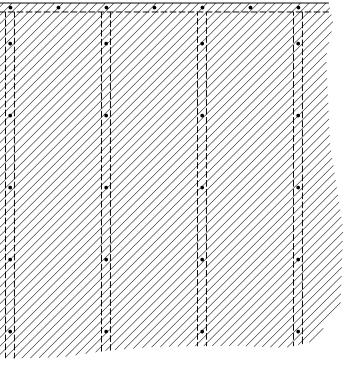


REAR ELEVATION SCALE:1/8"=1'-0"

HORIZONTAL SIDING

HORIZONTAL SIDING



GARAGE PANEL WALL

GARAGE PANEL WALLS UNDER 24" WIDE SHOULD BE EITHER PORTAL FRAMED OR 7/16" OSB ON BOTH SIDES WITH A NAILING PATTERN OF 3" ON ALL PANEL EDGES AND 6" IN THE FIELD,

BRACING METHOD

EXTERIOR WALL TO BE FULLY SHEATHED WITH 7/16'' OSB, NAILING PATTERN TO BE 8'' ON ALL EDGES AND 12'' IN FIELD, WITH 8d NAILS,

	CRIPPLE	WALL

FOUNDATION CRIPPLE WALLS SHALL BE FRAMED OF STUDS NOT SMALLER THAN THE STUDDING ABOVE. WHEN EXCEEDING 4 FT. IN HEIGHT, SUCH WALLS SHALL BE FRAMED OF STUDS HAVING THE SIZE REQUIRED FOR

AN ADDITIONAL STORY. CRIPPLE WALLS WITH A STUP HEIGHT LESS THAN 14 INCHES SHALL BE CONTINUOUSLY SHEATHED ON ONE SIDE WITH WOOD STRUCTURAL PANELS FASTENED TO BOTH THE TOP AND BOTTOM PLATES IN ACCORDANCE WITH TABLE R602.3(1), OR CRIPPLE WALLS SHALL BE CONSTRUCTED OF SOLID BLOCKING.

FIRST FLOOR PLAN

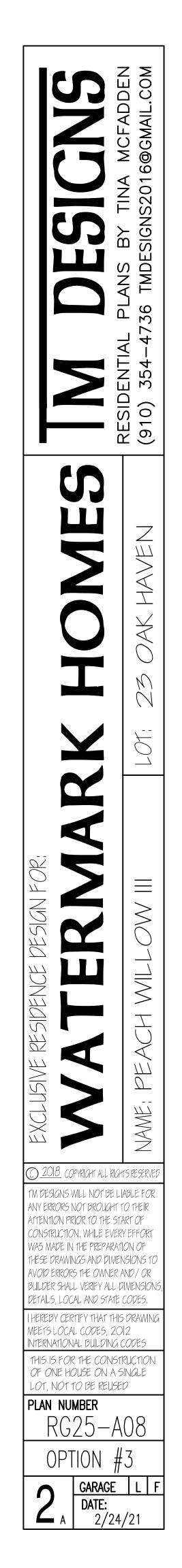
HEATED AREA

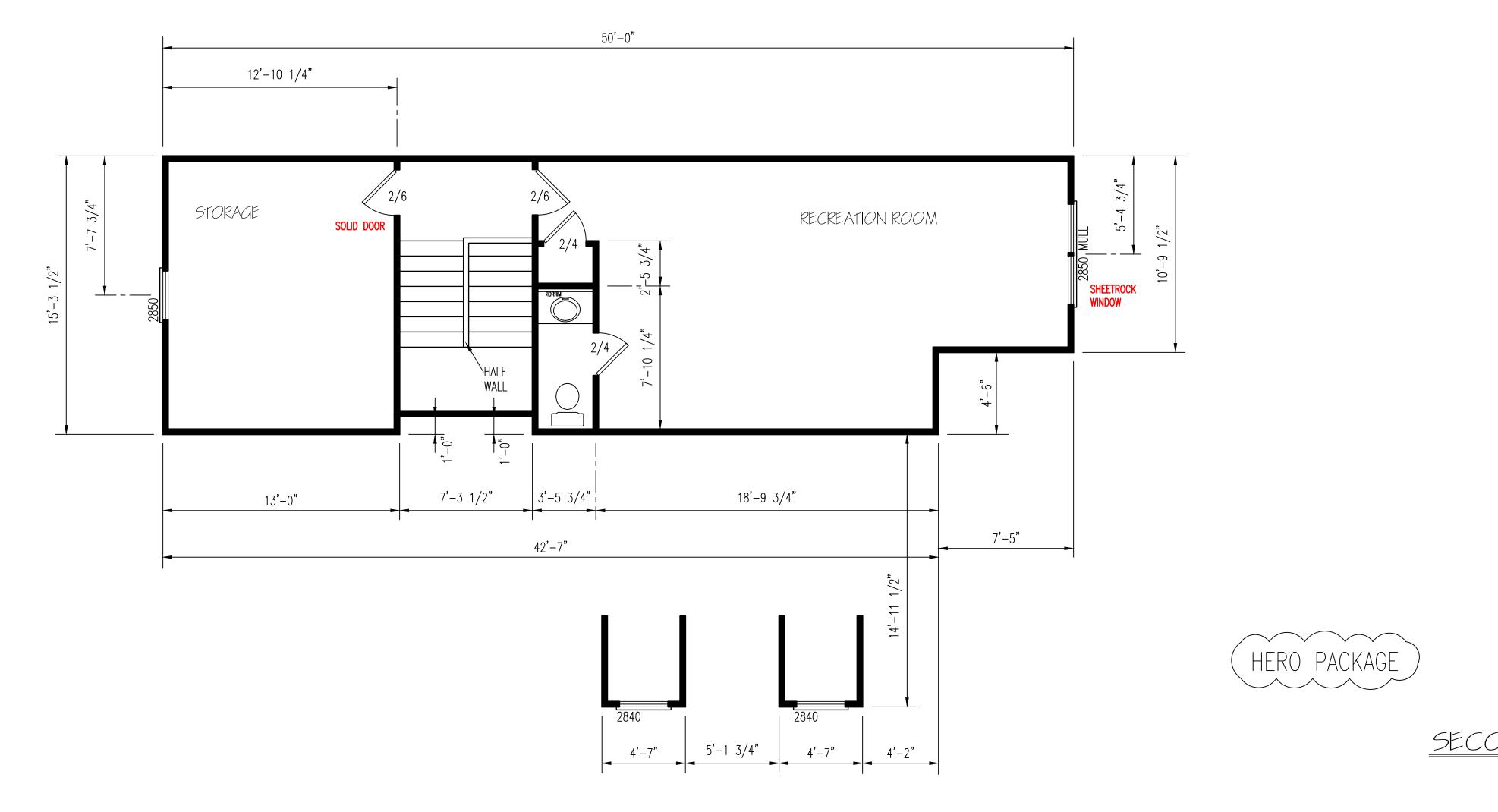
IST FL	2092	SQ FT
2ND FL	456	SQ FT
TOTAL	2548	SQ FT

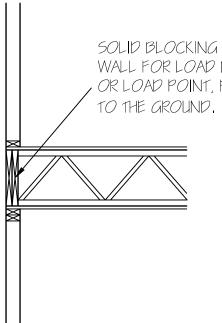
OTHER AREAS

GARAGE	622	SQ FT
F.PORCH	84	SQ FT
R.PORCH	67	SQ FT
STORAGE	94	SQ FT

NOTE: CEILINGS ARE 9'-0" UNLESS NOTED. SET WINDOWS @ 7'-4" UNLESS NOTED.

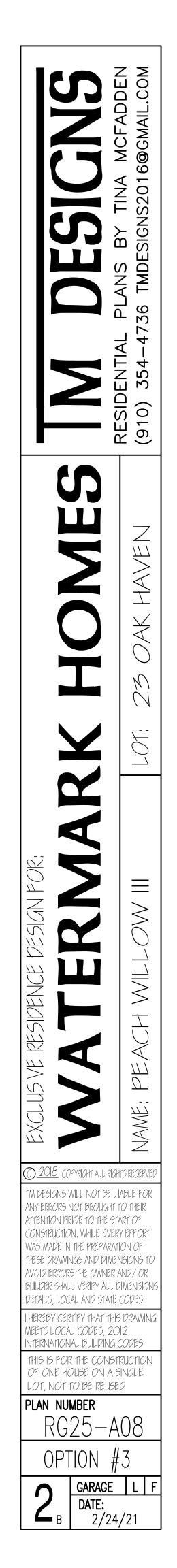


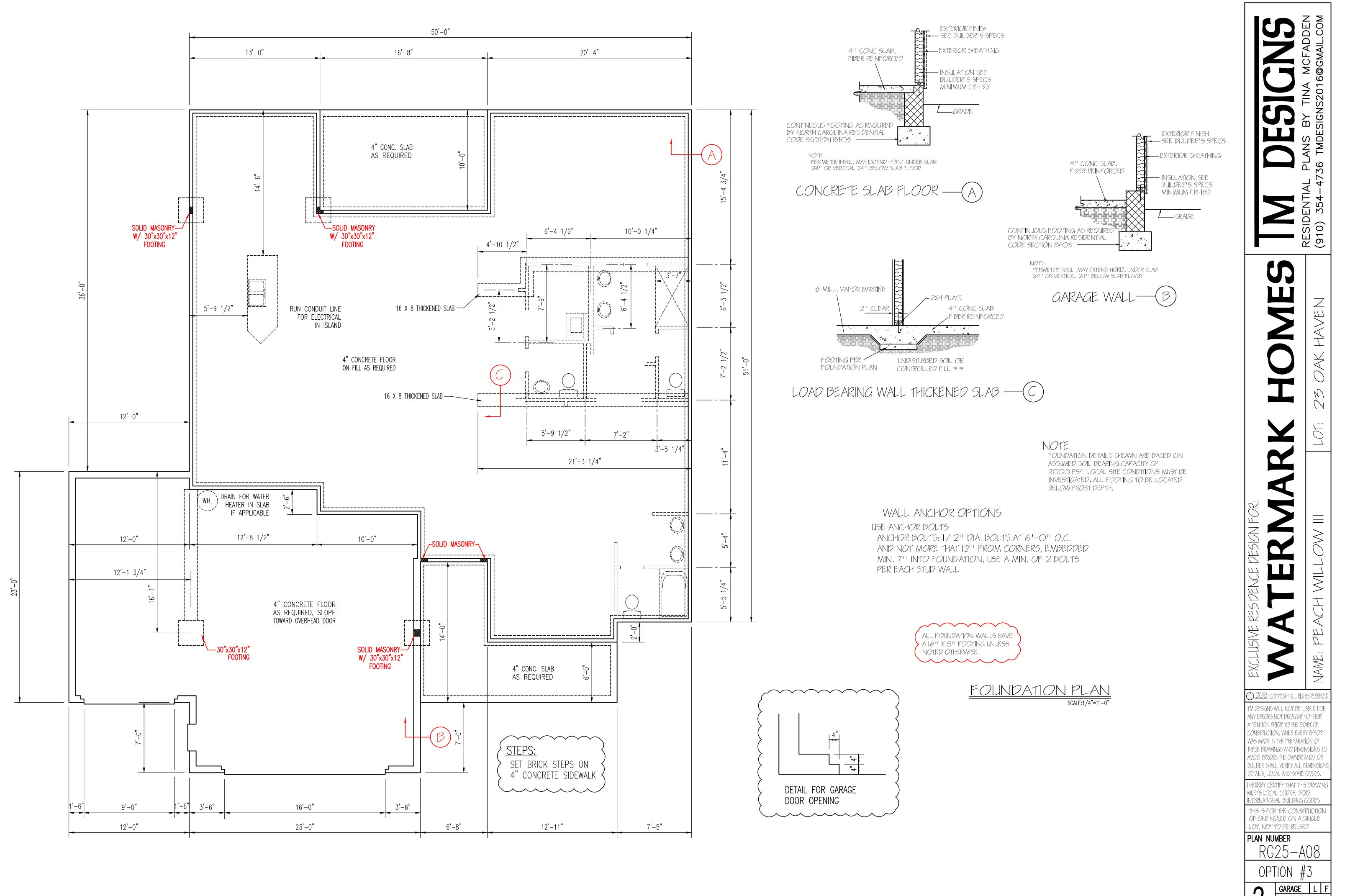

SCALE:1/4''=1'-0''


(2) 2X10 HEA	ADERS
CLEAR SPAN FOR HEADER	NUMBER OF JACK STUDS
ALL DOOR & C.O. WIDTH 5'-0" & BELOW	1
ALL DOOR & C.O. WIDTH ABOVE 5'-0"	2
3/0 DOOR W/ SIDE LITES	2
ALL SINGLE WINDOWS	1
ALL TWIN WINDOWS	2
ALL TRIPLE WINDOWS	3
UNLESS NOTED OT	HER WISE

