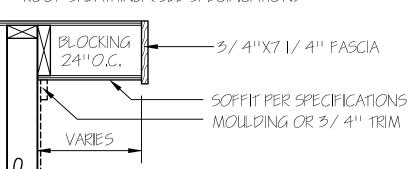
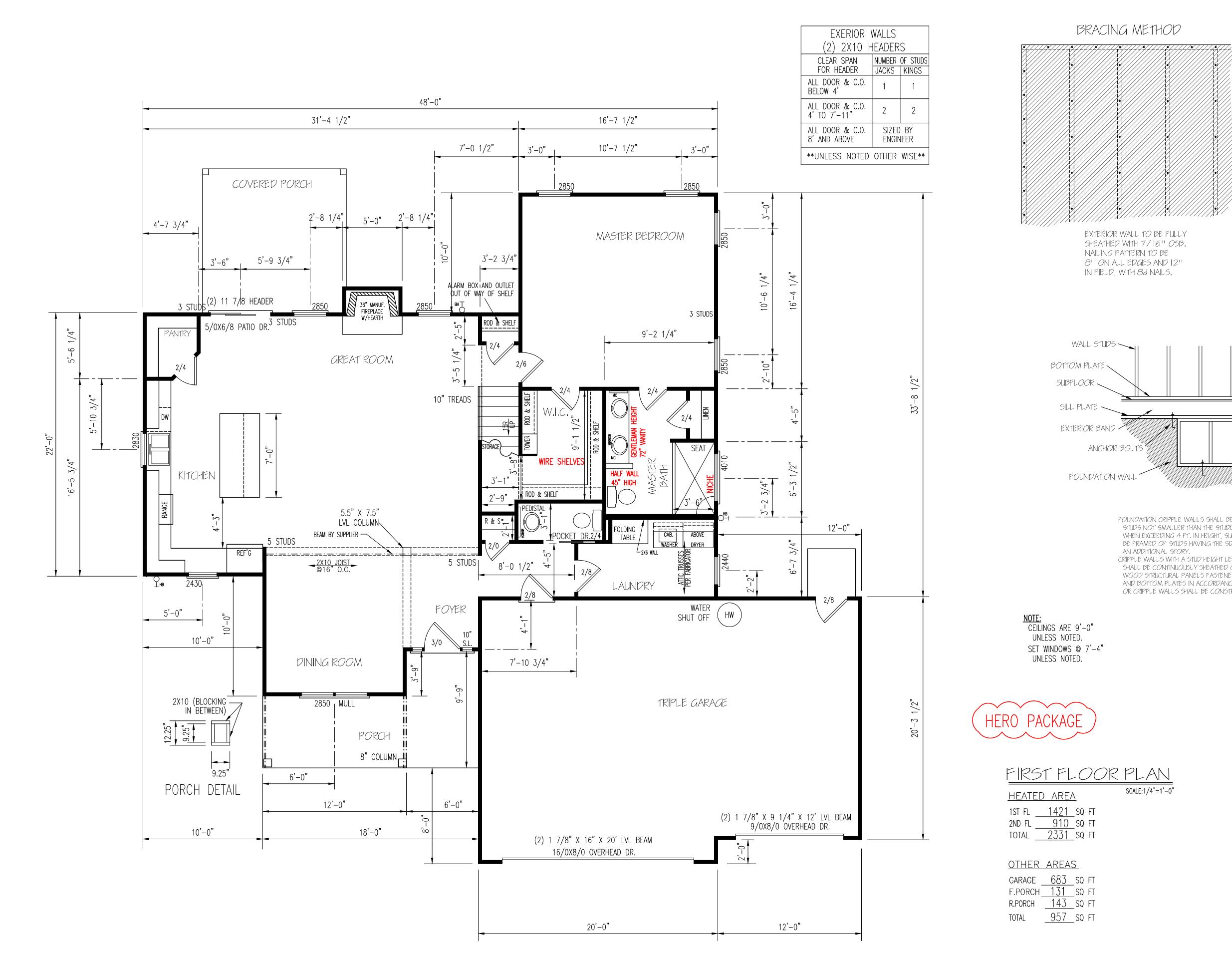

LEFT ELEVATION

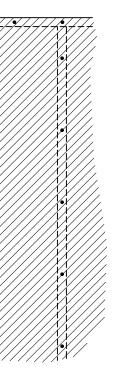

<u>FRONT ELEVATION</u> SCALE:1/4"=1'-0"

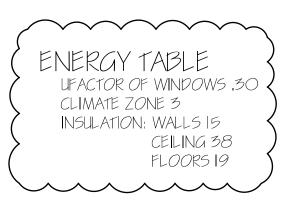
REAR ELEVATION SCALE:1/8"=1'-0"

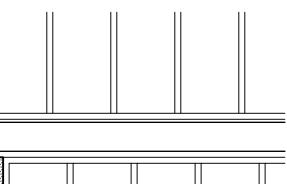
RAKE DETAIL FOR GABLE ENDS

- ROOF SHEATHING (SEE SPECIFICATION)



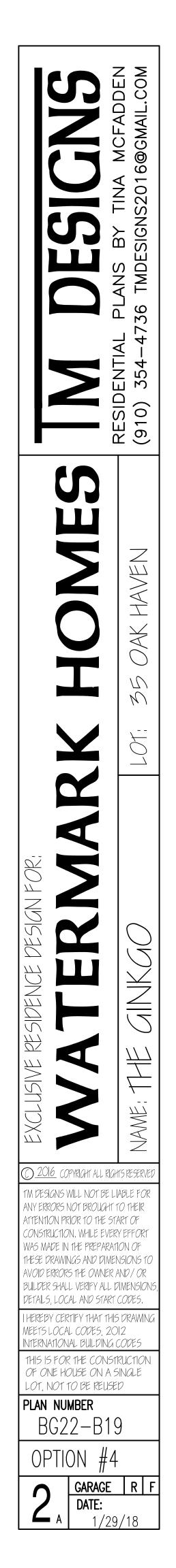

<u>RIGHT ELEVATION</u>

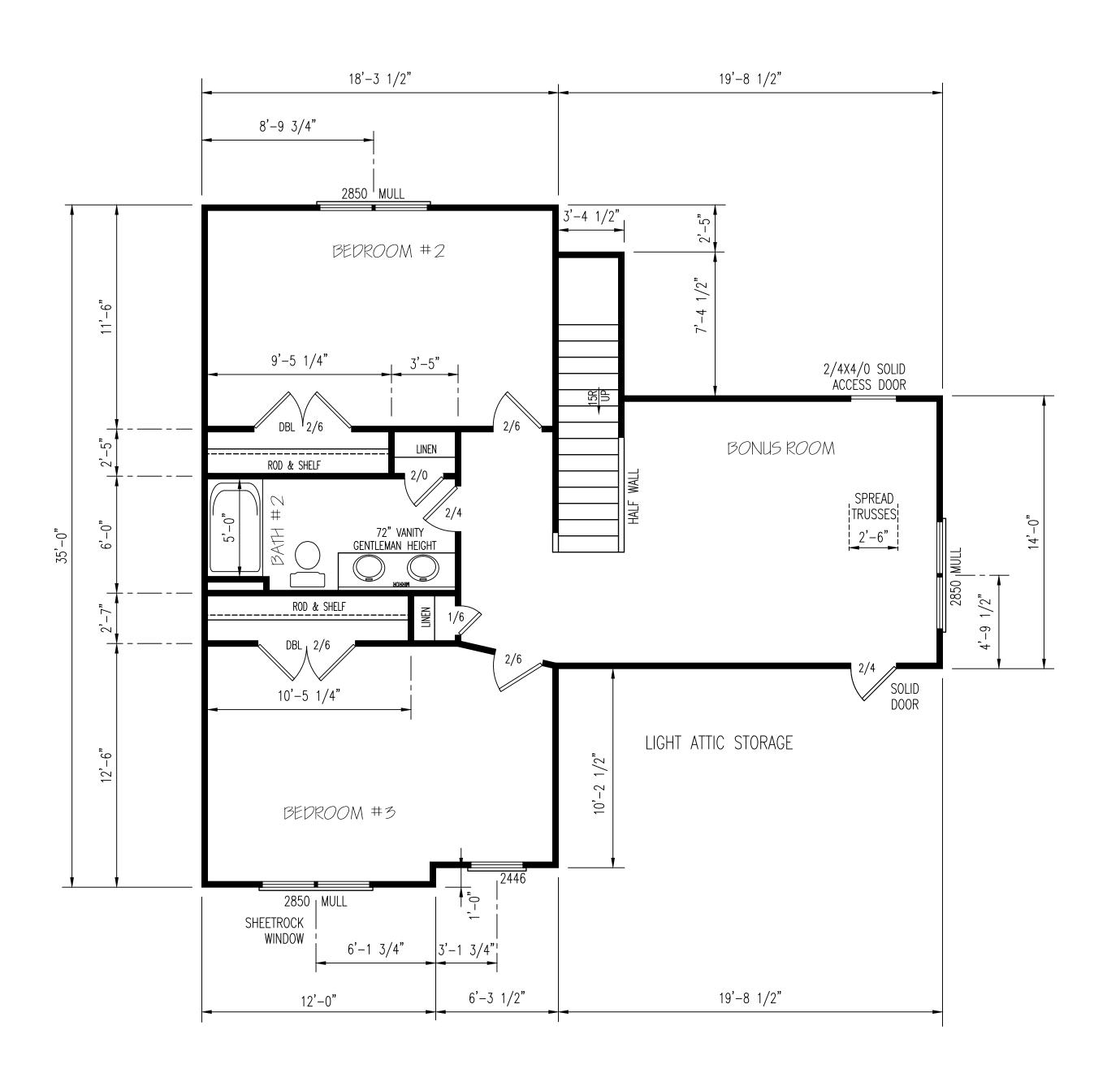

ATTIC VENTILATION CALCULATIONS
ATTIC AREA <u>2378</u> SQ.FT.(AREA VENTILATION REQUIRED <u>16.6</u> SQ.FT.)
EACH ?FT. BASE GABLE LOUVER @ ?SQ.FT. NET FREE AREA EACH ?FT. BASE GABLE LOUVER @ ?SQ.FT. NET FREE AREA
EACH _?LOUVER @ _? SQ.FT. NET FREE AREA
<u>130</u> LIN.FT. EAVE VENT @ 11 SQ.IN./FT.= <u>9.9</u> SQ.FT.NET FREE AREA <u>102</u> LIN.FT. RIDGE VENT @ 18 SQ.IN./FT.= <u>12.8</u> SQ.FT.NET FREE AREA



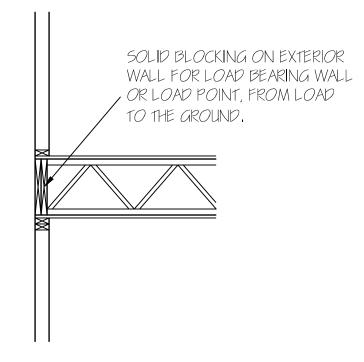
GARAGE PANEL WALL

GARAGE PANEL WALLS UNDER 24" WIDE SHOULD BE EITHER PORTAL FRAMED OR 7/16" OSB ON BOTH SIDES WITH A NAILING PATTERN OF 311 ON ALL PANEL EDGES AND 6" IN THE FIELD,

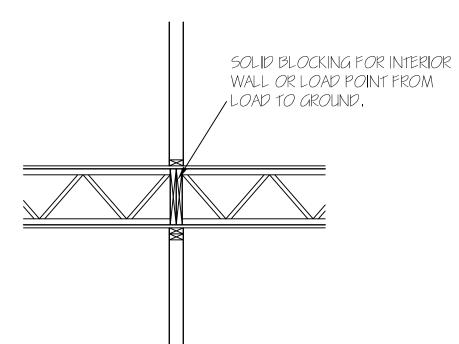



CRIPPLE WALL

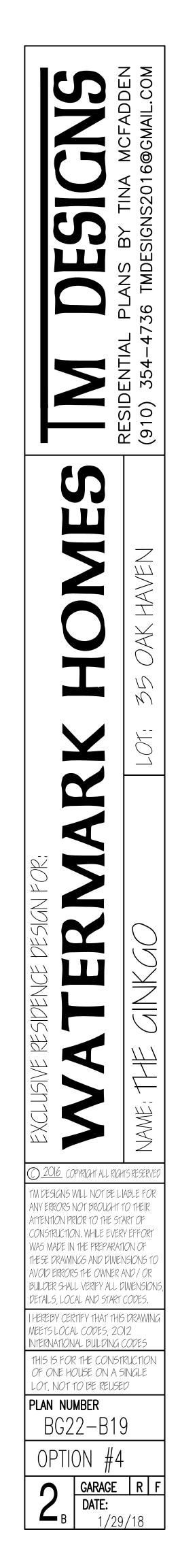
FOUNDATION CRIPPLE WALLS SHALL BE FRAMED OF STUDS NOT SMALLER THAN THE STUDDING ABOVE. WHEN EXCEEDING 4 FT. IN HEIGHT, SUCH WALLS SHALL BE FRAMED OF STUDS HAVING THE SIZE REQUIRED FOR

