

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 29618-29618A 1 PRINCE PLACE - ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I49330778 thru I49330822

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

December 20,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 16 and 55 lb uplift at ioint 10.

6) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

December 20.2021

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1704/193, 3-5=-1234/245, 5-7=-1234/245, 7-8=-1704/193, 2-14=-1254/191, 8-10=-1254/191
- BOT CHORD
 13-14=-262/591, 12-13=-104/1456, 11-12=-6/1311, 10-11=-129/412

 WEBS
 5-12=-113/822, 7-12=-610/198, 7-11=0/267, 3-12=-611/199, 3-13=0/267, 2-13=0/981, 8-11=0/990

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 10 and 73 lb uplift at joint 14.

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 11 and 73 lb uplift at joint 17.

6) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

December 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH (Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-2-0. (lb) -

Max Horz 19=160(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 19, 12, 17, 14 except 18=-136(LC 10), 13=-133(LC 11) Max Grav All reactions 250 lb or less at joint(s) 19, 12, 16, 17, 18, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 2-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 12, 17, 14 except (jt=lb) 18=136, 13=133.

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 7=0-3-8, 5=0-3-8 Max Horz 7=156(LC 7) Max Uplift 7=-31(LC 10), 5=-14(LC 11) Max Grav 7=604(LC 17), 5=538(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-566/100, 3-4=-559/98, 2-7=-527/148, 4-5=-455/106
- BOT CHORD 6-7=0/367, 5-6=0/367

3-6: 2x4 SP No.3

WEBS 3-6=0/309

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1 PRINCE PLACE - ROOF	
						149330784
29618-29618A	B3G	Common Girder	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.530 s De	ec 6 2021 MiTek Industries, Inc. Fri Dec 17 12:51:52 2021	Page 2
		ID:ioR	RWAQy5	B3QjdZZO ^r	?W4JayyUwz-YOil2YSPQbOpig_eqOPBP9Htfjs8PrBLv797	78ly82wr

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 7-11=-20

Concentrated Loads (lb) Vert: 7=-1247(F) 12=-2013(F) 13=-1236(F) 14=-1236(F) 15=-1229(F)

TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2
BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No 3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-8-0.

(lb) -Max Horz 16=156(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 12 except 15=-104(LC 10), 11=-102(LC 11) Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 12 except (jt=lb) 15=104, 11=102.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-(4/3 fev. or/19/2020 DEFORE OSE.) Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1 PRINCE PLACE - ROOF	
					149330788	
29618-29618A	C3G	Common Girder	1	2		
					Job Reference (optional)	
8.520 s Oct 22 2021 MiTek Industries, Inc. Mon Dec 20 12:10:08 2021 Page 2						

ID:ioRRWAQy5B3QjdZZO?W4JayyUwz-yqSgRRcnezidK63Wo7ySyjYVB34fPDtBQoxu8sy7FhD

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2013 lb down and 638 lb up at 5-1-8, 1236 lb down and 33 lb up at 7-0-12, 1236 lb down and 52 lb up at 9-0-12, 1229 lb down and 66 lb up at 11-0-12, 1236 lb down and 75 lb up at 13-0-12, 1236 lb down and 75 lb up at 15-0-12, 1236 Ib down and 75 lb up at 17-0-12, and 1236 lb down and 75 lb up at 18-11-4, and 1245 lb down and 66 lb up at 20-8-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 10=-2013(B) 7=-1245(B) 12=-1236(B) 13=-1236(B) 14=-1229(B) 15=-1236(B) 16=-1236(B) 17=-1236(B) 18=-1236(B) 1

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design

4) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=618, 15=469.

