PLANS DESIGNED TO THE

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.

DATE: JUNE 22, 2021 REV.: SCALE: AS NOTED DRAWN BY: WG ENGINEERED BY: **REVIEWED BY: B - ELEVATIONS**

A-2

RIGHT ELEVATION SCALE: 1/8" = 1'-0"

OPTIONAL

PORCH

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.

A-3

SCALE: 1/8" = 1'-0" SCALE: 1/8" = 1'-Ø"

- 12'**-**Ø" -· 10'-0" -6 x 6 TRTD. POST MIN. W/- -PVC SLEEVE, FOR OPT. PORCH STD. PATIO/ OPT. COVERED PORCH -36'-0"--6'-10 1/2"----1Ø'-1 1/2" '-IØ" 2-8 3-2 SET 46" A.F.F. 5-06-8 SLIDER 0 0 DW KITCHEN - 10'-8" --5'-Ø"· CASUAL 24" x 60" ISLAND W/ 12" FLUSH OVERHANG: 2 ŵ DINING 4 Ō $\bar{\varphi}$ Ō -8' - 4'-2" -+−5'-Ø"-3-0 BISWING PANTRY 45" WALL W/ CAP up igr BTØRAGE 9-1/12" TREADS 2-0 FIXED 2-4 3 -6'-11"-6'-6"-2-8 WH Ō FOTER -'-6" -17'-6" 3 22-1/2" × 32" ACCESS - <u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. ø 3-0 6-8 ENTRY 2 -2'-6"-+-OPTIONAL THIRD 2-CAR 2 GARAGE CAR GARAGE -4" (TYP.) -21'-8"-- 7'*-Ø*" ----! -- OPTIONAL 2-8 6-8 (N/A WITH THIRD CAR GARAGE) <u>9</u> 9 Ó 8-0 x 8-0 O.H. GARAGE DOOR ē N. OPTIONAL CULTURED STONE -VENEER (SEE ELEVATION PAGES 16-0 x 8-0 GARAGE DOOR FOR LOCATIONS AND CONDITIONS) - 11'-Ø" --11'-Ø" · _____6'-2"_____ -22'**-**Ø"--36'-Ø"-

<u>SQUARE FOOTAGE (1.F.S.)</u>

lst FLOOR:	736 SQ. FT.
2nd FLOOR:	1120 SQ. FT.
TOTAL:	1856 SQ. FT.
GARAGE:	448 SQ. FT.
FRONT PORCH:	84 SQ. FT.
STD. REAR PATIO:	100 SQ. FT.
OPT. REAR PORCH:	100 SQ. FT.
OPT. THIRD CAR GARAGE:	224 SQ. FT.

REV.:	
SCALE: 1/4" = 1'-0"	
DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	

FIRST FLOOR PLAN

A-4

- OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS)

S WESTAN HOMES CAROLINA COLL BRINKLEY DATE: JUNE 22, 2021 SCALE: 1/4" = 1'-0" ENGINEERED BY:

HOMES

ADAF ADAF PROH CURRI

...

SECOND FLOOR PLAN

A-5

ELECTRICAL LAYOUT NOTES:

- 1.) BLOCK AND WIRE FOR ALL CELING FANS PER PLAN.
- 2.) VANITY LIGHTS TO BE SET @ 90" A.F.F. (TY.P.)
- 3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.
- 4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND

- 😑 110 v GFI OUTLET

- + 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI

- Ø 10 V DEDICATED CIRCUIT
- Ø 220 V DEDICATED CIRCUIT
- SPECIAL PURPOSE (240 V, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- (P)- PENDANT LIGHT
- MINI CAN LIGHT
- FLUORESCENT LIGHT

- \$ SWITCH
- \$_D DIMMER SWITCH
- TELEPHONE
- \triangle data
- TELEPHONE AND DATA
- TV- TV CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- SP SPEAKER
- 110 V SMOKE/ CM DETECTOR
- 5D 110 V SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL

CEILING FAN W/ LIGHT

DATE: JUNE 22, 2021
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:
FIRST FLOOR
ELECTRICAL
PLAN
E-1

-12'**-**Ø" OPTIONAL COVERED -PORCH (PATIO STD.) 4" CONC. SLAB 36'-0 ----6'-1∅ 1/2"---2'-8 1/2" + _____ _____ 2 ŋ _____ 6 _ _ _ _ _ _ _ _ _ 4" CONC. SLAB 00 -1-3/4" CONDUIT FROM ISLAND TO WALL BEHIND REF. -13'-2 1/2" -9'-4 1/2 -16" WIDE BY 9" DEEP THICKENED SLAB (TYP.) _ __ __ __ . WΗ -21'-8" 5-0--<u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. SLAB 4" CONC. SLAB 30" x 30" x 10" -CONC. FTG. (TYP.) . – – - OPTIONAL 2-8 6-8 DOOR - OPTIONAL (N/A WITH THIRD CAR GARAGE) 2-8 6-8 DOOR Ò m OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS) -+ 2'-10 1/2" -+--─**─**2'-1Ø 1/2" | - 16'-3" -- 1'-8 1/2" 2'-Ø 1/2" -22'-Ø"· -----8'-3"------- 36'-Ø"-

-12'**-**Ø" OPTIONAL COVERED PORCH (PATIO STD.) 4" CONC. SLAB 36'-0 ━−−−−6'-10 1/2"-−−**−−**+ 2'-8 1/2" +━ _____ _____ @ || @ || בקרבין DM 2 σ ØØ _ 4" CONC. SLAB 00 -1-3/4" CONDUIT ₩ FROM ISLAND TO WALL BEHIND REF. -9'-4 1/2 -13'-2 1/2" -16" WIDE BY 9" DEEP _ _ _ _ _ _ · _ _ _ **I**_ _ _ _ ____ -@-WΗ 0 -22'-Ø" -<u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. 4" CONC. SLAB 30" x 30" x 10" -CONC. FTG. (TYP.) 6'-4"----- OPTIONAL 2-8 6-8 DOOR - OPTIONAL (N/A WITH THIRD CAR 2-8 6-8 DOOR <u>9</u> |0 GARAGE) OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS) ─**-**+ 2'-1Ø 1/2" | -16'-3"-►<u>+</u> 2'-1Ø 1/2" +--2'-Ø 1/2" - 1'-8 1/2" 22'**-**Ø" 36'-Ø"

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
 INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
 WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/
 (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/
 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE
 SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING
 COLUMN.

BRACE WALL PANEL NOTES:

EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH. METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

METHODS: PER TABLE R602.10.1

RENAISSANCE RESIDENTIAL DESIGN, INC. WILMINGTON, NC (919) 649-4128

WWW.RRDCAROLINA.COM The art of transforming your vision into rea

REV.: CALE: 1/4" = 1'-0" DRAWN BY: WG NGINEERED BY:	DATE: JUNE 22, 2021
CALE: 1/4" = 1'-0" DRAWN BY: WG NGINEERED BY:	REV.:
DRAWN BY: WG	SCALE: 1/4" = 1'-0"
ENGINEERED BY:	DRAWN BY: WG
	ENGINEERED BY:
EVIEWED BY:	REVIEWED BY:
	SECOND FLOOR
ECOND FLOOR	FRAMING PLAN

S-2

TABLE R602.7.5 MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEFT)	MAXIMUM STUD SPACING (INCHES) (PER TABLE R602.3(5)			
(. == .)	16	24		
UP TO 3'	1	1		
4'	2	1		
8'	3	2		
12'	5	3		
16'	6	4		

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET

OPTIONAL OWNER'S BATH

RENAISSANCE RESIDENTIAL DESIGN, INC. WILMINGTON, NC (919) 649-4128 WWW.RRDCAROLINA.COM The art of transforming your vision into rea RENAISSANCE RESIDENTIAL DESIGN, INC.. RESERVES THE RIGHT TO MAKE MODIFICATIONS TO FLOOR PLANS, DIMENSIONS, MATERIALS, AND SPECIFICATIONS WITHOUT NOTICE. THESE DRAWINGS ARE FOR THE PURPOSE OF CONVEYING AN ARCHITECTURAL CONCEPT ONLY. RENAISSANCE RESIDENTIAL DESIGN, INC., HEREBY EXPRESSLY RESERVES ITS COMMON LAW COPYRIGHT AND OTHER PROPERTY RIGHTS IN THESE PLANS. THESE PLANS AND DRAWINGS ARE NOT TO BE REPRODUCED, CHANGED, OR COPIED IN ANY FORM OR MANNER WITHOUT FIRST OBTAINING THE EXPRESS WRITTEN CONSENT OF RENAISSANCE RESIDENTIAL DESIGNS, INC.. NOR ARE THEY TO BE ASSIGNED TO ANY THIRD PARTY WITHOUT FIRST OBTAINING SAID WRITTEN PERMISSION AND CONSENT. HOMES DTICE. DAND DAND ON OF AN AND GS ARE PRICES, PRICES, FLOOR FLOOR FLOOR NDMENSIC DIMENSIC SQUARE MAY VAR' HOUSE C HOUSE C ARTIST C S LECTION WESTAN HOMES CAROLINA COLL BRINKLEY DATE: JUNE 22, 2021

REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

1484 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 9.9 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE #2 SPF (UNO).
 HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0". FASTEN MEMBERS WITH THREE ROWS OF 12d NAILS @ 16" O.C. (TYP.)
- 3. STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32" O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING. EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS.
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.

