

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

Trenco RE: J0122-0490 818 Soundside Rd Lot 2 Avery Pointe Edenton, NC 27932 Site Information: Customer: Regency Homes Project Name: J0122-0490 Lot/Block: 2 Model: Brinkle Model: Brinkley Address: 490 Josey Williams Road Subdivision: Avery Pointe State: NC City: Erwin General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date E16467258 12/2/2021 A1 12/2/2021 21 E16467278 V3 1 A1GE 2 E16467259 12/2/2021 V4 22 E16467279 12/2/2021 3 E16467260 A1SG 12/2/2021 23 E16467280 V5 12/2/2021 4 E16467261 B1 12/2/2021 24 E16467281 V6 12/2/2021 B1GE 5 E16467262 12/2/2021 C1-GR 6 12/2/2021 E16467263 7 E16467264 C1SG 12/2/2021 8 E16467265 D1 12/2/2021 D1GE 12/2/2021 9 E16467266 10 E16467267 G1 12/2/2021 11 E16467268 G1GE 12/2/2021 12 E16467269 H1GE 12/2/2021 13 E16467270 J1 12/2/2021 14 E16467271 J1GE 12/2/2021 15 E16467272 12/2/2021 M1 16 E16467273 M1GE 12/2/2021

12/2/2021

12/2/2021

12/2/2021

12/2/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

M2

V1

V2

M2A

based on the parameters provided by Connech, Inc - Fayettevin

Truss Design Engineer's Name: Strzyzewski, Marvin

17

18

19

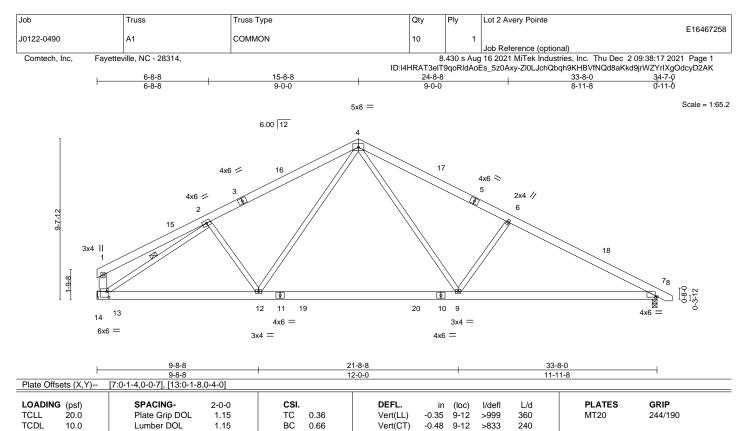
20

E16467274

E16467275

E16467276

E16467277


My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Strzyzewski, Marvin

December 02, 2021

	0.0 * 0.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.57 Matrix-S	Horz(CT) Wind(LL)	0.05 0.07	7 7-9	n/a >999	n/a 240	Weight: 230 lb	FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS	2x6 SF 2x4 SF			BRACING- TOP CHOR BOT CHOR WEBS		except Rigid c	end vert	icals. ectly applied	rectly applied or 4-9-10 or 9-9-4 oc bracing. 2-13	oc purlins,

REACTIONS. (size) 13=Mechanical, 7=0-3-8 Max Horz 13=-193(LC 13) Max Uplift 13=-222(LC 12), 7=-263(LC 13) Max Grav 13=1333(LC 1), 7=1379(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-300/179, 2-4=-1841/805, 4-6=-2084/871, 6-7=-2336/875, 1-13=-254/214

BOT CHORD 12-13=-482/1658, 9-12=-230/1276, 7-9=-635/1990

WEBS 2-12=-242/311, 4-12=-140/593, 4-9=-273/970, 6-9=-522/454, 2-13=-1806/660

NOTES-

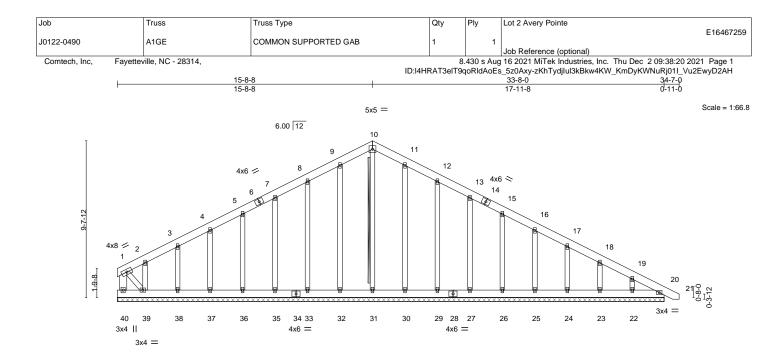
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 34-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=222, 7=263.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			33-8-0 33-8-0				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.06	DEFL. Vert(LL)	in (loc) 0.00 20	L/d 120	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.03 WB 0.14 Matrix-S	Vert(CT) Horz(CT)	0.00 20 0.01 20	120 n/a	Weight: 288 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

LUMBER-

=

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1 *Except*
	1-39: 2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. All bearings 33-8-0. (lb) - Max Horz 40=-309(LC

- Max Horz 40=-309(LC 13)
 Max Uplift All uplift 100 lb or less at joint(s) 32, 30, 20 except 40=-119(LC 17), 33=-119(LC 12), 35=-108(LC 12), 36=-107(LC 12), 37=-108(LC 12), 38=-110(LC 12), 39=-341(LC 12), 29=-122(LC 13), 27=-108(LC 13), 26=-107(LC 13), 25=-108(LC 13), 24=-108(LC 13), 23=-107(LC 13), 22=-134(LC 13)
 Max Grav All reactions 250 lb or less at joint(s) 31, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23, 22, 20 except 40=328(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 1-40=-306/120, 7-8=-109/273, 8-9=-138/357, 9-10=-158/412, 10-11=-158/412, 11-12=-138/357, 12-13=-109/273, 19-20=-254/80
- BOT CHORD 39-40=-159/298, 38-39=-73/258, 37-38=-73/258, 36-37=-73/258, 35-36=-73/258, 33-35=-73/258, 32-33=-73/258, 31-32=-73/258, 30-31=-73/258, 29-30=-73/258, 27-29=-73/258, 26-27=-73/258, 25-26=-73/258, 24-25=-73/258, 23-24=-73/258, 22-23=-73/258, 20-22=-73/258 WEBS 1.39=-102/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

SI/TPI

- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 30, 20 except (jt=lb) 40=119, 33=119, 35=108, 36=107, 37=108, 38=110, 39=341, 29=122, 27=108, 26=107, 25=108, 24=108, 23=107, 22=134.
 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

except end verticals.

T-Brace:

Structural wood sheathing directly applied or 6-0-0 oc purlins,

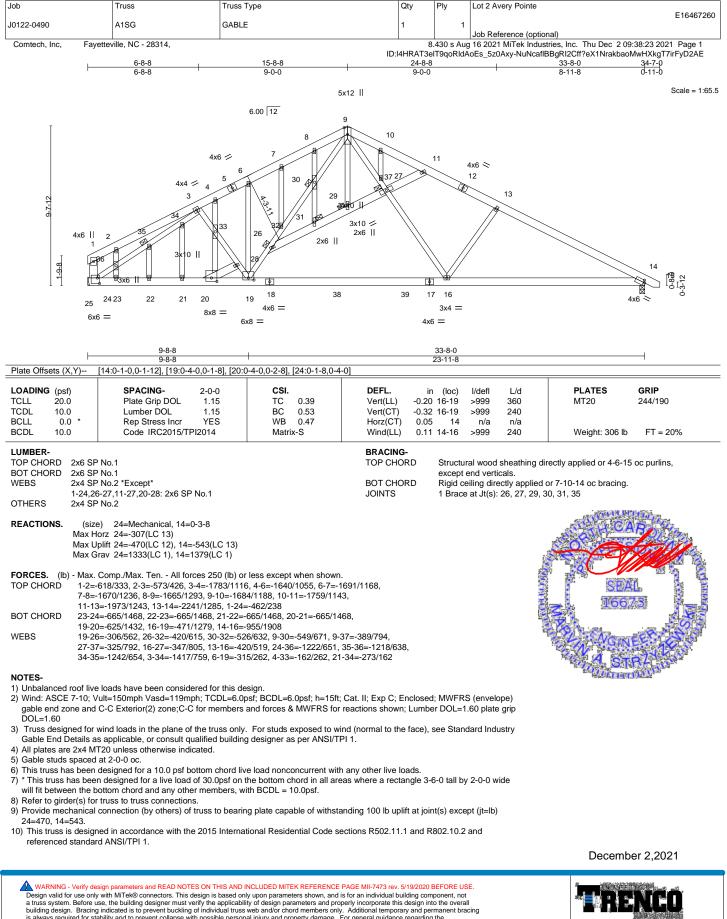
Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

2x4 SPF No.2 - 10-31

Rigid ceiling directly applied or 10-0-0 oc bracing

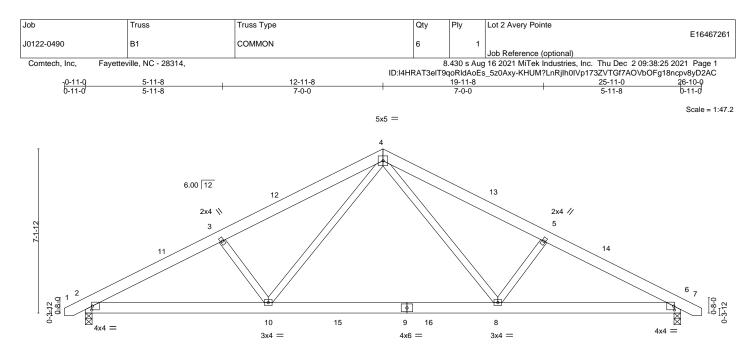
Brace must cover 90% of web length.

December 2,2021


Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe
J0122-0490	A1GE	COMMON SUPPORTED GAB	1	1	E16467259
					Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,		8	3.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:38:21 2021 Page 2
			ID:I4HRAT3eIT9qoR	ldAoEs_5z	0Axy-RWFr9zkwf3BapuVGuDVZIQVVGnEgSSHRD9ebmNyD2AG

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		7-11-8				17-11-8					25-11-0	
	1	7-11-8				10-0-0			1		7-11-8	1
Plate Offse	ets (X,Y)	[2:0-0-6,0-2-0], [6:0-0-6,0	0-2-0]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.13	8-1 0	>999	360	MT20	244/190
FCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.21	8-10	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-S	Wind(LL)	0.04	8-10	>999	240	Weight: 167 lb	FT = 20%
		1										
LUMBER-						BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1

BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=119(LC 11) Max Uplift 2=-203(LC 12), 6=-203(LC 13) Max Grav 2=1077(LC 1), 6=1077(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1786/716, 3-4=-1619/715, 4-5=-1619/715, 5-6=-1786/716

BOT CHORD 2-10=-525/1569, 8-10=-220/1003, 6-8=-532/1522

```
WEBS 3-10=-347/336, 4-10=-202/674, 4-8=-202/674, 5-8=-347/336
```

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 26-7-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

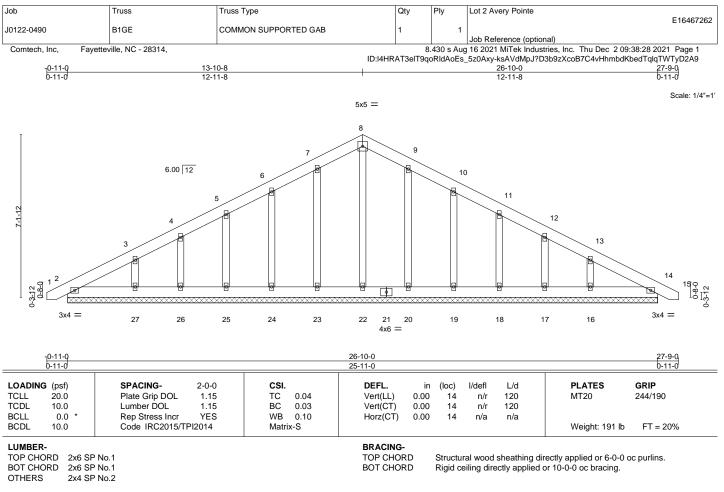
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=203, 6=203.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 5-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 25-11-0.

(lb) - Max Horz 2=184(LC 16)

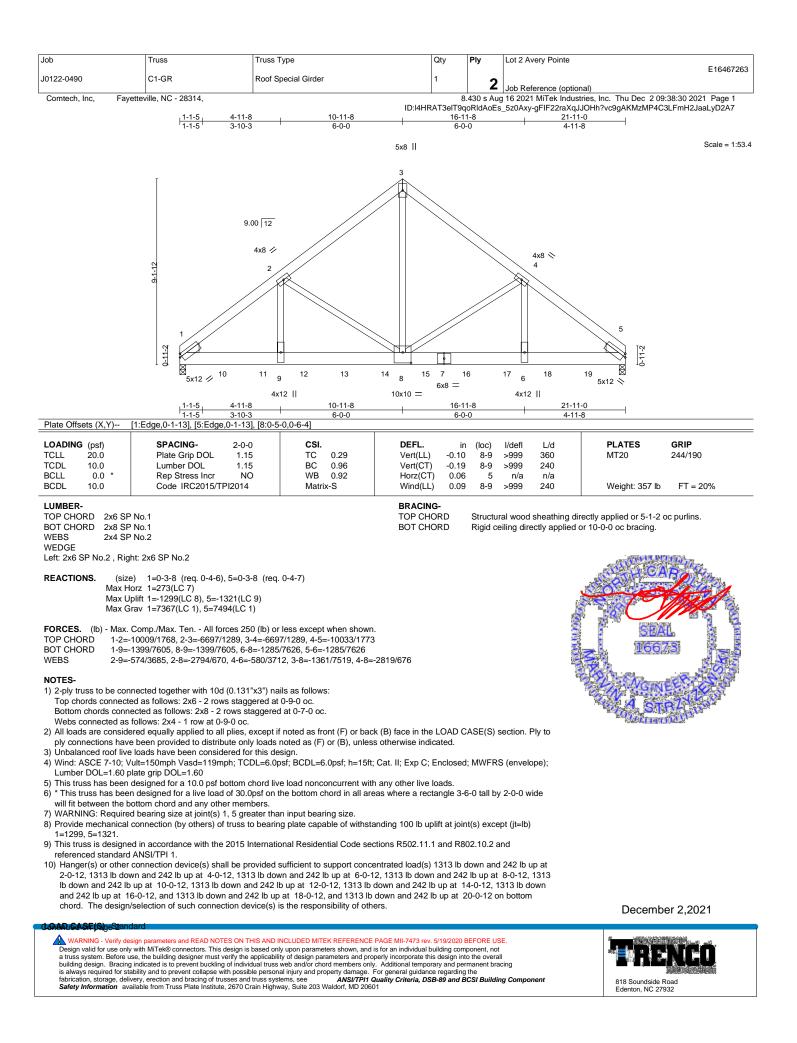
Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 26, 20, 17, 14 except 24=-115(LC 12), 25=-110(LC 12), 27=-171(LC 12), 19=-118(LC 13), 18=-109(LC 13), 16=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 27, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-120/304, 8-9=-120/304