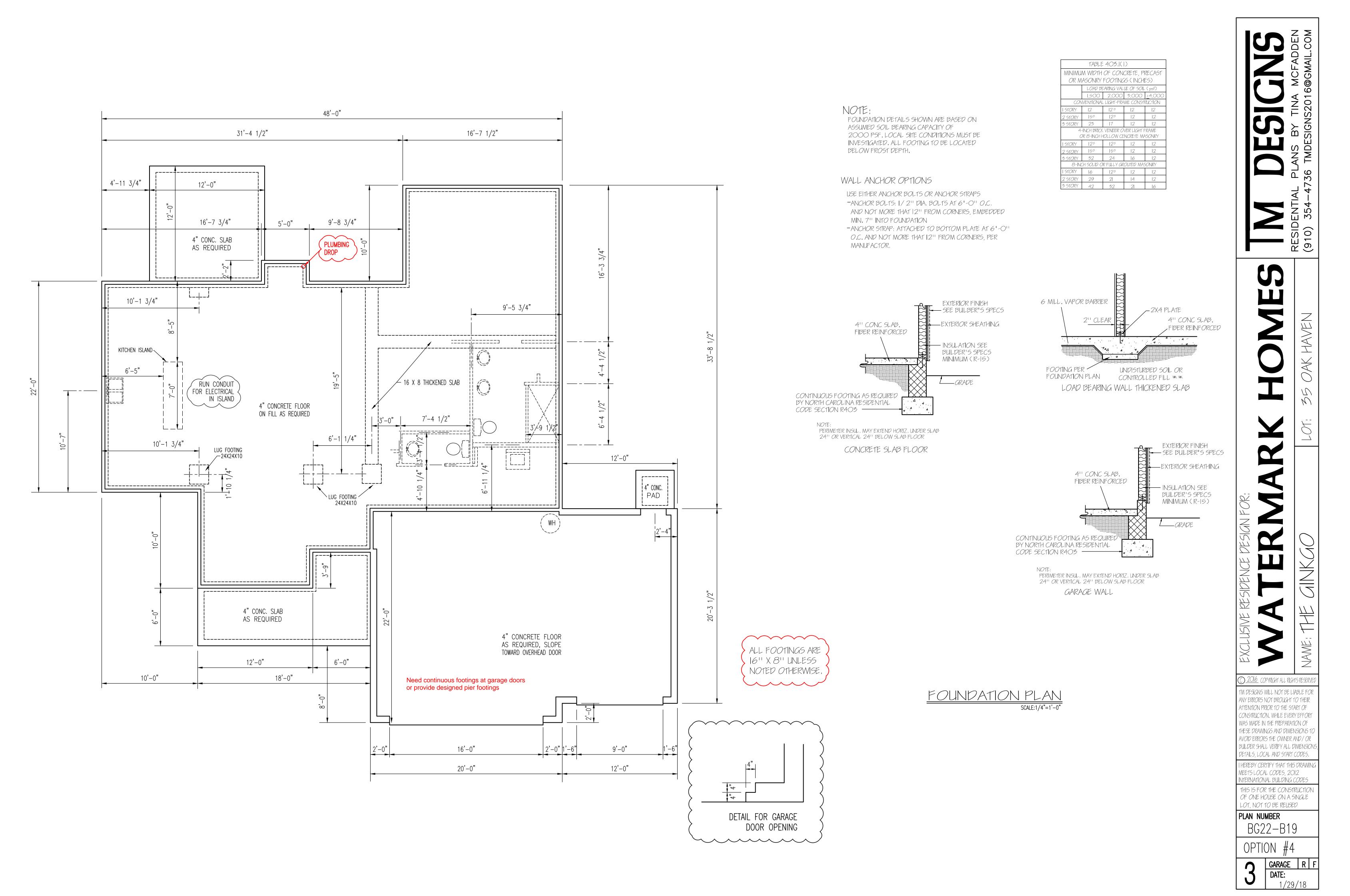

CRIPPLE WALLS WITH A STUD HEIGHT LESS THAN 14 INCHES SHALL BE CONTINUOUSLY SHEATHED ON ONE SIDE WITH WOOD STRUCTURAL PANELS FASTENED TO BOTH THE TOP AND BOTTOM PLATES IN ACCORDANCE WITH TABLE R602.3(1).

