

PLANS DESIGNED TO THE **2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE**

MEAN ROOF HEIGHT: 188	3	HEIGHT TO R	IDGE: 25'-3"
CLIMATE ZONE	ZONE 3A	ZONE 4A	ZONE 5A
FENESTRATION U-FACTOR	0.35	0.35	0.35
SKYLIGHT U-FACTOR	0.55	0.55	0.55
GLAZED FENESTRATION SHGC	0.30	0.30	0.30
CEILING R-VALUE	38 or 30ci	38 or 30ci	38 or 30ci
WALL R-VALUE	15	15	19
FLOOR R-VALUE	19	19	30
* BASEMENT WALL R-VALUE	5/13	10/15	10/15
** SLAB R-VALUE	0	10	10
* CRAWL SPACE WALL R-VALUE	5/13	10/15	10/19
	ATTON OD D 40.0	AV (TT) (TNICH II ATTON	

* "10/13" MEANS R-10 SHEATHING INSULATION OR R-13 CAVITY INSULATION ** INSULATION DEPTH WITH MONOLITHIC SLAB 24" OR FROM INSPECTION GAP TO BOTTOM OF FOOTING; INSULATION DEPTH WITH STEM WALL SLAB 24" OR TO BOTTOM OF FOUNDATION WALL ECTONED FOR WIND OPEED OF 11E MOUL 2 CECOND CLICE (00 EACTECE MILE) EVEOCUDE "D"

DESIGNED FOR WIN	ID SPEED	OF 115 M	-n, o oeu		(09 FAST	EST MILE)	EXPUSUR	
COMPONENT & CLADDING DESIGNED FOR THE FOLLOWING LOADS								
MEAN ROOF	UP T	O 30'	30'-1"	TO 35'	35'-1"	TO 40'	40'-1"	TO 45'
ZONE 1	13.1	-14.0	13.8	-14.7	14.3	-15.3	14.7	-15.7
ZONE 2	13.0	-13.0	13.7	-13.7	14.2	-14.2	14.6	-14.6
ZONE 3	13.1	-16.0	13.8	-16.8	14.3	-17.4	14.7	-17.9
ZONE 4	14.3	-15.0	15.0	-15.8	15.6	-16.4	16.0	-16.8
ZONE 5	14.3	-19.0	15.0	-20.0	15.6	-20.7	16.0	-21.3

ROOF VENTILATION

SECTION R806

R806.1 Ventilation required. Enclosed *attics* and enclosed rafter spaces formed where ceilings are applied directly to the underside of roof rafters shall have cross ventilation for each separate space by ventilating openings protected against the entrance of rain or snow. Ventilation openings shall have a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Ventilation openings having a least dimension larger than 1/4 inch (6.4 mm) shall be provided with corrosion-resistant wire cloth screening, hardware cloth, or similar material with openings having a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Openings in roof framing members shall conform to the requirements of Section R802.7.

R806.2 Minimum area. The total net free ventilating area shall not be less than 1/150 of the area of the space ventilated except that reduction of the total area to 1/300 is permitted provided that at least 50 percent and not more than 80 percent of the required ventilating area is provided by ventilators located in the upper portion of the space to be ventilated at least 3 feet (914 mm) above the eave or cornice vents with the balance of the required ventilation provided by eave or cornice vents. As an alternative, the net free cross-ventilation area may be reduced to 1/300 when a Class I or II vapor retarder is installed on the warm-in-winter side of the ceiling. Exceptions:

1. Enclosed attic/rafter spaces requiring less than 1 square foot (0.0929 m2) of ventilation may be vented with continuous soffit ventilation only. 2. Enclosed attic/rafter spaces over unconditioned space may be vented with continuous soffit vent only.

SQUARE FOOTAGE OF ROOF TO BE VENTED = 2,933 SQ.FT.

NET FREE CROSS VENTILATION NEEDED:

WITHOUT 50% TO 80% OF VENTING 3'-0" ABOVE EAVE = 19.56 SQ.FT. WITH 50% TO 80% OF VENTING 3'-0" ABOVE EAVE; OR WITH CLASS I OR II VAPOR RETARDER ON WARM-IN-WINTER SIDE OF CEILING = 9.78 SQ.FT.

GUARD RAIL NOTES

SECTION R312

R312.1 Where required. *Guards* shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or *grade* below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a guard.

R312.2 Height. Required *quards* at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads. Exceptions

1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.

2. Where the top of the *guard* also serves as a handrail on the open sides of stairs, the top of the *guard* shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

R312.3 Opening limitations. Required guards shall not have openings from the walking surface to the required *guard* height which allow passage of a sphere 4 inches (102 mm)in diameter.

Exceptions: 1. The triangular openings at the open side of a stair, formed by the riser, tread

and bottom rail of a guard, shall not allow passage of a sphere 6 inches (153 mm) in diameter. 2. *Guards* on the open sides of stairs shall not have openings which allow

passage of a sphere 4 3/8 inches (111 mm) in diameter.

AIR LEAKAGE

Section N1102.4

N1102.4.1 Building thermal envelope. The building thermal envelope shall be durably sealed with an air barrier system to limit infiltration. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. For all homes, where present, the following shall be caulked, gasketed, weather stripped or otherwise sealed with an air barrier material or solid

material consistent with Appendix E-2.4 of this code: 1. Blocking and sealing floor/ceiling systems and under knee walls open to unconditioned or exterior space.

2. Capping and sealing shafts or chases, including flue shafts.

3. Capping and sealing soffit or dropped ceiling areas.

115 to 130 mph wind zone (1 1/2 to 2 1/2 story) **CONTINUOUS FOOTING:** 16" wide and 8" thick minimum. 20" wide minimum at brick veneer. Must extended 2" to either side of supported wall. GIRDERS: (3) 2 X 10 girder unless noted otherwise. **PIERS:** 16" X 16" piers with 8" solid masonry cap on 30" X 30" X 10" concrete footing with maximum pier height of 64" with hollow masonry and 160" with solid

masonry. **POINT LOADS:** designates significant point load and should have solid blocking to pier, girder or

foundation wall. **115 and 120 MPH ANCHORS BOLTS:** 1/2" diameter anchor bolts embedded minimum 7", maximum 6'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate.

130 MPH ANCHORS BOLTS: 1/2" diameter anchor bolts embedded minimum 15", maximum 4'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate

CONCRETE: Concrete shall have a minimum 28 day strength of 3000 psi and a maximum 5" slump. Air entrained per table 402.2. All concrete shall be in accordance with ACI standards. All samples for pumpin shall be taken from the exit end of the pump. **SOILS:** Allowable soil bearing pressure assumed to be 2000 PSF. The contractor must contact a geotechnical engineer and a structural engineer if unsatisfactory subsurface conditions are encountered. The surface area adjacent to the foundation wall shall be provided with adequate drainage, and shall be graded so as to drain surface water away from foundation walls.