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 26, 20, 17, 14 except (jt=lb) 24=115, 25=110, 27=171, 19=118, 18=109, 16=167.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

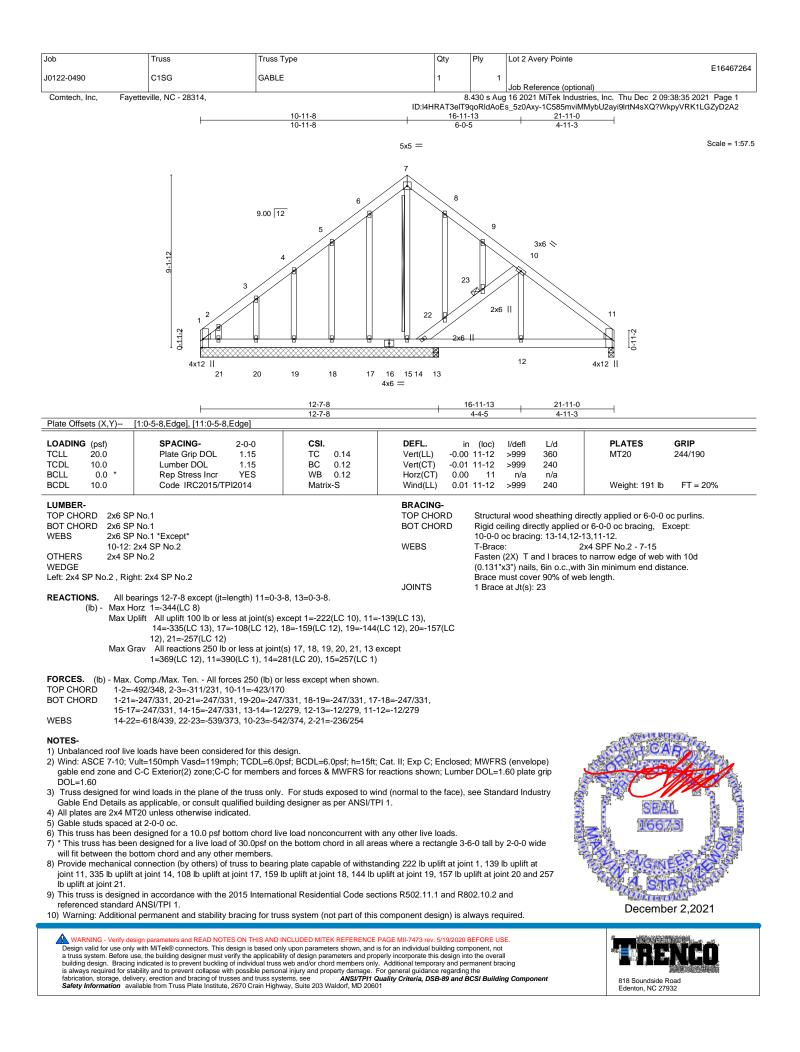
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

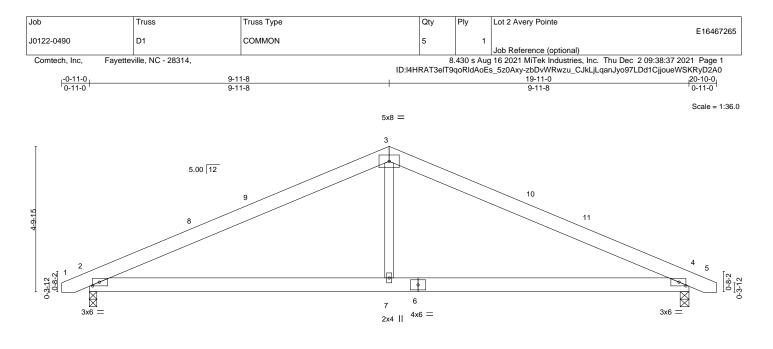
Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe
					E16467263
J0122-0490	C1-GR	Roof Special Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		. 8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2 09:38:30 2021 Page 2

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-gFIF22raXqJJOHh?vc9gAKMzMP4C3LFmH2JaaLyD2A7

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20


Concentrated Loads (lb)

Vert: 10=-1313(B) 11=-1313(B) 12=-1313(B) 13=-1313(B) 14=-1313(B) 15=-1313(B) 16=-1313(B) 17=-1313(B) 18=-1313(B) 19=-1313(B) 19=-1313(B) 19=-1313(B) 19=-1313(B) 10=-1313(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B) 10=-130(B

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporely incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>9-11-8</u> 9-11-8				19-11-0 9-11-8		
Plate Offsets (X,Y)	[2:0-2-12,0-1-8], [4:0-2-12,0-1-8]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc) l/defl	L/d	PLATES	GRIP
ICLL 20.0	Plate Grip DOL 1.15	TC 0.50	Vert(LL) -0.05	· · /	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.37	Vert(CT) -0.13	2-7 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CT) 0.02	4 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05	2-7 >999	240	Weight: 108 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SI	P No.1		TOP CHORD	Structural woo	d sheathing dir	ectly applied or 5-10-8	3 oc purlins.
BOT CHORD 2x6 SI WEBS 2x4 SI	P No.1 P No.2		BOT CHORD	Rigid ceiling di	rectly applied o	or 10-0-0 oc bracing.	

REACTIONS. (size) 4=0-3-8, 2=0-3-0 Max Horz 2=-71(LC 17) Max Uplift 4=-163(LC 13), 2=-162(LC 12) Max Grav 4=836(LC 1), 2=835(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-1239/498, 3-4=-1240/498

BOT CHORD 2-7=-293/1030, 4-7=-293/1030

WEBS 3-7=0/477

NOTES-

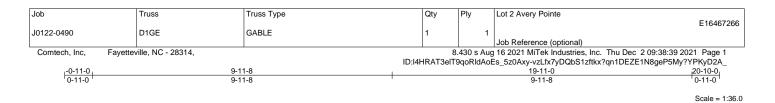
1) Unbalanced roof live loads have been considered for this design.

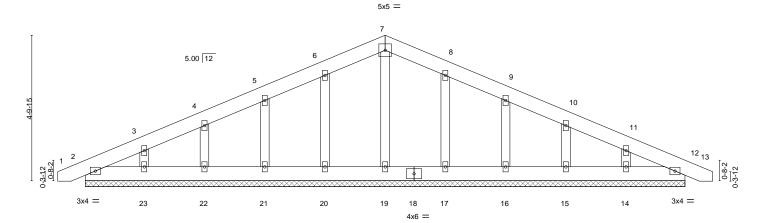
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-7-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 163 lb uplift at joint 4 and 162 lb uplift at joint 2.


6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


SEAL 1667.3 VGNES C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			19-11-0 19-11-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.03 Matrix-S	DEFL. i Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	0 12 n/r 1 0 12 n/r 1	L/d PLATE: 120 MT20 120 n/a Weight:	244/190
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S			BRACING- TOP CHORD BOT CHORD		eathing directly applied o y applied or 10-0-0 oc bra	

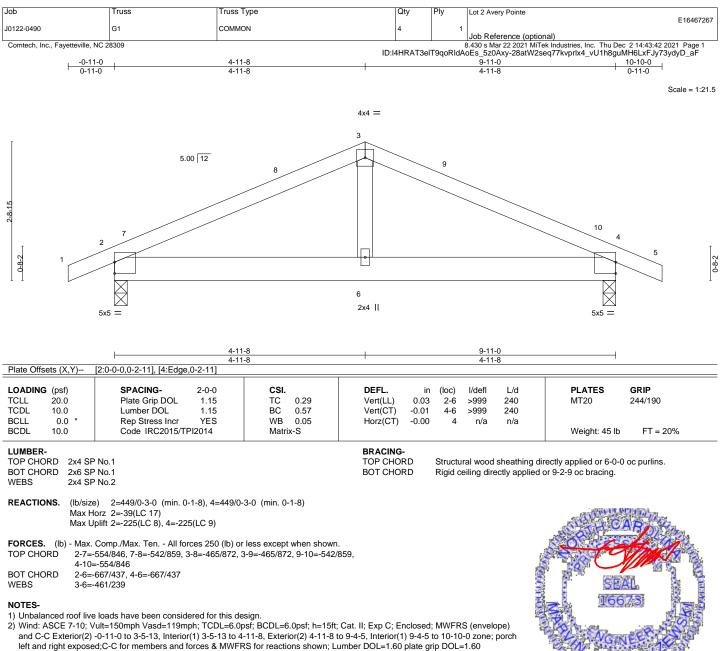
BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 2=-120(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 22, 17, 15 except 21=-102(LC 12), 23=-116(LC 12), 16=-103(LC 13), 14=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

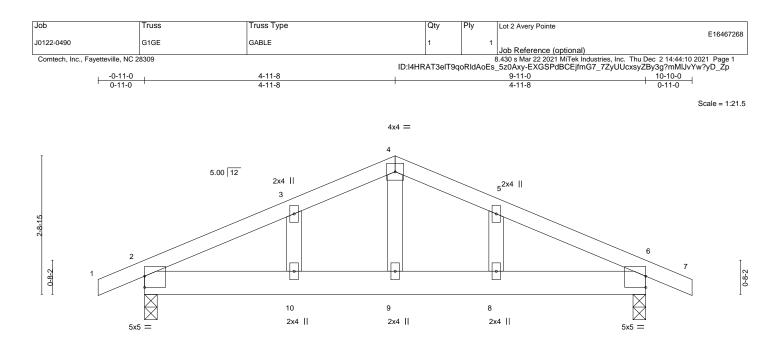

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 22, 17, 15 except (jt=lb) 21=102, 23=116, 16=103, 14=112.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2 and 225 lb uplift at ioint 4.

LOAD CASE(S) Standard

11011

December 2,2021

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE 🛕 WARNING - Verify design pa Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [2:0-0.0-2-11], [6:Edge.0-2-11]					
OADING (psf) "CLL 20.0 "CDL 10.0 3CLL 0.0 3CLL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.42 WB 0.06 Matrix-S	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) -0.01 Wind(LL) 0.02	8 >999 360 8 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 49 lb FT = 20%
UMBER- OP CHORD 2x4 SP 3OT CHORD 2x6 SP VEBS 2x4 SP OTHERS 2x4 SP	No.1 No.2	1	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins. or 9-1-14 oc bracing.

Max Upift 2=49/U-3-0 (min. 0-1-8), b=449/0-3-0 (min. 0-1-8) Max Horz 2=-66(LC 13) Max Upift 2=-297(LC 8), 6=-297(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-541/873, 3-4=-494/920, 4-5=-494/920, 5-6=-541/873

BOT CHORD 2-10=-688/437, 9-10=-688/437, 8-9=-688/437, 6-8=-688/437 WEBS 4-9=-534/232

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

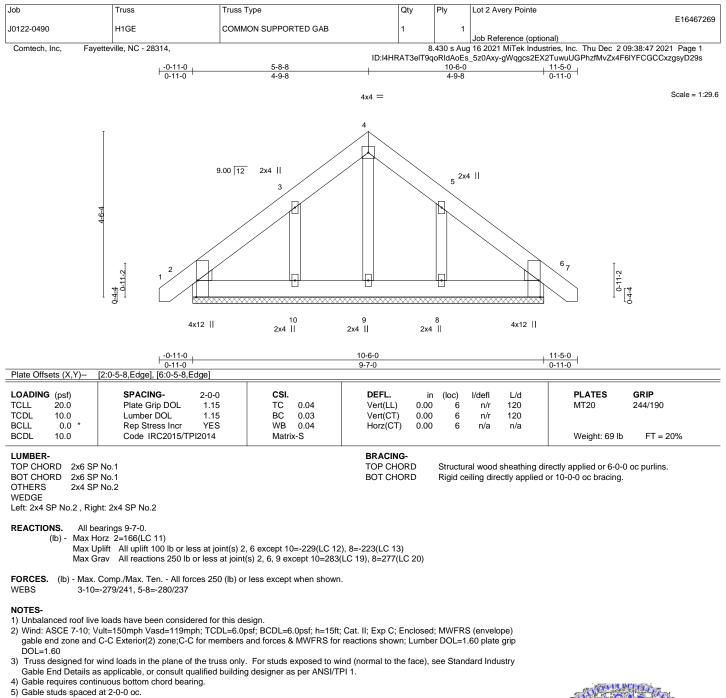
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

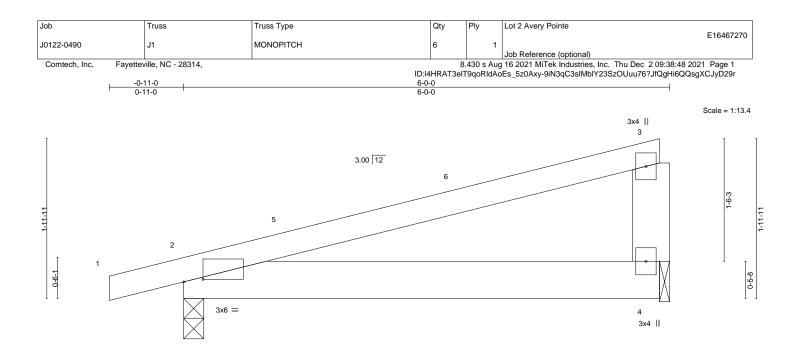
6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 297 lb uplift at joint 2 and 297 lb uplift at joint 6.


LOAD CASE(S) Standard

December 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 , .



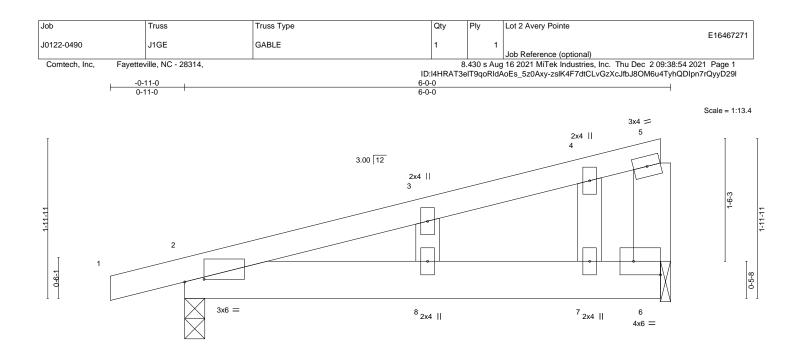
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=229, 8=223.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.45 BC 0.18 WB 0.00	DEFL. vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) 0.0	3 2-4 >999 240	PLATES GRIP MT20 244/190
CDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 27 lb FT = 20%
UMBER- OP CHORD 2x4 SP		· · · · ·	BRACING- TOP CHORD	9	ectly applied or 6-0-0 oc purlins,
OT CHORD 2x6 SP VEBS 2x6 SP			BOT CHORD	except end verticals. Rigid ceiling directly applied o	r 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=75(LC 8) Max Uplift 2=-188(LC 8), 4=-143(LC 8) Max Grav 2=294(LC 1), 4=220(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=188, 4=143.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:Edge,0-2-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.19 BC 0.18	DEFL. in (loc) l/defl L/d Vert(LL) 0.04 8 >999 240 Vert(CT) -0.02 8 >999 240	PLATES GRIP MT20 244/190
3CLL 0.0 * 3CDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.02 Matrix-S	Horz(CT) -0.00 6 n/a n/a	Weight: 29 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP 3OT CHORD 2x6 SP WEBS 2x6 SP OTHERS 2x4 SP	No.1 No.1		BRACING- TOP CHORD Structural wood sheathing except end verticals. BOT CHORD Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, d or 10-0-0 oc bracing.

