

RE: J0324-1345 6085 Cool Springs Rd / Broadway, NC

Site Information:

Customer: Project Name: J0324-1345 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 42 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164344096	A1-GE	3/21/2024	21	164344116	F2	3/21/2024
2	164344097	A2	3/21/2024	22	164344117	F3	3/21/2024
3	164344098	A3	3/21/2024	23	164344118	G1-GE	3/21/2024
4	164344099	A4	3/21/2024	24	164344119	G2	3/21/2024
5	164344100	A5	3/21/2024	25	164344120	H1	3/21/2024
6	164344101	A6	3/21/2024	26	164344121	H2	3/21/2024
7	164344102	A7-GE	3/21/2024	27	164344122	H3	3/21/2024
8	164344103	B1	3/21/2024	28	164344123	H3A	3/21/2024
9	164344104	B2	3/21/2024	29	164344124	H4	3/21/2024
10	164344105	C1-GE	3/21/2024	30	164344125	H5	3/21/2024
11	164344106	C2	3/21/2024	31	164344126	H6	3/21/2024
12	164344107	C3	3/21/2024	32	164344127	PB1	3/21/2024
13	164344108	C4	3/21/2024	33	164344128	PB2	3/21/2024
14	164344109	C5	3/21/2024	34	164344129	PB3	3/21/2024
15	164344110	D1-GE	3/21/2024	35	164344130	PB4	3/21/2024
16	164344111	D2	3/21/2024	36	164344131	PB5	3/21/2024
17	164344112	D3	3/21/2024	37	164344132	VF-1	3/21/2024
18	164344113	D4	3/21/2024	38	164344133	VF-2	3/21/2024
19	164344114	E1-GE	3/21/2024	39	164344134	VF-3	3/21/2024
20	164344115	F1-GE	3/21/2024	40	164344135	VF-4	3/21/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

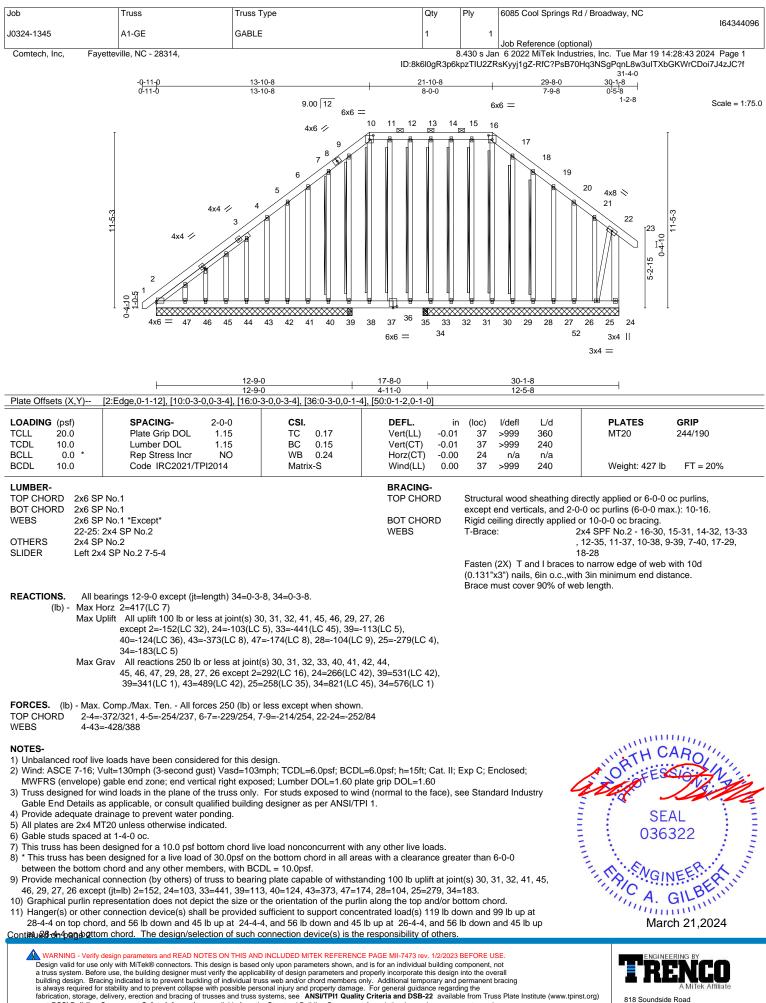
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Edenton, NC 27932

818 Soundside Rd

Trenco

Gilbert, Eric



RE: J0324-1345 - 6085 Cool Springs Rd / Broadway, NC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Projec Lot/Bl Addre	lock:	Project Name: J0	324-1345	Subdivision:
City, C	County:			State:
No. 41 42	Seal# I64344136 I64344137	Truss Name VF-5 VF-6	Date 3/21/2024 3/21/2024	

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	6085 Cool Springs Rd / Broadway, NC	
						164344096	
	J0324-1345	A1-GE	GABLE	1	1		
						Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:44 2024					6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:44 2024 Page 2		
			ID:8k6l0gR3p6kpzTIU2ZRsKyyj1gZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f				

NOTES-

Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

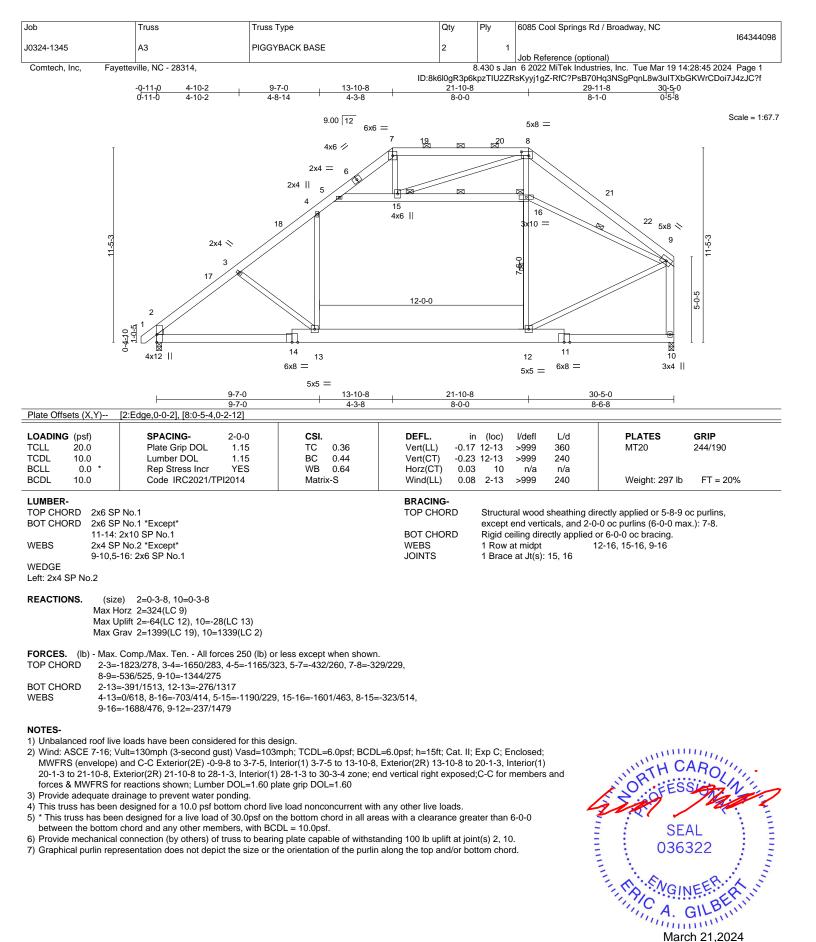
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-10=-60, 10-16=-60, 16-22=-60, 22-23=-60, 2-24=-20

Concentrated Loads (lb)

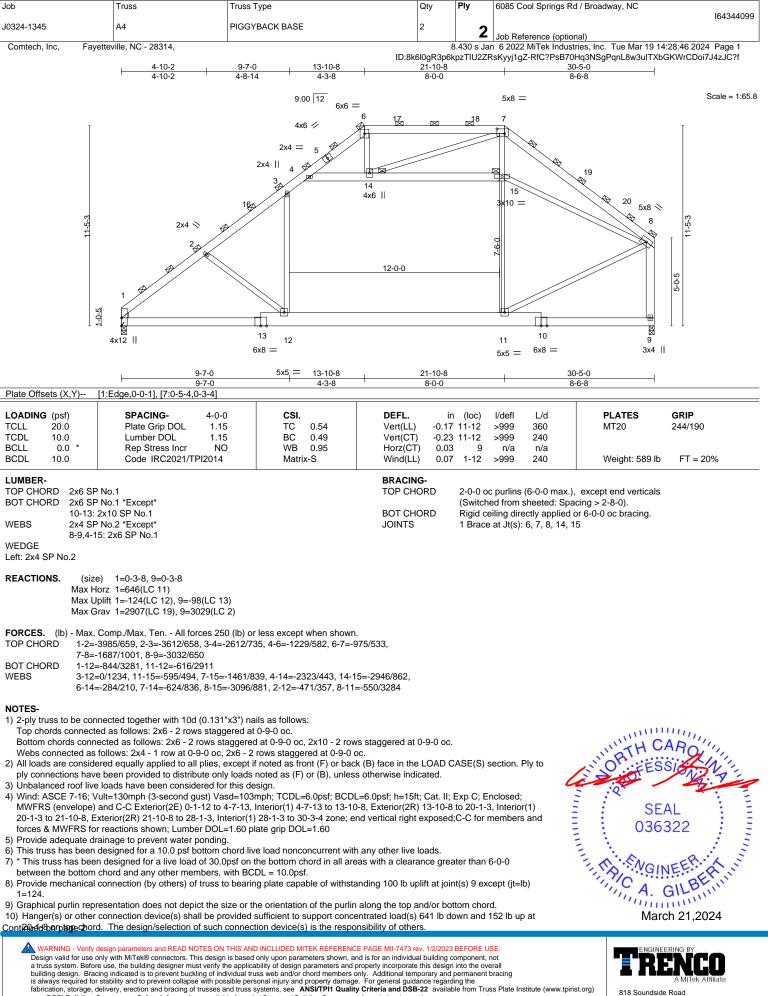
Vert: 28=-28(F) 25=-28(F) 21=-79(F) 52=-28(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply 6085 Cool Springs Rd / Broadway, NC
J0324-1345	A2	PIGGYBACK BASE	4	1 IG4344(
				Job Reference (optional)
Comtech, Inc, Fay		15	ID:8k6l0gR3p6 21-10-8 8-0-0 20 20 20 20 20 20 20 20 20 20 20 20 20	8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:44 2024 Page 1 .6kpzTIU2ZRsKyyj1gZ-RfC?PsB70Hq3NSgPqnLaw3uITXbGKWrCDoi7J4zJC?f 31.4-0 29-11-8 30-56-0 0-11-0 Scale = 1: 5x8 = 21 8 10 10 10 10 10 10 10 10 10 10
Plate Offsets (X,Y)	4x12 <u>9-7</u> <u>[2:Edge,0-0-2], [8:0-5-4,0-2-12</u>	$6x8 = \begin{bmatrix} 14 \\ 5x5 = \\ 0 \\ 0 \\ 4-3-8 \end{bmatrix}$	<u>21-10-8</u> 8-0-0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YH Code IRC2021/TPI201	-0 CSI. 15 TC 0.36 15 BC 0.44 :S WB 0.64	Vert(LL) -0.17 Vert(CT) -0.23 Horz(CT) 0.03	in (loc) I/defl L/d PLATES GRIP 17 13-14 >999 360 MT20 244/190 23 13-14 >999 240 03 11 n/a n/a 08 2-14 >999 240 Weight: 299 lb FT = 20%
12-15: WEBS 2x4 SI	P No.1 P No.1 *Except* 2x10 SP No.1 P No.2 *Except* -17: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing directly applied or 5-8-10 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-8. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 13-17, 16-17, 9-17 1 Brace at Jt(s): 16, 17
Max L	te) 2=0-3-8, 11=0-3-8 Horz 2=329(LC 11) Jplift 2=-65(LC 12), 11=-39(LC Grav 2=1398(LC 19), 11=1387(
TOP CHORD 2-3= 8-9= BOT CHORD 2-14 WEBS 4-14	-1820/281, 3-4=-1648/286, 4-5 -532/531, 9-11=-1391/309 =-358/1519, 13-14=-243/1323	50 (lb) or less except when shown. 1163/326, 5-7=-431/262, 7-8=-329/231 1188/229, 16-17=-1608/463, 8-16=-317/5		
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; MWFRS (envelope) 20-1-3 to 21-10-8, E forces & MWFRS fo 3) Provide adequate d 4) This truss has been 5) * This truss has been between the bottom 6) Provide mechanical	e loads have been considered f /ult=130mph (3-second gust) V) and C-C Exterior(2E) -0-9-8 to Exterior(2R) 21-10-8 to 28-1-3, or reactions shown; Lumber DO rainage to prevent water pondii designed for a 10.0 psf bottom en designed for a live load of 30 chord and any other members connection (by others) of truss	asd=103mph; TCDL=6.0psf; BCDL=6.0p 3-7-5, Interior(1) 3-7-5 to 13-10-8, Exter nterior(1) 28-1-3 to 31-2-8 zone; end ver L=1.60 plate grip DOL=1.60 vg. chord live load nonconcurrent with any o .0psf on the bottom chord in all areas with	ior(2R) 13-10-8 to tical right exposed other live loads. th a clearance gre 1 100 lb uplift at joi	to 20-1-3, Interior(1) ed;C-C for members and reater than 6-0-0 bint(s) 2, 11.