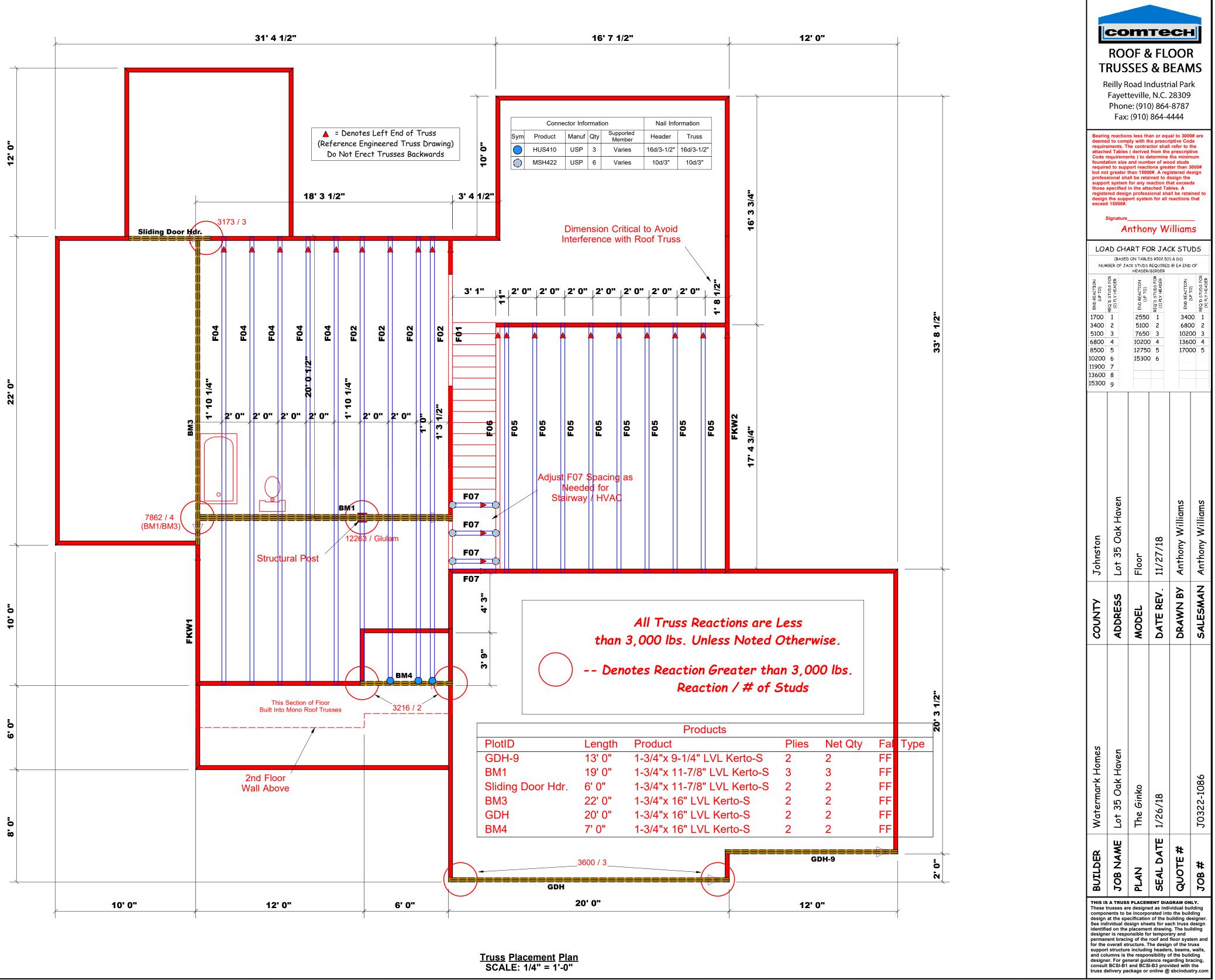
OR CRIPPLE WALLS SHALL BE CONSTRUCTED OF SOLID BLOCKING,



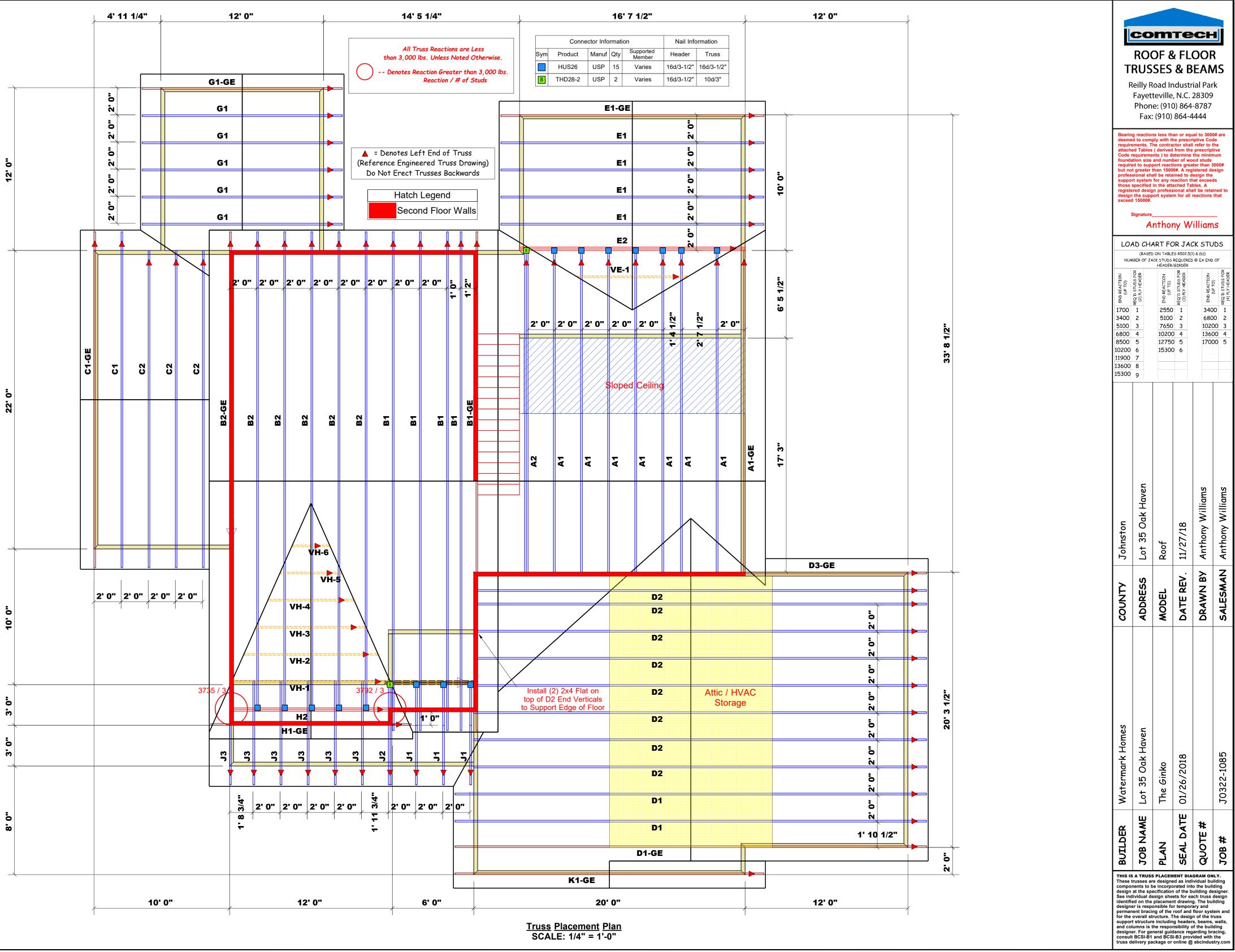
CLEA FOR ALL DO BELOW ALL DO 4' TO ALL DO 8' AND

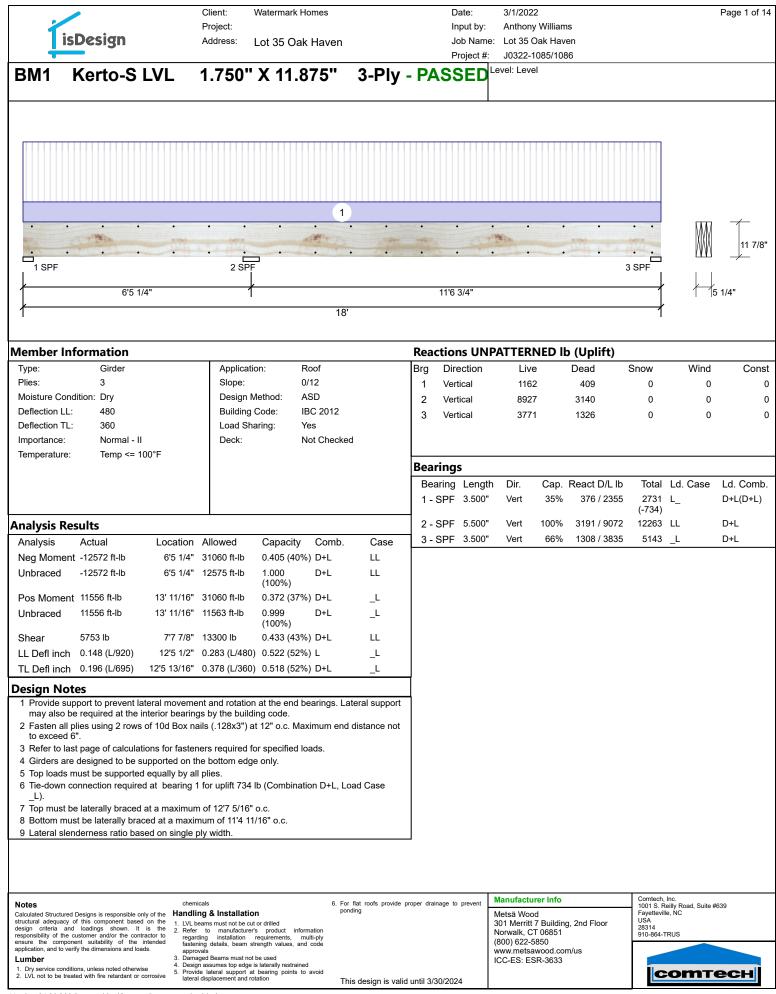


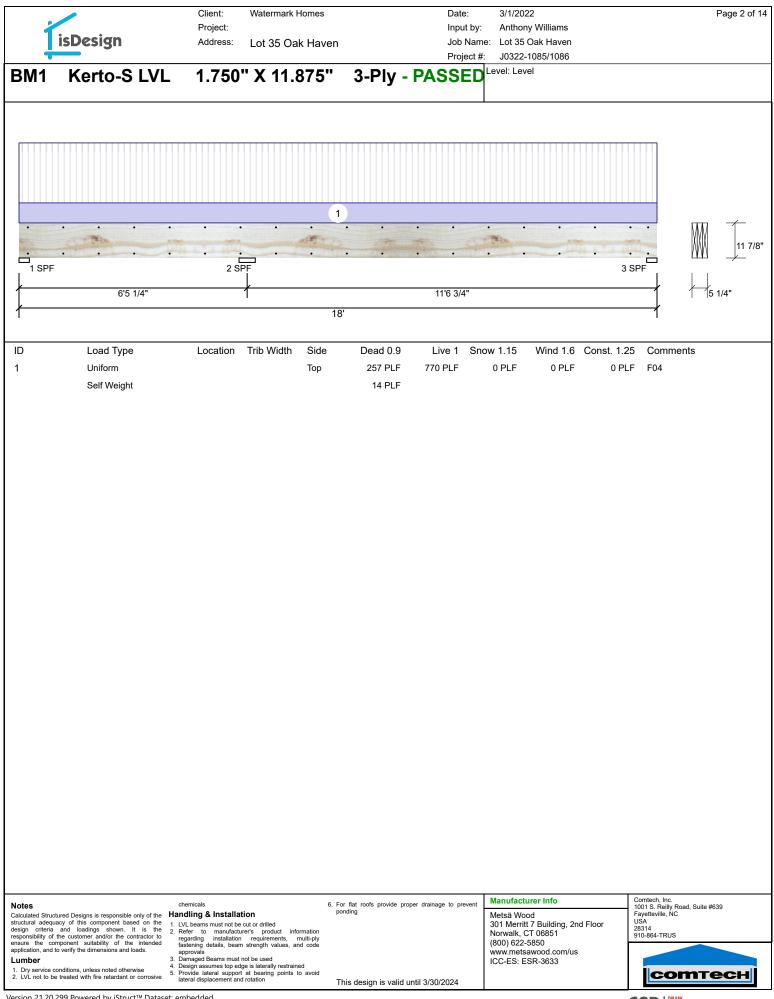

SECOND FLOOR PLAN SCALE: 1/4"=1'-0"



VALLS IEADER:	S
NUMBER	OF STUDS
1	1
2	2
	EADER NUMBER JACKS 1


UNLESS NOTED OTHER WISE





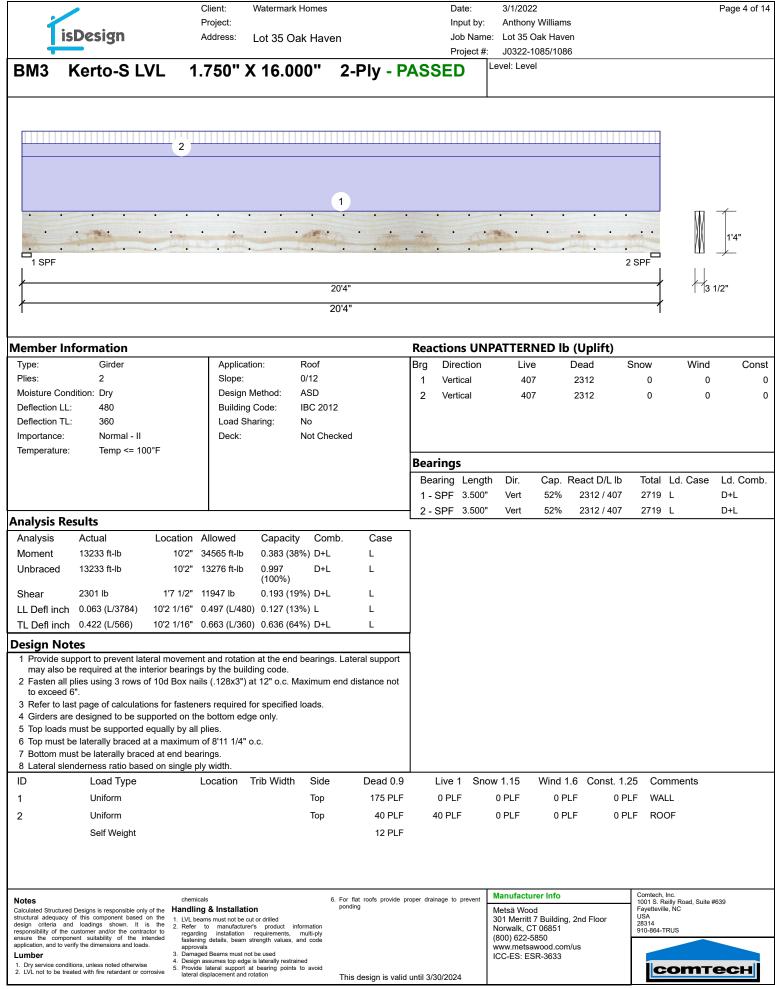
<u>Truss Placement Plan</u> SCALE: 1/4" = 1'-0"

	Client:	Watermark Homes	Date:	3/1/2022	Page 3 of 14
	Project:		Input by:	Anthony Williams	
isDesign	Address:	Lot 35 Oak Haven	Job Name:	Lot 35 Oak Haven	
· · · ·			Project #:	J0322-1085/1086	
BM1 Kerto-	S LVL 1.750	" X 11.875" 3-Ply	- PASSED	evel: Level	
 1 SPF	· · · · ·	 	· · ·	· · ·	
	i'5 1/4"	ļ	11'6 3/4"		5 1/4"
0	55 1/4	1	110 3/4		5 1/4
1		18'			1
Multi-Ply Analysis					
Fasten all plies using 2	rows of 10d Box nails	(.128x3") at 12" o.c Nail from	both sides. Maxin	num end distance not	to exceed
6".		. ,			
Capacity	0.0 %				
Load	0.0 PLF				
Yield Limit per Foot	163.7 PLF				
Yield Limit per Fastener	81.9 lb.				

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequacy of this component based on the	LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements multi-nly	ponding This design is valid until 3/30/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Fayetteville, NC USA 22314 910-864-TRUS

Yield Mode

Edge Distance


Min. End Distance

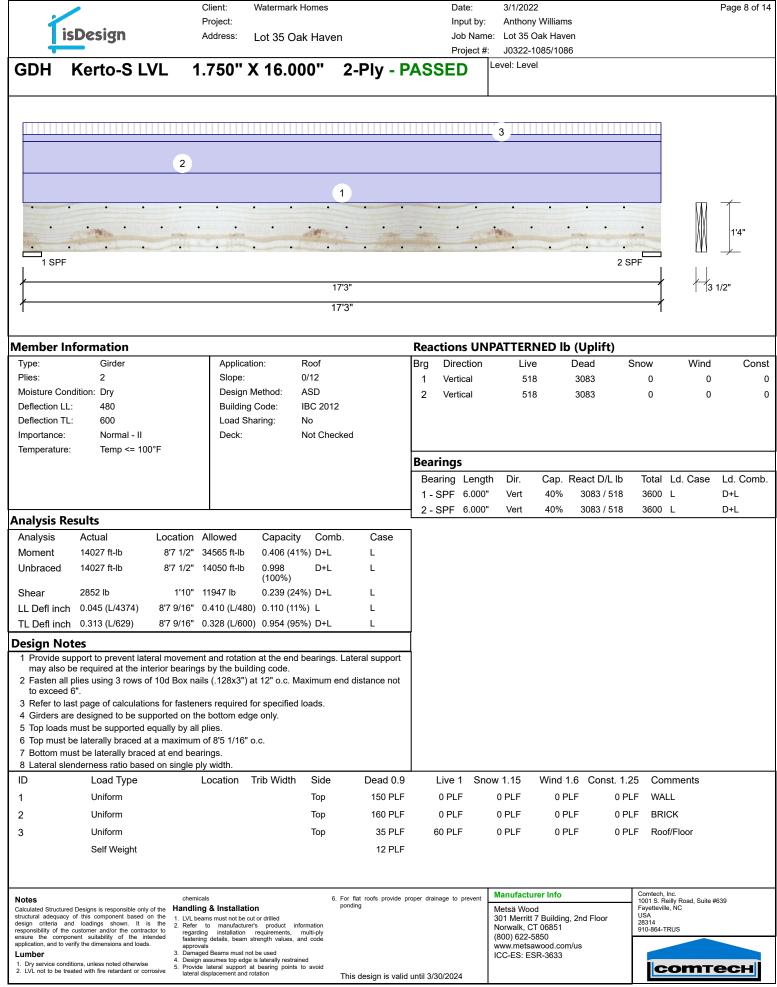
Load Combination Duration Factor IV

3"

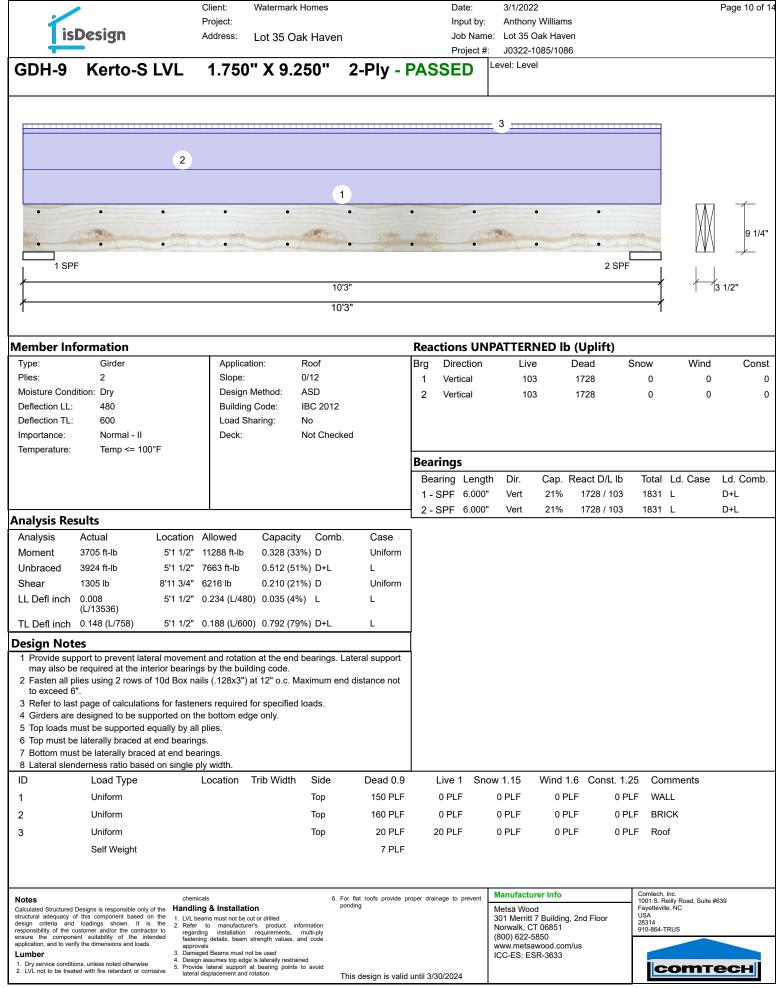
1.00

1 1/2"

		Client: Water Project:	nark Homes	Date: Input by:	3/1/2022 Anthony Williams	Page 5 of 1
1	isDesign		5 Oak Haven	Job Nam	e: Lot 35 Oak Haven	
	Kerto-S LVL	4 750" V 46		Project #:	J0322-1085/1086 Level: Level	
BM3	Rerto-5 LVL	1.750 X 10	.000" 2-Ply	PASSED		
•		• • •		• • •	• • • •	· · · · · · · · · · · · · · · · · · ·
•			· · · ·	· · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·
1 SPF						
			20'4"			1/3 1/2"
1			20'4"			1
Multi-Ply	y Analysis					
Fasten all		f 10d Box nails (.128x	3") at 12" o.c Maxim	um end distance n	ot to exceed 6".	
Capacity Load	0.	0 % 0 PLF				
Yield Limit p		45.6 PLF				
Yield Limit p Yield Mode	IV	1.9 lb.				
Edge Distan		1/2"				
Min. End Dis		,				
Load Combi Duration Fac		00				
Duration rat	1.	00				
Notes		chemicals	6 For flat reafs are	vide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Bailly Baard, Suite #630

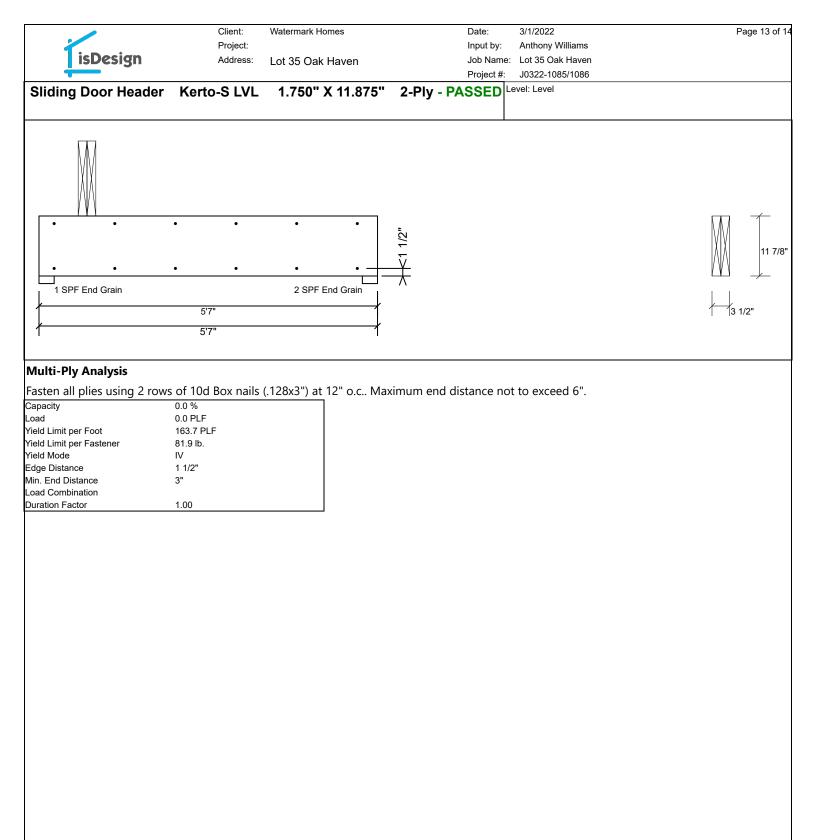

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	I. LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used Design assumes top edge is laterally restrained Design assumes top edge is laterally restrained. Design assumes top edge is laterally restrained.	ponding This design is valid until 3/30/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Fayetteville, NC USA 28314 910-864-TRUS