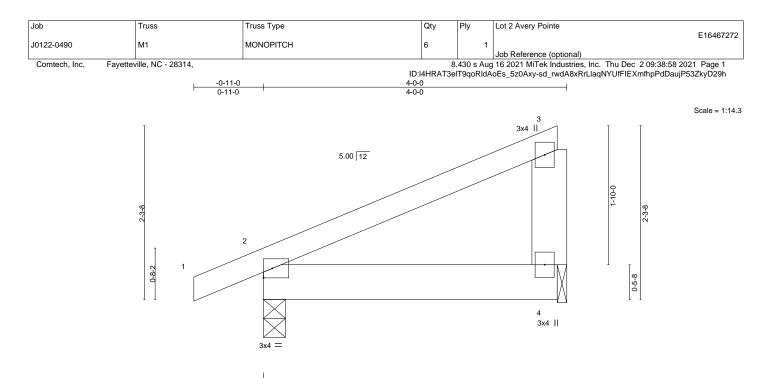
REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=106(LC 8) Max Uplift 2=-259(LC 8), 6=-199(LC 8) Max Grav 2=294(LC 1), 6=-220(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 BOT CHORD
 2-8=-275/133, 7-8=-275/133, 6-7=-275/133

NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


3) Gable studs spaced at 2-0-0 oc.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259, 6=199.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.21 BC 0.21		in (loc 0.00 2- 0.00 2-	4 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	- (-)	0.00 0.00	n/a 2 ****	n/a 240	Weight: 20 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

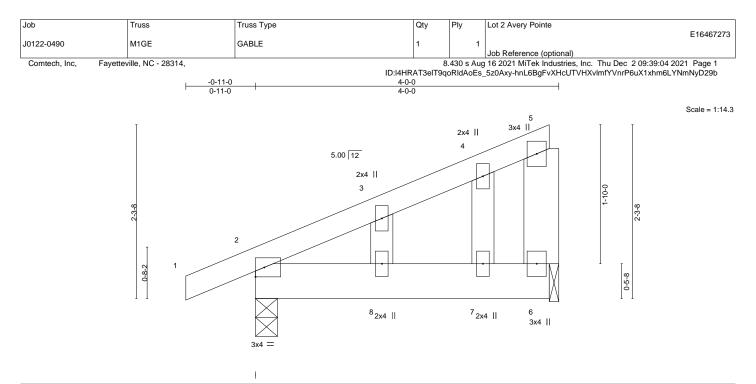
REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=84(LC 12)

Max Uplift 2=-48(LC 8), 4=-52(LC 12) Max Grav 2=218(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.10 WB 0.02 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%
LUMBER-			BRACING-	

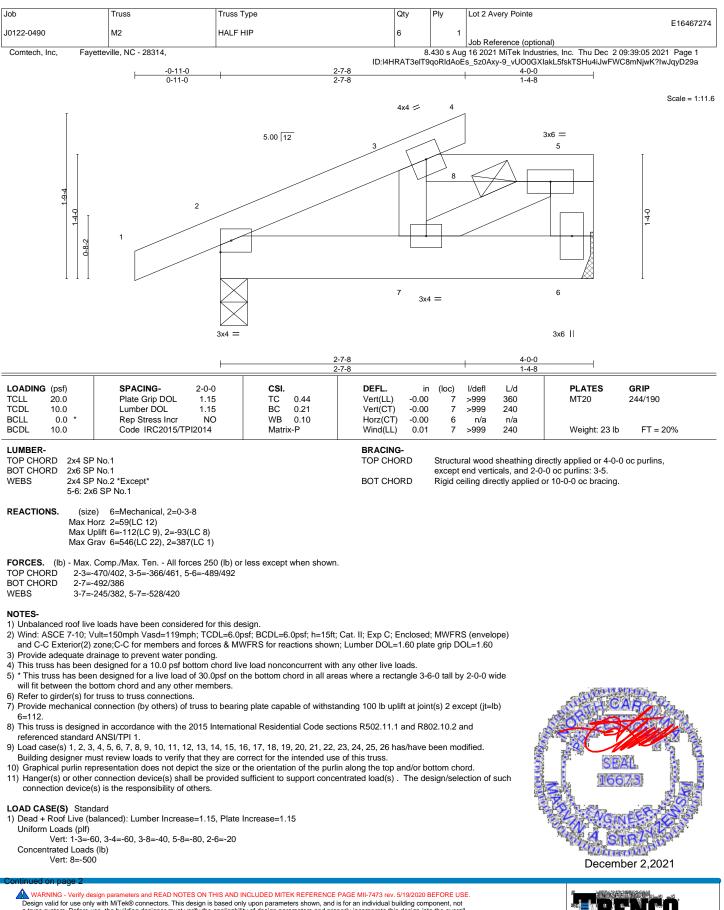
LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* WEBS 3-8: 2x4 SP No.2 OTHERS 2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=121(LC 12) Max Uplift 2=-90(LC 12), 6=-93(LC 12) Max Grav 2=218(LC 1), 6=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This shot into LODED will the REFERENCE FAGE MIF/473 few. 5/19/2020 ber/vice USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings of individual truss expert yamage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe	
					E16467274	
J0122-0490	M2	HALF HIP	6	1		
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:05 2021 Page 2						

ID:I4HRAT3eIT9qoRldAoEs_5z0Axy-9_vUO0GXIakL5fskTSHu4iJwFWC8mNjwK?IwJqyD29a

Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-40, 2-6=-40 Concentrated Loads (Ib) Vert: 8=-375 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=98, 2-3=82, 3-4=207, 3-5=67, 2-6=-12 Horz: 1-2=-110, 2-3=-94, 3-4=-219 Concentrated Loads (Ib) Vert: 8=467 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=73, 2-3=82, 3-4=73, 3-5=67, 2-6=-12 Horz: 1-2=-85, 2-3=-94, 3-4=-85 Concentrated Loads (lb) Vert: 8=467 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=-54, 3-4=30, 3-5=-64, 2-6=-20 Horz: 1-2=-25, 2-3=34, 3-4=-50 Concentrated Loads (lb) Vert: 8=-462 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-45, 2-3=-54, 3-4=-45, 3-5=-64, 2-6=-20 Horz: 1-2=25, 2-3=34, 3-4=25 Concentrated Loads (lb) Vert: 8=-462 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=11, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 8=121 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=11, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 8=121 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121

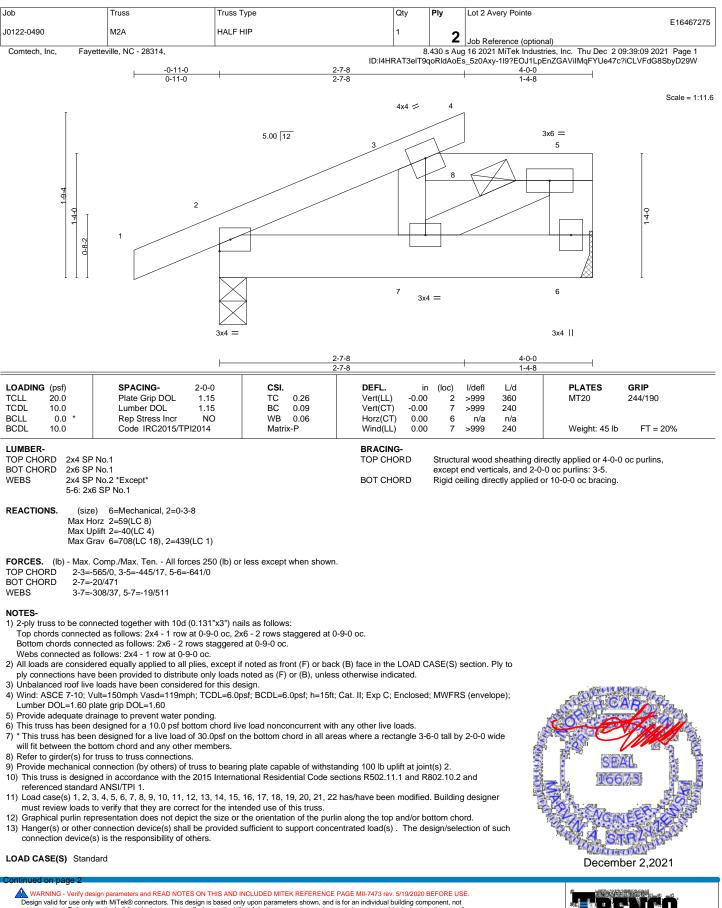
LOAD CASE(S) Standard

Uniform Loads (plf)

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe		
J0122-0490	M2	HALF HIP	6	1	E16467274		
JU122-0490	IVIZ		0		Job Reference (optional)		
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:05 2021 Page 3							


ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-9_vUO0GXlakL5fskTSHu4iJwFWC8mNjwK?IwJqyD29a

LOAD CASE(S) Standard

15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-31, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-31, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-120, 2-6=-20 Concentrated Loads (lb) Vert: 8=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 8=-480 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 8=-480 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, deflivery, rerection and bracing of trusses systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTTek® connectors. This AND INCLUDED MILENKEENCE PAGE MIL-1473 feV, 3/19/20/D BEFUKE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Sta Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe
					E16467275
J0122-0490	M2A	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 202					

8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 2021 Page 2 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-1I9?EOJ1LpEnZGAViIMqFYUe47c?iCLVFdG8SbyD29W

Concentrated Loads (lb) Vert: 8=-500 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-160, 2-6=-40 Concentrated Loads (lb) Vert: 8=-375 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=-109, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 8=121 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=-109, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 8=121 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-151, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-151, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306

LOAD CASE(S) Standard

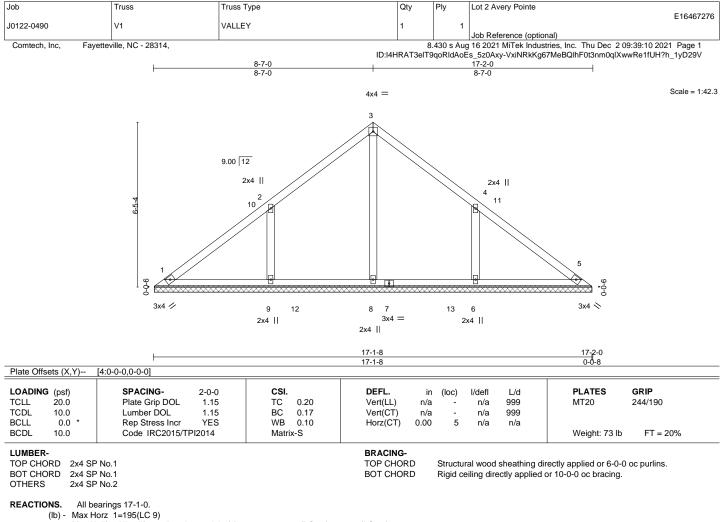
Uniform Loads (plf)

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe	
					E16467275	
J0122-0490	M2A	HALF HIP	1	2		
				-	Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 2 09:39:09 2021 Page 3						


ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-119?EOJ1LpEnZGAViIMqFYUe47c?iCLVFdG8SbyD29W

LOAD CASE(S) St

LC	DAD CASE(S) Standard
14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-5=-240, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-250
15) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-10, 3-4=-17
	Concentrated Loads (Ib)
	Vert: 8=-480
16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-11, 3-4=-17
	Concentrated Loads (lb)
	Vert: 8=-480
17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-213, 5-8=-243, 2-6=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26
	Concentrated Loads (lb)
10	Vert 8=-480
18) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-213, 5-8=-243, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14
	NU2. 172-14, 273-1, 374-14 Concentrated Loads (lb)
	Vert 8=-480
10) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
15	Uniform Loads (olf)
	Vert: 1-3-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (lb)
	Vert 8=500
20) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20	Uniform Loads (pf)
	Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-500
21) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-438
22) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-438

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-218(LC 12), 6=-218(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=418(LC 19), 9=496(LC 19), 6=496(LC 20)

WEBS 2-9=-455/344, 4-6=-455/345

NOTES-

1) Unbalanced roof live loads have been considered for this design.

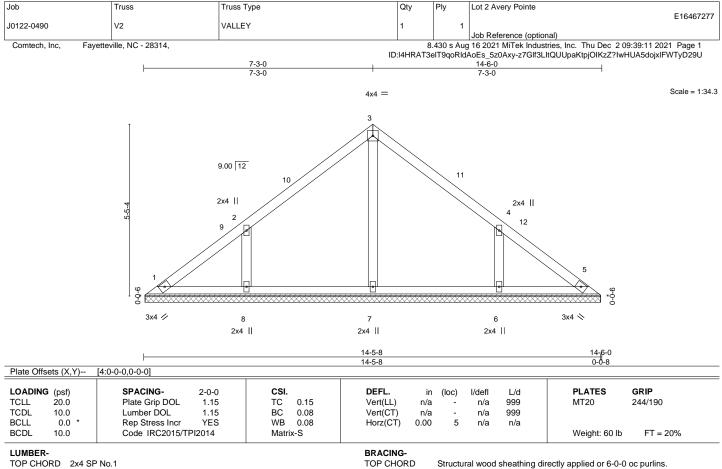
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-7-0, Interior(1) 4-7-0 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 16-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=218, 6=218.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-5-0.

(lb) - Max Horz 1=163(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-184(LC 12), 6=-184(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=375(LC 19), 6=375(LC 20)

WEBS 2-8=-388/310, 4-6=-388/310

NOTES-

1) Unbalanced roof live loads have been considered for this design.

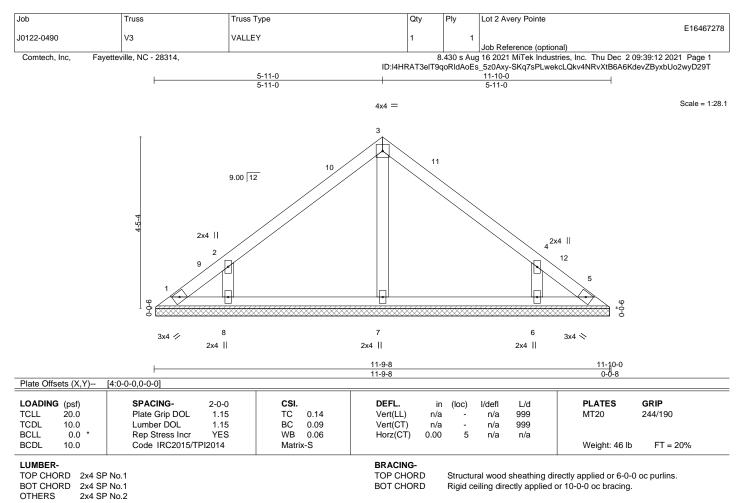
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 14-0-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=184, 6=184.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. All bearings 11-9-0.

(lb) - Max Horz 1=-131(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-172(LC 12), 6=-171(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=343(LC 19), 6=342(LC 20)

WEBS 2-8=-372/316, 4-6=-372/316

NOTES-

1) Unbalanced roof live loads have been considered for this design.

