

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21-7708-A MSP-MAYVIEW PLAN-SIDE LOAD GARAGE ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I48948045 thru I48948082

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

November 28,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

TRENCIO A MITEK Affiliat 818 Soundside Road

Edenton, NC 27932

A MITEK Affilia 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MSP-MAYVIEW PLAN-SIDE	LOAD GARAGE ROOF	149049040
21-7708-A	G01	Common Girder	1	2			148948048
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.4	30 s Aug 1	Job Reference (optional) 16 2021 MiTek Industries, Inc. \	Wed Nov 24 07:01:48 202	21 Page 1
		ID:V5Zd3	3AGknT_CCEds	Su0Wp7Uz	2kDmM-MH_DZO1ke?IR7UJ8EI	N5nqm7s96bd9?NyS4YZ	4AyG2J1
		2-9-7 2-9-7 2-7-7	2-7-7	2-9-7	2-9-7 '1-0-0'		
		4x6	II				Scale = 1:59.5
		5					
	I						
		3x10 1/	25 3	(10) 入			
		12.00 12 24	6				
	10-11	3x6 1/	// `	//	3x6 🔨		
	ی 4x4 ک	y 3			7 4x4 \\		
					8		
	7-8-1						
		8 15 ²⁶ 14 ²⁷ 13	28 12	1	1		
	4x	8 2x4 7x8 = 8x8 =	= 7x8 =	= 2x	4 4x8		
		HUS26 HUS26 HUS26 HUS26 HU	JS26 HHUS26-2				
		<u>2-9-7</u> <u>5-6-13</u> <u>8-2-4</u> <u>2-9-7</u> <u>2-9-7</u> <u>2-7-7</u>	10-9-11 · · · · · · · · · · · · · · · · · ·	13-7-2 2-9-7	16-4-8 2-9-7		
Plate Offsets (X,Y) [1:0)-4-9,0-1-8], [9:0-4-9,0-1-8], [12:0-3-8,0-4-12], [13:0-4-0,0-4-8], [14:0-3-8	3,0-4-12]				
TCLL (roof) 30.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.55	DEFL. Vert(LL)	in -0.09	(loc) I/defl L/d 12-13 >999 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg) 23.1/30.0 TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 BC 0.31 NO WB 0.82	Vert(CT)	-0.14	12-13 >999 240 9 n/a n/a		
BCLL 0.0 BCDL 10.0	Code IRC2015/	TPI2014 Matrix-MS	11012(01)	, 0.00	0 11/a 11/a	Weight: 299 lb	FT = 20%
LUMBER-		BR	ACING-	0.	- Leven all also additioned the automatic		_
BOT CHORD 2x4 SP No BOT CHORD 2x6 SP 24	0.2 00F 2.0E	BO ⁻	P CHORD T CHORD	Rigid ce	al wood sheathing directly applied or 10-0-0	plied or 4-1-11 oc purlin oc bracing.	S.
WEBS 2x4 SP No 5-13: 2x4 SP	0.3 *Except* SP No.2						
SLIDER Left 2x6 S	P No.2 1-9-0, Right 2x6 SP N	lo.2 1-9-0					
REACTIONS. (size)	1=0-3-8, 9=0-3-8						
Max Uplift Max Crav	= 1-932(LC 17), 9=-1040(LC 1-7042(LC 2)), 9=-5204(LC 17)	17)					
	1=7042(EC 2), 9=5504(EC 1)					
TOP CHORD 1-3=-706	mp./Max. Ten All forces 25 61/1077, 3-4=-6100/1060, 4-5	0 (ID) of less except when shown. 5=-4912/1036, 5-6=-4912/1036, 6-7=-6477/	1407,				
7-9=-616 BOT CHORD 1-15=-75	66/1307 50/4854, 14-15=-750/4854, 13	3-14=-651/4285, 12-13=-854/4562, 11-12=-	-805/4202,				
9-11=-8 WEBS 5-13=-13	05/4202 381/6655. 6-13=-2702/909. 6·	.12=-1014/3382. 7-12=-260/573. 7-11=-598	3/126.				
4-13=-20	067/301, 4-14=-217/2522, 3-1	4=-863/146, 3-15=-82/1285					
NOTES-	tod togother with 10d (0 121)	"v?") noile on followay					
Top chords connected a	as follows: 2x4 - 1 row at 0-9-	0 oc.					
Webs connected as follo	ed as follows: 2x6 - 2 rows sta ows: 2x4 - 1 row at 0-9-0 oc.	aggered at 0-3-0 oc.				WH CARO	11.
 All loads are considered ply connections have be 	d equally applied to all plies, e een provided to distribute only	except if noted as front (F) or back (B) face y loads noted as (F) or (B), unless otherwise	in the LOAD C e indicated.	ASE(S) s	ection. Ply to	RESSION	INTE
 Unbalanced roof live loa Wind: ASCE 7-10; Vult= 	ads have been considered for =130mph Vasd=103mph; TCI	r this design. DL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Ex	kp B; Enclosed	; MWFRS	G (envelope)	att and	min
gable end zone and C-0 forces & MWFRS for rea	C Exterior(2) zone; cantilever actions shown: Lumber DOL=	left and right exposed ; end vertical left and =1.60 plate grip DOL=1.60	d right exposed	I;C-C for r	members and	SEAL	
5) TCLL: ASCE 7-10; Pr=3	30.0 psf (roof live load: Lumb	er DOL=1.15 Plate DOL=1.15); Pg=30.0 ps	f (ground snow	/); Pf=23.	1 psf (flat	044925	
6) Unbalanced snow loads	have been considered for the	is design.	and of 22.1 not	on overh			1.3
non-concurrent with oth	er live loads.			on overn	in ings	NGINEER	83
9) * This truss has been des	esigned for a live load of 20.0	psf on the bottom chord in all areas where	a rectangle 3-6	6-0 tall by	2-0-0 wide	OTTAGE	1 million
will fit between the botto 10) Provide mechanical co	om chord and any other mem onnection (by others) of truss	pers. to bearing plate capable of withstanding 10	00 lb uplift at jo	int(s) exc	ept (jt=lb)	The second	N
1=932, 9=1040. Continued on page 2						November 28,2	021
WARNING - Verify desir	an parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE PAGE MIL-	7473 rev, 5/19/202) BEFORE I	JSE.		
Design valid for use only w a truss system. Before use	vith MiTek® connectors. This design a, the building designer must verify th	is based only upon parameters shown, and is for an inc e applicability of design parameters and properly incorp	dividual building co porate this design i	mponent, no nto the over	ot	TREN	:0
building design. Bracing in is always required for stab	ndicated is to prevent buckling of indi- ility and to prevent collapse with poss	vidual truss web and/or chord members only. Addition	al temporary and p	ermanent bi ng the	racing	A MiTek	Affiliate

