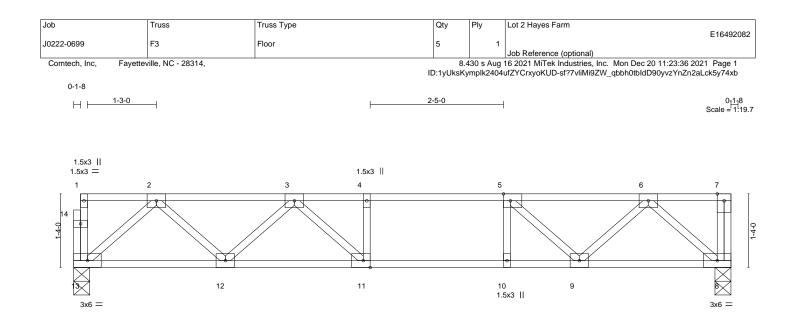
TOP CHORD 2-3=-923/0, 3-4=-1242/0, 4-5=-925/0

11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603 BOT CHORD

WEBS 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.


Plate checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			11-11-0			
			11-11-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.70 WB 0.27 Matrix-S	Vert(LL) -0.1	n (loc) l/defl L/d 3 11-12 >999 480 6 11-12 >894 360 2 8 n/a n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.			

11-11-0

REACTIONS. (size) 13=0-3-8, 8=0-3-8 Max Grav 13=635(LC 1), 8=1142(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0

 BOT CHORD
 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659

 WEBS
 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/557,

ES 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/55 5-9=-616/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

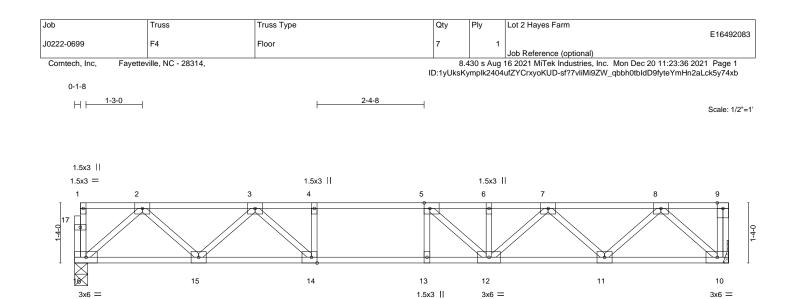
3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 8-13=-10, 1-7=-100 Concentrated Loads (lb)

Vert: 7=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-1-8,Edge]		14-6-0 14-6-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.62 BC 0.78 WB 0.35 Matrix-S	- () -	12-13 >999 480 12-13 >790 360	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	2 11	oc purlins,

REACTIONS. (size) 16=0-3-8, 10=Mechanical

Max Grav 16=778(LC 1), 10=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0

 BOT CHORD
 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835

 WEBS
 2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0, 8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

NOTES-

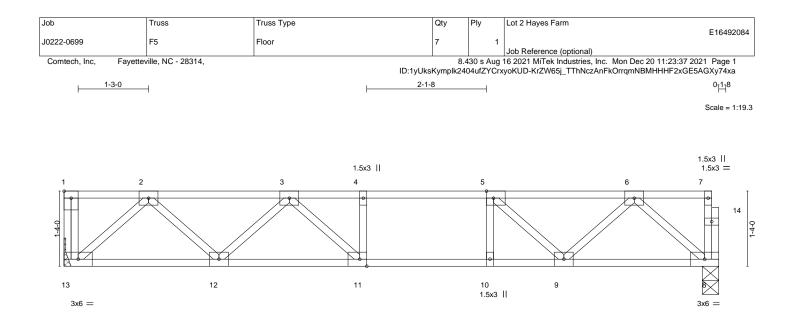
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	e,0-1-8], [5:0-1-8,Edge], [11:0-1-8	,Edge]				
TCLL 40.0 F TCDL 10.0 L BCLL 0.0 F	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.56 WB 0.25 Matrix-S	Vert(LL) -0.10	n (loc) I/defl L/d) 11-12 >999 480 3 11-12 >999 360 2 8 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(fia BOT CHORD 2x4 SP No.1(fia WEBS 2x4 SP No.3(fia	lat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	, ,,	oc purlins,

Max Grav 13=626(LC 1), 8=619(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

 BOT CHORD
 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

 WEBS
 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526, 5-9=-570/0

NOTES-

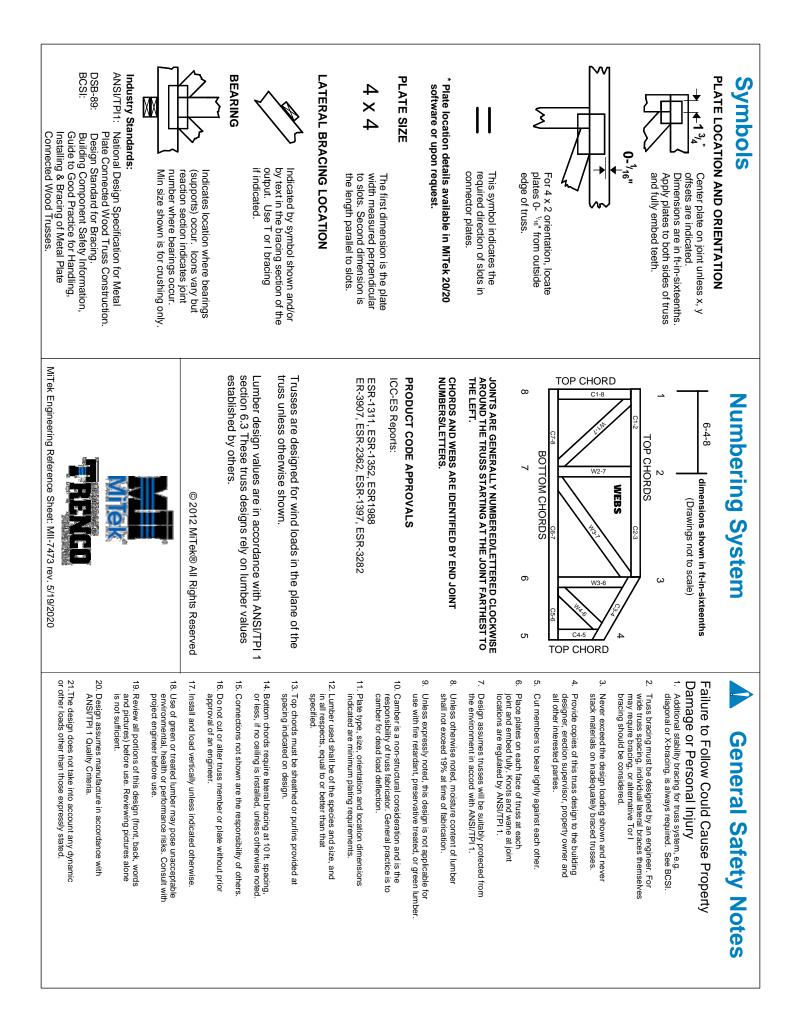
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

