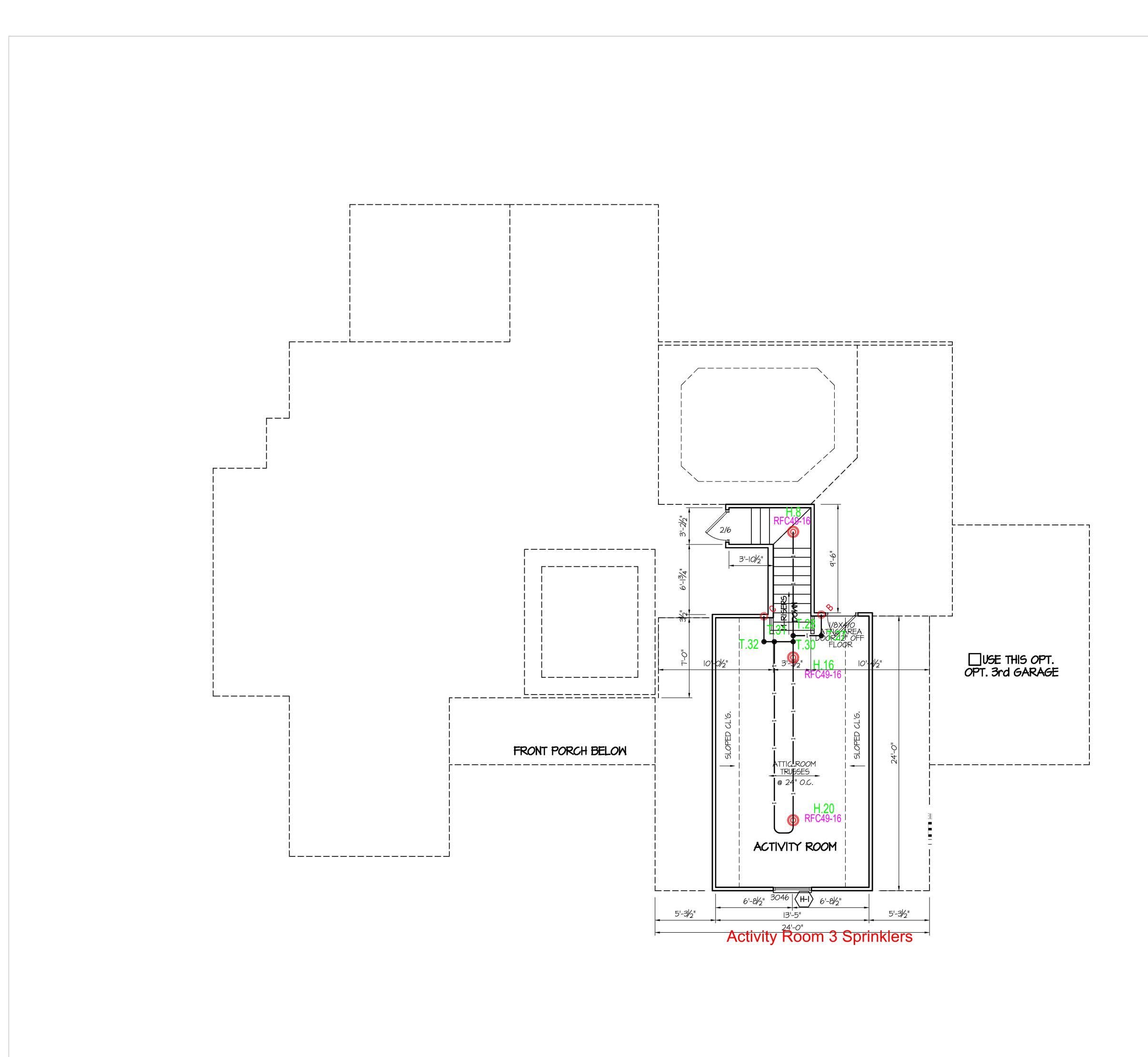


Most Demanding Single He	ad Information	Most Demanding Two Head	d Information
Information	Results	Information	Results
Flow Required at Head (GPM):	17	Flow Required at Head (GPM):	13
Source Pressure at Head (PSI):	12.03	Source Pressure at Head (PSI):	7.04
Maximum Spacing (length):	18	Maximum Spacing (length):	16
Maximum Spacing (Width):	18	Maximum Spacing (Width):	16
Domestic Flow Added (GPM):	0	Domestic Flow Added (GPM):	0
Sprinkler Model:	RFC49	Sprinkler Model:	RFC49
Elevation of Highest Head:	108	Elevation of Highest Head:	117
K-Factor	4.9	K-Factor	4.9
Temperature Rating:	155	Temperature Rating:	155
Flow Required at Source (GPM)	17	Flow Required at Source (GPM)	26.229
Pressure Required at Source (psi)	33.19	Pressure Required at Source (psi)	50.22
Source Reference Point:	At Ref Pt STR	Source Reference Point:	At Ref Pt STR
C-Factor of Sprinkler Pipe	150	C-Factor of Sprinkler Pipe	150
C-Factor of Service Line	150	C-Factor of Service Line	150
Head Reference Point:	H.5	Head Reference Point:	H.20 & H.16

S-I (REFER TO LOCATION ON PLANS)-TO PASSIVE PURGE SPRINKLER SYSTEM

LEGEND

- Manifold
- Inter Level Connection
- Hot Water Fixture