ENERGY TABLE UFACTOR OF WINDOWS 30 CLIMATE ZONE 3 INSULATION: WALLS 15 CEILING 38 FL*OO*RS 19 \sim

 $\sim\sim\sim\sim\sim$

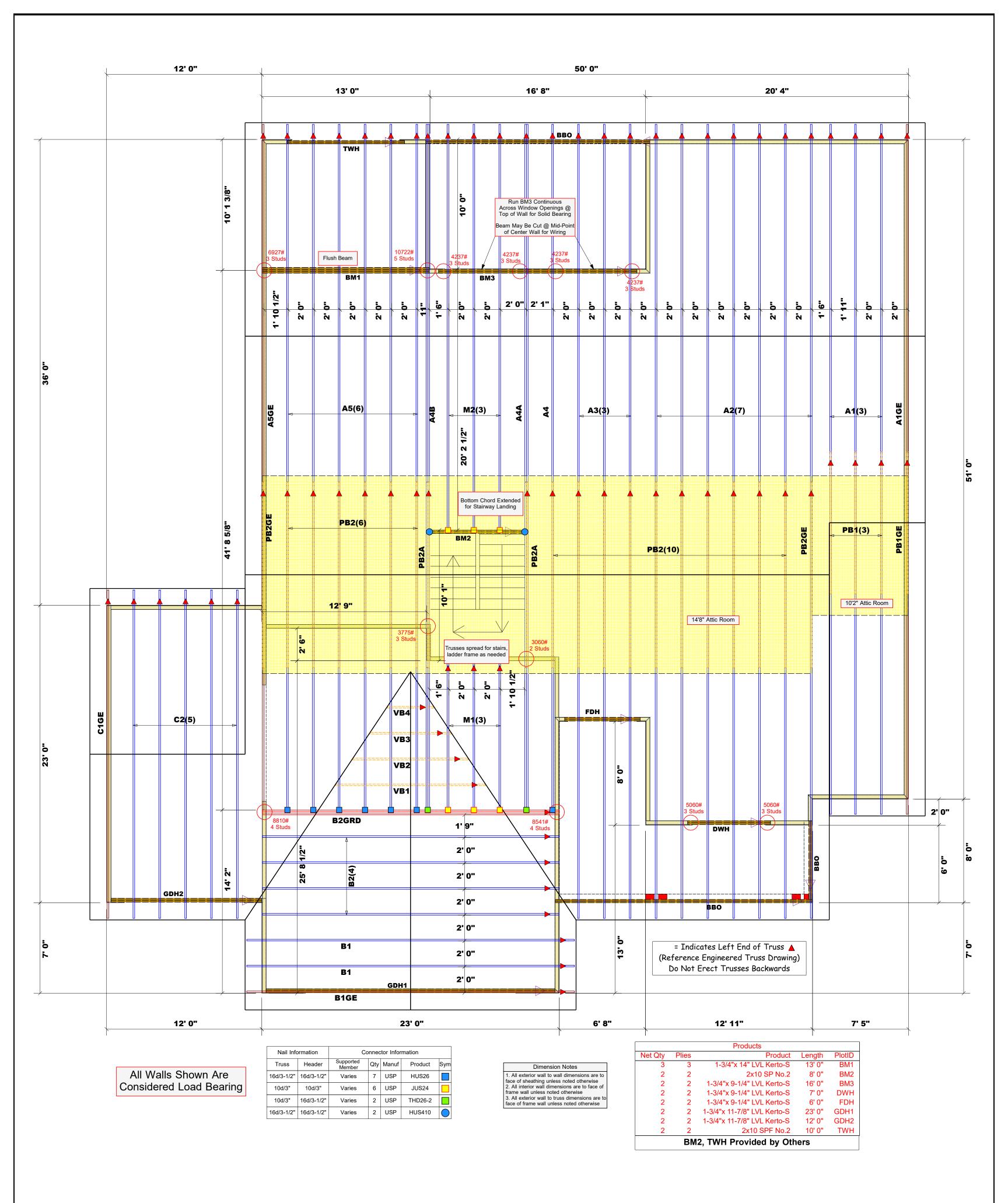

SOLID BLOCKING ON EXTERIOR WALL FOR LOAD BEARING WALL OR LOAD POINT, FROM LOAD

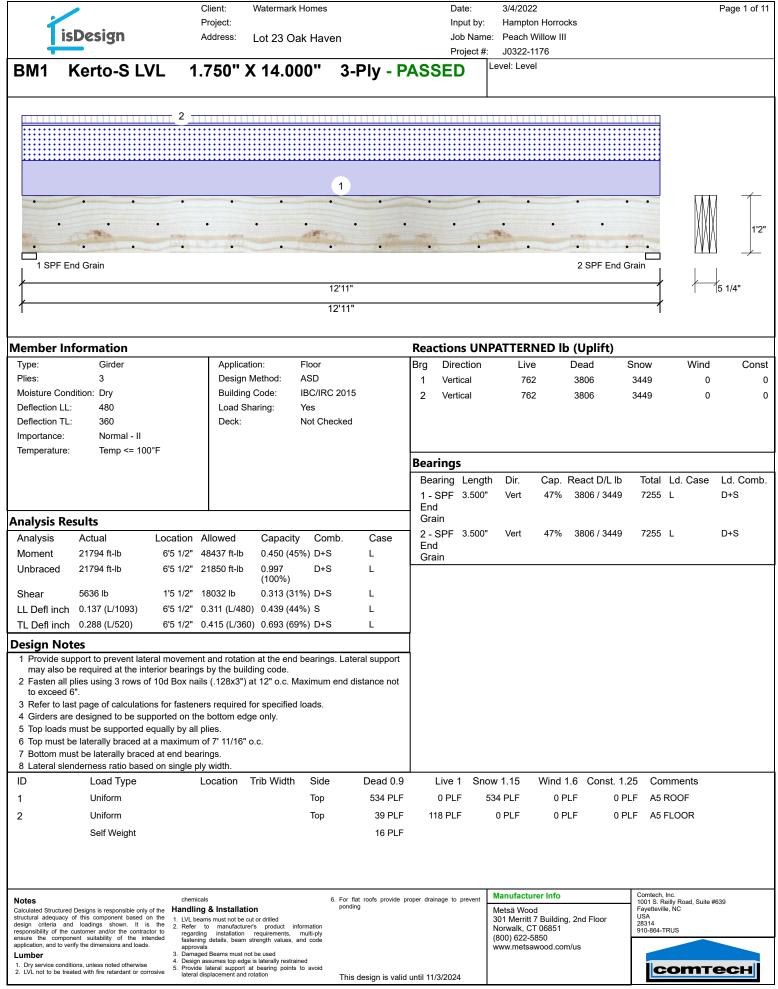

SOLID BLOCKING FOR INTERIOR WALL OR LOAD POINT FROM , LOAD TO GROUND.

(2) 2X10 HEA	
CLEAR SPAN FOR HEADER	NUMBER OF JACK STUDS
ALL DOOR & C.O. WIDTH 5'-0" & BELOW	1
ALL DOOR & C.O. WIDTH ABOVE 5'-0"	2
3/0 DOOR W/ SIDE LITES	2
ALL SINGLE WINDOWS	1
ALL TWIN WINDOWS	2
ALL TRIPLE WINDOWS	3
UNLESS NOTED OT	HER WISE

SECOND FLOOR PLAN

SCALE: 1/4''=1'-0''

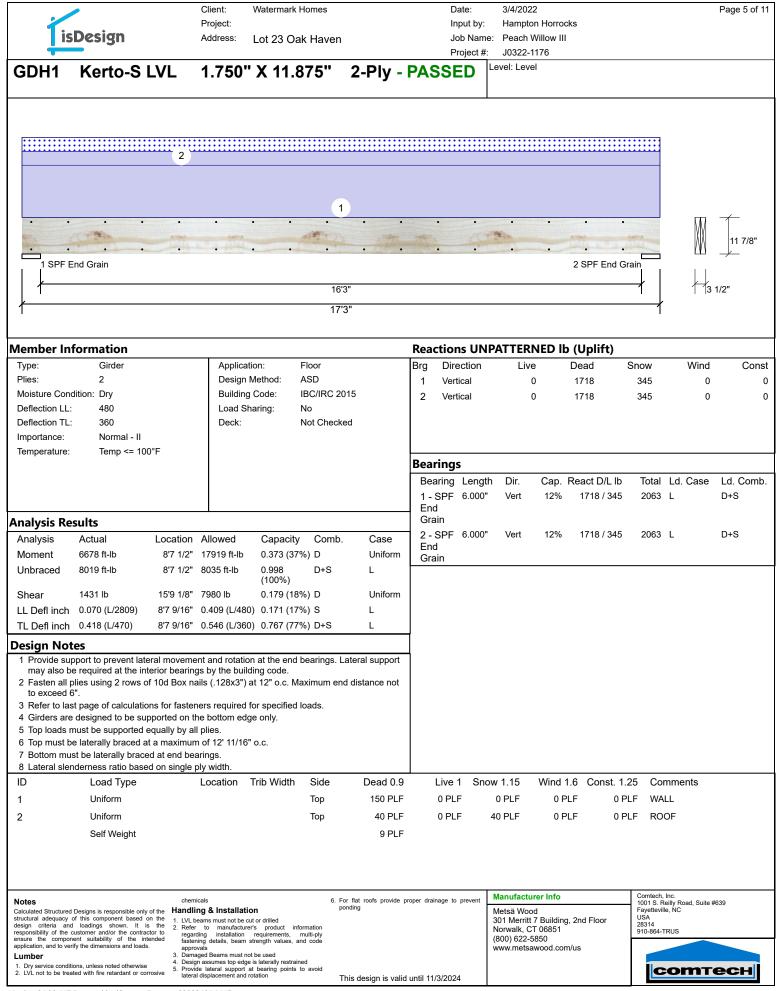



DATE:

2/24/21

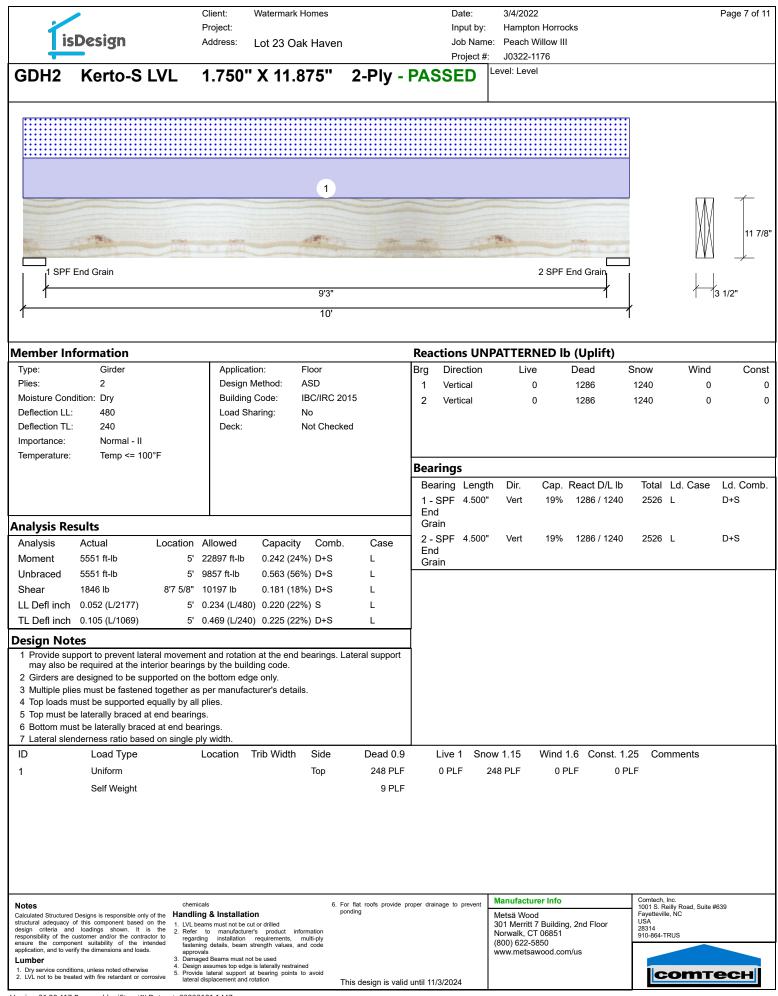
J

		-		-		
LOAD CHART FOR JACK STUDS (BASED ON TABLES R502.5(1) 4 (b)) NUMBER OF JACK STUDS REQUIRED @ EA END OF	BUILDER	Watermark Homes	COUNTY	Johnston	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is	
	JOB NAME	Lot 23 Oak Haven	ADDRESS	Lot 23 Oak Haven	responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	сотесн
END REAC UP T REQ D STL (2) PLY H (2) PLY H (UP T (2) PLY H (2) PLY H (3) PLY H (UP T (0P T) (UP T)	PLAN	Peach Willow III GL	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 2550 1 3400 1 3400 2 5100 2 6800 2 5100 3 7650 3 10200 3 1000 3 10500 1 10200 3	SEAL DATE	2/24/21	DATE REV.	03/04/22	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS Reilly Road Industrial Park
6800 4 10200 4 13600 4 8500 5 12750 5 17000 5 10200 6 15300 6 1 1	QUOTE #		DRAWN BY	Hampton Horrocks	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9	JOB #	J0322-1176	SALESMAN	Anthony Williams	signature Hampton Horrocks	Fax: (910) 864-4444