A. GILBE March 21,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) ENGINEERING BY

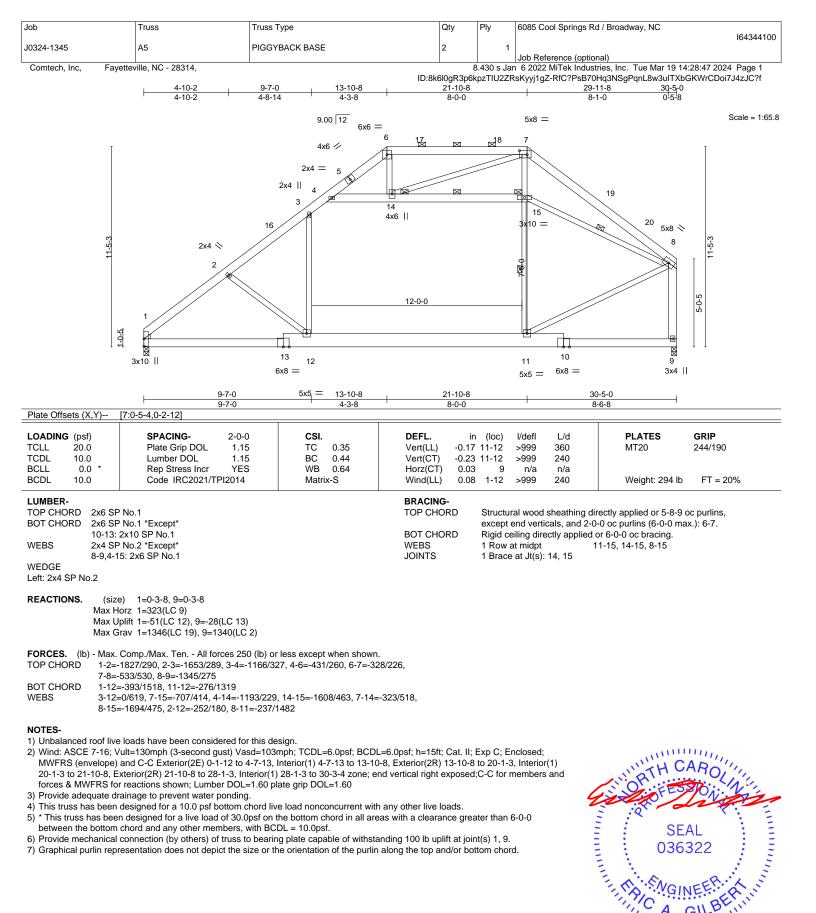
A MiTek Af 818 Soundside Road Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	6085 Cool Springs Rd / Broadway, NC
						164344099
	J0324-1345	A4	PIGGYBACK BASE	2	2	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jar	6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:46 2024 Page 2

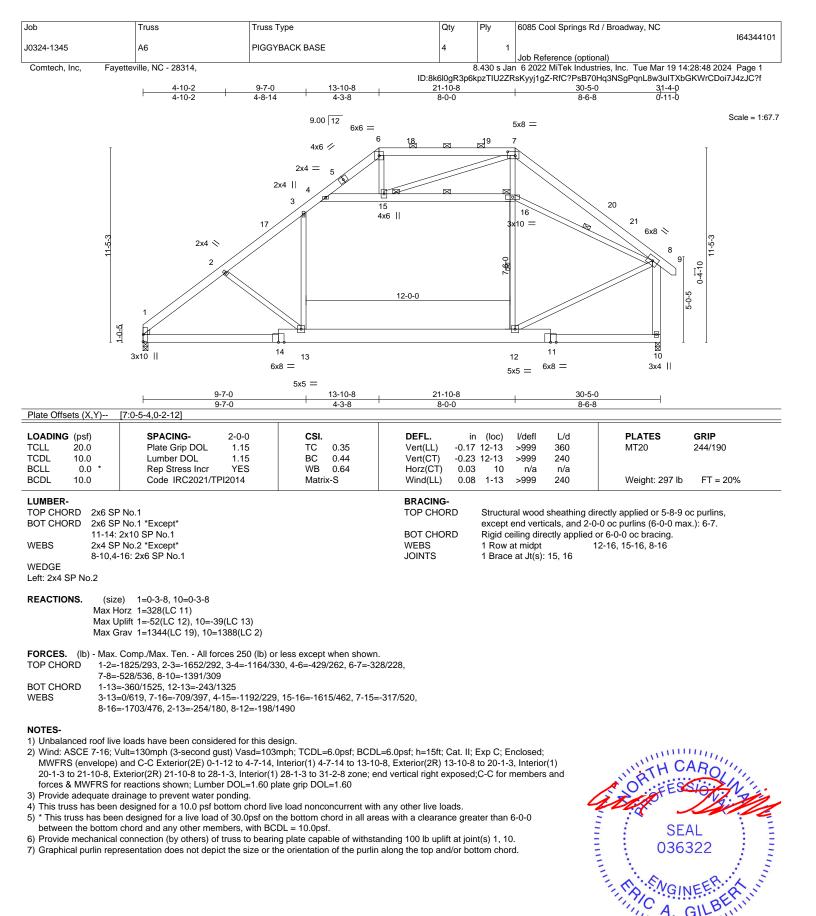
ID:8k6l0gR3p6kpzTIU2ZRsKyyj1gZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-120, 6-7=-120, 7-8=-120, 1-9=-40 Concentrated Loads (lb)

Vert: 18=-600(F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A. GILP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affi

March 21,2024

Job	Truss	Truss Type	Qty	Ply 60	085 Cool Springs Rd / E	Broadway NC	
J0324-1345	A7-GE	GABLE	1	1	eee eeer epiinge na , i	nouunay, no	164344102
	vetteville, NC - 28314,				bb Reference (optional) 2022 MiTek Industries		4:28:50 2024 Page 1
	4-10-2	9-7-0 13-10-8			(yyj1gZ-RfC?PsB70Hq 30-1-8		
	4-10-2	4-8-14 4-3-8	1-8-8 4-4-0	1-11-8	8-3-0	1-2-8	
		9.00 12 5x5					Scale = 1:75.4
		4,0	= 7 9 12 14 16	6x6 =	=		
	I	4x6 🚧		19 21	23	Ī	
		5 6			1 25		
		3 4			8 27		
		ľ				4x8 ≫ 29	
	11-5-3			,			11-5-3
	÷ 2	2			22 42	31 01-14-0	÷
					41	4x6 4x6 4x6	
	1				24 405	4x6 9x4 2-7-12 	
	4	f					
	3x10	³⁹ 38	37 36		5x8 = 34	33 32	
		6x8 = 5x5 =	5x5 = 6x8 =		43 44	3x4	
		9-7-0 13-10-8 9-7-0 4-3-8	15-7-0 21-10-8 1-8-8 6-3-8		<u>30-1-8</u> 8-3-0		
Plate Offsets (X,Y)	[7:0-3-0,0-3-4], [7:0-1-5,0-1-0						
LOADING (psf) TCLL 20.0		-0-0 CSI. 1.15 TC 0.33			defl L/d 999 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *		I.15 BC 0.30 NO WB 0.19	Vert(CT) -0.09 Horz(CT) 0.02		999 240 n/a n/a		
BCDL 10.0	Code IRC2021/TPI20			1-38 >9		Weight: 381 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SF			BRACING- TOP CHORD	Structural	wood sheathing direct	tly applied or 6-0-0	oc purlins
BOT CHORD 2x6 SF	P No.1 *Except*			except end	verticals, and 2-0-0 o	oc purlins (6-0-0 ma	
WEBS 2x4 SF	2x10 SP No.1 P No.2 *Except*		BOT CHORD JOINTS		ng directly applied or 1 Jt(s): 8, 18, 22, 15, 4		
OTHERS 2x4 SF	4-8: 2x6 SP No.1 P No.2						
WEDGE Left: 2x4 SP No.2							
REACTIONS. All be	earings 6-2-0 except (jt=length	າ) 1=0-3-8.					
	lorz 1=414(LC 7) Jolift All uplift 100 lb or less a	at joint(s) 33 except 1=-125(LC 8), 3	32=-114(LC				
	5), 35=-598(LC 8), 34=-1		,				
Max e	22), 35=955(LC 42), 33=), 02-000(20				
		250 (lb) or less except when showr					
21-2	3=-294/235, 23-25=-337/218,	4=-866/132, 4-6=-147/276, 6-7=-27 25-27=-305/187, 27-28=-322/162, 2	28-29=-312/125,				
		3-10=-795/323, 10-11=-958/407, 11-)6, 17-18=-1165/420, 18-20=-1193/4	,				
	2=-1232/447, 22-24=-1244/46 =-387/1233, 37-38=-287/1013	3, 24-26=-1248/476, 26-35=-1315/ 3, 35-37=-348/1116	511				11111
	=-19/451, 35-40=-249/412, 40 -1106/330, 2-38=-277/303, 11	-41=-194/410, 41-42=-205/380, 30- -37=-17/452, 9-10=-271/140	-42=-194/368,			THC	ARO
NOTES-						NOP SEES	Sign -
1) Unbalanced roof live	e loads have been considered	l for this design. Vasd=103mph; TCDL=6.0psf; BCD	N -6 Opef: b-15ft: Cat II: I	Evp C: Epck	nsed:		Mille
MWFRS (envelope)	gable end zone; end vertical	right exposed; Lumber DOL=1.60 p truss only. For studs exposed to wi	plate grip DOL=1.60	•		SE	AL E
Gable End Details a	as applicable, or consult qualif	ied building designer as per ANSI/T		ee Stanuaru		036	322
5) All plates are 2x4 M	rainage to prevent water pond T20 unless otherwise indicate					N. A	
6) Gable studs spaced7) This truss has been		m chord live load nonconcurrent wit	th any other live loads.			S NGI	VEEL
	en designed for a live load of 3 I chord and any other member	0.0psf on the bottom chord in all are rs, with BCDL = 10.0psf.	eas with a clearance grea	ter than 6-0-	-0	SE 036	GILBE
	connection (by others) of trus	s to bearing plate capable of withst	anding 100 lb uplift at join	t(s) 33 exce	pt (jt=lb)		ch 21,2024
		the size or the orientation of the pur	lin along the top and/or bo	ottom chord.		wian	
		ON THIS AND INCLUDED MITEK REFERENCE sign is based only upon parameters shown, a				ENGINE	
a truss system. Befo building design. Bra	re use, the building designer must ver cing indicated is to prevent buckling of	ify the applicability of design parameters and f individual truss web and/or chord members	properly incorporate this design only. Additional temporary and	into the overall permanent brack	sing		
fabrication, storage,	delivery, erection and bracing of truss	possible personal injury and property damag es and truss systems, see ANSI/TPI1 Quali ailable from the Structural Building Componer	ity Criteria and DSB-22 availab	le from Truss P	Plate Institute (www.tpinst.or	rg) 818 Soundside Edenton, NC 2	

