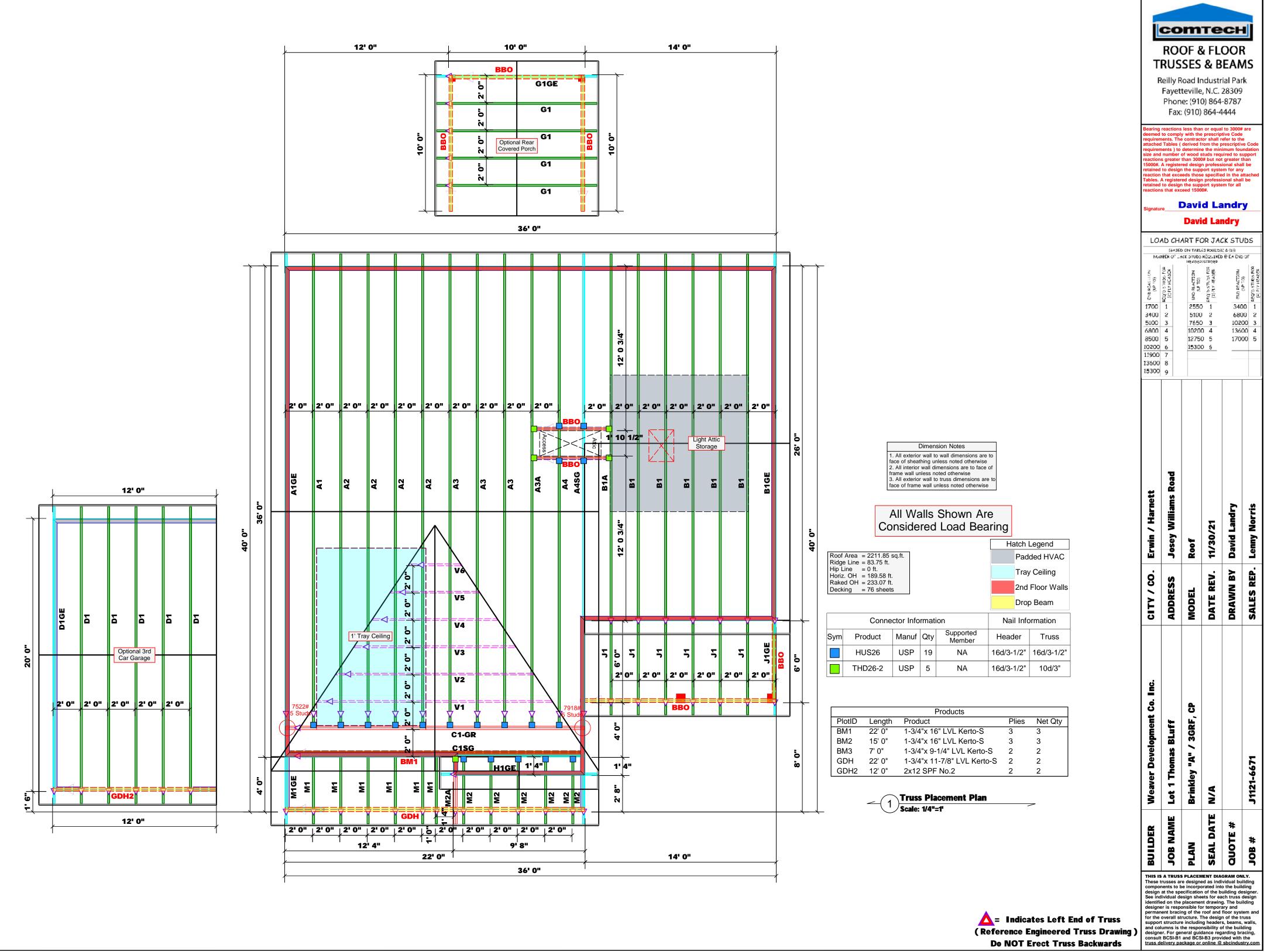


	These t compor design See ind identifie designe	HATE A TRUSSE A TRUSSE A TRUSSES A TRUSSES 	e designo e incorpo ecification esign she placemen onsible fo	ed as indi prated int n of the b ets for ea nt drawin or tempor	ividual bu o the buil uilding do och truss g. The bu	ilding ding esigner. design ilding
16d/3-1/2" 10d/3" Plies Net Qty 3 3 3 3 5 2 -S 2 2 2	Weaver Development Co. Inc.	Lot 1 Thomas Bluff	Brinkley "A" / 3GRF, CP	N/A		J1121-6671
Drop BeamNail InformationHeaderTruss16d/3-1/2"16d/3-1/2"	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
P Ting Hatch Legend Padded HVAC Tray Ceiling 2nd Floor Walls	Erwin / Harnett	Josey Williams Road	Roof	11/30/21	David Landry	Lenny Norris
	deemed requiren attached requiren size and reaction Tables retained reaction Signatur	reactions to comply- nents. The number of s greater A register to design that exce A register to design s that exce to design s that	less that y with the decontract derived f determin of wood s than 3000 red design the suppled the supple the supple	a prescription shall record the profession of th	I to 3000# titve Code refer to the prescripti- imum focular defended in for an and and for all and for all all and for all all all all all all all all all all	JDS JDS JDS JDS JDS JDS JDS JDS
	Т	RUS Reilly R Fayet Phon	OF 8 SES load Ir teville e: (91)	& FL & B ndustr , N.C. 0) 864	OOF EAN 28309 -8787	∕IS ™

Dimension Notes
1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise


					Ha	atch I	Legend	
	Area = 2211.85	sq.ft.				Padded HVA		
Hip L	e Line = 83.75 ft. Line = 0 ft. z. OH = 189.58 ft.		Tray	/ Ceiling				
	ed OH = 233.07 ft king = 76 sheets					2nd	Floor Wa	
						Drop	Beam	
	Conne	ctor Info	rmati	ion	Nai	l Info	ormation	
Sym	Product	Manuf	Qty	Supported Member	Head	ler	Truss	
	HUS26	USP	19	NA	16d/3-	1/2"	16d/3-1/	

Products							
PlotID	Length	Product	Plies	Net Qty			
BM1	22' 0"	1-3/4"x 16" LVL Kerto-S	3	3			
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	3	3			
BM3	7' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2			
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2			
GDH2	12' 0"	2x12 SPF No.2	2	2			

Truss Placement Plan Scale: 1/4"=1

____= Indicates Left End of Truss (Reference Engineered Truss Drawing) **Do NOT Erect Truss Backwards**

for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

(Reference Engineered Truss Drawing) **Do NOT Erect Truss Backwards**

RE: J1121-6671

Lot 1 Thomas Bluff

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Lot/Block: 1 Address: Josey Williams Road City: Erwin

Project Name: J1121-6671 Model: Brinkley Subdivision: Thomas BLuff State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 150 mph Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16001299	A1	8/3/2021	21	E16001319	M1GE	8/3/2021
2	E16001300	A1GE	8/3/2021	22	E16001320	M2	8/3/2021
3	E16001301	A2	8/3/2021	23	E16001321	M2A	8/3/2021
4	E16001302	A3	8/3/2021	24	E16001322	V1	8/3/2021
5	E16001303	A3A	8/3/2021	25	E16001323	V2	8/3/2021
6	E16001304	A4	8/3/2021	26	E16001324	V3	8/3/2021
7	E16001305	A4SG	8/3/2021	27	E16001325	V4	8/3/2021
8	E16001306	B1	8/3/2021	28	E16001326	V5	8/3/2021
9	E16001307	B1A	8/3/2021	29	E16001327	V6	8/3/2021
10	E16001308	B1GE	8/3/2021				
11	E16001309	C1-GR	8/3/2021				
12	E16001310	C1SG	8/3/2021				
13	E16001311	D1	8/3/2021				
14	E16001312	D1GE	8/3/2021				
15	E16001313	G1	8/3/2021				
16	E16001314	G1GE	8/3/2021				
17	E16001315	H1GE	8/3/2021				
18	E16001316	J1	8/3/2021				
19	E16001317	J1GE	8/3/2021				
20	E16001318	M1	8/3/2021				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

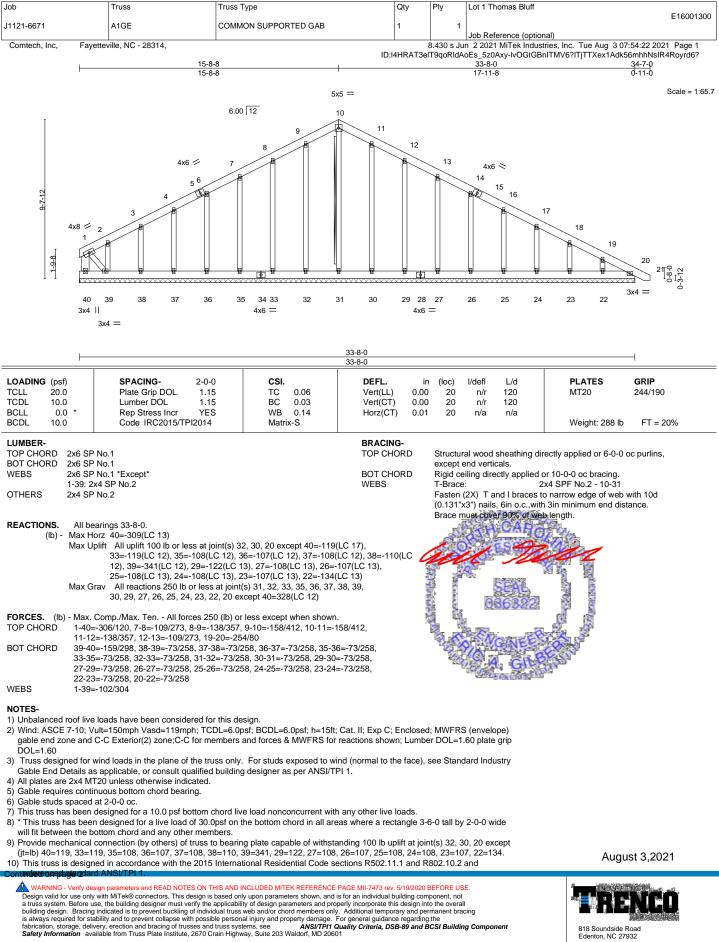
My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

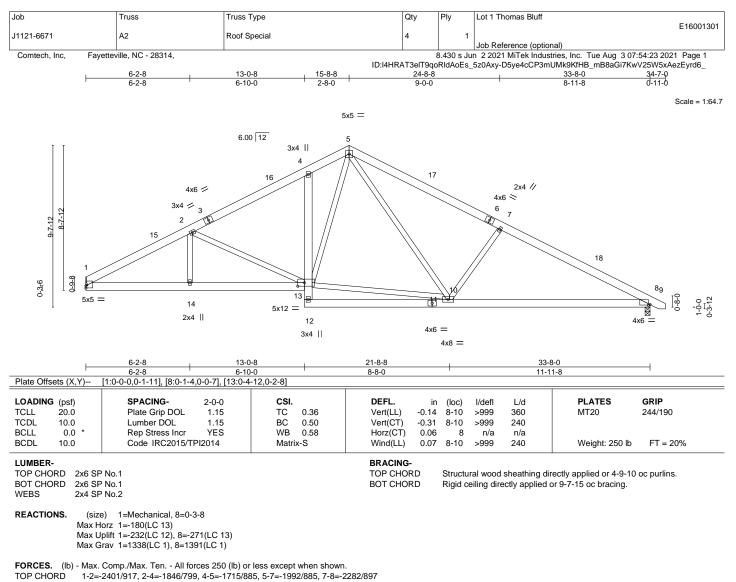
August 03, 2021

Job	Truss		Truss Type	Qty	Ply	Lot 1 Thomas Bluff		
J1121-6671	A1		COMMON	1	1			E16001299
Comtech, Inc,	Fayetteville, NC	C - 28314,			8.430 s Ju	Job Reference (optio	onal) stries, Inc. Tue Aug 307	:54:20 2021 Page 1
	6-	8-8	15-8-8		elT9qoRldAoE 4-8-8	s_5z0Axy-pWGVSa9\	Wmr6nthb4c3R2ZWylUwl 33-8-0	FIIhR4O_yzMvyrd61 34-7-0
		8-8	9-0-0		-0-0		8-11-8	0-11-0
								Scale: 3/16"=1'
				5x8 =				
			6.00 12	4				
I			/					
			16		17			
		4x6 📁	10		\sim	2x4 //		
		4x6 🛩				4x6 ≈ 5		
5		2 3	//			6		
9-7-12		15						
3x4			、				18	
	1		$\langle $					
8	P							78
1-9-8								0-3-12 -3-12
	14 ¹³		12 11 19	20	10 9			4x6 =
	6x6 =		4x6 =		3x4 =			
			3x4 =		4x6 =			
		<u>9-8-8</u> 9-8-8		21-8-8 12-0-0			3-8-0 -11-8	
Plate Offsets (X,Y)	[7:0-1-4,0-	0-7], [13:0-1-8,0-4-0]					1	
LOADING (psf)		ACING- 2-0-0		DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0		te Grip DOL 1.15 nber DOL 1.15		, ,).35 9-12).48 9-12	>999 360 >833 240	MT20	244/190
BCLL 0.0 *	Rep	Stress Incr YES	WB 0.57	Horz(CT) (0.05 7	n/a n/a		FT 00%
BCDL 10.0	Coc	de IRC2015/TPI2014	Matrix-S	Wind(LL) (0.07 7-9	>999 240	Weight: 230 lb	FT = 20%
LUMBER- TOP CHORD 2x0	6 SP No 1			BRACING- TOP CHORD	Structu	ral wood sheathing d	irectly applied or 4-9-10	l oc purlins
BOT CHORD 2x	6 SP No.1				except	end verticals.		oo panino,
	4 SP No.2 *Exc 13: 2x6 SP No.1			BOT CHORD WEBS		eiling directly applied at midpt	or 9-9-4 oc bracing. 2-13	
REACTIONS.		echanical, 7=0-3-8				·		
Ma	ax Horz 13=-19	93(LC 13)						
		22(LC 12), 7=-263(LC 33(LC 1), 7=1379(LC						
			,					
			0 (lb) or less except when show 084/871, 6-7=-2336/875, 1-13=					
		8, 9-12=-230/1276, 7 4-12=-140/593 4-9=-	·9=-635/1990 273/970, 6-9=-522/454, 2-13=-`	1806/660				
	,	,	.,					
NOTES- 1) Unbalanced roo	f live loads hav	e been considered fo	this design.					
			DL=6.0psf; BCDL=6.0psf; h=15 o 15-8-8, Exterior(2) 15-8-8 to 2					
members and fo	prces & MWFR	S for reactions shown	Lumber DOL=1.60 plate grip I	OOL=1.60		2010,0-0 101		
			hord live load nonconcurrent w psf on the bottom chord in all a			/ 2-0-0 wide		and the second
will fit between t	he bottom chor	rd and any other mem	bers, with BCDL = 10.0 psf.			0 0		
 5) Refer to girder(s 6) Provide mechar 			bearing plate capable of withs	tanding 100 lb uplift at	i joint(s) exce	ept (jt=lb)	A COL	7
13=222, 7=263.			eteretica el Desidential Osda e		D000 40 0 -	nd A	S S S S S S S S S S S S S S S S S S S	10 million


7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff		
J1121-6671	A1GE	COMMON SUPPORTED GAB	1	1	E16001300		
					Job Reference (optional)		
Comtech, Inc,	ech, Inc, Fayetteville, NC - 28314, 8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:2				n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:22 2021 Page 2		
		ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-IvOGtGBnITMV6?ITjTTXex1Adk56mhhNsIR4Royrd6					

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-14=-633/2050, 13-14=-633/2050, 4-13=-270/273, 10-12=-64/251, 8-10=-652/1953 BOT CHORD

2-14=0/303, 2-13=-561/329, 10-13=-188/1073, 5-13=-355/764, 5-10=-253/676, WEBS 7-10=-522/457

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 34-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=232.8=271.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply Lot 1 Thomas	Bluff	
J1121-6671	A3	COMMON	3	1		E16001302
				Job Reference		7.54.04.0004 David
Comtech, Inc, Fay	etteville, NC - 28314, <u>6-8-8</u> 6-8-8	15-8-8 9-0-0		qoRldAoEs_5z0Axy-hHW 3	k Industries, Inc. Tue Aug 3 0HxD1q4cDLJurruV?kM6RT> 33-8-0 8-11-8	
						Scale: 3/16"=1'
		5x8	=			
Ĭ		6.00 12 4				
	4x6 ≠ 4x6 ≠	16		2x 4x6 \$	4 //	
6-7-12	2 ³ 15			5 6		
3x4 1					18	
						78
	19 2	□	22 1		24	6-3-12 -3-12 -3-12
14	13	4x6 =		3x6 =	27	4x6 =
6x6	=	3x4 =	5x	.8 =		
L	9-8-8	21-8			33-8-0	
Plate Offsets (X,Y)	<u>9-8-8</u> [7:0-1-4,0-0-7], [13:0-1-8,0-4-4]	12-0	-0	1	11-11-8	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1	5 TC 0.36	DEFL. in Vert(LL) -0.30 Vert(CT) -0.42		MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YE Code IRC2015/TPI2014	S WB 0.57	Horz(CT) 0.06 Wind(LL) 0.07	i 7 n/a n/a		b FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF			BRACING- TOP CHORD	Structural wood sheatl except end verticals.	hing directly applied or 4-5-	3 oc purlins,
WEBS 2x4 SF	No.2 *Except* x6 SP No.1		BOT CHORD WEBS		pplied or 9-9-4 oc bracing. 2-13	
Max H Max L	e) 13=Mechanical, 7=0-3-8 orz 13=-193(LC 13) plift 13=-222(LC 12), 7=-263(L rav 13=1525(LC 2), 7=1551(LC			·		
FORCES. (Ib) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shown. 2413/871, 6-7=-2646/875, 1-13=-255	/214			
	3=-482/1866, 9-12=-230/1449, =-242/311, 4-12=-140/683, 4-9=	7-9=-635/2287 -273/1190, 6-9=-522/454, 2-13=-194	0/660			
 2) Wind: ASCE 7-10; V and C-C Exterior(2) members and force: 3) This truss has been 	0-4-4 to 4-9-1, Interior(1) 4-9-1 s & MWFRS for reactions show designed for a 10.0 psf bottom	or this design. DL=6.0psf; BCDL=6.0psf; h=15ft; Ca to 15-8-8, Exterior(2) 15-8-8 to 20-1- a; Lumber DOL=1.60 plate grip DOL= chord live load nonconcurrent with an 0psf on the bottom chord in all areas	5, Interior(1) 20-1-5 to =1.60 ny other live loads.	34-4-10 zone;C-C for	2.5.274 179	###152755
 5) Refer to girder(s) fo 6) Provide mechanical 13=222, 7=263. 		nbers, with BCDL = 10.0psf. to bearing plate capable of withstand	• • •		OPT O	And the second s

