

RE: J0222-1049 Cav&Cates\Lot 201 Anderson Creek Trenco 818 Soundside Rd Edenton, NC 27932

Truss Name

W1

W2

Date

1/4/2022

1/4/2022

Site Information: Customer: Project Name: J0222-1049 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#
1	E16505254	A1	1/4/2022	21	E16505274
2	E16505255	A1-GE	1/4/2022	22	E16505275
3	E16505256	A1A	1/4/2022		
4	E16505257	A2	1/4/2022		
5	E16505258	A2-GE	1/4/2022		
6	E16505259	A2A	1/4/2022		
7	E16505260	B1	1/4/2022		
8	E16505261	B1-GE	1/4/2022		
9	E16505262	B2	1/4/2022		
10	E16505263	C1-GE	1/4/2022		
11	E16505264	D1	1/4/2022		
12	E16505265	E1	1/4/2022		
13	E16505266	F1	1/4/2022		
14	E16505267	F1-GE	1/4/2022		
15	E16505268	J2	1/4/2022		
16	E16505269	VB-1	1/4/2022		
17	E16505270	VB-2	1/4/2022		
18	E16505271	VB-3	1/4/2022		
19	E16505272	VB-4	1/4/2022		
20	E16505273	VB-5	1/4/2022		

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-6-0, Exterior(2) 15-6-0 to 19-10-13, Interior(1) 19-10-13 to 31-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F			<u>31-0-0</u> 31-0-0		
Plate Offsets (X,Y)	[7:0-2-8,0-3-0], [13:0-2-8,0-3-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.05 BC 0.02 WB 0.15 Matrix-S	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.07	n (loc) I/defl L/d) 18 n/r 120) 19 n/r 120 I 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 226 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF OTHERS 2x4 SF	⁹ No.1 9 No.1 9 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dire Rigid ceiling directly applied or T-Brace: 2x Fasten (2X) T and I braces to	ectly applied or 6-0-0 oc purlins. r 10-0-0 oc bracing. 4 SPF No.2 - 10-28 narrow edge of web with 10d

REACTIONS. All bearings 31-0-0.

(lb) - Max Horz 2=-286(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-271/197

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-0, Exterior(2) 3-6-0 to 15-6-0, Corner(3) 15-6-0 to 19-10-13, Exterior(2) 19-10-13 to 31-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

TRENCIO AMITEK Attiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-6-0, Exterior(2) 15-6-0 to 19-10-13, Interior(1) 19-10-13 to 31-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plata Offacta (X X)	10-5-13 10-5-13		20-6-3 10-0-7			31-0-0 10-5-13	—
Fiale Olisels (A, f)	[10.0-4-0,0-3-4]		1				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.69	Vert(LL) -	-0.19 9-11	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.44	Vert(CT) -	-0.27 9-11	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.27	Horz(CT)	0.04 8	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.06 2-11	>999 240	Weight: 186 lb	FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=Mechanical Max Horz 2=225(LC 9)

Max Uplift 2=-85(LC 12), 8=-70(LC 13) Max Grav 2=1329(LC 19), 8=1270(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-2069/403, 3-5=-1880/454, 5-7=-1888/466, 7-8=-2077/416
- BOT CHORD 2-11=-244/1844, 9-11=-35/1177, 8-9=-248/1697
- WEBS 5-9=-146/908, 7-9=-520/292, 5-11=-144/898, 3-11=-504/282

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-6-0, Exterior(2) 15-6-0 to 19-10-13, Interior(1) 19-10-13 to 30-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

3	-0-0	,
31	-0-0)

Plate Offsets (X,Y)	[7:0-2-8,0-3-0], [13:0-2-8,0-3-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.05 BC 0.02 WB 0.15 Matrix-S	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.07	n (loc) l/defl L/d) 1 n/r 120) 1 n/r 120 I 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 225 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF OTHERS 2x4 SF	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing d Rigid ceiling directly applied T-Brace: Fasten (2X) T and I braces (0.131*x3*) nails. 6in o.c. wi	irectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing. 2x4 SPF No.2 - 10-27 to narrow edge of web with 10d h 3in minimum end distance.

Brace must cover 90% of web length.

REACTIONS. All bearings 31-0-0.