- irAB1+ Cold Water Fixture
 - Type K Copper w/ ProPress Fittings
 - Type L Copper w/ ProPress Fittings
 - Type M Copper w/ ProPress Fittings
 - ——— ViegaPEX Ultra Black


ViegaPEX Ultra	Blue - Cold Plumbing
ViegaPEX Ultra	Red - Hot Plumbing

Revision Date:

Revision No:

WATER SERVICE DETAIL

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS IN RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE <u>NOT</u> TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIRE CODES USED OR APPLICABLE; AND
 PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL
- AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER. IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY

CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

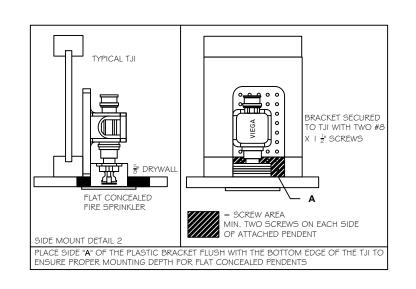
VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

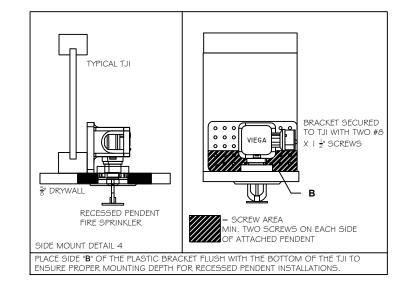
Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

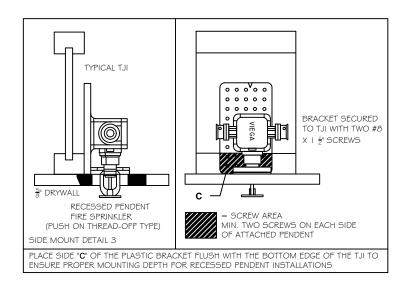
Project:	218 OAKHAVEN DRIVE, LOT 4	HOLLY SPRINGS, NC 27540	
Dwg r	no.: P 2		
Title:	1 4		
A		/ITY	ROOM PLAN
		D.: FPN	M2103-002 NC N.M.
Drawn Approv			IN.IVI.
	Submit	ted:	3/3/2021
Scale:			1/4" = 1'
Revisi	on No:		Revision Date:

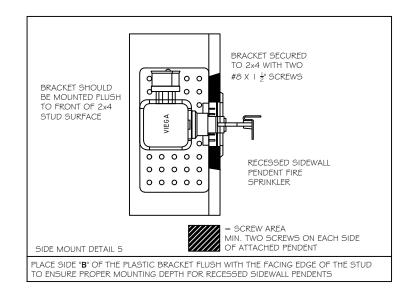
FIRE PROTECTION INSTALLATION NOTES

- I. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE 2016 EDITION OF NFPA 13D OR SECTION P2904 OF THE 2018 INTERNATIONAL RESIDENTIAL CODE (IRC). NFPA 13D IS THE STANDARD FOR THE INSTALLATION OF SPRINKLER SYSTEMS IN ONE- AND TWO-FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 2. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL COMPLY WITH ALL LOCAL RESIDENTIAL FIRE PROTECTION CODES AND ALL APPLICABLE STATE REGULATIONS
- 3. SPRINKLER HEADS SHALL MEET ALL GENERAL CARE AND INSTALLATION REQUIREMENTS OF THE SPRINKLER MANUFACTURER. SUBSTITUTION OF SPRINKLER HEADS IS NOT PERMITTED.
- 4. AFTER INSTALLATION OF THE SPRINKLERS, THE ENTIRE SYSTEM SHALL BE PRESSURE TESTED IN ACCORDANCE WITH STATE AND LOCAL CODE REQUIREMENTS. 5. SPRINKLERS SHALL BE LOCATED PER THE LAYOUT. DO NOT INSTALL SPRINKLERS IN AREAS EXPOSED TO TEMPERATURES THAT EXCEED THE MAXIMUM RECOMMENDED AMBIENT TEMPERATURE FOR THE TEMPERATURE RATING USED. MINIMUM DISTANCE OF SPRINKLER HEADS FROM HEAT SOURCES SHALL COMPLY WITH TABLE 7.5.6.3 IN THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 6. NO DEVIATIONS FROM THE PLAN SHALL BE ALLOWED WITHOUT APPROVAL FROM THE AUTHORITY HAVING JURISDICTION AND DESIGNER. 7. PIPING AND SPRINKLER FITTINGS SHALL BE SUPPORTED IN COMPLIANCE WITH LOCAL PLUMBING CODE AND THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES
- 8. SMOKE DETECTORS SHALL BE INSTALLED IN ACCORDANCE WITH NFPA 72, NATIONAL FIRE ALARM CODE. WHEN NOT EQUIPPED WITH SMOKE DETECTORS. LOCAL WATERFLOW ALARMS SHALL BE REQUIRED.
- 9. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED IN THE SYSTEM WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM.
- 10. A SIGN SHALL BE AFFIXED ADJACENT TO THE MAIN SHUTOFF VALVE THAT STATES IN MINIMUM 1/4" LETTERS, "WARNING: THE WATER SYSTEM FOR THIS HOME SUPPLIES FIRE SPRINKLERS THAT REQUIRE CERTAIN FLOWS AND PRESSURES TO FIGHT A FIRE. DEVICES THAT RESTRICT THE FLOW OR DECREASE THE PRESSURE OR AUTOMATICALLY SHUT OFF THE WATER TO THE FIRE SPRINKLER SYSTEM, SUCH AS WATER SOFTENERS, FILTRATION SYSTEMS, AND AUTOMATIC SHUT-OFF VALVES, SHALL NOT BE ADDED TO THIS SYSTEM WITHOUT A REVIEW OF THE FIRE SPRINKLER SYSTEM BY A FIRE PROTECTION SPECIALIST. DO NOT REMOVE THIS SIGN."
- I. ALL PIPING AND FITTINGS SHALL BE PROPERLY INSULATED AND PROTECTED SO THAT THEY ARE NOT EXPOSED TO TEMPERATURES BELOW 40° F. 12. WHEN THE MAXIMUM STATIC PRESSURE EXCEEDS 80 PSI, A PRESSURE-REDUCING VALVE SHALL BE INSTALLED. NFPA 13D RESTRICTS THE OPERATING PRESSURE OF PEX SYSTEMS TO 80 PSI. PRESSURE DROP THROUGH THE PRESSURE-REDUCING DEVICE SHALL BE INCLUDED IN THE HYDRAULIC CALCULATIONS.
- 13. WHEN A FIRE DEPARTMENT CONNECTION IS REQUIRED, PEX TUBING SHALL NOT BE PERMITTED. CONSULT WITH THE AUTHORITY HAVING JURISDICTION (AHJ) ABOUT THIS REQUIREMENT PRIOR TO INSTALLATION.
- PLUMBING INSTALLATION NOTES:
- I. INSTALLATION OF HOT AND COLD WATER DISTRIBUTION SYSTEMS SHALL BE IN ACCORDANCE WITH THE LOCAL PLUMBING CODE.
- 2. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM. 3. FINAL APPROVAL OF MULTIPURPOSE AND PASSIVE PURGE FIRE SPRINKLER INSTALLATIONS SHALL BE FROM THE AUTHORITY HAVING JURISDICTION. TESTING:
- I. EVERY VIEGA NFPA 13D FIRE PROTECTION INSTALLATION SHALL BE PRESSURE TESTED IN ACCORDANCE WITH NFPA 13D, WHICH STATES THAT SYSTEMS WITHOUT FIRE DEPARTMENT CONNECTIONS SHALL BE TESTED FOR LEAKAGE AT THE NORMAL SYSTEM OPERATING WATER PRESSURE.
- 2. THE AUTHORITY HAVING JURISDICTION (AHJ) MAY REQUIRE A FLOW VERIFICATION TEST OF THE MOST HYDRAULICALLY REMOTE SPRINKLER HEAD(S). THIS FLOW VERIFICATION TEST IS AVAILABLE TO ENSURE THE INSTALLED FIRE PROTECTION SYSTEM OPERATES AS DESIGNED. DOCUMENTATION ON HOW TO PERFORM A FLOW VERIFICATION TEST IS AVAILABLE THROUGH VIEGA TECHNICAL SERVICES.
- 3. THE FLOW VERIFICATION TEST SHALL BE PERFORMED AFTER ALL PIPING, FITTINGS, SPRINKLER HEADS AND PLUMBING CONNECTIONS HAVE BEEN INSTALLED AND PRESSURE TESTING OF THE SYSTEM HAS BEEN COMPLETED. THE FLOW TEST SHOULD OCCUR WHILE IN THE "ROUGH" STAGE OF CONSTRUCTION. FLOW TEST RESULTS SHOULD BE COMPARED TO THE SYSTEM DESIGN VALUES. RESIDUAL PRESSURE (PSI) AND FLOW (GPM) MUST BE EQUAL TO OR GREATER THEN THE DESIGN VALUES TO ENSURE A PROPERLY FUNCTIONING SYSTEM.