[Job	Truss	Truss Type	Qty	Ply	6085 Cool Springs Rd / Broadway, NC	
						I64344102	
	J0324-1345	A7-GE	GABLE	1	1		
						Job Reference (optional)	
	Comtech, Inc, Fayetteville, NC - 28314, 8430 s Jan 6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:50 2024 Page						
			ID:8k6l0gR3p6kpzTIU2ZRsKyyj1gZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f				

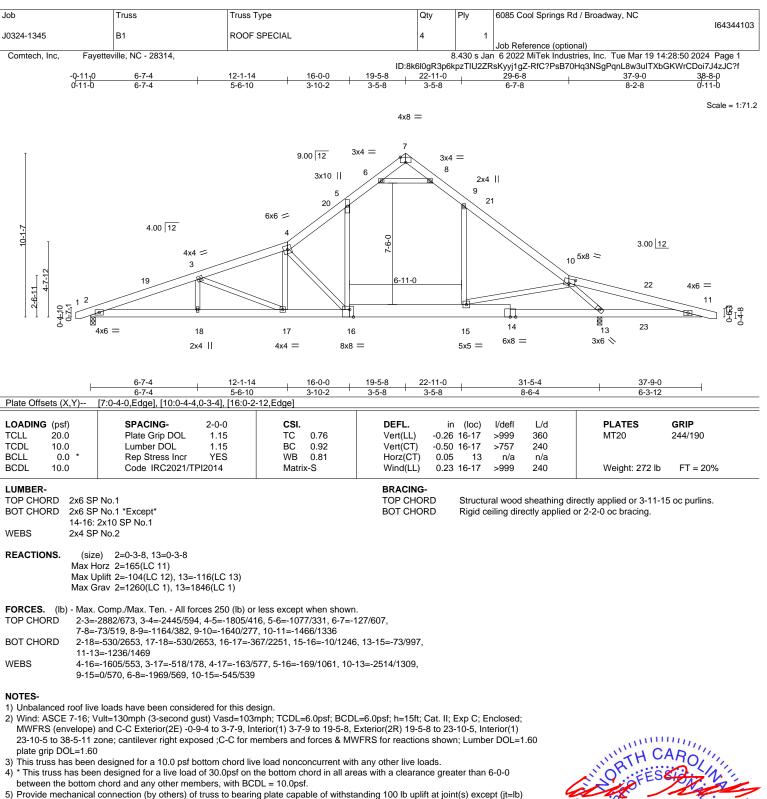
NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 124 lb down and 100 lb up at 28-4-4 on top chord, and 56 lb down and 45 lb up at 24-4-4, and 56 lb down and 45 lb up at 24-4-4, and 56 lb down and 45 lb up at 28-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

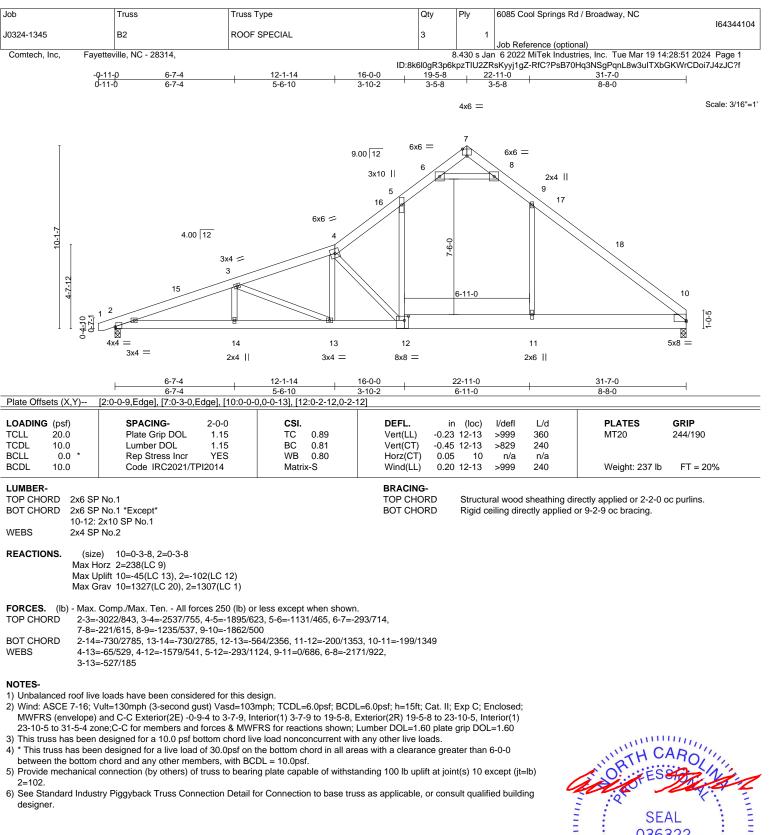
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

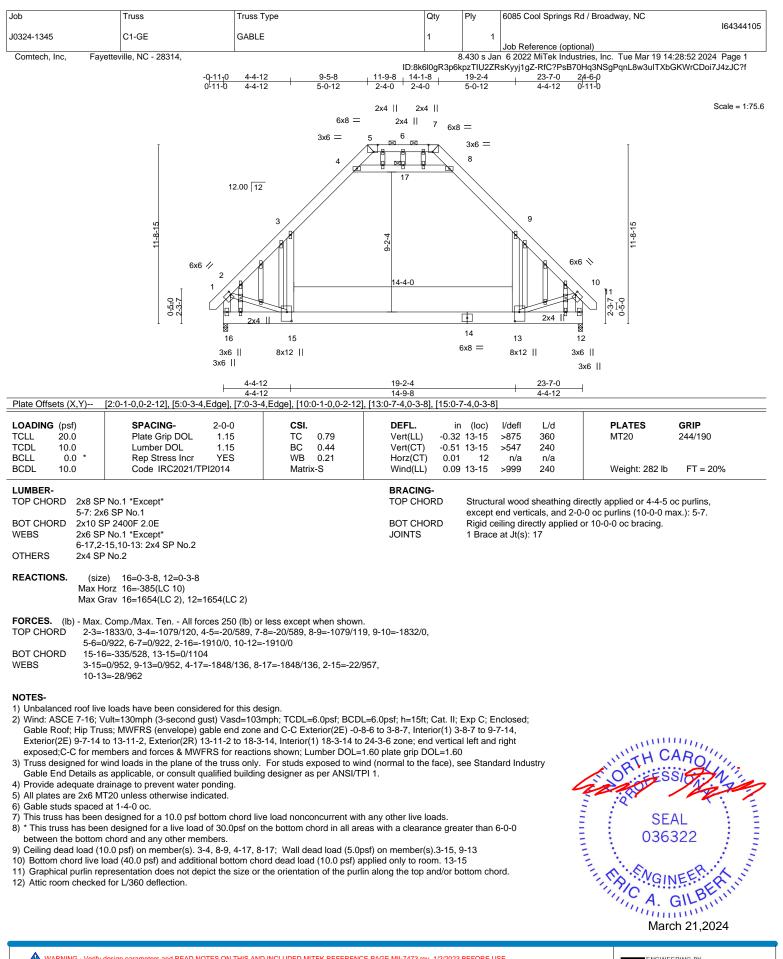
Vert: 1-6=-60, 6-7=-60, 7-21=-60, 21-30=-60, 30-31=-60, 1-32=-20 Concentrated Loads (lb)

Vert: 29=-84(B) 33=-28(B) 43=-28(B) 44=-28(B)

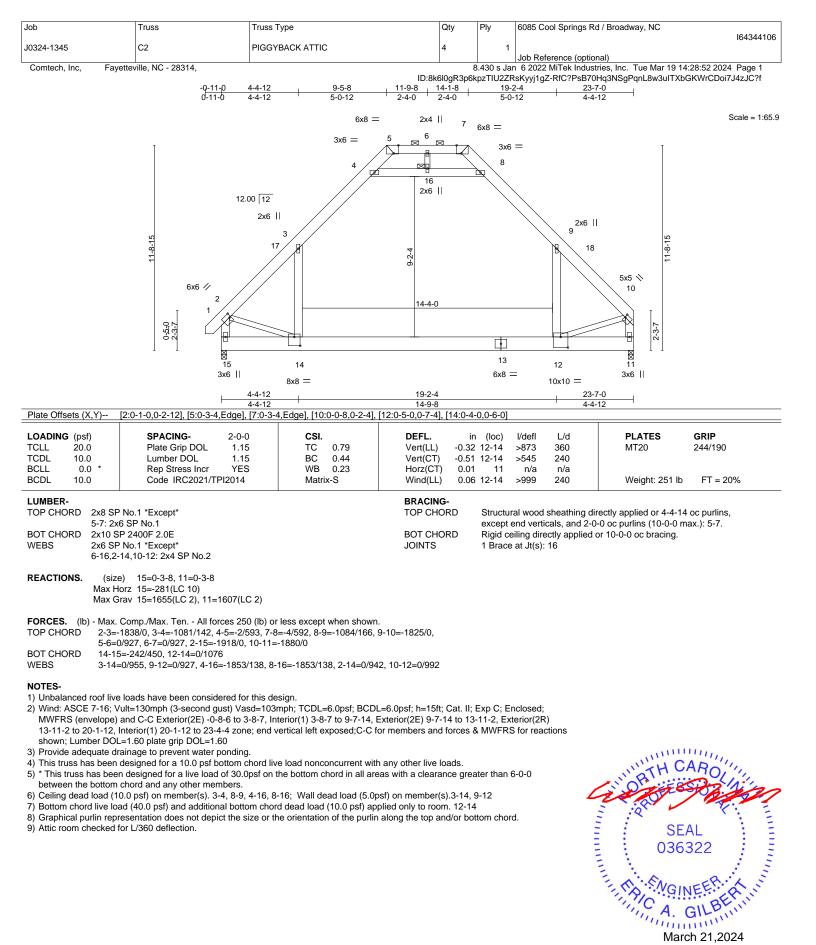
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