STRUCTURAL NOTES

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code.

JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract

documents. All members shall be framed, anchored, and braced in accordance with good construction practice and the building code.

DESIGN LUADS	LIVE LOAD	DEAD LOAD	DEFLECTION
USE	(PSF)	(PSF)	(LL)
Attics without storage	10	10	L/240
Attics with limited storage	20	10	L/360
Attics with fixed stairs	40	10	L/360
Balconies and decks	40	10	L/360
Fire escapes	40	10	L/360
Guardrails and handrails	200		
Guardrail in-fill components	50		
Passenger vehicle garages	50	10	L/360
Rooms other than sleeping	40	10	L/360
Sleeping rooms	30	10	L/360
Stairs	40		L/360
Snow	20		

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

ENGINEERED WOOD BEAMS:

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x106 PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x106 PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. **LINTELS:** Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise.

FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing.

ROOF SHEATHING: OSB or CDX roof sheathing minimum 3/8" thick for 16" on center rafters and 7/16" for 24" on center rafters.

CONCRETE AND SOILS: See foundation notes.

BRACE WALL PANEL NOTES

EXTERIOR WALLS: All exterior walls to be sheathed with CS-WSP or CS-SFB in accordance with section R602.10.3 unless noted otherwise.

GYPSUM: All interior sides of exterior walls and both sides interior walls to have 1/2" gypsum installed. When not using method GB gypsum to be fastened per table R702.3.5. Method GB to be fastened per table R602.10.1.

REQUIRED LENGTH OF BRACING: Required brace wall length for each side of the circumscribed rectangle are interpolated per table R602.10.3. Methods CS-WSP and CS-SFB contribute their actual length. Method GB contributes 0.5 it's actual length. Method PF contributes 1.5 times its actual length. **HD:** 800 lbs hold down hold down device fastened to the edge of the brace wall panel closets to the corner

Methods Per Table R602.10.1

CS-WSP: Shall be minimum 3/8" OSB or CDX nailed at 6" on center at edges and 12" on center at intermediate supports with 6d common nails or 8d(2 1/2" long x 0.113" diameter).

CS-SFB: Shall be minimum 1/2" structural fiber board nailed at 3" on center at edges and 3" on center at intermediate supports with 1 1/2" long x 0.12" diameter galvanized roofing nails.

GB: Interior walls show as GB are to have minimum 1/2" gypsum board on both sides of the wall fastened at 7" on center at edges and 7" on center at

intermediate supports with minimum 5d cooler nails or #6 screws.

PF: Portal fame per figure R602.10.1

ROOF TRUSS REQUIREMENTS

TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins.

ANCHORAGE. All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics.

BEARING. All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

PAGE 5 OF 9

R315.1 Carbon monoxide alarms. In new construction, dwelling units shall be provided with an approved carbon monoxide alarm installed outside of each separate sleeping area in the immediate vicinity of the bedroom(s) as directed

requiring a permit occurs, or where one or more sleeping rooms are added or created, carbon monoxide alarms shall be provided in accordance with Section

R315.3 Alarm requirements. The required carbon monoxide alarms shall be audible in all bedrooms over background noise levels with all intervening doors closed. Single station carbon monoxide alarms shall be listed as complying with

shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the

requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners. R311.7.4.1 Riser height. The maximum riser height shall be 8 1/4 inches

R311.7.4.2 Tread depth. The minimum tread depth shall be 9 inches (229

planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. Winder treads shall have a minimum tread depth of 9 inches (229 mm) measured as above at a point 12 inches (305 mm) from the side where the treads are narrower. Winder treads shall have a

R311.7.4.3 Profile. The radius of curvature at the nosing shall be no greater than 9/16 inch (14 mm). A nosing not less than 3/4 inch (19 mm) but not more than 1 1/4 inches (32 mm) shall be provided on stairways with solid

R311.7.7 Handrails. Handrails shall be provided on at least one side of each

plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm)and not more than 38 inches (965 mm).

1. The use of a volute, turnout or starting easing shall be allowed over the

transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall

full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails

2. The use of a volute, turnout, starting easing or starting newel shall be

termination of the rails occurs within 6 inches (152 mm) of each other. If transitioning between a wall-mounted handrail and a guardrail/handrail, the

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	6
BM2	6' 0"	2x10 SP No.1	2	2
GDH	24' 0"	1-3/4"x 16" LVL Kerto-S	2	2

Truss Placement Plan 1 **Scale: 3/16"=1**

Roof Area	= 4288.08
Ridge Line	= 120.29 ft
Hip Line	= 0 ft.
Horiz. OH	= 272.16 ft
Raked OH	= 267.73 ft
Decking	= 147 shee

Dimension Notes
 All exterior wall to wall dimensions are to face of sheathing unless noted otherwise All interior wall dimensions are to face of frame wall unless noted otherwise All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

3 sq.ft. ft. ft. ft. ets

Hatch Legend						
	5' 11-3/4" Walls					
	Second Floor Walls					
	Vaulted Ceiling					
	Box Storage					
	Drop Beam					

All Walls Shown Are Considered Load Bearing

соттесн					
ROOF & FLOOR TRUSSES & BEAMS Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444					
Bearing deemed requiren attached requiren size and reaction 15000#. retained reaction Tables. retained reaction	reactions to compl nents. The Tables (nents) to number s greater A register to design that exce A register to design s that exc	i less thar y with the e contract derived f determin of wood s than 3000 red design h the supp eeds thos- red design h the supp ceed 1500	or equa prescrip for shall r rom the p e the min studs req b# but no n profess oort syste oort syste 0#.	I to 3000# tive Code refer to th prescripti imum fou uirred to s t greater f ional sha em for any ed in the a ional shal em for all	e ve Code undation upport than II be y uttached I be
Signatu	re	Davi Davi	d La d La	andr ndry	y
LO	AD CH		DR JA		/DS
NUA NO 103490 1700 3400 5100 6800 8500 10200	ABER OF 17 ADDVDH A14 (2) 404 SON 5 A (2) 1 2 3 4 5 6	400 STORES	R022/1961 GE0059 GE0259 GE0	2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1 00 3 00 4 00 3 00 4 00 5
11900 13600 15300	7 8 9				
Fuquay Varina / Harnett	193 Lambert Lane	Roof	01/31/22	Jonathan Landry	Lenny Norris
CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
Glover Design Build	Lot 43 Purfoy Place	Paxton	N/A		J1121-6629
BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #
THIS IS These to comport design See ind designe perman for the support and col designe consult truss de	A TRUSS russes an nents to b at the sp lividual de ed on the er is resp overall st t structur lumns is t er. For ge t BCSI-B1 elivery pa	S PLACEN re designe ecification esign she placemen onsible fo ng of the ructure. T e includin the respoi neral guic and BCS ackage or	IENT DIA ad as indi- orated into orated into or the be ets for ea- ts for ea-	GRAM ON ividual bu o the buil uilding de the buil uilding de the buil g. The bu ary and floor sys n of the t s, beams. of the buil arding br ided with sbcindus	ILY. ilding ding esigner. design ilding ilding tem and russ , walls, ding acing, the stry.com