Version 21.80.417 Powered by iStruct™ Dataset: 22022101.1447

1	isDesign	Client: Project: Address:	Watermark Homes		Inp Jo	ate: out by: b Name:		Page 2 of 11
BM1	Kerto-S LV	L 1.750"	X 14.000"	3-Ply		oject #:	J0322-1176 evel: Level	
	•••	•••	•	•••	•	•	· · ·	· · · [2] [1/2"
1 SP	• •		•	•••	•	•	• • 2 SPF End	
				12'11" 12'11"				f5 1/4"
Fasten al	l y Analysis Il plies using 3 rows	of 10d Box nails	(.128x3") at 12"	o.c Nail fro	om both sides	. Maxi	mum end distance not to	o exceed
6". Capacity Load		0.0 % 0.0 PLF						
Yield Limit p	per Foot	245.6 PLF 81.9 lb.						
Yield Mode Edge Distar		IV 1 1/2"						
Min. End Di Load Comb	istance	3"						
Duration Fa		1.00						
Notos		chemicals		6. For flat roofe pr	ovide proper drainage to	prevent	Manufacturer Info	Comtech, Inc.
structural adeo	uctured Designs is responsible only of quacy of this component based on	the Handling & Installa the 1. LVL beams must not be	cut or drilled	ponding	о рюрог чтаннаус Ю		Metsä Wood 301 Merritt 7 Building, 2nd Floor	1001 S. Řeilly Road, Suite #639 Fayetteville, NC USA
responsibility o ensure the c	a and loadings shown. It is of the customer and/or the contractor component suitability of the intere-	the 2. Refer to manufactur to regarding installation ded fastening details, bear	requirements, multi-ply strength values, and code				Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
Lumber	d to verify the dimensions and loads.	approvals 3. Damaged Beams must 4. Design assumes top ec	not be used ge is laterally restrained				www.metsawood.com/us	
2. LVL not to I	be treated with fire retardant or corros	5 Provide lateral support	t at bearing points to avoid	This design is	valid until 11/3/2024			сотесн

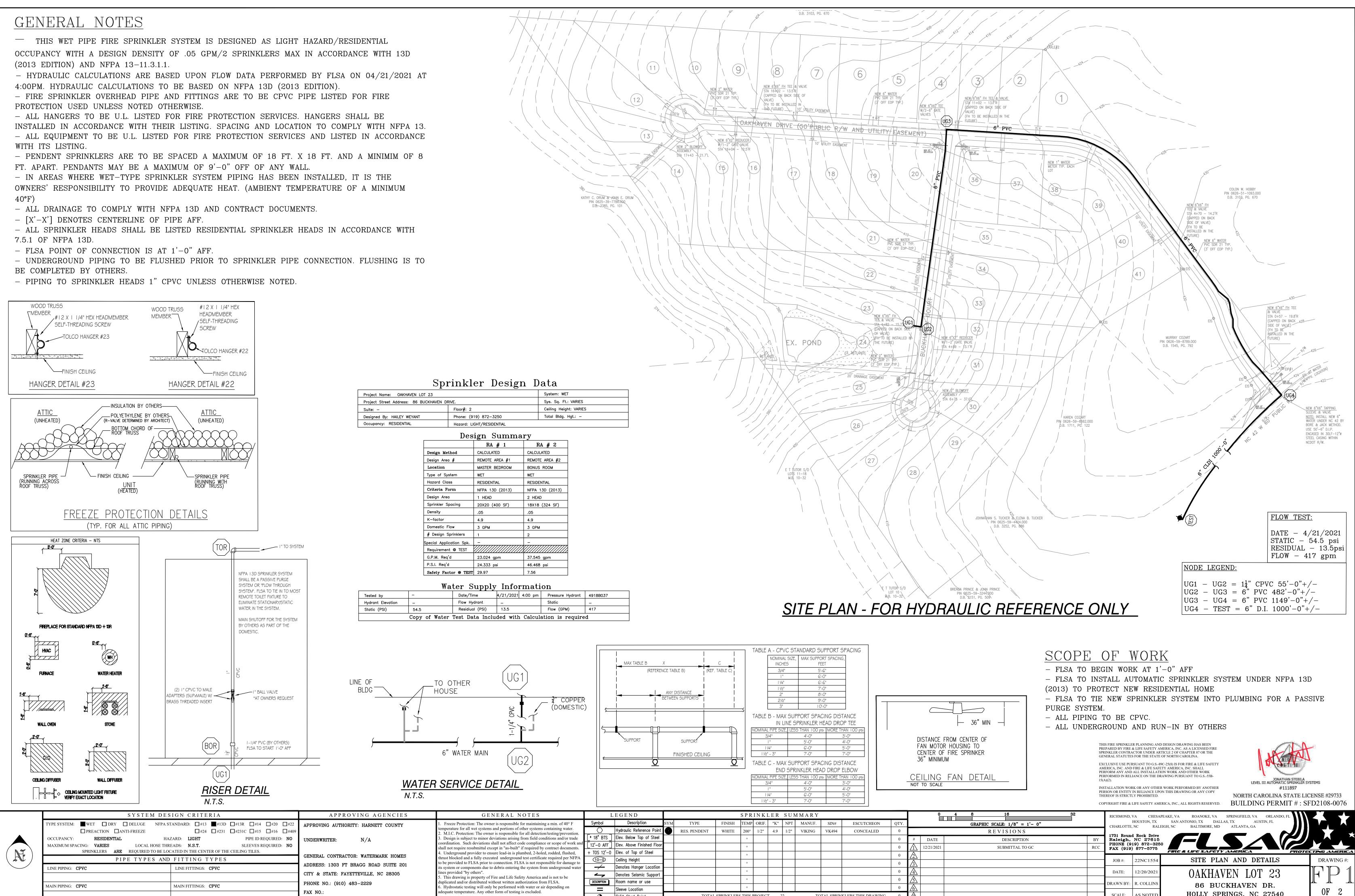

		Clie Pro	ent: Wa ject:	termark Homes	3		Date: hput by:	3/4/2022 Hamptor	2 n Horrocks				Page 3 of 1
is	Design	Ado	dress: Lo	t 23 Oak Hav	ven		ob Name:						
							Project #:	J0322-1 evel: Leve					
BM3	Kerto-S LV	L 1.	750")	(9.250"	2-Ply	PASS	ED	evel. Leve	I				
	2												
			1										
			1									N M	1 1
												IVIV	/
	Contraction .				m. ap	-		-					9 1
				and the second second								<u> </u>	
1 SPF E	End Grain		E 10			2 SPF End	d Grain						10.4/01
			5'8									I] 3 1/2"
I			6'2	2				I					
lember In	formation					Reactio	ns UNP	ATTERN	NED lb (Uplift)			
Туре:	Girder		Application			Brg Dir	ection	Live	D	ead	Snow	Wind	Cons
Plies: Moisture Con	2 dition: Dry		Design Met Building Co		RC 2015		tical	561		224	2013	0	
Deflection LL:	•		Load Shari			2 Ver	tical	561	2	224	2013	0	
Deflection TL:			Deck:	Not Cł	necked								
Importance:	Normal - II												
Temperature:	Temp <= 100°F					Bearing	s						
							Length	Dir.	Cap. Re	act D/L lb	Total	Ld. Case	Ld. Com
						1 - SPF	-	Vert		224 / 2013	4237		D+S
nalveie De	a					End Grain							
nalysis Re Analysis		ocation Allo	wed (Capacity Co	omb. Case	2 - SPF	3.000"	Vert	48% 2	224 / 2013	4237	L	D+S
Moment	5762 ft-lb	3'1" 144).399 (40%) D+		End Grain							
Unbraced	5762 ft-lb	3'1" 107).535 (53%) D+		Grain							
Shear	2840 lb	1' 1/4" 794	3 lb (0.358 (36%) D+	S L								
	0.046 (L/1526)			.315 (31%) S	L								
	0.096 (L/725)	3'1" 0.19	93 (L/360) ().497 (50%) D+	S L	_							
esign Not	pport to prevent lateral	movement ar	d rotation a	the and hearin	as Latoral support								
may also b	e required at the interio	or bearings by	the building	code.	•								
2 Fasten all p to exceed 6	blies using 2 rows of 10 5".	d Box nails (.	.128x3") at 1	2" o.c. Maximur	n end distance not								
	st page of calculations f		-	-									
	e designed to be suppor nust be supported equa		-	niy.									
	e laterally braced at en	-	-										
	st be laterally braced a nderness ratio based or	-											
ID	Load Type			Width Side	e Dead 0.	9 Live	1 Snov	v 1.15	Wind 1.6	Const. 1	.25 Com	nments	
1	Uniform			Тор	653 PL	F 0 PL	.F 65	53 PLF	0 PLF	0 F	PLF A3 R	OOF	
2	Uniform			Тор	61 PL	F 182 PL	.F	0 PLF	0 PLF	0 F	PLF A3 F	LOOR	
	Self Weight				7 PL	F							
lataa		chemicals			6 For flat rock provide	noner drainago ta	nrevent	Manufactur	er Info		Comtech, Ir	1C.	1000
Notes Calculated Structured	Designs is responsible only of the	Handling &			 For flat roofs provide ponding 	e proper grainage to	prevent	Metsä Wood	ł		 1001 S. Re Fayetteville USA 	illy Road, Suite #	639
esion criteria and	of this component based on the d loadings shown. It is the customer and/or the contractor to	e 2 Pofor to	nust not be cut or o manufacturer's installation requ	frilled product information irements, multi-ply				301 Merritt 7 Norwalk, CT	06851	nd Floor	28314 910-864-TF	NUS	
pplication, and to ver	customer and/or the contractor to tent suitability of the intended ify the dimensions and loads.	approvals	tails, beam streng	th values, and code				(800) 622-58 www.metsav		5			
.umber I. Dry service condit	ions, unless noted otherwise	 Design assu Dravide late 	eams must not be i mes top edge is la ral support at be	ised erally restrained aring points to avoid									
	ated with fire retardant or corrosive	e lateral displa	cement and rotatio	n	This design is va	lid until 11/2/201	14					omt	CCH

	Client: Watermark Home		3/4/2022	Page 4 of 11
LieDesign	Project:	Input by:		
isDesign	Address: Lot 23 Oak Ha			
			J0322-1176 Level: Level	
BM3 Kerto-S LVL	1.750" X 9.250'	2-Ply - PASSED		
• •	• •	• • •	1/2"	
				9 1/
• •	• •	• • •	<u>+ +</u>	
1 SPF End Grain	5101	2 SPF End Grain		
	5'8"			3 1/2"
1	6'2"		1	
Multi-Ply Analysis				
Fasten all plies using 2 rows of 100	d Box nails (.128x3") at 12'	' o.c Maximum end distance n	ot to exceed 6".	
Capacity 0.0 %				
Load 0.0 PLF Yield Limit per Foot 163.7 P				
Yield Limit per Fastener 81.9 lb.				
Yield Mode IV Edge Distance 1 1/2"				
Edge Distance 1 1/2" Min. End Distance 3"				
Load Combination				
Duration Factor 1.00				
			Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the Hand	emicals	For flat roofs provide proper drainage to prevent ponding	Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the 1. LV design criteria and loadings shown. It is the 2 Re	L beams must not be cut or drilled		301 Merritt 7 Building, 2nd Floor	USA
	fer to manufacturer's product information		Norwalk, CT 06851	28314 910-864-TRUS
responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.	fer to manufacturer's product information parding installation requirements, multi-ply tening details, beam strength values, and code provals			28314 910-864-TRUS
responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 3. Da	fer to manufacturer's product information garding installation requirements, multi-ply itening details, beam strength values, and code		Norwalk, CT 06851 (800) 622-5850	

Version 21.80.417 Powered by iStruct[™] Dataset: 22022101.1447

			Client:	Watermark Homes			Date:	3/4/2022	Page 6 of 11
1	isDesign		Project: Address:	Lot 23 Oak Hav	/en		nput by: lob Name:	Hampton Horrocks Peach Willow III	
						F	Project #:	J0322-1176	
GDH1	Kerto-S	LVL	1.750"	' X 11.875'	' 2-Ply	- PASS	ED ^L	evel: Level	
									E
•	• • •	• •	•	• • •	•	• •	٠	• • • •	
•		•	•	• •	•	• •	•		
1 SPF	End Grain							2 SPF End G	rain // ·
/					16'3"				3 1/2"
<i>†</i>					17'3"				
Multi-Ply	-								
Fasten all p	olies using 2 ro	ws of 10d	Box nails (.128x3") at 12"	o.c Maximu	m end dista	ance no	t to exceed 6".	
Load		0.0 PLF							
Yield Limit per Yield Limit per		163.7 PL 81.9 lb.	F						
Yield Mode		IV							
Edge Distance		1 1/2"							
Min. End Dista Load Combina		3"							
Duration Facto		1.00							
Notes	red Designa is recensible	chem		on	 For flat roofs provid ponding 	le proper drainage to	5 prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequad design criteria	red Designs is responsible on cy of this component based and loadings shown. It	on the 1. LVL to is the 2. Refer	eams must not be c to manufacture	ut or drilled er's product information	. v			Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314
responsibility of th ensure the comp	e customer and/or the contr ponent suitability of the i verify the dimensions and load	ractor to regar intended faste	ding installation ning details, beam	requirements, multi-ply strength values, and code				(800) 622-5850	910-864-TRUS
Lumber		3. Dama 4. Desig	aged Beams must no an assumes top edge	e is laterally restrained				www.metsawood.com/us	
2. LVL not to be t	nditions, unless noted otherwis treated with fire retardant or o	se 5. Provi	de lateral support al displacement and	at bearing points to avoid	This design is v	alid until 11/3/202	24		соттесн