7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

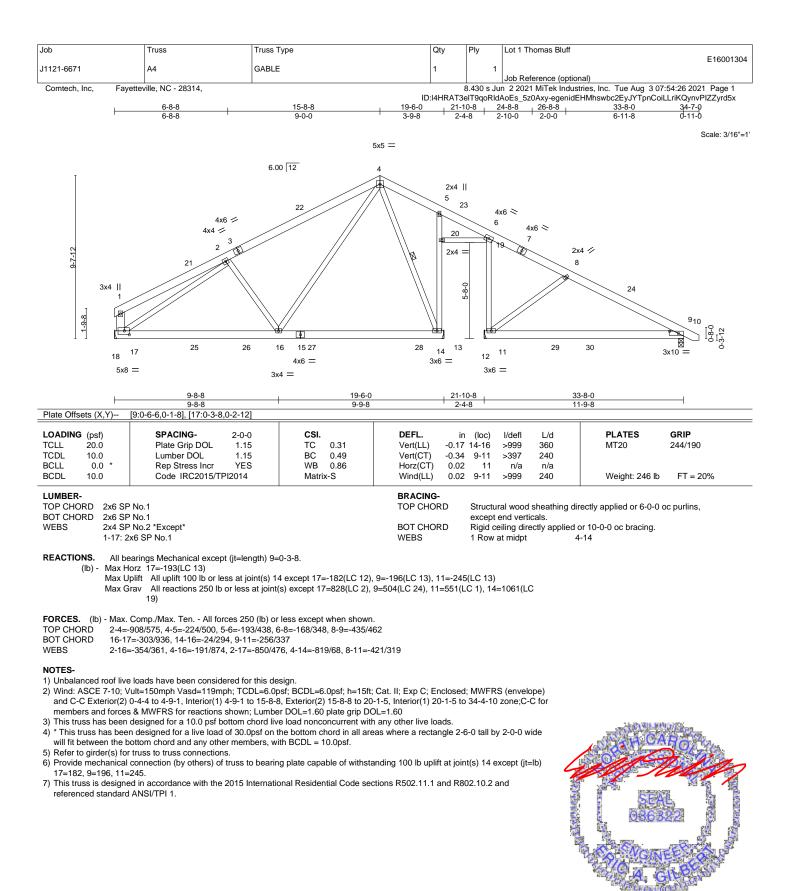
August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

b	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff		
121-6671	A3A	COMMON	1	1	Lot I momas biun		E16001303
			1		Job Reference (option		27.54.05.0004 Daws 4
Comtech, Inc, Fayet	teville, NC - 28314, 6-8-8 6-8-8	<u>15-8-8</u> 9-0-0		T9qoRldA 3	in 2 2021 MiTek Indust oEs_5z0Axy-AT4OVHE 		
							Scale: 3/16"=
			5x8				
т		6.00 12	4				
		17		8			
	4x6 ≠ 4x8 ≠			\geq	3x4 ≈ 4x6 ≈		
2	2 3				5 6		
9-7-12	16	4	12				
3x4		、 //		/		19	
1		$\langle \rangle$					
							78
					B		0-3-12 -3-12 -3-12
15 ¹	4 20 2	13 12 22 4x6 =	23 11 1 8x8 =	0 24	9 2x4	25	4x8 ≈
6x8 =	=	3x4 =	6x	6 =	234		
—	9-8-8	19-5-8		24-8-8		33-8-0	
ate Offsets (X,Y) [7	<u>9-8-8</u> 7:0-1-0,0-1-13], [11:0-4-0,0-4-1	9-9-0 2], [14:0-2-4,0-4-4]		5-3-0		8-11-8	
DADING (psf)	SPACING- 2-0-		DEFL. ir		l/defl L/d	PLATES	GRIP
CLL 20.0 CDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1			11-13 11-13	>999 360 >999 240	MT20	244/190
CLL 0.0 * CDL 10.0	Rep Stress Incr No Code IRC2015/TPI2014		Horz(CT) 0.09 Wind(LL) 0.21	7	n/a n/a >999 240	Weight: 237 I	b FT = 20%
JMBER- DP CHORD 2x6 SP I			BRACING- TOP CHORD	Ctructur	al wood oboothing dir	actly applied or 2.4	
OT CHORD 2x6 SP I	No.1			except e	al wood sheathing dir end verticals.		9 oc punns,
	No.2 *Except* 6 SP No.1		BOT CHORD WEBS		eiling directly applied of at midpt 4	or 5-9-3 oc bracing. -13, 4-11, 2-14	
EACTIONS. (size)	14=Mechanical, 7=0-3-8						
	rz 14=-193(LC 13) lift 14=-373(LC 12), 7=-491(LC	: 13)					
Max Gra	av 14=2046(LC 19), 7=2357(L	C 20)					
		0 (lb) or less except when showr 3695/1822, 6-7=-4439/2001, 1-1					
OT CHORD 13-14=	-948/2587, 11-13=-817/2396,	9-11=-1625/3860, 7-9=-1625/386	60				
EBS 2-13=- 6-9=-7		088/2378, 6-11=-890/520, 2-14=	=-2661/1191,				
OTES-							
	oads have been considered fo It=150mph Vasd=119mph: TC	r this design. DL=6.0psf; BCDL=6.0psf; h=15ft	t: Cat. II: Exp C: Enclosed	: MWFR	S (envelope)		
and C-C Exterior(2) 0	-4-4 to 4-9-1, Interior(1) 4-9-1	o 15-8-8, Exterior(2) 15-8-8 to 20 ; Lumber DOL=1.60 plate grip D	0-1-5, Interior(1) 20-1-5 to				
This truss has been d	esigned for a 10.0 psf bottom	chord live load nonconcurrent wit	th any other live loads.	0.01.111			10 D Store
will fit between the bo	ttom chord and any other men)psf on the bottom chord in all ar bers, with BCDL = 10.0psf.	eas where a rectangle 2-	6-0 tall by	2-0-0 wide	SCAR C	ARO
Provide mechanical c	russ to truss connections. onnection (by others) of truss	o bearing plate capable of withst	tanding 100 lb uplift at joir	nt(s) exce	pt (jt=lb)	OVERS	april 2
14=373, 7=491. This truss is designed	l in accordance with the 2015 I	nternational Residential Code se	ections R502.11.1 and R8	02.10.2 a	nd		
referenced standard A	ANSI/TPI 1.	vided sufficient to support conce			3	SE	AL 11
	own and 322 lb up at 21-9-4 c	n bottom chord. The design/sele				036	322 🖗
		ace of the truss are noted as from	nt (F) or back (B).				🖉 🎜
OAD CASE(S) Standa		D			٦	2 Co MGD	TER AN
Uniform Loads (plf)	lanced): Lumber Increase=1.1	o, Plate Increase=1.15				W/CA	GILE
Vert: 1-4=-60	, 4-8=-60, 7-15=-20					A	unot 2, 2024
						Aug	just 3,2021
MARNING - Verify desi		HIS AND INCLUDED MITEK REFERENCE	E PAGE MIL7473 rev. 5/19/2020	BEFORE US			

ERENICO 818 Soundside Road Edenton, NC 27932

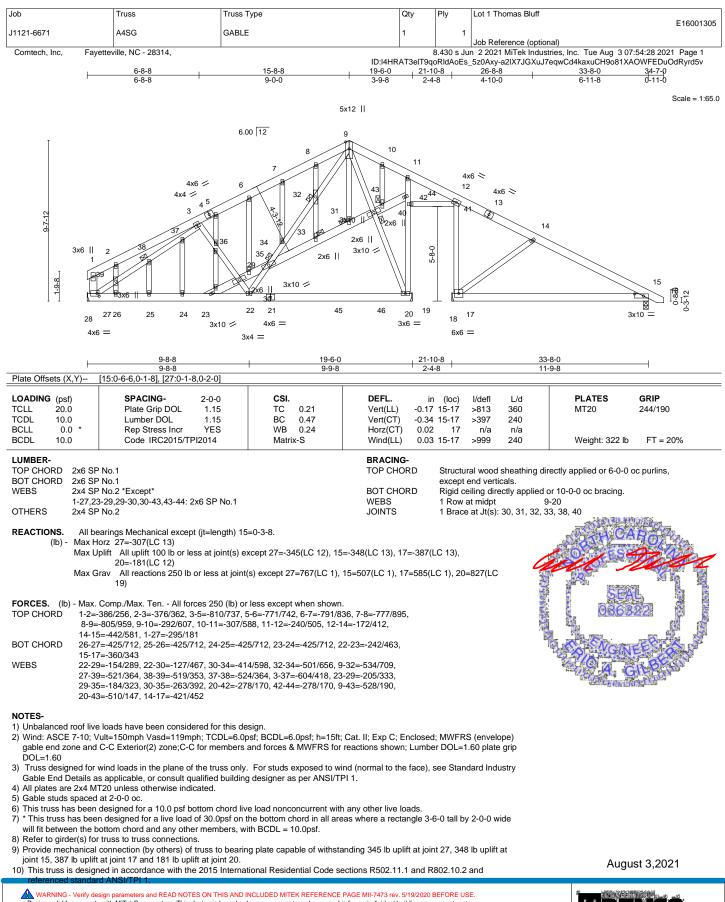
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


[Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff		
	J1121-6671	A3A	COMMON	1	1	E16001303		
	51121-0071	AJA	COMMON	i		Job Reference (optional)		
	Comtech, Inc, Fayettev							
			ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-AT4OVHDfbOk4zST2Oc1EGZfZ5xt?zvapYFfk06yrd5y					

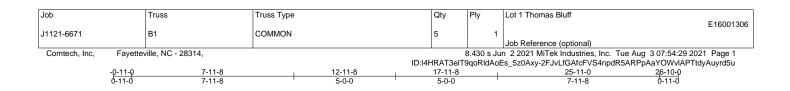
LOAD CASE(S) Standard

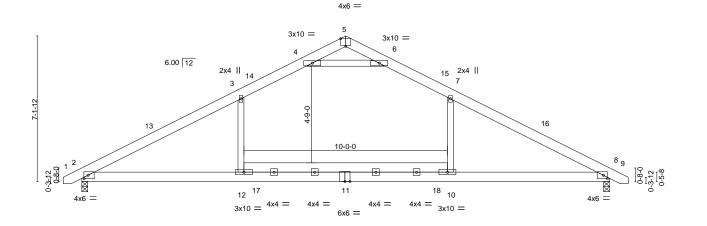
Concentrated Loads (lb) Vert: 11=-985(F) 24=-575(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



August 3,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANS/TPHI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	7-11-8 7-11-8 [2:0-2-6,0-2-0], [5:0-3-0,Edge], [8:0-2-6	6.0-2-0]	17-11-8 10-0-0	 25-11-0 7-11-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.43 WB 0.60 Matrix-S	Vert(LL) -0.28 1 Vert(CT) -0.46 1 Horz(CT) 0.04	MT20	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S	P No.1 P No.1 P No.2			hing directly applied or 4-4-1 pplied or 10-0-0 oc bracing.	4 oc purlins.

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=119(LC 11) Max Uplift 2=-203(LC 12), 8=-203(LC 13) Max Grav 2=1140(LC 2), 8=1140(LC 2)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1772/588, 3-4=-1401/651, 4-5=-286/978, 5-6=-286/978, 6-7=-1401/651, 7-8=-1772/588
- BOT CHORD 2-12=-347/1438, 10-12=-350/1438, 8-10=-347/1438
- WEBS 3-12=0/497, 7-10=0/497, 4-6=-2532/1014

NOTES-

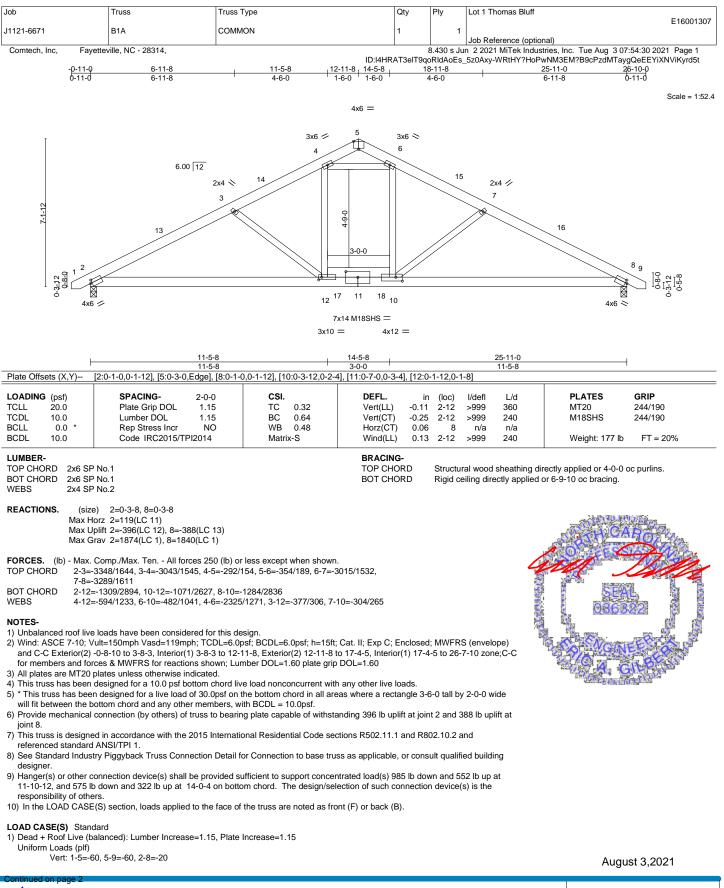
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 26-7-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 203 lb uplift at joint 2 and 203 lb uplift at joint 8.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

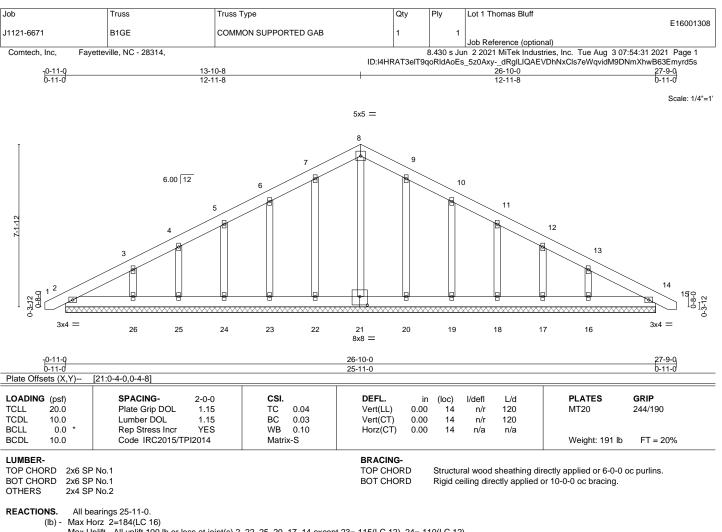


Scale = 1:53.3

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff		
J1121-6671	B1A	COMMON	1	1	E16001307		
					Job Reference (optional)		
Comtech, Inc, Fayettev	rc, Fayetteville, NC - 28314, 8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:30 2021 Page						
		ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-WRtHY?HoPwNM3EM?B9cPzdMTaygQeEEYiXNViKyrd5t					

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 17=-985(B) 18=-575(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 25, 20, 17, 14 except 23=-115(LC 12), 24=-110(LC 12), 26=-171(LC 12), 19=-118(LC 13), 18=-109(LC 13), 16=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

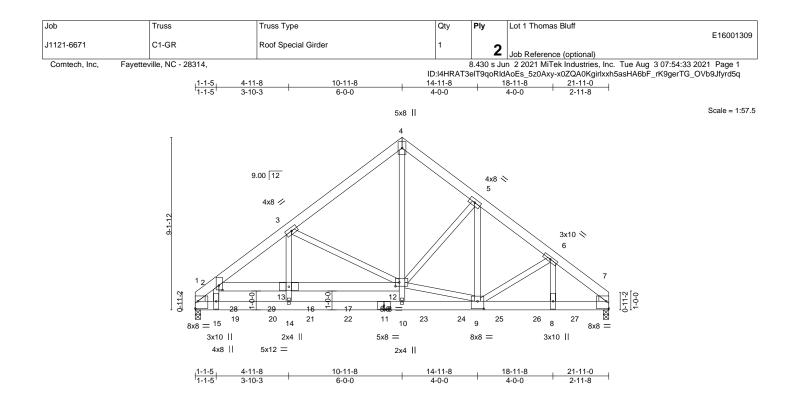
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 7-8=-120/304, 8-9=-120/303

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.


- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 25, 20, 17, 14 except (jt=lb) 23=115, 24=110, 26=171, 19=118, 18=109, 16=167.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

August 3,2021

🗥 WARNING - Verify design p eters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [1:Edge,0-4-10], [2:0-2-14,0-2-4], [7:E	dge,0-4-10], [9:0-4-0,0-4-1	2], [12:0-2-8,0-2-8]							
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2015/TPl2014	CSI. TC 0.86 BC 0.73 WB 0.91 Matrix-S	DEFL. in (loc) l/defl L/ Vert(LL) -0.15 12-13 >999 36 Vert(CT) -0.31 12-13 >843 24 Horz(CT) 0.05 7 n/a n/a Wind(LL) 0.15 12-13 >999 24	0 MT20 244/190 0 a						
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2	1		thing directly applied or 4-11-9 oc purlins. applied or 10-0-0 oc bracing.						
REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-275(LC 25) Max Uplift 1=-1263(LC 8), 7=-1390(LC 9) Max Grav 1=7583(LC 1), 7=7705(LC 2)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-10129/1691, 2-3=-9954/1689, 3-4=-6372/1197, 4-5=-6163/1169, 5-6=-8950/1599, 6-7=-10911/1947 BOT CHORD 12-13=-199/1348, 1-15=-1112/6124, 10-14=-1192/6650, 9-10=-1203/6789, 8-9=-1363/7919, 2-13=-266/1793 WEBS 13-14=-158/1269, 3-13=-496/3482, 3-12=-3363/724, 2-15=-386/1995, 6-9=-955/322, 6-8=-446/2474									
 NOTES- 1) 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BcDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 									
ContintU2650 of pb3602 WARNING - Verify design parameters and READ NOTES ON THIS AN Design valid for use only with MITek® connectors. This design is based a truss system. Before use, the building designer must verify the applica building design. Bracing indicated is to prevent buckling of individual tru is always required for stability and to prevent buckling of individual tru is always required for stability and to prevent collapse with possible pers fabrication, storage, delivery, erection and bracing of trusses and truss s Safety Information available from Truss Plate Institute, 2670 Crain Hig	nly upon parameters shown, and illity of design parameters and pro- s web and/or chord members oni onal injury and property damage. rstems, see ANS/7P/1	is for an individual building component, not operly incorporate this design into the overall y. Additional temporary and permanent bracing For general guidance regarding the <i>Quality Criteria</i> , DSB-89 and BCSI Building Component	818 Soundside Road Edenton, NC 27932						

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
	4404 0074	04.05	Des (Or estal Obstan			E16001309
	J1121-6671	C1-GR	Roof Special Girder	1	2	Job Reference (optional)
L					_	Job Relefence (optional)
	Comtech, Inc, Fayettev	rille, NC - 28314,			3.430 s Ju	a 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:33 2021 Page 2
			ID	:I4HRAT3	elT9qoRld/	AoEs_5z0Axy-x0ZQA0Kgirlxxh5asHA6bF_rK9gerTG_OVb9Jfyrd5q

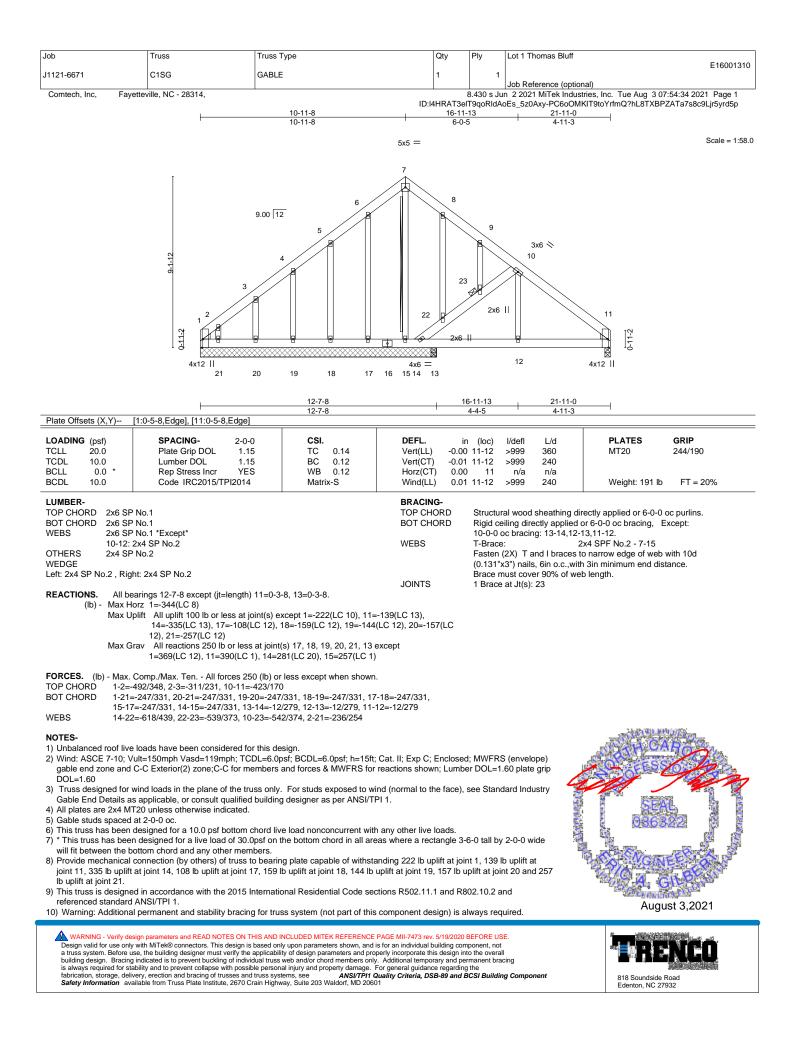
NOTES-

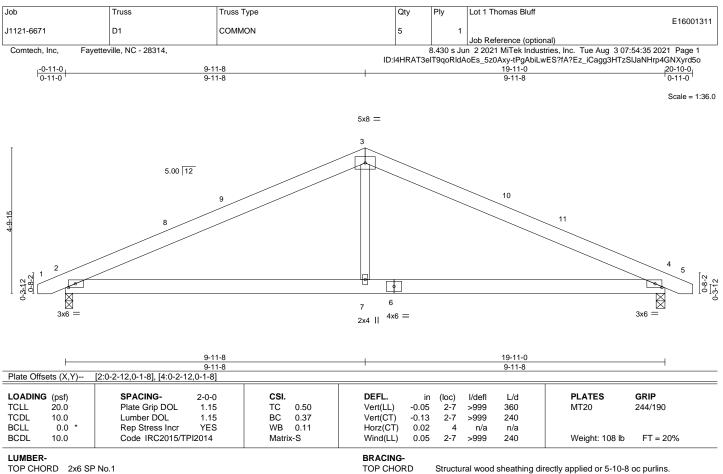
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1313 lb down and 242 lb up at 2-0-12, 1318 lb down and 252 lb up at

e) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1313 lb down and 242 lb up at 2-0-12, 1318 lb down and 252 lb up at 4-0-12, 1318 lb down and 252 lb up at 6-0-12, 1318 lb down and 252 lb up at 10-0-12, 1505 lb down and 242 lb up at 12-0-12, 1505 lb down and 242 lb up at 12-0-12, and 2003 lb down and 293 lb up at 18-0-12, and 808 lb down and 202 lb up at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 12-29=-20, 1-7=-20, 2-29=-20


Concentrated Loads (lb)

Vert: 16=-1318(B) 17=-1318(B) 18=-1318(B) 19=-1313(B) 20=-1318(B) 23=-1313(B) 24=-1313(B) 25=-1313(B) 26=-1934(B) 27=-739(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 4=0-3-8, 2=0-3-0 Max Horz 2=-71(LC 17) Max Uplift 4=-163(LC 13), 2=-162(LC 12) Max Grav 4=836(LC 1), 2=835(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1239/498, 3-4=-1240/498

BOT CHORD 2-7=-293/1030, 4-7=-293/1030 WEBS 3-7=0/477

NOTES-

1) Unbalanced roof live loads have been considered for this design.

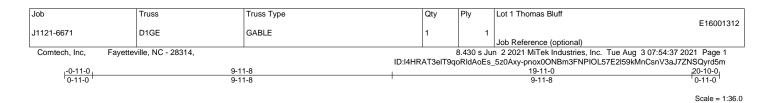
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-7-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

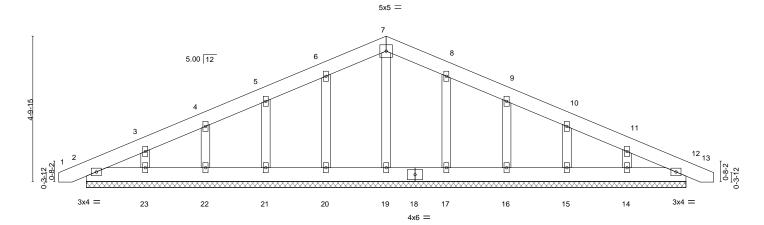
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 163 lb uplift at joint 4 and 162 lb uplift at joint 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




Rigid ceiling directly applied or 10-0-0 oc bracing.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		I	19-11-0				1	1
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) (0.00 12	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) (0.00 12	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) (0.00 12	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 130 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

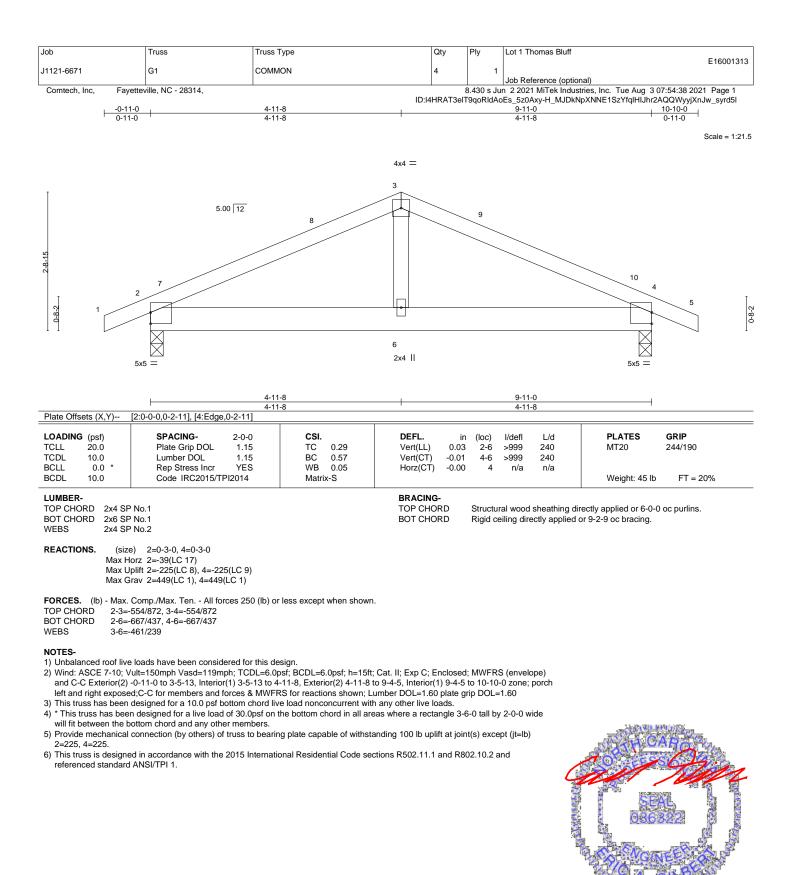
BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 2=-120(LC 13) (lb) -

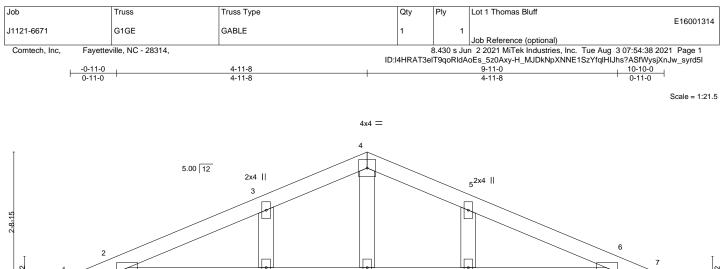
Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 22, 17, 15 except 21=-102(LC 12), 23=-116(LC 12), 16=-103(LC 13), 14=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 17, 16, 15, 14

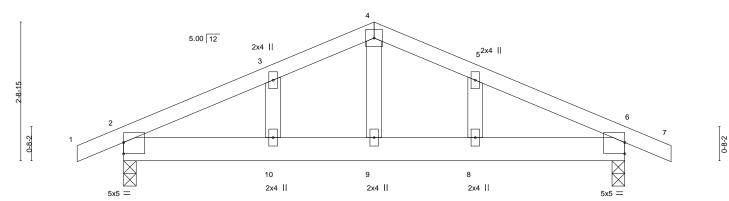
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 22, 17, 15 except (it=lb) 21=102, 23=116, 16=103, 14=112.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **AVSUTPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

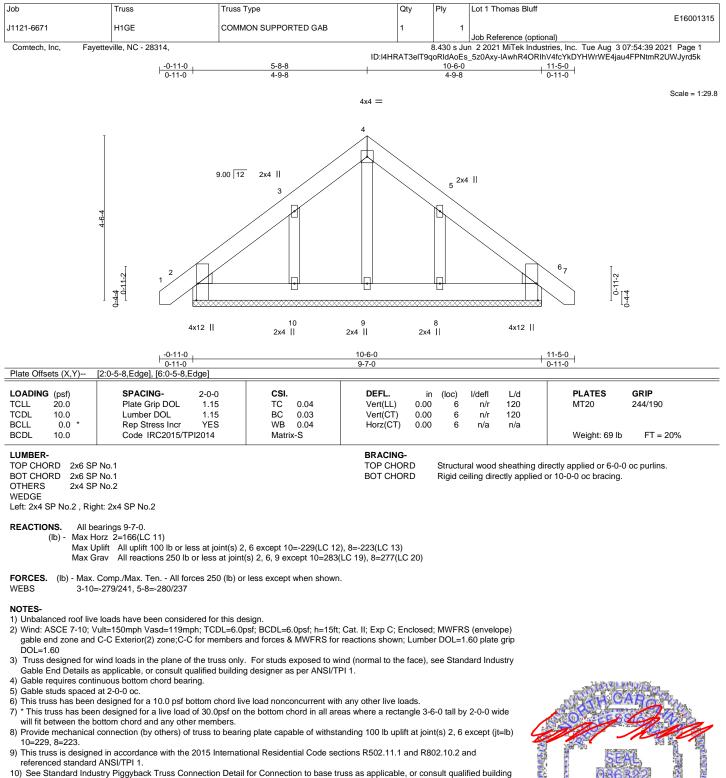




August 3,2021

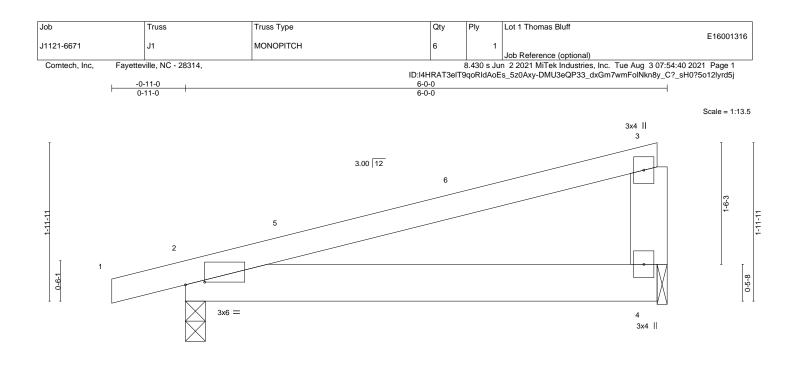
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		<u>4-11-8</u> 4-11-8						9-11- 4-11-			
Plate Offsets (X,Y) [2:0	0-0-0,0-2-11], [6:Edge,0-2-	11]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1. Lumber DOL 1.	.15 .15 ES	BC	0.23 0.42 0.06 S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 -0.01 0.02	(loc) 8 8 6 8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x6 SP No WEBS 2x4 SP No OTHERS 2x4 SP No	5.1 5.2				BRACING- TOP CHOF BOT CHOF	RD				rectly applied or 6-0-0 or 9-1-14 oc bracing.) oc purlins.
Max Horz Max Uplift	2=0-3-0, 6=0-3-0 2=-66(LC 13) t 2=-297(LC 8), 6=-297(LC t 2=449(LC 1), 6=449(LC 1										
TOP CHORD 2-3=-541	mp./Max. Ten All forces 2 1/873, 3-4=-494/920, 4-5=-4 38/437, 9-10=-688/437, 8-9 4/232	494/920, 5-6=-54	1/873								
NOTEO											
NOTES- 1) Unbalanced roof live loa	ads have been considered	for this design									
Wind: ASCE 7-10; Vult=	=150mph Vasd=119mph; T	CDL=6.0psf; BC									
gable end zone and C-C Lumber DOL=1.60 plate	C Exterior(2) zone; porch le e grip DOI =1 60	eft and right expo	sed;C-(C for member	rs and forces & I	MWFRS	for rea	ctions sh	own;		
Truss designed for wine	d loads in the plane of the					face), s	ee Stan	dard Indu	ustry		
4) Gable End Details as ap	pplicable, or consult qualifie	ea builaing aesig	ner as	Der ANSI/TPI	1.						State of the second sec
		n chard live load	noncor			- de					Am
	signed for a 10.0 psf botton			current with a	anv other live loa	aus.					THOMAS AND
5) This truss has been des6) * This truss has been des		0.0psf on the bot					-0 tall b	y 2-0-0 w	ide	STOR STOR	s Chi


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



designer.

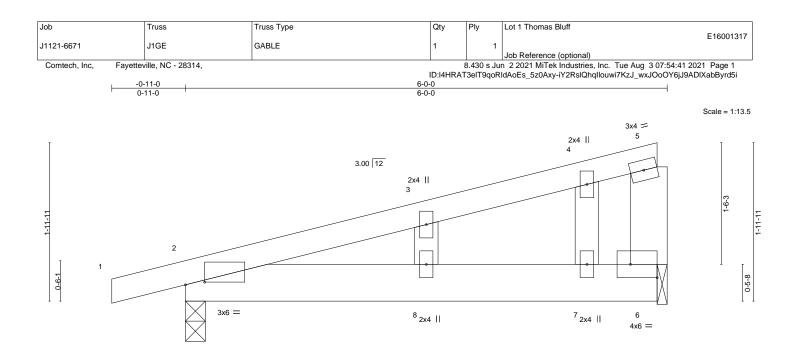
🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-2-14,0-0-6]				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL) 0.04	2-4 >999 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.03	8 2-4 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) n/a n/a	
SCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 27 lb FT = 20%
UMBER- OP CHORD 2x4 SF	? No.1		BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 6-0-0 oc purlins,
OT CHORD 2x6 SF VEBS 2x6 SF			BOT CHORD	except end verticals. Rigid ceiling directly applied	or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=75(LC 8) Max Uplift 2=-188(LC 8), 4=-143(LC 8) Max Grav 2=294(LC 1), 4=220(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=188, 4=143.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:Edge,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.18 WB 0.02 Matrix-S	DEFL.inVert(LL)0.04Vert(CT)-0.02Horz(CT)-0.00	(loc) l/defl L/d 8 >999 240 8 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x6 SF OTHERS 2x4 SF	P No.1 P No.1			Structural wood sheathing d except end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

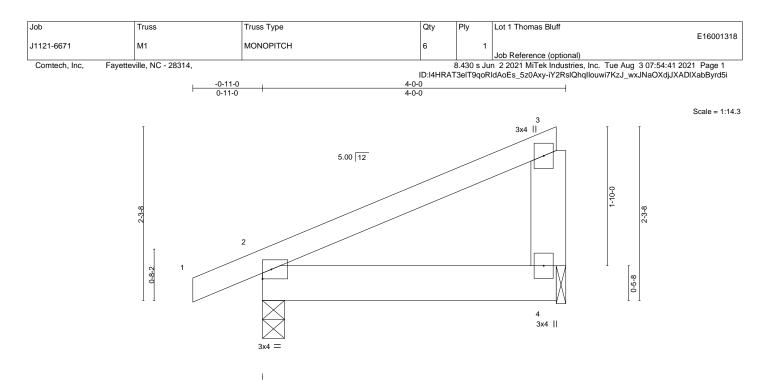
REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=106(LC 8) Max Uplift 2=-259(LC 8), 6=-199(LC 8) Max Grav 2=294(LC 1), 6=220(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-275/133, 7-8=-275/133, 6-7=-275/133 BOT CHORD