Trenco RE: J1121-6629 818 Soundside Rd Lot 43 Purfoy Place Edenton, NC 27932 Site Information: Customer: Glover Design Build Project Name: J1121-6629 Lot/Block: 43 Model: Paxton Address: 193 Lambert Lane Subdivision: Purfoy State: NC City: Fuguay Varina General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date 149950837 1/30/2022 149950857 1/30/2022 A1 21 V6 1 2 149950838 A1SG V7 1/30/2022 1/30/2022 22 149950858 3 149950839 A2 1/30/2022 23 149950859 V8 1/30/2022 4 149950840 A3 1/30/2022 24 149950860 V9 1/30/2022 5 149950841 A3SG 1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

1/30/2022

 18
 149950854
 V3
 1/30/2022

 19
 149950855
 V4
 1/30/2022

 20
 149950856
 V5
 1/30/2022

B1

B2

C1

C2

D1

D2

V2

B1GE

C1GE

C2GE

D1GE

V1GE

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

6

7

8

9

10

11

12

13

14

15

16

17

149950842

149950843

149950844

149950845

149950846

149950847

149950848

149950849

149950850

149950851

149950852

149950853

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

January 30, 2022

January 30,2022

Job	Truss	Truss Type	Qty	Ply	Lot 43 Purfoy Place	
11121-6629	A1SG	GABLE	1	1	149950838	
01121 0025	100				Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314,				8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Jan 28 08:37:24 2022 Page 2	
		ID:X5az	ID:X5az_D23vLwLuiTNLuG6bHyGfxb-bqOitQhWB3AW0bFZgfaARGAbvgG7PbN5i9usZUzqtbP			

NOTES-

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and

any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1265 lb uplift at joint 32, 345 lb uplift at joint 29, 514 lb uplift at joint 20, 176 lb uplift at joint 30, 544 lb uplift at joint 31 and 185 lb uplift at joint 28.

	-		 - () -		
LUMBER-			BRACING-		
TOP CHORD	2x6 SP No	o.1 *Except*	TOP CHORD	Structural wood sheathing di	rectly applied or 5-5-14 oc purlins,
	1-4: 2x4 S	P No.1		except end verticals.	
BOT CHORD	2x6 SP No	b.1	BOT CHORD	Rigid ceiling directly applied	or 4-10-7 oc bracing.
WEBS	2x4 SP No	0.2 *Except*	WEBS	1 Row at midpt	5-18, 8-18
	10-11: 2x6	SP No.1	JOINTS	1 Brace at Jt(s): 18	

(size) 2=0-3-0, 17=0-3-8, 11=0-3-8 REACTIONS. Max Horz 2=421(LC 9) Max Uplift 2=-834(LC 19), 17=-721(LC 12), 11=-234(LC 13) Max Grav 2=422(LC 9), 17=2770(LC 19), 11=1538(LC 20)

8-12=-83/385, 10-12=-244/1365, 6-18=-1064/440, 8-18=-1064/440

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 24-11-8, Exterior(2) 24-11-8 to 29-4-5, Interior(1) 29-4-5 to 39-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 834 lb uplift at joint 2, 721 lb uplift at joint 17 and 234 lb uplift at joint 11.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This show included only upon partner preceder mit-reference Packed Mit-r473 Bits of partner USE. Design valid for use only with MiTek® connectors. This design is based only upon partner presence that is for an individual building designer must verify the applicability of design parameters show, and is for an individual building design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-1313/2824, 3-4=-1257/602, 4-6=-1786/505, 6-7=-501/288, 7-8=-522/295, TOP CHORD 8-10=-1602/486, 10-11=-1549/494 2-17=-2427/840, 16-17=-2427/840, 14-16=-271/953, 12-14=-262/1230 BOT CHORD WEBS 3-17=-2534/808, 3-16=-751/3147, 4-16=-1295/372, 4-14=-269/859, 6-14=-171/462,