DATE: JUNE 22, 2021

REV.:	
SCALE: 1/4" = 1'-0"	
DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	

roof plan S-4

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

Trenco RE: J0222-0764 818 Soundside Rd Lot 5 Avery Pointe Edenton, NC 27932 Site Information: Customer: Regency Homes Project Name: J0222-0764 Lot/Block: 5 Model: Brinkle Model: Brinkley Address: 430 Josey Williams Road Subdivision: Avery Pointe State: NC City: Erwin General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date E16467258 12/2/2021 A1 12/2/2021 21 E16467278 V3 1 A1GE 2 E16467259 12/2/2021 V4 22 E16467279 12/2/2021 3 E16467260 A1SG 12/2/2021 23 E16467280 V5 12/2/2021 4 E16467261 B1 12/2/2021 24 E16467281 V6 12/2/2021 B1GE 5 E16467262 12/2/2021 C1-GR 6 12/2/2021 E16467263 7 E16467264 C1SG 12/2/2021 8 E16467265 D1 12/2/2021 D1GE 12/2/2021 9 E16467266 10 E16467267 G1 12/2/2021 11 E16467268 G1GE 12/2/2021 12 E16467269 H1GE 12/2/2021 13 E16467270 J1 12/2/2021 14 E16467271 J1GE 12/2/2021 15 E16467272 12/2/2021 M1 16 E16467273 M1GE 12/2/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

M2

V1

V2

M2A

Truss Design Engineer's Name: Strzyzewski, Marvin

17

18

19

20

E16467274

E16467275

E16467276

E16467277

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Strzyzewski, Marvin

12/2/2021

12/2/2021

12/2/2021

12/2/2021

TCDL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.66 WB 0.57 Matrix-S	Vert(LL) -0.35 Vert(CT) -0.48 Horz(CT) 0.05 Wind(LL) 0.07	9-12 >999 360 9-12 >833 240 7 n/a n/a 7-9 >999 240	Weight: 230 lb FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x 1-	5 SP No.1 5 SP No.1 4 SP No.2 *Except* 3: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing d except end verticals. Rigid ceiling directly applied 1 Row at midpt	irectly applied or 4-9-10 oc purlins, or 9-9-4 oc bracing. 2-13

REACTIONS. (size) 13=Mechanical, 7=0-3-8 Max Horz 13=-193(LC 13) Max Uplift 13=-222(LC 12), 7=-263(LC 13) Max Grav 13=1333(LC 1), 7=1379(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-300/179, 2-4=-1841/805, 4-6=-2084/871, 6-7=-2336/875, 1-13=-254/214

BOT CHORD 12-13=-482/1658, 9-12=-230/1276, 7-9=-635/1990

WEBS 2-12=-242/311, 4-12=-140/593, 4-9=-273/970, 6-9=-522/454, 2-13=-1806/660

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 34-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=222, 7=263.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			33-8-0				
			33-8-0			I	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.03 WB 0.14	DEFL. Vert(LL) (Vert(CT) (Horz(CT) (in (loc) 0.00 20 0.00 20 0.01 20	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 288 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1 *Except*
	1-39: 2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. All bearings 33-8-0.

- (lb) Max Horz 40=-309(LC 13)
 - Max Uplift All uplift 100 lb or less at joint(s) 32, 30, 20 except 40=-119(LC 17), 33=-119(LC 12), 35=-108(LC 12), 36=-107(LC 12), 37=-108(LC 12), 38=-110(LC 12), 39=-341(LC 12), 29=-122(LC 13), 27=-108(LC 13), 26=-107(LC 13), 25=-108(LC 13), 24=-108(LC 13), 23=-107(LC 13), 22=-134(LC 13) Max Grav All reactions 250 lb or less at joint(s) 31, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23, 22, 20 except 40=328(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 1-40=-306/120, 7-8=-109/273, 8-9=-138/357, 9-10=-158/412, 10-11=-158/412, 11-12=-138/357, 12-13=-109/273, 19-20=-254/80
- BOT CHORD 39-40=-159/298, 38-39=-73/258, 37-38=-73/258, 36-37=-73/258, 35-36=-73/258, 33-35=-73/258, 32-33=-73/258, 31-32=-73/258, 30-31=-73/258, 29-30=-73/258, 27-29=-73/258, 26-27=-73/258, 25-26=-73/258, 24-25=-73/258, 23-24=-73/258, 22-23=-73/258, 20-22=-73/258 WEBS 1.39=-102/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

SI/TPI

- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 30, 20 except (jt=lb) 40=119, 33=119, 35=108, 36=107, 37=108, 38=110, 39=341, 29=122, 27=108, 26=107, 25=108, 24=108, 23=107, 22=134.
 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 2,2021

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

2x4 SPF No.2 - 10-31

Rigid ceiling directly applied or 10-0-0 oc bracing

Brace must cover 90% of web length.

1911

except end verticals.

T-Brace:

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
J0222-0764	A1GE	COMMON SUPPORTED GAB	1	1	E16467259
					Job Reference (optional)
Comtech, Inc, Fayettev	rille, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:38:21 2021 Page 2
		ID:I4HRAT	3elT9qoRI	dAoEs_5z	0Axy-RWFr9zkwf3BapuVGuDVZIQVVGnEgSSHRD9ebmNyD2AG

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	7-11-8	1	17-11-8				25-11-0	
I	7-11-8	1	10-0-0				7-11-8	I
Plate Offsets (X,Y)	[2:0-0-6,0-2-0], [6:0-0-6,0-2-0]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) -0.	.13 8-10	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.41	Vert(CT) -0.	.21 8-10	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.24	Horz(CT) 0	.03 6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0	.04 8-10	>999	240	Weight: 167 lb	FT = 20%
LUMBER-		l.	BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1

BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=119(LC 11) Max Uplift 2=-203(LC 12), 6=-203(LC 13) Max Grav 2=1077(LC 1), 6=1077(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1786/716, 3-4=-1619/715, 4-5=-1619/715, 5-6=-1786/716

BOT CHORD 2-10=-525/1569, 8-10=-220/1003, 6-8=-532/1522

WEBS 3-10=-347/336, 4-10=-202/674, 4-8=-202/674, 5-8=-347/336

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 26-7-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=203, 6=203.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 25-11-0.

(lb) - Max Horz 2=184(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 26, 20, 17, 14 except 24=-115(LC 12), 25=-110(LC 12), 27=-171(LC 12), 19=-118(LC 13), 18=-109(LC 13), 16=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-120/304, 8-9=-120/304

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 26, 20, 17, 14 except (jt=lb) 24=115, 25=110, 27=171, 19=118, 18=109, 16=167.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16467263
J0222-0764	C1-GR	Roof Special Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayette	rille, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:38:30 2021 Page 2

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-gFIF22raXqJJOHh?vc9gAKMzMP4C3LFmH2JaaLyD2A7

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 10=-1313(B) 11=-1313(B) 12=-1313(B) 13=-1313(B) 14=-1313(B) 15=-1313(B) 16=-1313(B) 17=-1313(B) 18=-1313(B) 19=-1313(B) 19=-1313(B) 19=-1313(B) 19=-1313(B) 10=-1313(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidate with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>9-11-8</u> 9-11-8				<u>19-11-0</u> 9-11-8		
Plate Offsets (X,Y)	[2:0-2-12,0-1-8], [4:0-2-12,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.50 BC 0.37 WB 0.11 Matrix-S	DEFL. ir Vert(LL) -0.05 Vert(CT) -0.13 Horz(CT) 0.02 Wind(LL) 0.05	(loc) 2-7 2-7 4 2-7 2-7	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SE	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structu Rigid ce	ral wood sheathin eiling directly appli	g directly applied or 5-10-8 ied or 10-0-0 oc bracing.	oc purlins.

REACTIONS. (size) 4=0-3-8, 2=0-3-0 Max Horz 2=-71(LC 17) Max Uplift 4=-163(LC 13), 2=-162(LC 12) Max Grav 4=836(LC 1), 2=835(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1239/498, 3-4=-1240/498

BOT CHORD 2-7=-293/1030, 4-7=-293/1030

WEBS 3-7=0/477

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-7-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 163 lb uplift at joint 4 and 162 lb uplift at joint 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>19-11-0</u> 19-11-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.03 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) 12 12 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF	P No.1 P No.1		BRACING- TOP CHORD BOT CHORD	Structu Rigid c	ral wood eiling dire	sheathing di ectly applied	irectly applied or 6-0-0 or 10-00 or 10-00 or 10-000 or 10-0000 or 10-00000000000000000000000000000000000	oc purlins.	

BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 2=-120(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 22, 17, 15 except 21=-102(LC 12), 23=-116(LC 12), 16=-103(LC 13), 14=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 22, 17, 15 except (jt=lb) 21=102, 23=116, 16=103, 14=112.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2 and 225 lb uplift at ioint 4.

