

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Master_Craftsman Mattamy; Redwood

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I48764253 thru I48764273

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

November 11,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

						33-1-0							-
			I			33-1-0							
LOADING TCLL TCDL	(psf) 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.09 0.05	DEFL. Vert(LL) Vert(CT)	in -0.00 -0.00	(loc) 1 1	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC2015/TP	12014	Matrix	k-R	11012(01)	0.00	22	n/a	11/4	Weight: 203 lb	FT = 20%	
LUMBER-	RD 2x4 SP No	0.2				BRACING- TOP CHOF	RD	Structu	ral wood	sheathing dir	ectly applied or 6-0-0 o	oc purlins,	

BOT CHORD

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

Structural wood sheathing directly applied or 6-0-0 oc purlins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 33-1-0.

(Ib) - Max Horz 41=76(LC 12)

 Max Uplift
 All uplift 100 lb or less at joint(s) 41, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23

 except 40=-128(LC 12)

 Max Grav
 All reactions 250 lb or less at joint(s) 41, 22, 31, 32, 33, 35, 36, 37, 38, 39, 40, 30, 29, 27, 26,

Crav All reactions 250 ib or less at joint(s) 41, 22, 31, 32, 33, 36, 37, 38, 39, 40, 30, 29, 27, 26, 25, 24, 23