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 407 lb uplift at joint 19 and 272 lb uplift at joint 11.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	/ Ply	Lot 43 Purfoy Place	ce	140050842
J1121-6629	B1	COMMON	1		1		145550042
Comtech Inc Eave	etteville NC - 28314			8 430 9	Job Reference (op Aug 16 2021 MiTek II	ptional) ndustries Inc. Fri Jan 28	08:37:30 2022 Page 1
			ID:X5az_D	23vLwLuiTN	_uG6bHyGfxb-P_mz8	TmHnvxgkWij1whahXQdl	4L7pDnz45LAm8zqtbJ
	-0 <u>-11-0 7-11-8</u> 0-11-0 7-11-8	15-11-8 8-0-0		<u>23-11-8</u> 8-0-0		<u>31-11-0</u> <u>32-10</u> 7-11-8 0-11-	բo -o
							Scale - 1:71 5
			5x5 =				Scale = 1.71.5
			-				
Ī		8.00 12	\$				
				17			
		3v6 //		\sim			
	4x6	4			3x6 ∜		
0		4			6 4x6 ×	•	
11-6							
	15					18	
	vq.1					8	
1 4		g 		(¢	g		
c	5x5 = 19	14 2013	12	1121	10 22	5x5 =	- 0
		2x4 4x6 =	3x10 =	4x6 =	2x4		
	7-11-8	15-11-8	I	23-11-8		31-11-0	
Plate Offsets (X X)	7-11-8	8-0-0	I	8-0-0	1	7-11-8	
	[2.0-0-0,0-2-2], [8.0-0-0,0-2-2]						
LOADING (psf)	SPACING- 2-0 Plate Crip DOI 1.1	0 CSI.	DEFL.	in (loc) I/defl L/d	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.1	5 BC 0.30	Vert(CT)	-0.10 12-14	>999 240	W120	244/190
BCLL 0.0 *	Rep Stress Incr YE	S WB 0.71	Horz(CT)	0.04	3 n/a n/a		
BCDL 10.0		Matrix-S	VVInd(LL)	0.04 2-14	>999 240	vveight: 230	ID FI = 20%
LUMBER-	NI- 4		BRACING-	D 04	4		0
BOT CHORD 2x6 SP	No.1 No.1		BOT CHOR	D Struc D Rigid	ceiling directly appli	ed or 10-0-0 oc bracing	·8 oc puriins.
WEBS 2x4 SP	No.2		WEBS	T-Bra	ace:	2x4 SPF No.2 - 6-12,	, 4-12
Left: 2x4 SP No.3 , Right	nt: 2x4 SP No.3			Faste (0.13	en (2X) T and I brace 1"x3") nails, 6in o.c.,	es to narrow edge of we with 3in minimum end c	b with 10d
				Brac	e must cover 90% of	web length.	
Max Ho	e) 2=0-3-8, 8=0-3-8 orz 2=356(LC 11)						
Max Up	blift 2=-233(LC 12), 8=-233(LC	13)					
Max G	rav 2=1472(LC 19), 8=1472(LC	; 20)					
FORCES. (lb) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shown	I.				
BOT CHORD 2-4=-2	2046/647, 4-5=-1483/609, 5-6= -345/1807, 12-14=-345/1807,	-1483/609, 6-8=-2047/647 0-12=-348/1560, 8-10=-348/1560)				
WEBS 5-12=	-342/1092, 6-12=-832/389, 6-1	0=0/444, 4-12=-831/389, 4-14=0/	444				
NOTES-							
1) Unbalanced roof live	loads have been considered for	or this design.					
 Wind: ASCE 7-10; V and C-C Exterior(2) 	ult=150mph Vasd=119mph; T(0-9-1 to 3-7-12 Interior(1) 3-7	DL=6.0psf; BCDL=6.0psf; h=15ft 12 to 15-11-8 Exterior(2) 15-11-8	; Cat. II; Exp C; End to 20-4-5 Interior	losed; MWF	RS (envelope)		
for members and for	ces & MWFRS for reactions sh	own; Lumber DOL=1.60 plate grip	DOL=1.60	., 20 + 0 10	52 0 1 2010,0 0		
3) This truss has been	designed for a 10.0 psf bottom	chord live load nonconcurrent wit	h any other live loa	ds.			A Contract

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2 and 233 lb uplift at

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2 and 233 lb uplift at joint 8.
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss even and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 January 30,2022

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 43 Purfoy Place
11121-6620	PICE	GARLE	1	1	149950843
51121-0029	DIGL	GABLE	1		Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Jan 28 08:37:33 2022 Page 2					
		ID:X5az_D23vLwLuiTNLuG6bHyGfxb-qZR6mVoA3qJFb_RIi2FHIA2CSIR00jtQn3ZqNTzqtbG			

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

TOP CHORD 2-3=-1954/687, 3-5=-1746/626, 5-6=-384/200, 6-7=-384/200, 7-9=-1746/626, 9-10=-1954/687 BOT CHORD 2-16=-411/1764, 13-16=-165/1455, 10-13=-408/1498

DOT OTIOND	2 10- 411/1104, 10 10- 100/1400, 10 10- 400/1400
WEBS	9-13=-436/310, 3-16=-436/310, 7-13=-56/536, 5-16=-56/536, 5-18=-1315/526, 7-18=-1315/526

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 15-11-8, Exterior(2) 15-11-8 to 20-1-12, Interior(1) 20-1-12 to 32-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

2=233, 10=233.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

 Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 6=108.

January 30,2022

Plate Off	Plate Offsets (X,Y) [3:0-4-0,0-2-12]					
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP		
TCLL	20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) -0.03 6 >999 360 MT20 244/190		
TCDL	10.0	Lumber DOL 1.15	BC 0.16	Vert(CT) -0.06 2-6 >999 240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.09 5 n/a n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 2-6 >999 240 Weight: 89 lb FT = 20%		

BRACING-

TOP CHORD

BOT CHORD

JOINTS

LUMBER-

TOP CHORD 2x10 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No 2 WFBS

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=-180(LC 8) Max Uplift 1=-56(LC 12), 5=-56(LC 13)

Max Grav 1=466(LC 1), 5=466(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-368/196, 2-3=-514/219, 3-4=-539/220, 4-5=-346/194

BOT CHORD 2-6=-36/499, 4-6=-36/499

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 5-9-8, Exterior(2) 5-9-8 to 10-2-5, Interior(1) 10-2-5 to 11-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

12.00 12

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 6

1=132, 7=132.

January 30,2022

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This show included only upon partner preceder mit-reference Packed Mit-r473 Bits of partner USE. Design valid for use only with MiTek® connectors. This design is based only upon partner presence that is for an individual building designer must verify the applicability of design parameters show, and is for an individual building design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

January 30,2022

REACTIONS. All bearings 15-7-0.

Max Horz 2=227(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 10 except 16=-121(LC 12), 17=-139(LC 12), 18=-168(LC 12), 14=-116(LC 13), 13=-141(LC 13), 12=-160(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 10, 15, 16, 17, 18, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10 except (it=lb) 16=121, 17=139, 18=168, 14=116, 13=141, 12=160,
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

January 30,2022

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This show included only upon partner preceder mit-reference Packed Mit-r473 Bits of partner USE. Design valid for use only with MiTek® connectors. This design is based only upon partner presence that is for an individual building designer must verify the applicability of design parameters show, and is for an individual building design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

January 30,2022

All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 1, 140 lb uplift at joint 7, 280 lb uplift at joint 12, 203 lb uplift at joint 13, 279 lb uplift at joint 9 and 204 lb uplift at joint 8.

7) Non Standard bearing condition. Review required.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-10-8, Interior(1) 4-10-8 to 8-10-8, Exterior(2) 8-10-8 to 13-3-5, Interior(1) 13-3-5 to 17-4-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=328, 6=327.

6) Non Standard bearing condition. Review required.

LOADING (psf) SPACING- TCLL 20.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 * Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.21 BC 0.18 WB 0.14	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 {) l/defl n/a n/a 5 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0 Code IRC2015/TI	PI2014	Matrix-S	BRACING-				Weight: 75 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 15-7-13.