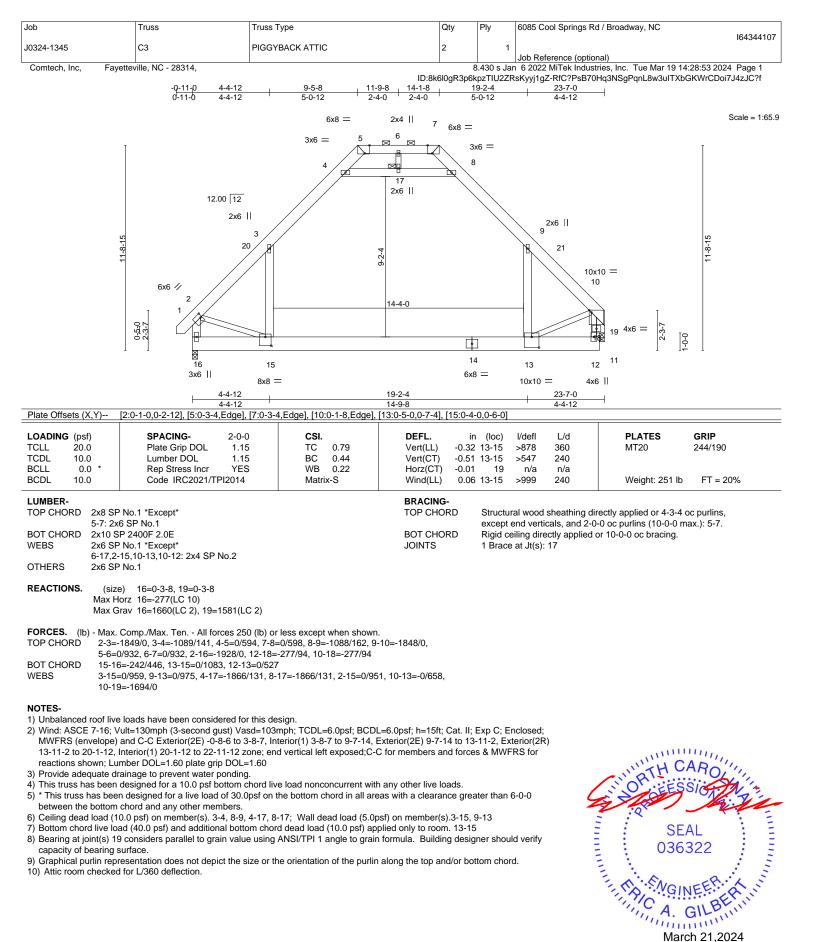


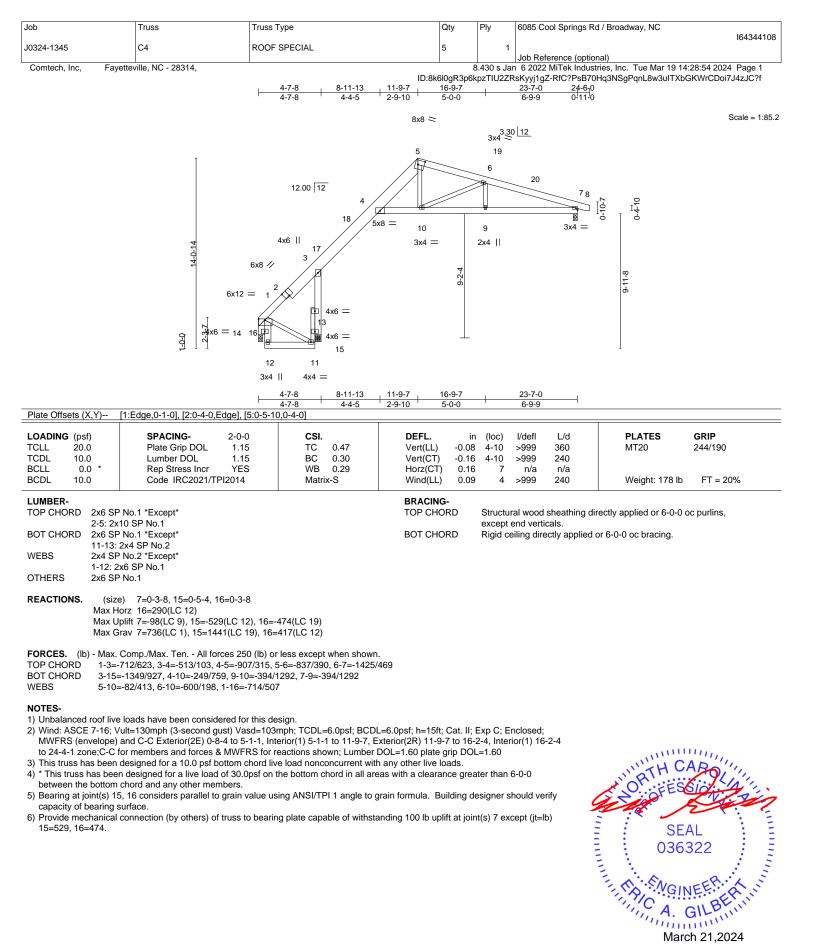
2=104, 13=116.6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



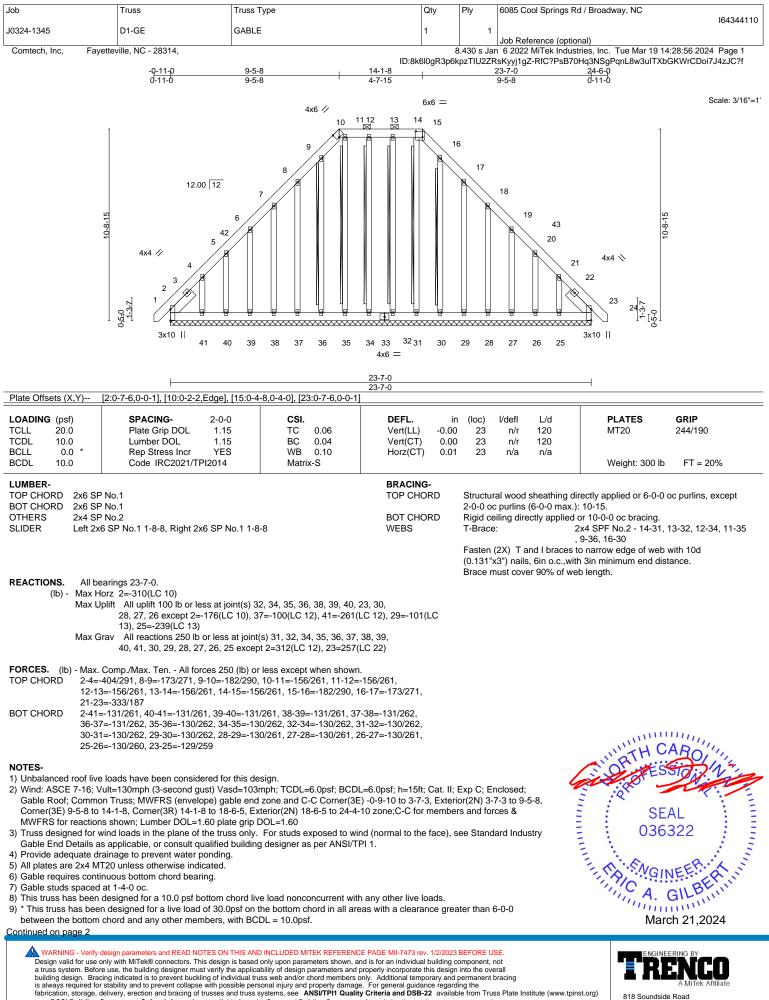

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	6085 Cool Springs Rd	/ Broadway, NC	
J0324-1345	C5	ROOF SPECIAL	2	1			l64344109
	retteville, NC - 28314,				Job Reference (option n 6 2022 MiTek Industr		14·28·55 2024 Page 1
Contech, inc, ray	ettevine, 140 - 20014,	, 4-7-8 , 8-11-13 ,			RsKyyj1gZ-RfC?PsB70F 23-7-0 24-6 ₁ 0		
		4-7-8 4-4-5	2-9-10 5-0-0		6-9-9 0-11-0		
			8x8 🚝		-		Scale = 1:85.2
			-	3x4	0 12		
	I		5	19 6			
		12.00 12	A		20		
		4				0-10-7 0-4-10	
		18 A 5x	B = 10	9	4x4 =	ò	
	-14	6x8 17	3x4 =	2x4			
	14-0-14	6x8 // 3 5				~	
	0.41	²				9-11-8	
	6x12	- 1 x = 4x6 =					
	$\int_{C} \int_{C} \int_{A} V_{A} = 14$	13					
		4x6 =					
		12 11					
		3x4 4x4 =	11-9-7 16-9-7		23-7-0		
Plate Offsets (X,Y)	[1:Edge 0-1-0] [2:0-4-0 Edge]	<u>4-7-8</u> <u>8-11-13</u> <u>4-7-8</u> <u>4-4-5</u> [3:0-4-0,0-2-12], [5:0-5-10,0-4-0], [2-9-10 5-0-0	1	6-9-9		
LOADING (psf)			· •	(100)	l/dofl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.	5 TC 0.82	. ,	2 4-10	l/defl L/d >999 360	MT20	244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1. Rep Stress Incr N	O WB 0.43	Vert(CT) -0.24 Horz(CT) 0.24		>987 240 n/a n/a		
BCDL 10.0	Code IRC2021/TPI201	Matrix-S	Wind(LL) 0.14	4-10	>999 240	Weight: 178 II	b FT = 20%
LUMBER- TOP CHORD 2x6 SF	PNo.1 *Except*		BRACING- TOP CHORD	2-0-0 o	c purlins (4-10-15 max	.), except end vertic	cals
	:10 SP No.1 P No.1 *Except*		BOT CHORD		ed from sheeted: Space	0 /	
	2x4 SP No.2 P No.2 *Except*			0	0 7 11	Ũ	
	2x6 SP No.1						
		0					
Max H	e) 7=0-3-8, 15=0-5-4, 16=0-3 lorz 16=435(LC 12)						
	lplift 7=-147(LC 9), 15=-794(LC Grav 7=1104(LC 1), 15=2161(L						
FORCES. (lb) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shown.					
		1361/472, 5-6=-1256/585, 6-7=-21: 9-10=-591/1938, 7-9=-591/1938	38/704				
WEBS 5-10:	=-124/620, 6-10=-900/298, 6-9=	0/372, 1-11=-185/351, 1-16=-1072	/760				
NOTES- 1) Unbalanced roof live	e loads have been considered f	or this design					
2) Wind: ASCE 7-16; \	/ult=130mph (3-second gust) V	asd=103mph; TCDL=6.0psf; BCDL 5-1-1, Interior(1) 5-1-1 to 11-9-7, Ex					
to 24-4-1 zone;C-C	for members and forces & MW	RS for reactions shown; Lumber D	OL=1.60 plate grip DO		101(1) 10 2 1	mm	
4) * This truss has bee	n designed for a live load of 30	chord live load nonconcurrent with Opsf on the bottom chord in all area		ater than	6-0-0	I' BTH C	SARO
5) Bearing at joint(s) 1		value using ANSI/TPI 1 angle to gr	ain formula. Building d	lesigner s	hould verify	I'V O'VEE	SSIS VIT
	connection (by others) of truss	to bearing plate capable of withsta	nding 100 lb uplift at joi	nt(s) exce	pt (jt=lb)	2	2:
7=147, 15=794, 16=	-711.	size or the orientation of the purlin	• • •	. ,	d.		EAL
, , , , , , , , , , , , , , , , , , ,			,			036	5322 🕴 E
							a !. 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

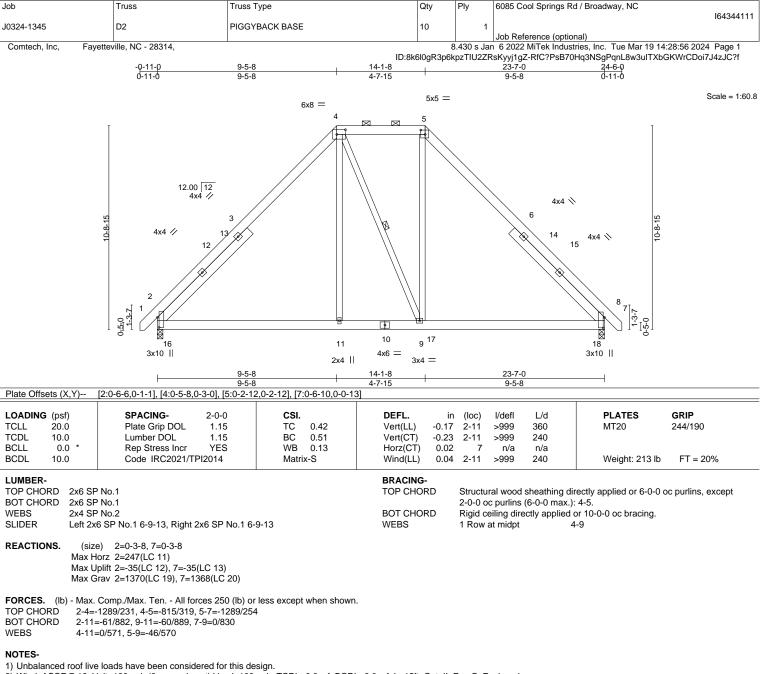
818 Soundside Road Edenton, NC 27932

RENCO

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	6085 Cool Springs Rd / Broadway, NC
10004.40		D4 05				I64344110
J0324-13	345	D1-GE	GABLE	1	1	
						Job Reference (optional)
Comtec	Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:56 2024 Page					6 2022 MiTek Industries, Inc. Tue Mar 19 14:28:56 2024 Page 2
			ID:8k6l0gR3p6kpzTIU2ZRsKyyj1gZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f			

NOTES-


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 34, 35, 36, 38, 39, 40, 23, 30, 28, 27, 26 except (jt=lb) 2=176, 37=100, 41=261, 29=101, 25=239.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