December 20.2021

Job	Truss	Truss Type	Qty	Ply	1 PRINCE PLACE - ROOF	
						149330789
29618-29618A	H1G	Half Hip Girder	2	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.530 s De	ec 6 2021 MiTek Industries, Inc. Fri Dec 17 12:52:19 2021	Page 2
		ID:ioRRW	AQy5B3Q	dZZO?W4	JayyUwz-FbqzinnL3uo_SqYqvZOW?rvQ3b7yE6?J6qC3bł	hy82wQ

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 100 lb down and 110 lb up at 5-10-12, 115 lb down and 113 lb up at 7-10-12, 115 lb down and 113 lb up at 11-10-12, 115 lb down and 113 lb up at 13-10-12, 115 lb down and 113 lb up at 15-10-12, 115 lb down and 113 lb up at 15-10-12, 115 lb down and 113 lb up at 15-10-12, 115 lb down and 113 lb up at 13-10-12, 115 lb down and 113 lb up at 13-10-12, 115 lb down and 113 lb up at 13-10-12, 115 lb down and 113 lb up at 13-10-12, 115 lb down and 113 lb up at 23-10-12, 115 lb down and 113 lb up at 23-10-12, 115 lb down and 113 lb up at 23-10-12, 115 lb down and 113 lb up at 25-10-12, and 113 lb up at 15-10-12, 52 lb down and 113 lb up at 25-10-12, 52 lb down at 113 lb up at 13-10-12, 52 lb down at 23-10-12, 52 lb down at 23-10-12, and 52 lb down at 25-10-12, and 52 lb down at 25

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-8=-60, 9-15=-20

Concentrated Loads (lb)

Vert: 12=-37(F) 16=-68(F) 17=-68(F) 18=-68(F) 19=-68(F) 20=-68(F) 21=-68(F) 22=-68(F) 23=-68(F) 23=-68(F) 25=-68(F) 25=-68(F) 26=-68(F) 27=-68(F) 29=-44(F) 30=-67(F) 31=-37(F) 32=-37(F) 33=-37(F) 35=-37(F) 36=-37(F) 37=-37(F) 32=-37(F) 40=-37(F) 42=-37(F) 42=-37(F)

1	9-0-0	16-0-0	1	23-0-0	31-8-8	1
	9-0-0	7-0-0	1	7-0-0	8-8-8	
Plate Offsets (X,)	') [2:0-1-0,0-1-8], [4:0-3-1,Edge], [6:0-3-1	,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.74 WB 0.91 Matrix-MS	DEFL. ir Vert(LL) -0.15 Vert(CT) -0.30 Horz(CT) 0.06	n (loc) l/defl L/d 14-15 >999 240 14-15 >999 180 9 n/a n/a	PLATES GR MT20 19 Weight: 192 lb F	IP 7/144 T = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2 REACTIONS.	x4 SP No.2 or 2x4 SPF No.2 x4 SP No.2 or 2x4 SPF No.2 x4 SP No.3 (size) 15=0-3-8, 9=Mechanical flax Horz 15=158(LC 7) flax Uplift 15=-32(LC 10), 9=-13(LC 11) flax Grav 15=1319(LC 1), 9=1256(LC 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathi except end verticals. Rigid ceiling directly app	ng directly applied or 3-8-14 oc p blied or 10-0-0 oc bracing.	urlins,
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-359/86, 3-4=-1552/235, 4-5=-1564/281 2-15=-359/116 14-15=-123/1271, 12-14=-81/1239, 10-12=-2 4-14=0/312, 4-12=-132/519, 5-12=-507/178, 3-15=-1359/151, 7-9=-1431/171	r less except when shown. , 5-6=-1564/281, 6-7=-1521/23 26/1215, 9-10=-102/1212 6-12=-129/547, 6-10=0/283,	4,			

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 9.

L	5-10-12 11-6-0		20-6-0	25-11-8	31-8-8	
I	5-10-12 5-7-4		9-0-0	5-5-8	5-9-0	1
Plate Offsets (X,Y)	[2:0-3-0,0-1-8], [4:0-4-0,0-1-9], [6:0-4-0,	0-1-9]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.51 BC 0.95 WB 0.48 Matrix-MS	DEFL. in Vert(LL) -0.28 Vert(CT) -0.49 Horz(CT) 0.04	(loc) l/defl L/d 11-13 >999 240 11-13 >767 180 9 n/a n/a	PLATES MT20 M18SHS Weight: 206 lb	GRIP 197/144 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI WEBS 2x4 SI REACTIONS. (siz Max H Max L Max C	 P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3 e) 15=0-3-8, 9=Mechanical forz 15=193(LC 7) plift 15=-51(LC 10), 9=-32(LC 11) Grav 15=1319(LC 1), 9=1256(LC 1) 		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing of except end verticals. Rigid ceiling directly applied 2-2-0 oc bracing: 11-13. 1 Row at midpt	directly applied or 4-2-4 oc d or 10-0-0 oc bracing, Ex 5-13, 5-11	: purlins, xcept:

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1678/203, 3-4=-1448/241, 4-5=-1121/237, 5-6=-1108/235, 6-7=-1431/242, 7-8=-1611/198. 2-15=-1256/192. 8-9=-1195/155
- BOT CHORD 14-15=-184/366, 13-14=-76/1318, 11-13=-23/1201, 10-11=-71/1271
- WEBS 3-13=-287/152, 4-13=-31/495, 5-13=-267/143, 5-11=-288/140, 6-11=-35/494, 7-11=-253/150, 2-14=-19/1096, 8-10=-61/1153
- NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 9.

	1 1 12	1400	1000	2400	0100	
	7-1-12	6-10-4	4-0-0	6-8-8	7-0-0	
Plate Offsets (X,Y)	[5:0-3-1,Edge], [6:0-4-0,0-1-9]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.61 BC 0.55 WB 0.45 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.06 14-15 >999 240 -0.15 14-15 >999 180 0.04 10 n/a n/a	PLATES GR MT20 19 Weight: 212 lb F	:IP 7/144 ∵T = 20%
LUMBER- TOP CHORD BOT CHORD WEBS 2x4 S 2-16,S REACTIONS. (siz Max h Max 0 Max 0	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3 *Except* Incl: 2x6 SP No.2 P No.2		BRACING- TOP CHOR BOT CHOR WEBS	D Structural wood sheath except end verticals. D Rigid ceiling directly ap 1 Row at midpt	ng directly applied or 3-9-0 oc pu blied or 10-0-0 oc bracing. 4-14, 5-12, 7-12	ırlins,
FORCES. (lb) - Max TOP CHORD 2-4= 2-16 2-16 BOT CHORD 15-1 WEBS 4-14 9-11	. Comp./Max. Ten All forces 250 (lb) c 1669/195, 4-5=-1305/246, 5-6=-977/24 =-1251/192, 9-10=-1184/152 6=-230/463, 14-15=-94/1307, 12-14=0/9 =-432/168, 5-14=-43/434, 6-12=-30/392 =-26/1098	r less except when shown. 8, 6-7=-1299/247, 7-9=-16 982, 11-12=-49/1259 , 7-12=-402/168, 2-15=0/99	13/191, 97,			
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10:	e loads have been considered for this d vult=120mph Vasd=95mph: TCDI =6 0r	esign. sf: BCDI =6 0psf: h=30ft: C	at. II: Exp B: Encl	osed: MWFRS (envelope)		

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10.

Plate Offsets (X,Y)	[3:0-2-8,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code, IRC2015/TPI2014	CSI. TC 0.22 BC 0.32 WB 0.03 Matrix-MP	DEFL.irVert(LL)0.05Vert(CT)-0.06Horz(CT)0.05	n (loc) l/defl L/d 5 6-7 >999 240 5 6-7 >892 180 9 4 n/a n/a	PLATES MT20	GRIP 197/144
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3	Manx-Wi	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	rectly applied or 5-0-0	oc purlins,

REACTIONS. (size) 4=Mechanical, 7=0-3-8, 5=Mechanical Max Horz 7=89(LC 10) Max Uplift 4=-25(LC 7), 5=-17(LC 10) Max Grav 4=99(LC 1), 7=259(LC 1), 5=87(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

		1-3-3		3-8-13	,	
Plate Offsets (X,Y)	[3:0-2-4,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.30 BC 0.26 WB 0.03	DEFL. i Vert(LL) 0.04 Vert(CT) -0.05 Horz(CT) 0.07	n (loc) l/defl L/d 4 5-6 >999 240 5 5-6 >999 180 7 4 n/a n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP			Weight: 21 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2		BRACING- TOP CHORD	Structural wood sheathing dire	ectly applied or 5-0-0	oc purlins,
WEBS 2x4 SF	° No.3		BOT CHORD	Rigid ceiling directly applied c	or 6-0-0 oc bracing.	