(lb) - Max Horz 1=240(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-284(LC 12), 6=-284(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=425(LC 22), 8=512(LC 19), 6=512(LC 20)

WEBS 2-8=-511/431, 4-6=-511/431

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-10-5, Exterior(2) 7-10-5 to 12-3-1, Interior(1) 12-3-1 to 15-4-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=284. 6=284.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show included only upon partner preceder mit-reference Packed Mit-r473 Bits of partner USE. Design valid for use only with MiTek® connectors. This design is based only upon partner presence that is for an individual building designer must verify the applicability of design parameters show, and is for an individual building design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.15 WB 0.09 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a Weight: 60 lb FT = 20%	
	•		BPACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 12-11-13.

(lb) - Max Horz 1=197(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-245(LC 12), 6=-245(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=390(LC 19), 8=404(LC 19), 6=404(LC 20)

WEBS 2-8=-451/401, 4-6=-451/402

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-6-5, Exterior(2) 6-6-5 to 10-11-1, Interior(1) 10-11-1 to 12-8-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=245, 6=245.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

January 30,2022

BRACING-

TOP CHORD

BOT CHORD

н	11	IM	R	F	R.	

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=7-7-13, 3=7-7-13, 4=7-7-13 Max Horz 1=-112(LC 10) Max Uplift 1=-55(LC 13), 3=-55(LC 13)

Max Grav 1=171(LC 1), 3=171(LC 1), 4=219(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 1 and 55 lb uplift at joint 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4x4 =

Scale = 1:18.0

4 2x4 ||

TOP CHORD

BOT CHORD

5-0-9 0-0-6

Structural wood sheathing directly applied or 5-0-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 📏

CSI.	DEFL.
	5-0-3
	5-0-3

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.10 BC 0.04 WB 0.01 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-						

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=4-11-13, 3=4-11-13, 4=4-11-13

Max Horz 1=-69(LC 8)

Max Uplift 1=-34(LC 13), 3=-34(LC 13)

Max Grav 1=106(LC 1), 3=106(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1 and 34 lb uplift at joint 3.

3x4 🖊

0-0-6

3x4 📎

9-01 0-01

Structural wood sheathing directly applied or 2-4-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-4-9

Plate Offsets (X,Y)	[2:0-2-0.Edge]		2-4-3	0-0-6	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.02 BC 0.02	DEFL. in (I Vert(LL) n/a Vert(CT) n/a	loc) l/defl L/d - n/a 999 - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00	3 n/a n/a	Weight: 7 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-4-3

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-3-13, 3=2-3-13

Max Horz 1=-27(LC 8) Max Uplift 1=-10(LC 12), 3=-10(LC 12)

Max Grav 1=67(LC 1), 3=67(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 10 lb uplift at joint 3.

Products					
PlotID	Length	Product	Plies	Net Qty	
BM1	8' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	6	
BM2	6' 0"	2x10 SP No.1	2	2	
GDH	24' 0"	1-3/4"x 16" LVL Kerto-S	2	2	

Dimension Notes
 All exterior wall to wall dimensions are to face of sheathing unless noted otherwise All interior wall dimensions are to face of frame wall unless noted otherwise All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

Vaulted Ceiling

Box Storage

Drop Beam

All Walls Shown Are

Considered Load Bearing

Connector Information							
Sym	Product	Manuf	Qty	Supported Member			
\bigcirc	MSH422	USP	6	Varies			

Nail Information

Truss

10d/3"

Header

10d/3"

Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444 Fear: (910) 7000 50000000000000000000000000000000	TI B	COMTECH ROOF & FLOOR TRUSSES & BEAMS Beilly Boad Industrial Park									
deside to comply with the prescriptive Code state data Tables (derived from the prescriptive Code state and number of wood studes required to support section but exceedes the solution transmissional shall be requirements) to determine support system for any rescriptive Code sign the support rescriptive Code sign the support system for any rescriptive Code sign the support system for any rescriptite Code sign the support system for any rescri	Bearing	Fayet Phon Fax	teville ie: (91(: (910) : less that	e, N.C. 0) 864 864-4	28309 -8787 1444 1 to 3000#	t are					
Bay Induction State Sta	deemed requiren attached requiren size and reaction. 15000#. retained reaction retained reaction	to compl nents. The I Tables (nents) to I number s greater A registe to design that exce to design s that exce	y with the e contract derived f determin of wood s than 3000 red design n the sup red design n the sup ceed 1500	e prescrip tor shall r rom the p e the min studs req D# but no n profess port syste n profess port syste 0#.	tive Code efer to th prescriptivi imum fou uired to s t greater to ional shal em for any ed in the a ional shal em for all	e e ve Code indation upport than II be y attached II be					
CITY / CO. Fugues FIRST LADER OF DESIGN Build CITY / CO. Fugues FIRST LADER OF DESIGN Build CITY / CO. Fugues FIRST LADER OF DESIGN BUILD 3 NAME Lot 43 Purfoy Place Lot 43 Purfoy Place Lot 43 Purfoy Place Lot 43 Purfoy Place 3 NAME Lot 43 Purfoy Place ADDRESS 193 Lambert Lane Lot 0016 CI L	Signatu	re	Davi Davi	d La id La	andr ndry	y					
LDER CITY / CO. Fuquay Varina / Harnett 3 NAME Lot 43 Purfoy Place ADDRESS 193 Lambert Lane 0.0021 3 NAME Lot 43 Purfoy Place ADDRESS 193 Lambert Lane 0.0021 N Paxton MODEL Floor 0.0021 0.0021 N Paxton MODEL Floor 0.0131/22 0.0021 N Paxton DATE REV. 0.1/31/22 0.0121 0.0021 N Paxton DATE REV. 0.1/31/22 0.0121 0.0021 N Paxton DATE REV. 0.1/31/22 0.0121 0.0021 N DATE REV. 0.1/31/22 0.0121 0.0021 0.00051 N DATE REV. 0.1/31/22 0.0161 0.0016 0.0016 N DATE REV. 0.1/31/22 0.0161 0.0016 0.0016 South DIE # Jonathan Landry I. RevErence 1. RevErence 1. RevErence N J1121-6630 SALES REP. Lenny Norris SALES REP. Lenny Norris	LO	AD CH. (BASE)	ART F(d on tabl	OR JAC		/DS					
LDERCITY / CO.Fuquay Varina / HarnettIDERLot 43 Pur foy PlaceADDRESS193 Lambert LaneNPaxtonMODELFloorNPaxtonMODELFloorNDATE REV.01/31/22NDATE REV.Date REV.NDate REV.01/31/22NDate REV.Date REV.NDate REV.Date REV. <td< th=""><th>x 1700 3400 5100 6800 8500 10200 11900 13400</th><th>404 904 901 90 90 90 90 90 90 90 90 90 90 90 90 90</th><th>(E2055) 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏</th><th>Action Action Action<</th><th>340 680 1366 170</th><th>0.400 1 0.400 2 0.00 3 0.00 4 0.00 5</th></td<>	x 1700 3400 5100 6800 8500 10200 11900 13400	404 904 901 90 90 90 90 90 90 90 90 90 90 90 90 90	(E2055) 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏 夏	Action Action<	340 680 1366 170	0.400 1 0.400 2 0.00 3 0.00 4 0.00 5					
LDERGlover Design BuildCITY / CO3 NAMELot 43 Purfoy PlaceADDRESS3 NAMELot 43 Purfoy PlaceMODELNPaxtonMODELNPaxtonDATE REVNL DATEN/ADATE REVOTE #J1121-6630SALES REF	. Fuquay Varina / Harnett	193 Lambert Lane	Floor	. 01/31/22	/ Jonathan Landry	. Lenny Norris					
ILDERGlover Design Build3 NAMELot 43 Purfoy PlaceNPaxtonNPaxtonNLN/AOTE #1/121-6630	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP					
	LDER Glover Design Build	NAME Lot 43 Purfoy Place	N Paxton	L DATE N/A	DTE #) # J1121-6630					