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-4-0, Interior(1) 2-4-0 to 16-8-0, Exterior(2) 16-8-0 to 21-4-9, Interior(1) 21-4-9 to 32-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 41, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23 except (jt=lb) 40=128.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ntinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MASTER_CRAFTSMAN	A02	СОММОН	7	1	lab Deference (antional)	148764254
Builders FirstSource, Apex, NC 2	27523				3.430 s Aug 16 2021 MiTek Industries, Inc. Thu	Nov 11 11:25:01 2021 Page 2
			ID:x1XJJWVVBLqE?VC	Relagin	stymvxu-zhlotlqvxpiuyiOvHv57F0A0v	J36KWVKCU1XWgyKGgG
2) Dead + 0.75 Roof Live (balanced): Lumber Increase=	1 15 Plate Increase=1 15				
Uniform Loads (plf)						
Vert: 1-2=-50, 2	2-6=-50, 6-10=-50, 11-16=-20 ttic Without Storage: Lumber	, 17-18=-30 Increase-1 25, Plate Increase-1 25				
Uniform Loads (plf)	alo minour otorago. Lambor	moreade=1.20, 1 late moreade=1.20				
Vert: 1-2=-20, 2 4) Dead + 0.6 C-C Wind (F	2-6=-20, 6-10=-20, 11-16=-40	, 17-18=-40 Increase-1.60 Plate Increase-1.60				
Uniform Loads (plf)	os. Internaly Gase T. Euriber					
Vert: 1-2=42, 2-	-21=22, 6-21=12, 6-7=22, 7-1	0=12, 11-16=-12				
5) Dead + 0.6 C-C Wind (F	Pos. Internal) Case 2: Lumber	Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	-12 5 6-22 6 24-12 10 24	-22 11 16- 12				
Horz: 2-16=-25	, 1-2=-20, 2-5=-24, 5-6=-34, 6	6-24=24, 10-24=34, 10-11=-13				
6) Dead + 0.6 C-C Wind (N	leg. Internal) Case 1: Lumber	r Increase=1.60, Plate Increase=1.60				
Vert: 1-2=-13, 2	2-6=-32, 6-10=-32, 11-16=-20					
Horz: 2-16=-16	, 1-2=-7, 2-6=12, 6-10=-12, 1	0-11=-22				
Uniform Loads (plf)	veg. Internal) Case 2. Lumber	increase=1.00, Flate increase=1.00				
Vert: 1-2=-27, 2	2-6=-32, 6-10=-32, 11-16=-20	11_16				
8) Dead + 0.6 MWFRS Wir	nd (Pos. Internal) Left: Lumbe	er Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	6-10 6 10-9 11 16- 12					
Horz: 2-16=13,	1-2=-32, 2-6=-22, 6-10=20, 1	0-11=16				
9) Dead + 0.6 MWFRS Wir	nd (Pos. Internal) Right: Lumi	per Increase=1.60, Plate Increase=1.6	0			
Vert: 1-2=4, 2-6	5=8, 6-10=10, 11-16=-12					
Horz: 2-16=-16	, 1-2=-16, 2-6=-20, 6-10=22, /ind (Neg. Internal) Left: Lum!	10-11=-13 ber Increase-1.60. Plate Increase-1.6	SO.			
Uniform Loads (plf)	inia (Nog. momal) Eon. Ean					
Vert: 1-2=-2, 2 Horz: 2-16=21	2-6=-7, 6-10=-8, 11-16=-20	10-11=7				
11) Dead + 0.6 MWFRS W	/ind (Neg. Internal) Right: Lur	nber Increase=1.60, Plate Increase=1	.60			
Uniform Loads (plf) Vert: 1-2=-4-2	2-6=-8 6-10=-7 11-16=-20					
Horz: 2-16=-7	, 1-2=-16, 2-6=-12, 6-10=13,	10-11=-21				
12) Dead + 0.6 MWFRS W	/ind (Pos. Internal) 1st Paralle	el: Lumber Increase=1.60, Plate Increa	ase=1.60			
Vert: 1-2=14, 2	2-22=19, 6-22=9, 6-10=2, 11-	-16=-12				
Horz: 2-16=11 13) Dead + 0.6 MWFRS W	l, 1-2=-26, 2-22=-31, 6-22=-2 /ind (Pos_Internal) 2nd Parall	1, 6-10=14, 10-11=12 el: Lumber Increase=1 60. Plate Incre	ase=1.60			
Uniform Loads (plf)						
Vert: 1-2=-3, 2 Horz: 2-16=-1	2-6=2, 6-23=9, 10-23=19, 11- 2, 1-2=-9, 2-6=-14, 6-23=21,	16=-12 10-23=31, 10-11=-11				
14) Dead + 0.6 MWFRS W	/ind (Pos. Internal) 3rd Paralle	el: Lumber Increase=1.60, Plate Increa	ase=1.60			
Uniform Loads (plf) Vert: 1-2=5. 2-	-6=9. 6-10=2. 11-16=-12					
Horz: 2-16=5,	1-2=-17, 2-6=-21, 6-10=14, 1	0-11=12				
15) Dead + 0.6 MWFRS W Uniform Loads (plf)	lind (Pos. Internal) 4th Paralle	el: Lumber Increase=1.60, Plate Increa	ase=1.60			
Vert: 1-2=-3, 2	2-6=2, 6-10=9, 11-16=-12					
16) Dead + 0.6 MWFRS W	2, 1-2=-9, 2-6=-14, 6-10=21, /ind (Neg. Internal) 1st Paralle	el: Lumber Increase=1.60, Plate Increa	ase=1.60			
Uniform Loads (plf)	22-2 6 22 7 6 10 15 11	16 - 20				
Horz: 2-16=19), 1-2=-26, 2-22=-22, 6-22=-1	3, 6-10=5, 10-11=3				
17) Dead + 0.6 MWFRS W	/ind (Neg. Internal) 2nd Paral	lel: Lumber Increase=1.60, Plate Incre	ease=1.60			
Vert: 1-2=-11,	2-6=-15, 6-23=-7, 10-23=2, 2	11-16=-20				
Horz: 2-16=-3	, 1-2=-9, 2-6=-5, 6-23=13, 10	-23=22, 10-11=-19				
Uniform Loads (plf)	e=0.90, Flate Inclease=0.90					
Vert: 1-2=-20,	2-6=-20, 6-10=-20, 11-16=-2	0, 17-18=-40	n Int) Loft): Lumbor I	noroaco-	-1.60 Plata	
Increase=1.60	(bai.) + 0.75 Ommab. Auto C		g. Int) Leit). Luinbei i	nciease=	1.00, Flate	
Uniform Loads (plf)	2-640 6-10- 41 11 16- 2	0 17-1830				
Horz: 2-16=16	6, 1-2=-13, 2-6=-10, 6-10=9, 1	10-11=6				
20) Dead + 0.75 Roof Live	(bal.) + 0.75 Uninhab. Attic S	Storage + 0.75(0.6 MWFRS Wind (Neg	g. Int) Right): Lumber	Increase	≥=1.60, Plate	
Uniform Loads (plf)						
Vert: 1-2=-38, Horz: 2-16=-6	2-6=-41, 6-10=-40, 11-16=-2 , 1-2=-12, 2-6=-9, 6-10=10, 1	0, 17-18=-30 0-11=-16				

Qty

Ply

Mattamy; Redwood

ntinued on page 3

Job

Truss

Truss Type

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Mattamy; Redwood
					148764254
MASTER_CRAFTSMAN	A02	COMMON	7	1	
					Job Reference (optional)
Builders FirstSource, Apex, NC 2	7523			8	.430 s Aug 16 2021 MiTek Industries, Inc. Thu Nov 11 11:25:01 2021 Page 3