Version 21.80.417 Powered by iStruct™ Dataset: 22022101.1447


ť.		Project:	ark Homes		Date: Input by:	3/4/2022 Hampton He			Page 8 of 11
<u>_</u> _	sDesign	Address: Lot 23	Oak Haven		Job Name Project #:	 Peach Willo J0322-1176 			
FDH	Kerto-S LVL	. 1.750" X 9	.250" 2-	Ply - PA		Level: Level			
	2								
		1						_	
	·	•	•		•			\wedge	9 1/
•			atten po-					\square	
	End Grain	5'4"		2 SPF End	Grain			-	3 1/2"
<u>}</u>		5'10"							
/ember li	nformation			Rea	ctions UNI	PATTERNEI	D lb (Uplift)		
Туре:	Girder	Application:	Floor	Brg	Direction	Live	Dead	Snow Win	
Plies: Moisture Co	2 ndition: Drv	Design Method: Building Code:	ASD IBC/IRC 2015	1	Vertical	493	1290	1105	0 0
Deflection LI	•	Load Sharing:	No	2	Vertical	493	1290	1105	0 0
Deflection T	L: 360	Deck:	Not Checked						
Importance:	Normal - II								
Temperature	e: Temp <= 100°F				•				
					rings				
					aring Length		ap. React D/L lb	Total Ld. Cas	
				1 - En	SPF 3.000"	Vert 2	8% 1290 / 1199	2488 L	D+0.75(L+8
nalysis R	esults			Gra					
Analysis		ation Allowed Capa	city Comb.	Case 2 -	SPF 3.000"	Vert 2	8% 1290 / 1199	2488 L	D+0.75(L+S
Moment	3177 ft-lb	•	(22%) D+0.75(L+S)	L En					
Unbraced	3177 ft-lb		(29%) D+0.75(L+S)	01	alli				
Shear	1623 lb		(20%) D+0.75(L+S)						
LL Defl incl	ח 0.023 (L/2820)	2'11" 0.136 (L/480) 0.170							
TL Defl incl	n 0.048 (L/1358)	2'11" 0.182 (L/360) 0.265							
Design No		. ,	. , . ,						
		ovement and rotation at the	end bearings. Latera	I support					
-		bearings by the building code							
to exceed		Box nails (.128x3") at 12" o.o		ance not					
		fasteners required for speci	ied loads.						
	re designed to be supporte must be supported equal	ed on the bottom edge only.							
•	be laterally braced at end								
	ust be laterally braced at e	-							
8 Lateral sl	enderness ratio based on s Load Type	Location Trib Wid	lth Side	Dead 0.9	Live 1 Sno	w 1.15 Wi	nd 1.6 Const. 1	.25 Comments	
1	Uniform		Тор	379 PLF		79 PLF		PLF A3 ROOF	
2	Uniform		•			0 PLF			
2			Тор		69 PLF	VFLF	0 PLF 0 F	PLF A3 FLOOR	
	Self Weight			7 PLF					
		chamicals	6 F	roofo provide access t	ingo to more	Manufacturer I	ıfo	Comtech, Inc.	
Notes Calculated Structure	ed Designs is responsible only of the	chemicals Handling & Installation	6. For flat ponding	roofs provide proper dra	indge to prevent	Metsä Wood		 1001 S. Reilly Road, Su Fayetteville, NC 	ite #639
structural adequacy design criteria a	y of this component based on the nd loadings shown. It is the	1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product				301 Merritt 7 Bu Norwalk, CT 06	ilding, 2nd Floor 351	USA 28314 910-864-TRUS	
ensure the comp application and to v	e customer and/or the contractor to onent suitability of the intended verify the dimensions and loads.	regarding installation requirement fastening details, beam strength value	ts, multi-ply			(800) 622-5850		510-004-TRUS	
Lumber		approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally n	estrained			www.metsawoo	a.com/uS		
 Dry service con LVL not to be tr 	ditions, unless noted otherwise eated with fire retardant or corrosive	 Design assumes top edge is laterally in Provide lateral support at bearing p lateral displacement and rotation 	pints to avoid	eian ie volid until 44	1/3/2024			com	тесн
		·	This de	sign is valid until 1	10/2024				

isDesign	Client: Watermark Homes Project: Address: Lot 23 Oak Ha	Input		Page 9 of 11
		Proje	ect #: J0322-1176	
FDH Kerto-S LVL	1.750" X 9.250"	2-Ply - PASSEI		
			1.	
•	• •	• • • -	<1 1/2"	9 1/
1 SPF End Grain	5'4"	2 SPF End Grain	∃ } -	3 1/2"
	5'10"	1	+	5 1/2
Multi-Ply Analysis Fasten all plies using 2 rows of 10d Capacity 0.0 %	Box nails (.128x3") at 12"	o.c Maximum end distanc	e not to exceed 6".	
Load 0.0 PLF Yield Limit per Foot 163.7 PL	F			
Yield Limit per Fastener 81.9 lb. Yield Mode IV				
Edge Distance 1 1/2"				
Min. End Distance 3" Load Combination Duration Factor 1.00				
	nicals	6. For flat roofs provide proper drainage to pre-		Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the L. ULU design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended	ling & Installation beams must not be cut or drilled er to manufacturer's product information riding installation requirements, multi-ply prining details, beam strength values, and code rovals	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville, NC USA 28314 910-864-TRUS
Lumber 1. Dry service conditions, unless noted otherwise 5. Prov	aged Beams must not be used ign assumes top edge is laterally restrained ide lateral support at bearing points to avoid al displacement and rotation	This design is valid until 11/3/2024		соттесн

	•	Cli	ent: W	atermark H	omes			Date:	3/4/202	2				Page 10 of
Lie	Design		oject:					Input by:		n Horrock	S			
	Design	Ad	dress: Lo	ot 23 Oak	Haven			Job Name Project #:		Willow III 1176				
DWH	Kerto-S LV	/L 1	.750"	X 9.2	50"	2-Ply -	PAS	SED	Level: Leve	əl				
	2													
			-	1									<u> </u>	
•	•	•											M	91
	•			•		•	• 2 SDE E						<u> </u>	
				'8"			2 SPF E	End Grain						3 1/2"
1			6'	2"					7					
Member Inf	formation						Reacti	ions UN	PATTER	NED lb	(Uplift)			
Type: Plies:	Girder 2		Application Design Me		loor SD		Ĭ	Direction	Live		Dead	Snow	Wind	Cons
Moisture Cond			Building Co		3D 3C/IRC 201	5		/ertical /ertical	74: 74:		2665 2665	2396 2396	0 0	(
Deflection LL:	480		Load Shari					Ventical	/ 4	0	2003	2000	0	(
Deflection TL:	360		Deck:	N	ot Checked	ł								
Importance:	Normal - II													
Temperature:	Temp <= 100°F						Pearin							
							Bearin	-	h Dia	0		T -4-1		
								ng Lengt		•	React D/L lb		Ld. Case	Ld. Comb
							1 - SF End	PF 3.000"	Vert	57%	2665 / 2396	5060	L	D+S
Analysis Re	sults						Grain							
Analysis		ocation All	owed	Capacity	Comb.	Case		PF 3.000"	Vert	57%	2665 / 2396	5060	L	D+S
Moment	6881 ft-lb	3'1" 14-		0.477 (48%		L	End Grain							
Unbraced	6881 ft-lb	3'1" 10	779 ft-lb	0.638 (64%) D+S	L	Grain							
Shear	3391 lb	1' 1/4" 794	43 lb	0.427 (43%) D+S	L								
LL Defl inch	0.054 (L/1282)	3'1" 0.1	45 (L/480)	0.374 (37%) S	L								
TL Defl inch	0.114 (L/607)	3'1" 0.1	93 (L/360)	0.593 (59%) D+S	L								
Design Not	es				·		1							
	oport to prevent lateral	movement a	nd rotation a	at the end be	earings. La	teral support	4							
	e required at the interio	•	, ,	•	-									
2 Fasten all p to exceed 6	lies using 2 rows of 10 5".	o Box naiis (.128x3") at 1	12° 0.C. Max	amum ena	distance not								
	t page of calculations f		-	-	ads.									
	designed to be suppor nust be supported equa		-	only.										
	e laterally braced at en													
	st be laterally braced at	-												
8 Lateral slen	derness ratio based or			ib \//id+L	Side	Dood 0.0	1	10.1 07	DW 1 1F	10/ind 4	6 Con-1 4	25 0.00	nmonto	
	Load Type	LO	cation Tri	ib Width		Dead 0.9			ow 1.15		6 Const. 1		nments	
1	Uniform				Тор т	777 PLF			777 PLF	0 PL			ROOF	
2	Uniform				Тор	80 PLF		PLF	0 PLF	0 PL	.⊢ 0 I	PLF A2 I	LOOK	
	Self Weight					7 PLF								
						flat roofs provide p		a ta mayant	Manufactu	rer Info		Comtech,	Inc.	1630
Notes		chemicals					proper drainage	e to prevent				1001 S P	eilly Road Suite #	
Notes Calculated Structured	Designs is responsible only of the	e Handling 8	Installation	. طعالهما	6. For pone		oroper drainage	e to prevent	Metsä Woo		and Eleca	— 1001 S. Re Fayetteville USA	eilly Road, Suite # e, NC	+039
Calculated Structured structural adequacy of design criteria and responsibility of the c	of this component based on the loadings shown. It is the sustomer and/or the contractor to	e Handling 8 e 1. LVL beams e 2. Refer to	must not be cut or manufacturer's	product inform	pone		ooper dramag	e to prevent	301 Merritt Norwalk, C	7 Building, T 06851	2nd Floor	Fayettevill	e, NC	039
Calculated Structured structural adequacy of design criteria and responsibility of the c ensure the component	of this component based on the loadings shown. It is the	e Handling 8 e 1. LVL beams 2. Refer to regarding fastening d approvals	must not be cut or manufacturer's installation rec etails, beam strer	product inform quirements, mu ngth values, and	pono nation Jlti-ply		ooper dramag	e to prevent	301 Merritt	7 Building, T 06851 5850		Fayettevill USA 28314	e, NC	1039
Calculated Structured structural adequacy of design criteria and responsibility of the c ensure the compone application, and to veri Lumber	of this component based on the loadings shown. It is the sustomer and/or the contractor to ent suitability of the intended	 Handling 8 1. LVL beams 2. Refer to regarding fastening d approvals 3. Damaged E 4. Design assi 	must not be cut or manufacturer's installation rec	product inform quirements, mu ngth values, and used aterally restrained	pono nation ulti-ply code		noper orainagi	e to prevent	301 Merritt Norwalk, C (800) 622-5	7 Building, T 06851 5850		Fayettevill USA 28314 910-864-T	e, NC	

	/		Client:	Watermark Homes		Date:	3/4/2022	Page 11 of 1
~			Project:			Input by:	Hampton Horrocks	
	isDesign		Address:	Lot 23 Oak Have	en	Job Nam	e: Peach Willow III	
Ţ,						Project #	J0322-1176	
DWH	Korto-S	I VI	1 750	" X 9 250"	2_Plv	- PASSED	Level: Level	
	Nerto-S		1.750	X 3.230	Z- F 1 y	- FASSED		
	•		•	•				1
	•		•	•	•	• •	<1 1/2"	N/N/I I
								X X 9 1/4
	•		•	•	•	• •	<u> </u>	
			·				— — /	
	F End Grain					2 SPF End Grain		
				5'8"				2 1/0"
								1 13 1/2"
1				6'2"			1	
Multi-Ply	Analysis							
Fasten all	plies using 2 rov	ws of 10d	Box nails ((.128x3") at 12" (o.c Maximur	n end distance n	ot to exceed 6".	
Capacity		0.0 %						
Load		0.0 PLF						
Yield Limit pe		163.7 PL	F					
Yield Limit pe	r Fastener	81.9 lb.						
Yield Mode Edge Distanc	0	IV 1 1/2"						
Min. End Dist		3"						
Load Combin		•						
Duration Fact		1.00						
Notes			nicals		 For flat roofs provide ponding 	proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequa	red Designs is responsible only cy of this component based	on the 1. IVI	ing & Installati beams must not be o		ponoing		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of the	and loadings shown. It he customer and/or the contra	is the 2. Refe actor to rega	er to manufacture	er's product information requirements, multi-ply			Norwalk, CT 06851	28314 910-864-TRUS
ensure the com	ponent suitability of the in verify the dimensions and load	ntended faste	ening details, beam	strength values, and code			(800) 622-5850 www.metsawood.com/us	
Lumber		3. Dam	aged Beams must n	ot be used e is laterally restrained				
	nditions, unless noted otherwise treated with fire retardant or co	5. Prov	ide lateral support al displacement and	at bearing points to avoid	This design in the	lid uptil 11/2/2021		соттесн
<u> </u>		iaiCi	and		This design is va	iia untii 11/3/2024	l	