REACTIONS. (size) 4=Mechanical, 7=0-3-8, 5=Mechanical Max Horz 7=47(LC 7) Max Uplift 4=-45(LC 7), 7=-39(LC 10), 5=-1(LC 7)

Max Grav 4=121(LC 22), 7=258(LC 1), 5=87(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 5.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 61 lb up at 1-3-3, and 72 lb down and 52 lb up at 3-2-4 on top chord, and 10 lb down and 12 lb up at 1-2-4, and 10 lb down and 12 lb up at

3-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 6=1(B) 9=1(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	0-2-8	<u>2-1-4</u> 1-10-12	3-4-13	4-2-8	4
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.17 BC 0.18	Vert(LL) -0.01 6-7 > Vert(CT) -0.03 6-7 >	>999 240 >999 180	MT20 197/144
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Horz(CT) 0.01 4	n/a n/a	Weight: 17 lb FT = 20%

2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD BOT CHORD WEBS

2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-8 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=0-3-0, 4=Mechanical, 5=Mechanical

Max Horz 7=52(LC 10)

Max Uplift 7=-23(LC 10), 5=-33(LC 10)

Max Grav 7=229(LC 1), 4=48(LC 3), 5=115(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

	0-2-8	<u>2-2-7</u> 1-11-15	4-2- 2-0-	-8 -1
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEF TC 0.14 Verti BC 0.20 Verti WB 0.02 Horz Matrix-MP Horz Horz	L. in (loc) l/defl l (LL) -0.01 6 >999 2 (CT) -0.03 6 >999 1 (CT) 0.02 4 n/a r	L/d PLATES GRIP 40 MT20 197/144 80 1/a Weight: 16 lb FT = 20%
LUMBER-		BRA	CING-	

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.3 WEBS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-8 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=0-3-0, 4=Mechanical, 5=Mechanical

Max Horz 7=36(LC 10)

Max Uplift 7=-25(LC 6), 4=-20(LC 7)

Max Grav 7=229(LC 1), 4=87(LC 1), 5=69(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4.

	0-2-8 1- 0-2-8 0-	-0-0 -9-8	<u>4-2-8</u> 3-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.18 WB 0.03 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 5-6 >999 240 Vert(CT) -0.03 5-6 >999 180 Horz(CT) 0.02 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 15 lb FT = 20%

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-8 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 7=0-3-0, 5=Mechanical

Max Horz 7=23(LC 7)

Max Uplift 4=-29(LC 7), 7=-34(LC 6)

Max Grav 4=102(LC 22), 7=233(LC 1), 5=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 18 lb down and 44 lb up at 2-0-12 on top chord, and 9 lb down at 2-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 8=-1(B) 9=-6(B)

Edenton, NC 27932

				0-2-8			2-4-1					
LOADIN TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.06 0.04 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC2015/TF	12014	Matri	x-MP						Weight: 9 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2 or 2x4 SPF No.2BOT CHORD2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=28(LC 6)

Max Uplift 3=-18(LC 10), 2=-39(LC 6) Max Grav 3=55(LC 1), 2=154(LC 1), 4=40(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 2-4-1 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.31 WB 0.00 Matrix-MR	Vert(CT) -0.0 Horz(CT) 0.0	6 5-6 >946 180 8 4 n/a n/a	Weight: 20 lb FT = 20%
LUMBER	{-			BRACING-		
TOP CH	ORD 2x4 SP	No.2 or 2x4 SPF No.2		TOP CHORD	Structural wood sheathing di	irectly applied or 5-0-0 oc purlins,
BOT CH	ORD 2x4 SP	No.2 or 2x4 SPF No.2			except end verticals.	
WEBS	2x4 SP	2 No.3		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing

REACTIONS. (size) 6=0-3-8, 4=Mechanical, 5=Mechanical Max Horz 6=133(LC 10) Max Uplift 4=-86(LC 10)

Max Grav 6=259(LC 1), 4=129(LC 17), 5=92(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 WFBS

BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=145(LC 10) Max Uplift 3=-102(LC 10)

Max Grav 5=259(LC 1), 3=143(LC 17), 4=92(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=102.

1-10-0 1-10-0

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.11 BC 0.05 WB 0.00 Matrix-MR	DEFL. in (loc) Vert(LL) -0.00 5 Vert(CT) -0.00 5 Horz(CT) 0.00 3	l/defl L/d 5 >999 240 5 >999 180 8 n/a n/a	PLATES GRIP MT20 197/144 Weight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2		BRACING- TOP CHORD Struct excer	tural wood sheathing di ot end verticals.	rectly applied or 1-10-0 oc purlins,

BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.3 WEBS

REACTIONS.