(lb) - Max Horz 2=281(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 18, 2, 28, 29, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21, 20, 19 Max Grav All reactions 250 lb or less at joint(s) 18, 2, 27, 28, 29, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21, 20, 19

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-274/194

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-0, Exterior(2) 3-6-0 to 15-6-0, Corner(3) 15-6-0 to 19-10-13, Exterior(2) 19-10-13 to 31-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 2, 28, 29, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21, 20, 19.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 10-6-0, Exterior(2) 10-6-0 to 14-10-13, Interior(1) 14-10-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-3-0		15-9-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.26 BC 0.56 WB 0.19 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 14-15 >999 360 Vert(CT) -0.29 14-15 >846 240 Horz(CT) 0.02 11 n/a n/a Wind(LL) 0.25 14-15 >983 240	PLATES GRIP MT20 244/190 Weight: 142 lb FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2 **REACTIONS.** (size) 2=0-3-8, 11=0-3-8 Max Horz 2=227(LC 11) Max Uplift 2=-189(LC 12), 11=-189(LC 13)

Max Grav 2=890(LC 1), 11=890(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1176/233, 3-4=-943/283, 4-5=-930/292, 5-6=-919/317, 6-7=-928/317, 7-8=-899/273, 8-9=-865/216, 9-10=-884/164, 10-11=-935/108

 BOT CHORD
 2-19=-214/970, 18-19=-214/970, 17-18=-45/704, 15-17=-45/704, 14-15=-45/704, 13-14=-45/704, 11-13=-45/704

 WEBS
 3-21=-329/201, 20-21=-328/193, 18-20=-348/219, 6-18=-221/754

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 10-6-0, Exterior(2) 10-6-0 to 16-6-0, Interior(1) 16-6-0 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 11=189.

Structural wood sheathing directly applied or 5-6-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty PI	ly Cav&Cat	es\Lot 201 Anderso	n Creek	
J0222-1049	B2	COMMON GIRDER	1	2			E16505262
Comtech, Inc, Fayette	ville, NC - 28314,		8.43	Job Refe 30 s Aug 16 2021	rence (optional) MiTek Industries, In	ic. Tue Jan 4 10:0	1:38 2022 Page 1
	5-7-6	ا 10-5-8	D:VSutWp9Fax1IUCvRMH 15-3-10	IETp9zr2u5-BvcU	NEgDhbogp5SWgX 20-11-0	(SbEkGoSCR2bv1I	DHDVUAZzymcR
F	5-7-6	4-10-2	4-10-2		5-7-6	1	
			5x8				Scale = 1:42.8
			3				
Ţ			$\overline{\mathbb{A}}$				
	8 00 1	$\overline{2}$					
	0.00 1				o //		
		2x4 \\\			2x4 // 1		
-5-7				- A			
2				//			
1			/	\mathbf{Y}		5	
	$\langle \rangle'$						12
	9 10	11 8 12	13 7 14	6 15	16	17	6 6
	4x8 🚧	10x10 =	6x8 = 10	0x10 =		4x8 📎	
H	7-2-11 7-2-11		<u>13-8-5</u> 6-5-10		<u>20-11-0</u> 7-2-11		
Plate Offsets (X,Y) [1:0	0-7-14,Edge], [2:0-0-0,0-0-0]	[5:0-0-6,Edge], [6:0-5-0,0-6-4], [8:0-	5-0,0-6-4]				
LOADING (psf)	SPACING- 2-0-	CSI.	DEFL. in ((loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1	5 TC 0.34 5 BC 0.58	Vert(LL) -0.10 Vert(CT) -0.19	5-6 >999 5-6 >999	360 240	MT20	244/190
BCLL 0.0 * BCDI 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	D WB 0.65 Matrix-S	Horz(CT) 0.04 Wind(LL) 0.07	5 n/a 5-6 >999	n/a 240	Weight: 307 lb	FT = 20%
			BRACING-				
TOP CHORD 2x6 SP No	p.1		TOP CHORD S	structural wood s	heathing directly a	pplied or 5-2-9 oc	purlins.
WEBS 2x4 SP X4	00F 2.0E 5.2		BOT CHORD R	kigid ceiling direc	tly applied or 10-0	-0 oc bracing.	
REACTIONS. (size)	1=0-3-8. 5=0-3-8						
Max Horz Max Holiff	1=165(LC 24)						
Max Opini Max Grav	1=7105(LC 1), 5=6638(LC	, 1)					
FORCES. (Ib) - Max. Co	mp./Max. Ten All forces 25	0 (lb) or less except when shown.					
TOP CHORD 1-2=-917 BOT CHORD 1-8=-536	70/626, 2-3=-9032/683, 3-4=- 5/7599	9050/684, 4-5=-9189/627 461/7614					
WEBS 3-6=-410	0/5332, 4-6=-316/177, 3-8=-4	07/5293, 2-8=-316/176					
NOTES-							
 2-ply truss to be connect Top chords connected a 	cted together with 10d (0.131 as follows: 2x6 - 2 rows stage	"x3") nails as follows: iered at 0-9-0 oc.					
Bottom chords connected	ed as follows: 2x8 - 2 rows st	aggered at 0-8-0 oc.					
 All loads are considered 	d equally applied to all plies,	except if noted as front (F) or back (E	3) face in the LOAD CAS	SE(S) section. Pl	y to		
ply connections have be3) Unbalanced roof live lost	een provided to distribute onl ads have been considered fo	y loads noted as (F) or (B), unless ot r this design.	herwise indicated.				
4) Wind: ASCE 7-10; Vult=	=130mph Vasd=103mph; TC	DL=6.0psf; BCDL=6.0psf; h=15ft; Ca	t. II; Exp C; Enclosed; N	/WFRS (envelop	be);	WH CAA	2011
5) This truss has been des	signed for a 10.0 psf bottom	chord live load nonconcurrent with ar	ny other live loads.		, All	RESSI	ANT .
will fit between the botto	om chord and any other mem	bers, with BCDL = 10.0 psf.	where a rectangle 3-6-0	Tall by 2-0-0 wit	ie wa	20/	No star
 Provide mechanical cor 1=471 5=439 	nnection (by others) of truss t	o bearing plate capable of withstand	ing 100 lb uplift at joint(s	s) except (jt=lb)	Ξ. :	Q	
8) Hanger(s) or other conr	nection device(s) shall be pro	vided sufficient to support concentra	ted load(s) 1211 lb dowr	n and 89 lb up at		SEAL	
down and 90 lb up at 9	-0-12, 1209 lb down and 90	b up at 11-0-12, 1209 lb down and 9	90 lb up at 13-0-12, 120	9 lb down and 9	0 lb \Xi 🤅	03632	2 ; 5
up at 15-0-12, and 120 design/selection of such	19 Ib down and 90 lb up at 17 n connection device(s) is the	'-0-12, and 1209 lb down and 90 lb u responsibility of others.	ip at 18-10-12 on botton	m chord. The	1	·	ALLE
LOAD CASE(S) Standard	d	-				GINE	FERIN
1) Dead + Roof Live (bala	nced): Lumber Increase=1.1	5, Plate Increase=1.15			11	A. GI	LBL
Uniform Loads (plf) Vert: 1-3=-60, 3	3-5=-60, 1-5=-20						4 2022
Continued on page 2						Janualy	7,2022
Continued on page 2						12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m.c.astr