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259. 6=199.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

818 Soundside Road Edenton, NC 27932

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.21 BC 0.21	DEFL. Vert(LL) Vert(CT)	in -0.00 -0.00	(loc) 2-4 2-4	l/defl >999 >999	L/d 360 240	-	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) Wind(LL)	0.00 0.00	2	n/a ****	n/a 240	Weight: 20 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=84(LC 12)

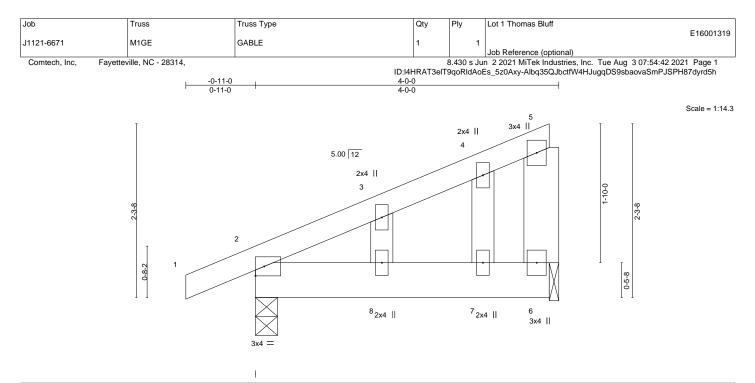
Max Uplift 2=-48(LC 8), 4=-52(LC 12) Max Grav 2=218(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.10 WB 0.02 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* WEBS 3-8: 2x4 SP No.2 OTHERS 2x4 SP No.2

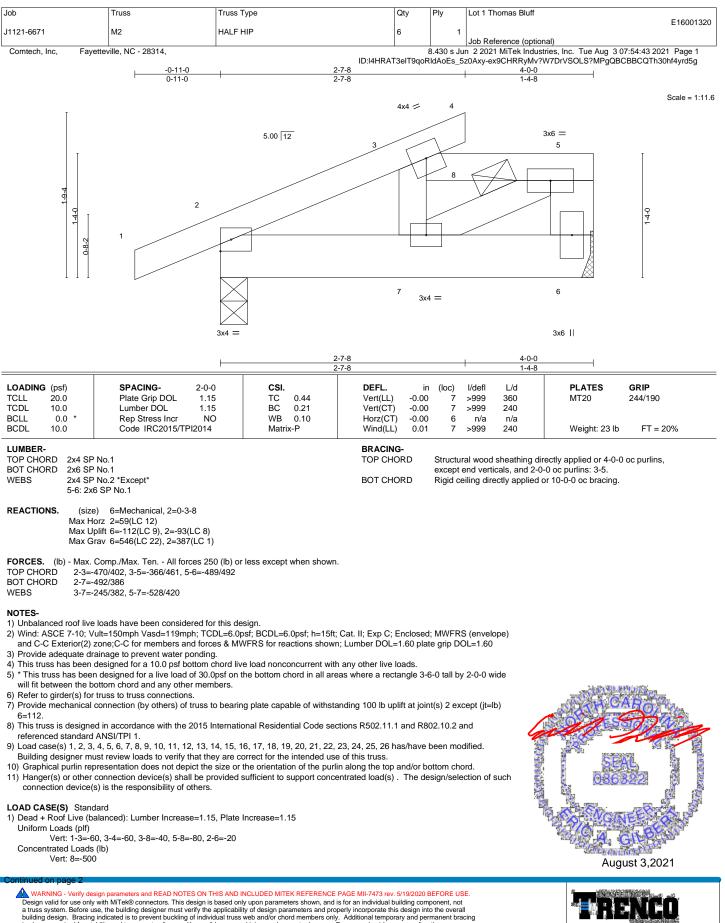
REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=121(LC 12) Max Uplift 2=-90(LC 12), 6=-93(LC 12) Max Grav 2=218(LC 1), 6=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

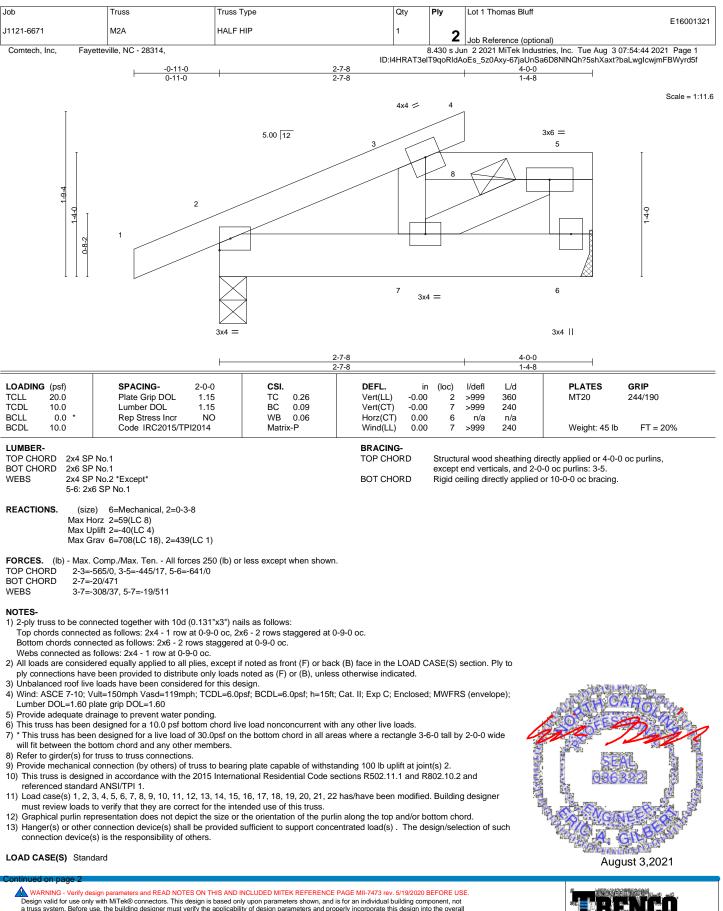
[dof	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
						E16001320
	J1121-6671	M2	HALF HIP	6	1	
						Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jur	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 2

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

LOAD CASE(S) Standard	
 Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 	
Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438	
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-40, 2-6=-40	
Concentrated Loads (lb) Vert: 8=-375	
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=98, 2-3=82, 3-4=207, 3-5=67, 2-6=-12	
Horz: 1-2=-110, 2-3=-94, 3-4=-219 Concentrated Loads (Ib)	
Vert: 8=467	
 Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=73, 2-3=82, 3-4=73, 3-5=67, 2-6=-12 Horz: 1-2=-85, 2-3=-94, 3-4=-85	
Concentrated Loads (lb)	
Vert: 8=467 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=5, 2-3=-54, 3-4=30, 3-5=-64, 2-6=-20	
Horz: 1-2=-25, 2-3=34, 3-4=-50	
Concentrated Loads (lb) Vert: 8=-462	
 Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=-45, 2-3=-54, 3-4=-45, 3-5=-64, 2-6=-20	
Horz: 1-2=25, 2-3=34, 3-4=25 Concentrated Loads (lb)	
Vert: 8=-462 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=11, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23	
Concentrated Loads (lb) Vert: 8=121	
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.6	0
Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=11, 2-6=-12	
Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb)	
Vert: 8=121	•
 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.6 Uniform Loads (plf) 	0
Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23	
Concentrated Loads (lb)	
Vert: 8=-306 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.	.60
Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20	
Horz: 1-2=-23, 2-3=-14, 3-4=-23	
Concentrated Loads (lb) Vert: 8=-306	
 Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increas Uniform Loads (plf) 	se=1.60
Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12	
Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb)	
Vert: 8=121 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Incre	ase=1.60
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18	
Concentrated Loads (lb) Vert: 8=21	
 Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increa Uniform Loads (plf) 	ase=1.60
Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12	
Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb)	
Vert: 8=121	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss even and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
J1121-6671	M2	HALF HIP	6	1	E16001320
51121-0071	WZ		0		Job Reference (optional)
Comtech, Inc, Fayett	eville, NC - 28314,			8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 3


ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

LOAD CASE(S) Standard 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-31, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-31, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-120, 2-6=-20 Concentrated Loads (lb) Vert: 8=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 8=-480 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 8=-480 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb)

Vert: 8=-438

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, deflivery, rerection and bracing of trusses systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER KRETERENCE PAGE MIT-473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
					E16001321
J1121-6671	M2A	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2

8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwglcwjmFBWyrd5f

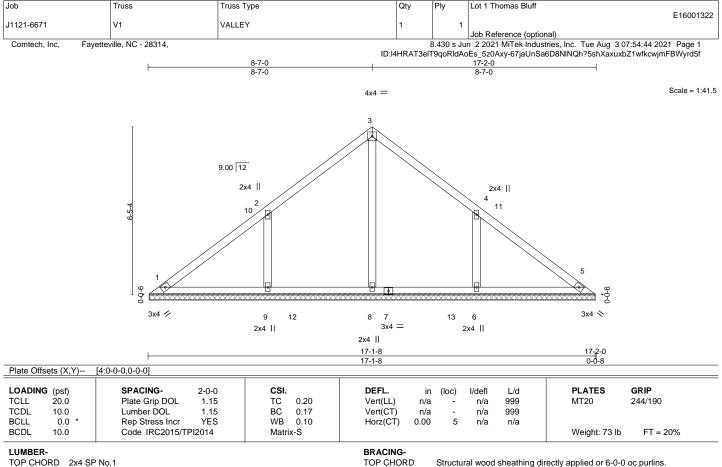
Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-160, 2-6=-40 Concentrated Loads (lb) Vert: 8=-375 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=-109, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 8=121 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=-109, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 8=121 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-151, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-151, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306

LOAD CASE(S) Standard

Uniform Loads (plf)

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
					E16001321
J1121-6671	M2A	HALF HIP	1	2	Job Reference (optional)
					Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,				8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 3

8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 3 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwglcwjmFBWyrd5f

LOAD CASE(S) Standard	
14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 3-5=-240, 2-6=-20	
Concentrated Loads (Ib)	
Vert: 8=-250	
15) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20	
Horz: 1-2=-17, 2-3=-10, 3-4=-17	
Concentrated Loads (lb)	
Vert: 8=-480	
16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20	
Horz: 1-2=-17, 2-3=-11, 3-4=-17	
Concentrated Loads (lb)	
	20
17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.6	10
Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-213, 5-8=-243, 2-6=-20	
Vert. 1-2=-24, 2-3=-19, 3-4=-26 Horz: 1-2=-26, 2-3=-19, 3-4=-26	
Concentrated Loads (Ib)	
Vert: 8=-480	
 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1. 	60
Uniform Loads (plf)	
Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-213, 5-8=-243, 2-6=-20	
Horz: 1-2=-14, 2-3=-7, 3-4=-14	
Concentrated Loads (lb)	
Vert: 8=-480	
19) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20	
Concentrated Loads (lb)	
Vert: 8=-500	
20) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20	
Concentrated Loads (lb)	
Vert: 8=-500	
21) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb)	
Vert: 8=-438	
22) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (olf)	
Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20	
Concentrated Loads (Ib)	
Vert 8=-438	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-1-0.

(lb) - Max Horz 1=195(LC 9)

2x4 SP No.1

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-218(LC 12), 6=-218(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=418(LC 19), 9=496(LC 19), 6=496(LC 20)

WEBS 2-9=-455/344, 4-6=-455/345

NOTES-

BOT CHORD

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-7-0, Interior(1) 4-7-0 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 16-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

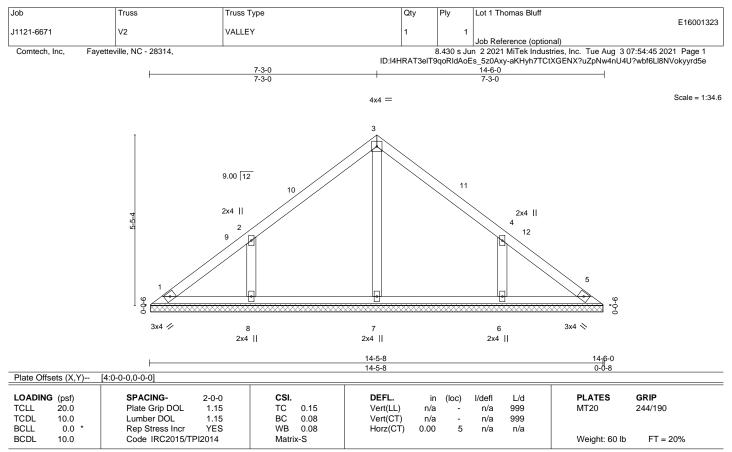
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=218. 6=218.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-5-0.

(lb) - Max Horz 1=163(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-184(LC 12), 6=-184(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=375(LC 19), 6=375(LC 20)

WEBS 2-8=-388/310, 4-6=-388/310

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 14-0-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

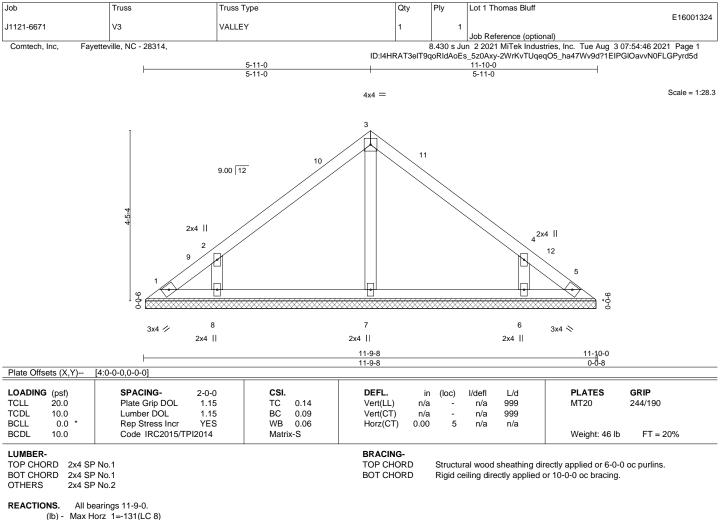
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb)
 8=184, 6=184.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-172(LC 12), 6=-171(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=343(LC 19), 6=342(LC 20)

WEBS 2-8=-372/316, 4-6=-372/316

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-4-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

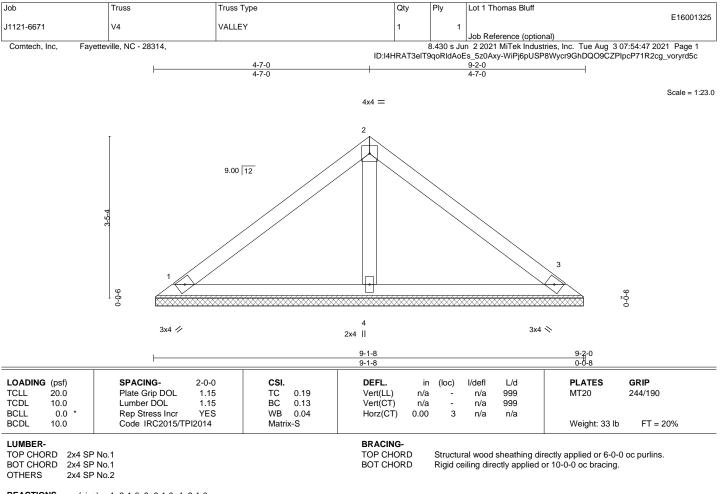
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=172.6=171.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. (size) 1=9-1-0, 3=9-1-0, 4=9-1-0

Max Horz 1=99(LC 11)

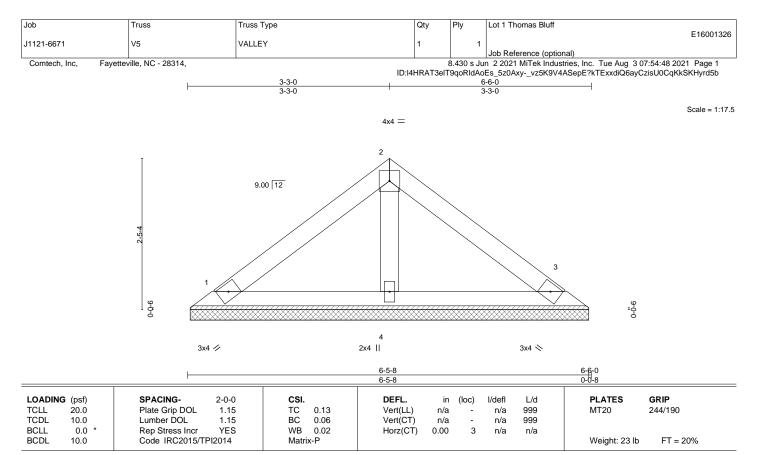
Max Uplift 1=-42(LC 12), 3=-52(LC 13), 4=-24(LC 12)

Max Grav 1=171(LC 1), 3=172(LC 20), 4=321(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=6-5-0, 3=6-5-0, 4=6-5-0

Max Horz 1=-67(LC 8)

Max Uplift 1=-37(LC 12), 3=-44(LC 13)

Max Grav 1=126(LC 1), 3=126(LC 1), 4=197(LC 1)

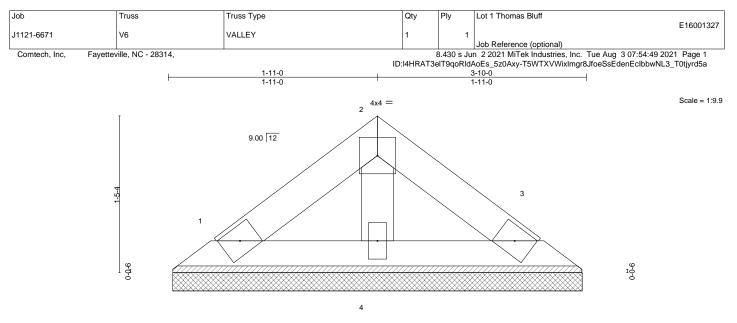
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

2x4 ||

3x4 📎

		3-9-8 3-9-8	<u>3-10</u> -0 0-0-8	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	in (loc) l/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03 Vert(LL)	n/a - n/a	999 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02 Vert(CT)		999
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01 Horz(CT)		n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 12 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-0, 3=3-9-0, 4=3-9-0

Max Horz 1=-35(LC 8)

Max Uplift 1=-20(LC 12), 3=-23(LC 13)

Max Grav 1=66(LC 1), 3=66(LC 1), 4=104(LC 1)