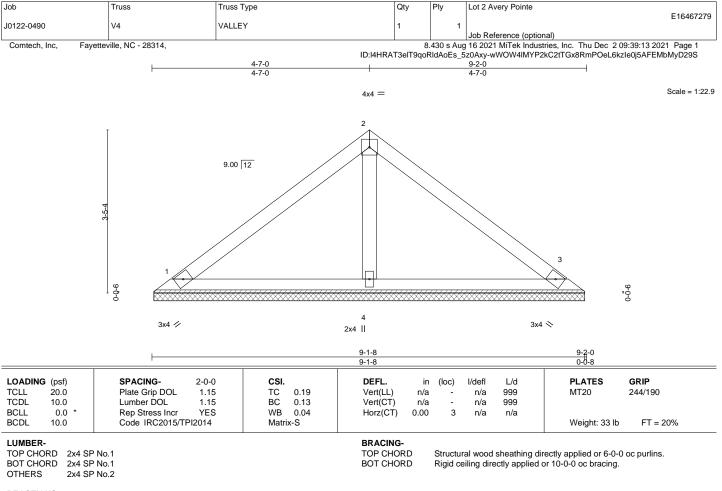
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-4-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=172, 6=171.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. (size) 1=9-1-0, 3=9-1-0, 4=9-1-0

Max Horz 1=99(LC 11)

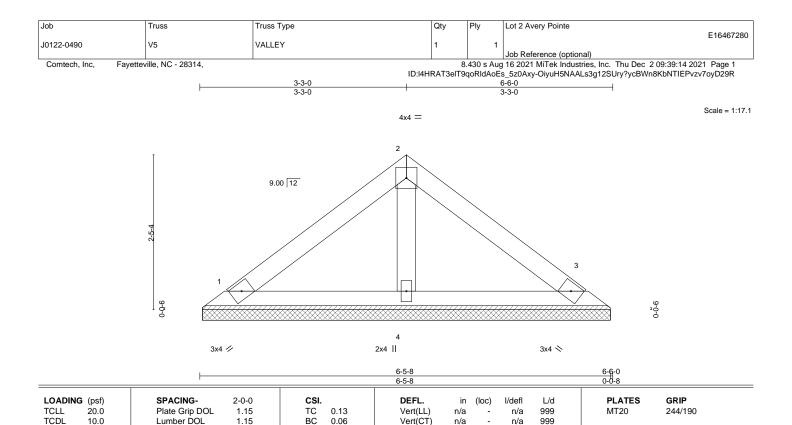
Max Uplift 1=-42(LC 12), 3=-52(LC 13), 4=-24(LC 12)

Max Grav 1=171(LC 1), 3=172(LC 20), 4=321(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3 n/a n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 23 lb

FT = 20%

LUMBER-
TOP CHORD
BOT CHORD

BCLL

BCDL

2x4 SP No.1 2x4 SP No.1 RD OTHERS 2x4 SP No.2

0.0

10.0

REACTIONS. (size) 1=6-5-0, 3=6-5-0, 4=6-5-0

Max Horz 1=-67(LC 8)

Max Uplift 1=-37(LC 12), 3=-44(LC 13)

Rep Stress Incr

Code IRC2015/TPI2014

Max Grav 1=126(LC 1), 3=126(LC 1), 4=197(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

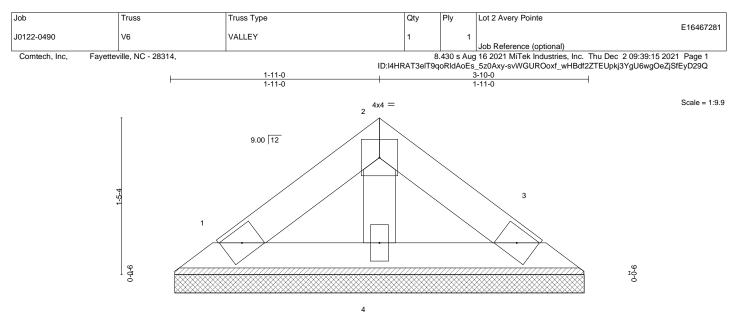
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-P

0.02

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


YES

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

2x4 ||

BRACING-

TOP CHORD

BOT CHORD

3x4 📎

Structural wood sheathing directly applied or 3-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		<u>3-9-8</u> <u>3-9-8</u>		<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. DEFL. TC 0.03 Vert(LL) BC 0.02 Vert(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999	PLATES GRIP MT20 244/190
3CLL 0.0 * 3CDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.01 Horz(CT) Matrix-P	0.00 3 n/a n/a	Weight: 12 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-0, 3=3-9-0, 4=3-9-0

Max Horz 1=-35(LC 8)

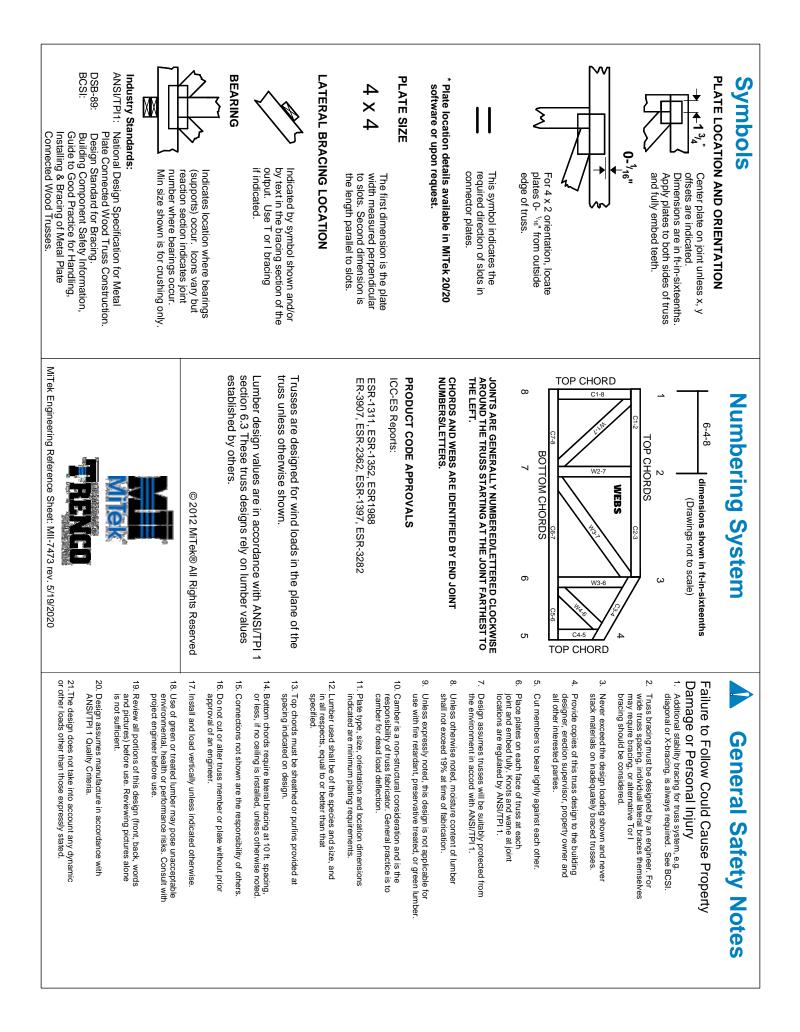
Max Uplift 1=-20(LC 12), 3=-23(LC 13)

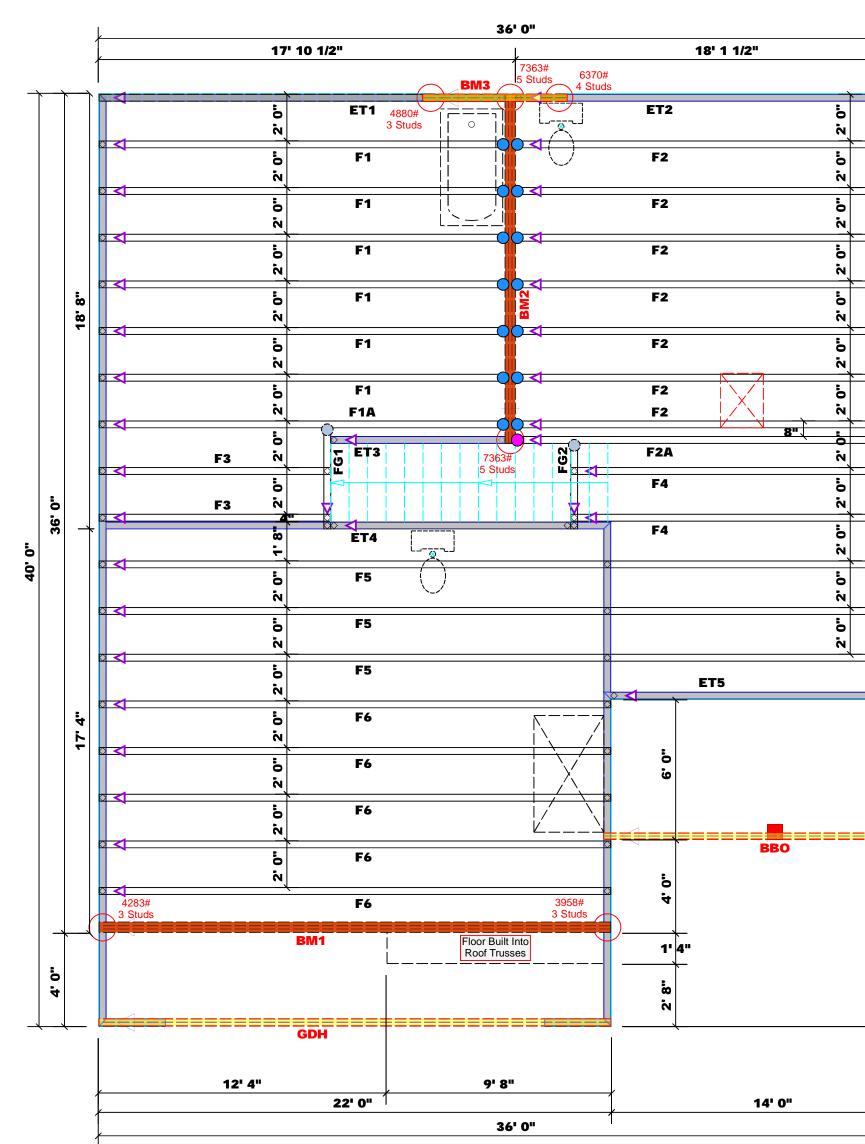
Max Grav 1=66(LC 1), 3=66(LC 1), 4=104(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



		Bearing deemed requiren attachec requiren size and reaction 15000#.	RUS Reilly F Fayet Phon	OF & SES coad In teville e: (910) : (910) : (910) : (910) : (910) : (910) : (910)	& FL & FL & B ndustr c, N.C. 0) 864 864-4 n or equa e prescriptor shall r from the p e the min studs req 0# but no n profess	OOF EAN ial Par 28309 -8787 444	# are # are the than
26: 0.	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to russ dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to russ dimensions are to face of frame wall unless noted otherwise	reaction Tables retained reaction Signatu	AD CHA A register to design s that exc re AD CHA (BASE WEEK OF 17 30 YH A4 20 YH A4 20 YH A4 5 6 7 8	Davi Davi ART F(Do n TABL	Construction Co	d in the state ional shale m for all andry CK STU CK STU C STU STU C STU C STU STU STU STU STU STU STU STU STU STU	JDS
0	All Walls Shown Are Considered Load Bearing Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24°oc. Sym Product Manuf Qty Supported Member Header Truss HUS410 USP 14 NA 16d/3-1/2" 16d/3-1/2" MSH422 USP 2 Varies 10d/3" 10d/3"	TY / CO. Erwin / Harnett	ADDRESS 490 Josey Williams Road	MODEL Floor	DATE REV. 02/14/22	DRAWN BY David Landry	LES REP. Bob Lewis
	 HD410IF USP 1 NA 16d/3-1/2" 10d/3" PlotID Length Product Plies Net Qty BM1 22'0" 1-3/4"x 16" LVL Kerto-S 3 3 BM2 15'0" 1-3/4"x 16" LVL Kerto-S 3 3 BM3 7'0" 1-3/4"x 14" LVL Kerto-S 2 2 GDH 22'0" 1-3/4"x 11-7/8" LVL Kerto-S 2 2 GDH2 12'0" 2x12 SPF No.2 2 2	Regency Homes CITY	Lot 2 Avery Pointe ADI	Brinkley "B" / 3GLF MO	N/A DA1	DR	J0122-0491 SALE
1		BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

A = Indicates Left End of Truss
(Reference Engineered Truss Drawing)

Do NOT Erect Truss Backwards

Version 20.40.075 Powered by iStruct™

CSD 🚟

2		Client: Regency Homes Project: Brinkley		Date: Input by:	2/14/2022 David Landry	Page 2 of 11
1	isDesign	Address: 490 Josey Willia Erwin, NC 2833	ams Road 99		: Lot 2 Avery Pointe J0122-0490	
BM1	Kerto-S LVL				_evel: Level	
	4					
	2		5		6	
			· · · · · ·			··· m 1
					No.	1'4"
1 SPF	End Grain				2 SPF End	
			22' 22'			
Continued	from page 1					
ID	Load Type	Location Trib Width Sid			w 1.15 Wind 1.6 Const. 1.	
6	Part. Uniform Self Weight	12-7-0 to 22-0-0 Nea	ar Face 137 PLF 0 F 19 PLF	PLF 1	37 PLF 0 PLF 0 P	LF M2
Notes		chemicals	6. For flat roofs provide proper drainage ponding	to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
design criteria responsibility of	tured Designs is responsible only of the acy of this component based on the and loadings shown. It is the the customer and/or the contractor to	LVL beams must not be cut or drilled Refer to manufacturer's product information requirements multi-plu	portang	Metsä Wood 301 Merritt 7 Bu Norwalk, CT 06		Fayetteville, NC USA 28314 910-864-TRUS
ensure the cor application, and t Lumber	mponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained			(800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	
2. LVL not to be	onditions, unless noted otherwise a treated with fire retardant or corrosive	 Design assumes up edge is laterally resulting Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 4/24/2	023		соттесн
Version 20.40.0	075 Powered by iStruct™					CSD 🗱

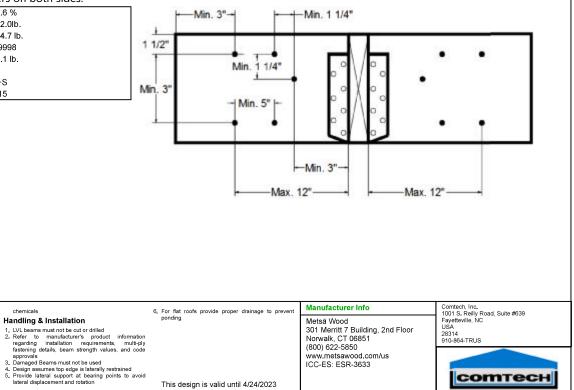
	/	Client:	Regency Homes		Date:	2/14/2022	Page 3 of 11
		Project:	Brinkley		Input by:	David Landry	
	isDesign	Address:	490 Josey Williar	ms Road	Job Name:	Lot 2 Avery Pointe	
•			Erwin, NC 28339)	Project #:	J0122-0490	
BM1	Kerto-S LVL	1.750"	X 16.000"	3-Ply - PASS	ED	evel: Level	
					•		
				1			
				↓ ↓			_
•		• •	• • •		• •		
·	• • • •	• •	• • •	• • • • •	• •		· 1'4"
	<u> </u>	• •	• • •	• • • • •	• •		╧╋╪╴┉╶┝╴
1 SPF	End Grain					2 SPF End Grain	n //
<i> </i>				22'			5 1/4"
1				22'			1

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Nail from both sides. Maximum end distance not to exceed 6"

Capacity	64.7 %	
Load	182.7 PLF	
Yield Limit per Foot	282.4 PLF	
Yield Limit per Fastener	94.1 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination	D+S	
Duration Factor	1.15	

Concentrated Load


Fasten at concentrated side load at 12-5-8 with a minimum of (6) - 10d Box nails (.128x3") in the

pattern shown. Repeat fasteners on both sides.