		Client: Wate	ermark Homes		Date:	3/1/2022	,			Page 6 of 1
2		Project:	indik Homes		Input b		Williams			1 age 0 of 1
is 🚺	sDesign	-	35 Oak Haven			ame: Lot 35 O				
					Project	t #: J0322-1	085/1086			
BM4	Kerto-S LVL	1.750" X 1	6.000"	2-Ply - P	ASSED	Level: Level				
				,						
	2									
	1									
•										
									MM	
•	and the second second		• •						IĂIĂI	1'4"
		Martin Ballin							/ W V	,
1 SPF		2	SPF							
,										
	6'3 1/								· ´ 3	1/2"
1	6'3 1	/2"	1							
Member In	nformation				Reactions U	INPATTERN	NED lb (Uplift)			
Туре:	Girder	Application:	Roof		Brg Direction	n Live	Dead	Snow	Wind	Cons
Plies:	2	Slope:	0/12		1 Vertical	1746	1471	0	0	(
Moisture Cor		Design Metho			2 Vertical	1746	1471	0	0	(
Deflection LL Deflection TL		Building Code Load Sharing								
Importance:	Normal - II	Deck:	Not Check	ed						
Temperature		Book								
					Bearings					
					Bearing Ler	ngth Dir.	Cap. React D/L lb	Total L	d. Case	Ld. Comb
					1 - SPF 3.50	00" Vert	62% 1471 / 1746	3216 L		D+L
	•-				2 - SPF 3.50	00" Vert	62% 1471 / 1746	3216 L		D+L
Analysis Re		cation Allowed Ca	apacity Comb	. Case	7					
Analysis Moment			apacity Comb. 27 (13%) D+L	L L						
Unbraced			223 (22%) D+L	L						
Shear			32 (13%) D+L	L						
		'1 3/4" 0.146 (L/480) 0.0		L						
		'1 3/4" 0.195 (L/360) 0.1	. ,	L						
Design No	tes	· ·			1					
		novement and rotation at the	ne end bearings. I	_ateral support	4					
-		bearings by the building c								
2 Fasten all to exceed		Box nails (.128x3") at 12"	o.c. Maximum en	id distance not						
		r fasteners required for sp								
	e designed to be supporte must be supported equal	ed on the bottom edge onl	у.							
	be laterally braced at end	, , ,								
	ust be laterally braced at e	-								
	enderness ratio based on	8 1 3		Deed 0.0	 	Deary 4.45	Wind 1.C. Conot 1	05 Carran	ta	
ID	Load Type	Location Trib		Dead 0.9		Snow 1.15	Wind 1.6 Const. 1			
1	Uniform		Тор	50 PLF	150 PLF	0 PLF		PLF FLOO	к	
2	Uniform		Тор	405 PLF	405 PLF	0 PLF	0 PLF 0 F	PLF J1		
	Self Weight			12 PLF						
Notes		chemicals	6. F	or flat roofs provide p	roper drainage to prever	Manufactur	er Info	Comtech, Inc.	Road, Suite #	630
Calculated Structure	d Designs is responsible only of the of this component based on the	Handling & Installation	p	onding	- •	Metsä Wood		Fayetteville, N USA	IC	
design criteria ar responsibility of the	nd loadings shown. It is the customer and/or the contractor to	 LVL beams must not be cut or drill Refer to manufacturer's proregarding installation require 	oduct information ments, multi-ply			Norwalk, CT		28314 910-864-TRU	s	
ensure the compo	onent suitability of the intended erify the dimensions and loads.	fastening details, beam strength approvals	values, and code			(800) 622-58 www.metsav	350 vood.com/us			
Lumber 1. Dry service cond	itions, unless noted otherwise	 Damaged Beams must not be use Design assumes top edge is latera 	ally restrained			ICC-ES: ES				
2. LVL not to be tre	eated with fire retardant or corrosive	 Provide lateral support at bearin lateral displacement and rotation 		This design is valid	until 3/30/2024			CC	omt	есн
ersion 21 20 299	9 Powered by iStruct™ Datase	et: embedded							DAW	


isDesign	Client: Watermark Hom Project: Address: Lot 35 Oak H	Input b	ame: Lot 35 Oak Haven	Page 7 of 14
BM4 Kerto-S LVL	- 1.750" X 16.000"	2-Ply - PASSED	Level: Level	
	· · · · · · · · · · · · · · · · · · ·	7+112"		1'4" 1'4" 3 1/2"
Multi-Ply Analysis	of 10d Box pails (128x3") at 12	2" o.c Maximum end distance	not to exceed 6"	
Load0Yield Limit per Foot2Yield Limit per Fastener8Yield ModeINEdge Distance1Min. End Distance3Load Combination3	0.0 % 0.0 PLF :45.6 PLF :1.9 lb. V 1/2" ;"			
Notes Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to	e 1. LVL beams must not be cut or drilled e 2. Refer to manufacturer's product informatio 9 regarding installation requirements, multi-pi	ly	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	 fastening details, beam strength values, and cod approvals Damaged Beams must not be used Design assumes top edge is laterally restrained Drevide lateral support at bearing points to avoid 	e	(800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	соттесн

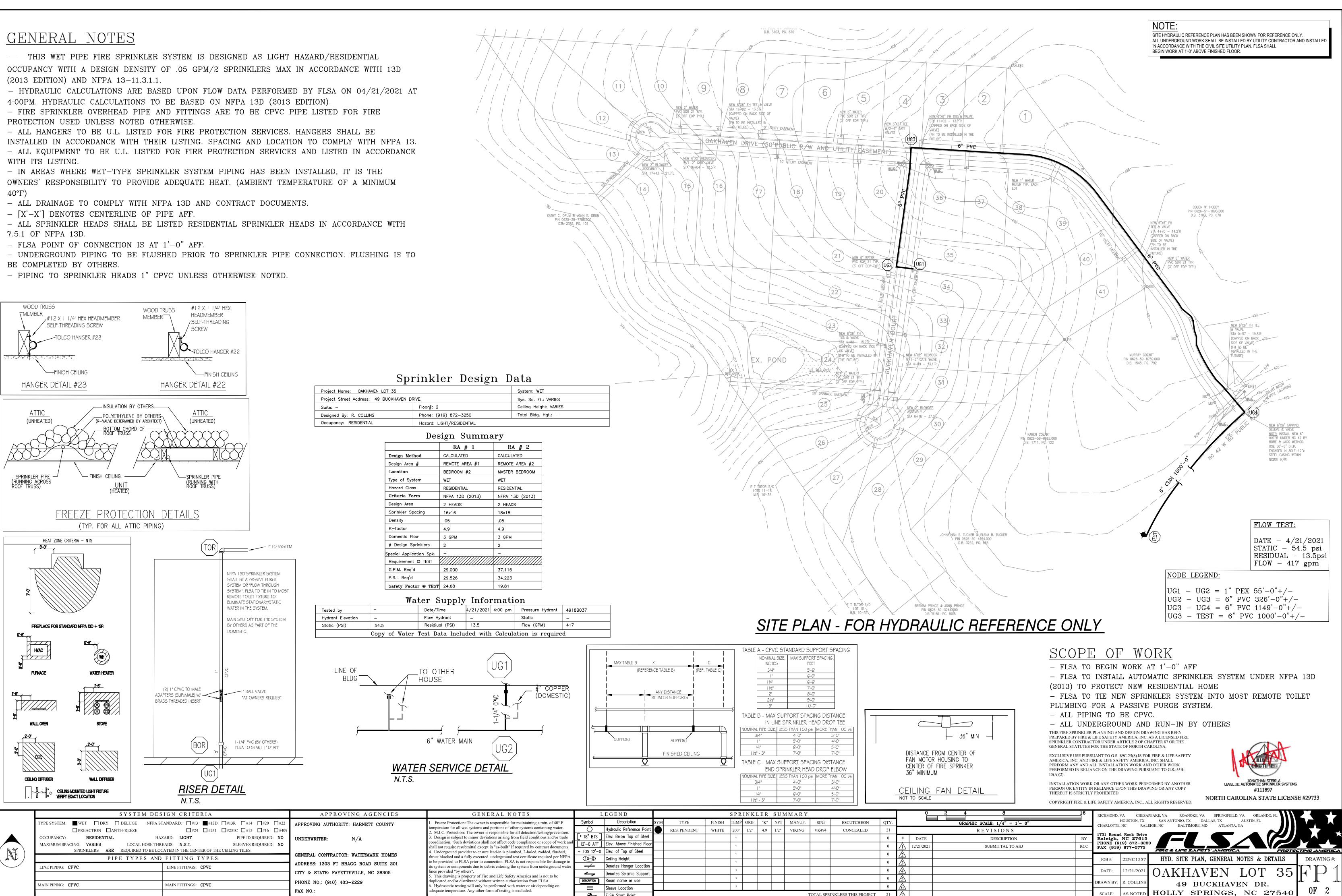
This design is valid until 3/30/2024

соттесн

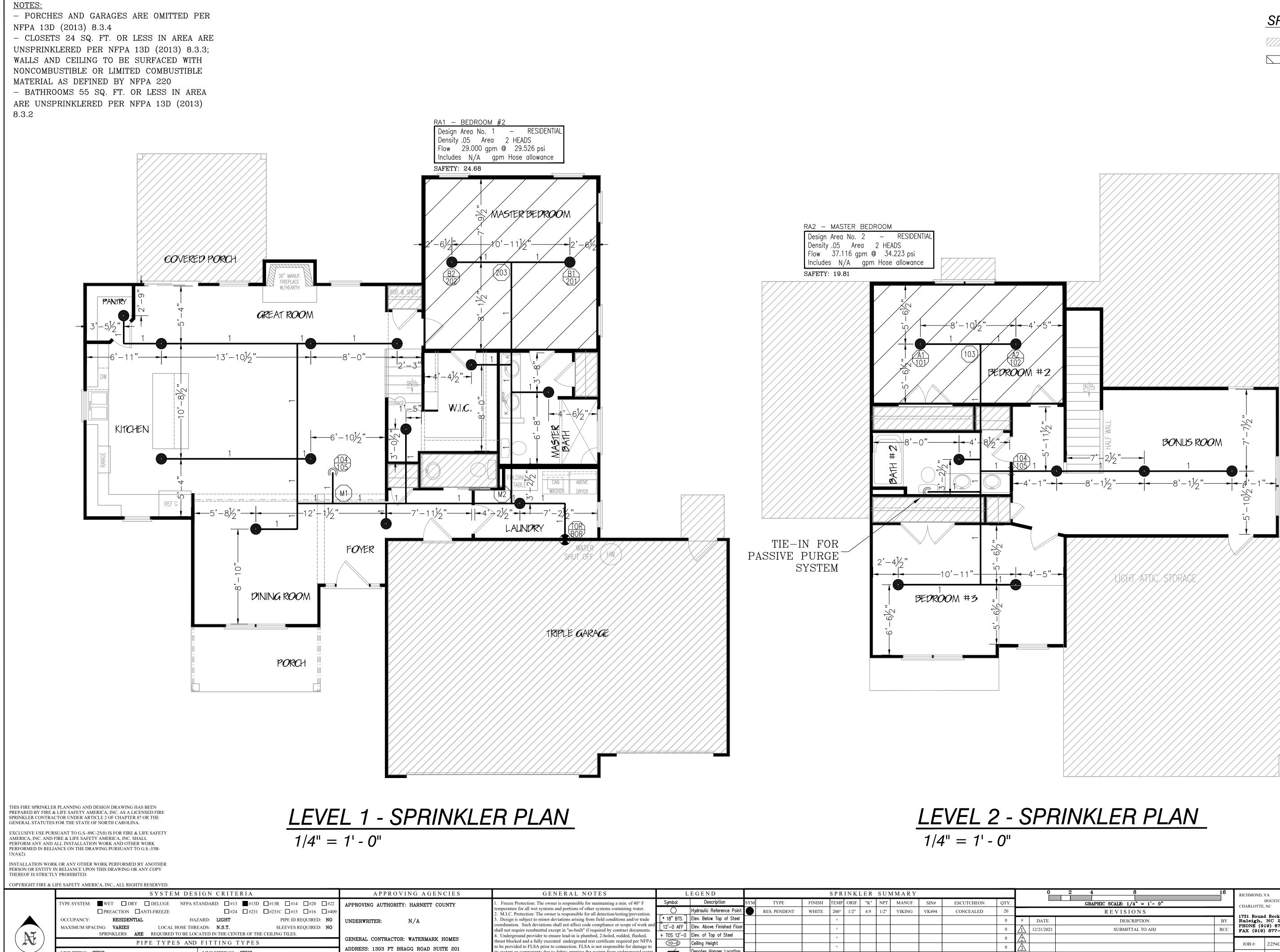


Í	isDesign	Client: Project: Address				me: Lot 35 Oak Haven	Page 9 of 1
GDH	Kerto-S I	_VL 1.750	" X 16.000"	2-Ply	Project	#: J0322-1085/1086	
	• • •	· · ·	• •	· · ·	· · ·	· · · ·	· · · [2] [14"
	ÞF	· · ·	• •	17'3"	••••	· · ·	2 SPF
<u>/</u>				17'3"			
-	y Analysis	(10) 5					
asten all Capacity oad	I plies using 3 ro	ws of 10d Box na 0.0 % 0.0 PLF	ils (.128x3") at 12'	o.c Maxim	um end distance	not to exceed 6".	
ield Limit p	er Foot er Fastener	245.6 PLF 81.9 lb.					
ield Mode		IV					
dge Distan lin. End Dis		1 1/2" 3"					
oad Combin Ouration Fac		1.00					
Notes		chemicals	Uction	 For flat roofs prov ponding 	vide proper drainage to preven		Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequ design criteria	ctured Designs is responsible or uacy of this component based and loadings shown. It	on the 1. LVL beams must no is the 2. Refer to manu		ang		Metsä Wood 301 Merritt 7 Building, 2nd Flo	20314
responsibility of ensure the co	the customer and/or the cont omponent suitability of the to verify the dimensions and loa	intended fastening details, I	acturer's product information ation requirements, multi-ply beam strength values, and code			Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
Lumber	conditions, unless noted otherwis	 Damaged Beams n Design assumes to 	p edge is laterally restrained			www.metsawood.com/us ICC-ES: ESR-3633	
	be treated with fire retardant or o		port at bearing points to avoid t and rotation	This design is	valid until 3/30/2024		сотесн
	200 Powered by iStruct						