Is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MSP-MAYVIEW PLAN-SIDE LOAD GARAGE ROOF	
						148948048
21-7708-A	G01	Common Girder	1	ົ		
				2	Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.4	30 s Aug 1	6 2021 MiTek Industries, Inc. Wed Nov 24 07:01:48 2021	Page 2
		ID:V5Zd3AGkr	T CCEdS	Su0Wp7Ūz	kDmM-MH DZO1ke?IR7UJ8EN5ngm7s96bd9?NyS4YZ4/	AyG2J1

NOTES-

11) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-10-7 from the left end to 8-10-7 to connect truss(es) to back face of bottom chord.

12) Use Simpson Strong-Tie HHUS26-2 (14-SD10212 Girder, 6-SD10212 Truss) or equivalent at 10-9-11 from the left end to connect truss(es) to back face of bottom chord. 13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-66, 5-10=-66, 16-20=-20

Concentrated Loads (lb)

Vert: 12=-3690(B) 15=-1243(B) 18=-1244(B) 26=-1243(B) 27=-1243(B) 28=-1745(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	2-9-5	2-8-0			
LOADING (psf) SPACING- 2-0-0 TCLL (roof) 30.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 100	CSI. TC 0.25 BC 0.10 WB 0.06 Matrix-MP	DEFL. in (loc) Vert(LL) -0.00 6-9 Vert(CT) -0.00 5-6 Horz(CT) 0.00 2	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP DSS

REACTIONS. (size) 2=0-3-8

(size) 2=0-3-8, 5=Mechanical Max Horz 2=127(LC 15) Max Uplift 2=-36(LC 16), 5=-58(LC 13) Max Grav 2=479(LC 36), 5=322(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-296/69

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-5-5 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	2-9-5	2-8-0		
LOADING (psf) SPACING- 2-0-0 TCLL (roof) 30.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 10.0	CSI. TC 0.25 BC 0.10 WB 0.06 Matrix-MP	DEFL. in (loc) Vert(LL) -0.00 6-9 Vert(CT) -0.00 5-6 Horz(CT) 0.00 2	l/defl L/d >999 360 >999 240 n/a n/a	PLATES GRIP MT20 244/190 Weight: 34 lb FT = 20