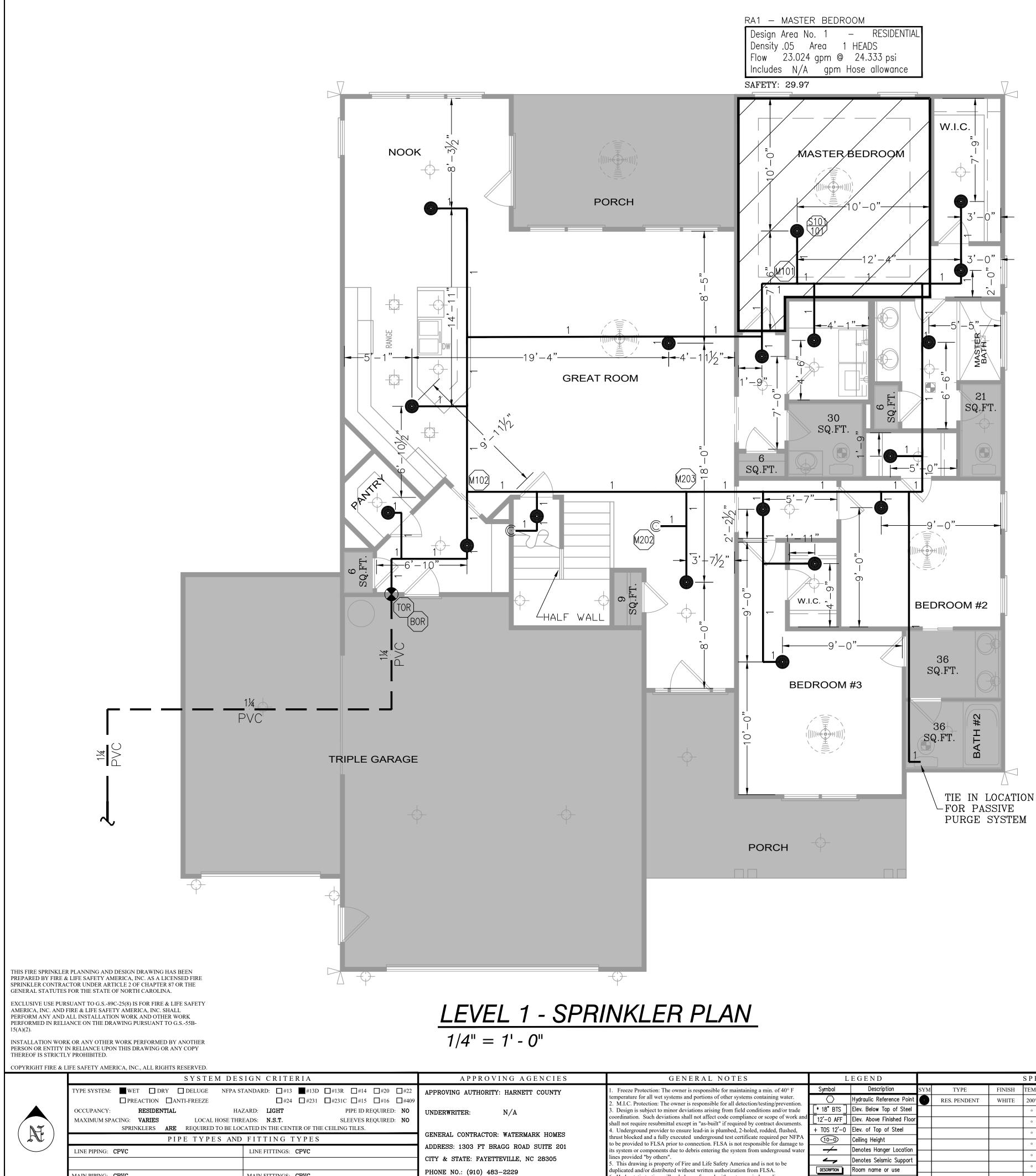
FAX NO.:

TOTAL SPRINKLERS THIS PROJECT 22

FLSA Start Point

	0			
			System: WET	
			Sys. Sq. Ft.:	VARIES
: 2			Ceiling Heigh	t: VARIES
(9	19) 872–3250		Total Bldg. I	-lgt.: –
1: LI	GHT/RESIDENTIAL		•	
\mathbf{es}	ign Summa	ry		
	RA # 1	I	RA # 2	
	CALCULATED	CALCU	JLATED	
	REMOTE AREA #1	REMO	TE AREA #2	
	MASTER BEDROOM	BONU	S ROOM	
	WET	WET		
	RESIDENTIAL	RESID	ENTIAL	
	NFPA 13D (2013)	NFPA	13D (2013)	
	1 HEAD	2 HEA	AD	
	20X20 (400 SF)	18X18	3 (324 SF)	
	.05	.05		
	4.9	4.9		
	3 GPM	3 GPI	M	
	1	2		
ok.	_	-		
Г				
	23.024 gpm	37.54	5 gpm	
	24.333 psi	46.46	8 psi	
EST	29.97	7.56		

equate temperature. Any other form of testing is excluded.


e/Time	4/21/2021 4:00 pm	Pressure Hydrant	4918B037
v Hydrant	_	Static	_
idiual (PSI)	13.5	Flow (GPM)	417
Data Inclu	ded with Calcu	lation is require	d

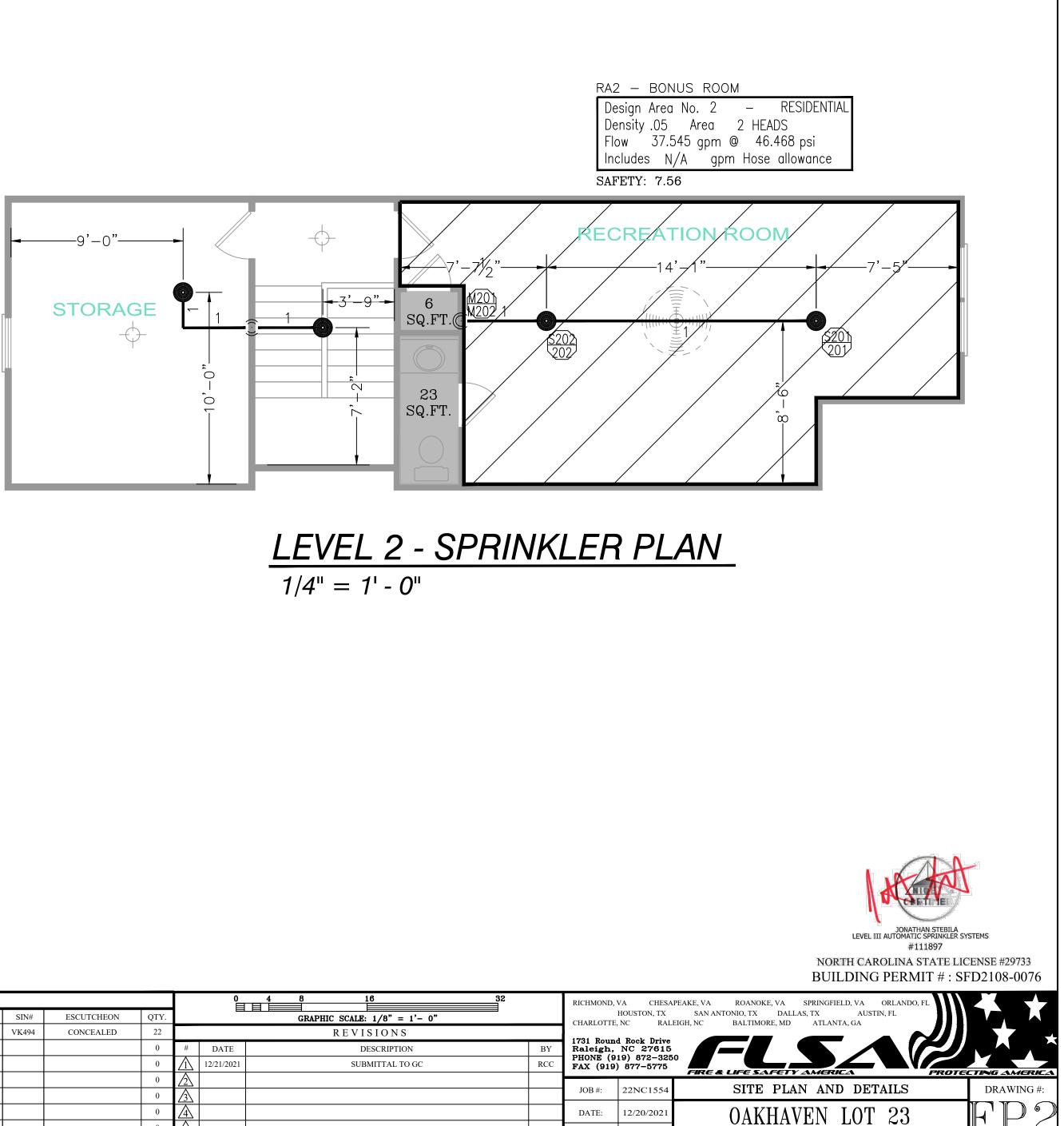
TOTAL SPRINKLERS THIS DRAWING

HOLLY SPRINGS, NC 27540

SCALE:

AS NOTE

MAIN FITTINGS: CPVC


FAX NO.:

MAIN PIPING: CPVC

<u>NOTES:</u>

- PORCHES AND GARAGES ARE OMITTED PER NFPA 13D (2013) 8.3.4 - CLOSETS 24 SQ. FT. OR LESS IN AREA ARE UNSPRINKLERED PER NFPA 13D (2013) 8.3.3; WALLS AND CEILING TO BE SURFACED WITH NONCOMBUSTIBLE OR LIMITED COMBUSTIBLE MATERIAL AS DEFINED BY NFPA 220

– BATHROOMS 55 SQ. FT. OR LESS IN AREA ARE UNSPRINKLERED PER NFPA 13D (2013) 8.3.2

DATE: 12/20/202

DRAWN BY: R. COLLINS

SCALE: AS NOTEI

86 BUCKHAVEN DR.

HOLLY SPRINGS, NC 27540

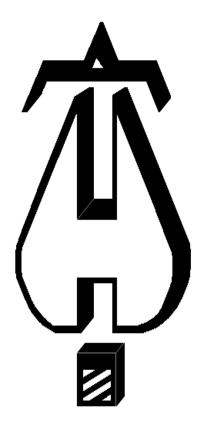
0F 2

GENERAL NOTES	L	EGEND				S P R	INK	LER	SUN	MARY					0	
1. Freeze Protection: The owner is responsible for maintaining a min. of 40° F	Symbol	Description	SYM	TYPE	FINISH	TEMP	ORIF.	"K"	NPT	MANUF.	SIN#	ESCUTCHEON	QTY.			
temperature for all wet systems and portions of other systems containing water. 2. M.I.C. Protection: The owner is responsible for all detection/testing/prevention.	\bigcirc	Hydraulic Reference Point		RES. PENDENT	WHITE	200°	1/2"	4.9	1/2"	VIKING	VK494	CONCEALED	22			
3. Design is subject to minor deviations arising from field conditions and/or trade	[* 18" BTS]	Elev. Below Top of Steel				0							0	#	DATE	
coordination. Such deviations shall not affect code compliance or scope of work and shall not require resubmittal except in "as-built" if required by contract documents.	[12'-0 AFF]	Elev. Above Finished Floor				0							0	不	12/21/2021	
4. Underground provider to ensure lead-in is plumbed, 2-holed, rodded, flushed,		Elev. of Top of Steel				0							0	$\overline{\mathbb{A}}$		
thrust blocked and a fully executed underground test certificate required per NFPA to be provided to FLSA prior to connection. FLSA is not responsible for damage to	10-0	Ceiling Height				0							0	$\overline{\mathbb{A}}$		
its system or components due to debris entering the system from underground water		Denotes Hanger Location				0							0	$\frac{733}{4}$	I	<u> </u>
lines provided "by others". 5. This drawing is property of Fire and Life Safety America and is not to be	4	Denotes Seismic Support				Ű							0	$\frac{74}{4}$		<u> </u>
duplicated and/or distributed without written authorization from FLSA.	DESCRIPTION	Room name or use				0							0	$\frac{25}{4}$		<u> </u>
6. Hydrostatic testing will only be performed with water or air depending on adequate temperature. Any other form of testing is excluded.	Ш	Sleeve Location				0							0			
adequate competation range only form of cosing is excluded.	✐	FLSA Start Point		TOTAL	SPRINKLER	S THIS	PROJEC	CT 2	22	TO	TAL SPRIN	KLERS THIS DRAWING	22	\triangle		