LOAD CASE(S) Standard

11011

December 2,2021

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE 🛕 WARNING - Verify design pa Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road

Edenton, NC 27932

	4-11	-8	9-11-0
Plate Offsets (X,Y)	[2:0-0-0,0-2-11], [6:Edge,0-2-11]	-0	4-11-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.42 WB 0.06 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 8 >999 360 MT20 244/190 Vert(CT) -0.02 8 >999 240 MT20 244/190 Horz(CT) -0.01 6 n/a n/a Weight: 49 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x6 S WEBS 2x4 S OTHERS 2x4 S	P No.1 P No.1 P No.2 P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 9-1-14 oc bracing.
REACTIONS. (Ib/siz Max I Max I	re) 2=449/0-3-0 (min. 0-1-8), 6=449/0- Horz 2=-66(LC 13) Jplift 2=-297(LC 8), 6=-297(LC 9)	3-0 (min. 0-1-8)	CAR
FORCES. (lb) - Max TOP CHORD 2-3= BOT CHORD 2-10 WEBS 4-9= NOTES-	. Comp./Max. Ten All forces 250 (lb) or 541/873, 3-4=-494/920, 4-5=-494/920, 5)=-688/437, 9-10=-688/437, 8-9=-688/437 534/232	less except when shown. 5-6=-541/873 7, 6-8=-688/437	SEAL

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 297 lb uplift at joint 2 and 297 lb uplift at joint 6.

LOAD CASE(S) Standard

December 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=229, 8=223.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.18 WB 0.00 Matrix-P	DEFL. ir Vert(LL) 0.04 Vert(CT) -0.03 Horz(CT) 0.00	n (loc) l/defi L/d 4 2-4 >999 240 8 2-4 >999 240) n/a n/a	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x6 SF	2 No.1 2 No.1 2 No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=75(LC 8) Max Uplift 2=-188(LC 8), 4=-143(LC 8) Max Grav 2=294(LC 1), 4=220(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=188, 4=143.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:Edge,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.18 WB 0.02 Matrix-S	DEFL. in Vert(LL) 0.04 Vert(CT) -0.02 Horz(CT) -0.00	(loc) l/defl L/d 8 >999 240 8 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x6 SF OTHERS 2x4 SF	P No.1 P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied of	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=106(LC 8) Max Uplift 2=-259(LC 8), 6=-199(LC 8) Max Grav 2=294(LC 1), 6=-220(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 BOT CHORD
 2-8=-275/133, 7-8=-275/133, 6-7=-275/133

NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259, 6=199.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	(psf)	SPACING- 2-0-) CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.1	5 TC 0.21	Vert(LL) -0	0.00 2-4	>999 360	MT20	244/190
TCDL	10.0	Lumber DOL 1.1	5 BC 0.21	Vert(CT) -0	0.00 2-4	>999 240		
BCLL	0.0 *	Rep Stress Incr YE	S WB 0.00	Horz(CT) 0	0.00	n/a n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0	0.00 2	**** 240	Weight: 20 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=84(LC 12)

Max Uplift 2=-48(LC 8), 4=-52(LC 12) Max Grav 2=218(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code JPC2015/TPI2014	CSI. TC 0.06 BC 0.10 WB 0.02 Matrix S	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb ET = 20%
		Matrix-5	BRACING-	Weight. 2310 11 – 2076

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* WEBS 3-8: 2x4 SP No.2 OTHERS 2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=121(LC 12) Max Uplift 2=-90(LC 12), 6=-93(LC 12) Max Grav 2=218(LC 1), 6=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **AVSUTPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design values for use only with MiTek® connectors. This and inscribe and resolution parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16467274
J0222-0764	M2	HALFHIP	6	1	
					Job Reference (optional)
Comtech, Inc, Fayetter	/ille, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:05 2021 Page 2

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-9_vUO0GXIakL5fskTSHu4iJwFWC8mNjwK?IwJqyD29a

LOAD CASE(S) Standard

2)	Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
	Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20
	Concentrated Loads (lb)
3)	Vert: 8=-438 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1 25, Plate Increase=1 25
0)	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-5=-40, 2-6=-40
	Vert: 8=-375
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Horz: 1-2=-110, 2-3=-94, 3-4=-219
	Concentrated Loads (lb)
5)	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=73, 2-3=82, 3-4=73, 3-5=67, 2-6=-12 Horz: 1-2=-85, 2-3=-94, 3-4=-85
	Concentrated Loads (lb)
6)	Vert: 8=467
0)	Uniform Loads (plf)
	Vert: 1-2=5, 2-3=-54, 3-4=30, 3-5=-64, 2-6=-20
	Horz: 1-2=-25, 2-3=34, 3-4=-50 Concentrated Loads (lb)
	Vert: 8=-462
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=-45, 2-3=-54, 3-4=-45, 3-5=-64, 2-6=-20
	Horz: 1-2=25, 2-3=34, 3-4=25
	Vert: 8=-462
8)	Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2-40, 2-3-20, 3-4-11, 3-5-11, 2-612
	Horz: 1-2=-52, 2-3=-32, 3-4=-23
	Concentrated Loads (lb)
9)	Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vent. 1-2=11, 2-3=20, 3-4=41, 3-5=11, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53
	Concentrated Loads (Ib)
10	Vert: 8=121) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60 Plate Increase=1.60
10	Uniform Loads (plf)
	Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-306
11) Dead + 0.6 MWFRS wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20
	Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb)
	Vert: 8=-306
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12
	Horz: 1-2=-34, 2-3=-43, 3-4=-34
	Concentrated Loads (lb) Vert: 8=121
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Horz: 1-2=-0, 2-3=-3, 3-4=-0, 3-3=-3, 2-0=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18
	Concentrated Loads (lb)
14	vert: v=21) Dead + 0.6 MWFRS Wind (Pos, Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34
	Concentrated Loads (lb)
	Vert: 8=121

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16467274
J0222-0764	M2	HALF HIP	6	1	
					Job Reference (optional)
Comtech, Inc, Fay	tteville, NC - 28314,		8	.430 s Auc	16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:05 2021 Page 3

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-9_vUO0GXlakL5fskTSHu4iJwFWC8mNjwK?IwJqyD29a

LOAD CASE(S) Standard

15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-31, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-31, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-120, 2-6=-20 Concentrated Loads (lb) Vert: 8=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 8=-480 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 8=-480 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438

Beign valid for use only with MTTek® connectors. This and include the applicability of design parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16467275
J0222-0764	M2A	HALF HIP	1	2	
				-	Job Reference (optional)
Comtech, Inc, Fayet	teville, NC - 28314,		. 8	.430 s Aud	16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 2021 Page 2

8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 2021 Page 2 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-119?EOJ1LpEnZGAViIMqFYUe47c?iCLVFdG8SbyD29W

Concentrated Loads (lb) Vert: 8=-500 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-160, 2-6=-40 Concentrated Loads (lb) Vert: 8=-375 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=-109, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 8=121 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=-109, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 8=121 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-151, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-151, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306

LOAD CASE(S) Standard

Uniform Loads (plf)

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16467275
J0222-0764	M2A	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayett	eville, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 2021 Page 3

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-119?EOJ1LpEnZGAViIMqFYUe47c?iCLVFdG8SbyD29W

LOAD CASE(S) St

	D CASE(S) Standard
14) C	Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
່ເ	Jniform Loads (plf)
	Vert: 1.3-20 3-420 3-5240 2-620
C	
C	Vicet 0. 250
15) L	Jead + 0.75 Root Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Lett): Lumber Increase=1.60, Plate Increase=1.60
ι	Jniform Loads (plf)
	Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-10, 3-4=-17
C	Concentrated Loads (Ib)
	Vote: 9- 490
1C) D	Vell. 0==+400
16) L	Jead + 0.75 Root Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60
ι	Jnitorm Loads (plt)
	Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-11, 3-4=-17
C	Concentrated Loads (Ib)
	Vert: 8=-480
17) D	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWERS Wind (Neg. Int) 1st Parallel). Lumber Increase=1.60. Plate Increase=1.60
, 5	
C	
	Velt. 1-2=-24, 2-3=-31, 3-4=-24, 3-0=-213, 3-0=-243, 2-0=-20
_	Horz: 1-2=-26, 2-3=-19, 3-4=-26
C	Concentrated Loads (Ib)
	Vert: 8=-480
18) C	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
ι	Jniform Loads (plf)
	Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-213, 5-8=-243, 2-6=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14
C	
C	Vote: 9- 490
40) 4	Velt. 0==+400
19) 1	St Dead + Root Live (unbalanced): Lumber increase=1.15, Plate increase=1.15
L	Jnitorm Loads (plt)
	Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
C	Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb)
C	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500
C 20) 2	vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20) 2	Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Inform Loads (olf)
20) 2 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20
20) 2 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb)
20) 2 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 9 = 500
20) 2 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500
20) 2 L 21) 3	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Prid Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Vert: 8=-500 Vert: 8=-500 Vert: 4-0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20) 2 L 21) 3 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Brd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf)
20) 2 L C 21) 3 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Brd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20
20) 2 L 21) 3 L C	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Prind Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jinform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Vert: 8=-500 Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb)
20) 2 L 21) 3 L C 21) 3 L C	Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Brd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438
20) 2 U 21) 3 U 22) 4	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Brd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 W Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20) 2 U 21) 3 U 22) 4	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Prod Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Vert: 8=-500 Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 Ith Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Iniform Loads (nb) Vert: 8=-438
20) 2 L 21) 3 L 22) 4 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Prind Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Sird Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 Ith Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 8=-438 Ith Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20
20) 2 20) 2 21) 3 U 22) 4 U	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Vert: 8=-500 Yert 8=-500 Yert 2-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Brd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 1-3=-50, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-20, 5-8=-250, 2-6=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-20, 3-8=-20, 3-8=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-20, 3-8=-20, 3-8=-20, 3-8=-20 Vert: 1-3=-20, 3-4=-20, 3-8=-20,
20) 2 L 21) 3 L 22) 4 L C 22) 4 L	Vert: 1-3=-50, 3-4=-50, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Prod Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-50, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 Vert: 8=-500 Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 Ith Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Jniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-218(LC 12), 6=-218(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=418(LC 19), 9=496(LC 19), 6=496(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-455/344, 4-6=-455/345

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-7-0, Interior(1) 4-7-0 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 16-8-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=218, 6=218.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-5-0.