(size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=47(LC 10)

Max Uplift 3=-32(LC 10), 4=-3(LC 10)

Max Grav 5=147(LC 1), 3=42(LC 17), 4=31(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

TCDL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.69 WB 0.00 Matrix-MP	Vert(CT) -0.36 Vert(CT) -0.36 Horz(CT) 0.03	3 4-7 >036 240 3 4-7 >258 180 3 2 n/a n/a	Weight: 28 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1 P No.2 or 2x4 SPF No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8

Max Horz 2=76(LC 9) Max Uplift 4=-39(LC 10), 2=-60(LC 6)

Max Grav 4=311(LC 1), 2=370(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

ENGINEERING BY **RENCO** A MITek Affiliale 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1 PRINCE PLACE - ROOF	
					4	19330803
29618-29618A	M1A	Monopitch	7	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.530 s De	ec 6 2021 MiTek Industries, Inc. Fri Dec 17 12:52:30 2021 P	age 2

ID:ioRRWAQy5B3QjdZZO?W4JayyUwz-Ri?70XvFTGBQGWuy2N55yAsAV1IHJCgxe1M8UYy82wF

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-2=-29, 2-3=-32, 6-8=-20, 4-5=-103(F=-60)

Horz: 1-2=-21, 2-3=-18, 5-6=6

18) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-38, 2-3=-41, 6-8=-20, 4-5=-92(F=-60)

Horz: 1-2=-12, 2-3=-9, 5-6=-17

19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-29, 2-3=-32, 6-8=-20, 4-5=-103(F=-60)

Horz: 1-2=-21, 2-3=-18, 5-6=5

20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vort: 1.2 40.2.2

Vert: 1-2=-40, 2-3=-43, 6-8=-20, 4-5=-92(F=-60)

Horz: 1-2=-10, 2-3=-7, 5-6=-16 23) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-50, 6-8=-20, 4-5=-80(F=-60)

24) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-20, 6-8=-20, 4-5=-110(F=-60)

			7-0-0 7-0-0	<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.09 BC 0.06 WB 0.03 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) -0.00	n (loc) l/defl L/d) 1 n/r 120) 1 n/r 90) 8 n/a n/a	PLATES GRIP MT20 197/144 Weight: 32 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 2=54(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 10, 11 Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 10, 11.

Max Grav 2=489(LC 1), 5=432(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-881/185 BOT CHORD 2-6=-163/818, 5-6=-163/818

WEBS 3-5=-838/214

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

	0-2-8 0-2-8				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.78 BC 0.69 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 4-7 >636 240 Vert(CT) -0.36 4-7 >258 180 Horz(CT) 0.03 2 n/a n/a	PLATES GRIP MT20 197/144 Weight: 28 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP	No.1	· · · · ·	BRACING- TOP CHORD Structural wood sheathing dir	ectly applied or 6-0-0 oc purlins,	

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

2x4 SP No.1 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 WFBS

REACTIONS. (size) 4=Mechanical, 2=0-3-0

Max Horz 2=76(LC 9) Max Uplift 4=-39(LC 10), 2=-60(LC 6)

Max Grav 4=311(LC 1), 2=370(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	sf)).0).0).0).0 *).0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES VI2014	CSI. TC BC WB Matrix	0.07 0.03 0.03 <-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 1 1 5	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.2 or 2x4 SPF No.2 No.2 or 2x4 SPF No.2 No.3 No.3				BRACING- TOP CHOF BOT CHOF	RD RD	Structur except Rigid ce	ral wood end verti eiling dire	sheathing di cals. ctly applied	rectly applied or 4-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 7=3-9-8, 5=3-9-8, 6=3-9-8

Max Horz 7=75(LC 7)

Max Uplift 7=-19(LC 6), 5=-5(LC 7), 6=-37(LC 10) Max Grav 7=141(LC 1), 5=63(LC 1), 6=154(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Torce deviced the theory and the state of the
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