ришени зночин. Кереи	c lusteriers on both slacs
Capacity Load	83.6 %
Load	472.0lb.
Total Yield Limit	564.7 lb.
Cg	0.9998
Yield Limit per Fastener	94.1 lb.
Yield Mode	IV
Load Combination	D+S
Duration Factor	1.15

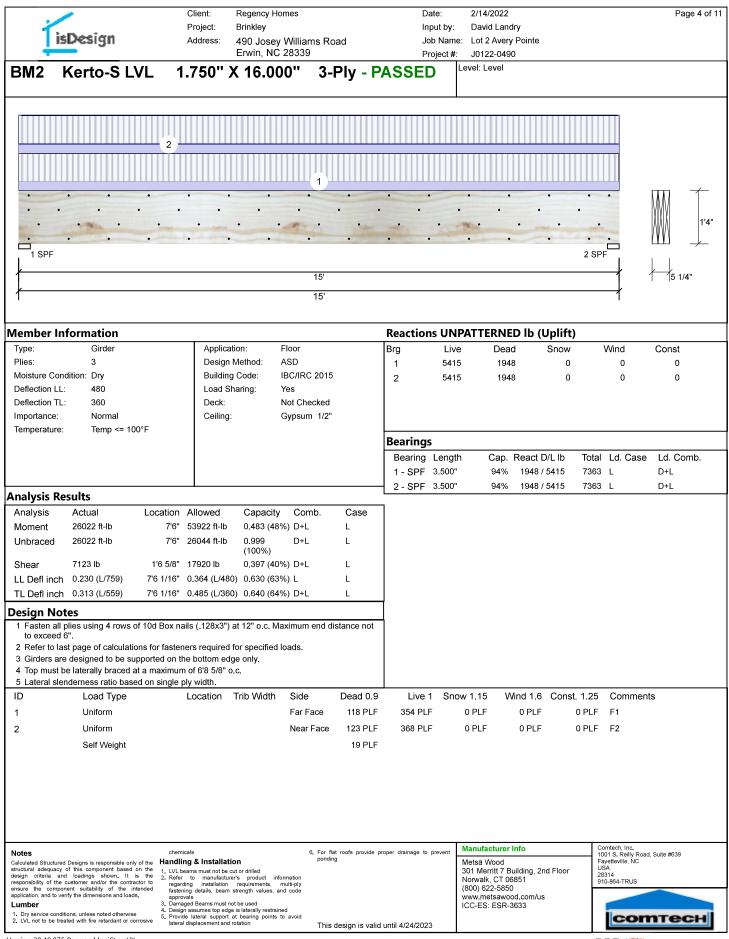
Min/Max fastener distances for Concentrated Side Loads

This design is valid until 4/24/2023

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown, It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.

chemicals

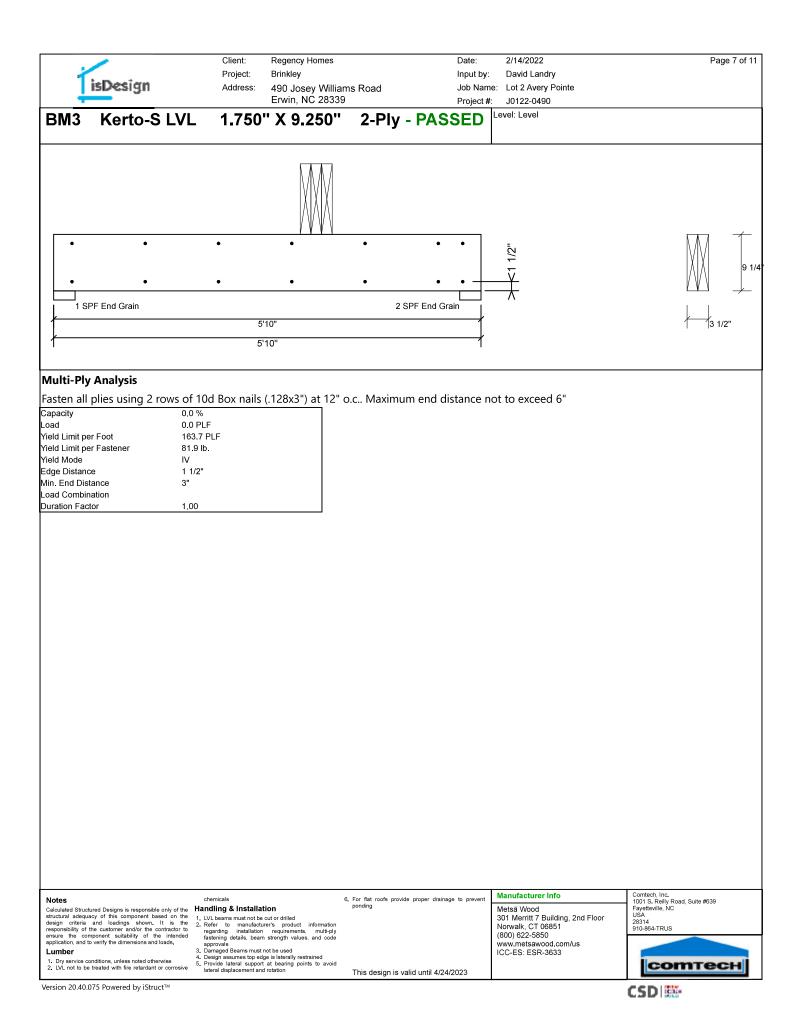

Handling & Installation

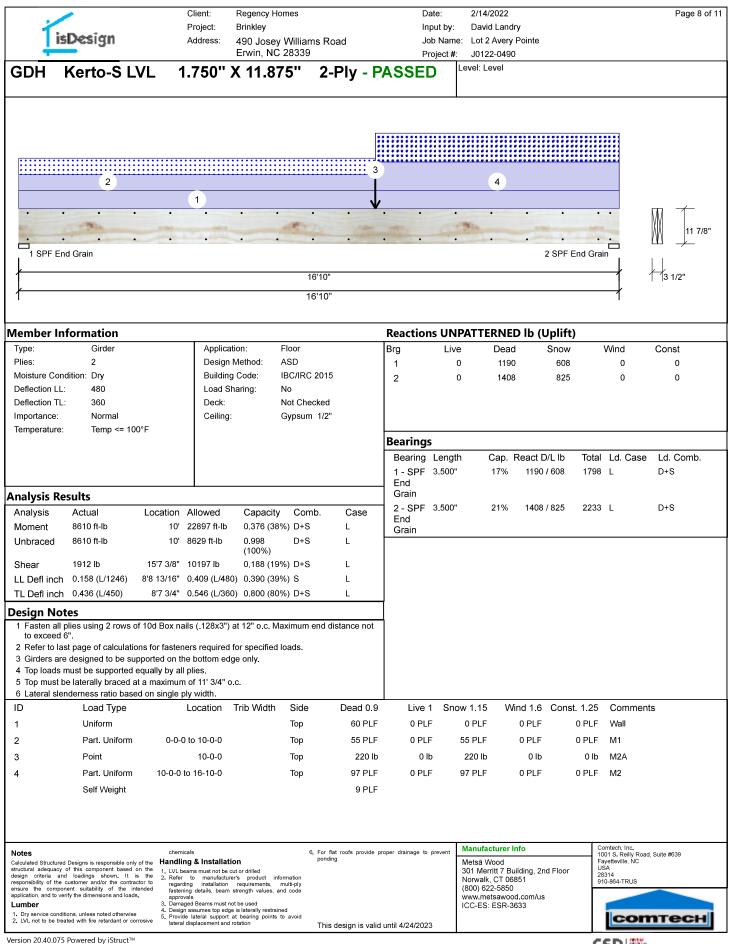
Version 20.40.075 Powered by iStruct™

Notes

Lumber

CSD 🚟

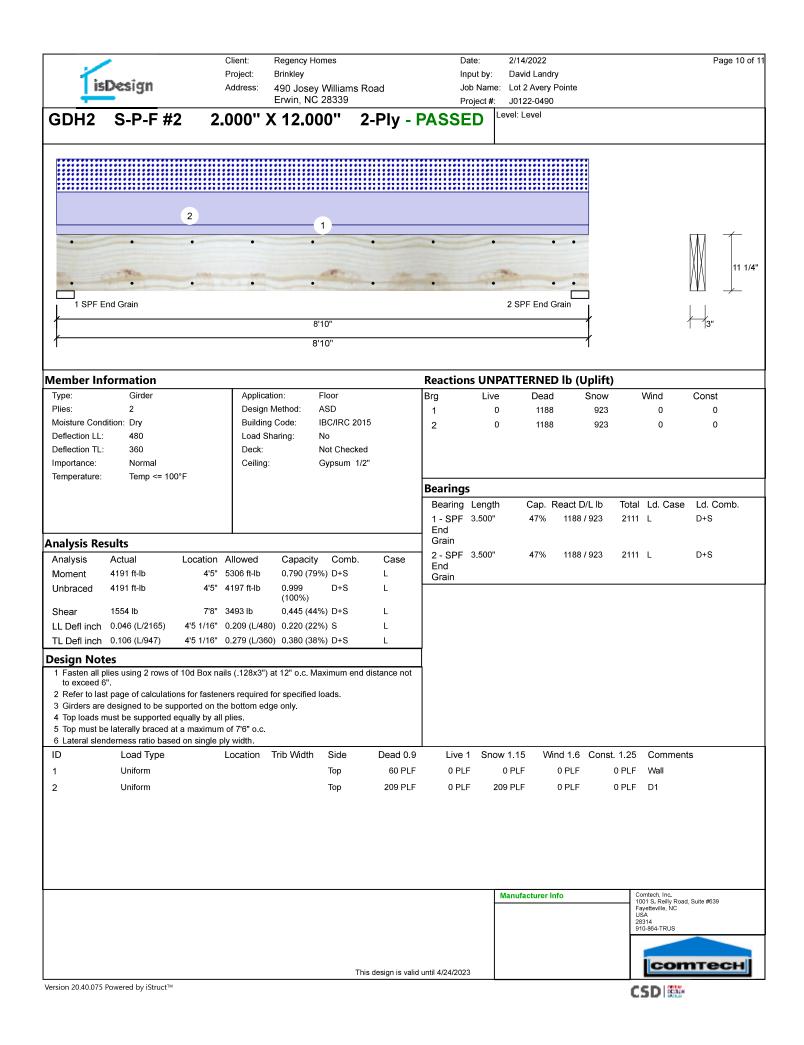

Version 20.40.075 Powered by iStruct™


CSD 🗱

isDesign	Project: Bri Address: 49 En	gency Homes nkley) Josey Williams Road vin, NC 28339	Project #:		Page 5 of 11
BM2 Kerto-S L	.VL 1.750" X ′	16.000" 3-Ply	- PASSED	Level: Level	
· · · · · · · · · · · · · · · · · · ·			· · ·	· · · ·	2 SPF
¢		15' 15'			f5 1/4"
Multi-Ply Analysis					
Fasten all plies using 4 ro 6" Capacity Load Yield Limit per Foot Yield Mode Edge Distance Min. End Distance Load Combination Duration Factor	100.0 % 327.3 PLF 327.4 PLF 81.9 lb. IV 1 1/2" 3" D+L 1.00				o exceeu
Notes Calculated Structured Designs is responsible of structural adequacy of this component bases design criteria and loadings shown. It responsibility of the customer and/or the cont ensure the component suitability of the application, and to verify the dimensions and loa Lumber 1. Dry service conditions, unless noted otherwi 2. LVL not to be treated with fire retardant or	i on the saturation tastenic terretori terretori terretoric terretoric	ponding rilled vroduct information rirements, multi-ply th values, and code sed prally restrained ring points to avoid	vvide proper drainage to prevent	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-6850 www.metsawood.com/us ICC-ES: ESR-3633	Comtech, Inc. 1001 S. Relily Road, Suite #639 Fayettervile, NC USA 28314 910-864-TRUS
Version 20.40.075 Powered by iStruct	м				CSDI

CSD 🗱

1		Client: Project:	Regency Hor Brinkley	nes				2/14/2022 David Land	ry			Page 6 of 11
is	Design	Address:	490 Josey		ad			Lot 2 Avery				
		4 750	Erwin, NC 2				·	J0122-0490 vel: Level)			
3 M 3	Kerto-S LVI	L 1./50	' X 9.25	50 ^m 2	-Piy -	PASSI	=D					
	1		<u></u> μ4	۸ 								
			I.M.A	M	3							
	2		/ / /	V V								$\overline{1}$
	Cotton .	1. · · · ·		at the								9 1/4
	End Grain				2 SI	PF End Grain						
	-	5'	10"		_	-	\rightarrow					3 1/2"
ł		5'	10''				\rightarrow					
l ember Inf Type:	Girder	Applica	tion: F	loor		Reaction Brg	Live	Dead	-	iiitt) iow	Wind	Const
Plies:	2	Design	Method: A	SD		1	2153	2357		210	0	0
Moisture Cond Deflection LL:	ition: Dry 480	Building Load S	-	BC/IRC 2015 Io		2	3496	2840) 12	210	0	0
Deflection TL:	360	Deck:	-	lot Checked								
mportance:	Normal	Ceiling	: 0	Gypsum 1/2"								
Temperature:	Temp <= 100°F											
						Bearing		Can	Decet D/I	lb Tata		Lel Coreb
						Bearing 1 - SPF	-	Cap. 46%	React D/L 2357 / 252		Ld. Case	Ld. Comb. D+0.75(L+S)
						End	0.000	4070	20077202	-2 4000	, L	D:0.70(E:0)
nalysis Res						Grain 2 - SPF	3 500"	60%	2840 / 353	30 6370	х I	D+0.75(L+S)
Analysis		cation Allowed	Capacity	Comb.	Case	End	3.000	0078	20407 330	00 0070	, ,	D-0.73(E-3)
Moment Unbraced	11308 ft-lb 11308 ft-lb	3'7" 12542 ft-lb 3'7" 11327 ft-lb	0.902 (90% 0.998	D+L	L	Grain						
onbradea			(100%)		-							
Shear	5739 lb	4'10" 6907 lb	0.831 (83%		L							
		3'4 7/8" 0.134 (L/48 3'3 5/8" 0.179 (L/36			L							
esign Note	. ,	0 0/0 0.170 (E/00	0) 0.000 (00 /	5) D·L	-	-						
1 Fasten all p	lies using 2 rows of 100	d Box nails (.128x3")	at 12" o.c. Ma	ximum end di	istance not	-						
to exceed 6 2 Refer to last	". page of calculations fo	or fasteners required	for specified lo	ads								
3 Girders are	designed to be support	ied on the bottom ed	•									
•	ust be supported equa laterally braced at a m											
•	derness ratio based on											
ID	Load Type		Trib Width	Side	Dead 0.9		1 Snow 1		ind 1.6 C			ts
1	Tie-In	0-0-0 to 5-10-0	1-0-0	Тор Тага	15 PSI			PSF	0 PSF	0 PSF	Floor	
2	Uniform			Тор Тор	120 PLF			PLF	0 PLF	0 PLF	Wall	
3	Uniform	0.7.0		Тор	415 PLF				0 PLF	0 PLF	A3	
4	Point Solf Weight	3-7-0		Тор	1948 II)	0 lb	0 lb	0 lb	BM2 Brg 2	
	Self Weight				7 PLF	-						
lotes		chemicals		6. For fla	at roofs provide	proper drainage to	prevent Ma	nufacturer l	nfo	1	Comtech, Inc. 001 S. Reilly Road	. Suite #639
Calculated Structured [Designs is responsible only of the f this component based on the	1 IVI beams must not be a		pondin	g		Me	etsä Wood 1 Merritt 7 Bu	uilding, 2nd Fl	oor F	ayetteville, NC JSA	
	loadings shown. It is the ustomer and/or the contractor to	2 Refer to manufactur	er's product infon requirements, m	mation ulti-plv			No	rwalk, CT 06	851	4	8314 10-864-TRUS	
lesign criteria and esponsibility of the cu	nt quitabilit: - 4 +- · · ·		reganemente, m									
esign criteria and esponsibility of the cu nsure the compone pplication, and to verif	nt suitability of the intended y the dimensions and loads.	fastening details, beam approvals	strength values, and	d code			ŵw	00) 622-5850 ww.metsawoo	d.com/us	Γ		
esign criteria and esponsibility of the cu rsure the compone oplication, and to verif .umber . Dry service conditio	nt suitability of the intended	fastening details, beam	strength values, and ot be used e is laterally restrained at bearing points to	d avoid		id until 4/24/202	iC0		d.com/us	Γ	leen	птесн