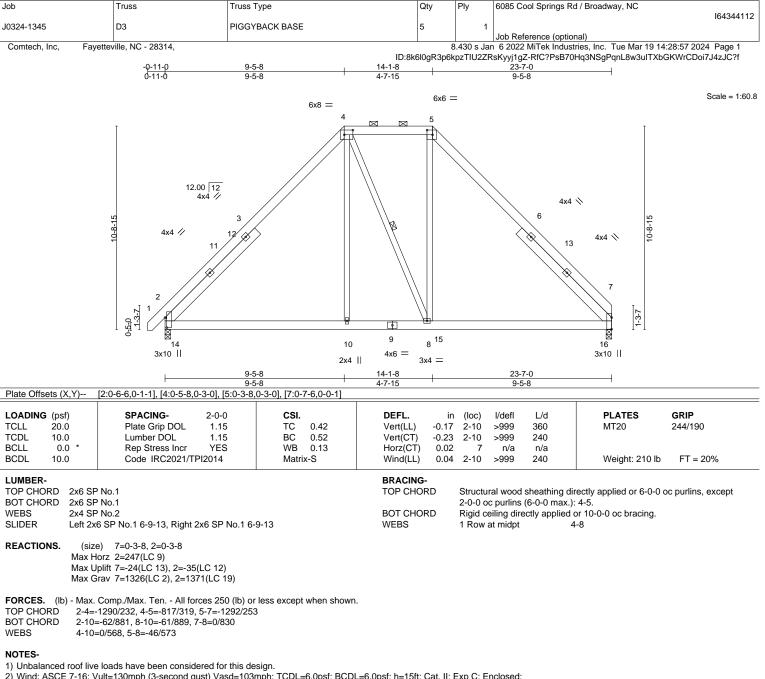
12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-10 to 3-7-3, Interior(1) 3-7-3 to 9-5-8, Exterior(2E) 9-5-8 to 14-1-8, Exterior(2R) 14-1-8 to 20-4-2, Interior(1) 20-4-2 to 24-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

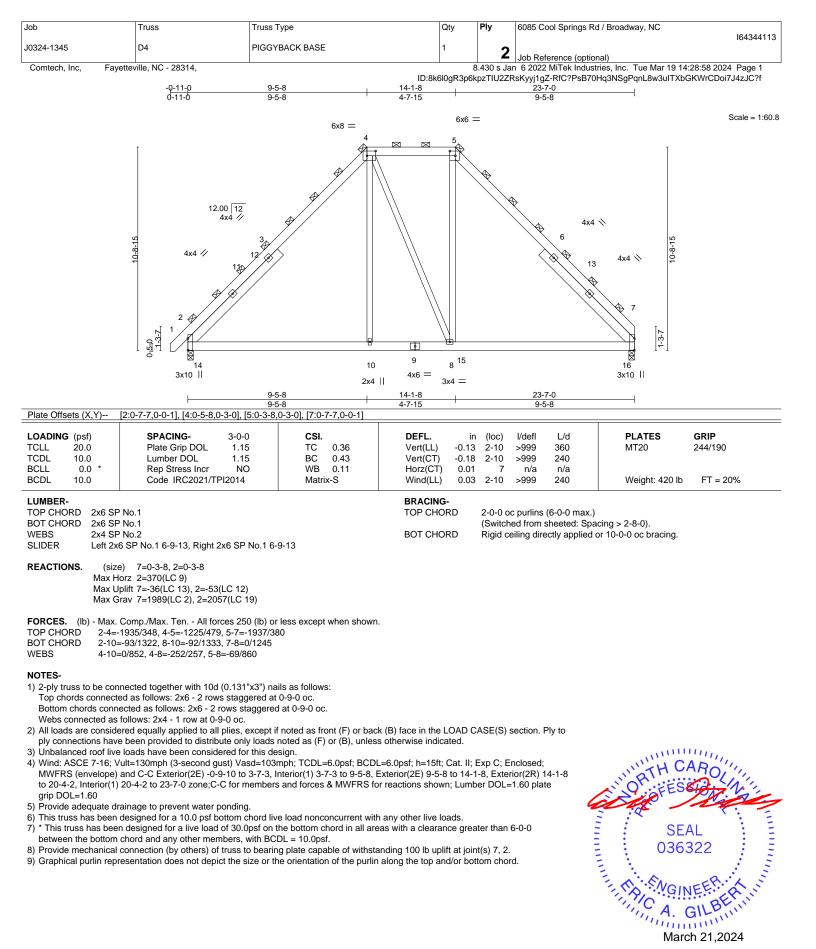
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

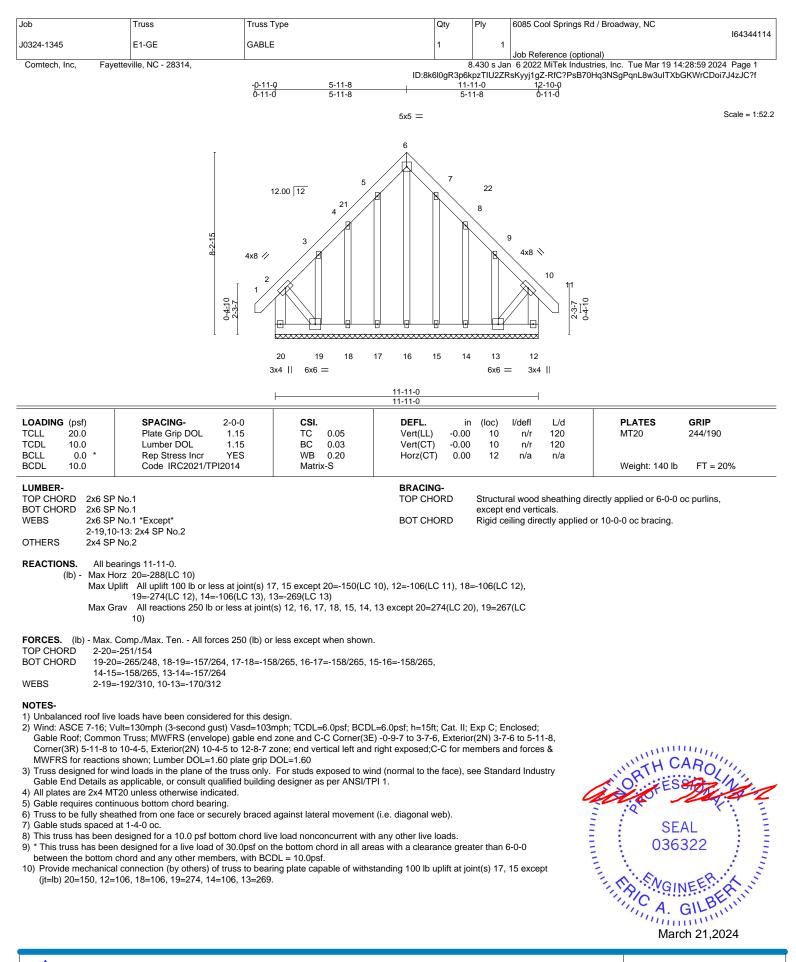
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-10 to 3-7-3, Interior(1) 3-7-3 to 9-5-8, Exterior(2E) 9-5-8 to 14-1-8, Exterior(2R) 14-1-8 to 20-4-2, Interior(1) 20-4-2 to 23-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

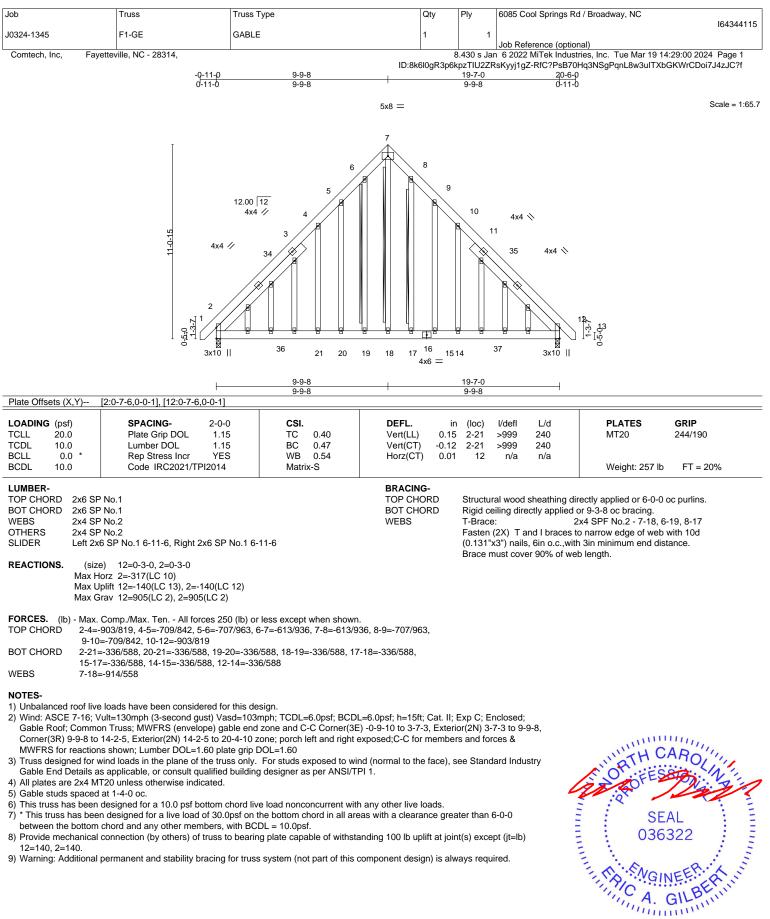
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

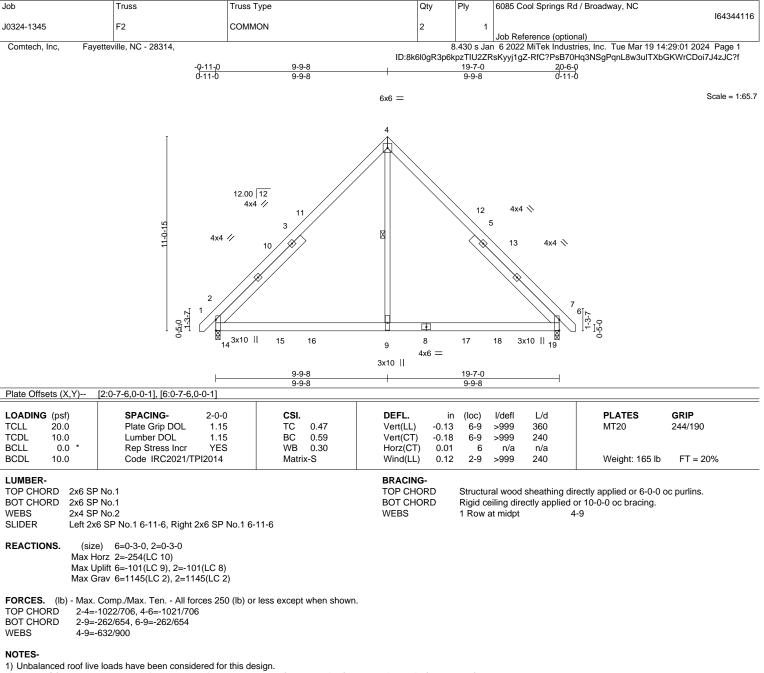
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


March 21,2024

TRENCO A MiTek Affiliate

818 Soundside Road

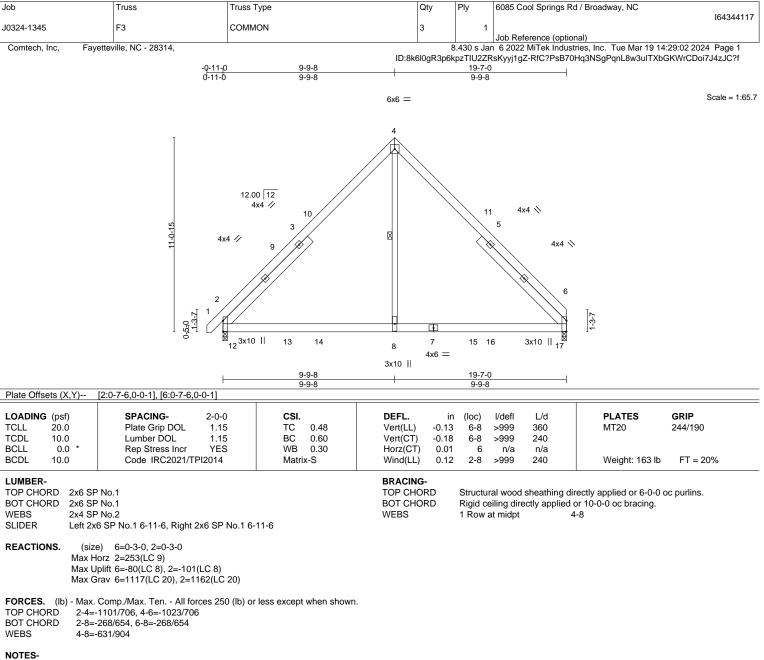
Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-10 to 3-7-3, Interior(1) 3-7-3 to 9-9-8, Exterior(2R) 9-9-8 to 14-2-5, Interior(1) 14-2-5 to 20-4-10 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=101, 2=101.