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP DSS

REACTIONS. (size) 2=0-3-8

(size) 2=0-3-8, 5=Mechanical Max Horz 2=127(LC 15) Max Uplift 2=-36(LC 16), 5=-58(LC 13) Max Grav 2=479(LC 36), 5=322(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-296/69

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-5-5 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		4-1-5		1-4-0	-				
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.34 WB 0.13 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP DSS

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 2=177(LC 15) Max Uplift 2=-25(LC 16), 5=-79(LC 13) Max Grav 2=523(LC 36), 5=282(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-322/63

WFBS 3-5=-317/202

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-5-5 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		4-1-5	1	1-4-0	1				
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.45 BC 0.34 WB 0.13 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP DSS

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 2=177(LC 15) Max Uplift 2=-25(LC 16), 5=-79(LC 13) Max Grav 2=524(LC 36), 5=282(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-322/63

WFBS 3-5=-317/202

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-5-5 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type		Qty	Ply	MSP-MAYVIEW PLAN-SIDE L	OAD GARAGE ROOF	1400 40055
21-7708-A	J04	Jack-Closed		7	1			148948055
						Job Reference (optional)		
Riverside Roof Truss, LLC,	Danville, Va - 24541,			8.4	30 s Aug	16 2021 MiTek Industries, Inc. W	/ed Nov 24 07:01:55 202	1 Page 1
			ID:V5Zd: +-1-0-0 5-5-5 1-0-0 5-5-5	3AGknT_CC	EdSu0Wp	7UzkDmM-edvs1n77?9BSTZMU	l8LjQcEw2nxyPIMs_3flQ	pHyG2Iw
			1-0-0 3-3-4	,				
				1.5x	4			Scale = 1:36.4
		T			3			
					R			
				/				
				8//				
			12.00 12					
		-12						
		6-1						
		3-7	2					
		ä	1//		T)			
					4			
			5x5 =		1.5x4	I		
			<u>ا</u> 5-5-{	5				
Plate Offsets (X V) [2:0	-0-0 0-2-01		5-5-5	5	1			
	-0-0,0-2-0]							
TCLL (roof) 30.0	SPACING-	2-0-0	CSI.	DEFL.	in	(loc) I/defl L/d	PLATES	GRIP
Snow (Pf/Pg) 23.1/30.0	Lumber DOL	1.15	BC 0.42	Vert(CT)	-0.11	4-7 >782 580	WI120	244/190
BCLL 0.0	Rep Stress Incr	YES TPI2014	WB 0.00 Matrix-MP	Horz(CT) 0.03	2 n/a n/a	Weight: 31 lb	FT = 20%
BCDL 10.0							Wolght. OT 10	11 - 2070
LUMBER- TOP CHORD 2x4 SP No	2		BRAC TOP (HORD	Structur	al wood sheathing directly app	lied or 5-5-5 oc purlins	
BOT CHORD 2x4 SP No	2				except e	end verticals.		,
WEBS 2x4 SP No WEDGE	.3		BOT C	HORD	Rigid ce	eiling directly applied or 10-0-0	oc bracing.	
Left: 2x4 SP DSS								
REACTIONS. (size)	4=Mechanical, 2=0-3-8							
Max Horz	2=226(LC 15)							
Max Opint Max Grav	4=298(LC 30), 2=352(LC 2)							
FORCES. (lb) - Max. Cor TOP CHORD 2-3=-259	np./Max. Ten All forces 25 /249, 3-4=-282/235	0 (lb) or less (except when shown.					
NOTES- 1) Wind: ASCE 7-10; Vult=	130mph Vasd=103mph; TCI	DL=6.0psf; B0	CDL=6.0psf; h=25ft; Cat. II; Exp	B; Enclosec	i; MWFRS	S (envelope)		

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=107.