ID:x1XjjwWBLqE?VCReTaQN3tymvXu-zHLbtLQVXpluyIOVHV57F0Aovd36KWvKcu1xWgyKGgG

LOAD CASE(S)

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-30, 2-22=-34, 6-22=-41, 6-10=-46, 11-16=-20, 17-18=-30

Horz: 2-16=15, 1-2=-20, 2-22=-16, 6-22=-9, 6-10=4, 10-11=2

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

- Uniform Loads (plf)
 - Vert: 1-2=-43, 2-6=-46, 6-23=-41, 10-23=-34, 11-16=-20, 17-18=-30 Horz: 2-16=-2, 1-2=-7, 2-6=-4, 6-23=9, 10-23=16, 10-11=-15

23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-6=-60, 6-10=-20, 11-16=-20

- 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-20, 2-6=-20, 6-10=-60, 11-16=-20
- 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-50, 2-6=-50, 6-10=-20, 11-16=-20, 17-18=-30
- 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-20, 2-6=-20, 6-10=-50, 11-16=-20, 17-18=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-4-0, Interior(1) 2-4-0 to 16-8-0, Exterior(2) 16-8-0 to 21-4-9, Interior(1) 21-4-9 to 32-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-4-0, Interior(1) 2-4-0 to 16-8-0, Exterior(2) 16-8-0 to 21-4-9, Interior(1) 21-4-9 to 34-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			33-4-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.09 BC 0.04 WB 0.13 Matrix-R	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	n (loc) l/defl L/d 23 n/r 120 23 n/r 120 24 n/a n/a	PLATES GRIP MT20 244/190 Weight: 206 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.2 2 No.2		BRACING- TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

IOF CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3OTHERS2x4 SP No.3

REACTIONS. All bearings 33-4-0.

(lb) - Max Horz 44=71(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 44, 24, 35, 36, 38, 39, 40, 41, 42, 33, 32, 30, 29, 28, 27, 26, 25 except 43=-122(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 44, 24, 34, 35, 36, 38, 39, 40, 41, 42, 43, 33, 32, 30, 29, 28, 27, 26, 25

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-4-0, Interior(1) 2-4-0 to 16-8-0, Exterior(2) 16-8-0 to 21-4-9, Interior(1) 21-4-9 to 34-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 44, 24, 35, 36, 38, 39, 40, 41, 42, 33, 32, 30, 29, 28, 27, 26, 25 except (jt=lb) 43=122.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 1-9-0, Exterior(2) 1-9-0 to 5-9-0, Corner(3) 5-9-0 to 8-9-0, Exterior(2) 8-9-0 to 12-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

4)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy; Redwood	
						148764260
MASTER_CRAFTSMAN	C02-2PL	COMMON	1	2		
				–	Job Reference (optional)	
Builders FirstSource (Apex,	NC), Apex, NC - 27523,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Nov 11 08:57:40 2021	Page 2
		ID:x1Xjjw	WBLgE?V	CReTaQN	3tymvXu-iVxQaTBYcmp1k5cC4MsU1dWwvmbJN k0dvvdi	cyKlqP

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 9=-1290(B) 21=-1290(B) 22=-1290(B) 23=-1290(B) 24=-1290(B) 25=-1290(B) 26=-1290(B) 27=-1290(B) 28=-1290(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 11,2021

818 Soundside Road Edenton, NC 27932

	6-0-0			12-0-0		_
Plate Offsets (X V)	6-0-0 [2:0-0-0 0-1-6] [2:0-3-3 Edge] [4:0-0-0	0-1-6] [4·0-3-3 Edge]		6-0-0		•
	[2.0-0-0,0-1-0], [2.0-0-0,Luge], [4.0-0-0,	<u>0-1-0j, [4.0-3-3, Lugej</u>				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/	/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.39	Vert(LL) -0.04	6-9 >999 36	60 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.35	Vert(CT) -0.07	6-9 >999 24	10	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CI) 0.01	2 n/a n/		FT 000/
BCDL 10.0	Code IRC2015/1P12014	Matrix-MS	VVINd(LL) 0.03	6-9 >999 24	to vveight: 47 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S WEDGE Left: 2x4 SP No.3 , R	SP No.2 SP No.2 SP No.3 ight: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood shea Rigid ceiling directly	athing directly applied or 6-0-0 applied or 10-0-0 oc bracing.	oc purlins.
REACTIONS. (si Max Max Max	ize) 2=0-3-0, 4=0-3-0 Horz 2=39(LC 12) Uplift 2=-32(LC 12), 4=-32(LC 13) Grav 2=540(LC 1), 4=540(LC 1)					
FORCES. (lb) - Max TOP CHORD 2-33 BOT CHORD 2-63 WEBS 3-63	x. Comp./Max. Ten All forces 250 (lb) or =-686/77, 3-4=-686/77 =-1/578, 4-6=-1/578 =0/251	less except when shown.				
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7 10:	ve loads have been considered for this de	sign.	II: Evp P: Epologodi I			