(lb) - Max Horz 1=163(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-184(LC 12), 6=-184(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=375(LC 19), 6=375(LC 20)

WEBS 2-8=-388/310, 4-6=-388/310

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 14-0-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=184, 6=184.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

REACTIONS. All bearings 11-9-0.

(lb) - Max Horz 1=-131(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-172(LC 12), 6=-171(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=343(LC 19), 6=342(LC 20)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-4-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=172, 6=171.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-372/316, 4-6=-372/316

REACTIONS. (size) 1=9-1-0, 3=9-1-0, 4=9-1-0

Max Horz 1=99(LC 11)

Max Uplift 1=-42(LC 12), 3=-52(LC 13), 4=-24(LC 12)

Max Grav 1=171(LC 1), 3=172(LC 20), 4=321(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3 n/a n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 23 lb

FT = 20%

LUMBER-
TOP CHORD
BOT CHORD

BCLL

BCDL

2x4 SP No.1 2x4 SP No.1 RD OTHERS 2x4 SP No.2

0.0

10.0

REACTIONS. (size) 1=6-5-0, 3=6-5-0, 4=6-5-0

Max Horz 1=-67(LC 8)

Max Uplift 1=-37(LC 12), 3=-44(LC 13)

Rep Stress Incr

Code IRC2015/TPI2014

Max Grav 1=126(LC 1), 3=126(LC 1), 4=197(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-P

0.02

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3x4 🥢

2x4 ||

BRACING-

TOP CHORD

BOT CHORD

3x4 📎

Structural wood sheathing directly applied or 3-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		<u>3-9-8</u> <u>3-9-8</u>		<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEF TC 0.03 Ver BC 0.02 Ver WB 0.01 Hor. Matrix-P	in (loc) l/defl (LL) n/a n/a (CT) n/a n/a z(CT) 0.00 3 n/a	L/d PLATES 999 MT20 999 n/a Weight: 12 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-0, 3=3-9-0, 4=3-9-0

Max Horz 1=-35(LC 8)

Max Uplift 1=-20(LC 12), 3=-23(LC 13)

Max Grav 1=66(LC 1), 3=66(LC 1), 4=104(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Воно Отношение мини				ER Regency	AME Lot 5 A	Brinkley	ATE N/A	# 3	J0222-(
0 0	.0 .0		BM2 15'0" 1-3/4"x 16" LVL Kerto-S 3 3 BM3 7'0" 1-3/4"x 9-1/4" LVL Kerto-S 2 2 GDH 22'0" 1-3/4"x 11-7/8" LVL Kerto-S 2 2 GDH2 12'0" 2x12 SPF No.2 2 2	Homes	rery Pointe	"B" / 3GLF)765
0.0 0	0: 88 6: 88 		Sym Product Manur Qty Member Header Iruss HUS410 USP 14 NA 16d/3-1/2" 16d/3-1/2" MSH422 USP 2 Varies 10d/3" 10d/3" HD410IF USP 1 NA 16d/3-1/2" 10d/3" HO10 Length Products Plies Net Qty BM1 22'0" 1-3/4"x 16" LVL Kerto-S 3 3	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
NOMERO AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	26. O.	40. 0"	Dimension Notes 1. All exterior wall to wall dimensions are to face of therating unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall unless dimensions are to face of frame wall unless noted otherwise 3. All exterior wall unless noted otherwise 3. All exterior wall unless dimensions are to face of frame wall unless noted otherwise 3. All exterior wall unless noted otherwise 3. All exterior wall unless noted otherwise 1. Plumbing Drop Notes 1. Plumbing Drop Notes 1. Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Adjust spacing as needed not to exceed 24'oc. Connector Information Nail Information Sym Product	Erwin / Harnett		S (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	02/14/22 02/14/22	David Landry 6407000	Bob Lewis

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

A = Indicates Left End of Truss
(Reference Engineered Truss Drawing)

Do NOT Erect Truss Backwards

Version 20.40.075 Powered by iStruct™

CSD 🚟

2		Client: Regency Homes Project: Brinkley		Date: Input by:	2/14/2022 David Landry	Page 2 of 11
1	isDesign	Address: 430 Josey Willia Erwin, NC 2833	ams Road 9	Job Name Project #:	Lot 5 Avery Pointe J0222-0765	
BM1	Kerto-S LVL	1.750" X 16.000"	3-Ply - PASSE	D ^L	evel: Level	
	4	3				
	2		5		6	
			· · · · · ·			··· m 1
		Photo	- 17-TL		March 1	1'4"
1 SPF	End Grain				2 SPF End	Grain
			22'			
Continued	from page 1					
ID	Load Type	Location Trib Width Sid	e Dead 0.9 Liv	e 1 Snov	w 1.15 Wind 1.6 Const. 1.	25 Comments
6	Part. Uniform Self Weight	12-7-0 to 22-0-0 Nea	ar Face 137 PLF 0 F 19 PLF	2LF 13	37 PLF 0 PLF 0 P	LF M2
Notes	fund Darlans I	chemicals	 For flat roofs provide proper drainage ponding 	to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Favetteville, NC
Calculated Struct structural adequidesign criteria responsibility of	tured Designs is responsible only of the lacy of this component based on the and loadings shown. It is the the customer and/or the contractor to	I. LVL beams must not be cut or drilled Ver beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply	· •		Metsa Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (200) 622 5850	USA 28314 910-864-TRUS
ensure the con application, and t Lumber	mponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained			www.metsawood.com/us ICC-ES: ESR-3633	
Dry service c 2. LVL not to be	origiuons, unless noted otherwise e treated with fire retardant or corrosive	 Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 4/24/2	023		соттесн
version 20.40.	or 5 nowered by istruct					CSD

	/	Client:	Regency Homes			Date:	2/14/2022		Page 3 of 11
		Project:	Brinkley			Input by:	David Landry		
	isDesign	Address:	430 Josey William	ns Road		Job Name:	Lot 5 Avery Pointe		
•			Erwin, NC 28339			Project #:	J0222-0765		
BM1	Kerto-S LVL	1.750"	X 16.000"	3-Ply -	PASSE	D Le	evel: Level		
				1 					
				1				-	,
•		• •	• • •		• • •	• •	• •	· · · · · · · · · · · · · · · · · · ·	$\overline{\mathbf{M}}$ \mathbf{T}
•	• • • •	• •		•••	• •	•••	• • •	$\cdot \cdot \cdot \cdot _{\overline{\Sigma}}$	1'4"
<u> </u>		• •	• • •	• • •		• •	• •	······································	Ш
1 SPF	End Grain							2 SPF End Grain	1.
/				201				/ /	5 1/4"
				22					15 1/4
1				22'				1	

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Nail from both sides. Maximum end distance not to exceed 6"

Capacity	64.7 %	
Load	182.7 PLF	
Yield Limit per Foot	282.4 PLF	
Yield Limit per Fastener	94.1 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination	D+S	
Duration Factor	1.15	

Concentrated Load

Fasten at concentrated side load at 12-5-8 with a minimum of (6) - 10d Box nails (.128x3") in the

pattern shown. Repeat fasteners on both sides.

Capacity	83.6 %	
Load	472.0lb.	
Total Yield Limit	564.7 lb.	
Cg	0.9998	
Yield Limit per Fastener	94.1 lb.	
Yield Mode	IV	
Load Combination	D+S	
Duration Factor	1.15	
		_