	•		Client:	Watermark Homes	6	Date:	3/1/2022		Page 11 of 1
L iel	Docign		Project:			Input b			
	Design		Address:	Lot 35 Oak Ha	ven	Job Na Projec	ame: Lot 35 Oak Haven t #: J0322-1085/1086		
GDH-9	Korto S		1 75	N" Y Q 250'	' 2 Dhv	- PASSED	Level: Level		
GDH-9	Reno-3	LVL	1.750	J A 9.250	2-619	- PASSED			
•	•	•	•	•	•	• •	•	•	€MM =
		•	•	•					<u> </u>
	•	•	•	•	•	• •	•		
1 SPF	=							2 SPF	
/					10'3"				3 1/2"
<u>/</u>					10'3"				
Multi-Ply A									
	es using 2 rov		Box nails	(.128x3") at 12"	o.c Maxim	um end distance	not to exceed 6".		
Capacity Load		0.0 % 0.0 PLF							
Yield Limit per Fo	oot	163.7 PL	.F						
Yield Limit per Fa	astener	81.9 lb.							
Yield Mode Edge Distance		IV 1 1/2"							
Min. End Distanc	e	3"							
Load Combinatio	n								
Duration Factor		1.00							
Notes		chor	nicals		6. For flat roofe pro	vide proper drainage to prever	Manufacturer Info	Comtech,	Inc.
Calculated Structured [Designs is responsible only f this component based	of the Hand	ling & Installa		ponding	FF-: aramage to biever	Metsä Wood	Fayetteville	eilly Road, Suite #639 e, NC
design criteria and responsibility of the cu	loadings shown. It ustomer and/or the contra	is the 2. Refe	beams must not be to manufact	urer's product information			301 Merritt 7 Building, 2 Norwalk, CT 06851	nd Floor USA 28314 910-864-T	RUS
ensure the compone	nt suitability of the in y the dimensions and load	itended faste s. appi	ening details, bear rovals	n requirements, multi-ply m strength values, and code			(800) 622-5850 www.metsawood.com/us		
Lumber	ns, unless noted otherwise	 Dan 4. Des 	naged Beams must ign assumes top eo	dge is laterally restrained			ICC-ES: ESR-3633		
2. LVL not to be treate	ed with fire retardant or co	J. FIU	vide lateral suppor al displacement an	rt at bearing points to avoid ad rotation	This design is	valid until 3/30/2024		C	отесн
V	Doworod by CtructIM	D. I							


2	•	Client: Project:	Watermark Homes		Date: Input		2022 hony Williams			Page 12 o
lis	Design	Address	Lot 35 Oak Haven		•		35 Oak Have			
					Proje		22-1085/1086	6		
Sliding D	oor Header	Kerto-S LV	L 1.750" X 11.8	375" 2-P	ly - PASSE	D Level: L	_evei			
1			3							
	e d Grain		2 SPF End Grain							
		5'7"							T	3 1/2"
1		5'7"		_1						
vember Inf	formation				Reactions	ΙΝΡΔΤΤ	FRNFD Ib	(Uplift)		
Туре:	Girder	Арр	ication: Floor		Brg Directi			-	Snow Wind	d Cor
Plies:	2		gn Method: ASD		1 Vertical		684	2489		D
Moisture Conc Deflection LL:			ling Code: IBC 2012 I Sharing: No		2 Vertical		709	960	0)
Deflection TL:		Dec	-	ed						
Importance:	Normal - II									
Temperature:	Temp <= 100	°F			Bearings					
					Bearing Le	ngth Dir	Can	React D/L lb	Total Ld. Case	e Ld. Com
					1 - SPF 3.0	-	•	2489 / 684	3173 L	D+L
					End					
Analysis Re				-	Grain 2 - SPF 3.0	000" Ver	t 18%	960 / 709	1669 L	D+L
Analysis Moment	Actual 2327 ft-lb	Location Allowed 2'5 3/16" 19911 ft-			End		1070	0007700		DIE
Unbraced	2327 ft-lb	2'5 3/16" 15061 ft		L	Grain					
Shear	1840 lb	1'2 7/8" 8867 lb	0.208 (21%) D+L	L						
	0.007 (L/9597)		360) 0.038 (4%) L	L						
TL Defl inch	0.018 (L/3391)		240) 0.071 (7%) D+L	L						
Design Not	es				1					
may also be 2 Fasten all p to exceed 6 3 Refer to las 4 Girders are 5 Top loads n 6 Top must be 7 Bottom must 8 Lateral sign	e required at the inte lies using 2 rows of ". It page of calculation designed to be sup nust be supported e e laterally braced at st be laterally braced derness ratio based	erior bearings by the 10d Box nails (.128x ns for fasteners requi ported on the bottom qually by all plies. end bearings. d at end bearings. d on single ply width.	3") at 12" o.c. Maximum en ed for specified loads. edge only.	distance not						
ID	Load Type	Location		Dead 0.9		Snow 1.15		.6 Const. 1.2		
1	Part. Uniform	0-0-0 to 0-9-	·	125 PLF		0 PLF				
2	Point Bearing Length	0-9-6		2312 lb	407 lb	0 lb	J 0	lb 0	lb BM3 Brg 1	
3	Bearing Length Part. Uniform	0-3-1 1-9-8 to 5-7-1		260 PLF	260 PLF	0 PLF	= 0 Pl	F 0.PI	LF C2	
5	Self Weight	1-9-0 10 5-7-1	ιομ	9 PLF		UTE	011			
						Manuf	acturer Info		Comtech, Inc.	
structural adequacy of design criteria and responsibility of the of ensure the compon- application, and to veri	Designs is responsible only of f this component based or loadings shown. It is ustomer and/or the contract ent suitability of the inte fy the dimensions and loads.	the 2. Refer to manuf tor to regarding installa fastening details, b approvals	lation p be cut or drilled cturer's product information ion requirements, multi-ply aam strength values, and code	for flat roofs provide p oonding	proper drainage to prev	Metsä V 301 Me Norwal (800) 6 www.m	Wood erritt 7 Building k, CT 06851 /22-5850 letsawood.com		1001 S. Reilly Road, Suit Fayetteville, NC USA 28314 910-864-TRUS	e #639
	ons, unless noted otherwise	 5. Provide lateral sup 	edge is laterally restrained port at bearing points to avoid				6: ESR-3633		com	есн
 LVL not to be treat 	ted with fire retardant or corr	osive lateral displacement		This design is valio	d until 3/30/2024					

			Manufacturer Info	Comtech, Inc.
Notes Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	I. LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used Design assumes top edge is laterally restrained Design lateral suprod at bearing cortex to avoid	 For flat roofs provide proper drainage to prevent ponding This design is valid until 3/30/2024 	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-884-TRUS


CSD BUILD

			Client:	Watermark Homes			te:	3/1/2022	Page 14
	isDe	sign	Project: Address:	Lot 35 Oak Hav	en	-	out by: b Name:	Anthony Williams Lot 35 Oak Haven	
			,	Lot 55 Oak Hav	en		oject #:	J0322-1085/1086	
C1	Anthe	ony Power	Column	5.500" 2	X 7.000" -	PASSE	D L	evel: Level	
				Design	Method: ASD			Design OK.	
				Building)12		Design Notes	
				Importar				1. Axial load eccentricity of 1/6 cross-section axes, each axis	
	0-5	i-8 _ [0-7-0		Applicati		in Free Standin	g	2. Designed in accordance with	
				Load Sh	Condition: Dry aring: No			IBC 2012. 3. Top and bottom ends of the r	member must be
					ang. No			supported to prevent lateral r 4. Holes and notches are not al	movement and rotation.
		0.4.0							
		8-1-8							
nalys	sis						Desigr	Properties	
lenderr		Actual 17.7	Allowed 50.0	Capacity 35%	Load C	ombination	E: Ey:	1900000 Fc: 2300 1900000 Fv: 0	
xial (lb.		12263	71395	17%	D+L		Fb:	2100 Fvy: 0	
					D+L		TD.		
	Bending	0.20	1	20%	D+L		Fby:	2300	
earing	SPF (lb.)			20% 75%				-	
earing L Defle	SPF (lb.)	0.20 12348 0.056 (in.) L/1731	1 16363	20% 75%	D+L D+L			-	
earing L Defle Appl	SPF (lb.)	0.20 12348 0.056 (in.) L/1731	1 16363	20% 75%	D+L D+L L	Const. 1.25	Fby:	2300	
earing L Defle Appl	SPF (lb.) ection	0.20 12348 0.056 (in.) L/1731	1 16363 0.271 (in.) L/36	20% 75% 0 21%	D+L D+L L	Const. 1.25	Fby:	2300	
earing L Defle Appl	SPF (lb.) ection	0.20 12348 0.056 (in.) L/1731	1 16363 0.271 (in.) L/36	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Comr	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
aring Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
aring Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
aring Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
aring Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com	2300	
earing _ Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com BM1	2300 ments	
earing L Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Com BM1	2300 ments Manufacturer Info Anthony Forest Products Co 200	Zomtech, Inc. 1001 S. Reilly Road, Suite #639 Tayetteville, NC ISA
earing L Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Comr BM1	2300 ments	Comtech, Inc. 001 S. Reilly Road, Suite #639 ayettevile, NC JSA 28314 110-864-TRUS
Bearing L Defle	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L		Fby: Comr BM1	2300 ments	JSA 28314
earing L Defle Appl	SPF (lb.) ection ied Load Load Type	0.20 12348 0.056 (in.) L/1731 S e Location	1 16363 0.271 (in.) L/36 Dead 0.9	20% 75% 0 21% Live 1 Snow 1.	D+L D+L L	0 lb	Fby: Comr BM1	2300 ments Manufacturer Info Anthony Forest Products Co 309 North Washington El Dorado, AR 71730 800) 221-2326	JSA 28314

FLSA Start Point

TOTAL SPRINKLERS THIS PROJECT

LINE PIPING: CPVC

MAIN PIPING: CPVC

LINE FITTINGS: CPVC

MAIN FITTINGS: CPVC

CITY & STATE: FAYETTEVILLE, NC 28305

PHONE NO.: (910) 483-2229

FAX NO.:

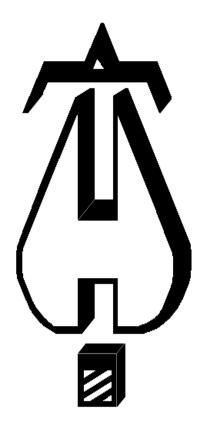
GENERAL NOTES]	LEGEND		S P I	RINK	LER SU	J M M A R Y	-				0	2 4 8	16	RICHMOND, VA CHESA	APEAKE, VA ROANOKE, VA SPRINGFIELD, VA ORLANDO, FL	
1. Freeze Protection: The owner is responsible for maintaining a min. of 40° F	Symbol	Description	SYM TYPE	FINISH TEM	P ORIF.	"K" NP	T MANUF.	SIN#	ESCUTCHEON	QTY.			GRAPHIC SCALE: $1/4$ " = 1'- 0"		HOUSTON, TX CHARLOTTE, NC RAL	SAN ANTONIO, TX DALLAS, TX AUSTIN, FL LEIGH, NC BALTIMORE, MD ATLANTA, GA	
temperature for all wet systems and portions of other systems containing water. 2. M.I.C. Protection: The owner is responsible for all detection/testing/prevention.	\bigcirc	Hydraulic Reference Point	RES. PENDENT	WHITE 200	° 1/2"	4.9 1/2	" VIKING	VK494	CONCEALED	20			REVISIONS				
3 Design is subject to minor deviations arising from field conditions and/or trade	[* 18" BTS	Elev. Below Top of Steel		0						0	#	DATE	DESCRIPTION	BY	1731 Round Rock Drive Raleigh, NC 27615		
coordination. Such deviations shall not affect code compliance or scope of work and shall not require resubmittal except in "as-built" if required by contract documents.				0						0	Λ	12/21/2021	SUBMITTAL TO AHJ	RCC	PHONE (919) 872-325 FAX (919) 877-5775		
4. Underground provider to ensure lead-in is plumbed, 2-holed, rodded, flushed,		Elev. of Top of Steel		•						0	$\overline{\mathbb{A}}$					FIRE & LIFE SAFETY AMERICA PROTECT	TING AMERICA
thrust blocked and a fully executed underground test certificate required per NFPA to be provided to FLSA prior to connection. FLSA is not responsible for damage to	(10-0)	Ceiling Height		•						0	$\overline{\mathbb{A}}$				JOB #: 22NC1557	LEVEL 1 & 2 FIRE PROTECTION PLANS	DRAWING #:
its system or components due to debris entering the system from underground water		Denotes Hanger Location		°	-					0	$\frac{233}{4}$				DATE: 12/21/2021		
lines provided "by others". 5. This drawing is property of Fire and Life Safety America and is not to be	4	Denotes Seismic Support	┨──┤─────		-					0	$\frac{74}{\Delta}$				DATE: 12/21/2021	OAKHAVEN LOT 35	
duplicated and/or distributed without written authorization from FLSA.	DESCRIPTION	Room name or use	┣─┼────	l			_				$\frac{72}{\sqrt{2}}$				DRAWN BY: R. COLLINS	49 BUCKHAVEN DR.	
6. Hydrostatic testing will only be performed with water or air depending on adequate temperature. Any other form of testing is excluded.	=	Sleeve Location		°						0	<u>/6\</u>						OF 2
	•	FLSA Start Point	TOTAI	L SPRINKLERS THIS	S PROJEC	T 20	Т	OTAL SPRIN	KLERS THIS DRAWING	G 20	\triangle				SCALE: AS NOTED	HOLLY SPRINGS, NC 27540	