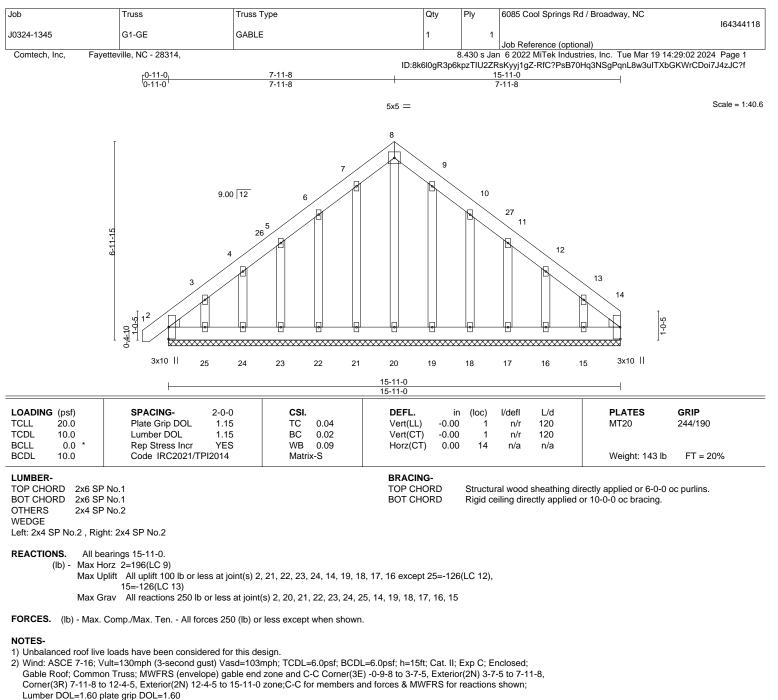
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-10 to 3-7-3, Interior(1) 3-7-3 to 9-9-8, Exterior(2R) 9-9-8 to 14-2-5, Interior(1) 14-2-5 to 19-7-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

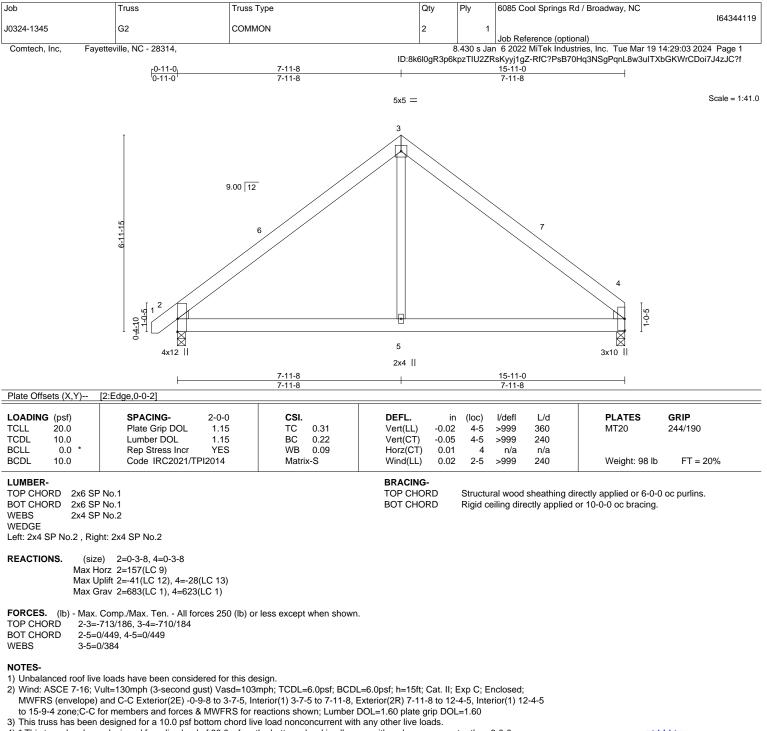
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=101.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

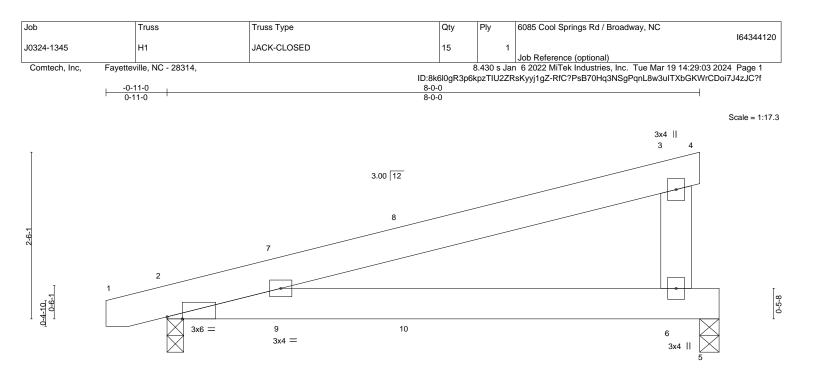

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 22, 23, 24, 14, 19, 18, 17, 16 except (jt=lb) 25=126, 15=126.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

			8-0-0					
			8-0-0					•
Plate Offsets (X,Y) [2	2:0-2-12,Edge]							
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.0	6 2-6	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.50	Vert(CT) -0.1	2 2-6	>799	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.0)	n/a	n/a		
CDL 10.0	Code IRC2021/TPI2014	Matrix-P	Wind(LL) 0.2	2 2-6	>434	240	Weight: 45 lb	FT = 20%
UMBER-			BRACING-					
OP CHORD 2x6 SP N OT CHORD 2x6 SP N			TOP CHORD		ural wood	•	rectly applied or 6-0-0	oc purlins,

BOT CHORD

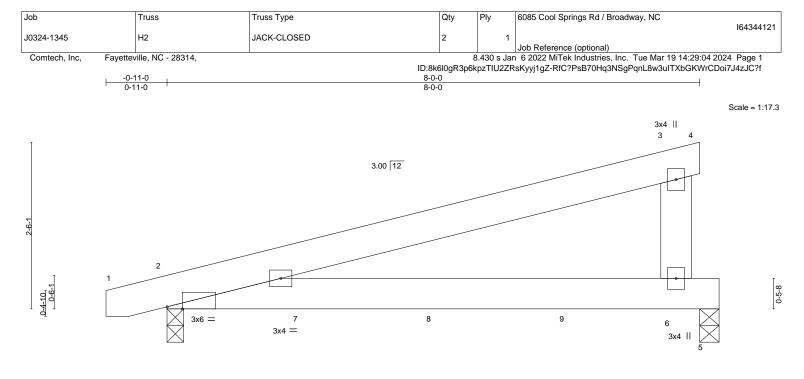
Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=73(LC 8)

Max Uplift 2=-149(LC 8), 5=-125(LC 8)

Max Grav 2=376(LC 1), 5=309(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-244/319

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=149, 5=125
- 5) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.38	Vert(LL) 0.23 2-6 >423 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.91	Vert(CT) -0.32 2-6 >300 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2021/TPI2014	Matrix-P		Weight: 45 lb FT = 20%

BOT CHORD

Rigid ceiling directly applied or 5-11-4 oc bracing.

BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=73(LC 4)

Max Uplift 2=-237(LC 4), 5=-285(LC 4)

Max Grav 2=639(LC 1), 5=712(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-366/148

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=237, 5=285

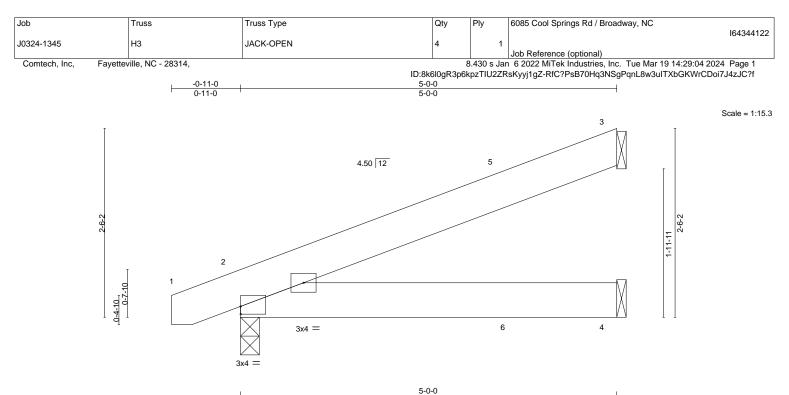
5) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 116 lb down and 68 lb up at 8-0-0 on top chord, and 171 lb down and 87 lb up at 2-0-12, 171 lb down and 88 lb up at 4-0-12, and 171 lb down and 91 lb up at 6-0-12, and 75 lb down and 36 lb up at 8-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb)

Vert: 4=-116(F) 5=-37(F) 7=-171(F) 8=-171(F) 9=-171(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	F		5-0-0	
Plate Offsets (X,Y)	[2:Edge,0-1-4]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) -0.01 2-4 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT) -0.01 2-4 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL 10.0	Code IRC2021/TPI2014	Matrix-P	Wind(LL) 0.02 2-4 >999 240	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical Max Horz 2=69(LC 12) Max Uplift 3=-62(LC 12), 2=-91(LC 8), 4=-25(LC 8)

Max Grav 3=139(LC 1), 2=37(LC 0), 4=23(LC 0) Max Grav 3=139(LC 1), 2=252(LC 1), 4=96(LC 3)

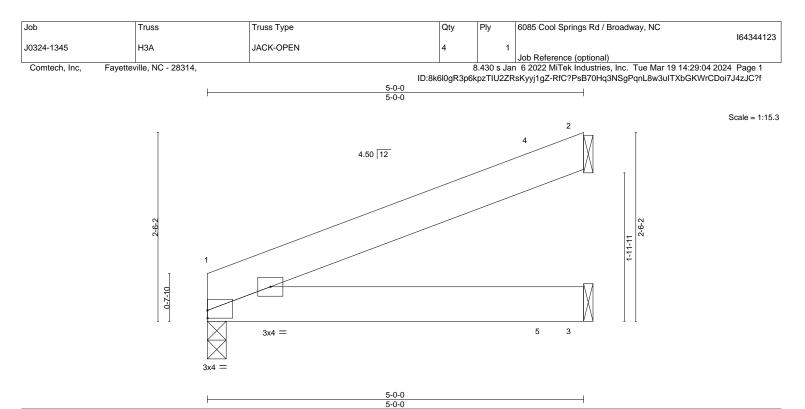
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-5 to 3-7-7, Interior(1) 3-7-7 to 4-11-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	-0.01	1-3	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.01	1-3	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2021/T	PI2014	Matri	x-P	Wind(LL)	0.02	1-3	>999	240	Weight: 25 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

REACTIONS. 1=0-3-0, 2=Mechanical, 3=Mechanical (size) Max Horz 1=66(LC 12)

Max Uplift 1=-57(LC 8), 2=-63(LC 12), 3=-25(LC 8)

Max Grav 1=193(LC 1), 2=144(LC 1), 3=96(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-8 to 4-6-5, Interior(1) 4-6-5 to 4-11-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