Min/Max fastener distances for Concentrated Side Loads

This design is valid until 4/24/2023

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown, It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

chemicals

Handling & Installation

Version 20.40.075 Powered by iStruct™

Notes

Lumber

Version 20.40.075 Powered by iStruct™

CSD 🗱

isDea	sign	Client: Project: Address:	Regency Homes Brinkley 430 Josey Willia Erwin, NC 2833	ms Road)	Dat Inpi Job Pro	e: ut by: Name: ject #:	2/14/2022 David Landry Lot 5 Avery Pointe J0222-0765	Page 5 of 1
BM2 Ker	to-S LVL	. 1.750	X 16.000"	3-Ply	- PASSED	Le	evel: Level	
	• • • • •	• •	· · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · ·	
1 SPF				15'				2 SPF
ſ				15'				1
Multi-Ply Analy	sis							
Fasten all plies u: 6"	sing 4 rows o	of 10d Box nails	(.128x3") at 12"	o.c Nail fr	om both sides.	Maxin	num end distance not	to exceed
Capacity Load	1	00.0 % 827.3 PLF						
Yield Limit per Foot Yield Limit per Fastene	er 8	327.4 PLF 31.9 lb						
Yield Mode Edge Distance	ו' 1	V 1/2"						
Min. End Distance Load Combination	3 [3")+L						
Duration Factor	1	.00						
Notes		chemicals		6. For flat roofs pr	ovide proper drainage to p	revent	lanufacturer Info	Comtech, Inc.
Calculated Structured Designs structural adequacy of this c design criteria and loading	is responsible only of th omponent based on th gs shown. It is th	e Handling & Installa ^e 1. LVL beams must not be ^e 2. Refer to manufactu	tion cut or drilled ırer's product information	ponding		N 3	letsä Wood 01 Merritt 7 Building, 2nd Floor lorwalk, CT 06851	Fayetteville, NC USA 28314
responsibility of the customer ensure the component suit application, and to verify the dir	and/or the contractor t ability of the intende nensions and loads.	 regarding installation fastening details, bear approvals Damaged Beams must 	requirements, multi-ply n strength values, and code not be used			(i v	300) 622-5850 www.metsawood.com/us	910-804-1KUS
1. Dry service conditions, unle 2. LVL not to be treated with	ss noted otherwise fire retardant or corrosiv	2. Design assumes top ec 5. Provide lateral suppor lateral displacement an	ge is laterally restrained t at bearing points to avoid d rotation	This design is	s valid until 4/24/2023		JU-ES: ESR-3633	соттесн
Version 20.40.075 Powere	ed by iStruct™							CSDI

CSD 🗱

<u>Ti</u>	- Decations	Project:	Brinkley					D	Laurala i				5
i	- Phase of seven					In	put by:	David	Landry				
	sDesign	Address:	430 Jose	y Williams Ro	ad	Jo	b Nam	e: Lot 5 A	very Pointe				
			Erwin, N	C 28339		Р	oject #	J0222-	0765				
3M3	Kerto-S LVL	1.750	" X 9.2	250" 2	-Plv -	PASS	ED	Level: Lev	/el				
	1												
				4, 7									
				\; /\; /\; : : : : : : : : : : : : : : : : : : :									
			¥	¥ ! ¥!									
			IA.	ININI	3								
	2		/ \	/ // /	3								
•		•	•				-						\overline{M}
													IVIVI I
	COMM.	-		att mark		-							9 1/
•	•	•	•	•		•							
	End Grain				2 SPI	E End Grain							, ,
			4.0"		2 01 1							,	
		5'	10										3 1/2"
1		5'	10"				1						
lember lı	nformation					Reaction	ns UN	PATTER	NED Ib (Uplift)			
Туре:	Girder	Applica	ation:	Floor		Brg	Liv	e I	Dead	Snow	1	Wind	Const
Plies:	2	Design	Method:	ASD		1	215	3	2357	1210		0	0
Moisture Cor	ndition: Dry	Buildin	g Code:	IBC/IRC 2015		2	349	6	2840	1210		0	0
Deflection LI	.: 480	Load S	haring:	No									
Deflection TI	.: 360	Deck:		Not Checked									
mportance:	Normal	Ceiling	:	Gypsum 1/2"									
Temperature	: Temp <= 100°F					Rearing							
						Bearing	, Lonat	b C	an React		Total		Id Comb
							3 500"	וו כ ע י	ap. React	/ 2522	4880		D+0.75(1+S)
						End	0.000	-	070 2007		4000	L	D:0.70(E:0)
nalysis R	esults					Grain							
Analysis	Actual Loc	ation Allowed	Capacit	y Comb.	Case	2 - SPF	3.500"	' 6	0% 2840	/ 3530	6370	L	D+0.75(L+S)
Moment	11308 ft-lb	3'7" 12542 ft-lb	0.902 (9	0%) D+L	L	Grain							
Unbraced	11308 ft-lb	3'7" 11327 ft-lb	0.998	D+L	L								
Shoor	5730 lb	4'10" 6907 lb	(100%)	3%) D+I	1								
	0.084 (1./764) 3'4	4 10 0307 1D 1 7/8" 0 134 (1 /48	0.031 (0	3%) D · L	1								
	0.143 (1/451) 3'	3 5/8" 0 179 (L/36	0) 0.800 (8)	0%) D+I	1								
	•		•) •.••• (•	,	-	4							
4 Easton all	plies using 2 rows of 10d.	Boy pails (12823")	at 12" o.c. N	Any inclusion of direction	stanco not	4							
to exceed	6".	Bux Halls (.120x3)	al 12 0.0. N	/aximum enu us	stance not								
2 Refer to la	ast page of calculations for	fasteners required	for specified	loads.									
3 Girders ar 4 Top loads	e designed to be supporte must be supported equally	d on the bottom ec	ige only.										
5 Top must	be laterally braced at a ma	ximum of 4'3" o.c.											
6 Lateral sle	enderness ratio based on s	ingle ply width.											
D	Load Type	Location	Trib Width	Side	Dead 0.9	Live	1 Sno	ow 1.15	Wind 1.6	Const.	1.25	Comment	s
1	Tie-In	0-0-0 to 5-10-0	1-0-0	Тор	15 PSF	40 PS	-	0 PSF	0 PSF	0	PSF	Floor	
2	Uniform			Тор	120 PLF	0 PL	=	0 PLF	0 PLF	C) PLF	Wall	
3	Uniform			Тор	415 PLF	0 PL		415 PLF	0 PLF	C) PLF	A3	
4	Point	3-7-0		Тор	1948 lb	5415 I	c	0 lb	0 lb		0 lb	BM2 Brg 2	
	Self Weight				7 PLF								
	-												
lotes		chemicals		6 For flat	t roofs provide n	proper drainage to	prevent	Manufact	urer Info		Co	mtech, Inc.	Suite #620
alculated Structure	d Designs is responsible only of the	Handling & Installat	ion	ponding))		,	Metsä Wo	od		100 Fay	on S. Rellly Road, /etteville, NC ۵	Sulle #039
ructural adequacy asign criteria a	r or this component based on the nd loadings shown. It is the customer and/or the contractor to	1. LVL beams must not be 2. Refer to manufactu	cutordrilled rer's product in	nformation				301 Merri Norwalk. (t 7 Building, 2 CT 06851	nd Floor	283	314 364-TRUS	
sure the comp pplication, and to v	onent suitability of the intended erify the dimensions and loads.	regarding installation fastening details, beam approvals	requirements, strength values,	multi-ply and code				(800) 622	-5850	\$			
umber		 Damaged Beams must r Design assumes top edd 	not be used ge is laterally restra	lined				ICC-ES: E	SR-3633	-			
. Dry service cond . LVL not to be tr	ntions, unless noted otherwise eated with fire retardant or corrosive	 Provide lateral support lateral displacement and 	at bearing points rotation	s to avoid Thie c	design is valid	until 4/24/2∩2	3				1	con	тесн
rsion 20 40 07	5 Poworod by iStructIM			1115 0			-	l					