Job	Truss	Truss Type		Qt	iy 🛛	Ply	MSP-N	AYVIEW	PLAN-SIDE	LOAD GARAGE ROO	=
21-7708-A	J04A	Jack-Closed		12		1					148948056
						-	Job Re	ference (o	otional)		
Riverside Roof Truss, LLC,	Danville, Va - 24541,		 -1-0-0 5	D:V5Zd3A 5-5-5 5-5-5	8.43 .GknT_(30 s Aug CCEdSu0	16 2021 Wp7Uzk	MiTek Indı DmM-7qTI	ustries, Inc. EF77ImSJJ	Wed Nov 24 07:01:56 5jxgi3Ef8SSDWLle1p68	2021 Page 1 IJU_LjyG2Iv
											Scale = 1:36.4
					1.5x4	1 2					
		. 6-1-13 .0-8-7, 1	12.00 12 2	8		4					
			5x5 =			1.5x4	I				
			, 5	5-5-5							
			5	5-5-5		1					
Plate Offsets (X,Y) [2:0	-0-0,0-2-0]										
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.59 BC 0.42 WB 0.00 Matrix-MP	DE Ve Ve Ho	E FL. ert(LL) ert(CT) orz(CT)	in 0.08 -0.11) 0.03	(loc) 4-7 4-7 2	l/defl >781 >597 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No WEDGE Left: 2x4 SP DSS	2 2 3		BR TC BC	RACING- DP CHOR	RD RD	Structur except e Rigid ce	al wood end verti eiling dire	sheathing cals. ectly appli	g directly a ed or 10-0-	pplied or 5-5-5 oc purl 0 oc bracing.	ns,
REACTIONS. (size) Max Horz Max Uplift Max Grav	4=Mechanical, 2=0-3-8 2=226(LC 15) 4=-107(LC 13), 2=-4(LC 16) 4=298(LC 30), 2=352(LC 2)										
FORCES. (lb) - Max. Cor TOP CHORD 2-3=-259	np./Max. Ten All forces 25 /249, 3-4=-282/235	0 (lb) or less e	except when shown.								
NOTES-											

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=107.

			2-0-0	
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.10 BC 0.07 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 7 >999 360 Vert(CT) -0.01 4-7 >999 240 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 11 lb $FT = 20\%$

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-8-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=89(LC 16) Max Uplift 3=-41(LC 16), 2=-23(LC 16)

Max Grav 3=82(LC 30), 2=225(LC 2), 4=47(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

		•	2-8-0	•				
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 * PCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.07 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 7 -0.01 4-7 0.00 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied or 2-8-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=89(LC 16) Max Uplift 3=-41(LC 16), 2=-23(LC 16)

Max Grav 3=82(LC 30), 2=226(LC 2), 4=47(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat
- roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Plate Offects (X X) [2:0.2.4 Edge]

Plate Offsets (A, f) [2.0-3-4,1	Eugej							
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.62 BC 0.54 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (ld -0.08 4 -0.15 4 0.00	oc) l/defl 4-7 >855 4-7 >472 2 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2		BI	RACING- DP CHORD	Structural w	vood sheathir	g directly ap	pplied or 6-0-0 oc purlin	ıs,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=65(LC 15) Max Uplift 2=-82(LC 12), 4=-45(LC 16) Max Grav 2=380(LC 2), 4=286(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [2:0-2	-12,Edge]								
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.35 BC 0.38 WB 0.22 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	(loc) 5-8 5-8 5	l/defl >999 >844 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3		BF TC BC	RACING- DP CHORD DT CHORD	Structura except ei Rigid ceil	I wood nd verti ling dire	sheathin cals. ectly appl	ng directly ap lied or 10-0-0	plied or 6-0-0 oc purlir) oc bracing.	ns,
REACTIONS. (size) 2 Max Horz 2 Max Uplift 2 Max Grav 2	=0-3-8, 5=0-1-8 =75(LC 15) =-89(LC 12), 5=-53(LC 16) =429(LC 2), 5=337(LC 2)								
FORCES. (lb) - Max. Comp. TOP CHORD 2-3=-753/2 BOT CHORD 2-5=-313/7 WEBS 3-5=-749/2	./Max. Ten All forces 250 (lb) or less exc 67 32 99	cept when shown.							
NOTES- 1) Wind: ASCE 7-10; Vult=13 gable end zone and C-C E forces & MWFRS for reac 2) TCLL: ASCE 7-10; Pr=30.	30mph Vasd=103mph; TCDL=6.0psf; BCD Exterior(2) zone; cantilever left and right ex ions shown; Lumber DOL=1.60 plate grip 0 psf (roof live load: Lumber DOL=1.15 Pla	L=6.0psf; h=25ft; Cat. II; E posed ; end vertical left ar DOL=1.60 ate DOL=1.15); Pg=30.0 p	Exp B; Enclosed; nd right exposed; vsf (ground snow)	MWFRS C-C for m ; Pf=23.1	(envelo nember psf (fla	ope) s and it			

2) TOLE. AGGE 7-10, F1=50.0 pst (1001 live load. Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 pst (ground snow); Pf=23.1 pst (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs

non-concurrent with other live loads.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 180 120 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER-		BF	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. (size) 2=3-10-6, 4=3-10-6, 6=3-10-6