SPRINKLER LEGEND

NO HEADS REQUIRED

REMOTE AREA



1731 Round Rock Drive, Raleigh, NC 27615 • (919) 872-3250 • fax (919) 877-5775 • www.flsamerica.com

OAK HAVEN LOT 23

HYDRAULIC CALCULATIONS

12/20/2021

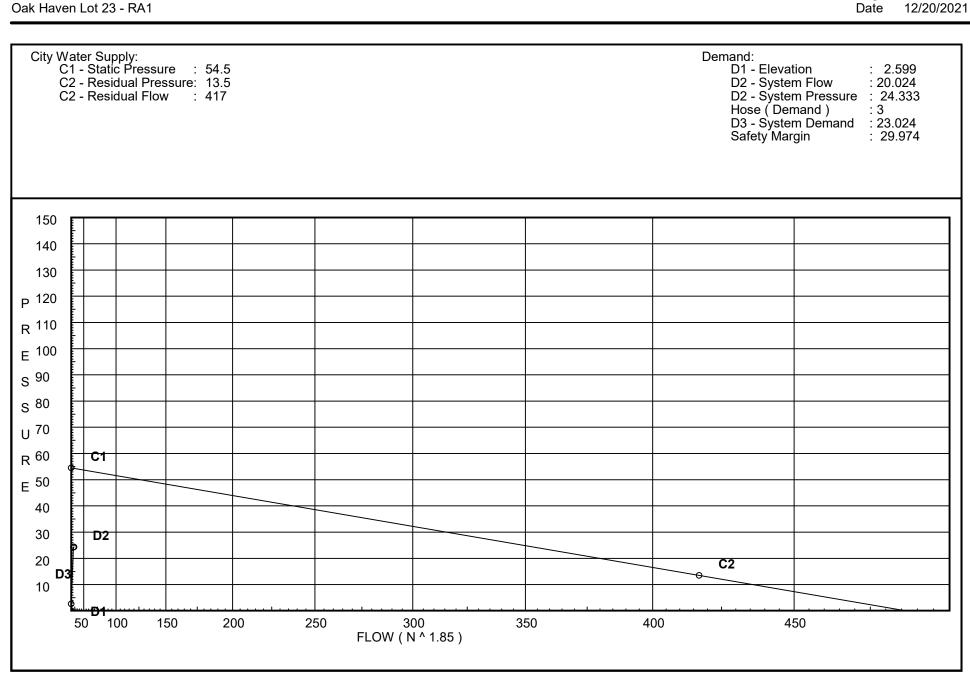
Hydraulic calculations using HydraCALC

FIRE & LIFE SAFETY AMERICA 1731 ROUND ROCK DRIVE RALEIGH, NC 27615 919-872-3250

Job Name:Oak Haven Lot 23 - RA1Drawing:FP1Location:86 BUCKHAVEN DR.Remote Area:RA1Contract:22NC1554Data File:RA1.WXF

HYDRAULIC CALCULATIONS for

Project name: Oak Haven Lot 23 Location: 86 BUCKHAVEN DR. Drawing no: FP1 Date: 12/20/2021


Design

Remote area number: RA1 Remote area location: Master Bedroom Occupancy classification: Residential Density: .05 - Gpm/SqFt Area of application: 241 - SqFt Coverage per sprinkler: 400 - SqFt Type of sprinklers calculated: VK494 No. of sprinklers calculated: 1 *In-rack demand:* N/A - GPM Hose streams: 3 - GPM Total water required (including hose streams): 23.024 - GPM @ 24.333 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date: 4/21/2021 Location: NC 42, NC 27540 Source: Fire & Life Safety America

Name of contractor: Fire & Life Safety America Address: 1731 Roundrock Drive / Raleigh, NC 27615 / P: (919) 872-3250 **Phone number:** F: (919) 877-57 Name of designer: H. WEYANT Authority having jurisdiction: Harnett County Notes: (Include peaking information or gridded systems here.)

Water Supply Curve C

FIRE & LIFE SAFETY AMERICA

Page 2 Date 12/20/2021

Fittings Used Summary

FIRE & LIFE SAFETY AMERICA	
Oak Haven Lot 23 - RA1	

Fitting Le	egend																				
Abbrev.	Name	1/2	3⁄4	1	1¼	11⁄2	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
Е	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0*	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	Ō	0	Ō	Õ	0	Ō
Ť	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Flow Summary - NFPA

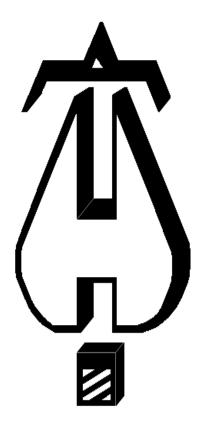
FIRE & LIFE SAFETY AMERICA Oak Haven Lot 23 - RA1

Page 4 Date 12/20/2021

			SUPPLY	ANALYSIS		
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	54.5	13.5	417.0	54.307	23.02	24.333

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
S101	9.0	4.9	16.7	20.02	
101	10.0		16.68		
M202	10.0		17.07		
M203	10.0		17.08		
M205	10.0		17.06		
M206	10.0		17.0		
M204	10.0		17.1		
TOR	8.0		18.22		
BOR	3.0		21.41		
UG1	3.0		22.2	3.0	
UG2	-3.0		26.87		
UG3	-3.0		26.88		
UG4	-3.0		26.91		
TEST	3.0		24.33		


Final Calculations : Hazen-Williams

FIRE & LIFE SAFETY AMERICA Oak Haven Lot 23 - RA1

FIRE & L Oak Have		FETY AME 3 - RA1	RICA							Page 5 Date 12/20/2021
Node1	Elev1	к	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes *****
S101	9	4.90	20.02	1	0	5.0	1.000	150	16.700	
to	40			4 4 0 4		0.0	5.000	0.0000	-0.433	
101 101	10		20.02 0.0 20.02	1.101		0.0	6.000	0.0682	0.409	Vel = 6.75 K Factor = 4.90
101 to	10		7.41	1	Ν	7.0 0.0	23.333 7.000	150	16.676 0.0	
M206	10		7.41	1.101		0.0	30.333	0.0108	0.329	Vel = 2.50
M206			0.0 7.41						17.005	K Factor = 1.80
M202 to	10		2.34	1.25	Ν	8.0 0.0	18.917 8.000	150	17.071 0.0	
M203	10		2.34	1.394		0.0	26.917	0.0004	0.011	Vel = 0.49
M203 to	10		0.0	1.25	0	6.0 0.0	26.750 6.000	150	17.082 0.0	
M204	10		2.34	1.394		0.0	32.750	0.0004	0.013	Vel = 0.49
M204			0.0 2.34						17.095	K Factor = 0.57
M202 to	10		-2.34	1.25	20	12.0 0.0	16.000 12.000	150	17.071 0.0	
M205	10		-2.34	1.394		0.0	28.000	-0.0004	-0.012	Vel = 0.49
M205 to	10		0.0	1.25	3N O	24.0 6.0	103.417 30.000	150	17.059 0.0	
M206	10		-2.34	1.394		0.0	133.417	-0.0004	-0.054	Vel = 0.49
M206 to	10 10		7.41 5.07	1.25 1.394	N	8.0 0.0	44.917 8.000 52.917	150	17.005 0.0 0.090	Vel = 1.07
M204 M204	10		14.95	1.394	N	0.0 8.0	3.917	0.0017 150	17.095	ver = 1.07
to						0.0	8.000		0.866	
TOR	8		20.02 0.0	1.394		0.0	11.917	0.0216	0.258	Vel = 4.21
TOR	10		20.02	1.05	211	24.0	01 507	150	18.219	K Factor = 4.69
M204 to 101	10 10		-12.61 -12.61	1.25 1.394	3N	24.0 0.0 0.0	21.587 24.000 45.587	150 -0.0092	17.095 0.0 -0.419	Vel = 2.65
101	10		0.0	1.004		0.0	40.001	0.0002	16.676	K Factor = -3.09
TOR	8		20.02	1	N	7.0	8.000	150	18.219	
to BOR	3		20.02	1.101		0.0 0.0	7.000 15.000	0.0681	2.166	Vel = 6.75
BOR	3		0.0	1	2E	7.65	4.000	150	21.407	
to UG1	3		20.02	1.101		0.0 0.0	7.650 11.650	0.0682	0.0 0.795	Vel = 6.75
UG1 to	3	H3	3.00	1.25	T 2E	9.523 9.523	55.000 19.046	150	22.202 2.599	
UG2	-3		23.02	1.394	26	9.525 0.0	74.046	0.0280	2.071	Vel = 4.84
UG2 to	-3		0.0	6	3E 2F	64.749 21.583	482.000 86.332	150	26.872 0.0	
UG3	-3		23.02	6.09		0.0	568.332	0	0.012	Vel = 0.25

Final Calculations : Hazen-Williams

FIRE & L Oak Hav		ETY AME 3 - RA1	RICA							Pag Date		/2021
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	******	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
UG3	-3		0.0	6	2G	9.25	1149.000	150	26.884			
to UG4	-3		23.02	6.09	3F	32.374 0.0	41.623 1190.623	0	0.0 0.026	Vel = 0.2	25	
UG4 to	-3		0.0	6	T 2E		1000.000	150	26.910 -2.599			
TEST	3		23.02	6.16	G	4.89	1099.422	0	0.022	Vel = 0.2	25	
TEST			0.0 23.02						24.333	K Factor	= 4.67	

Hydraulic calculations using HydraCALC

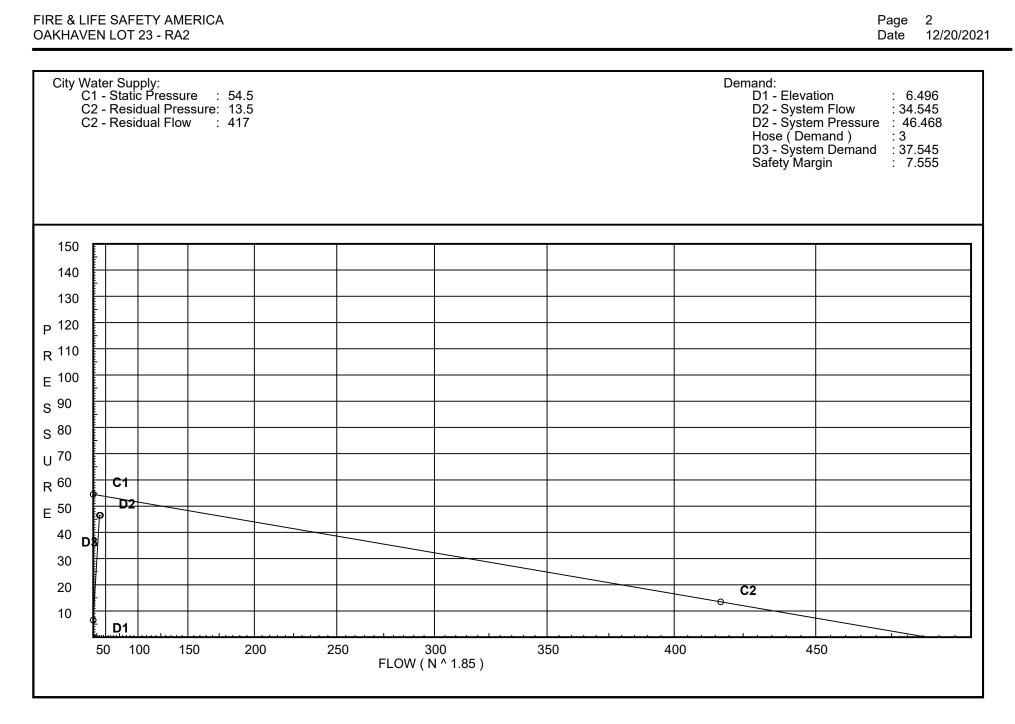
FIRE & LIFE SAFETY AMERICA 1731 ROUND ROCK DRIVE RALEIGH, NC 27615 919-872-3250

Job Name:OAKHAVEN LOT 23 - RA2Drawing:FP1Location:86 BUCKHAVEN DR.Remote Area:RA2Contract:22NC1554Data File:RA2- Bonus Room.WXF

HYDRAULIC CALCULATIONS for

Project name: Oakhaven Lot 23 Location: 86 BUCKHAVEN DR. Drawing no: FP1 Date: 12/20/2021

Design


Remote area number:RA2Remote area location:Bonus RoomOccupancy classification:ResidentialDensity:.05 - Gpm/SqFtArea of application:- SqFtCoverage per sprinkler:361 - SqFtType of sprinklers calculated:VK494No. of sprinklers calculated:2In-rack demand:N/A - GPMHose streams:3 - GPMTotal water required (including hose streams):37.545 - GPMQ46Type of system:WETVolume of dry or preaction system:N/A - Gal

@ 46.468 - Psi

Water supply information

Date: 4/21/2021 Location: NC 42, NC 27540 Source: Fire & Life Safety America

Name of contractor: Fire & Life Safety America Address: 1731 Roundrock Drive / Raleigh, NC 27615 / P: (919) 872-3250 Phone number: F: (919) 877-57 Name of designer: R. COLLINS Authority having jurisdiction: Harnett County Notes: (Include peaking information or gridded systems here.)