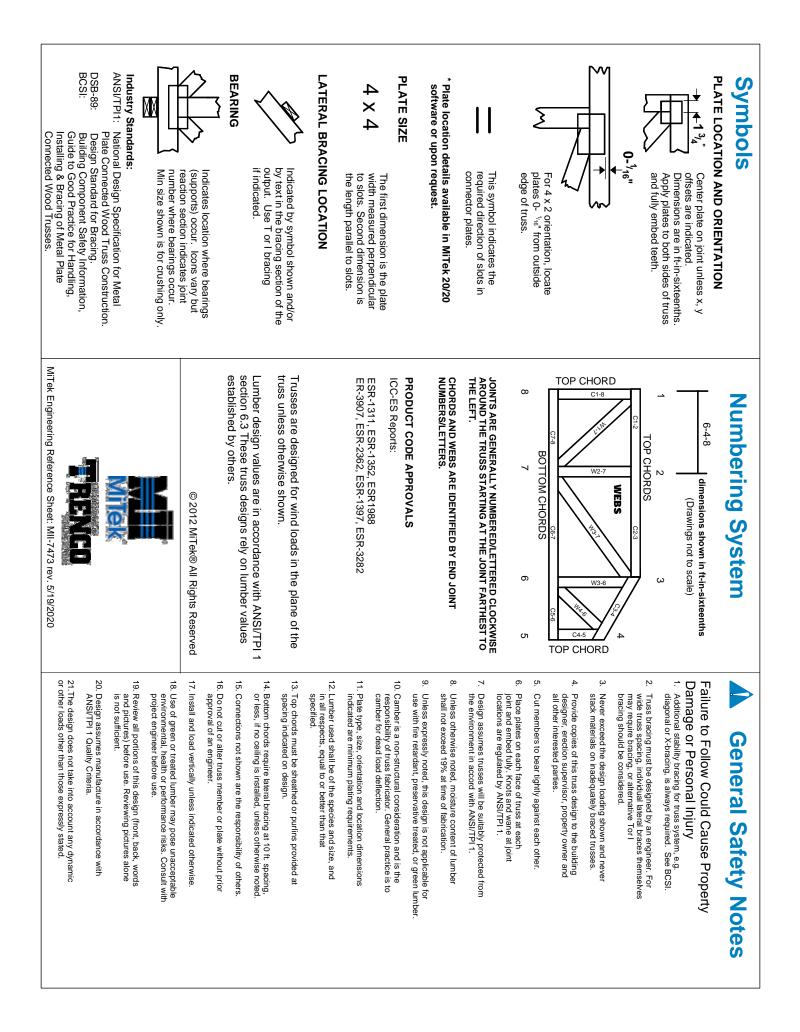
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

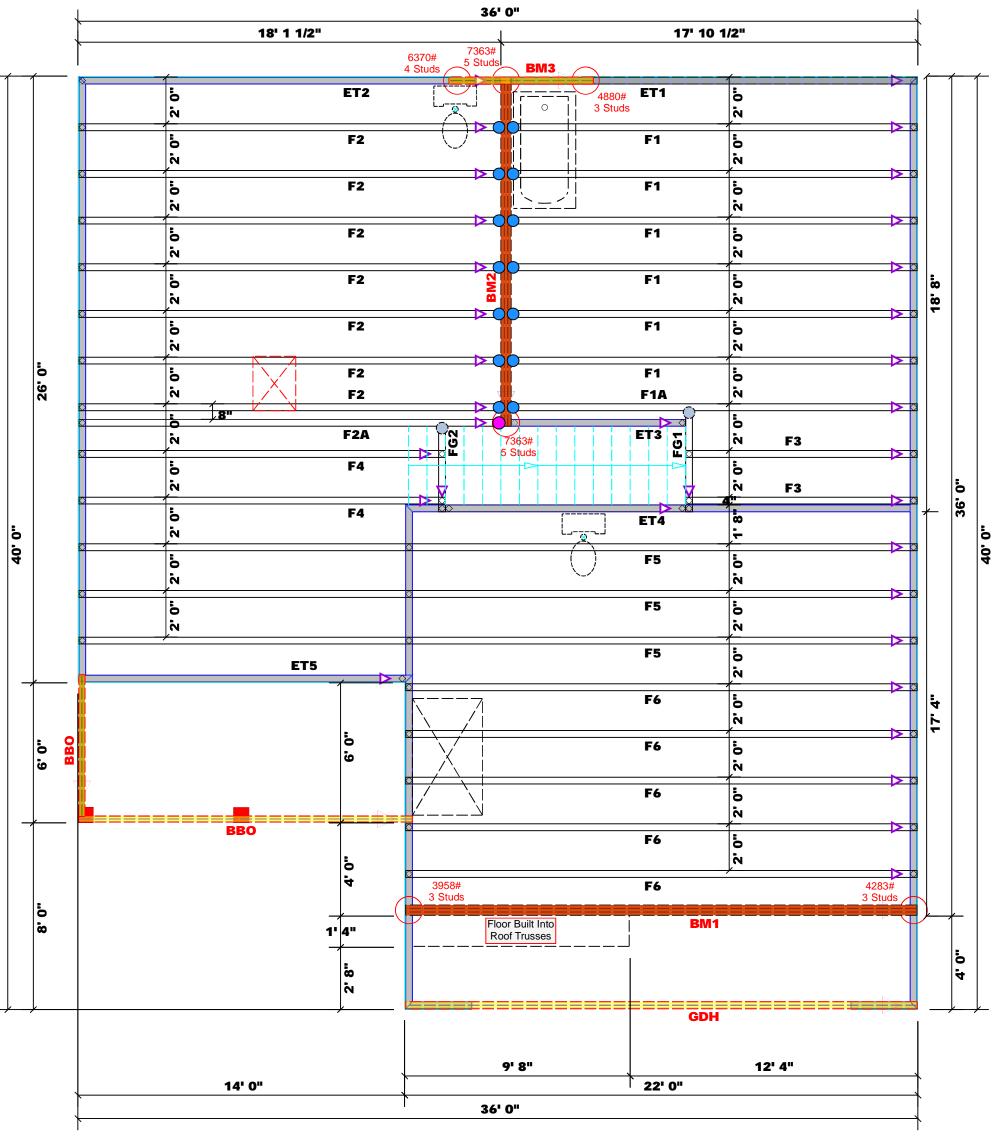
NOTES-

1) Unbalanced roof live loads have been considered for this design.

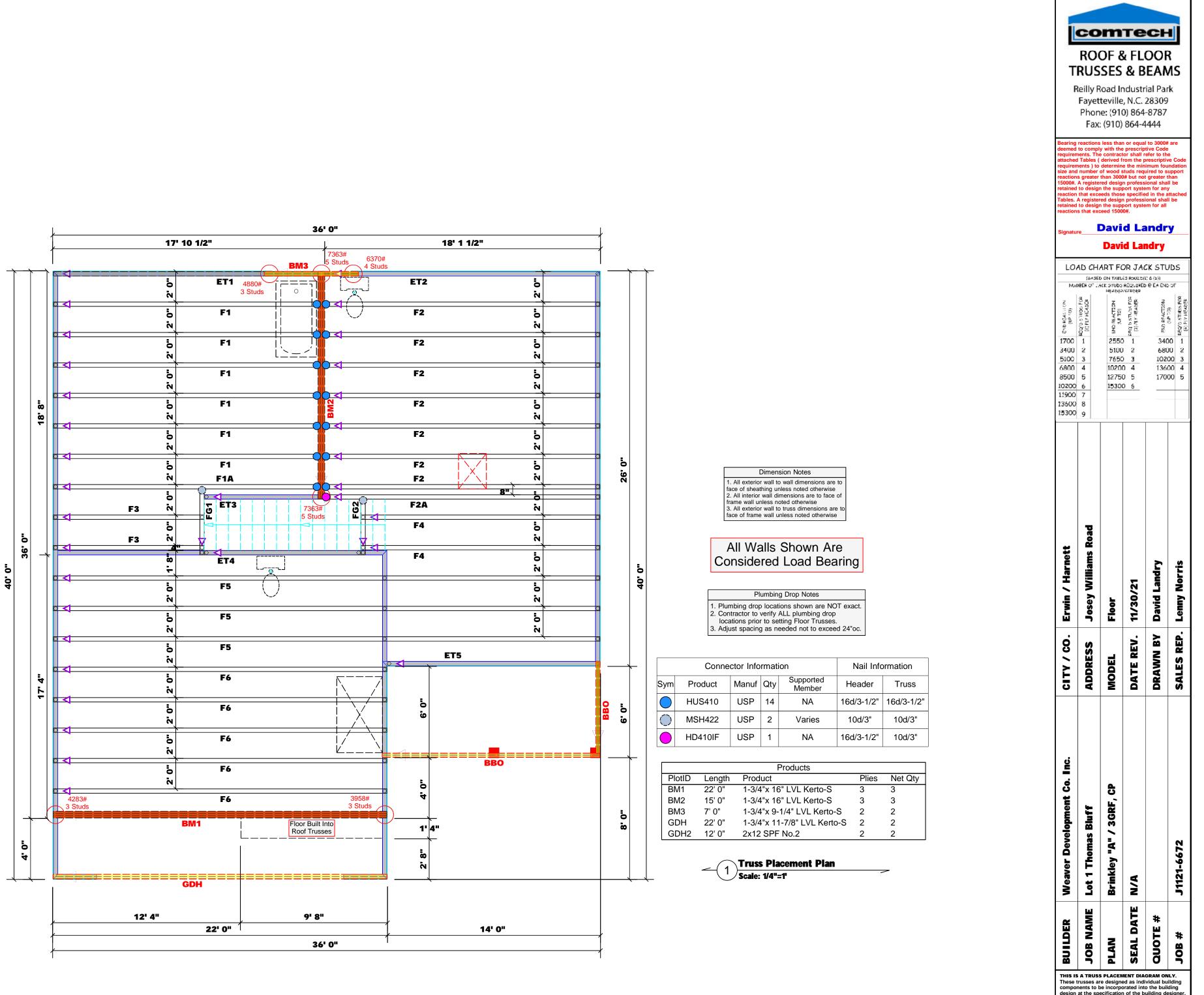
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

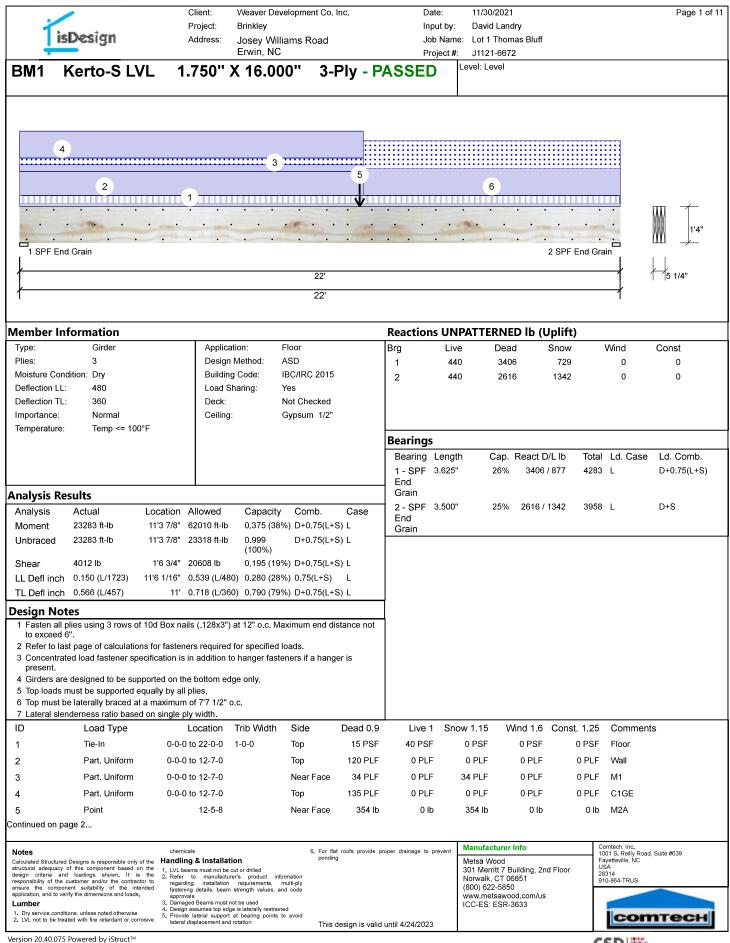
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD


Structural wood sheathing directly applied or 3-10-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.



8787	& FL(& B ndustri , N.C. 2	OF 8 SES oad In eville, e: (910	ROC RUS eilly R Fayett Phon	TI							
fer to the escriptive C num founda red to supp greater thar onal shall be n for any i n the attac onal shall be	prescript or shall re- om the p e the mini- tuds requ # but not a professi- ort syste professi- ort syste professi- ort syste)#.	with the contract derived fr determine of wood s han 3000 ed design the supp eds those ad design the supp eed 15000	to comply ients. The Tables (ients) to number of s greater if A register to design that exce A register to design s that exc	deemed requirem attached requirem size and reaction 15000#. retained reaction Tables.							
	d La		e	Signatu							
K STUD			AD CHA	LO							
	S RECEDU	ON TABLE	(BAISED								
3400 6800 10200 13600	2 3) 4) 5	ຊັບຊີ 2550 5100 7650 10200 12750	5 6 7 8	x 1700 3400 5100 6800 10200 11900 13600 15300							
David Landry	11/30/21	Floor	Josey Williams Road	Erwin / Harnett			e ring T exact.	 wall dimensions are alless noted otherwise mensions are to face oted otherwise of the second otherwise of the second otherwise of the second otherwise Shown Are Load Bea g Drop Notes ions shown are NO ALL plumbing drop thing Floor Trusses. eeded not to excee 	ace of sheathing 2. All interior wall ace of frame wall unless 3. All exterior wal All Walls onsidere Plumb mbing drop loc tractor to verifa ations prior to	1. Plui 2. Cor loc:	
DRAWN BY	REV.	_	SS	/ co.		rmation	Nail Info		ector Informa	Conne	
DRAWN	DATE	MODEL	ADDRESS	СІТУ /		Truss	Header	Supported Member	Manuf Qt	Product	Sym
	ð	Σ	A	CI	-	16d/3-1/2" 10d/3"	16d/3-1/2" 10d/3"	NA Varies	USP 14 USP 2	HUS410 MSH422	\bigcirc
						10d/3"	16d/3-1/2"	NA	USP 1	HD410IF	$\overline{\mathbf{O}}$
								Products			
				I nc.		Net Qty 3	Plies 3	5" LVL Kerto-S		0	Plot BM1
		CP		Co.		3	3	6" LVL Kerto-S 1/4" LVL Kerto-S	1-3/4"x	2 15' 0"	BM2 BM3
		3GRF,	IJ	ment		2 2		-7/8" LVL Kerto		H 22'0"	GDH
	N/A	Brinkley "A" / 3(Lot 1 Thomas Bluff	Weaver Development	-			cement Plan		-(1	
QUOTE #	SEAL DATE	PLAN	JOB NAME	BUILDER							
RAM ONLY. idual building	d as indi	e designe	russes ar	These t	F						
ilding desig h truss des The buildir	of the but ets for each t drawing	cification sign shee placemen	at the spe ividual de	design See ind identifie							
oor system of the truss , beams, wa	roof and the design g headers	g of the ucture. T includin	ent bracin overall str structure	perman for the support		eft End of					
the building	isinilità O	respor	annis is t	and col designe	rawing)	red Truss	ce Enginee	(Referen			

(Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards Do NOT Erect Truss Backwards

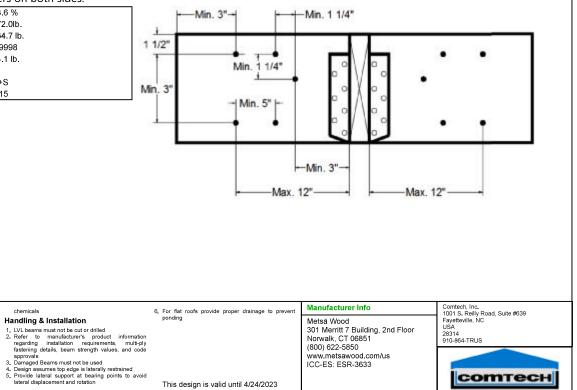
Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