ed by iStru

CSD 🚟

CSD 🚟

SDH Kerto-S LVL 1.750" X 11.875" 2.PHy - PASSED Level Level 1.99F End Gail 2.87F End Gail 2.87F End Gail 1.750" X 11.875" 2.87F End Gail 1.97F End Gail 0.00 Fr. 0.0 7 Fr.	1	isDesign		Client: Project: Address:	Regency Homes Brinkley 430 Josey Willia Erwin, NC 2833	ams Road 9	C II J F	Date: nput by: ob Name: Proiect #:	2/14/2022 David Landry Lot 5 Avery Pointe J0222-0765		Page 9 of 11
New	GDH	Kerto-S	LVL	1.750"	X 11.875"	2-Ply	- PASSE	D	evel: Level		
NE Name 1 - 1 - 2 - 5 - F End Can - 2 - 5 - F End Can - 1 - 1 - 2 - 5 - 7 - 2 - 7 - 7											
SPF End Gran 2 SPF End Gran 1 are to the second of th											
NET And Market Mark											
New Network SPF End Gain 2 SPF End		• •	•		• •	• •	• •	•	• •	[1	$\overline{\mathbf{M}}$
ISPE End Grain 2 SPF End Grain Image: Comparison of the form of t			•					•		<u> </u>	11 7/8"
Multi-PJ Analysis Fasten all piles using 2 rows of 10d Box nails (128x3°) at 12° o.c Maximum end distance not to exceed 6° General Protocol 0.0 NF Land 0.0 NF Cald Order Josepo 1 10.2 NF Weit Indep Team 10.2 NF Wait Region Datasco 1 V2° Mark End Balance 3° Duration Factor 1.0		End Grain							2 S	GPF End Grain	
Testen all plies using 2 rows of 10d Box nails (12Bx3") at 12" o.c. Maximum end distance not to exceed 6" Coparing 0.00 % Under Food 1.00						16'10"					3 1/2"
Multi-Ply Analysis Easten all plies using 2 rows of 10d Box nalls (128x3") at 12" o.c. Maximum end distance not to exceed 6" Copacity 0.0 % Load 0.0 % Multi-Per Dot 18.37 PLF Vield Unit per Foot 19.80, Load 1.02" Multi-Per Dot 19.80, Load Containation 1.02" Joan Containation 1.00 Device T Bacon 1.00						10 10				I	
Faster all plies using 2 rows of 10d Box hails (128x3") at 12° o.c. Maximum end distance not to exceed 6° Capacity 0.0 % Lead 0.0 % Mid Limper Fastener 8.9 lb. Vield Mode 1/2° Mid. End Distance 1/2° Lead Combination 1/2° Duration Factor 1.00 New Year Mark State St	Multi-Ply	Analysis	_								
Load 0.0 PLF Widd Ling Por Easteney 81.9 D. Widd Kode W Edge Distance 11/2* Min. End Distance 10 Lead Combination 100	Fasten all Capacity	plies using 2 i	0.0 % rows of)d Box nails	(.128x3") at 12"	o.c Maxim	num end dista	ance no	t to exceed 6"		
Net Number of Bastener B1.9. B. W Edge Distance 11.22 Number of Bastener B1.9. B. Mode Mode V V Status Edge Distance 11.22 Status Status Load Combination Duration Factor 1.00	Load Yield Limit pe	r Foot	0.0 PL 163.7	.F PLF							
Edge Distance 11/2* Min. End Distance 3* Load Combination 3* Duration Factor 1.00	Yield Limit pe Yield Mode	r Fastener	81.9 lb IV).							
Load Combination Duration Factor 1.00 NE Area for Support Support Suppo	Edge Distanc Min. End Dist	e ance	1 1/2" 3"								
Note Aurofacturer Info Correct. No. Duration if addut 1.0 if an more lease of additional state of the consequence of the con	Load Combin	ation	1.00								
Notes chemicals 6. For flat roofs provide proper drainage to product information Manufacturer Info Contrach, Inc. Galulated Structured Designs is responsible only of the structural adequacy of this component based on the design eriteria and loadings shown, It is the responsibility of the customer and/or the contractor to requirements, multi-ply faming datalis, beam strength values, and code approvals Manufacturer Info Contrach, Inc. 1. UV. beams must not be cut or drilled 1. UV. beams must not be cut or drilled Norwalk, CT 06851 Stoll Merritt 7. Building, 2nd Floor Norwalk Damaged Beams must not be used 1. Borger to manufacturer's provide information Norwalk, CT 06851 Stoll Merritt 7. Building, 2nd Floor 1. Dry service conditions, unless noted diversities 2. Provide lateral support at bearing polities to await This design is valid until 4/24/2023 This design is valid until 4/24/2023											
Structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loadings. Structural adequacy of this component suitability of the ensure the component suitability of the intended application, and to verify the dimensions and box off the submeter 1. VL beams must not be cut or nilled 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 Ud& 28314 (800) 622-5850 Lumber 3. Damaged Beams must not be used 3. Damaged Beams must not be used Werking Volume (800) 622-5850 Www.metsawood.com/us ICC-ES: ESR-3633 1. Dry service conditions, unless noted dherwise 2. UVL not to be treated with fire retardant or corrosive 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 4/24/2023 ICC-ES: ESR-3633	Notes	und Designe is responsible	a only of the Har	chemicals ndling & Installa	tion	6. For flat roofs proponding	ovide proper drainage to	prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly R Favetteville NC	coad, Suite #639
application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. UVL not to be treated with fire retardant or corrosive 2. UVL not to be treated with fire retardant or corrosive 3. Demaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide Lateral support at bearing points to avoid 15. Provide Lateral support at	design criteria responsibility of t	acy of this component ba and loadings shown, the customer and/or the c noonent suitability of the	It is the 2.1 nontractor to	VL beams must not be Refer to manufactu regarding installation	cut or drilled irer's product information requirements, multi-ply				301 Merritt 7 Building, 2nd F Norwalk, CT 06851 (800) 622-5850	USA 28314 910-864-TRUS	
	application, and to Lumber 1. Dry service co 2. LVL not to be	proverify the dimensions and proditions, unless noted othe treated with fire retardant	lloads 3. I erwise 5. I or corrosive	astening details, bean approvals Damaged Beams must Design assumes top ed Provide lateral support ateral displacement and	n sarengan values, and code not be used ge is laterally restrained t at bearing points to avoid d rotation	This design is	s valid until 4/24/202	23	www.metsawood.com/us ICC-ES: ESR-3633	co	тесн

CSD 🗱

Version 20.40.075 Powered by iStruct™

Client: Project: Address:	Regency Homes Brinkley 430 Josey Williams Road	Date: 2/14/2022 Page 11 of nput by: David Landry Job Name: Lot 5 Avery Pointe
GDH2 S-P-F #2 2.000"	X 12.000" 2-Ply - PASS	ED Level: Level
	• • •	•••].
	• • •	
1 SPF End Grain		2 SPF End Grain
	8'10" 8'10"	[3"
·		
Multi-Ply Analysis	(120.21) at 121 a. a. Maximum and dist	
Capacity 0.0 %	s (.128x3") at 12" o.c Maximum end dist	ance not to exceed 6"
Load 0.0 PLF Yield Limit per Foot 157.4 PLF		
Yield Limit per Fastener 78.7 lb. Yield Mode IV		
Edge Distance 1 1/2"		
Min. End Distance 3" Load Combination		
Duration Factor 1.00		
		Manufacturer Info Comtech, Inc.
		Fayetterille, NC LUSA USA 28314
		910-864-TRUS
		соттесн

RE: J0222-0765 Lot 5 Avery Pointe Site Information: Customer: Regency Homes Project Name: J0222-0765 Lot/Block: 5 Model: Brinkle Model: Brinkley Address: 430 Josey Williams Road Subdivision: Avery Pointe State: NC City: Erwin General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: N/A Roof Load: N/A psf

Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16477192	ET1	12/9/2021
2	E16477193	ET2	12/9/2021
3	E16477194	ET3	12/9/2021
4	E16477195	ET4	12/9/2021
5	E16477196	ET5	12/9/2021
6	E16477197	F1	12/9/2021
7	E16477198	F1A	12/9/2021
8	E16477199	F2	12/9/2021
9	E16477200	F2A	12/9/2021
10	E16477201	F3	12/9/2021
11	E16477202	F4	12/9/2021
12	E16477203	F5	12/9/2021
13	E16477204	F6	12/9/2021
14	E16477205	FG1	12/9/2021
15	F16477206	FG2	12/9/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

December 09, 2021

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Tru	ISS		Truss Type					Qty	Ply	Lot §	i Avery P	ointe				=	
10222-0765	FT	1		GABLE					1	1							E164	77192
30222-0703	L.	1		GABLE					'	'	Job	Referenc	e (optional)					
Comtech, Inc,	Fayetteville,	NC - 28314,								8.430 s Au	g 16 2	021 MiTe	k Industries	, Inc.	Thu Dec	9 07:37:42	2021 Page	e 1
								ID:I4HRA	T3elT9qol	RIdAoEs_	5z0Ax	y-ZRjZ6p	QzCiaelCDj	ECeq	/z9QWFy	QVdMB9M	5PdKyAmF	HN
0- <u>11</u> 8																	0-1	1 ⁸
																	Scale =	= 1:28.8
								21 -	0C ED -	_								
								3x4 =	3X6 FP =	=								
1	2	3	4	5	6		7	8	9 1	10	11		12	1	3	14	15	_
31	2	•	•	•	•		•	Å		•			•		•	•		32
																	ľ	1-4-(
						×***						******		~~~~	- ******			l
30	29	28	27	26	25	24	23	22	2	21	20		19	1	8	17	16	
3x4 =						3x6 FF) =										3x4 =	=
							3x4 =											

1-4-0	<u>2-8-0</u> <u>4-0-0</u> 1-4-0 1-4-0	5-4-0	6-8-0 8-0-0 1-4-0 1-4-0		9-4-0 10- 1-4-0 1-	-8-0 4-0	<u>12-0-</u> 1-4-(0	13-4-0	<u>14-8-0</u> <u>16-0-0</u> 1-4-0 1-4-0	<u>17-4-12</u> 1-4-12
Plate Offsets (X	/) [8:0-1-8,Edge], [23:0-1	-8,Edge]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCU 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Strass Iocr	2-0-0 1.00 1.00 VES	CSI. TC 0.06 BC 0.01 WB 0.03		DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a	(loc) - - 16	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/	TPI2014	Matrix-S		1012(01)	0.00		n/u	i i d	Weight: 79 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) DOT CHORD 2x4 SP No.1(flat) DOT CHORD 2x4 SP No.1(flat) DOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,										oc purlins,	

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat) except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3(flat) OTHERS

REACTIONS.