Water Supply Curve C

Fittings Used Summary

FIRE & LIFE SAFETY AMERICA OAKHAVEN LOT 23 - RA2

Fitting Le	egend																				
Abbrev.		1/2	3/4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
0 *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Flow Summary - NFPA

FIRE & LIFE SAFETY AMERICA OAKHAVEN LOT 23 - RA2

Page 4 Date 12/20/2021

			SUPPLY	ANALYSIS		
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	54.5	13.5	417.0	54.023	37.55	46.468

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
S201	18.0	4.9	12.0	16.97	
S202	18.0	4.9	12.86	17.57	
201	19.0		12.04		
202	19.0		12.75		
M201	10.0		18.8		
M202	10.0		21.79		
M203	10.0		24.58		
M101	10.0		25.66		
M102	0.0		31.08		
TOR	8.0		34.05		
BOR	3.0		39.02		
UG1	3.0		41.2	3.0	
UG2	-3.0		48.92		
UG3	-3.0		48.95		
UG4	-3.0		49.01		
TEST	3.0		46.47		

Final Calculations : Hazen-Williams

FIRE & LIFE SAFETY AMERICA OAKHAVEN LOT 23 - RA2

Page 5 Date 12/20/2021

		23 - RA2								Date 12/20/2021
Node1 to	Elev1	К	Qa	Nom	Fitting or	l	Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
S201	18	4.90	16.97	1	N	7.0	2.500	150	12.000	
0201	10	4.50	10.57		IN I	0.0	7.000	100	-0.433	
201	19		16.97	1.101		0.0	9.500	0.0502	0.477	Vel = 5.72
201			0.0 16.97						12.044	K Factor = 4.89
S202	18	4.90	17.57	1	0	5.0	1.000	150	12.859	
0	10		47.57	4 4 9 4		0.0	5.000	0 0505	-0.433	
202	19		17.57	1.101		0.0	6.000	0.0535	0.321	Vel = 5.92
202			0.0 17.57						12.747	K Factor = 4.92
201	19		16.97	1		0.0	14.000	150	12.044	
0	10		16.07	1 104		0.0	0.0	0.0500	0.0	Vel = 5.72
202 202	19 19		16.97 17.58	<u>1.101</u> 1	N	0.0	14.000 4.500	0.0502	0.703	vel - 0.72
202	19		06.11	I	IN	7.0 0.0	4.500 7.000	150	3.898	
M201	10		34.55	1.101		0.0	11.500	0.1870	2.151	Vel = 11.64
M201	10		0.0	1	Ν	7.0	9.000	150	18.796	
0	10		04 FF	4 404		0.0	7.000	0 4070	0.0	
M202	10		34.55	<u>1.101</u> 1	20	0.0	16.000	0.1870	2.992	Vel = 11.64
M202 o	10		0.0	1	20	10.0 0.0	4.917 10.000	150	21.788 0.0	
M203	10		34.55	1.101		0.0	14.917	0.1870	2.790	Vel = 11.64
			0.0							
M203			34.55						24.578	K Factor = 6.97
M203	10		24.76	1	0	5.0	16.500	150	24.578	
o M102	0		24.76	1.101		0.0 0.0	5.000 21.500	0.1010	4.331 2.171	Vel = 8.34
101102	0		0.0	1.101		0.0	21.000	0.1010	2.171	
M102			24.76						31.080	K Factor = 4.44
M203	10		9.79	1	Ν	7.0	42.875	150	24.578	
o	4.6				20	10.0	17.000		0.0	
M101	10		9.79	1.101		0.0	59.875	0.0181	1.086	Vel = 3.30
M101 to	10		0.0	1	O 2N	5.0 14.0	40.750 19.000	150	25.664 4.331	
M102	0		9.79	1.101	21 N	0.0	59.750	0.0182	1.085	Vel = 3.30
M102	0		24.76	1	3N	21.0	13.417	150	31.080	
o						0.0	21.000		-3.465	
TOR	8		34.55	1.101		0.0	34.417	0.1870	6.437	Vel = 11.64
TOR			0.0 34.55						34.052	K Factor = 5.92
TOR	8		34.55	1	Ν	7.0	8.000	150	34.052	
io D O D						0.0	7.000		2.166	
BOR	3		34.55	1.101	~~	0.0	15.000	0.1869	2.804	Vel = 11.64
BOR	3		0.0	1	2E	7.65 0.0	4.000 7.650	150	39.022 0.0	
o UG1	3		34.55	1.101		0.0	11.650	0.1870	0.0 2.179	Vel = 11.64
UG1	3	H3	3.00	1.25	Т	9.523	55.000	150	41.201	
o		*			2E	9.523	19.046		2.599	
UG2	-3		37.55	1.394		0.0	74.046	0.0691	5.119	Vel = 7.89

Final Calculations : Hazen-Williams

		ETY AME 23 - RA2	-							Pag Dat		2021
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
UG2	-3		0.0	6	3E	64.749	482.000	150	48.919			
to					2F	21.583	86.332		0.0			
UG3	-3		37.55	6.09		0.0	568.332	0.0001	0.030	Vel = 0.	41	
UG3	-3		0.0	6	2G	9.25	1149.000	150	48.949			
to					3F	32.374	41.623		0.0			
UG4	-3		37.55	6.09		0.0	1190.623	0.0001	0.063	Vel = 0.	41	
UG4	-3		0.0	6	Т	48.896	1000.000	150	49.012			
to					2E	45.637	99.422		-2.599			
TEST	3		37.55	6.16	G	4.89	1099.422	0.0001	0.055	Vel = 0.	40	
			0.0									
TEST			37.55						46.468	K Factor	= 5.51	

1731 Round Rock Drive, Raleigh, NC 27615 • (919) 872-3250 • fax (919) 877-5775 • www.flsamerica.com

OAK HAVEN LOT 22

FIRE SPRINKLER PRODUCT DATA

12/21/2021

Steel Pipe Submittal Data for Fire Sprinkler System

See Chart For Inside Diameters and Wall Thickness

All piping to be one or more of the following: (Refer to checked for submittal items).

- Schedule 40 Steel pipe conforming to ASTM A-135 or A-795 using Cast Iron, Malleable Iron or Ductile Iron screw fittings in accordance with standard ANSI B16.3 or ANSI B16.4. Pipe may also be joined by grooved fittings approved for fire protection use.
- Schedule 7 or 10 Steel Pipe conforming to ASTM A-135 or A-795 using grooved fittings listed for fire protection use.
- All welding will comply with the applicable requirements of AWS B2.1, Specification for Welding Procedure and Performance Qualification. This will be limited to pipe outlets and flanged end treatments.

All materials to be used in the installation of sprinkler system are to conform to NFPA 13, Local Authorities Having Jurisdiction and any applicable referenced codes and standards.

Pip	e	Scl	n 40	Sc	h 10	Sc	h 07
Nom.	O.D						
Dia.	(in)	I.D. (in)	Wall (in)	I.D. (in)	Wall (in)	I.D. (in)	Wall (in)
1"	1.315	1.049	0.133	1.097	0.109	n/a	n/a
1¼"	1.660	1.380	0.140	1.442	0.109	1.536	0.062
1½"	1.900	1.610	0.145	1.682	0.109	1.728	0.086
2"	2.375	2.067	0.154	2.157	0.109	2.203	0.086
2½"	2.875	2.469	0.203	2.635	0.120	2.703	0.086
3"	3.500	3.068	0.216	3.260	0.120	3.314	0.093
4"	4.500	4.026	0.237	4.260	0.120	4.310	0.095
6"	6.625	6.065	0.280	6.357	0.134	n/a	n/a
8"	8.625	7.981	0.322	8.249	0.188	n/a	n/a
10"	10.750	10.020	0.365	n/a	n/a	n/a	n/a
12"	12.750	11.938	0.406	n/a	n/a	n/a	n/a

Steel Pipe Dimensions per NFPA 13:

This submittal shall include the following checked items.

	Dome	stic	Foreign		Black	Galv	anized
Origin of Manufacture				Exterior Finish			
	Sch. 40	Sch.1	10 Sch.7		A-135	A-795	A-53
Schedule				ASTM			

Submittal Data CPVC Pipe and Fittings

Listings:

- Light hazard occupancies as defined in the standard for "Installation of Sprinkler Systems", NFPA 13.
- Residential occupancies as defined in the standard for "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height", NFPA 13R.
- Residential occupancies as defined in the standard for "Installation of Sprinkler • Systems in One and Two Family Dwellings and Manufactured Homes", NFPA 13D.- Underground fire service systems as described in the "Installation of Sprinkler
- Systems", NFPA 13 2007 Edition, and where appropriate the "Standard for Installation of Private Service Mains & Their Appurtenances", NFPA 24
- Local Authorities having jurisdiction and any applicable referenced
- codes and standards.

Approvals:

UL, FM, CUL, NSF, Dade County, LPCB, MEA, and the City of Los Angeles.

Material Specifications:

Pipe: ASTM F442, SDR 13.5 Fittings: ASTM F438, (Sch. 40) and ASTM F439 (Sch. 80) Maximum Working Pressure of 175 PSI

Straight Elbow

Reducing Elbow

Straight Tee

Reducing Tee

Cross

Slip-Thread Adapter

Reducing Cross

45 Elbow

Coupling

Sprinkler Adapter w/ Brass Insert

Sprinkler Head Adapter 90° Ell

Sprinkler Head Adapter Tee

Back-to Back Tee Groov

Grooved Coupling Adapter

Reducer Bushing

Cap

CPVC Pipe Submittal Data for Fire Sprinkler Systems

All material used in the installation of the sprinkler system conforms to:

- All CPVC piping should be pressure tested at 200 PSI for 2 hours.
- Chemical compatibility should be checked per manufacturer.
- Glycerin antifreeze solutions are acceptable and installation of antifreeze systems should comply with NFPA Section 7.6.2 of NFPA 13 (2007 Edition).

	BlazeMaster [®] Pipe Dimensions and Weights SDR 13.5 (ASTM F 442)								
internet int								Pounds Per Foot	Kilograms Per Meter
Inches	mm	Inches	mm	Inches	mm	Empty	Empty	H ₂ O Filled	H ₂ O Filled
3/4	20.0	1.050	26.7	.874	22.2	0.168	0.250	0.428	0.637
1	25.0	1.315	33.4	1.101	28.0	0.262	0.390	0.675	1.005
11/4	32.0	1.660	42.2	1.394	35.4	0.418	0.622	1.079	1.606
11/2	40.0	1.900	48.3	1.598	40.6	0.548	0.816	1.417	2.109
2	50.0	2.375	60.3	2.003	50.9	0.859	1.278	2.224	3.310
21/2	65.0	2.875	73.0	2.423	61.5	1.257	1.871	3.255	4.844
3	80.0	3.500	88.9	2.950	75.0	1.867	2.778	4.829	7.186

Note: The above average OD and average ID information is per ASTM F442. Check with individual manufacturers for actual OD and ID information.

	Allo		Friction Lo lent Feet o		ngs		
Fitting Size (In.)	34"	1"	1½"	1½"	2"	21/2"	3"
Tee Branch	3	5	6	8	10	12	15
Elbow 90° *	4	5	6	7	9	12	13
Elbow 45°	1	1	2	2	2	3	4
Coupling	1	1	1	1	1	2	2
Tee Run	1	1	1	1	1	2	2

Submittal Data for CPVC Strap Hangers

All materials to be used in the installation of sprinkler system are to conform to NFPA 13, 13R and 13D, Local Authorities having Jurisdiction and any applicable referenced codes and standards.

UL Listed in the USA and Canada to support fire sprinkler piping.

- A "one-hole strap" can function as a hanger and restraining device. It supports CPVC pipe horizontally from top or side of beam. As a restraining device, the hanger will be inverted so the fastener is downward. This installation will prevent upward movement of the sprinkler during activation.
- A "two-hole strap" can function as a hanger and restraining device. It supports CPVC pipe horizontally from top, bottom, or side of beam. A hex-head self-threading screw (furnished with most CPVC hangers) is easily installed using an electric drill. No pre-drilling pilot hole is required.
- A "side-mount strap" supports the CPVC pipe horizontally from top or bottom of beam
- A "stand-off 2-hole strap" supports the CPVC pipe off of the vertical face of the structural or composite wood joists.

Hangers must be clean, free of burrs, and all surface oils. Any contaminants must be removed from the hanger.

The pipe size of the hanger shall be the same size as the supported pipe. Pipe hangers must have a load bearing surface at least $\frac{1}{2}$ " inch wide.

Examples of CPVC Hangers

1-Hole Strap	2-Hole Strap	Side-Mount Strap	Stand-Off 2-Hole Strap

This submittal shall include the following checked items:

Product
¾" Hangers
1" Hangers
1-1/4" Hangers
1-1/2" Hangers
2" Hangers

Origin of Manufacture							
Domestic Foreign							
\boxtimes							

NIKING®

TECHNICAL DATA

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Viking Freedom[®] Residential Concealed Pendent Sprinkler VK494 is a small thermosensitive, glass-bulb residential sprinkler designed for installation on concealed pipe systems where the appearance of a smooth ceiling is desired. The orifice design, with a K-factor of 4.9 (70.6 metric*), allows the sprinkler's efficient use of available water supplies for the hydraulically designed fire-protection system. The fast response glass bulb operating element and special deflector characteristics meet the challenges of residential sprinkler standards.

The sprinkler is pre-assembled with a threaded adapter for installation with a low-profile small-diameter cover assembly installed flush to the ceiling. The twopiece design allows installation and testing of the sprinkler prior to installation of the cover plate. The "push-on" and "thread-on" designs of the concealed cover plate assemblies allow easy installation of the cover plate after the system has been tested and the ceiling finish has been applied, while also providing up to 1/2" (13 mm) of vertical adjustment. The cover assembly can be removed and reinstalled, allowing temporary removal of ceiling panels without taking the sprinkler system out of service or removing the sprinkler. The Electroless Nickel PTFE (ENT) coating has been investigated for installation in corrosive atmospheres and is C-UL-US-EU Listed as indicated in the Approval Charts. The ENT finish is only available for the sprinkler assembly, the cover plate is not plated.