CSD 🔛

		/	Client: Weaver Developm	ent Co. Inc. Date	: 11/30/2021	Page 2 of 11
New Page #	4	han a street	Project: Brinkley	Input		
BM1 Kerto-S LVL 1.750" X 16.000" 3-Ply - PASSED met Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level Image: Level </th <th></th> <th>isDesign</th> <th>Address: Josey Williams</th> <th></th> <th></th> <th></th>		isDesign	Address: Josey Williams			
NMIT Keituros Lut Lucator Tai Walth See Dead 0.9 Lucator See Dead 0.9 See See Dead 0.9 See See Dead 0.9 Lucator See Dead 0.9 See See See Dead 0.9 See See <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
2 0	BM1	Kerto-S LVL	1.750" X 16.000"	3-Ply - PASSED		
2 0						
2 0						
2 0						
2 0						
New Construction Annual State		4	3	<u> </u>		
NET Net of Net Control 2 Set Find Grain 2 Set Find				5		
13PT End Gran 2 SPF		2		I	6	
1SPF End Cam 2SPF End Cam 22 22 .Continued from page 1 22 1D Local Type Location Trib With Side Dead 0.9 Live 1 Snow 1.15 Wind 1.8 Const. 1.25 Comments 6 Part. Unform 12-70 to 22-0.0 Near Face 10 PLF 10 PLF 0 PL	•			· · • • · · · ·		·· m 1
1SPF End Cam 2SPF End Cam 22 22 .Continued from page 1 22 1D Local Type Location Trib With Side Dead 0.9 Live 1 Snow 1.15 Wind 1.8 Const. 1.25 Comments 6 Part. Unform 12-70 to 22-0.0 Near Face 10 PLF 10 PLF 0 PL						· .
1SPF End Cam 2SPF End Cam 22 22 .Continued from page 1 22 1D Local Type Location Trib With Side Dead 0.9 Live 1 Snow 1.15 Wind 1.8 Const. 1.25 Comments 6 Part. Unform 12-70 to 22-0.0 Near Face 10 PLF 10 PLF 0 PL		anarka as the second second		aller and arrest a second		
Image: Section of the Weight Location The Weight Location The Weight Location The Weight Location The Weight Use 1 Snow 1.1.5 Wind 1.6 Const. 1.2.5 Comments 8 Part. Uniform 12-7.0 to 22-0-0 Near Face 137 PLF 0 PLF 137 PLF 0 PLF 0 PLF Month 1.6 Const. 1.2.5 Comments 9 Part. Uniform 12-7.0 to 22-0-0 Near Face 137 PLF 0 PLF 137 PLF 0 PLF 0 PLF MA 9 Part. Uniform 12-7.0 to 22-0-0 Near Face 137 PLF 0 PLF 137 PLF 0 PLF 0 PLF MA 9 PLF 137 PLF 0 PLF 137 PLF 0 PLF 0 PLF MA MA 9 PLF 137 PLF 0 PLF 137 PLF 0 PLF MA	1 SPF	End Grain			2 SPF End 0	Grain
Image: Section of the Weight Location The Weight Location The Weight Location The Weight Use I Snow 1.15 Wind 1.6 Const. 1.25 Comments Sective Weight 13 P.F 0 P.F 13 P.F 0 P.F 0 P.F 0 P.F 0 P.F 0 P.F Mont 1.6 Const. 1.25 Comments Sective Weight 13 P.F 0 P.F 13 P.F 0 P.F 0 P.F 0 P.F Mont 1.6 Const. 1.25 Comments Sective Weight 13 P.F 0 P.F 13 P.F 0 P.F 0 P.F 0 P.F Mont 1.6 Const. 1.25 Comments Sective Sec	/			22'		5 1/4"
Continued from page 1 Location Third Midth Side Dead 0.9 Live 1 Snow 1.15 Wind 1.6 Const. 1.25 Comments 6 Part, Uniform 12-7.0 to 22-0-0 Neur Face 137 PLF 0 PLF 137 PLF 0 P	╆───					
ID Load Type Location The Width Side Dead 0.0 Live 1 Show 1.15 Wind 1.6 Const. 1.25 Comments 8 Part. Unform 12.7.0 10 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF 0 PLF M2 Self Weight 12.7.0 10 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF 0 PLF M2 Self Weight 19 PLF 19 PLF 19 PLF 19 PLF 10 PLF 0 PLF	'			<i>LL</i>		I
ID Load Type Location Th' Middh Side Dead 0.0 Live 1 Show 1.15 Wind 1.6 Const. 1.25 Comments 8 Part, Unform 12.7.0 lo 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF 0 PLF MA 8 Self Weight 12.7.0 lo 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF 0 PLF MA 8 Self Weight 12.7.0 lo 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF MA 9 Self Weight 12.7.0 lo 22.0-0 Near Face 137 PLF 0 PLF 0 PLF 0 PLF MA 9 PLF 19 PLF 19 PLF 19 PLF 12.7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Continued	from page 1				
8 Part, Uniform 12-70 to 22-40 Near Face 137 PLF 0 P			Location Trib Width Side	e Dead 0.9 Live 1	Snow 1.15 Wind 1.6 Const. 1.2	5 Comments
Ref Netwick						
Mark Arrent		Self Weight		19 PLF		
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise		-				
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structurad designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortained ensure the component suitability of the intended application, and to verify the dimensions and load. Lumber 1. Dry service conditions, unless noted therwise 2. LVL not to be treated therwise 3. LVL not to be treated therwise						
Calculated Structural designs is responsible only of the design criteria and loadings shown. It is the responsibility of the customer and/or the cortisoner and/or the cortisone						
Calculated structural adequacy of this component based who find the sign criteria and loadings shown. It is the responsibility of the customer and/or the contractor to manufacturer's product information responsibility of the customer and/or the contractor to manufacturer's product information approvals ap		akurad Daalana is soosaan "Itala"		For flat roofs provide proper drainage to prev ponding	Vent	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Favetteville, NC
resconsibility of the customer and/or the contractor to ensure the component subliship of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrositive 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral support at bearing points to avoid lateral displacement and rotation 5. Provide lateral suppor	structural adequ	uacy of this component based on the	 LVL beams must not be cut or drilled 	. •	301 Merritt 7 Building, 2nd Floor	USA 28314
application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive 4. Design assumes top edge is is itarally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 4/24/2023	responsibility of ensure the co	f the customer and/or the contractor to omponent suitability of the intended	regarding installation requirements, multi-ply fastening details, beam strength values, and code		(800) 622-5850	910-864-TRUS
Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corrosive 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design is valid until 4/24/2023	application, and	to verify the dimensions and loads.	approvals 3. Damaged Beams must not be used		www.metsawood.com/us	
This design is valid until 4/24/2023	1. Dry service of	conditions, unless noted otherwise be treated with fire retardant or corrosive	Provide lateral support at bearing points to avoid	This design is writed with the traces		соттесн
		.075 Powered by iStruct™		i nis design is valid until 4/24/2023		CSDI

CSD

		/eaver Development Co. Inc. rinkley	Date: Input by:	11/30/2021 David Landry	Page 3 of 11
isDesign	-	osey Williams Road		Lot 1 Thomas Bluff	
100 001311		rwin, NC	Project #:	J1121-6672	
		,		evel: Level	
BM1 Kerto-S	LVL 1.750" X	16.000" 3-Ply - PASSE	:D		
		1 			
1 SPF End Grain	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	2 SPF End Grain	1'4"
ł		22'		/ /	5 1/4"
ł		22'			
Nail from both sides. N	laximum end distance no	28x3") at 12" o.c except for regions ot to exceed 6"	covered	by concentrated load fastening.	
Capacity	64.7 %				
Load	182.7 PLF				
Yield Limit per Foot	282.4 PLF				
Yield Limit per Fastener	94.1 lb.				
Yield Mode	IV 1.470				
Edge Distance	1 1/2"				
Min. End Distance	3"				
Load Combination	D+S				
Duration Factor	1.15				
Concentrated Load					
Fasten at concentrated	side load at 12-5-8 with	a			
a_{1}					


This design is valid until 4/24/2023

minimum of (6) – 10d Box nails (.128x3") in the pattern shown. Repeat fasteners on both sides.

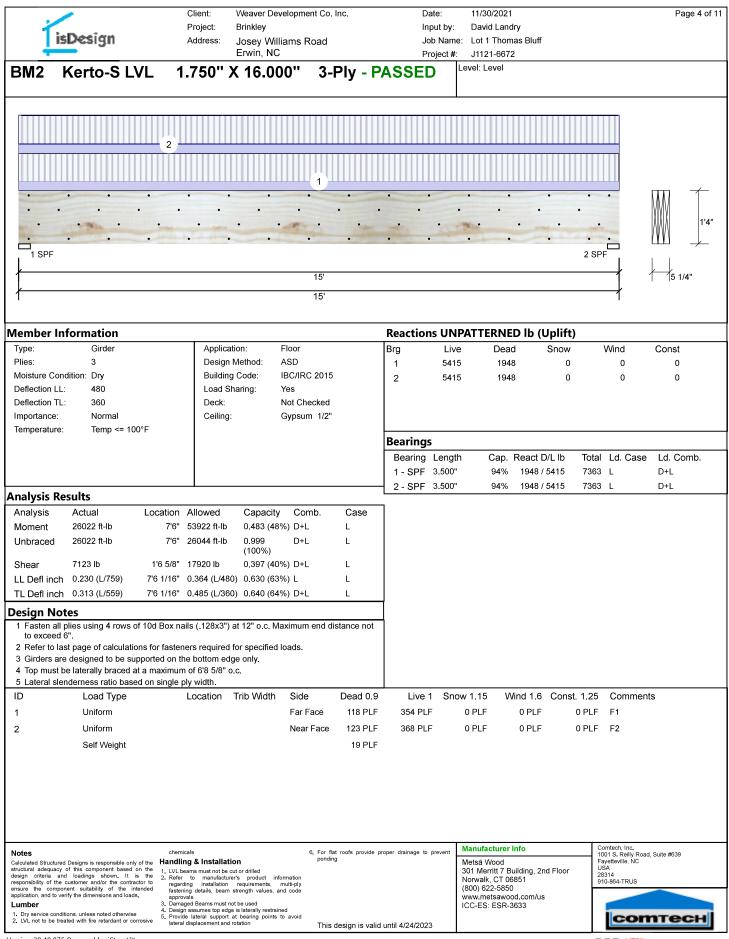
pattern snown. Repeat	t fasteners on both sides
Capacity	83.6 %
Load	472.0lb.
Total Yield Limit	564.7 lb.
Cg	0.9998
Yield Limit per Fastener	94.1 lb.
Yield Mode	IV
Load Combination	D+S
Duration Factor	1.15

chemicals

Min/Max fastener distances for Concentrated Side Loads

Dry service conditions, unless noted otherwise
 LVL not to be treated with fire retardant or corrosive

Calculated Structured Designs is responsible only of the dructural adequacy of this component based on the responsibility of the customer and/or the contractor to responsibility of the customer and/or the contractor to application, and to verify the dimensions and loads,


Notes

Lumber

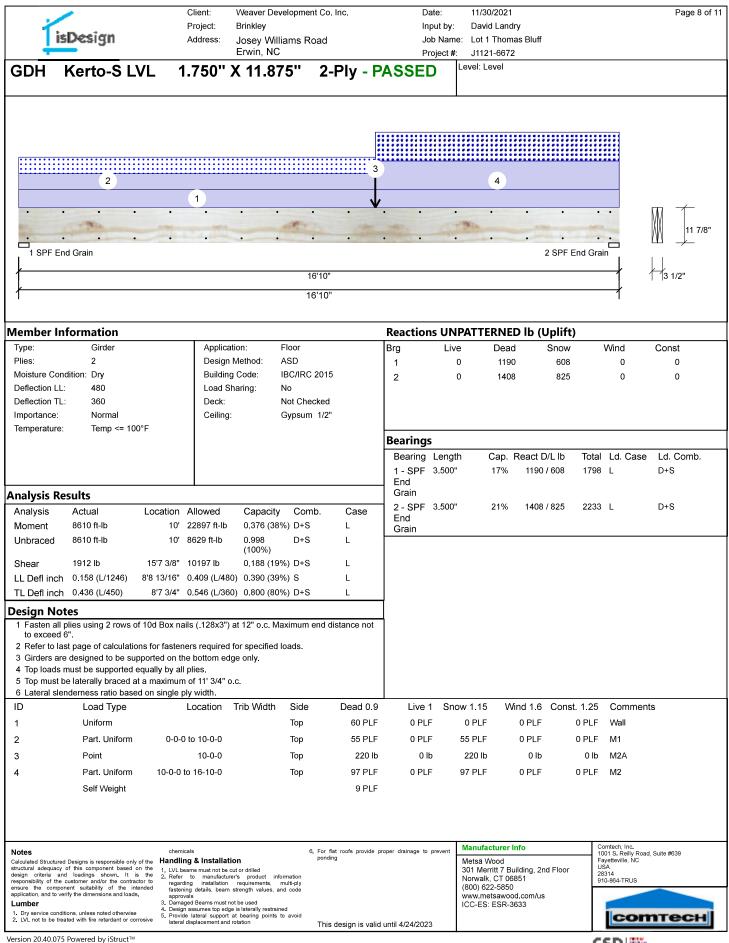
Version 20.40.075 Powered by iStruct™

CSD 🚟

COMTECH


Version 20.40.075 Powered by iStruct™

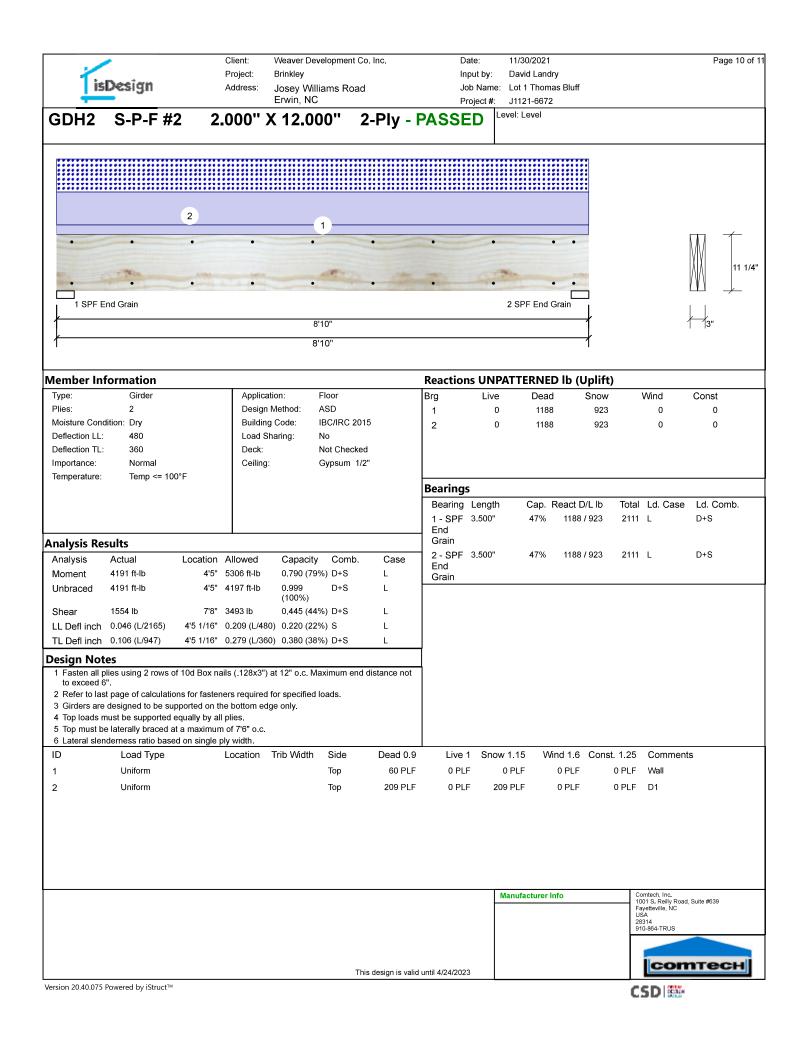
CSD 🗱


1	isDesign	Project: E Address:	Veaver Development Co. I Brinkley Iosey Williams Road Erwin, NC	l	Date: Input by: Job Name: Project # :	11/30/2021 David Landry Lot 1 Thomas Bluff J1121-6672	Page 5 of 11
BM2	Kerto-S LV	′L 1.750'' X	16.000'' 3-1	Ply - PASSE	D Le	evel: Level	
	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	:		15'				
/			15'				
Multi-Ply	y Analysis						
Fasten all 6"	plies using 4 rows	s of 10d Box nails (.1	28x3") at 12" o.c N	lail from both side	es. Maxin	num end distance not to	exceed
Capacity Load		100.0 % 327.3 PLF					
Yield Limit pe Yield Limit pe		327.4 PLF 81.9 lb.					
Yield Mode Edge Distand	ce	IV 1 1/2"					
Min. End Dis Load Combir	stance	3"					
Duration Fac		D+L 1.00					
Notes		chemicals	C E 8-4	roofs provide proper drainage	to prevent	lanufacturer Info	Comtech, Inc.
structural adequ	lacy of this component based on	the Handling & Installation	ponding	roors provide proper drainage . I		letsä Wood 01 Merritt 7 Building, 2nd Floor	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of ensure the co	and loadings shown. It is the customer and/or the contractor mponent suitability of the inter	the 2 Refer to manufacturer's r to regarding installation r	product information equirements, multi-ply		N	lorwalk, CT 06851 300) 622-5850	28314 910-864-TRUS
application, and t Lumber 1. Dry service c	conditions, unless noted otherwise e treated with fire retardant or corro	approvals 3. Damaged Beams must not l 4. Design assumes top edge is 5. Provide lateral support at	e used laterally restrained bearing points to avoid	lesign is valid until 4/24/20	vi IC	ww.metsawood.com/us CC-ES: ESR-3633	соттесн
Version 20.40.	.075 Powered by iStruct™				I		CSDI

CSD 🗱

ie.	Design	Client: Project:	Brinkley	evelopment Co	. Inc.	In	ate: put by:	11/30/2021 David Land	-			Page 6 of 11
	Cargin	Address:	Erwin, N	/illiams Road IC			ob Name: roject #:	Lot 1 Thom J1121-6672				
3 M 3	Kerto-S LVI	L 1.750)" X 9.	250" 2	2-Ply -	PASS	<u> </u>	evel: Level				
	1			1 41								
				\mathcal{M}								
	2		/	\mathbb{M}	3							
•	-	•	•			•	-					\overline{M} 1
				attern		-						9 1/-
•	•		•	1		• •						
1 SPF E	End Grain		5'10"		2 S	PF End Grain						3 1/2"
·			5'10"				_					3 1/2
	formation Girder	Appli	otion	Floor		1			D lb (Uplif		\Afire al	Canat
Гуре: Plies:	2		cation: In Method:	ASD		Brg 1	Live 2153	Dead 2357			Wind 0	Const 0
Moisture Cond	-		ng Code:	IBC/IRC 201	5	2	3496	2840	121	0	0	0
Deflection LL: Deflection TL:	480 360	Load Deck:	Sharing:	No Not Checked								
mportance:	Normal	Ceilin		Gypsum 1/2								
emperature:	Temp <= 100°F		-									
						Bearing						
						Bearing	-		React D/L lb		Ld. Case	
						1 - SPF End	3.500"	46%	2357 / 2522	4880	L	D+0.75(L+S)
nalysis Re	sults					Grain						
Analysis		cation Allowed	Capac	ty Comb.	Case	2 - SPF End	3.500"	60%	2840 / 3530	6370	L	D+0.75(L+S)
Moment	11308 ft-lb	3'7" 12542 ft-lt	0.902 (90%) D+L	L	Grain						
Unbraced	11308 ft-lb	3'7" 11327 ft-lb	o 0.998 (100%)	D+L	L							
Shear	5739 lb	4'10" 6907 lb		33%) D+L	L							
LL Defl inch	0.084 (L/764) 3	3'4 7/8" 0.134 (L/4	80) 0.630 (6	63%) L	L							
TL Defl inch	0.143 (L/451) 3	3'3 5/8" 0.179 (L/3	60) 0.800 (8	30%) D+L	L							
esign Not												
1 Fasten all p to exceed 6	lies using 2 rows of 10c	d Box nails (.128x3	") at 12" o.c.	Maximum end	distance not							
	t page of calculations fo	or fasteners require	d for specifie	ed loads.								
	designed to be support nust be supported equal		dge only.									
•	e laterally braced at a m											
	derness ratio based on											
D	Load Type		Trib Widt		Dead 0.9		1 Snow		ind 1.6 Cor		Comment	ts
1	Tie-In	0-0-0 to 5-10-0	1-0-0	Тор	15 PSI			0 PSF	0 PSF	0 PSF	Floor	
2	Uniform			Тор Тор	120 PLI			0 PLF	0 PLF	0 PLF	Wall	
`	Uniform	o = -		Тор	415 PLI			5 PLF	0 PLF	0 PLF	A3	
-		3-7-0		Тор	1948 I		D	0 lb	0 lb	0 lb	BM2 Brg 2	:
-	Point				7 PLI	-						
-	Point Self Weight											
-												
4		chemicals		6. For	flat roofs provide	proper drainage to	prevent	Manufacturer I	nfo	Ci	omtech, Inc. 101 S. Reilly Road	Suite #639
4 Jotes Jalculated Structured tructural adequacy o	Self Weight	Handling & Installa		6. For pond	flat roofs provide ing	proper drainage to	prevent	vletsä Wood		10 Fa	001 S. Reilly Road ayetteville, NC SA	I, Suite #639
tructural adequacy o lesign criteria and esponsibility of the c	Self Weight	Handling & Installa 1. LVL beams must not b 2. Refer to manufac regarding installatio	e cut or drilled turer's product	pond	flat roofs provide ing	proper drainage to	prevent 3	Metsä Wood 301 Merritt 7 Bu Norwalk, CT 06	ilding, 2nd Floo	r 10 r	001 S. Reilly Road ayetteville, NC	4, Suite #639
4 Jotes Jacobated Structured tructural adequacy o esign criteria and esponsibility of the c nsure the component oplication, and to veri	Self Weight	Handling & Installa 1. LVL beams must not b 2. Refer to manufac regarding installatio fastening details, bea approvals	e cut or drilled turer's product n requirements, m strength values	pond information multi-ply	flat roofs provide ing	proper drainage to	prevent 3 (v	Metsä Wood 801 Merritt 7 Bu Norwalk, CT 06 800) 622-5850 vww.metsawoo	ilding, 2nd Floo 851 d.com/us	r 10 r	001 S. Reilly Road ayetteville, NC SA 3314	I, Suite #639
4 alculated Structured tructural adequacy o sign oriteria and sponsibility of the compon pplication, and to veri umber 0 Py service condition	Self Weight	Handling & Installa 1. LVL beams must not b 2. Refer to manufac regarding installatio fastening details, bea	e cut or drilled turer's product n requirements, m strength values t not be used dge is laterally rest rt at bearing poir	pond information multi-ply , and code rained	flat roofs provide ing	proper drainage to	prevent 3 (v	Metsä Wood 301 Merritt 7 Bu Norwalk, CT 06 800) 622-5850	ilding, 2nd Floo 851 d.com/us	r 10 r	001 S. Reilly Road ayetteville, NC SA 3314 10-864-TRUS	9, Suite #639