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-0-0, Exterior(2) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-8-12 to 4-0-0, Interior(1) 4-0-0 to 5-10-11, Exterior(2) 5-10-11 to 8-10-11, Interior(1) 8-10-11 to 11-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ⋍

2x4 🗢

Rigid ceiling directly applied or 10-0-0 oc bracing.

⊢ −−			3-9-6 3-9-6	
Plate Offsets (X,Y)	[2:0-3-0,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.02 BC 0.06 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Vert(CT) 0/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORD Structural wood sheathi	ng directly applied or 3-9-6 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=3-9-6, 3=3-9-6 Max Horz 1=-6(LC 17) Max Uplift 1=-3(LC 12), 3=-3(LC 13) Max Grav 1=93(LC 1), 3=93(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-2-8	4-4-0		8-5-8	8-8-0
	0-2-8	4-1-8	1	4-1-8	0-2-8
Plate Offsets (X,Y)	[2:0-0-0,0-1-6], [2:0-1-12,0-5-6],	[4:0-0-0,0-1-6], [4:0-1-12,0-5-6]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. 5 TC 0.16 5 BC 0.18 8 WB 0.06 Matrix-MS Matrix-MS	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) 0.00 Wind(LL) 0.01	(loc) l/defl L/d 6-12 >999 360 6-12 >999 240 4 n/a n/a 6-9 >999 240	PLATES GRIP MT20 244/190 Weight: 35 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3 , Rig	P No.2 P No.2 P No.3 Iht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing.
REACTIONS. (size	e) 2=0-3-0, 4=0-3-0				

Max Horz 2=-32(LC 13) Max Uplift 2=-40(LC 8), 4=-40(LC 9) Max Grav 2=407(LC 1), 4=407(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-485/87, 3-4=-485/87 BOT CHORD 2-6=-19/420, 4-6=-19/420

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-4-0, Exterior(2) 4-4-0 to 8-8-0, Interior(1) 8-8-0 to 9-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. All bearings 8-3-0.

Max Horz 2=27(LC 12) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 4-4-0, Corner(3) 4-4-0 to 7-4-0, Exterior(2) 7-4-0 to 9-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8. 8) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		Q-2-8			5-7-12						8-8-0	
		d-2-8			5-5-4						3-0-4	
Plate Offs	sets (X,Y)	[2:0-3-8,Edge], [4:0-1-12	,0-5-6], [4:0-0	-0,0-1-6]								
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	-0.02	5-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.04	5-11	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	k-MS	Wind(LL)	0.01	5-11	>999	240	Weight: 34 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 2x4 SP No.3

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 5=0-3-8, 4=Mechanical, 2=0-3-0

Max Horz 2=35(LC 12) Max Uplift 4=-31(LC 13), 2=-48(LC 8)

Max Grav 5=230(LC 1), 4=190(LC 1), 2=333(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-276/110

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-4-0, Exterior(2) 4-4-0 to 8-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-TOP CHORDStructural woBOT CHORDRigid ceiling with the second sec

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 =ł

Plate Offsets (X, Y)	[2:0-0-1,0-0-0], [4:Edge,0-2-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.59 BC 0.42 WB 0.00 Matrix-MS	DEFL. in Vert(LL) -0.06 Vert(CT) -0.15 Horz(CT) 0.02 Wind(LL) 0.05	(loc) l/defl 4-7 >999 4-7 >536 2 n/a 4-7 >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190 FT = 20%
		IVIAUIX-IVIO	BRACING-	4-1 2333	240		11 - 2076

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=75(LC 11)

Max Uplift 2=-49(LC 8), 4=-26(LC 8)

Max Grav 2=339(LC 1), 4=270(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

2x4 ⋍

2x4 ||

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 10.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.16 BC 0.10 WB 0.00 Matrix B	DEFL. i Vert(LL) n/s Vert(CT) n/s Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999) 3 n/a n/a	PLATES GRIP MT20 244/190
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2 No.2		BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 4-1-13 oc purlins,

(size) 1=4-1-13, 3=4-1-13 Max Horz 1=29(LC 9) Max Uplift 1=-8(LC 8), 3=-12(LC 12) Max Grav 1=119(LC 1), 3=119(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