All bearings 17-4-12.
 (lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 6) Gable studs spaced at 1-4-0 oc.
 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 9,2021

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16477193
J0222-0765	ET2	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8	430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:43 2021 Page 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-1dHxK9Rbz0iVwMovow935AibGeHgE4cLO0ry9myAmHM

Scale = 1:30.1

	1-4-0 ₁	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	12-0-0	13-4-0	14-8-0	16-0-0	17-4-0	18-1-0	
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-9-0	
Plate 0	Offsets (X,Y)	[1:Edge,	0-1-8], [8:0-1-	8,Edge], [25:	0-1-8,Edge],	[32:Edge,0-7	1-8]								

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0))))	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matri	0.06 0.01 0.03 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)				BRACING- TOP CHOR BOT CHOR	D D	Structu except Rigid ce	ral wood end verti eiling dire	sheathing di cals. ectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 18-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16477194
J0222-0765	ET3	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayette	/ille, NC - 28314,		8	430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:44 2021 Page 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-VqqJXVRDjJqMYWN5LdgIeOFm?2dvzXsUdgaVhDyAmHL

0<u>-1-</u>8

Scale = 1:13.9

	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	7-5-12	
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-9-12	
Plate Offsets (X,)	') [1:Edge,0-1-8], [3:0-1-	-8,Edge], [11:0-1-8,Edge], [1	4:Edge,0-1-8], [15:0-1-8,0-	1-8]			

LOADING (p TCLL 40 TCDL 10 BCLL 0 BCDL 5	osf) 0.0 0.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrix	0.06 0.01 0.03 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	 2x4 SP 2x4 SP 2x4 SP 2x4 SP 2x4 SP 	No.1(flat) No.1(flat) No.3(flat) No.3(flat)				BRACING- TOP CHOR BOT CHOR	D D	Structur except e Rigid ce	al wood end verti eiling dire	sheathing dii cals. ectly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 7-5-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center. 3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

December 9,2021

Job	Truss	Truss Type	Qty	Ply	Lot 5 Avery Pointe
					E16477195
J0222-0765	ET4	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayettey	/ille, NC - 28314,		8	.430 s Auc	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:44 2021 Page 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-VqqJXVRDjJqMYWN5LdgleOFm?2dvzXsUdgaVhDyAmHL

8<mark>_1</mark>10

Scale = 1:16.9

1	1-4-0	2-8-0	4-	0-0	5-4-0	1	6-8-0	1	8	-0-0	9-4-0	10-3-8	
Г	1-4-0	1-4-0	1-	4-0	1-4-0	1	1-4-0	1	1	-4-0	1-4-0	0-11-8	
Plate 0	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,	dge], [14:0-1-	8,Edge], [18	3:Edge,0-1-8]								
-													
LOAD	ING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDI	10.0	Lumber DOI	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999			

Horz(CT)

0.00

10

n/a

n/a

BCDL	5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 50 lb	FT = 20%F, 11%E
LUMBER	-			BRACING-			
TOP CHC	DRD 2x4 SF	P No.1(flat)		TOP CHORD	Structural wood sheathing dir	rectly applied or 6-0-0 o	oc purlins,
BOT CHC	DRD 2x4 SF	P No.1(flat)			except end verticals.		
WEBS	2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	
OTHERS	2x4 SF	P No.3(flat)					

REACTIONS. All bearings 10-3-8.

0.0

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

YES

WB 0.03

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BCLL

1) All plates are 1.5x3 MT20 unless otherwise indicated.

Rep Stress Incr

2) Plates checked for a plus or minus 1 degree rotation about its center.3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type		Qty	Ply	Lot 5 Avery Pointe		
								E16477196
J0222-0765	ET5	GABLE		1	1	lob Reference (antional)		
Comtech Inc. Fave	atteville NC - 28314			8	430 s Aug	16 2021 MiTek Industries Inc	Thu Dec. 9 07:37:4	5 2021 Page 1
	2001.1,			ID:I4HRAT3el	T9qoRldAc	Es_5z0Axy-z0OhkrSrUdyD9g	ylvLBXAbnwsSzCi_r	drJK3EfyAmHK
0 ₁ 18								0 ₁₁₇ 8
								Scale = 1:23.3
			3x4 =					
1 2	27 3	4 .	5 28 6	7	8	29 9	10 1	1 12
	0	0		0	•	0	•	26 • 26
								• •
24 23	22	21 2	20 19	18	17	16	15 1	4 13
3x6 = 2x6	2x6	2x6 :	2x6 3x6	2x6	2x6	2x6	2x6	3x6 =
							2	x6
1-4-0	2-8-0 4-0-0	5-4-0	6-8-0	8-0-0 9-4	1-0	10-8-0 12-0-0	13-4-0	14-0-0
Plate Offsets (X,Y)	5:0-1-8.Edgel	1-4-0	1-4-0	1-4-0 1-4	H-U	1-4-0 1-4-0	1-4-0	0-0-0

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.00 1.00 YES PI2014	CSI. TC BC WB Matriz	0.12 0.00 0.05 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x OTHERS 2x	SP No.1(flat) SP No.1(flat) SP No.3(flat) SP No.3(flat)		-		BRACING- TOP CHOR BOT CHOR	D D	Structur except Rigid ce	ral wood end verti eiling dire	sheathing di cals. ctly applied	rectly applied or 6-0-0 or 6-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 14-0-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 13-24=-10, 1-12=-100

Concentrated Loads (Ib) Vert: 4=-91 7=-91 10=-91 27=-91 28=-91 29=-91

17

 $3x4 \equiv$

16

3x6 =

15

4x4 =

14

3x6 =

18

3x4 =

			17-4-12 17-4-12			
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.69 WB 0.46 Matrix-S	DEFL. in Vert(LL) -0.19 Vert(CT) -0.26 Horz(CT) 0.06	i (loc) l/defl L/d 17-18 >999 480 17-18 >777 360 14 n/a n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	2 No.1(fiat) 2 No.1(fiat) 2 No.3(fiat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz Max G	e) 22=0-3-8, 14=Mechanical 3rav 22=937(LC 1), 14=943(LC 1)					
FORCES. (lb) - Max. TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) or -1705/0, 3-4=-2823/0, 4-5=-2823/0, 5-6=	less except when shown. -3312/0, 6-7=-3312/0, 7-9=	-3312/0,			

9-10=-2823/0, 10-11=-2823/0, 11-12=-1705/0 BOT CHORD 21-22=0/1015, 19-21=0/2365, 18-19=0/3144, 17-18=0/3312, 16-17=0/3144, 15-16=0/2365, 14-15=0/1016 WEBS 2-22=-1349/0, 2-21=0/960, 3-21=-918/0, 3-19=0/622, 5-19=-436/0, 12-14=-1352/0.

/EBS 2-22=-1349/0, 2-21=0/960, 3-21=-918/0, 3-19=0/622, 5-19=-436/0, 12-14=-1352/0, 12-15=0/959, 11-15=-918/0, 11-16=0/623, 9-16=-436/0, 9-17=-86/552, 7-17=-313/5, 5-18=-86/552, 6-18=-313/5

NOTES-

必

3x6 =

1) Unbalanced floor live loads have been considered for this design.

21

4x4 =

20

19

3x6 FP = 3x6 =

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

22

6x6 =

23

2x6 II

21

2x6 ||

20

6x6 =

19

2x6 ||

18

6x8 =

17 16

2x6 ||

NOTES-

崧

3x6 =

28

3x4 =

27

5x8 ||

3x4 =

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

25 24

3x8 M18AHS FP =

2x6 ||

26

4x6 ||

- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION. Do not erect truss backwards.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 481 lb down at 9-9-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 15-29=-10, 1-14=-100 Concentrated Loads (lb)
 - Vert: 31=-401(F)

0-1-8 1-8

15

3x6 =

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			18-1-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1	I-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.77 WB 0.48 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(CT) -0.31 Horz(CT) 0.06	(loc) l/defl L/d 17-18 >956 480 17-18 >695 360 14 n/a n/a	PLATES GI MT20 24 Weight: 96 lb	RIP 14/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BRACING- TOP CHORD BOT CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.						purlins,
REACTIONS.	(size) 22=Mechanical, 14=0-3-8 ax Grav 22=981(LC 1), 14=975(LC 1)					
FORCES. (lb) - M TOP CHORD 2 BOT CHORD 2	lax. Comp./Max. Ten All forces 250 (lb) o -3=-1787/0, 3-4=-2985/0, 4-5=-2985/0, 5-6= -10=-2985/0, 10-11=-2985/0, 11-12=-1787/ 1-22=0/1058, 19-21=0/2486, 18-19=0/3347	r less except when shown. =-3581/0, 6-7=-3581/0, 7-9 0 ′, 17-18=0/3581, 16-17=0/3	9=-3581/0, 3347, 15-16=0/2486,			

	14-15=0/1058
WEBS	2-22=-1409/0, 2-21=0/1013, 3-21=-972/0, 3-19=0/678, 5-19=-492/0, 5-18=-55/627,
	6-18=-316/0, 12-14=-1406/0, 12-15=0/1014, 11-15=-973/0, 11-16=0/678, 9-16=-492/0,
	9-17=-55/627, 7-17=-316/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