			5-0-0			
Plate Offsets (X,Y)	[4:Edge,0-1-12]			1		
COADING (psf) TCLL 20.0 TCDL 10.0 SCLL 0.0 SCLL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.19 WB 0.00	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) -0.00	n (loc) l/defl L/d 4-5 >999 240 4-5 >999 180 4 n/a n/a	PLATES O MT20	GRIP 197/144
CDL 10.0		Watrix-WIK			weight. 21 lb	FT = 20%
UMBER-			BRACING-			
OP CHORD 2x4 SF	No.2 or 2x4 SPF No.2		TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purling			
OT CHORD 2x4 SF	No.2 or 2x4 SPF No.2			except end verticals.	, ,,	• •
	No 3		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing	

Max Horz 5=84(LC 7) Max Uplift 5=-52(LC 6), 4=-24(LC 10) Max Grav 5=256(LC 1), 4=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.05 WB 0.03 Matrix-R	DEFL. i Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) -0.00	n (loc) l/defl L/d 0 1 n/r 120 0 2 n/r 90 0 6 n/a n/a	PLATES GRIP MT20 197/144 Weight: 26 lb FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4	SP No.2 or 2x4 SPF No.2 SP No.2 or 2x4 SPF No.2 SP No.3 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	irectly applied or 5-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. All bearings 5-0-0.

(lb) - Max Horz 9=84(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 9, 6, 7, 8 Max Grav All reactions 250 lb or less at joint(s) 9, 6, 7, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6, 7, 8.

	0-2-8 0-2-8		9-10-0 9-7-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.71 WB 0.23 Matrix-MS	DEFL. ii Vert(LL) -0.19 Vert(CT) -0.4' Horz(CT) 0.0'	n (loc) l/defl L/d 9 5-8 >611 240 1 5-8 >284 180 1 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 40 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Bigid ceiling directly applied	rectly applied or 5-7-3 oc purlins,

REACTIONS. (size) 5=Mechanical, 2=0-3-0 Max Horz 2=88(LC 9) Max Uplift 5=-48(LC 10), 2=-68(LC 6)

Max Grav 5=385(LC 1), 2=442(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-680/215

 BOT CHORD
 2-5=-191/651

 WEED
 2-5=-2191/651

WEBS 3-5=-651/252

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

<u>9-10-0</u> 9-7-8									
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.29 BC 0.23	DEFL. ir Vert(LL) -0.03 Vert(CT) -0.06	n (loc) l/defl L/d ; 8-9 >999 240 ; 8-9 >999 180	PLATES C MT20 1	3RIP 97/144			
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Matrix-S	Horz(CT) 0.00) 7 n/a n/a	Weight: 40 lb	FT = 20%			
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4	SP No.2 or 2x4 SPF No.2 SP No.2 or 2x4 SPF No.2 SP No.3 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 or or 10-0-0 oc bracing.	purlins,			

REACTIONS. (size) 2=4-11-0, 10=4-11-0, 7=Mechanical Max Horz 2=88(LC 7) Max Uplift 2=-32(LC 6), 10=-61(LC 10), 7=-23(LC 10)

Max Grav 2=167(LC 1), 10=455(LC 1), 7=205(LC 1)

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 7.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-10=-291/134

3x4 =

	0-2-8 0-2-8		<u>9-10-0</u> 9-7-8			4
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.15	DEFL. in Vert(LL) -0.00	n (loc) l/defl L/d) 1 n/r 120	PLATES GRIP MT20 197/144	1
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.04 Matrix-S	Horz(CT) -0.00) 7 n/a n/a	Weight: 40 lb FT =	= 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0 oc purlin	S,
WEBS 2x4 SF OTHERS 2x4 SF	° No.3 ° No.3		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	

REACTIONS. All bearings 9-7-8.

(lb) - Max Horz 2=88(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10 Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=301(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9, 10.

ł

LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC BC WB Matrix	0.19 0.13 0.05 -P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 -0.00	(loc) 1 1 6	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No 2x4 SP No 2x4 SP No	0.2 or 2x4 SPF No.2 0.2 or 2x4 SPF No.2				BRACING- TOP CHOR		Structu except	ral wood end vertig	sheathing dir cals.	ectly applied or 6-0-0	oc purlins,

OTHERS 2x4 SP No.3

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 2=75(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8 Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=313(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

NOTES-

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 5 except (jt=lb) 8=137, 6=170.