components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

▲ = Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

Version 20.40.075 Powered by iStruct™

CSD 🗱

is	Design	C P A	ilient: G roject: P ddress: 1 F	ilover Desig axton 93 Lambe uquay Va	gn Build ert Lane rrina, NC 275	526		Date: Input by: Job Name Project #:	1/31/20 Jonatha e: Lot 43 J1121-6	22 an Landry Purfoy Plac 6630	e			Pa	ge 2 of 3
BM2	S-P-F #1	2.00	0" X 1	0.000	" 2-P	Ply - P/	ASSE	D	Level: Lev	el					
			1												9 1/4"
10 5	- This	- Hite		-	all a grand	1. The								(W)	
	End Grain		5'9"			2 SPF	End Grain							<u> </u>	
<i> </i>			5'9"					\rightarrow						1 10	
Mombor In	formation						Poactie		DATTED		nlift)				
	Girder		Application	n.	Floor		Bra				Snow		Wind	Const	
Plies:	2		Design Me	ethod:	ASD		1	C1VC)	1302	1302		0	001131	
Moisture Cond	lition: Dry		Building C	ode:	BC/IRC 2015		2	C)	1302	1302		0	0	
Deflection LL:	480		Load Shar	ring:	No										
Deflection TL:	240		Deck:		Not Checked										
Importance:	Normal	_													
Temperature:	Temp <= 100	°F					Pearin								
							Dearin	ys 				Takal			
							1 - SP	g Lengtr = 3.500"	1 Ca 58	ap. React 3% 1302	D/L ID / 1302	10tai 2605	La. Case	D+S	am.
Analysis Re	sults						End Grain								
Analysis	Actual	Location A	llowed	Capacity	Comb.	Case	2 - SP	= 3.500"	58	3% 1302	/ 1302	2605	L	D+S	
Moment	3171 ft-lb	2'10 1/2" 3	946 ft-lb	0.804 (809	%) D+S	L	Grain								
Unbraced	3171 ft-lb	2'10 1/2" 3	624 ft-lb	0.875 (889	%) D+S	L									
Shear	1699 lb	4'9" 2	872 lb	0.591 (599	%) D+S	L									
LL Defl inch	0.029 (L/2201)	2'10 1/2" 0	.132 (L/480)	0.220 (229	%) S	L									
TL Defl inch	0.058 (L/1100)	2'10 1/2" 0	.265 (L/240)	0.220 (229	%) D+S	L									
Design Not 1 Girders are	es designed to be sup	ported on the	bottom edge	only.											
2 Multiple plie 3 Top loads n 4 Top braced 5 Bottom braced	es must be fastened nust be supported e at bearings. ced at bearings.	together as p qually by all pl	er manufactu lies.	rer's detail	5.										
	Load Type	i on alligie ply	ocation Tr	ib Width	Side	Dead 0 0	L iso	a 1 . Sno	w 1 15	Wind 1 6	Conet	1 25	Commer	nts	
1			ocation n		Ton	453 PLF	0.6		53 PLE		Const	0 PLF	A3	11.5	
					төр		01								
									Manufactu	way lafe			mtech Inc		
									Manufactu	irer inro		100 Fai US 28: 910	ntech, mc. D1 S. Reilly Roa yetteville, NC A 314 D-864-TRUS	ad, Suite #639	
						dopier in 111							cor	пте	СН
Version 20.40.075					Inis	uesign is valid	untii 4/24/2	123							