CSD 🚟

1	isDesign		Client: Project: Address:	Regency Homes Brinkley 490 Josey Willia Erwin, NC 2833		lı J	Date: hput by: ob Name: Project #:	2/14/2022 David Landry : Lot 2 Avery Pointe J0122-0490		Page 9 of 11
GDH	Kerto-S	LVL	1.750"	X 11.875"		- PASSE		evel: Level		
	• •	•		• •	• •	• •	•	• •] [1/2]	π \pm
			•				•	• •		11 7/8"
1 SPF	End Grain							2 S	PF End Grain	
					16'10"					3 1/2"
1					16'10"				1	
Multi-Ply	-									
Fasten all Capacity	plies using 2 i	rows of 10)d Box nails	(.128x3") at 12"	o.c Maxim	num end dista	ance no	t to exceed 6"		
Load Yield Limit pe	er Foot	0.0 PL 163.7								
Yield Limit pe Yield Mode	er Fastener	81.9 lb IV).							
Edge Distand Min. End Dist		1 1/2" 3"								
Load Combin Duration Fac	nation	1.00								
Notes	hand Daris - 1		hemicals	tion	6. For flat roofs pro	ovide proper drainage te	prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly R Fayetteville, NC	toad, Suite #639
structural adequa design criteria responsibility of	tured Designs is responsible acy of this component ba and loadings shown the customer and/or the c	sed on the 1 L It is the 2 F ontractor to r	egarding installation	cut or drilled irer's product information requirements, multi-ply				Metsä Wood 301 Merritt 7 Building, 2nd Fl Norwalk, CT 06851 (800) 622-5850		
application, and to Lumber 1. Dry service co	mponent suitability of th o verify the dimensions and onditions, unless noted othe t treated with fire retardant	e intended f loads. 3.[astening details, bean approvals Damaged Beams must Design assumes top ed	n strength values, and code not be used ge is laterally restrained t at bearing points to avoid	This design is	s valid until 4/24/202	,	www.metsawood.com/us ICC-ES: ESR-3633	co	тесн

CSD 🗱

Version 20.40.075 Powered by iStruct™

is	Design	Client: Project: Address:	Regency Homes Brinkley 490 Josey Williar	ns Road		ame: Lot 2 Avery Pointe	Page 11 of 11
GDH2		2.000"	Erwin, NC 28339 X 12.000''		Projec	t #: J0122-0490	
				,			
							,
•	•	• •	٠	•	•	• • •	T M S
.	•		•	•	•		11 1/4"
	nd Grain		-	-	-	2 SPF End Grain	
			8'10"				3"
ſ			8'10"			1	
Multi-Ply A	nalysis						
Fasten all pli Capacity		of 10d Box nails	s (.128x3") at 12" o	o.c Maximu	ım end distance	not to exceed 6"	
Load Yield Limit per Fe		0.0 % 0.0 PLF 157.4 PLF					
Yield Limit per Fa Yield Mode	astener	78.7 lb.					
Edge Distance		1 1/2"					
Min. End Distand Load Combinatio		3"					
Duration Factor		1.00					
						Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
							USA 28314 910-864-TRUS
				This design is v	alid until 4/24/2023		соттесн

RE: J0122-0491 Lot 2 Avery Pointe **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

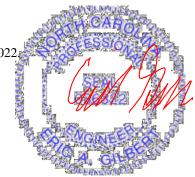
Customer: Regency Homes Project Name: J0122-0491 Lot/Block: 2 Model: Brinkle Address: 490 Josey Williams Road Subdivision: / City: Erwin State: NC

Model: Brinkley Subdivision: Avery Pointe State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf


This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16477192	ET1	12/9/2021
2	E16477193	ET2	12/9/2021
3	E16477194	ET3	12/9/2021
4	E16477195	ET4	12/9/2021
5	E16477196	ET5	12/9/2021
6	E16477197	F1	12/9/2021
7	E16477198	F1A	12/9/2021
8	E16477199	F2	12/9/2021
9	E16477200	F2A	12/9/2021
10	E16477201	F3	12/9/2021
11	E16477202	F4	12/9/2021
12	E16477203	F5	12/9/2021
13	E16477204	F6	12/9/2021
14	E16477205	FG1	12/9/2021
15	E16477206	FG2	12/9/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 09, 2021

Job		Truss		Truss Type					Qty	Ply	Lot 2 Aver	y Pointe			E16477192
J0122-0491		ET1		GABLE					1	1					L10477192
												nce (optional)			
Comtech, Inc,	Fayette	eville, NC - 283	14,					ID:I4HRA				iTek Industries, 6pQzCiaeICDjl			
0- <u>1</u> -8															0- <mark>1</mark> -8
															Scale = 1:28.8
								3×4 —	3x6 FP =	_					
				-			-					10	40		45
1	2	3	4	5	6		7	8	9 1	0	11	12	13	14	15
31	e	<u>e</u>	<u> </u>	•	•		<u>e</u>			•	•	<u>e</u>	•	0	→ → 32 _Q
4-05															0-4-1

30	29	28	27	26	25	24	23	22	2	!1	20	19	18	17	16
3x4 =						3x6 FF	>=								3x4 =
							3x4 =								

	1-4-0 1-4-0	2-8-0 4-0-0 1-4-0 1-4-0	5-4-0 1-4-0	6-8-0 1-4-0	8-0-0 1-4-0	-		-8-0 -4-0	12-0 1-4-	-	13-4-0 1-4-0		14-8-0 1-4-0	16-0-0 1-4-0	17-4-12 1-4-12	
Plate Offs	sets (X,Y)	[8:0-1-8,Edge], [23:0-1-8	,Edgej													
LOADING TCLL TCDL BCLL	G (psf) 40.0 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI. TC BC WB	0.06 0.01 0.03		DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a		PLA MT2		GRIP 244/190	
BCDL	5.0	Code IRC2015/T		Matr			1012(01)	0.00		, ca			Weig	ght: 79 lb	FT = 20%	F, 11%E
LUMBER TOP CHO		P No.1(flat)					BRACING TOP CHOR		Structu	ral woo	d sheathing	dire	ectly applie	d or 6-0-0	oc purlins,	

BOT CHORD	2x4 SP No.1(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 17-4-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18, 17

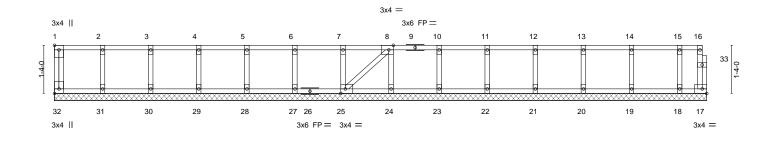
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

- 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


December 9,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe	
					E164	77193
J0122-0491	ET2	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,		8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:43 2021 Page	e 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-1dHxK9Rbz0iVwMovow935AibGeHgE4cLO0ry9myAmHM

Scale = 1:30.1

1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	12-0-0	13-4-0	14-8-0	16-0-0	17-4-0	18-1-0
1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-9-0
Plate Offsets (X,Y)	[1:Edge,0	-1-8], [8:0-1-	8,Edge], [25:	0-1-8,Edge]	, [32:Edge,0-1	1-8]							

LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL.irVert(LL)n/aVert(CT)n/aHorz(CT)0.00	n - n/a 999 n - n/a 999	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3 (flat) P No.3 (flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	<i>y</i> 11	oc purlins,

REACTIONS. All bearings 18-1-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

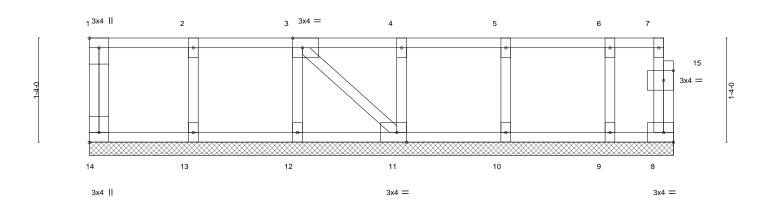
3) Gable requires continuous bottom chord bearing.4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.



Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe
J0122-0491	ET3	GABLE	1	1	E16477194
30122-0491		GABLE	'	'	Job Reference (optional)
Comtech, Inc, Fa	vetteville, NC - 28314,		8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:44 2021 Page 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-VqqJXVRDjJqMYWN5LdgleOFm?2dvzXsUdgaVhDyAmHL

0<u>-1-</u>8

Scale = 1:13.9

1	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	7-5-12	
L. L	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-9-12	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-	8,Edge], [11:0-1-8,Edge], [1	4:Edge,0-1-8], [15:0-1-8,0-1	-8]			

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 39 lb FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD Structural wood sheathing except end verticals. BOT CHORD Rigid ceiling directly appli	directly applied or 6-0-0 oc purlins, ed or 10-0-0 oc bracing.

REACTIONS. All bearings 7-5-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

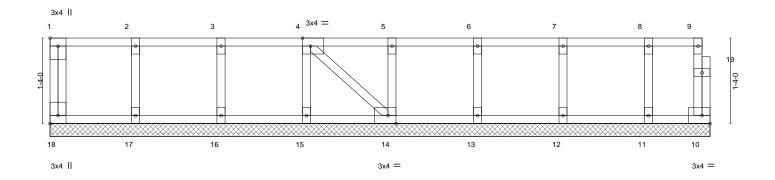
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.



Job	Truss	Truss Type	Qty	Ply	Lot 2 Avery Pointe
					E16477195
J0122-0491	ET4	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	rille, NC - 28314,		8	.430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 9 07:37:44 2021 Page 1

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-VqqJXVRDjJqMYWN5LdgIeOFm?2dvzXsUdgaVhDyAmHL

0₁1₇8

Scale = 1:16.9

	1-4-0	2-8-0	4-	0-0	5-4-0	1	6-8-0	1	8	-0-0	9-4-0	10-3-8	1
	1-4-0	1-4-0	1-	4-0	1-4-0	1	1-4-0	1	1	-4-0	1-4-0	0-11-8	
Plate Off	sets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,E	dge], [14:0-1-	8,Edge], [18	3:Edge,0-1-8]								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	n/a	-	n/a	999			
BCU	0.0	Ren Stress Incr	VES	W/B	0.03	Horz(CT)	0.00	10	n/a	n/a			

BCDL	5.0	Code IRC2015/TPI2014	Matrix-S		0 10 11/a 11/a	Weight: 50 lb	FT = 20%F, 11%E
				BRACING-	Otavatural una e die bie attaine di		
BOT CHC	DRD 2x4 SI DRD 2x4 SI	P No.1(flat) P No.1(flat)		TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0 c	oc puriins,
WEBS OTHERS		P No.3(flat) P No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	

REACTIONS. All bearings 10-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center. 3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

Job	Tru	SS	Truss Typ	e		Qty	Ply	Lot 2 Avery Pointe		E1647	77106
J0122-0491	ET	5	GABLE			1	1			E1047	/196
								Job Reference (opt			
Comtech, Inc,	Fayetteville,	NC - 28314,							ustries, Inc. Thu Dec 9 SrUdyD9gylvLBXAbnw		
0118										0 ₁₁ 8	
										Scale =	1:23.3
1	2 27	3	4	3x4 = 5 28	6	7	8	29 9	10	11 12	
т п	2 2/		4			, 	0	29 9	10		т
	•	•	•			•	•	•	•		26 ®
											1 <u>-</u> 9 8-1-1
24	23	22	21	20	19	18	17	16	15	14 13	
3x6 =	2x6	2x6	2x6	2x6	3x6	2x6	2x6	5 2x6	2x6	3x6 = 2x6	
1-4-0	2-8- 1-4-	0 4-0-	0 5-4-0	6-8-0 1-4-0	8-0)-0 9	9-4-0 1-4-0	10-8-0 1-4-0	12-0-0 13-4	4-0 14-0-0 -0 0-8-0	
			0 1-4-0	' 1-4-C	1-4	1-0	1-4-0	1-4-0	1-4-0 1-4	-0 0-8-0	
Plate Offsets (X,	Y) [5:0-1-8	,⊨agej	г						1		
LOADING (psf)		SPACING-	2-0-0	CSI.		EFL.	in (loc)	l/defl L/d	PLATES	GRIP	

LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.12 BC 0.00 WB 0.05 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- n/a 999 - n/a 999	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	/ No.1(flat) / No.1(flat) / No.3(flat) / No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	<i>y</i> 11	oc purlins,

REACTIONS. All bearings 14-0-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

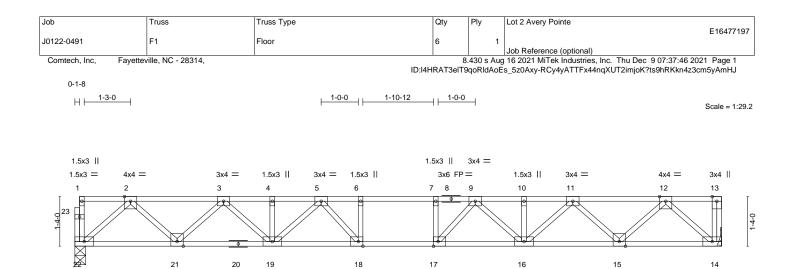
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center. 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 13-24=-10, 1-12=-100


Concentrated Loads (Ib) Vert: 4=-91 7=-91 10=-91 27=-91 28=-91 29=-91

December 9,2021

3x4 =

3x6 =

4x4 =

3x6 =

3x4 =

			17-4-12 17-4-12				
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge]		17-4-12				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.69 WB 0.46 Matrix-S	Vert(CT) -0		l/defl L/d >999 480 >777 360 n/a n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	except e	end verticals.	irectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,
REACTIONS. (size Max G	e) 22=0-3-8, 14=Mechanical irav 22=937(LC 1), 14=943(LC 1)						
TOP CHORD 2-3=- 9-10=	Comp./Max. Ten All forces 250 (lb) or 1705/0, 3-4=-2823/0, 4-5=-2823/0, 5-6= =-2823/0, 10-11=-2823/0, 11-12=-1705// 2=0/1015, 19-21=0/2365, 18-19=0/3144	-3312/0, 6-7=-3312/0, 7-9)	=-3312/0,				

BOT CHORD	21-22=0/1015, 19-21=0/2365, 18-19=0/3144, 17-18=0/3312, 16-17=0/3144, 15-16=0/236
	14-15=0/1016
WEBS	2-22=-1349/0, 2-21=0/960, 3-21=-918/0, 3-19=0/622, 5-19=-436/0, 12-14=-1352/0,
	12-15=0/959, 11-15=-918/0, 11-16=0/623, 9-16=-436/0, 9-17=-86/552, 7-17=-313/5,
	5-18=-86/552, 6-18=-313/5

NOTES-

1) Unbalanced floor live loads have been considered for this design.