SPRINKLER LEGEND

NO HEADS REQUIRED REMOTE AREA

JONATHAN STEBILA LEVEL III AUTOMATIC SPRINKLER SYSTEMS #111897

NORTH CAROLINA STATE LICENSE #29733



1731 Round Rock Drive, Raleigh, NC 27615 • (919) 872-3250 • fax (919) 877-5775 • www.flsamerica.com

OAK HAVEN LOT 35

HYDRAULIC CALCULATIONS

12/22/2021

Hydraulic calculations using HydraCALC

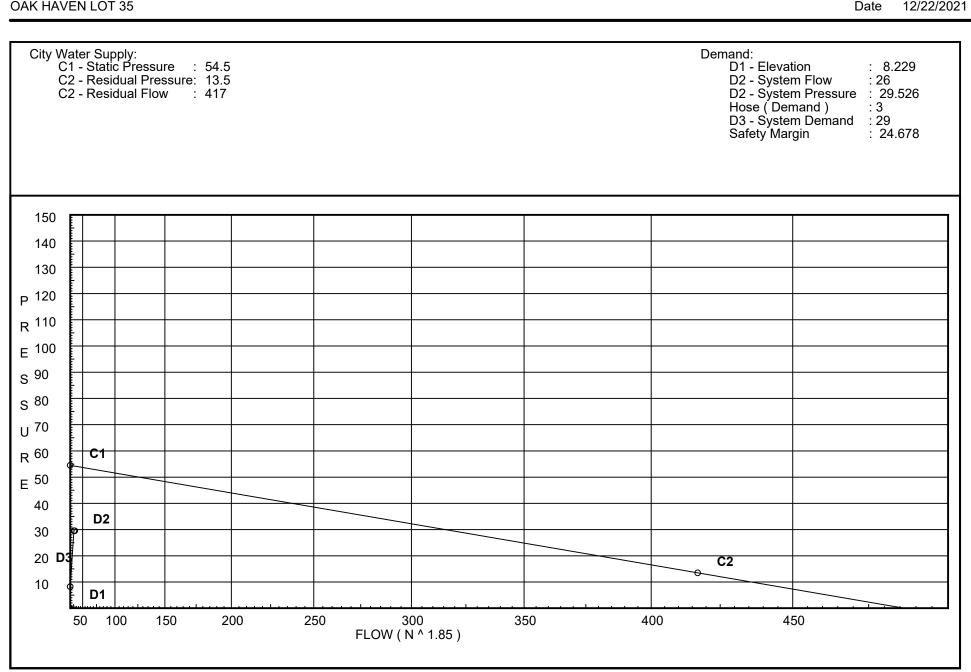
FIRE & LIFE SAFETY AMERICA 1731 ROUND ROCK DRIVE RALEIGH, NC 27615 919-872-3250

Job Name:OAK HAVEN LOT 35Drawing:FP1Location:49 BUCKHAVEN DR.Remote Area:RA1Contract:22NC1557Data File:RA1.WXF

HYDRAULIC CALCULATIONS for

Project name: OAK HAVEN LOT 35 - RA1 Location: 49 BUCKHAVEN DR. Drawing no: FP1 Date: 12/21/2021

Design


Remote area number:RA1Remote area location:BEDROOM #2Occupancy classification:RESIDENTIALDensity:.05 - Gpm/SqFtArea of application:2 HEADS - SqFtCoverage per sprinkler:256 - SqFtType of sprinklers calculated:VK494No. of sprinklers calculated:2In-rack demand:N/A - GPMHose streams:3 - GPMTotal water required (including hose streams):29.000 - GPM@ 29Type of system:WET CPVC 13DVolume of dry or preaction system:N/A - Gal

@ 29.526 - Psi

Water supply information

Date: 4/21/2021 Location: NC42, NC 27540 Source: FIRE & LIFE SAFETY AMERICA

Name of contractor: FIRE & LIFE SAFETY AMERICA Address: 1731 ROUND ROCK DRIVE / RALEIGH, NC 27615 / 919-872-3250 Phone number: (919) 872-3250 Name of designer: R. COLLINS Authority having jurisdiction: HARNETT COUNTY Notes: (Include peaking information or gridded systems here.)

Computer Programs by Hydratec Inc. Revision: 50.53.5

Water Supply Curve C

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35

Fittings Used Summary

FIRE & LIFE SAFETY AMERICA	
OAK HAVEN LOT 35	

Fitting Lo	egend																				
Abbrev.	Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
F	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0 *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Flow Summary - NFPA

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35

Page 4 Date 12/22/2021

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	54.5	13.5	417.0	54.204	29.0	29.526

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
A1	22.0	4.9	7.08	13.04	
A2	22.0	4.9	7.0	12.96	
101	22.0		7.31		
102	22.0		7.23		
103	22.0		7.48		
104	22.0		9.47		
105	11.0		15.45		
M1	11.0		16.31		
M2	11.0		18.14		
TOR	11.0		19.85		
BOR	3.0		24.98		
UG1	3.0		26.27	3.0	
UG2	-3.0		32.04		
UG3	-3.0		32.05		
UG4	-3.0		32.09		
TEST	3.0		29.53		

Final Calculations : Hazen-Williams

Κ

Qa

Nom Fitting

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35

Node1 Elev1

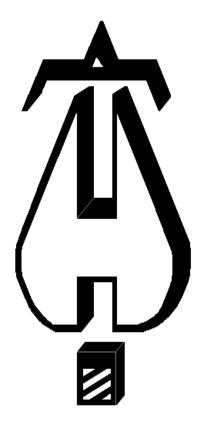
Node1	Eleví	ĸ	Qa	Nom	Fitting		Pipe	CFact	Pt Pe	****** Notoo	*****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	******* Notes	
A1	22	4.90	13.04	1	N	7.0	0.500	150	7.077		
to						0.0	7.000		0.0		
101	22		13.04	1.101		0.0	7.500	0.0308	0.231	Vel = 4.39	
101			0.0 13.04						7.308	K Factor = 4.82	
A2	22	4.90	12.96	1	N	7.0	0.500	150	7.000		
to			10.00			0.0	7.000		0.0		
102	22		12.96	1.101		0.0	7.500	0.0305	0.229	Vel = 4.37	
102			0.0 12.96						7.229	K Factor = 4.82	
101	22		13.04	1		0.0	5.583	150	7.308		
to	22		10.04	1 101		0.0	0.0	0.0240	0.0	$\lambda = 4.20$	
103	22		<u>13.04</u> 0.0	1.101		0.0	5.583	0.0310	0.173	Vel = 4.39	
103			13.04						7.481	K Factor = 4.77	
102	22		12.96	1	0	5.0	3.250	150	7.229		
to				•	•	0.0	5.000		0.0		
103	22		12.96	1.101		0.0	8.250	0.0305	0.252	Vel = 4.37	
103	22		13.04	1		0.0	18.000	150	7.481		
to 104	22		26.0	1.101		0.0 0.0	0.0 18.000	0.1105	0.0 1.989	Vel = 8.76	
104	22		0.0	1		0.0	11.000	150	9.470	VCI - 0.70	
to			0.0	•		0.0	0.0	100	4.764		
105	11		26.0	1.101		0.0	11.000	0.1106	1.217	Vel = 8.76	
105	11		0.0	1	0	5.0	2.750	150	15.451		
to M1	11		26.0	1.101		0.0 0.0	5.000 7.750	0.1105	0.0 0.856	Vel = 8.76	
M1	11		0.0	1.101		0.0	16.583	150	16.307	VCI 0.70	
to	••		0.0	•		0.0	0.0	100	0.0		
M2	11		26.0	1.101		0.0	16.583	0.1106	1.834	Vel = 8.76	
M2	11		0.0	1	Ν	7.0	8.500	150	18.141		
to TOR	11		26.0	1.101		0.0 0.0	7.000 15.500	0.1105	0.0 1.713	Vel = 8.76	
			0.0	1.101		0.0	10.000	0.1100	1.1.10	101 0.10	
TOR			26.00						19.854	K Factor = 5.84	
TOR	11		26.00	1	Ν	7.0	8.000	150	19.854		
to	2		26.0	1.101		0.0 0.0	7.000	0 1105	3.465	Vel = 8.76	
BOR BOR	3 3		26.0 0.0	1.101	2E	7.65	<u>15.000</u> 4.000	0.1105 150	1.658 24.977	ver = 0.70	
to	3		0.0	I	20	0.0	7.650	150	0.0		
UG1	3		26.0	1.101		0.0	11.650	0.1106	1.288	Vel = 8.76	
UG1	3	H3	3.00	1.25	Т	9.523	55.000	150	26.265		
to	2		20.0	1 20 4	2E	9.523	19.046	0.0400	2.599	$\lambda = 0.10$	
UG2	-3 -3		29.0	1.394		0.0	74.046	0.0429	3.175	Vel = 6.10	
UG2 to	-3		0.0	6	3E 2F	64.749 21.583	326.000 86.332	150	32.039 0.0		
ŬG3	-3		29.0	6.09		0.0	412.332	0	0.013	Vel = 0.32	
UG3	-3		0.0	6	2G		1149.000	150	32.052		
to	2		20.0	6.00	3F	32.374	41.623	0	0.0	$V_{0} = 0.22$	
UG4	-3		29.0	6.09		0.0	1190.623	0	0.039	Vel = 0.32	

Pipe

CFact

Pt

Page Date


5

12/22/2021

Final Calculations : Hazen-Williams

	FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35									Page 6 Date 12/22/2021				
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****		
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf					
UG4	-3		0.0	6	T		1000.000	150	32.091					
to					2E	45.637	99.422		-2.599					
TEST	3		29.0	6.16	G	4.89	1099.422	0	0.034	Vel = 0.3	1			
			0.0											
TEST			29.00						29.526	K Factor =	5.34			

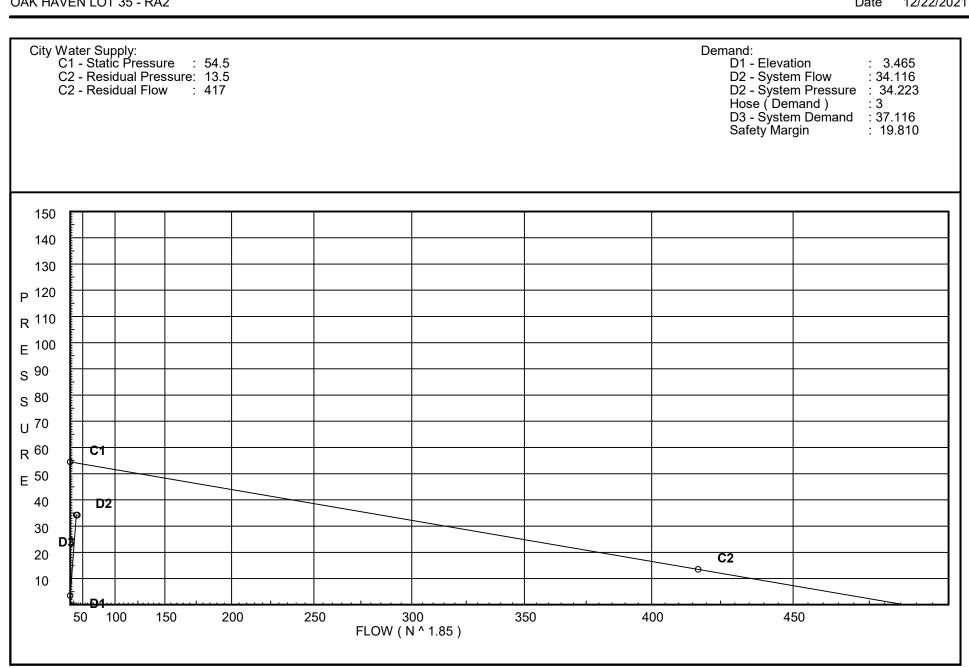
Hydraulic calculations using HydraCALC

FIRE & LIFE SAFETY AMERICA 1731 ROUND ROCK DRIVE RALEIGH, NC 27615 919-872-3250

Job Name:OAK HAVEN LOT 35 - RA2Drawing:FP1Location:49 BUCKHAVEN DR.Remote Area:RA2Contract:22NC1557Data File:RA2.WXF

HYDRAULIC CALCULATIONS for

Project name: OAK HAVEN LOT 35 - RA2 Location: 49 BUCKHAVEN DR. Drawing no: FP1 Date: 12/21/2021


Design

Remote area number: RA2 Remote area location: BEDROOM #2 Occupancy classification: RESIDENTIAL Density: .05 - Gpm/SqFt Area of application: 2 HEADS - SqFt Coverage per sprinkler: 324 - SqFt Type of sprinklers calculated: VK494 No. of sprinklers calculated: 2 *In-rack demand:* N/A - GPM Hose streams: 3 - GPM Total water required (including hose streams): 37.116 - GPM @ 34.223 - Psi Type of system: WET CPVC 13D Volume of dry or preaction system: N/A - Gal

Water supply information

Date: 4/21/2021 Location: NC42, NC 27540 Source: FIRE & LIFE SAFETY AMERICA

Name of contractor: FIRE & LIFE SAFETY AMERICA Address: 1731 ROUND ROCK DRIVE / RALEIGH, NC 27615 / 919-872-3250 **Phone number:** (919) 872-3250 Name of designer: R. COLLINS Authority having jurisdiction: HARNETT COUNTY Notes: (Include peaking information or gridded systems here.)