			18-1-0 18-1-0						
Plate Offsets (X,Y)	[9:0-3-0,Edge], [10:0-3-0,Edge], [21:0-1	-8,Edge], [22:0-1-8,Edge]	10 1 0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.53 BC 0.94 WB 0.92 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.35 0.08	(loc) 22 22 18	l/defl >845 >610 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 109 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) No.1(flat) P No.3(flat)		BRACING- TOP CHORE BOT CHORE		Structu except Rigid ce	ral wood end verti eiling dire	sheathing dir cals. ectly applied c	rectly applied or 5-10-1 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size Max G	e) 26=Mechanical, 18=0-3-8 rav 26=1498(LC 1), 18=1066(LC 1)								
FORCES. (lb) - Max. TOP CHORD 2-3=- 10-12 10-12 BOT CHORD 25-26 18-11 WEBS 2-26- 16-15 7-24 7-24	Comp./Max. Ten All forces 250 (lb) or 3150/0, 3-4=-3150/0, 4-6=-3973/0, 6-7= 2=-4454/0, 12-13=-3379/0, 13-14=-3379, =0/1698, 24-25=0/3684, 22-24=0/4215, 9=0/1162 -2210/0, 2-25=0/1927, 3-25=-776/0, 4-2 0=0/1145, 14-19=-1101/0, 14-20=0/818, =-333/0, 7-22=-126/529, 9-22=-328/61	less except when shown. -3970/0, 7-9=-4445/0, 9-1 /0, 14-16=-1986/0 21-22=0/4442, 20-21=0/3 /5=-709/0, 4-24=0/380, 16 12-20=-605/0, 12-21=0/10	0=-4442/0, 3824, 19-20=0/2777 5-18=-1545/0, 075, 10-21=-658/0,	7,					
NOTES- 1) Unbalanced floor liv. 2) All plates are MT20 3) Plates checked for a 4) Refer to girder(s) for 5) This truss is designer referenced standard 6) Recommend 2x6 str Strongbacks to be a 7) CAUTION, Do not e 8) Hanger(s) or other co- chord. The design/s 9) In the LOAD CASE(LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 18-26: Concentrated Loads Vert: 3=-60	e loads have been considered for this de plates unless otherwise indicated. a plus or minus 1 degree rotation about it truss to truss connections. d in accordance with the 2015 Internation ANSI/TPI 1. ongbacks, on edge, spaced at 10-0-0 o ttached to walls at their outer ends or re- rect truss backwards. onnection device(s) shall be provided su- election of such connection device(s) is S) section, loads applied to the face of the dard valanced): Lumber Increase=1.00, Plate =-10, 1-17=-100 g(F)	sign. s center. onal Residential Code sect c and fastened to each tru- strained by other means. ifficient to support concent the responsibility of others the russ are noted as front Increase=1.00	tions R502.11.1 an iss with 3-10d (0.13 trated load(s) 689 l s. : (F) or back (B).	d R802 31" X 3 b dowr	2.10.2 a ") nails n at 2-6	and δ-4 on top			

December 9,2021

		9-7	-0		Ş	-11-0
		9-7	'-0		'(0-4-0
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [14:0-1-8	3,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.47 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	n (loc) l/defl L/d 11 >999 480 11 >999 360 7 n/a n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	 ² No.1 (flat) ² No.1 (flat) ³ No.3 (flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size	e) 13=0-3-8, 7=0-3-8					

Max Grav 13=511(LC 1), 7=517(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-781/0, 3-4=-965/0, 4-6=-499/0, 6-7=-499/0

BOT CHORD 12-13=0/541, 11-12=0/965, 10-11=0/965, 9-10=0/965

WEBS 7-9=0/649, 2-13=-718/0, 2-12=0/334, 3-12=-307/0, 4-9=-640/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards

December 9,2021

2-0-0

0-<u>1</u>-8 Scalle = 1:26.5

0-4-0 0-4-0			15-8-8 15-4-8			
Plate Offsets (X,Y)	[1:0-3-0,Edge], [5:0-1-8,Edge], [15:0-1-	8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.66 BC 0.94 WB 0.56 Matrix-S	DEFL. ir Vert(LL) -0.21 Vert(CT) -0.28 Horz(CT) 0.02	n (loc) l/defl L/d 14-15 >856 480 314-15 >640 360 2 12 n/a n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x. BOT CHORD 2x. WEBS 2x. REACTIONS.	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat) (size) 12=0-3-8, 1=0-3-8 ax Grav 12=829(I C 1) 1=835(I C 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied 2-2-0 oc bracing: 15-16.	rectly applied or 6-0-0 or 10-0-0 oc bracing,	oc purlins, Except:
FORCES. (lb) - M TOP CHORD 1 BOT CHORD 1 WEBS 1	Aax. Comp./Max. Ten All forces 250 (lb) or -2=-900/0, 2-4=-903/0, 4-5=-1988/0, 5-6=-2 I-9=-2371/0, 9-10=-1469/0 -718=0/1531, 16-17=0/2524, 15-16=0/2524 -18=0/1172, 4-18=-857/0, 4-17=0/636, 5-17 I-13=-776/0, 9-14=0/468, 7-14=-279/0, 7-15	r less except when shown. 524/0, 6-7=-2524/0, 7-8=-2 , 14-15=0/2568, 13-14=0/2 =-794/0, 10-12=-1184/0, 1 =-258/302	2371/0, 2027, 12-13=0/891 0-13=0/804,			
NOTES- 1) Unbalanced floc 2) All plates are 3x 3) Plates checked 4) This trues is dec	or live loads have been considered for this d 4 MT20 unless otherwise indicated. for a plus or minus 1 degree rotation about i igned in accordance with the 2015 Internet	esign. ts center.	tions BE02 11 1 and B 8	102 10 2 and		

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

7) CAUTION, Do not erect truss backwards.

I	21-9-4 21-9-4			35-11-0				
Plate Offsets (X,Y)	[7:0-3-0,Edge], [8:0-3-0,0-0-0], [21:0-3-0),Edge], [31:0-1-8,Edge],	[39:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.85 BC 0.79 WB 0.74 Matrix-S	DEFL. Vert(LL) -0.3 Vert(CT) -0.4 Horz(CT) 0.0	in (loc) l/defl 2 39-40 >803 4 39-40 >596 17 34 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 195 lb	GRIP 244/190 186/179 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural woo except end ver Rigid ceiling di	d sheathing dir ticals. rectly applied o	rectly applied or 5-7-6 o or 6-0-0 oc bracing.	oc purlins,	
REACTIONS. (size Max U Max G	e) 44=0-3-8, 34=0-3-8, 27=0-3-8 plift 27=-31(LC 3) rav 44=1028(LC 3), 34=2416(LC 1), 27	=654(LC 4)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 11-12 16-17 24-25	Comp./Max. Ten All forces 250 (lb) or 1903/0, 3-4=-3213/0, 4-5=-3213/0, 5-7= 2=-3071/0, 12-13=-1761/0, 13-14=-1761 =0/3181, 17-19=-271/1913, 19-21=-158 =-1090(441	less except when shown -3892/0, 7-8=-4134/0, 8- /0, 14-15=0/653, 15-16=0 88/905, 21-22=-1572/905	n. 11=-4134/0, D/3181, , 22-24=-1570/502,					
BOT CHORD 43-44 36-3 30-31	I=0/33/141 I=0/1119, 42-43=0/2658, 41-42=0/3642, 7=0/2554, 35-36=-198/873, 34-35=-170 I=-205(1572, 29-30205(1572, 28-29	40-41=0/4134, 39-40=0/ 5/0, 32-34=-2289/0, 31-3 233/1489, 27-2869/685	/4134, 37-39=0/3568, 2=-1519/881,					
WEBS 2-44= 14-35 5-41: 19-32 24-29		-42=0/755, 15-34=-1965/ 0, 12-37=0/751, 11-37=-7 -39=-665/0, 17-34=-1477, 3, 25-28=-99/575, 24-28= 0	, 0, 15-35=0/1563, 728/0, 5-42=-583/0, /0, 17-32=0/1061, =-543/128,					
NOTES- 1) Unbalanced floor live 2) All plates are MT20 3) All plates are 3x4 MT 4) Plates checked for a 5) Provide mechanical 6) This truss is designer referenced standard 7) Recommend 2x6 str Strongbacks to be ar 8) CAUTION, Do not er	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. plus or minus 1 degree rotation about i connection (by others) of truss to bearin ed in accordance with the 2015 Internation ANSI/TPI 1. ongbacks, on edge, spaced at 10-0-0 o tached to walls at their outer ends or re rect truss backwards.	esign. ts center. g plate capable of withstr onal Residential Code ser c and fastened to each tr strained by other means.	anding 31 lb uplift at joir ctions R502.11.1 and R russ with 3-10d (0.131" .	nt 27. 802.10.2 and X 3") nails.				

L	7-10-8			14-0-8			21-11-0				
I	7-10-8			6-2-0			7-10-8				I
Plate Offse	ets (X,Y)	[8:0-3-0,0-0-0], [22:0-3-0,E0	dge]								
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 CSI. 1.00 TC 1.00 BC YES WB 2014 Matr	0.37 0.60 0.64 ix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.45 0.06	(loc) 21 21 16	l/defl >797 >579 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 158 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)					BRACING- TOP CHOP BOT CHOP	RD RD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.				
REACTIONS. (size) 27=0-3-8, 16=0-3-8 Max Grav 27=1185(LC 1), 16=1185(LC 1)											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2352/0, 3-4=-4056/0, 4-6=-4064/0, 6-7=-5383/0, 7-8=-5847/0, 8-9=-5847/0,											

9-10=-5402/0, 10-12=-4085/0, 12-13=-4085/0, 13-14=-2350/0 BOT CHORD 26-27=0/1358, 25-26=0/3320, 23-25=0/4944, 22-23=0/5847, 21-22=0/5847, 20-21=0/5744, 18-20=0/5011, 17-18=0/3314, 16-17=0/1360 WEBS 2-27=-1765/0, 2-26=0/1348, 3-26=-1313/0, 3-25=0/978, 14-16=-1768/0, 14-17=0/1344, 13-17=-1307/0, 13-18=0/1024, 10-18=-1200/0, 10-20=0/518, 9-20=-508/0, 6-25=-1151/0, 6-23=0/707, 7-23=-889/0, 9-21=-301/635, 8-21=-272/53

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 9,2021

TRENC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

December 9,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