CSD 🔤

· ·		С	lient:	Glover Design	Build		Di	ate:	1/31/2022				Page 3 of 3
Tis	Design	P A	roject: ddress:	193 Lambert	Lane		In Jo	put by: ob Name	Lot 43 Pur	Landry foy Place			
	- Karrta <u>C</u> I V		75011	Fuquay Varir	ia, NC 275	526 Dl. D		roject #:	J1121-663 _evel: Level	0			
GDH	Nerto-5 LV	L 1.	/50~/	K 16.000	Ζ-	Ply - P	ASSEI						
								I					
		<u></u>											
		2											
													m 1
-	Comments of the second	- Indiana	100	-	17	1.Th	The second	4		-	-		1'4"
1 SPF End	d Grain									2 SP	PF End Gra	ain	
					18'10"								3 1/2"
l 1					18'10"							- 1	
Member In	formation						Reaction	ns UNI	PATTERNI	ED lb (Upli	ft)		
Туре:	Girder		Applicat	ion: Flo	or		Brg	Live	e Dea	id Sno	w	Wind	Const
Plies: Moisture Cond	2 tition: Dry		Design	Method: AS	D 2/IRC 2015		1	C	234	19 110	02	0	0
Deflection LL:	480		Load Sh	naring: No	2013		2	Ľ	232	19 110	J2	U	U
Deflection TL:	240		Deck:	No	t Checked								
Importance:	Normal												
Temperature:	Temp <= 100°F	=											
							Bearing	S					
							Bearing	Length	n Cap.	React D/L lb	o Total	Ld. Case	Ld. Comb.
							1 - SPF	3.500"	32%	2349 / 1102	2 3451	L	D+S
Analysis Re	sults						Grain						
Analysis	Actual I	ocation A	llowed	Canacity	Comb	Case	2 - SPF	3.500"	32%	2349 / 1102	2 3451	L	D+S
Moment	15501 ft-lb	9'5" 3	9750 ft-lb	0.390 (39%)	D+S	L	End						
Unbraced	15501 ft-lb	9'5" 1	5517 ft-lb	0.999	D+S	L	Grain						
				(100%)									
Shear	2882 lb	17'3 3/8" 1	3739 lb	0.210 (21%)	D+S	L							
LL Defl inch	0.136 (L/1619)	9'5 1/16" 0	.460 (L/480	0.300(30%)	S	L							
I L Defi inch	0.427 (L/517)	9.5 1/16" 0	.920 (L/240	0.460 (46%)	D+8	L	4						
Design Not	es	antad c - th	hottor: - '	e only			4						
2 Multiple plie	designed to be suppo	orted on the	bottom edg er manufag	je oniy. turer's details									
3 Top loads r	nust be supported equ	ally by all pl	lies.										
4 Top must b	e laterally braced at a	maximum o	of 7'7 1/2" o	.C.									
6 Lateral sler	iderness ratio based o	on sinale plv	width.										
ID	Load Type	L	ocation	Trib Width	Side	Dead 0.9	Live	1 Sno	w 1.15 V	Vind 1.6 Co	nst. 1.25	Comment	s
1	Uniform			-	Гор	120 PLF	0 PLI	F	0 PLF	0 PLF	0 PLF	Wall	
2	Uniform			-	Гор	117 PLF	0 PLI	F 1	17 PLF	0 PLF	0 PLF	C2GE	
	Self Weight					12 PLF							
								,			•		
Notes		chemicals	s		6. For fla	t roofs provide p a	roper drainage to	prevent	Manufacturer	Info	C	omtech, Inc. 001 S. Reilly Road,	Suite #639
Calculated Structured structural adequacy	Designs is responsible only of t of this component based on t	he Handling	o Installations must not be c	DN ut or drilled	ponally	~			Metsä Wood 301 Merritt 7 E	Building, 2nd Flo	or I	ayetteville, NC SA R314	
responsibility of the opening of the	uagings shown. It is t customer and/or the contractor ent suitability of the intend	to regarding	o manufacture installation	r's product informa requirements, mult	tion -ply				Norwalk, CT 0 (800) 622-585	6851 ⁻ 0	9	10-864-TRUS	
application, and to ver	ify the dimensions and loads.	approvals 3, Damager	details, beam : s d Beams must no	suengun values, and c tbe used	uud				www.metsawc	od.com/us			
1. Dry service conditi 2 IVI not to be tree	ons, unless noted otherwise ted with fire retardant or correct	4 Design as 5 Provide I	ssumes top edge lateral support a	is laterally restrained at bearing points to a	/oid				100-L3. E3R-			Con	тесн
		iateral dis	spracement and r	otatiON	This	design is valid	until 4/24/202	3					

Version 20.40.075 Powered by iStruct

RE: J1121-6630 Lot 43 Purfoy Place **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer:Glover Design BuildProject Name:J1121-6630Lot/Block:43Model:PaxtonAddress:193 Lambert LaneSubdivision:Purfoy PlaceCity:Fuquay VarinaState:NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 6 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	149950862	ET1	1/28/2022
2	149950863	F1	1/28/2022
3	149950864	F1A	1/28/2022
4	149950865	F2	1/28/2022
5	149950866	F3	1/28/2022
6	149950867	FG1	1/28/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the

that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 28, 2022

Gilbert, Eric

 1-4-0
 2-8-0
 4-0-0
 5-4-0
 6-8-0
 8-0-0
 9-4-0
 10-8-0
 12-0-0
 13-4-0
 14-8-0
 16-0-0
 17-4-0
 18-8-0
 20-0-0
 21-4-0
 22-8-0
 23-11-0

 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 Plate Offsets (X,Y)-- [5:0-1-8,Edge], [16:0-1-8,Edge], [26:0-1-8,Edge], [35:0-1-8,Edge]

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	-0.00	26	n/a	n/a		
BCDL	5.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 114 lb	FT = 20%F, 11%E
LUMBER	-	•				BRACING						
TOP CHC	RD 2x4 SF	P No.1(flat)				TOP CHOP	RD	Structu	ral wood	sheathing di	rectly applied or 6-0-0 of	oc purlins,
BOT CHC	RD 2x4 SF	P No.1(flat)						except	end vert	icals.		

2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 23-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 40, 21, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

January 28,2022

			23-11-0						
Plate Offsets (X,Y)	Plate Offsets (X,Y) [1:Edge,0-1-8], [8:0-3-0,Edge], [9:0-3-0,Edge], [23:0-3-0,0-0-0], [24:0-3-0,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.73 WB 0.76 Matrix-S	DEFL. ir Vert(LL) -0.42 Vert(CT) -0.58 Horz(CT) 0.09	n (loc) l/defl 22-23 >669 22-23 >487 17 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 222 lb	GRIP 244/190 186/179 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	BRACING- TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)								
REACTIONS. (size) 29=0-3-8, 17=0-3-8 Max Grav 29=1647(LC 1), 17=2224(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-3=- 9-11: BOT CHORD 28-20 20-2 WEBS 2-29: 14-11 5-26: 9-22	Wax Grav 29=1647(LC 1), 17=2224(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3117/0, 3-4=-5636/0, 4-5=-5636/0, 5-6=-7455/0, 6-8=-9204/0, 8-9=-9204/0, 9-11=-9699/0, 11-12=-9794/0, 12-13=-8010/0, 13-14=-8010/0, 14-15=-4320/0 BOT CHORD 28-29=0/1747, 27-28=0/4464, 26-27=0/6716, 24-26=0/8329, 23-24=0/9204, 22-23=0/9204, 22-22=0/9940, 19-20=0/9659, 18-19=0/6234, 17-18=0/2378 WEBS 2-29=-2359/0, 2-28=0/1937, 3-28=-1905/0, 3-27=0/1618, 15-17=-3210/0, 15-18=0/2747, 14-18=-2706/0, 14-19=0/2453, 12-19=-2277/0, 12-20=-43/395, 5-27=-1492/0, 5-26=0/1066, 6-26=-1217/0, 11-20=-369/30, 11-22=-633/313, 6-24=0/1588, 8-24=-653/0, 9-22=-329/1103, 9-23=-563/65								
NOTES- 1) Unbalanced floor liv 2) All plates are MT20 3) All plates are 6x6 M 4) The Fabrication Told 5) Plates checked for a 6) Recommend 2x6 str Strongbacks to be a 7) Hanger(s) or other c	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. erance at joint $21 = 11\%$ a plus or minus 1 degree rotation about i ongbacks, on edge, spaced at 10-0-0 c ttached to walls at their outer ends or re connection device(s) shall be provided st	esign. ts center. ic and fastened to each tru strained by other means. ufficient to support concen	iss with 3-10d (0.131" X trated load(s) 1280 lb dr	. 3") nails. own at 17-4-12 or	n top		0		

chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 17-29=-10, 1-16=-100

Concentrated Loads (lb) Vert: 12=-1280(F)