CSD 🚟



CSD 🚟

Í	isDesign		Client: Project: Address:	Weaver Developm Brinkley Josey Williams			ne: Lot 1 Thomas Bluff	Page 9 of 11
GDH	Kerto-S	LVL	1.750"	Erwin, NC X 11.875"	2-Ply	Project #	#: J1121-6672 Level: Level	
	· ·	••••	•	· ·	· ·	· · ·	· · · · ·	
1 SPF	End Grain				40140		2 SPF	End Grain
 					16'10" 16'10"			1 13 1/2"
Multi-Ply	-					um end distance r		
Capacity Load Yield Limit pe Yield Almit pe Edge Distanc Min. End Dist Load Combin Duration Fact	er Foot er Fastener xe tance bation	0.0 % 0.0 PLF 163.7 F 81.9 Ib IV 1 1/2" 3" 1.00	= PLF					
structural adequa design criteria responsibility of t ensure the con application, and to Lumber 1. Dry service co	ured Designs is responsible acy of this component bas and loadings shown. I the customer and/or the co monent suitability of the poverfy the dimensions and le outfit the dimensions and le ou	only of the Han ed on the 1 LV t is the 2 R ntractor to re intended fa bads ap wise 5 P	/L beams must not be efer to manufactu garding installation stening details, bean oprovals amaged Beams must esign assumes top ed	cut or drilled irrer's product information requirements, multi-ply n strength values, and code not be used ge is laterally restrained t at bearing points to avoid	ponding	vide proper drainage to prevent valid until 4/24/2023	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floo Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Contech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
March 20 40 0	75 Doworod by iStruc							

CSD 🚟

Version 20.40.075 Powered by iStruct

is	Design	Client: Project: Address:					11/30/2021 David Landry : Lot 1 Thomas Bluff		Page 11 of 11
GDH2		2 2 000'	Erwin, NC X 12.000''	2-Plv	- PASS	Project #:	J1121-6672 _evel: Level		
ODITZ	0-1 -1 #	2 2.000	X 12:000	2-1 iy					
•	•	• •	•	•	•	•	• •	Ξ.	M T
								× 11/2"	11 1/4"
	•	• •	•	•	•	•	••+	\mp	
	nd Grain		8'10"				2 SPF End Grain		3"
<u>/</u>			8'10"						5
Multi-Ply A		ws of 10d Box nai	ls (.128x3") at 12"	o.c. Maxim	um end dis	tance no	nt to exceed 6"		
Capacity Load		0.0 % 0.0 PLF				tunce ne			
Yield Limit per F		157.4 PLF 78.7 lb.							
Yield Limit per F Yield Mode	asteriei	IV							
Edge Distance Min. End Distand	ce	1 1/2" 3"							
Load Combination		1.00							
						Ę	Manufacturer Info	Comte 1001 S	ch, Inc. . Reilly Road, Suite #639 wille, NC
								USA	eville, NC 4-TRUS
				This design is	valid until 4/24/2	023		L	соттесн

RE: J1121-6672

Lot 1 Thomas Bluff

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Development Co. Inc. Project Name: J1121-6672 Lot/Block: 1 Model: Brinkley Address: Josey Williams Road City: Erwin

Subdivision: Thomas Bluff State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16351908	ET1	10/28/2021
2	E16351909	ET2	10/28/2021
_			
3	E16351910	ET3	10/28/2021
4	E16351911	ET4	10/28/2021
5	E16351912	ET5	10/28/2021
6	E16351913	F1	10/28/2021
7	E16351914	F1A	10/28/2021
8	E16351915	F2	10/28/2021
9	E16351916	F2A	10/28/2021
10	E16351917	F3	10/28/2021
11	E16351918	F4	10/28/2021
12	E16351919	F5	10/28/2021
13	E16351920	F6	10/28/2021
14	E16351921	FG1	10/28/2021
15	E16351922	FG2	10/28/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

October 28, 2021

	17-4-12									
Plate Offsets (X,Y)	[8:0-1-8,Edge], [23:0-1-8,Edge]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- n/a 999	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E				
BOT CHORD 2x4 SF WEBS 2x4 SF	2 No.1 (flat) 2 No.1 (flat) 2 No.3(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, ,,) oc purlins,				

17-4-12

REACTIONS. All bearings 17-4-12.

(Ib) - Max Grav All reactions 250 Ib or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

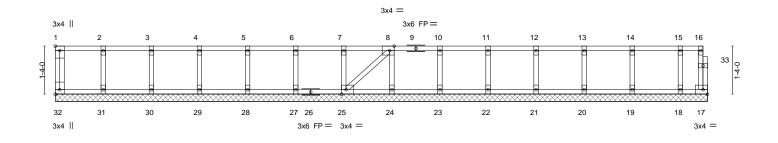
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



[Job	Truss	Truss Type	Qty	Ply	Lot 1 Thomas Bluff
	J1121-6672	ET2	Floor Supported Gable	1	1	E16351909
						Job Reference (optional)
	Comtech, Inc, Fayette	/ille, NC - 28314,		8	430 s Aug	16 2021 MiTek Industries, Inc. Thu Oct 28 07:27:33 2021 Page 1
			ID:I4H	RAT3elT9	qoRldAoE	s_5z0Axy-bXSihSb9HjAAkJHh5ckdB2?tdt?0CM?kNCXoDQyOyL8

0-1-8

Scale = 1:30.1

Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [25:0-1-	8,Edge], [32:Edge,0-1-8]	18-1-0 18-1-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- n/a 999 - n/a 999	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4	SP No.1(flat) SP No.1(flat) SP No.3(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, ,,	oc purlins,

REACTIONS.

All bearings 18-1-0.
 (lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

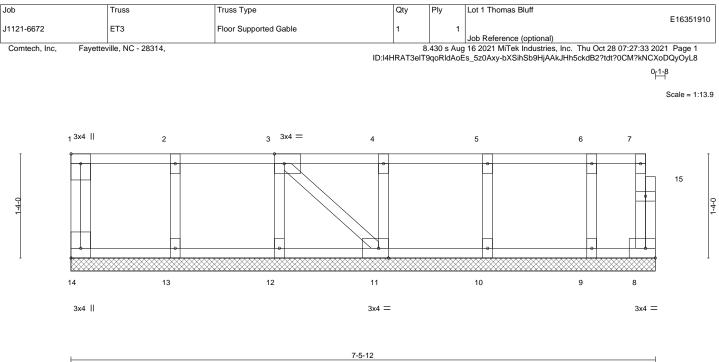
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

			7-5-12				
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [11:0-1-8	3,Edge], [14:Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	n/a - n	əfl L/d /a 999 /a 999 /a n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	 No.1(flat) No.1(flat) No.3(flat) No.3(flat) No.3(flat) 	BRACING- TOP CHORD BOT CHORD	except end	verticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,	

REACTIONS.

DNS. All bearings 7-5-12. (lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

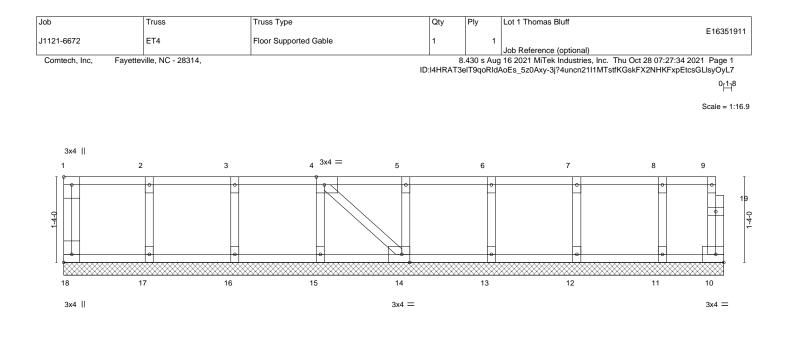
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

October 28,2021

			10-3-8					
I			10-3-8					
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [14:0-1-8	3,Edge], [18:Edge,0-1-8]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	Vert(CT)	in (n/a n/a).00	(loc) l/def - n/a - n/a 10 n/a	999 999	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	2 No.1 (flat) 2 No.3 (flat) 2 No.3 (flat)		BRACING- TOP CHORD BOT CHORD	e	xcept end ve	erticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	

REACTIONS.

DNS. All bearings 10-3-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

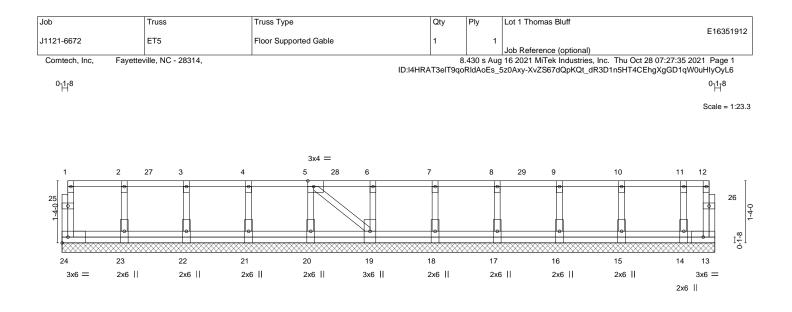
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

	V) [5:0.4.9.5dae]		14-0-0 14-0-0			
Plate Offsets (X,	Y) [5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.12 BC 0.00 WB 0.05 Matrix-S	DEFL. in Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c) oc purlins,

REACTIONS. All bearings 14-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

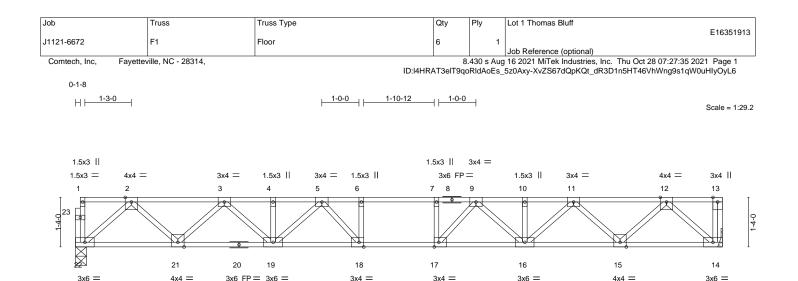
4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf)

Vert: 13-24=-10, 1-12=-100

Concentrated Loads (lb) Vert: 4=-91 7=-91 10=-91 27=-91 28=-91 29=-91

 			<u>17-4-12</u> 17-4-12			
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge]		17 7 12			
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.48 BC 0.69 WB 0.46	Vert(LL) -0.19	n (loc) l/defl L/d 17-18 >999 480 17-18 >777 360 14 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 93 lb	FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (s	SP No.1(flat) SP No.1(flat) SP No.3(flat) ze) 22=0-3-8, 14=Mechanical Grav 22=937(LC 1), 14=943(LC 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o		oc purlins,
TOP CHORD 2-3 9-1 BOT CHORD 21-	x. Comp./Max. Ten All forces 250 (lb) o =-1705/0, 3-4=-2823/0, 4-5=-2823/0, 5-6= 0=-2823/0, 10-11=-2823/0, 11-12=-1705/ 22=0/1015, 19-21=0/2365, 18-19=0/3144 -15=0/1016	=-3312/0, 6-7=-3312/0, 7-9 0	9=-3312/0,			
WEBS 2-2 12-	2=-1349/0, 2-21=0/960, 3-21=-918/0, 3-1 15=0/959, 11-15=-918/0, 11-16=0/623, 9					

5-18=-86/552, 6-18=-313/5

NOTES-

1) Unbalanced floor live loads have been considered for this design.

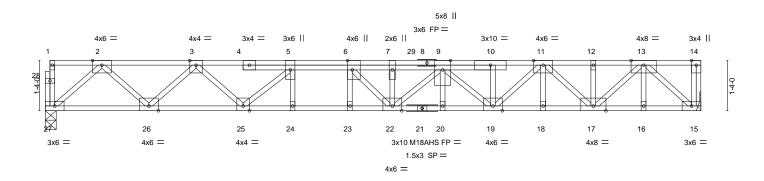
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

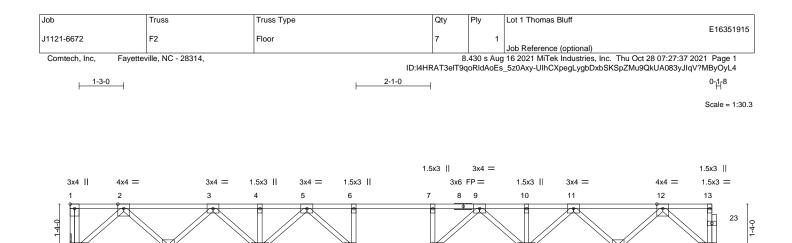
5) CAUTION, Do not erect truss backwards.



0-1-8

HН

1-3-0 1-3-0 1-3-0 1-3-0 1-3-0 1-4-12 1-0-0 1-2-8 -


Scale = 1:28.8

17-4-12

			17-4-12		
			17-4-12		1
Plate Offsets (X,Y)	[6:0-3-0,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.41 BC 0.65 WB 0.66 Matrix-S	Vert(LL) -0.21	n (loc) I/defl L/d 22-23 >985 480 22-23 >707 360 3 15 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 108 lb FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	SP 2400F 2.0E(flat) SP 2400F 2.0E(flat) SP No.3(flat) ize) 27=0-3-8, 15=Mechanical		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, ed or 10-0-0 oc bracing.
FORCES. (lb) - Ma TOP CHORD 2-3 10- BOT CHORD 26- 19 WEBS 2-2 13- 6-2 NOTES- 1) Unbalanced floor 1 2) All plates are MT2 3) All plates are 1.5x 4) The Fabrication Tr 5) Plates checked fo 6) Refer to girder(s) 1 7) Recommend 2x6 Strongbacks to be 8) CAUTION, Do not 9) Hanger(s) or othe- chord. The design	Grav 27=1112(LC 1), 15=1169(LC 1) x. Comp./Max. Ten All forces 250 (lb) o =-2077/0, 3-5=-3610/0, 5-6=-4426/0, 6-7= 11=-3899/0, 11-12=-2304/0, 12-13=-2304 27=0/1224, 25-26=0/2895, 24-25=0/4426 -20=0/4648, 18-19=0/3179, 17-18=0/3175 7=-1627/0, 2-26=0/1187, 3-26=-1138/0, 3 17=0/1391, 11-17=-1180/0, 11-19=0/972, 2=0/1041 ive loads have been considered for this d 0 plates unless otherwise indicated. 3 MT20 unless otherwise indicated. blerance at joint 21 = 11% r a plus or minus 1 degree rotation about if for truss to truss connections. strongbacks, on edge, spaced at 10-0-0 of attached to walls at their outer ends or re erect truss backwards. r connection device(s) shall be provided s vselection of such connection device(s) is SE(S) section, loads applied to the face of	4969/0, 7-9=-4969/0, 9- //0 , 23-24=0/4426, 22-23=0, , 16-17=0/1273, 15-16= -25=0/989, 5-25=-1130/0 9-19=-988/0, 9-22=0/469 esign. ts center. ts center. ts center. ts center means. ufficient to support conce the responsibility of othe	10=-3904/0, /4426, 20-22=0/4648, //1273 I, 13-15=-1684/0, 9, 7-22=-807/0, rruss with 3-10d (0.131" X ntrated load(s) 481 lb do rs.		
Uniform Loads (pl	(balanced): Lumber Increase=1.00, Plate f) 27=-10, 1-14=-100 ds (lb)	Increase=1.00			DEGE2 October 28,2021

17

3x4 =

16

3x6 =

15

4x4 =

18

3x4 =

I			<u>18-1-0</u> 18-1-0					
Plate Offsets (X,	Y) [1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1	-8,Edge]	1010					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.77 WB 0.48 Matrix-S	Vert(CT) -0	in (loc) 1.22 17-18 1.31 17-18 1.06 14	l/defl >956 >695 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except	end vert	icals.	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
REACTIONS.	(size) 22=Mechanical, 14=0-3-8 Max Grav 22=981(LC 1), 14=975(LC 1)							
FORCES. (lb) TOP CHORD	Max. Comp./Max. Ten All forces 250 (lb) or 2-3=-1787/0, 3-4=-2985/0, 4-5=-2985/0, 5-6= 9-10=-2985/0, 10-11=-2985/0, 11-12=-1787/	-3581/0, 6-7=-3581/0, 7-9						
BOT CHORD	21-22=0/1058, 19-21=0/2486, 18-19=0/3347 14-15=0/1058		/3347, 15-16=0/2486,					
WEBS	2-22=-1409/0, 2-21=0/1013, 3-21=-972/0, 3-							

6-18=-316/0, 12-14=-1406/0, 12-15=0/1014, 11-15=-973/0, 11-16=0/678, 9-16=-492/0, 9-17=-55/627, 7-17=-316/0

NOTES-

22

3x6 =

1) Unbalanced floor live loads have been considered for this design.