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35 - RA2

Water Supply Curve C

Page 2 Date 12/22/2021

Fittings Used Summary

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35 - RA2

Fitting Le	egend																				
Abbrev.		1/2	3/4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0 *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
Ť	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Inches
Feet
US Gallons per Minute
Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Flow Summary - NFPA

FIRE & LIFE SAFETY AMERICA
OAK HAVEN LOT 35 - RA2

Page 4 Date 12/22/2021

SUPPLY ANALYSIS								
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure		
TEST	54.5	13.5	417.0	54.033	37.12	34.223		

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
B1	11.0	4.9	12.24	17.14	
B2	11.0	4.9	12.0	16.97	
201	11.0		12.62		
202	11.0		12.38		
203	11.0		12.9		
M2	11.0		17.91		
TOR	11.0		20.74		
BOR	3.0		26.95		
UG1	-3.0		31.67	3.0	
UG2	-3.0		36.68		
UG3	-3.0		36.71		
UG4	-3.0		36.77		
TEST	3.0		34.22		

Final Calculations : Hazen-Williams

FIRE & LIFE SAFETY AMERICA OAK HAVEN LOT 35 - RA2

Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes	
B1	11	4.90	17.14	1	N	7.0	0.500	150	12.239		
to		4.50			IN	0.0	7.000		0.0		
201	11		17.14	1.101		0.0	7.500	0.0512	0.384	Vel = 5.78	
201			0.0 17.14						12.623	K Factor = 4.82	
B2	11	4.90	16.97	1	Ν	7.0	0.500	150	12.000		
to 202	11		16.97	1.101		0.0 0.0	7.000 7.500	0.0503	0.0 0.377	Vel = 5.72	
			0.0	1.101		0.0	1.000	0.0000	0.011	VGI 0.72	
202			16.97						12.377	K Factor = 4.82	
201 to	11		17.14	1		0.0 0.0	5.500 0.0	150	12.623 0.0		
203	11		17.14	1.101		0.0	5.500	0.0511	0.281	Vel = 5.78	
202			0.0						12.004	K Faster - 477	
203 202	11		17.14 16.97	1	0	5.0	5.500	150	12.904 12.377	K Factor = 4.77	
to					Ũ	0.0	5.000		0.0		
203	11		16.97	1.101		0.0	10.500	0.0502	0.527	Vel = 5.72	
203			0.0 16.97						12.904	K Factor = 4.72	
203	11		34.12	1	0	5.0	22.375	150	12.904		
to M2	11		34.12	1.101		0.0 0.0	5.000 27.375	0.1828	0.0 5.003	Vel = 11.50	
M2	11		0.0	1	N	7.0	8.500	150	17.907		
to	11		24 12	1 101		0.0	7.000	0 1007	0.0	$V_{0} = 11.50$	
TOR	11		<u>34.12</u> 0.0	1.101		0.0	15.500	0.1827	2.832	Vel = 11.50	
TOR			34.12						20.739	K Factor = 7.49	
TOR	11		34.12	1	Ν	7.0 0.0	8.000 7.000	150	20.739 3.465		
to BOR	3		34.12	1.101		0.0	15.000	0.1827	3.403 2.741	Vel = 11.50	
BOR	3		0.0	1	2E	7.65	4.000	150	26.945		
to UG1	-3		34.12	1.101		0.0 0.0	7.650 11.650	0.1827	2.599 2.129	Vel = 11.50	
UG1	-3	H3	3.00	1.25	Т	9.523	55.000	150	31.673		
to UG2	-3		37.12	1.394	2E	9.523 0.0		0.0677	0.0 5.012	Vel = 7.80	
UG2	-3		0.0	6	3E	64.749	74.046	150	36.685	ver = 7.00	
to					2F	21.583	86.332		0.0		
UG3 UG3	-3 -3		37.12	6.09	20	0.0	412.332	0.0001	0.021	Vel = 0.41	
to	-3		0.0	6	2G 3F	9.25 32.374		150	36.706 0.0		
UG4	-3		37.12	6.09	_	0.0	1190.623	0.0001	0.062	Vel = 0.41	
UG4 to	-3		0.0	6	T 2E	48.896 45.637	1000.000 99.422	150	36.768 -2.599		
TEST	3		37.12	6.16	G	4.89	1099.422	0	0.054	Vel = 0.40	
TEST			0.0 37.12						34.223	K Factor = 6.35	
			.						J	0.00	

Page Date

5

12/22/2021

Final Calculations : Hazen-Williams

FIRE & LIFE SAFETY AMERICA

FIRE & LIFE SAF OAK HAVEN LO		CA							Page Date	6 12/22	/2021
Node1 Elev1 to Node2 Elev2	K Fact	Qa Qt	Nom Act	Fitting or Eqiv	Len	Pipe Ftngs Total	CFact Pf/Ft	Pt Pe Pf	*****	Notes	*****

1731 Round Rock Drive, Raleigh, NC 27615 • (919) 872-3250 • fax (919) 877-5775 • www.flsamerica.com

OAK HAVEN LOT 35

FIRE SPRINKLER PRODUCT DATA

12/21/2021

Steel Pipe Submittal Data for Fire Sprinkler System

See Chart For Inside Diameters and Wall Thickness

All piping to be one or more of the following: (Refer to checked for submittal items).

- Schedule 40 Steel pipe conforming to ASTM A-135 or A-795 using Cast Iron, Malleable Iron or Ductile Iron screw fittings in accordance with standard ANSI B16.3 or ANSI B16.4. Pipe may also be joined by grooved fittings approved for fire protection use.
- Schedule 7 or 10 Steel Pipe conforming to ASTM A-135 or A-795 using grooved fittings listed for fire protection use.
- All welding will comply with the applicable requirements of AWS B2.1, Specification for Welding Procedure and Performance Qualification. This will be limited to pipe outlets and flanged end treatments.

All materials to be used in the installation of sprinkler system are to conform to NFPA 13, Local Authorities Having Jurisdiction and any applicable referenced codes and standards.

Pip	e	Scl	n 40	Sc	h 10	Sc	h 07
Nom.	O.D						
Dia.	(in)	I.D. (in)	Wall (in)	I.D. (in)	Wall (in)	I.D. (in)	Wall (in)
1"	1.315	1.049	0.133	1.097	0.109	n/a	n/a
1¼"	1.660	1.380	0.140	1.442	0.109	1.536	0.062
1½"	1.900	1.610	0.145	1.682	0.109	1.728	0.086
2"	2.375	2.067	0.154	2.157	0.109	2.203	0.086
2½"	2.875	2.469	0.203	2.635	0.120	2.703	0.086
3"	3.500	3.068	0.216	3.260	0.120	3.314	0.093
4"	4.500	4.026	0.237	4.260	0.120	4.310	0.095
6"	6.625	6.065	0.280	6.357	0.134	n/a	n/a
8"	8.625	7.981	0.322	8.249	0.188	n/a	n/a
10"	10.750	10.020	0.365	n/a	n/a	n/a	n/a
12"	12.750	11.938	0.406	n/a	n/a	n/a	n/a

Steel Pipe Dimensions per NFPA 13:

This submittal shall include the following checked items.

	Dome	stic	Foreign		Black	Galv	anized
Origin of Manufacture				Exterior Finish			
	Sch. 40	Sch.1	10 Sch.7		A-135	A-795	A-53
Schedule				ASTM			

Submittal Data CPVC Pipe and Fittings

Listings:

- Light hazard occupancies as defined in the standard for "Installation of Sprinkler Systems", NFPA 13.
- Residential occupancies as defined in the standard for "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height", NFPA 13R.
- Residential occupancies as defined in the standard for "Installation of Sprinkler Systems in One and Two Family Dwellings and Manufactured Homes", NFPA 13D.- Underground fire service systems as described in the "Installation of Sprinkler
- Systems", NFPA 13 2007 Edition, and where appropriate the "Standard for Installation of Private Service Mains & Their Appurtenances", NFPA 24
- Local Authorities having jurisdiction and any applicable referenced
- codes and standards.

Approvals:

UL, FM, CUL, NSF, Dade County, LPCB, MEA, and the City of Los Angeles.

Material Specifications:

Pipe: ASTM F442, SDR 13.5 Fittings: ASTM F438, (Sch. 40) and ASTM F439 (Sch. 80) Maximum Working Pressure of 175 PSI

Straight Elbow

Reducing Elbow

45 Elbow

Straight Tee

Reducing Tee

Cross

-

Sprinkler Adapter w/ Brass Insert

Slip-Thread Adapter

Reducing Cross

Sprinkler Head Adapter 90° Ell

Reducer Bushing

Sprinkler Head Adapter Tee

Back-to Back Tee

Grooved Coupling Adapter

Cap

CPVC Pipe Submittal Data for Fire Sprinkler Systems

All material used in the installation of the sprinkler system conforms to:

- All CPVC piping should be pressure tested at 200 PSI for 2 hours.
- Chemical compatibility should be checked per manufacturer.
- Glycerin antifreeze solutions are acceptable and installation of antifreeze systems should comply with NFPA Section 7.6.2 of NFPA 13 (2007 Edition).

			BlazeN		e Dimensi .5 (ASTM F	ons and Wei 442)	ghts		
Nomir Size			orage Average		Pounds Per Foot	Kilograms Per Meter	Pounds Per Foot	Kilograms Per Meter	
Inches	mm	Inches	mm	Inches	mm	Empty	Empty	H ₂ O Filled	H ₂ O Filled
3/4	20.0	1.050	26.7	.874	22.2	0.168	0.250	0.428	0.637
1	25.0	1.315	33.4	1.101	28.0	0.262	0.390	0.675	1.005
11/4	32.0	1.660	42.2	1.394	35.4	0.418	0.622	1.079	1.606
11/2	40.0	1.900	48.3	1.598	40.6	0.548	0.816	1.417	2.109
2	50.0	2.375	60.3	2.003	50.9	0.859	1.278	2.224	3.310
21/2	65.0	2.875	73.0	2.423	61.5	1.257	1.871	3.255	4.844
3	80.0	3.500	88.9	2.950	75.0	1.867	2.778	4.829	7.186

Note: The above average OD and average ID information is per ASTM F442. Check with individual manufacturers for actual OD and ID information.

	Allo		Friction Lo lent Feet o		ngs		
Fitting Size (In.)	34"	1"	1½"	1½"	2"	21/2"	3"
Tee Branch	3	5	6	8	10	12	15
Elbow 90° *	4	5	6	7	9	12	13
Elbow 45°	1	1	2	2	2	3	4
Coupling	1	1	1	1	1	2	2
Tee Run	1	1	1	1	1	2	2

Submittal Data for CPVC Strap Hangers

All materials to be used in the installation of sprinkler system are to conform to NFPA 13, 13R and 13D, Local Authorities having Jurisdiction and any applicable referenced codes and standards.

UL Listed in the USA and Canada to support fire sprinkler piping.

- A "one-hole strap" can function as a hanger and restraining device. It supports CPVC pipe horizontally from top or side of beam. As a restraining device, the hanger will be inverted so the fastener is downward. This installation will prevent upward movement of the sprinkler during activation.
- A "two-hole strap" can function as a hanger and restraining device. It supports CPVC pipe horizontally from top, bottom, or side of beam. A hex-head self-threading screw (furnished with most CPVC hangers) is easily installed using an electric drill. No pre-drilling pilot hole is required.
- A "side-mount strap" supports the CPVC pipe horizontally from top or bottom of beam
- A "stand-off 2-hole strap" supports the CPVC pipe off of the vertical face of the structural or composite wood joists.

Hangers must be clean, free of burrs, and all surface oils. Any contaminants must be removed from the hanger.

The pipe size of the hanger shall be the same size as the supported pipe. Pipe hangers must have a load bearing surface at least $\frac{1}{2}$ " inch wide.

Examples of CPVC Hangers

1-Hole Strap	2-Hole Strap	Side-Mount Strap	Stand-Off 2-Hole Strap

This submittal shall include the following checked items:

□ ¾" Hangers ☑ 1" Hangers	Product									
□ 1-1/4" Hangers										
□ 1-1/2" Hangers										
2" Hangers										

Origin of M	anufacture
Domestic	Foreign
\boxtimes	

NIKING°

TECHNICAL DATA

FREEDOM® RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Viking Freedom[®] Residential Concealed Pendent Sprinkler VK494 is a small thermosensitive, glass-bulb residential sprinkler designed for installation on concealed pipe systems where the appearance of a smooth ceiling is desired. The orifice design, with a K-factor of 4.9 (70.6 metric*), allows the sprinkler's efficient use of available water supplies for the hydraulically designed fire-protection system. The fast response glass bulb operating element and special deflector characteristics meet the challenges of residential sprinkler standards.