	9-11-8	10-1-0 12-	-9-0	23-1	1-0
Plate Offsets (X,Y)	9-11-8 [1:Edge,0-1-8], [4:0-3-0,Edge], [9:0-3-1	2,Edge], [15:0-3-0,0-0-0], [8-0 19:Edge,0-1-8], [21:0-1	-8,Edge]	2-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.90 BC 0.73 WB 0.93 Matrix-S	DEFL. i Vert(LL) -0.1 Vert(CT) -0.19 Horz(CT) 0.03	n (loc) I/defi L/d 4 22 >999 480 9 22-23 >854 360 3 19 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 174 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF 19-29: WEBS 2x4 SF REACTIONS. (siz	 No.1 (flat) No.1 (flat) *Except* 2x4 SP 2400F 2.0E(flat) No.3(flat) a4=0-3-8, 19=0-3-8, 27=0-3-8 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly applie	directly applied or 5-6-0 oc purlins, d or 6-0-0 oc bracing.
Max G FORCES. (Ib) - Max. TOP CHORD 2-3= 9-10: 15-11	Grav 34=524(LC 3), 19=1405(LC 7), 27= Comp./Max. Ten All forces 250 (lb) o -736/86, 3-4=-943/250, 4-5=0/1568, 5-6 =-456/361, 10-11=-465/357, 11-12=-412 6=-4775/0, 16-17=-2470/0	:3907(LC 1) r less except when shown. =0/1568, 6-8=0/4041, 8-9= ;5/0, 12-14=-4163/0, 14-15	0/4041, =-4775/0,		
BOT CHORD 33-3 27-20	4=0/506, 32-33=-250/943, 31-32=-250/9 8=-2764/0, 26-27=-1780/0, 25-26=-1779 2-0/4775, 24, 22-0/4775, 20, 24-0/2512	43, 30-31=-250/943, 28-30 /0, 24-25=0/2422, 23-24=0 10, 20-0/1427)=-2764/0,)/2424,		
WEBS 8-27 4-30 12-2 16-2		, 13-20=0/1427 -33=-293/232, 6-27=-2005/ 1-25=-2697/0, 11-23=0/25 1/0, 17-20=0/1512, 16-20=	0, 6-30=0/1954, 02, 1512/0,		
NOTES- 1) Unbalanced floor liv 2) All plates are MT20 3) All plates are 1.5x3 4) Plates checked for a 5) Recommend 2x6 st Strongbacks to be a 6) CAUTION, Do not e 7) Hanger(s) or other (c) 972 lb down at 6-4- responsibility of other 8) In the LOAD CASE(LOAD CASE(S) Stan 1) Dead + Floor Live (l Uniform Loads (pfl) Vert: 19-34 Concentrated Loads Vert: 4=-89	re loads have been considered for this d plates unless otherwise indicated. MT20 unless otherwise indicated. a plus or minus 1 degree rotation about i rongbacks, on edge, spaced at 10-0-0 of attached to walls at their outer ends or re- rect truss backwards. connection device(s) shall be provided s 0, and 972 lb down at 15-7-8 on top ch ers. (S) section, loads applied to the face of the dard balanced): Lumber Increase=1.00, Plate =-10, 1-18=-100 s (lb) 2(B) 12=-892(B) 37=-1280(F)	esign. ts center. to and fastened to each tru istrained by other means. ufficient to support concent ord. The design/selection of he truss are noted as front Increase=1.00	ss with 3-10d (0.131") trated load(s) 1280 lb c of such connection dev (F) or back (B).	(3") nails. Iown at 17-4-12, and ice(s) is the	January 28,2022
WARNING - Verify de	esign parameters and READ NOTES ON THIS AND	INCLUDED MITEK REFERENCE F	AGE MII-7473 rev. 5/19/2020	BEFORE USE.	

			8-1-12			
			8-1-12			1
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,	Edge], [11:0-1-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 DCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.93 BC 0.93 WB 0.53	DEFL. in Vert(LL) -0.14 Vert(CT) -0.20 Horz(CT) 0.01	(loc) l/defl L/d 9-10 >657 480 9-10 >484 360 7 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 46 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 2400F 2.0E(flat) 2 No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0	oc purlins,
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (siz	e) 10=Mechanical, 7=0-3-8					

Max Grav 10=1437(LC 1), 7=705(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1361/0, 3-4=-1361/0, 4-5=-1361/0

BOT CHORD 9-10=0/1660, 8-9=0/1361, 7-8=0/640

WEBS 2-10=-2131/0, 2-9=-524/124, 5-7=-898/0, 5-8=0/1081, 4-8=-605/0, 3-9=-81/262

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1280 lb down at 1-10-0 on top

chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 7-10=-10, 1-6=-100

Concentrated Loads (lb)

BOT CHORD 8-9=0/324, 7-8=0/324, 6-7=0/256

WEBS 2-9=-447/0, 4-6=-362/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

January 28,2022

1.5x3 ||

7

CSI.

тс

BC

WB

Matrix-S

0.27

0.31

0.24

1.5x3 ||

in (loc)

-0.01

-0.01

0.00

l/defl

>999

n/a

except end verticals.

7

7 >999

5

6

3-4-0 3-4-0

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1371 lb down at 1-5-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

3x6 =

2-0-0

1.00

1.00

NO

8

SPACING-

Plate Grip DOL

Rep Stress Incr

(size) 8=Mechanical, 5=Mechanical Max Grav 8=992(LC 1), 5=685(LC 1)

7-8=0/683, 6-7=0/683, 5-6=0/683

1) Unbalanced floor live loads have been considered for this design. 2) Plates checked for a plus or minus 1 degree rotation about its center.

2-8=-1018/0, 3-5=-1018/0

Code IRC2015/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Lumber DOL

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

LOADING (psf)

40.0

10.0

0.0

5.0

2x4 SP No.1(flat) 2x4 SP No.1(flat)

2x4 SP No.3(flat)

2-3=-683/0

3) Refer to girder(s) for truss to truss connections.

TCLL

TCDL

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

TOP CHORD

BOT CHORD

WEBS

NOTES-

Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb) Vert: 2=-1337(F)

-9-0

PLATES

Weight: 29 lb

MT20

Structural wood sheathing directly applied or 3-4-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

244/190

FT = 20%F, 11%E

5

3x6 =

L/d

480

360

n/a