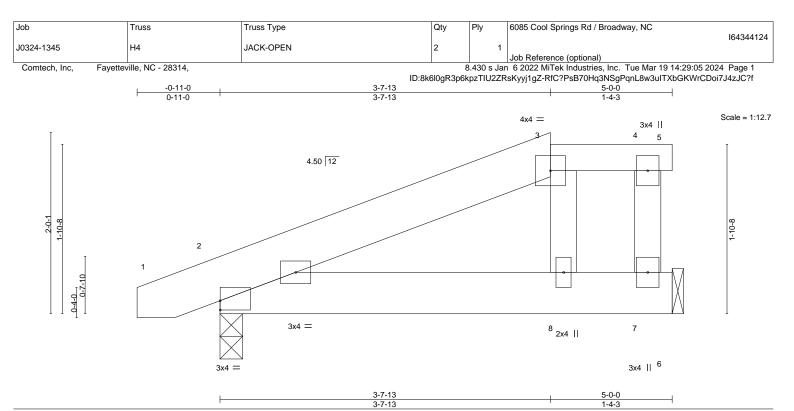


Plate Offsets (X,Y)--[2:Edge,0-1-4] SPACING-PLATES GRIP LOADING (psf) 2-0-0 CSI. DEFL in (loc) l/defl L/d Plate Grip DOL TCLL 20.0 1.15 тс 0.17 Vert(LL) 0.02 2-8 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.10 Vert(CT) -0.01 2-8 >999 240 BCLL 0.0 Rep Stress Incr YES WB 0.01 Horz(CT) -0.00 7 n/a n/a Code IRC2021/TPI2014 FT = 20% BCDL 10.0 Weight: 29 lb Matrix-S LUMBER-BRACING-Structural wood sheathing directly applied or 5-0-0 oc purlins, 2x6 SP No.1 *Except* TOP CHORD TOP CHORD 3-5: 2x4 SP No.1 except end verticals, and 2-0-0 oc purlins: 3-5. BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-0 Max Horz 2=52(LC 12) Max Uplift 7=-71(LC 8), 2=-91(LC 8)

Max Uplift 7=-71(LC 8), 2=-91(LC 8) Max Grav 7=191(LC 1), 2=238(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

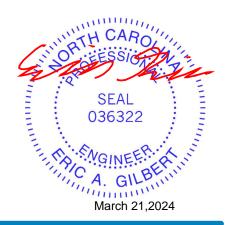
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

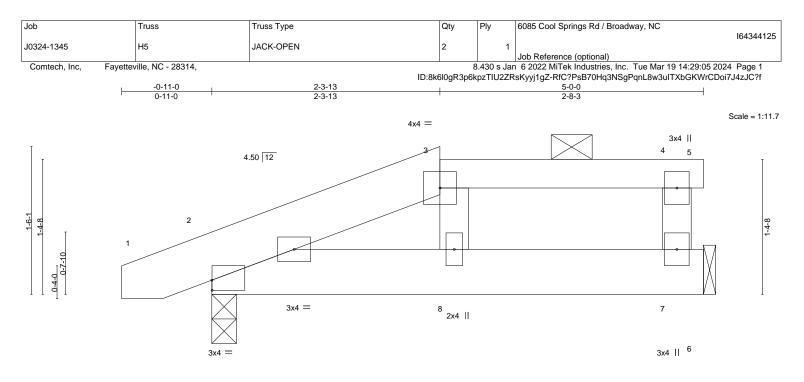

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Plate Offsets (X,Y)	2-3-13 2-3-13 [2:Edge,0-1-4]					<u>5-0-0</u> 2-8-3					
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	-0.00	8	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8	>999	240	-	
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.00	7	n/a	n/a		
BCDL 10.0	Code IRC2021/	FPI2014	Matri	x-S	Wind(LL)	0.01	8	>999	240	Weight: 26 lb	FT = 20%

TOP CHORD 2x6 SP No.1 *Except* TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, 3-5: 2x4 SP No.1 except end verticals, and 2-0-0 oc purlins: 3-5. BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-0 Max Horz 2=36(LC 8)

Max Uplift 7=-68(LC 8), 2=-96(LC 8) Max Grav 7=191(LC 1), 2=238(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

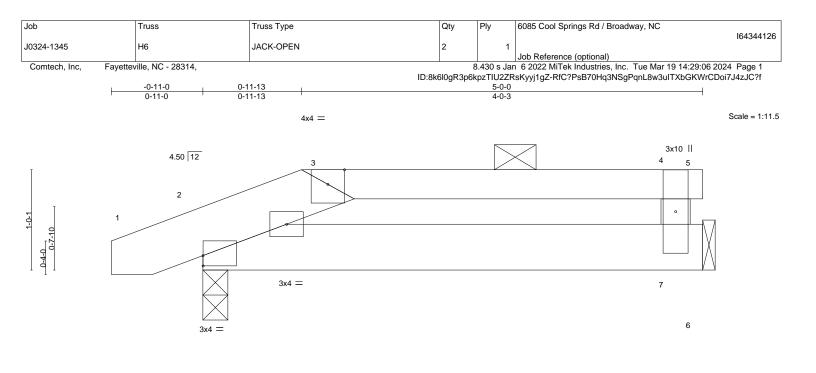
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

late Offsets (X,Y)	[2:Edge,0-1-4]			2-9-4 2-9-4					5-0- 2-2-1		
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.00	2-7	>999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-7	>999	240		
CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	7	n/a	n/a		
CDL 10.0	Code IRC2021/TPL	2014	Matrix	-R	Wind(LL)	0.01	2-7	>999	240	Weight: 24 lb	FT = 20%

TOP CHORD	2x6 SP No.1 "Except"	TOP CHORD	Structural wood sneathing directly applied or 5-0-0 oc purlins,
	3-5: 2x4 SP No.1		except end verticals, and 2-0-0 oc purlins: 3-5.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.2		

REACTIONS. (size) 7=Mechanical, 2=0-3-0 Max Horz 2=24(LC 8) Max Uplift 7=-67(LC 8), 2=-99(LC 8)

Max Uplift 7=-67(LC 8), 2=-99(LC 8) Max Grav 7=191(LC 1), 2=238(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-242/333, 3-4=-190/327

BOT CHORD 2-7=-327/190

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

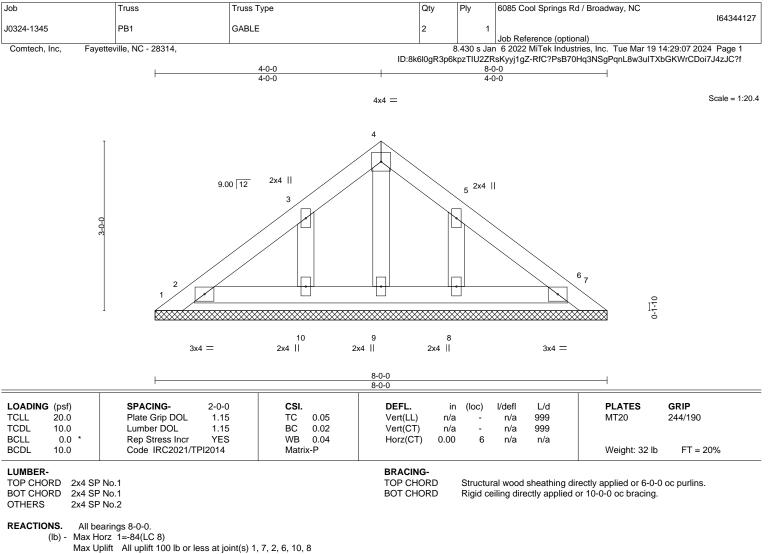
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

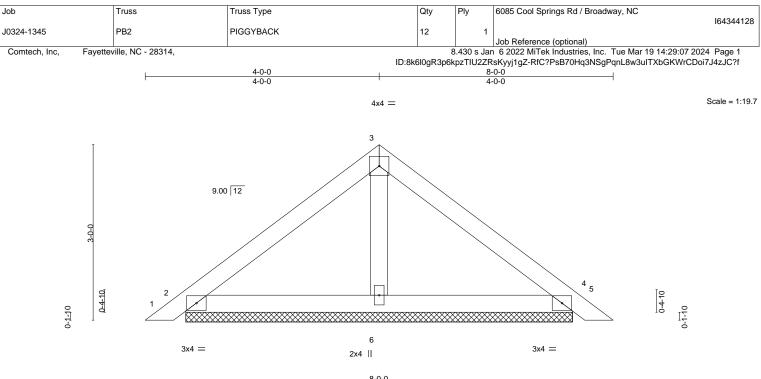
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6, 10, 8.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

8-0-0									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL)	0.00	5	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT)	0.01	5	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2021/TPI2014	Matrix-P						Weight: 28 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

OTHERS 2x4 SP No.

REACTIONS. (size) 2=6-7-5, 4=6-7-5, 6=6-7-5 Max Horz 2=-68(LC 10) Max Uplift 2=-31(LC 12), 4=-37(LC 13) Max Grav 2=177(LC 1), 4=177(LC 1), 6=228(LC 1)

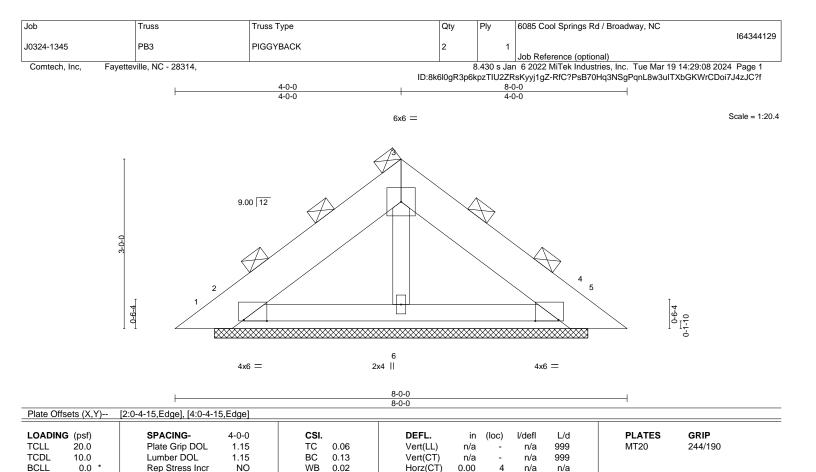
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

L	υ	М	в	E	F	۲.	

BCDL

2x8 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

10.0

BRACING-TOP CHORD

BOT CHORD

Horz(CT)

2-0-0 oc purlins (6-0-0 max.) (Switched from sheeted: Spacing > 2-8-0). Rigid ceiling directly applied or 10-0-0 oc bracing.

n/a

n/a

REACTIONS. All bearings 6-7-5.

(lb) -Max Horz 1=-126(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-141(LC 19), 5=-101(LC 20), 2=-187(LC 12), 4=-176(LC 13)

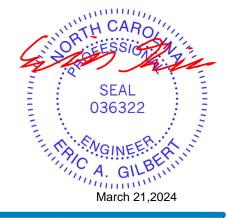
Matrix-P

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=524(LC 19), 4=507(LC 20), 6=334(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2021/TPI2014

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 1, 101 lb uplift at
- joint 5, 187 lb uplift at joint 2 and 176 lb uplift at joint 4. 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FT = 20%

Weight: 42 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) 0.00	4	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	4	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT) 0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2021/TPI2014	Matrix-P					Weight: 17 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 2=3-6-5, 4=3-6-5, 6=3-6-5

Max Horz 2=-64(LC 10) Max Uplift 2=-36(LC 12), 4=-43(LC 13)

Max Grav 2=110(LC 1), 4=110(LC 1), 6=109(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

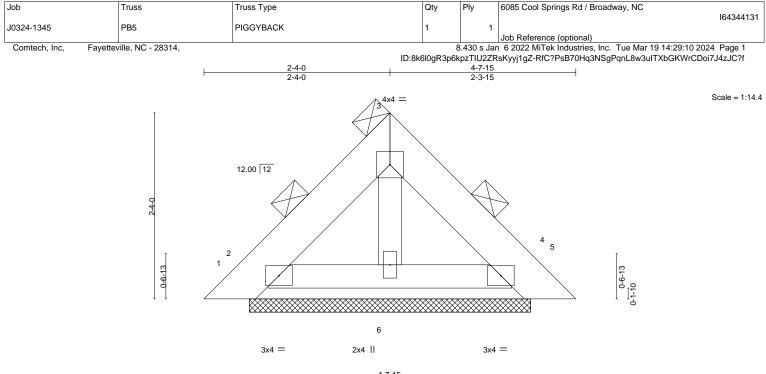
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2 and 43 lb uplift at joint 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 4-7-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

¹⁾ Unbalanced roof live loads have been considered for this design.