The sprinkler is pre-assembled with a threaded adapter for installation with a low-profile small-diameter cover assembly installed flush to the ceiling. The twopiece design allows installation and testing of the sprinkler prior to installation of the cover plate. The "push-on" and "thread-on" designs of the concealed cover plate assemblies allow easy installation of the cover plate after the system has been tested and the ceiling finish has been applied, while also providing up to 1/2" (13 mm) of vertical adjustment. The cover assembly can be removed and reinstalled, allowing temporary removal of ceiling panels without taking the sprinkler system out of service or removing the sprinkler. The Electroless Nickel PTFE (ENT) coating has been investigated for installation in corrosive atmospheres and is C-UL-US-EU Listed as indicated in the Approval Charts. The ENT finish is only unside for the sprinkler charts and the sprinkler charts and the sprinkler charts. available for the sprinkler assembly, the cover plate is not plated.

2. LISTINGS AND APPROVALS

cULusEU Listed: Category VKKW

Refer to the Approval Charts and Design Criteria for C-UL-US-EU Listing requirements that must be followed.

3. TECHNICAL DATA

c(VL)us

Specifications: Minimum Operating Pressure: Refer to the Approval Chart. Maximum Working Pressure: 175 psi (12 bar). Factory tested hydrostatically to 500 psi (34.5 bar). Thread size: 1/2" (15 mm) NPT Nominal K-factor: 4.9 U.S. (70.6 metric*) Glass-bulb fluid temperature rating: to -65 °F (-55 °C) Metric K-factor measurement shown is in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0. Material Standards:

Sprinkler Body: Brass UNS-C84400 or QM Brass Deflector: Phosphor Bronze UNS-C51000 Deflector Pins: Stainless Steel UNS-S30200 Button: Brass UNS-C36000 Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400 Compression Screw: 18-8 Stainless Steel Yoke: Phosphor Bronze UNS-C51000 Belleville Spring Sealing Assembly: Beryllium Nickel Alloy, coated on both sides with PTFE Tape Cover Adapter: Cold Rolled Steel UNS-G10080, Finish: Clear Chromate over Zinc Plating Shipping Cap: High Density Polyethylene **Cover Plate Materials:** Cover Plate Assembly: Copper UNS-C11000 and Brass UNS-C26800 or Stainless Steel UNS-S30400 Spring: Beryllium Nickel

Solder: Eutectic

Ordering Information: The sprinkler and cover plate must be ordered separately. Refer to Tables 1 and 2.

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, when the temperature around the sprinkler approaches the cover plate's nominal temperature rating, the cover plate detaches and releases the deflector. Continued heating of the exposed sprinkler causes the heat-sensitive liquid in the glass bulb to expand. When the temperature reaches the sprinkler's nominal temperature rating, the glass bulb shatters releasing the yoke, pip cap assembly and sealing spring. Water begins flowing through the sprinkler orifice and strikes the deflector form-ing a uniform spray pattern over a specific area of coverage, which is determined by the water supply pressure at the sprinkler, in order to extinguish or control the fire.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking Sprinkler Model VK494 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1: SPRINKLER ORDERING INFORMATION

Instructions:

(1) Select a Sprinkler Base Part Number

(2) Add the suffix for the desired Finish

(3) Add the suffix for the desired Sprinkler Temperature Rating

(4) Order a cover plate (refer to Table 2)

Example:

20759AE = 200 °F (93 °C) Temperature Rated Sprinkler with a standard Brass finish.

Sprinkler	Size	1: Finishes		2: Temperature Ratings ⁷						
Base Part Number ¹	NPT Inch	Description	Suffix	Nominal Rating	Bulb Color	Max. Ambient Ceiling Temperature ²	Suffix			
20759	1/2	Brass	Α	155 °F (68 °C)	Red	100 °F (38 °C)	В			
		ENT ^{5,6}	JN	200 °F (93 °C)	Green	150 °F (65 °C)	E			
		Corrosion Resis Sprinkler Finish:								

Accessories

Sprinkler Wrenches and tools:

- A. Heavy Duty Part Number: 14047W/B³ (available since 2006)
- B. Head Cabinet Wrench Part Number: 14031^{3,4} (available since 2006)
- C. Optional Concealed Cover Plate Installer Tool Part Number: 144128 (available since 2007)

D. Optional Large Concealed Cover Plate Installer Tool Part No. 14867⁸ (available since 2007)

Sprinkler Cabinet:

Holds up to 6 sprinklers: Part number 01731A (available since 1971).

Footnotes

- 1. Part number shown is the base part number. For complete part number, refer to the current Viking price list schedule.
- 2. Based on NFPA 13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- 3. Requires a 1/2" ratchet (not available from Viking).
- 4. Also optional for removal of the protective cap. Ideal for sprinkler cabinets.
- ^{5.} cULus Listed as corrosion resistant.
- 6. The corrosion resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the ENT coating is applied to all exposed exterior surfaces, including the waterway. For ENT coated sprinklers, the Belleville spring is exposed.

7. The sprinkler temperature rating is stamped on the deflector.

8. The installer tool is for push-on style cover plates only.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

TABLE 2: COVER PLATE ORDERING INFORMATION

Instructions:

(1) Select a Cover Plate Base Part Number

(2) Add the suffix for the desired Finish

(3) Add the suffix for the required Cover Plate Nominal Rating.

Example:

23190MC/W = 165 °F (74 °C) Temperature Rated, 2-3/4" (70 mm) diameter, Thread-On style, Round Cover Plate with a Painted White finish.

	1: Sele	ect a Cover Pla	ate Base Par	t Number ³		2: Select a Fini	sh	
Т	hread-On St	yle		Push-On St	yle			
Base Part Number ¹	Size Inch (mm)	Туре	Base Part Number	Size Inch (mm) Type		Description	Suffix⁵	
23190	2-3/4 (70)	Round	23447	2-3/4 (70)	Round	Polished Chrome	F	
23174	3-5/16 (84)	Round	23463	3-5/16 (84)	Round	Brushed Chrome	F-/B	
23179	3-5/16 (84)	Square	23482	3-5/16 (84)	Square	Bright Brass	В	
231935	2 2/4 (70)	Stainless	23455⁵	004555 0.044 (70)		Antique Brass	B-/A	
23193	2-3/4 (70)	Steel Round	23433°	2-3/4 (70)	Steel Round	Brushed Brass	B-/B	
004005	2 5/4 6 (04)	Stainless	004705	2 5/40 (04)	Stainless	Brushed Copper	E-/B	
231835	3-5/16 (84)	Steel Round	234735	3-5/16 (84)	Steel Round	Painted White	M-/W	
	•					Painted Ivory	M-/I	
						Painted Black	M-/B	
			3: Т	emperature	Rating Matrix ^{1,2}			

Cover Plate Nominal Rating (Required)	Temperature Classification	Sprinkler Nominal Rating	Sprinkler Maximum Ambient Ceiling Temperature ²	Suffix
135 °F (57 °C)	Ordinary	155 °F (68 °C)	100 °F (38 °C)	Α
165 °F (74 °C)	Intermediate	200 °F (93 °C)	150 °F (65 °C)	С

Footnotes

1. Part number shown is the base part number. For complete part number, refer to the current Viking price list schedule.

2. The sprinkler temperature rating is stamped on the deflector.

3. Based on NFPA-13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

4. Where a dash (-) is shown in the Finish suffix designation, insert the desired Temperature Rating suffix. See example above.

5. Stainless Steel versions are not available with any finishes or paint.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Approval Chart Viking VK494, 4.9 K-factor Residential Concealed Pendent Sprinkler

For systems designed to NFPA 13D or NFPA 13R. For systems designed to NFPA 13, refer to the Design Criteria. For Ceiling types refer to current editions of NFPA 13, 13R or 13D

Sprinkler Base	orinkler Base SIN		NPT	Thread Siz	ze	Nominal K	-factor	Maximur	m Water			
Part Number ¹	51N	Inc	hes		mm	U.S.	metric ²	Working	Pressure			
20759	VK494	1.	/2	15		4.9	70.6	175 psi ((12 bar)			
Max. Coverage Area ⁶ W X L	Fie GF (LF	M Pressure PSI (bar)		Deflector to	Installation	Listings and Approvals ^{3,5}		Minimum Spacing				
Ft. X Ft. (m X m)			200 °F (93 ated Sprink		Cening	Ceiling Type		Ft. (m)				
12 X 12 (3.7 X 3.7)		3 9.2)		.0 48)								
14 X 14 (4.3 X 4.3)		3 9.2)		.0 48)		Concealed with Cover Plate Assembly.						
16 X 16 (4.9 X 4.9)		3 9.2)		.0 48)	Refer to Figure 2		See Foot	notes 8, & 9	8 (2.4)			
18 X 18 (5.5 X 5.5)		7 I.4)		2.0 83)	See Footnote 7	See Footnote 7.						
20 X 20 (6.1 X 6.1)		0 5.7)	-	6.7 15)								

Footnotes

1. Part number shown is the base part number. For complete part number, refer to the current Viking price schedule.

2. Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

3. This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals. Refer also to Design Criteria.

4. Listed by Underwriter's Laboratories, Inc. for use in the U.S., Canada, and European Union.

5. Meets New York City requirements, effective July 1, 2008.

6. For areas of coverage smaller than shown, use the "Flow" and "Pressure" for the next larger area listed. Flows and pressures listed are per sprinkler. The distance from sprinklers to walls shall not exceed one-half the sprinkler spacing indicated for the minimum "Flow" and "Pressure" used.

7. Other paint colors are available on request with the same listings as the standard finish colors. Stainless Steel cover plates are not available with any finishes or paint. Listings and approvals apply for any paint manufacturer. Contact Viking for additional information. Custom colors are indicated on a label inside the cover assembly. Refer to Figure 3.

8. Accepted Cover Plate Finishes are: Polished Chrome, Brushed Chrome, Bright Brass, Antique Brass, Brushed Brass, Brushed Copper, Painted White, Painted Ivory, or Painted Black 7.

9. C-UL-US-EU Listed as corrosion resistant - Electroless Nickel PTFE (ENT)

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

DESIGN CRITERIA

(Also refer to the Approval Chart.)

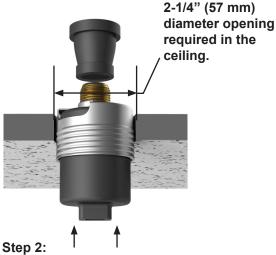
UL Listing Requirements (C-UL-US-EU):

When using Viking Residential Concealed Pendent Sprinkler VK494 for systems designed to NFPA 13D or NFPA 13R, apply the listed areas of coverage and minimum water supply requirements shown in the Approval Chart.

For systems designed to NFPA 13: The number of design sprinklers is to be the four contiguous most hydraulically demanding sprinklers. The minimum required discharge from each of the four sprinklers is to be the greater of the following:

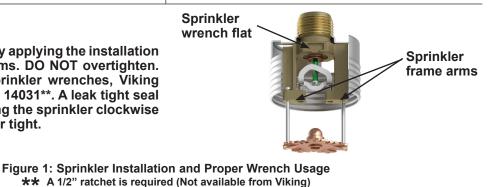
- The flow rates given in the Approval Chart for NFPA 13D and NFPA 13R applications for each listed area of coverage, or
- Calculated based on a minimum discharge of 0.1 gpm/sq. ft. over the "design area" in accordance with sections 9.5.2.1 or 10.2.4.1.2 of the current edition of NFPA 13.
- Minimum distance between residential sprinklers: 8 ft. (2.4 m).

NOTE: Concealed sprinklers must be installed in neutral or negative pressure plenums only.


IMPORTANT: Always refer to Bulletin Form No. F_080415 - Best Practices for Residential Sprinkler Handling and Installation. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA and any other similar Authorities Having Jurisdiction, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. Final approval and acceptance of all residential sprinkler installations must be obtained from the Authorities Having Jurisdiction.

Sprinkler and Adapter Assembly

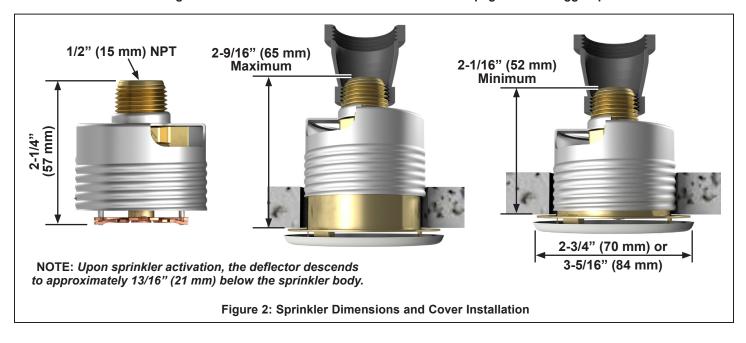
- Protective cap removed
- Use wrench 14047W/B**

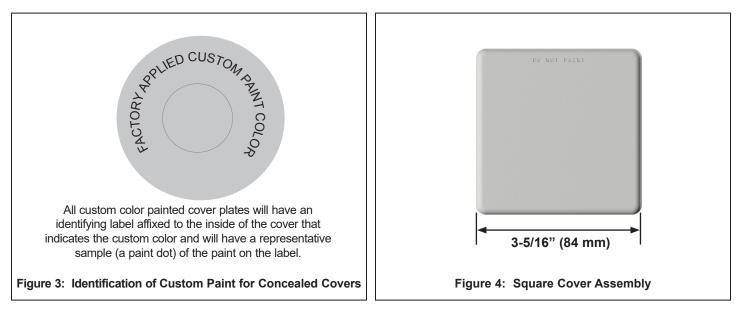


Step 1: Carefully slide the wrench sideways around the deflector and pins

Carefully press the wrench upward and turn slightly to ensure engagement with the sprinkler wrench flats.

NEVER install the sprinkler by applying the installation wrench across the frame arms. DO NOT overtighten. Use only the designated sprinkler wrenches, Viking Part Numbers 14047W/B** or 14031**. A leak tight seal should be achieved by turning the sprinkler clockwise 1 to 1-1/2 turns beyond finger tight.





FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