21

4x4 =

20

3x6 FP =

19

3x6 =

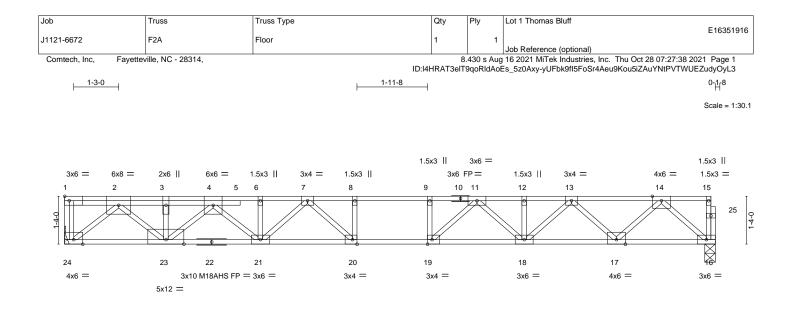
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



K

3x6 =

October 28,2021

l			<u>18-1-0</u> 18-1-0				
Plate Offsets (X,Y)	[19:0-1-8,Edge], [20:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.65 BC 0.70 WB 0.91 Matrix-S	Vert(LL) -0.24	n (loc) l/defl 4 20-21 >885 4 20-21 >637 6 16 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 104 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4	SP 2400F 2.0E(flat) SP 2400F 2.0E(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end vert	cals.	rectly applied or 6-0-0 o	oc purlins,
FORCES. (Ib) - Ma TOP CHORD 2-3 9-1	size) 24=Mechanical, 16=0-3-8 k Grav 24=1498(LC 1), 16=1066(LC 1) ax. Comp./Max. Ten All forces 250 (lb) o 3=-3140/0, 3-4=-3140/0, 4-6=-3974/0, 6-7: 11=-4253/0, 11-12=-3371/0, 12-13=-3371/ -24=0/1698, 21-23=0/3690, 20-21=0/4225	=-3970/0, 7 ⁻ 8=-4253/0, 8-9 '0, 13-14=-1987/0	=-4253/0,				
16 WEBS 2-2 14	24=-2211/0, 2-23=0/3039, 20-21=0/422 24=-2211/0, 2-23=0/1914, 3-23=-758/0, 4- 1-17=0/1146, 13-17=-1097/0, 13-18=0/810 21=-346/0, 7-20=-325/317	23=-730/0, 4-21=0/373, 14	I-16=-1545/0,				
 All plates are MT2 Plates checked for Refer to girder(s) Recommend 2x6 Strongbacks to be CAUTION, Do no 	live loads have been considered for this d 20 plates unless otherwise indicated. or a plus or minus 1 degree rotation about for truss to truss connections. strongbacks, on edge, spaced at 10-0-0 e attached to walls at their outer ends or re t erect truss backwards.	its center. oc and fastened to each tru	·			CALCA	

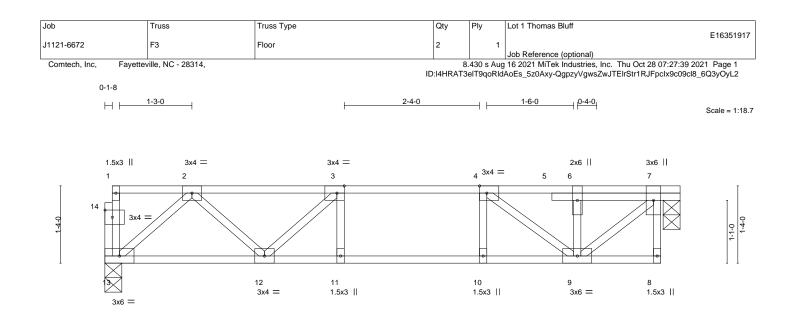
7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 689 lb down at 2-6-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)


Vert: 16-24=-10, 1-15=-100 Concentrated Loads (lb)

Vert: 3=-609(F)

October 28,2021

 		<u>9-7-0</u> 9-7-0			9-11-0
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [14:0-1-4	8,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.35 BC 0.47	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	(loc) l/defl L/d 11 >999 480 11 >999 360 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 54 lb FT = 20%F, 11%E
BOT CHORD 2x4 SF	TOP CHORD2x4 SP No.1 (flat)BOT CHORD2x4 SP No.1 (flat)			Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.
REACTIONS. (siz Max C	re) 13=0-3-8, 7=0-3-8 Grav 13=511(LC 1), 7=517(LC 1)				

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-781/0, 3-4=-965/0, 4-6=-499/0, 6-7=-499/0

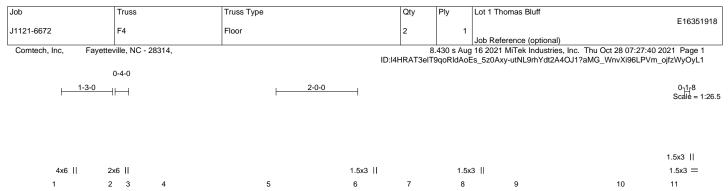
12-13=0/541, 11-12=0/965, 10-11=0/965, 9-10=0/965 BOT CHORD

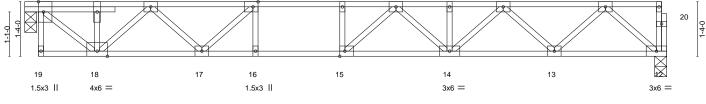
WEBS 7-9=0/649, 2-13=-718/0, 2-12=0/334, 3-12=-307/0, 4-9=-640/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.
2) Plates checked for a plus or minus 1 degree rotation about its center.
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.


5) CAUTION, Do not erect truss backwards.

October 28,2021

0-4-0 0-4-0			<u>15-8-8</u> 15-4-8				
Plate Offsets (X,Y)	[1:0-3-0,Edge], [5:0-1-8,Edge], [15:0-1-	8,Edge]	10 4 0				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.66 BC 0.94 WB 0.56 Matrix-S	Vert(LL) -0.21	(loc) l/defl 14-15 >856 14-15 >640 12 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (siz	P No.1(flat) P No.1(flat) P No.3(flat) ze) 12=0-3-8, 1=0-3-8 Grav 12=829(LC 1), 1=835(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	icals. ectly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing,	• •
TOP CHORD 1-2= 8-9= BOT CHORD 17-1 WEBS 1-18	. Comp./Max. Ten All forces 250 (lb) or -900/0, 2-4=-903/0, 4-5=-1988/0, 5-6=-2 -2371/0, 9-10=-1469/0 8=0/1531, 16-17=0/2524, 15-16=0/2524 =0/1172, 4-18=-857/0, 4-17=0/636, 5-17 =-776/0, 9-14=-0/468, 7-14=-279/0, 7-15-	524/0, 6-7=-2524/0, 7-8=- , 14-15=0/2568, 13-14=0/: =-794/0, 10-12=-1184/0, 7	2371/0, 2027, 12-13=0/891				

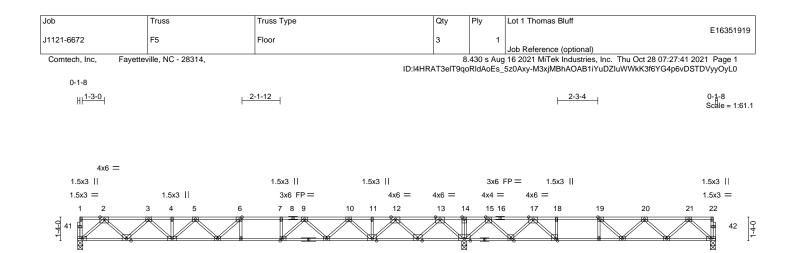
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

32

4x6 =

31

4x6 =

30 29 28

4x8

27

4x4 =

4x4 =

3x6 FP =

25

24

26

1.5x3 ||

23

3x6 =

34 33

3x10 M18AHS FP =

35

	21-9-4							5-11-0	
Plate Offsets (X	21-9-4 ,Y) [6:0-1-8,Edge], [19:0-1-8,Edge], [27:0-1						1	4-1-12	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.76 BC 0.75 WB 0.73 Matrix-S	- ()	in -0.31 -0.43 0.06	(loc) 36 36 23	l/defl >829 >610 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 184 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD	2x4 SP 2400F 2.0E(flat) 2x4 SP 2400F 2.0E(flat) 2x4 SP No.3(flat) (size) 40=0-3-8, 30=0-3-8, 23=0-3-8		BRACING- TOP CHORI BOT CHORI		except	end vert	icals.	rectly applied or 6-0-0 or 6-0-0 or 6-0-0 or 6-0-0 oc bracing.	oc purlins,
FORCES. (Ib) TOP CHORD	Max Grav 40=1057(LC 10), 30=2336(LC 1), 2 - Max. Comp./Max. Ten All forces 250 (b) or 2-3=-1966/0, 3-4=-3327/0, 4-5=-3327/0, 5-6= 9-10=-3391/0, 10-11=-2151/0, 11-12=-2151/0 14-15=0/2770, 15-17=-494/1577, 17-18=-164 20-21=-1153/65	less except when shown. -4044/0, 6-7=-4202/0, 7-9=- 0, 12-13=-239/263, 13-14=0,	/2770,						
BOT CHORD	39-40=0/1151, 38-39=0/2750, 37-38=0/3828 32-33=0/2910, 31-32=0/1292, 30-31=-1325/ 26-27=-684/1640, 25-26=-684/1640, 24-25=-	0, 28-30=-1902/0, 27-28=-1	,	9,					
WEBS	2-40=-1529/0, 2-39=0/1134, 3-39=-1091/0, 3 12-31=-1508/0, 12-32=0/1210, 10-32=-1075/ 5-37=0/422, 6-37=-483/199, 9-35=0/824, 7-3 17-28=-1088/0, 17-27=0/1206, 21-23=-943/3 20-25=-263/135, 19-25=0/556, 19-26=-365/0	-38=0/783, 13-30=-1924/0, 0, 10-33=0/705, 9-33=-716// 5=-365/0, 15-30=-1387/0, 1 3, 21-24=-57/615, 20-24=-5	0, 5-38=-681/0, 5-28=0/969,						
NOTES-								N. L. No. White strends	and the second

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- (4) Plates diffected for a plus of minute indegree rotation about its center.
 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

40

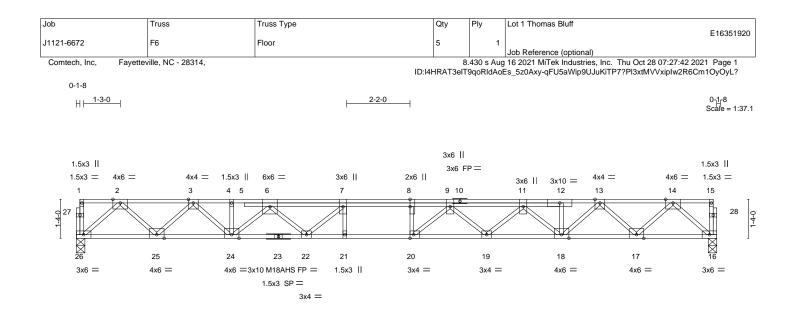
3x6 =

39

4x6 =

38

3x6 =


37 36

1.5x3 ||

Plate Offsets (X,Y)	[8:0-3-0,0-0-0], [20:0-1-8,Edg	ej							
LOADING (psf)	SPACING- 2-	0-0 CSI .	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1	.00 TC	0.24 Vert(L	.) -0.34	20	>760	480	MT20	244/190
CDL 10.0	Lumber DOL 1	.00 BC	0.54 Vert(C	r) -0.47	20	>552	360	M18AHS	186/179
CLL 0.0	Rep Stress Incr Y	ES WB	0.63 Horz(0	Ť) 0.09	16	n/a	n/a		
BCDL 5.0	Code IRC2015/TPI20	14 Matriz	ix-S					Weight: 129 lb	FT = 20%F, 11%E
TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)			ТОР С ВОТ С		Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.				
REACTIONS. (siz Max G	e) 26=0-3-8, 16=0-3-8 Grav 26=1185(LC 1), 16=1185	(LC 1)							
	Comp./Max. Ten All forces								

BOT CHORD	25-26=0/1295, 24-25=0/3162, 22-24=0/4677, 21-22=0/5541, 20-21=0/5541, 19-20=0/5456,
	18-19=0/4709, 17-18=0/3160, 16-17=0/1296
WEBS	2-261722/0 2-25-0/1318 3-251278/0 3-24-0/965 14-161723/0 14-17-0/1317

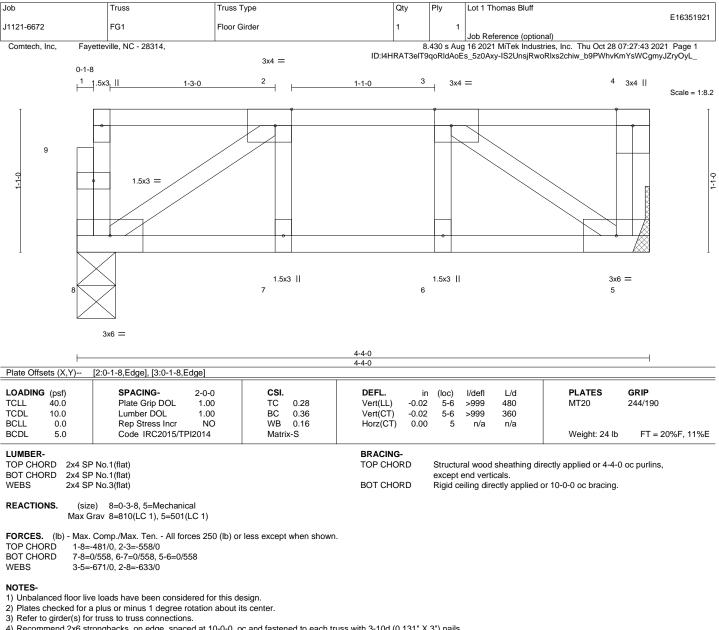
WEBS 2-26=-1722/0, 2-25=0/1318, 3-25=-1278/0, 3-24=0/965, 14-16=-1723/0, 14-17=0/1317, 13-17=-1276/0, 13-18=0/982, 11-18=-1098/0, 11-19=0/530, 9-19=-483/0, 6-24=-1069/0, 6-22=0/752, 7-22=-809/0, 9-20=-357/656, 8-20=-368/203

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) The Fabrication Tolerance at joint 23 = 11%


4) Plates checked for a plus or minus 1 degree rotation about its center.

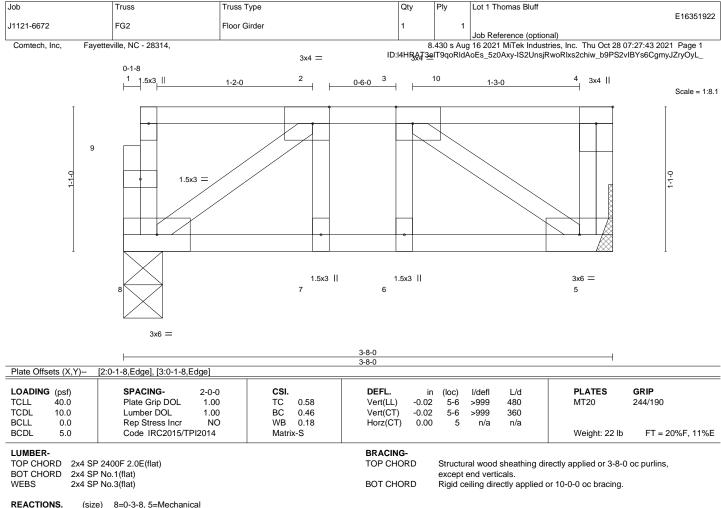
Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.


LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb) Vert: 1=-452 3=-417

Max Grav 8=1167(LC 1), 5=709(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-785/0, 2-3=-649/0

 BOT CHORD
 7-8=0/649, 6-7=0/649, 5-6=0/649

 WEBS
 3-5=-780/0, 2-8=-733/0, 2-7=0/274, 3-6=-254/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

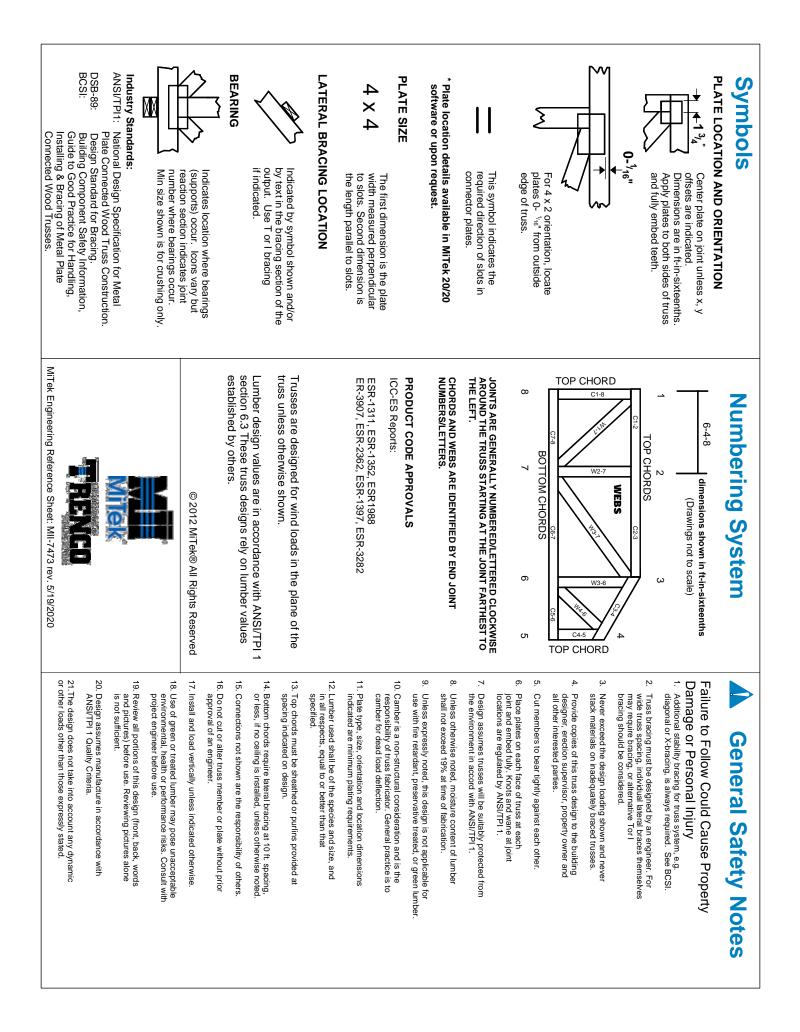
Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)


Vert: 1=-771 10=-735

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