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 5 except (jt=lb) 8=151, 6=138.

¹⁾ Unbalanced roof live loads have been considered for this design.

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=137, 6=128.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Atfille 818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=8-4-6, 3=8-4-6, 4=8-4-6

Max Horz 1=67(LC 7)

Max Uplift 1=-24(LC 11), 3=-32(LC 11)

Max Grav 1=173(LC 1), 3=173(LC 1), 4=263(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.41 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d PL Vert(LL) n/a - n/a 999 M1 Vert(CT) n/a - n/a 999 M1 Horz(CT) 0.00 3 n/a n/a We	ATES GRIP I20 244/190 eight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	9 No.3 9 No.3		BRACING- TOP CHORD Structural wood sheathing directly appl BOT CHORD Rigid ceiling directly applied or 10-0-0	lied or 5-2-9 oc purlins. oc bracing.

REACTIONS. (size) 1=5-1-15, 3=5-1-15 Max Horz 1=-39(LC 6)

Max Horz 1=-39(LC 6) Max Uplift 1=-6(LC 10), 3=-6(LC 11) Max Grav 1=176(LC 1), 3=176(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6

in (loc)

n/a

n/a

2x4 ||

6-3-14 6-3-14

DEFL.

Vert(LL)

Vert(CT)

.

 \propto

2x4 ||

5

l/defl

n/a

n/a

L/d

999

999

PLATES

MT20

GRIP

244/190

WB 0.05 BCLL 0.0 **Rep Stress Incr** YES Horz(CT) 0.00 5 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 29 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.3 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.3 except end verticals. 2x4 SP No.3 BOT CHORD WFBS Rigid ceiling directly applied or 6-0-0 oc bracing. OTHERS 2x4 SP No.3

REACTIONS. (size) 1=6-3-14, 5=6-3-14, 6=6-3-14 Max Horz 1=112(LC 7) Max Uplift 1=-1(LC 6), 5=-1(LC 6), 6=-83(LC 10) Max Grav 1=133(LC 18), 5=58(LC 22), 6=326(LC 17)

[3:0-2-0,Edge]

SPACING-

Plate Grip DOL

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

Plate Offsets (X,Y)--

20.0

10.0

LOADING (psf)

TCLL

TCDL

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

0-0-4

2-0-0

1.15

1.15

2x4 💋

CSI.

0.28

0.17

тс

BC

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6.

¹⁾ Unbalanced roof live loads have been considered for this design.

			4-8-11		1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) n/a	- n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) n/a	- n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00	4 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 21 lb FT = 20%
LUMBER-	· /	1	BRACING-		
TOP CHORD 2x4 SP	9 No.3		TOP CHORD	Structural wood sheathing di	irectly applied or 4-8-11 oc purlins,
BOT CHORD 2v4 SP	No.3			except end verticals	

 WEBS
 2x4 SP No.3
 except end verticals.

 OTHERS
 2x4 SP No.3
 BOT CHORD

 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-8-11, 4=4-8-11, 5=4-8-11

Max Horz 1=69(LC 7)

Max Uplift 1=-8(LC 10), 4=-24(LC 6), 5=-4(LC 7) Max Grav 1=114(LC 1), 4=47(LC 18), 5=200(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.

2x4 🥢

2x4 =

Plate Offsets (X,Y)	[2:0-2-0,Edge]		3-1-8	T	
.OADING (psf) .CLL 20.0 .CDL 10.0 3CLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.05 BC 0.14 WB 0.00	DEFL. in (lo Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	oc) l/defl L/d - n/a 999 - n/a 999 3 n/a n/a	PLATES GRIP MT20 244/190
CDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3		BRACING- TOP CHORD Stru BOT CHORD Rig	Structural wood sheathing directly applied or 3-1-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.		

3-1-8

REACTIONS. (size) 1=3-1-8, 3=3-1-8 Max Horz 1=-24(LC 6) Max Uplift 1=-4(I C 10) 3=-3(I

Max Uplift 1=-4(LC 10), 3=-3(LC 11) Max Grav 1=108(LC 1), 3=108(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

¹⁾ Unbalanced roof live loads have been considered for this design.