4x4 =

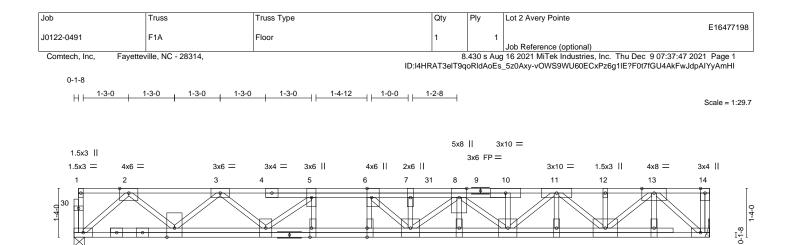
3x6 =

3x6 FP = 3x6 =

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

22

6x6 =

21

2x6 ||

20

6x6 =

19

2x6 ||

18

6x8 =

17

2x6 ||

16

15

3x6 =

Plate Offsets (X,	') [6:0-3-0,Edge], [23:0-3-0	,Edge], [24:0-3	3-0,Edge]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.67	Vert(LL)		22-23	>999	480	MT20	244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.74	Vert(CT)		22-23	>739	360	M18AHS	186/179
BCLL 0.0	Rep Stress Incr	NO	WB 0.69	Horz(CT)	0.05	15	n/a	n/a	M/ 11/ 400 #	FT 000/F 440/
BCDL 5.0	Code IRC2015/T	PI2014	Matrix-S						Weight: 128 lb	FT = 20%F, 11%
LUMBER-				BRACING	-					
TOP CHORD 2	x4 SP No.1(flat)			TOP CHO	RD	Structu	ral wood	sheathing d	lirectly applied or 6-0-0	oc purlins,
	x4 SP No.1(flat) x4 SP No.1(flat)						ral wood end vert		lirectly applied or 6-0-0	oc purlins,
BOT CHORD 2				ТОР СНО ВОТ СНО		except	end vert	icals.	lirectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
BOT CHORD 2 WEBS 2 REACTIONS.	x4 SP No.1 (flat) x4 SP No.3(flat) (size) 29=0-3-8, 15=Mecha /lax Grav 29=1112(LC 1), 15= Max. Comp./Max. Ten All fo 2-3=-2171/0, 3-5=-3758/0, 5-6	1169(LC 1) rces 250 (lb) o =-4691/0, 6-7=	=-5203/0, 7-8=-5203/0	BOT CHO		except	end vert	icals.		oc purlins,
BOT CHORD 2 WEBS 2 REACTIONS. FORCES. (b) TOP CHORD	x4 SP No.1(flat) x4 SP No.3(flat) (size) 29=0-3-8, 15=Mecha /lax Grav 29=1112(LC 1), 15= Max. Comp./Max. Ten All fo 2-3=-2171/0, 3-5=-3758/0, 5-6 10-11=-4088/0, 11-12=-2410//	1169(LC 1) rces 250 (lb) o =-4691/0, 6-7=), 12-13=-2410	=-5203/0, 7-8=-5203/0)/0	BOT CHO own.), 8-10=-4093/0,	RD	except	end vert	icals.		oc purlins,
BOT CHORD 2 WEBS 2 REACTIONS. FORCES. (Ib)	x4 SP No.1(flat) x4 SP No.3(flat) (size) 29=0-3-8, 15=Mecha /lax Grav 29=1112(LC 1), 15= Max. Comp./Max. Ten All fo 2-3=-2171/0, 3-5=-3758/0, 5-6 10-11=-4088/0, 11-12=-2410// 27-29=0/1244, 26-27=0/3037,	1169(LC 1) rces 250 (lb) o =-4691/0, 6-7= 0, 12-13=-2410 24-26=0/4691	=-5203/0, 7-8=-5203/0)/0 , 23-24=0/4691, 22-2	BOT CHO own.), 8-10=-4093/0, 3=0/4691, 21-22=0/45	RD	except	end vert	icals.		oc purlins,
BOT CHORD 2 WEBS 2 REACTIONS. FORCES. (lb) TOP CHORD BOT CHORD	x4 SP No.1 (flat) x4 SP No.3 (flat) (size) 29=0-3-8, 15=Mecha /lax Grav 29=1112(LC 1), 15= Max. Comp./Max. Ten All fo 2-3=-2171/0, 3-5=-3758/0, 5-6 10-11=-4088/0, 11-12=-2410// 27-29=0/1244, 26-27=0/3037, 20-21=0/4965, 19-20=0/3348	1169(LC 1) rces 250 (lb) o =-4691/0, 6-7= 0, 12-13=-2410 24-26=0/4691 , 18-19=0/3344	=-5203/0, 7-8=-5203/()/0 , 23-24=0/4691, 22-2 3, 17-18=0/1304, 15-1	BOT CHO own. , 8-10=-4093/0, 3=0/4691, 21-22=0/45 7=0/1304	RD	except	end vert	icals.		oc purlins,
BOT CHORD 2 WEBS 2 REACTIONS. FORCES. (b) TOP CHORD	x4 SP No.1(flat) x4 SP No.3(flat) (size) 29=0-3-8, 15=Mecha /lax Grav 29=1112(LC 1), 15= Max. Comp./Max. Ten All fo 2-3=-2171/0, 3-5=-3758/0, 5-6 10-11=-4088/0, 11-12=-2410// 27-29=0/1244, 26-27=0/3037,	1169(LC 1) rces 250 (lb) o =-4691/0, 6-7= 0, 12-13=-2410 24-26=0/4691 , 18-19=0/3344 -27=-1174/0, 3	=-5203/0, 7-8=-5203/0)/0 , 23-24=0/4691, 22-2 3, 17-18=0/1304, 15-1 3-26=0/970, 5-26=-12	BOT CHO own. , 8-10=-4093/0, 3=0/4691, 21-22=0/48 7=0/1304 75/0, 5-24=0/452,	RD 965,	except	end vert	icals.		oc purlins,

23

2x6 II

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

26 25 24

4x6 ||

3x8 M18AHS FP =

2x6 ||

7) CAUTION, Do not erect truss backwards.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 481 lb down at 9-9-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

¥

3x6 =

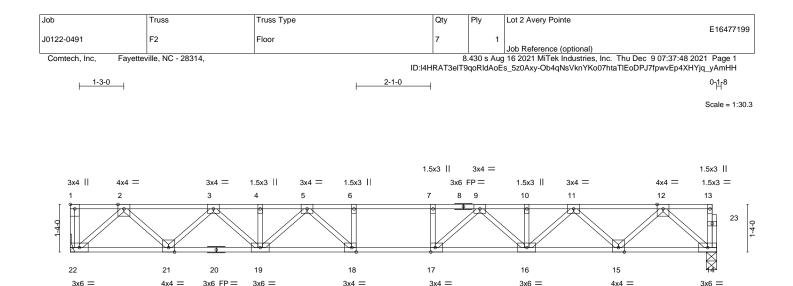
28

3x4 =

27

5x8 ||

3x4 =


Vert: 15-29=-10, 1-14=-100 Concentrated Loads (lb)

Vert: 31=-401(F)

Vert: 31=-401(F)

1			18-1-0			I
Plate Offsets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1	-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.77 WB 0.48 Matrix-S	Vert(LL) -0.2	in (loc) l/defl L/d 22 17-18 >956 480 31 17-18 >695 360 36 14 n/a n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	<i>,</i>) oc purlins,

18-1-0

REACTIONS. (size) 22=Mechanical, 14=0-3-8 Max Grav 22=981(LC 1), 14=975(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

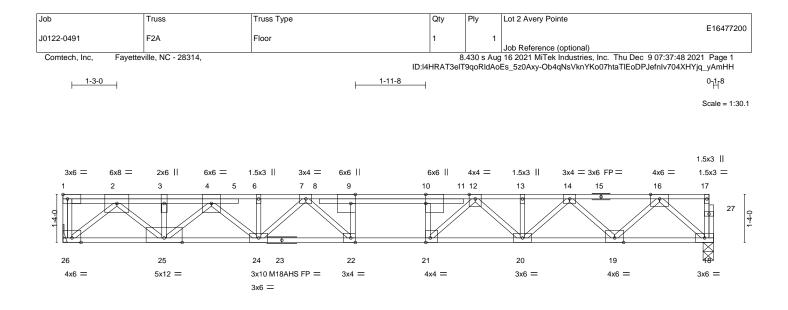
- TOP CHORD
 2-3=-1787/0, 3-4=-2985/0, 4-5=-2985/0, 5-6=-3581/0, 6-7=-3581/0, 7-9=-3581/0, 9-10=-2985/0, 10-11=-2985/0, 11-12=-1787/0

 BOT CHORD
 21-22=0/1058, 19-21=0/2486, 18-19=0/3347, 17-18=0/3581, 16-17=0/3347, 15-16=0/2486, 14-15=0/1058

 WEBS
 2-22=-1409/0, 2-21=0/1013, 3-21=-972/0, 3-19=0/678, 5-19=-492/0, 5-18=-55/627,
- 6-18=-316/0, 12-14=-1406/0, 12-15=0/1014, 11-15=-973/0, 11-16=0/678, 9-16=-492/0, 9-17=-55/627, 7-17=-316/0

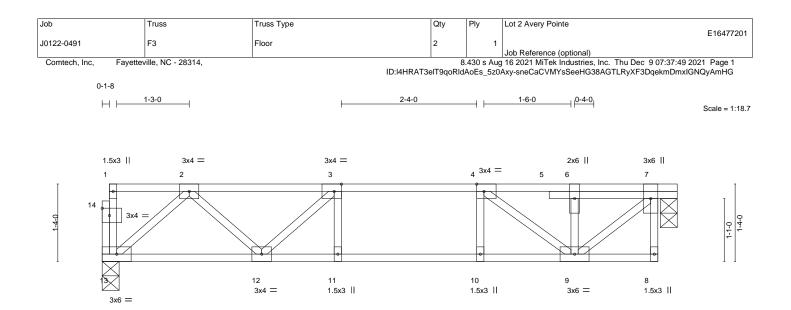
NOTES-

1) Unbalanced floor live loads have been considered for this design.


- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



 			<u>18-1-0</u> 18-1-0						
Plate Offsets (X,Y)	[9:0-3-0,Edge], [10:0-3-0,Edge], [21:0-1	-8,Edge], [22:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.53 BC 0.94 WB 0.92 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.35 0.08	(loc) 22 22 18	l/defl >845 >610 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 109 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. (size	2 No.1(flat) 2 No.1(flat) 2 No.3(flat) e) 26=Mechanical, 18=0-3-8 rav 26=1498(LC 1), 18=1066(LC 1)		BRACING- TOP CHOR BOT CHOR	D	except	end verti	cals.	rectly applied or 5-10-1 or 10-0-0 oc bracing.	oc purlins,
TOP CHORD 2-3=- 10-12 BOT CHORD 25-26 18-12 18-12 WEBS 2-26= 16-19	Comp./Max. Ten All forces 250 (lb) or 3150/0, 3-4=-3150/0, 4-6=-3973/0, 6-7= 2=-4454/0, 12-13=-3379/0, 13-14=-3379 5=0/1698, 24-25=0/3684, 22-24=0/4215 9=0/1162 -2210/0, 2-25=0/1927, 3-25=-776/0, 4-2 2=0/1145, 14-19=-1101/0, 14-20=0/818, =-333/0, 7-22=-126/529, 9-22=-328/61	-3970/0, 7-9=-4445/0, 9- /0, 14-16=-1986/0 , 21-22=0/4442, 20-21=0/ 25=-709/0, 4-24=0/380, 1	10=-4442/0, ′3824, 19-20=0/277 6-18=-1545/0,						
 All plates are MT20 [Plates checked for a Refer to girder(s) for This truss is designereferenced standard Recommend 2x6 str Strongbacks to be a CAUTION, Do not er Hanger(s) or other c chord. The design/s In the LOAD CASE(s) LOAD CASE(s) Stand Dead + Floor Live (b Uniform Loads (plf) 	ongbacks, on edge, spaced at 10-0-0 c ttached to walls at their outer ends or re rect truss backwards. connection device(s) shall be provided si selection of such connection device(s) is S) section, loads applied to the face of t dard palanced): Lumber Increase=1.00, Plate =-10, 1-17=-100 ((b)	ts center. In all Residential Code service and fastened to each tr strained by other means. Ifficient to support concer the responsibility of othe he truss are noted as from	russ with 3-10d (0.* ntrated load(s) 689 rs.	I31" X :	3") nails	5.	4		

December 9,2021

L		9-7-	-0		9-11-Q
Į.		9-7-	-0		0-4-0
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [14:0-1-	8,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.47 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	11 >999 480 11 >999 360	PLATES GRIP MT20 244/190 Weight: 54 lb FT = 20%F, 11%
BOT CHORD 2x4 SP	P No.1(flat) No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.
REACTIONS. (size Max G	e) 13=0-3-8, 7=0-3-8 rav 13=511(LC 1), 7=517(LC 1)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-781/0, 3-4=-965/0, 4-6=-499/0, 6-7=-499/0

BOT CHORD 12-13=0/541, 11-12=0/965, 10-11=0/965, 9-10=0/965

WEBS 7-9=0/649, 2-13=-718/0, 2-12=0/334, 3-12=-307/0, 4-9=-640/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

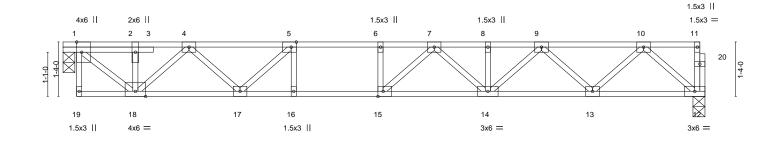
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards

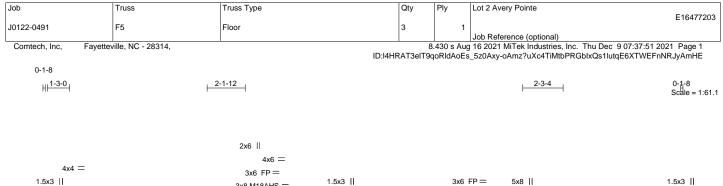

December 9,2021

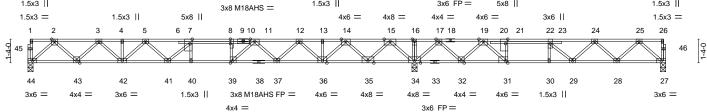
2-0-0

0₁₁₇8 Scale = 1:26.5

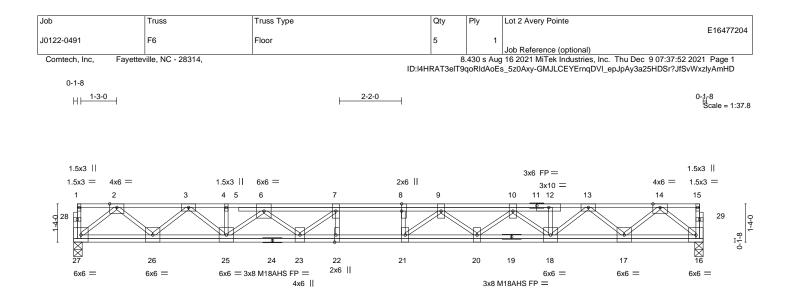
Plate Offsets (X,Y)	[1:0-3-0,Edge], [5:0-1-8,Edge], [15:0-1	-8,Edge]					
LOADING (psf) ICLL 40.0 ICDL 10.0 SCLL 0.0 SCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.94 WB 0.56 Matrix-S	Vert(LL) -0.21	i (loc) l/d 14-15 >8 14-15 >6 12 i	56 480	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%
BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. (size	No.1(flat) No.1(flat) No.3(flat) e) 12=0-3-8, 1=0-3-8 rav 12=829(LC 1), 1=835(LC 1)		BRACING- TOP CHORD BOT CHORD	except end Rigid ceiling	verticals.	rectly applied or 6-0-0 o	•
FOP CHORD 1-2=- 8-9=- BOT CHORD 17-18 WEBS 1-18=	Comp./Max. Ten All forces 250 (b) 0 900/0, 2-4=-903/0, 4-5=-1988/0, 5-6=- 2371/0, 9-10=-1469/0 I=0/1531, 16-17=0/2524, 15-16=0/252 e0/1172, 4-18=-857/0, 4-17=0/636, 5-1 -776/0, 9-14=0/468, 7-14=-279/0, 7-1	2524/0, 6-7=-2524/0, 7-8=-2 4, 14-15=0/2568, 13-14=0/2 7=-794/0, 10-12=-1184/0, 1	2371/0, 2027, 12-13=0/891				

- Plates checked for a plus or minus 1 degree rotation about its center.
- 4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

7) CAUTION, Do not erect truss backwards.



L	21-9-4			1	3	5-11-0	
Plate Offsets (X,Y)	21-9-4 [7:0-3-0,Edge], [8:0-3-0,0-0-0], [21:0-3-0	Edge] [31:0-1-8 Edge]	[39:0-1-8 Edge]		1.	4-1-12	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.79 WB 0.74 Matrix-S	DEFL. ii Vert(LL) -0.32	n (loc) l/de 2 39-40 >80 4 39-40 >59 7 34 n/	3 480 6 360	PLATES MT20 M18AHS Weight: 195 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	except end v	erticals.	rectly applied or 5-7-6 o or 6-0-0 oc bracing.	oc purlins,
Max U	e) 44=0-3-8, 34=0-3-8, 27=0-3-8 Jplift 27=-31(LC 3) Grav 44=1028(LC 3), 34=2416(LC 1), 27	=654(LC 4)					
TOP CHORD 2-3=- 11-12 16-11 24-25	Comp./Max. Ten All forces 250 (lb) or -1903/0, 3-4=-3213/0, 4-5=-3213/0, 5-7= 2=-3071/0, 12-13=-1761/0, 13-14=-1761 7=0/3181, 17-19=-271/1913, 19-21=-158 5=-1099/141	-3892/0, 7-8=-4134/0, 8- /0, 14-15=0/653, 15-16=(8/905, 21-22=-1572/905	11=-4134/0, 0/3181, , 22-24=-1570/502,				
36-3 30-3 WEBS 2-44	4=0/1119, 42-43=0/2658, 41-42=0/3642, 37=0/2554, 35-36=-198/873, 34-35=-170 1=-905/1572, 29-30=-905/1572, 28-29=- =-1487/0, 2-43=0/1091, 3-43=-1050/0, 3	5/0, 32-34=-2289/0, 31-3 233/1489, 27-28=-69/685 42=0/755, 15-34=-1965/	2=-1519/881, 5 ⁄0, 15-35=0/1563,				
5-41 19-32	5=-1537/0, 14-36=0/1242, 12-36=-1112// =0/446, 7-41=-489/83, 11-39=0/1122, 8- 2=-1107/0, 19-31=0/1493, 25-27=-909/9 9=-368/110, 22-29=-6/544, 21-31=-845/0	39=-665/0, 17-34=-1477 3, 25-28=-99/575, 24-28=	/0, 17-32=0/1061,				
 All plates are MT20 All plates are 3x4 M Plates checked for a Provide mechanical This truss is designer referenced standard Recommend 2x6 str 	rongbacks, on edge, spaced at 10-0-0 o attached to walls at their outer ends or re	s center. g plate capable of withst nal Residential Code se c and fastened to each tr	ctions R502.11.1 and R8 russ with 3-10d (0.131" >	302.10.2 and	Q.,		

December 9,2021

	7-10-8 7-10-8		14-0-8 6-2-0				21-11-0 7-10-8	
Plate Offsets (X,Y)	[8:0-3-0,0-0-0], [22:0-3-0,Edge]		0-2-0				7-10-0	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.37 BC 0.60 WB 0.64 Matrix-S	DEFL. Vert(LL) -0.3 Vert(CT) -0.4 Horz(CT) 0.0	5 21	l/defl >797 >579 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 158 lb	GRIP 244/190 186/179 FT = 20%F, 11%
BOT CHORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	excep	t end vert	cals.	irectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
Max	ze) 27=0-3-8, 16=0-3-8 Grav 27=1185(LC 1), 16=1185(LC 1)							
TOP CHORD 2-3= 9-10	.: Comp./Max. Ten All forces 250 (lb) 2352/0, 3-4=-4056/0, 4-6=-4064/0, 6-)=-5402/0, 10-12=-4085/0, 12-13=-408 27=0/1358, 25-26=0/3320, 23-25=0/494	7=-5383/0, 7-8=-5847/0, 8-9 5/0, 13-14=-2350/0	9=-5847/0,					

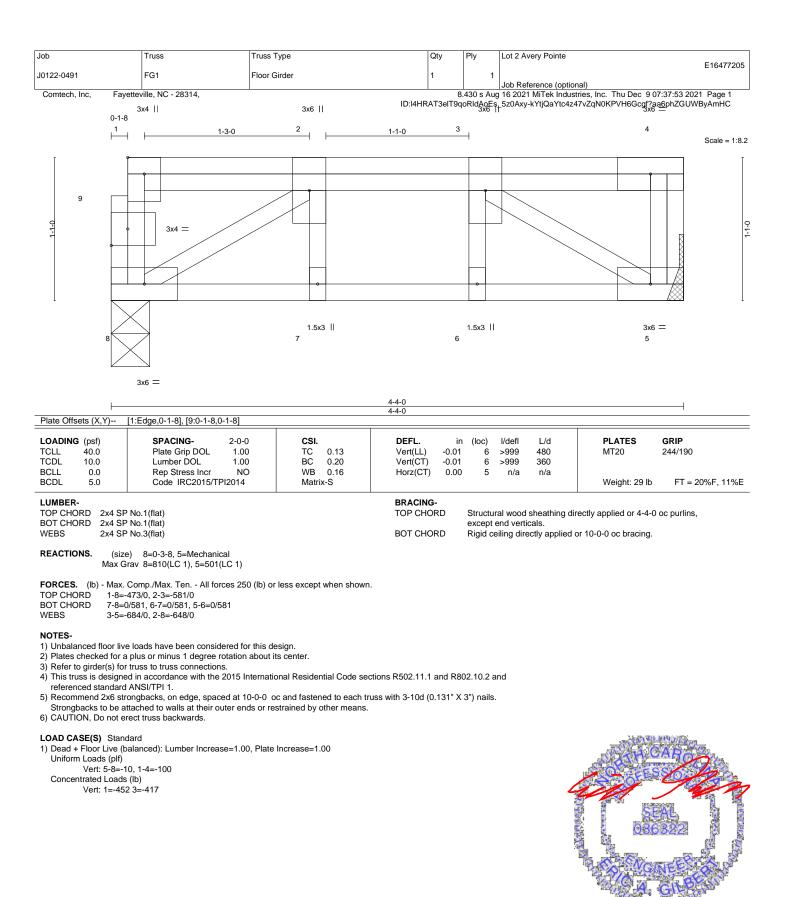
BOT CHORD 26-27=0/1358, 25-26=0/320, 23-25=0/4944, 22-23=0/5847, 21-22=0/5847, 20-21=0/5744, 18-20=0/5011, 17-18=0/3314, 16-17=0/1360 WEBS 2-27=-1765/0, 2-26=0/1348, 3-26=-1313/0, 3-25=0/978, 14-16=-1768/0, 14-17=0/1344, 13-17=-1307/0, 13-18=0/1024, 10-18=-1200/0, 10-20=0/518, 9-20=-508/0, 6-25=-1151/0, 6-23=0/707, 7-23=-889/0, 9-21=-301/635, 8-21=-272/53

NOTES-

1) Unbalanced floor live loads have been considered for this design.

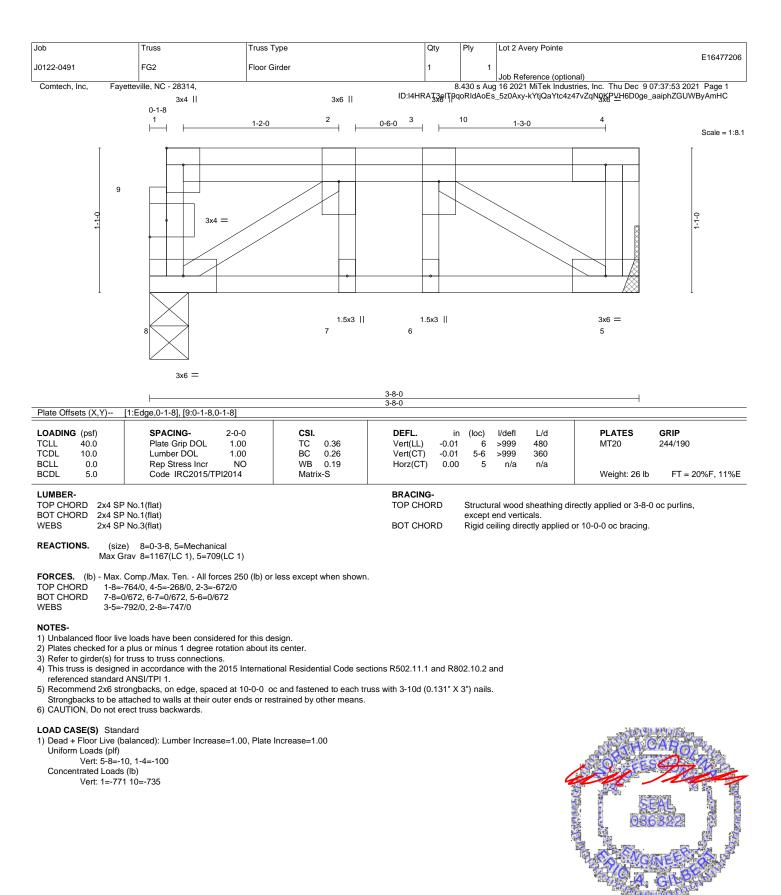
2) All plates are MT20 plates unless otherwise indicated.

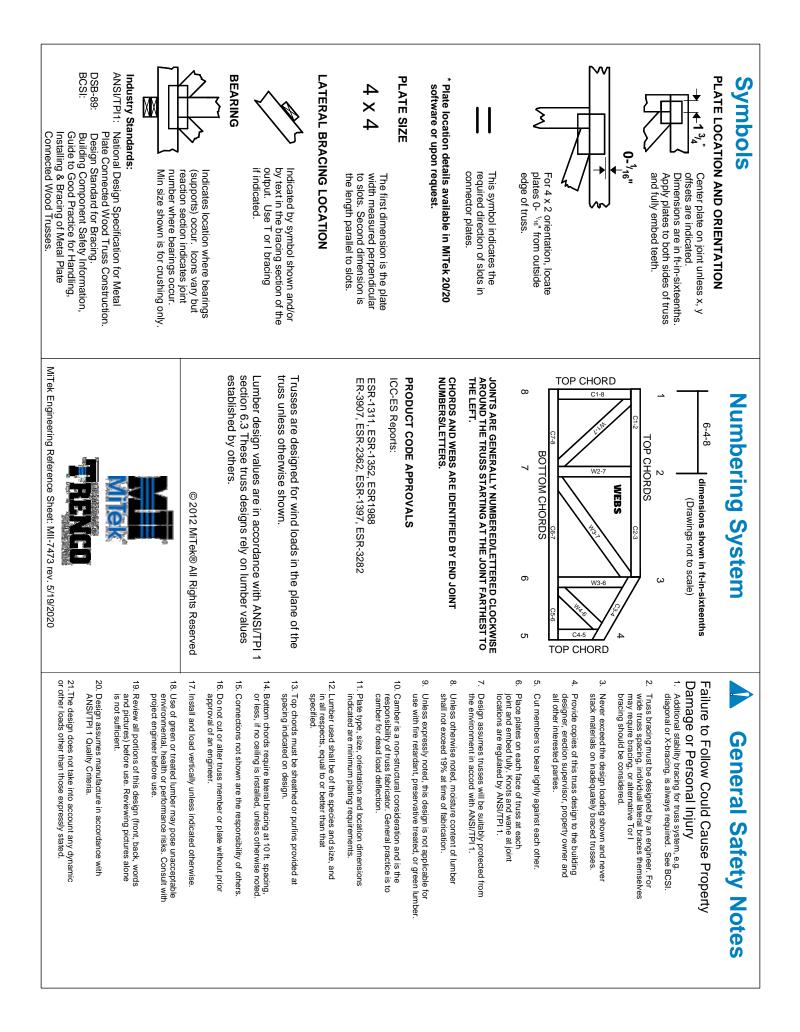
3) All plates are 3x6 MT20 unless otherwise indicated.


4) Plates checked for a plus or minus 1 degree rotation about its center.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.




December 9,2021

December 9,2021