2. LISTINGS AND APPROVALS

c UL US

cULusEU Listed: Category VKKW

Refer to the Approval Charts and Design Criteria for C-UL-US-EU Listing requirements that must be followed.

3. TECHNICAL DATA

Specifications: Minimum Operating Pressure: Refer to the Approval Chart. Maximum Working Pressure: 175 psi (12 bar). Factory tested hydrostatically to 500 psi (34.5 bar). Thread size: 1/2" (15 mm) NPT Nominal K-factor: 4.9 U.S. (70.6 metric*) Glass-bulb fluid temperature rating: to -65 °F (-55 °C) Metric K-factor measurement shown is in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0. Material Standards:

Sprinkler Body: Brass UNS-C84400 or QM Brass Deflector: Phosphor Bronze UNS-C51000 Deflector Pins: Stainless Steel UNS-S30200 Button: Brass UNS-C36000 Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400 Compression Screw: 18-8 Stainless Steel Yoke: Phosphor Bronze UNS-C51000 Belleville Spring Sealing Assembly: Beryllium Nickel Alloy, coated on both sides with PTFE Tape Cover Adapter: Cold Rolled Steel UNS-G10080, Finish: Clear Chromate over Zinc Plating Shipping Cap: High Density Polyethylene **Cover Plate Materials:** Cover Plate Assembly: Copper UNS-C11000 and Brass UNS-C26800 or Stainless Steel UNS-S30400 Spring: Beryllium Nickel

Solder: Eutectic

Ordering Information: The sprinkler and cover plate must be ordered separately. Refer to Tables 1 and 2.

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, when the temperature around the sprinkler approaches the cover plate's nominal temperature rating, the cover plate detaches and releases the deflector. Continued heating of the exposed sprinkler causes the heat-sensitive liquid in the glass bulb to expand. When the temperature reaches the sprinkler's nominal temperature rating, the glass bulb shatters releasing the yoke, pip cap assembly and sealing spring. Water begins flowing through the sprinkler orifice and strikes the deflector forming a uniform spray pattern over a specific area of coverage, which is determined by the water supply pressure at the sprinkler, in order to extinguish or control the fire.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking Sprinkler Model VK494 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1: SPRINKLER ORDERING INFORMATION

Instructions:

(1) Select a Sprinkler Base Part Number

(2) Add the suffix for the desired Finish

(3) Add the suffix for the desired Sprinkler Temperature Rating

(4) Order a cover plate (refer to Table 2)

Example:

20759AE = 200 °F (93 °C) Temperature Rated Sprinkler with a standard Brass finish.

Sprinkler	Size	1: Finishes		2: Temperature Ratings ⁷				
Base Part NPT Number ¹ Inch		Description Suffix		Nominal Rating	Bulb Color	Max. Ambient Ceiling Temperature ²	Suffix	
20759	1/2	Brass	Α	155 °F (68 °C)	Red	100 °F (38 °C)	В	
		ENT ^{5,6}	JN	200 °F (93 °C)	Green	150 °F (65 °C)	E	
Corrosion Resistant Sprinkler Finish: ENT								

Accessories

Sprinkler Wrenches and tools:

- A. Heavy Duty Part Number: 14047W/B³ (available since 2006)
- B. Head Cabinet Wrench Part Number: 14031^{3,4} (available since 2006)
- C. Optional Concealed Cover Plate Installer Tool Part Number: 144128 (available since 2007)

D. Optional Large Concealed Cover Plate Installer Tool Part No. 14867⁸ (available since 2007)

Sprinkler Cabinet:

Holds up to 6 sprinklers: Part number 01731A (available since 1971).

Footnotes

- 1. Part number shown is the base part number. For complete part number, refer to the current Viking price list schedule.
- 2. Based on NFPA 13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- 3. Requires a 1/2" ratchet (not available from Viking).
- 4. Also optional for removal of the protective cap. Ideal for sprinkler cabinets.
- ^{5.} cULus Listed as corrosion resistant.
- 6. The corrosion resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the ENT coating is applied to all exposed exterior surfaces, including the waterway. For ENT coated sprinklers, the Belleville spring is exposed.

7. The sprinkler temperature rating is stamped on the deflector.

The installer tool is for push-on style cover plates only.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

TABLE 2: COVER PLATE ORDERING INFORMATION

Instructions:

(1) Select a Cover Plate Base Part Number

(2) Add the suffix for the desired Finish

(3) Add the suffix for the required Cover Plate Nominal Rating.

Example:

23190MC/W = 165 °F (74 °C) Temperature Rated, 2-3/4" (70 mm) diameter, Thread-On style, Round Cover Plate with a Painted White finish.

1: Select a Cover Plate Base Part Number ³					2: Select a Finish			
Thread-On Style Push-On Style								
Base Part Number ¹	Size Inch (mm)	Туре	Base Part Number	Size Inch (mm) Type		Description	Suffix⁵	
23190	2-3/4 (70)	Round	23447	2-3/4 (70) Round F		Polished Chrome	F	
23174	3-5/16 (84)	Round	23463	3-5/16 (84)	Round	Brushed Chrome	F-/B	
23179	3-5/16 (84)	Square	23482	3-5/16 (84)	Square	Bright Brass	В	
231935	2 2/4 (70)	(4 (70) Stainless	004555	73455^{3} $7-3/4$ (70)	Stainless	Antique Brass	B-/A	
23193	2-3/4 (70)	Steel Round	23433°		2-3/4 (70)	2-3/4 (70)	Steel Round	Brushed Brass
004005	2 5/4 6 (04)	5/16 (84) Stainless Steel Round	23473 ⁵ 3-5/16	inless 004705		Stainless	Brushed Copper	E-/B
231835	3-5/16 (84)			3-5/16 (84)	Steel Round	Painted White	M-/W	
				•		Painted Ivory	M-/I	
				Painted Black	M-/B			
3: Temperature Rating Matrix ^{1,2}								

Cover Plate Nominal Rating (Required)	Temperature Classification	Sprinkler Nominal Rating		Suffix
135 °F (57 °C)	Ordinary	155 °F (68 °C)	100 °F (38 °C)	А
165 °F (74 °C)	Intermediate	200 °F (93 °C)	150 °F (65 °C)	С

Footnotes

1. Part number shown is the base part number. For complete part number, refer to the current Viking price list schedule.

2. The sprinkler temperature rating is stamped on the deflector.

3. Based on NFPA-13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

4. Where a dash (-) is shown in the Finish suffix designation, insert the desired Temperature Rating suffix. See example above.

5. Stainless Steel versions are not available with any finishes or paint.

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Approval Chart Viking VK494, 4.9 K-factor Residential Concealed Pendent Sprinkler

For systems designed to NFPA 13D or NFPA 13R. For systems designed to NFPA 13, refer to the Design Criteria. For Ceiling types refer to current editions of NFPA 13, 13R or 13D

Sprinkler Base SIN		NPT Thread Size			Nominal K-factor		Maximum Water			
Part Number ¹		Inc	hes	mm		U.S.	metric ² Working		Pressure	
20759	VK494	1.	/2	15		4.9	70.6	175 psi	(12 bar)	
Max. Coverage Area ⁶ W X L	GF	ow PM PM)	A Pressure PSI (bar)		Deflector to	Installation	Listings and Approvals ^{3,5}		Minimum Spacing	
Ft. X Ft. (m X m)		155 °F (68 °C), 200 °F (93 °C) Temperature Rated Sprinklers			Ceiling	Туре	r ا		Ft. (m)	
12 X 12 (3.7 X 3.7)		3 9.2)		.0 48)		Concealed with Cover Plate See Footn Assembly. See Footnote 7.	See Footnotes 8, & 9			
14 X 14 (4.3 X 4.3)		3 9.2)		.0 48)						
16 X 16 (4.9 X 4.9)		3 9.2)		.0 48)	Refer to Figure 2			8 (2.4)		
18 X 18 (5.5 X 5.5)	· ·	7 I.4)		2.0 83)						
20 X 20 (6.1 X 6.1)		0 5.7)	-	6.7 15)						

Footnotes

1. Part number shown is the base part number. For complete part number, refer to the current Viking price schedule.

2. Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

3. This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals. Refer also to Design Criteria.

4. Listed by Underwriter's Laboratories, Inc. for use in the U.S., Canada, and European Union.

5. Meets New York City requirements, effective July 1, 2008.

6. For areas of coverage smaller than shown, use the "Flow" and "Pressure" for the next larger area listed. Flows and pressures listed are per sprinkler. The distance from sprinklers to walls shall not exceed one-half the sprinkler spacing indicated for the minimum "Flow" and "Pressure" used.

7. Other paint colors are available on request with the same listings as the standard finish colors. Stainless Steel cover plates are not available with any finishes or paint. Listings and approvals apply for any paint manufacturer. Contact Viking for additional information. Custom colors are indicated on a label inside the cover assembly. Refer to Figure 3.

8. Accepted Cover Plate Finishes are: Polished Chrome, Brushed Chrome, Bright Brass, Antique Brass, Brushed Brass, Brushed Copper, Painted White, Painted Ivory, or Painted Black 7.

9. C-UL-US-EU Listed as corrosion resistant - Electroless Nickel PTFE (ENT)

FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

DESIGN CRITERIA

(Also refer to the Approval Chart.)

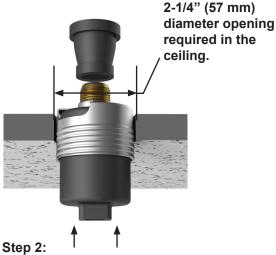
UL Listing Requirements (C-UL-US-EU):

When using Viking Residential Concealed Pendent Sprinkler VK494 for systems designed to NFPA 13D or NFPA 13R, apply the listed areas of coverage and minimum water supply requirements shown in the Approval Chart.

For systems designed to NFPA 13: The number of design sprinklers is to be the four contiguous most hydraulically demanding sprinklers. The minimum required discharge from each of the four sprinklers is to be the greater of the following:

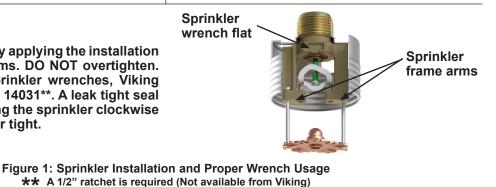
- The flow rates given in the Approval Chart for NFPA 13D and NFPA 13R applications for each listed area of coverage, or
- Calculated based on a minimum discharge of 0.1 gpm/sq. ft. over the "design area" in accordance with sections 9.5.2.1 or 10.2.4.1.2 of the current edition of NFPA 13.
- Minimum distance between residential sprinklers: 8 ft. (2.4 m).

NOTE: Concealed sprinklers must be installed in neutral or negative pressure plenums only.


IMPORTANT: Always refer to Bulletin Form No. F_080415 - Best Practices for Residential Sprinkler Handling and Installation. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA and any other similar Authorities Having Jurisdiction, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. Final approval and acceptance of all residential sprinkler installations must be obtained from the Authorities Having Jurisdiction.

Sprinkler and Adapter Assembly

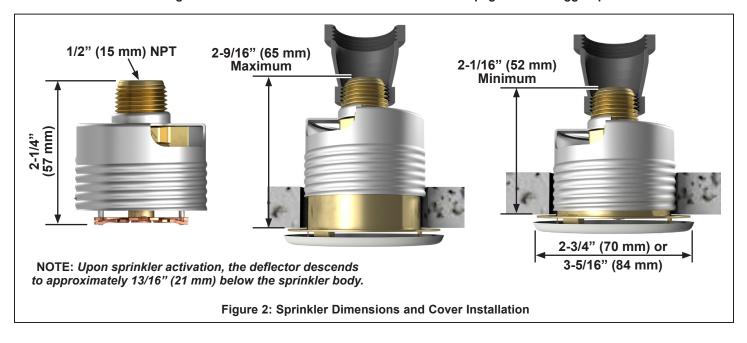
- Protective cap removed
- Use wrench 14047W/B**

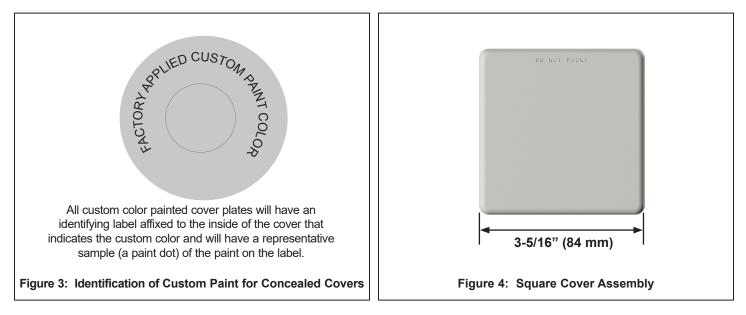


Step 1: Carefully slide the wrench sideways around the deflector and pins

Carefully press the wrench upward and turn slightly to ensure engagement with the sprinkler wrench flats.

NEVER install the sprinkler by applying the installation wrench across the frame arms. DO NOT overtighten. Use only the designated sprinkler wrenches, Viking Part Numbers 14047W/B** or 14031**. A leak tight seal should be achieved by turning the sprinkler clockwise 1 to 1-1/2 turns beyond finger tight.





FREEDOM[®] RESIDENTIAL CONCEALED PENDENT SPRINKLER VK494 (K4.9)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