Max Horz 2=-57(LC 14) Max Uplift 2=-27(LC 17), 4=-33(LC 17)

Max Grav 2=151(LC 2), 4=151(LC 2), 6=142(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MSP-MAYVIEW PLAN-SIDE LOAD GARAGE ROOF	
						148948063
21-7708-A	T01G	Hip Girder	1	2		
				-	Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.4	30 s Aug '	16 2021 MiTek Industries, Inc. Wed Nov 24 07:02:03 2021	Page 2
		ID:V5Zd3A0	GknT CCE	EdSu0Wp7	UzkDmM-PAOujWD86cBJQnz0c1sIxwFTq9dAAu5Avvhs5	pyG2lo

NOTES-

13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-8-12 from the left end to 22-7-4 to connect truss(es) to front face of bottom chord.

14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 24-7-4 from the left end to 26-7-4 to connect truss(es) to front face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-66, 4-7=-66, 7-10=-66, 2-9=-20

Concentrated Loads (lb)

Vert: 16=-223(F) 15=-223(F) 13=-223(F) 12=-223(F) 25=-367(F) 26=-302(F) 27=-262(F) 28=-223(F) 29=-223(F) 30=-223(F) 31=-262(F) 32=-302(F) 33=-367(F)

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=148, 8=126.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=148, 8=148.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=148, 8=126.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MSP-MAYVIEW PLAN-SIDE LOAD GARAGE ROOF	
						I48948068
21-7708-A	T06G	Half Hip Girder	1	2		
				_	Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.4	30 s Aug 1	6 2021 MiTek Industries, Inc. Wed Nov 24 07:02:10 2021	Page 2
		ID:V5Zd3A	GknT CC	EdSu0Wp	7UzkDmM-iWJXBvIXTm4Kms?MX?UxjP1df_0eJxWBWVtjr	vyG2lh

NOTES-

14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-3-0 oc max. starting at 2-8-12 from the left end to 29-2-4 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-66, 4-9=-66, 2-10=-20 Concentrated Loads (lb)

Vert: 10=-230(B) 15=-223(B) 12=-223(B) 21=-367(B) 22=-302(B) 23=-262(B) 24=-223(B) 25=-223(B) 26=-223(B) 27=-223(B) 28=-223(B) 29=-223(B) 30=-223(B) 30=-2 31=-223(B) 32=-223(B)

November 28,2021

(lb) - Max Horz 2=-161

) - Max Horz 2=-161(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 13 except 15=-177(LC 16), 12=-177(LC 17) Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 13 except 15=267(LC 30), 12=268(LC 31)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat
- 4) TCLL: ASCE 7-10; Pf=30.0 pst (root live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 pst (ground snow); Pf=23.1 pst (flat root snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 13 except (jt=lb) 15=177, 12=177.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 10.

ENGINEERING BY REENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

(lb) - Max Horz 2=45(LC 20)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 12, 13, 10

Max Grav All reactions 250 lb or less at joint(s) 12, 11 except 2=277(LC 2), 8=277(LC 2), 13=406(LC 34), 10=406(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-13=-309/148, 7-10=-309/148

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 12, 13, 10.

SEAL 044925 November 28,2021

> ENGINEERING BY **REENCO** A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Aff 818 Soundside Road Edenton, NC 27932

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6 except (jt=lb) 7=256.

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6 except (jt=lb) 7=217.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat

roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6 except (jt=lb) 1=145, 7=234.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantieter and property incorporate dust using in the overlain of the optimized and property incorporate and begin in the overlain of the overlain overlain overlain of the overlain ov

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Max Horz 1=-65(LC 12) Max Uplift 1=-30(LC 17), 3=-30(LC 17)

Max Grav 1=161(LC 2), 3=157(LC 2), 4=192(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Max Uplift 1=-15(LC 17), 3=-15(LC 17) Max Grav 1=79(LC 2), 3=79(LC 2), 4=98(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. (size) 1=6-2-8, 3=6-2-8, 4=6-2-8 Max Horz 1=69(LC 13) Max Uplift 1=-33(LC 17), 3=-33(LC 17)

Max Grav 1=172(LC 2), 3=172(LC 2), 4=211(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LCTIONS. (size) 1=3-6-8, 3=3-6-8, 4=3-6-8 Max Horz 1=-36(LC 12) Max Uplift 1=-17(LC 17), 3=-17(LC 17) Max Grav 1=89(LC 2), 3=89(LC 2), 4=110(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