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

RE

Job	Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 201 Anderson Creek
					E16505262
J0222-1049	B2	COMMON GIRDER	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Tue Jan 4 10:01:38 2022 Page 2

ID:VSutWp9Fax1IUCvRMHETp9zr2u5-BvcUNEgDhbogp5SWgXSbEkGoSCR2bv1DHDVUAZzymcR

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 8=-1209(F) 9=-1211(F) 10=-1210(F) 11=-1210(F) 12=-1209(F) 13=-1209(F) 14=-1209(F) 15=-1209(F) 16=-1209(F) 17=-1209(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	184	DE	D
LU	ואוע	DE	K -

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-6-0.

(lb) - Max Horz 2=-122(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-3-0, Exterior(2) 3-3-0 to 5-3-0, Corner(3) 5-3-0 to 9-7-13, Exterior(2) 9-7-13 to 11-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-15,Edge]					T	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.	01 2-4	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.28	Vert(CT) -0.	01 2-4	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.	00	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.	01 2-4	>999 240	Weight: 24 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP	? No.1		TOP CHORD	Struct	ural wood sheathing d	irectly applied or 5-0-8	oc purlins,
BOT CHORD 2x6 SF	? No.1			except	t end verticals.		
WEBS 2x6 SP	? No.1		BOT CHORD	Rigid o	ceiling directly applied	or 10-0-0 oc bracing.	

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=67(LC 8) Max Uplift 2=-104(LC 8), 4=-76(LC 8) Max Grav 2=254(LC 1), 4=181(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-9-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=104.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		2-0-0					
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP			
TCLL	20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 2 >999 360 MT20 244/190			
TCDL	10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 2-4 >999 240			
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a			
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 8 lb FT = 20%			

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=44(LC 12)

Max Uplift 3=-27(LC 12), 2=-13(LC 12)