4-7-15									Т		
OADING (psf)	SPACING-	3-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
3CLL 0.0 *	Rep Stress Incr	NO	WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
3CDL 10.0	Code IRC2021/TPI2	2014	Matrix	-P						Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

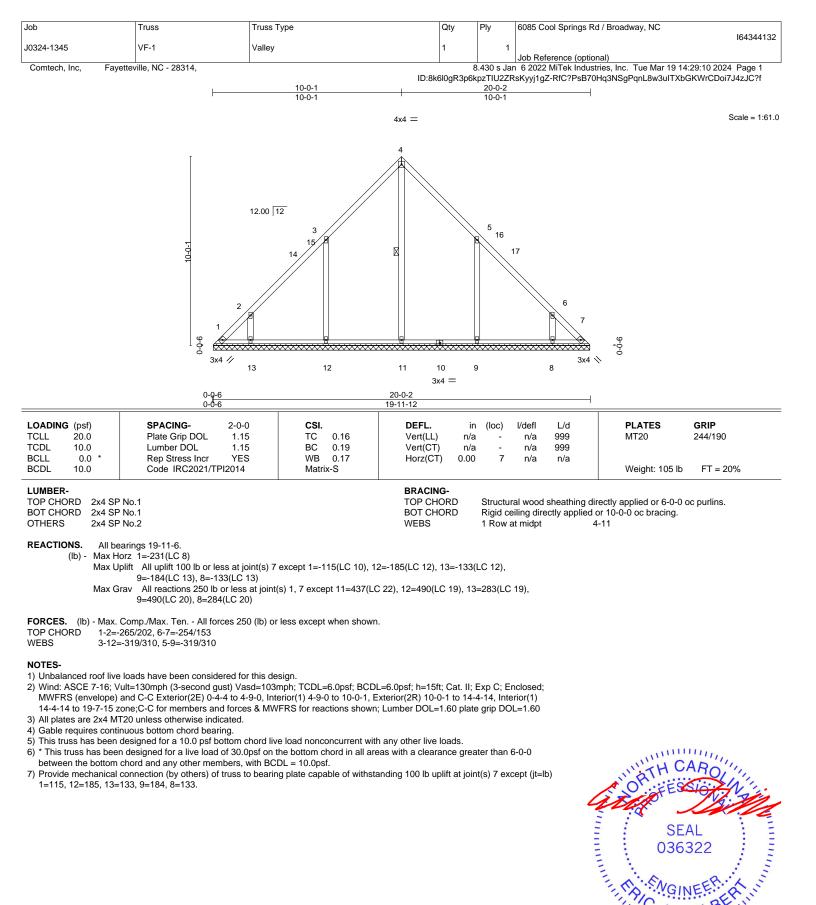
BRACING-TOP CHORD BOT CHORD

2-0-0 oc purlins (Switched from sheeted: Spacing > 2-8-0). Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 3-6-5. (lb) - Max Horz 1=-72(LC

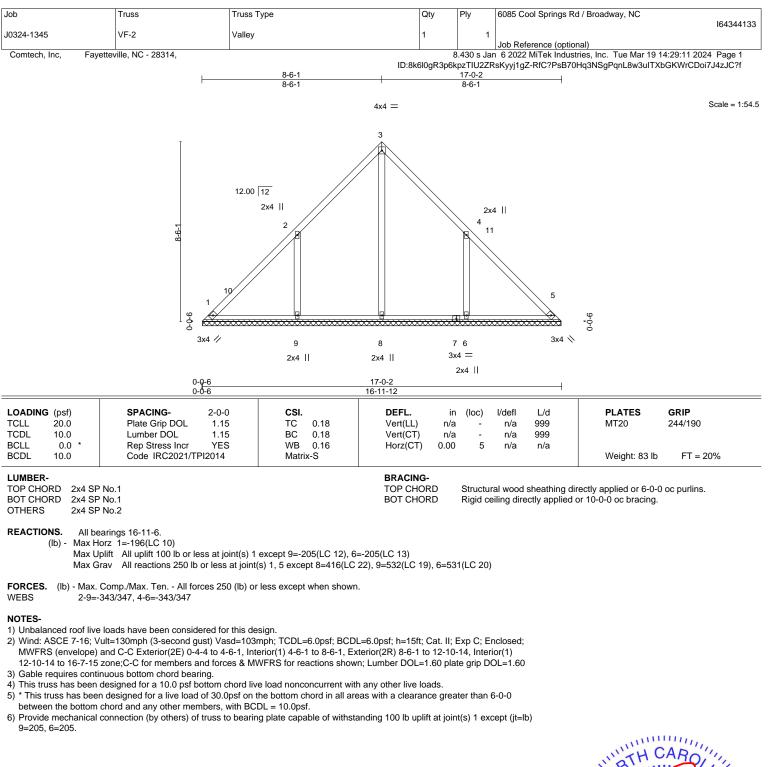
Max Horz 1=-72(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

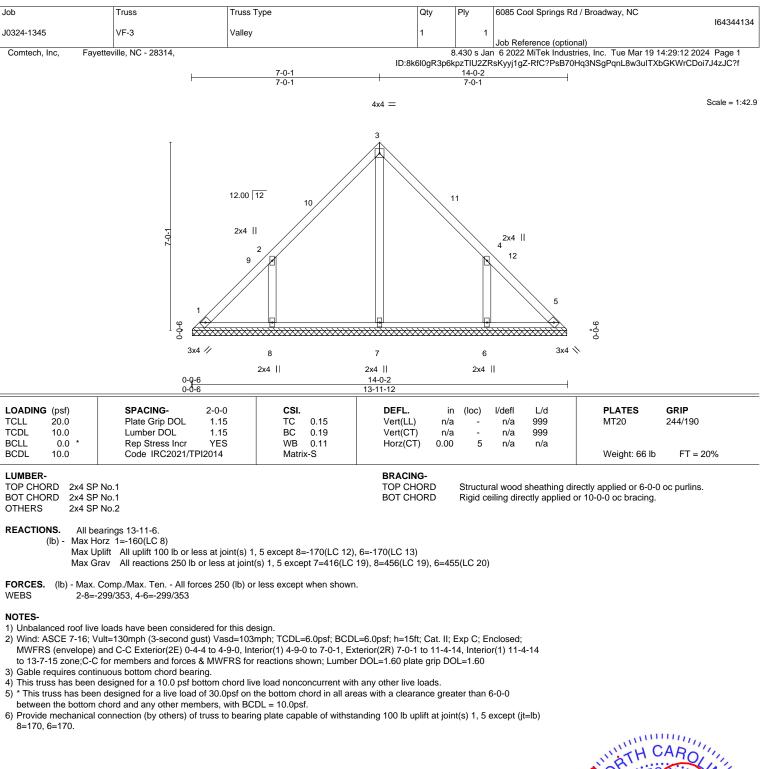
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Bearing at joint(s) 1, 5, 2, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

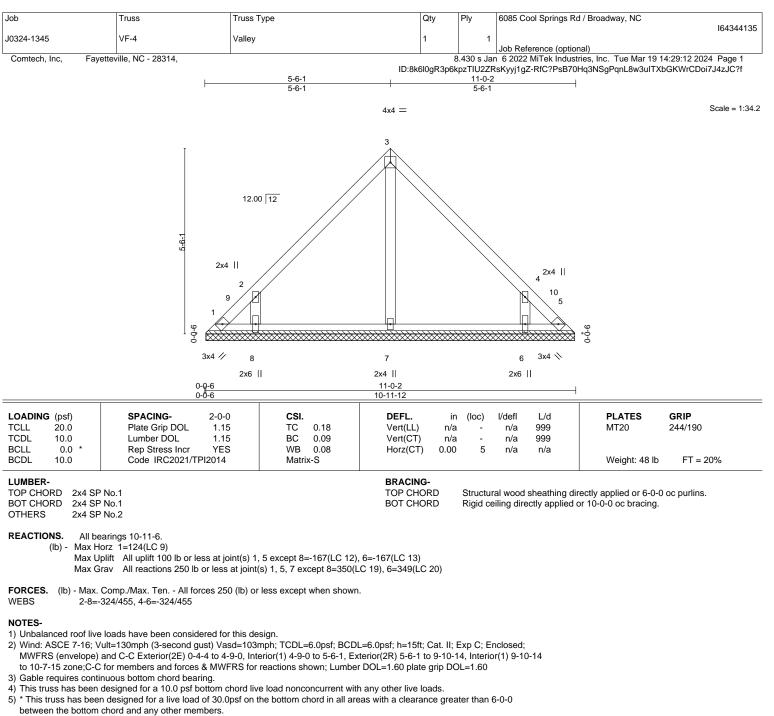
A. GIL-



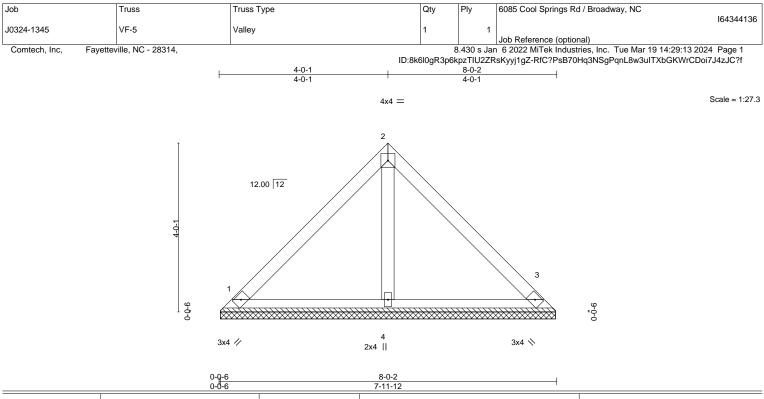
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO

⁸¹⁸ Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=167, 6=167.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		0-0-6		7-11-12				
LOADIN	G (psf)	SPACING- 2-0-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.1	5 TC 0.33	Vert(LL)	n/a -	n/a	999	MT20 244/190
TCDL	10.0	Lumber DOL 1.1	5 BC 0.10	Vert(CT)	n/a -	n/a	999	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	0.00 3	n/a	n/a	
BCDL	10.0	Code IRC2021/TPI2014	Matrix-P					Weight: 32 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-11-6, 3=7-11-6, 4=7-11-6 Max Horz 1=-88(LC 8) Max Uplift 1=-32(LC 13), 3=-32(LC 13) Max Grav 1=178(LC 1), 3=178(LC 1), 4=229(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

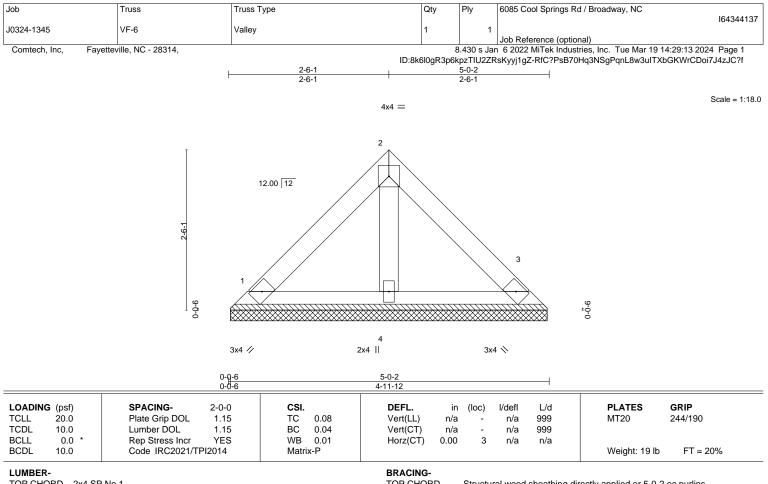
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-11-6, 3=4-11-6, 4=4-11-6 Max Horz 1=-52(LC 8) Max Uplift 1=-19(LC 13), 3=-19(LC 13) Max Grav 1=105(LC 1), 3=105(LC 1), 4=135(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