Max Grav 3=39(LC 1), 2=148(LC 1), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 2-0-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0-0-8	6-0-0			11-11-8	<u>12</u> -0-0	
Plate Offsets (X,Y)	[2:0-2-0,Edge], [4:0-2-0,Edge]			5-11-6	0-0-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.58 WB 0.06 Matrix-S	DEFL. in (I Vert(LL) 0.09 Vert(CT) -0.07 Horz(CT) 0.01	loc) l/defl L/d 4-6 >999 240 2-6 >999 240 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2			BRACING- TOP CHORD Sti BOT CHORD Rig	ructural wood sheathing dire igid ceiling directly applied or	ectly applied or 6-0-0 oc purlins. r 6-8-6 oc bracing.	
REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=27(LC 16) Max Uplift 2=-205(LC 8), 4=-205(LC 9) Max Grav 2=530(LC 1), 4=530(LC 1)						
FORCES.(lb) - MaTOP CHORD2-3BOT CHORD2-6WEBS3-6	x. Comp./Max. Ten All forces 250 (lb) or =-866/938, 3-4=-866/938 =-809/765, 4-6=-809/765 =-358/282	· less except when shown.				

- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 6-0-0, Exterior(2) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 12-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=205, 4=205.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

12-0-0									
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.13 BC 0.09	DEFL. Vert(LL) Vert(CT)	in 0.00 0.01	(loc) 7 7	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Matrix-S	Horz(CT)	0.00	6	n/a	n/a	Weight: 46 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 12-0-0.

Max Horz 2=46(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-111(LC 12), 8=-110(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9 except 10=326(LC 1), 8=326(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 3-10=-231/313, 5-8=-231/313

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 6-0-0, Corner(3) 6-0-0 to 10-4-13, Exterior(2) 10-4-13 to 12-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=111.8=110.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		2-10-15 2-10-7						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.06 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2-4 >999 360 Vert(CT) -0.01 2-4 >999 240 Horz(CT) -0.00 3 n/a n/a Wind(LL) 0.01 2-4 >999 240	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%				

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No 1

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=44(LC 8)

Max Uplift 3=-31(LC 12), 2=-80(LC 8), 4=-14(LC 8)

Max Grav 3=71(LC 1), 2=180(LC 1), 4=54(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-360/229, 4-6=-360/229

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-11-1, Interior(1) 4-11-1 to 8-11-1, Exterior(2) 8-11-1 to 13-3-14, Interior(1) 13-3-14 to 17-4-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=121, 6=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 7-2-1, Exterior(2) 7-2-1 to 11-6-14, Interior(1) 11-6-14 to 13-10-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 5-5-1, Exterior(2) 5-5-1 to 9-9-14, Interior(1) 9-9-14 to 10-4-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=138(LC 1), 3=138(LC 1), 4=232(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 🥢

2x4 📎

			<u>3-10-2</u> 3-10-2				
Plate Offsets (X,Y)	[2:0-2-0,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.02 BC 0.07 WB 0.00 Matrix-P	DEFL.in(loc)Vert(LL)n/a-Vert(CT)n/a-Horz(CT)0.003	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 11 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 PEACTIONS (circ) 1-2 10 2 2-2 10 2			BRACING- TOP CHORDStructural wood sheathing directly applied or 3-10-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.				

CTIONS. (size) 1=3-10-2, 3=3-10-2 Max Horz 1=-23(LC 8) Max Unlift 1=-6(LC 12) 3=-6(LC 1

Max Uplift 1=-6(LC 12), 3=-6(LC 13) Max Grav 1=114(LC 1), 3=114(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-15,Edge]					T	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.	01 2-4	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.28	Vert(CT) -0.	01 2-4	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.	00	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.	01 2-4	>999 240	Weight: 24 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP	? No.1		TOP CHORD	Struct	ural wood sheathing d	irectly applied or 5-0-8	oc purlins,
BOT CHORD 2x6 SF	? No.1			except	t end verticals.		
WEBS 2x6 SP	? No.1		BOT CHORD	Rigid o	ceiling directly applied	or 10-0-0 oc bracing.	

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=67(LC 8) Max Uplift 2=-104(LC 8), 4=-76(LC 8) Max Grav 2=254(LC 1), 4=181(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-9-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=104.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:1-2-3,0-1-7]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/	defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.68	Vert(LL) -0.03	2-5 >	999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.05	2-5 >	999 240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00)	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.03	2-5 >	999 240	Weight: 31 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP No.1		TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,			oc purlins,	
BOT CHORD 2x6 SF	° No.1			except end	d verticals.		
WEBS 2x6 SP No.1		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.				

REACTIONS. (size) 2=0-4-4, 5=0-1-8 Max Horz 2=67(LC 4) Max Uplift 2=-154(LC 4), 5=-105(LC 4) Max Grav 2=358(LC 1), 5=257(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

ł

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=154, 5=105.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 27 lb down and 35 lb up at 4-2-8, and 27 lb down and 35 lb up at 4-2-8 on top chord, and 10 lb down and 30 lb up at 4-2-8, and 10 lb down and 30 lb up at 4-2-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