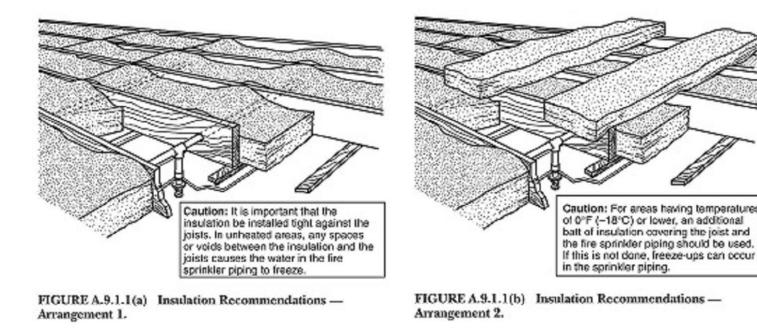

DRAWING AND DESIGN NOTES:

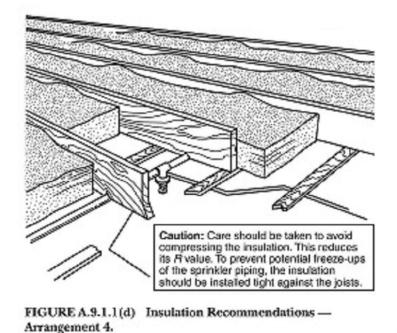

- DESIGN SHALL ENSURE WATER SUPPLY TO THE MOST HYDRAULICALLY DEMANDING SINGLE AND DUAL SPRINKLER HEADS.
- TUBING AND FITTINGS SHALL BE U.L. LISTED FOR RESIDENTIAL FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D 3. VIEGAPEX ULTRA (BLACK IN COLOR) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D. 4. VIEGA PEX PRESS FITTINGS (POLYMER AND BRONZE) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH
- NFPA 13D. APPROVED SMOKE DETECTION SYSTEMS AND/OR WATER FLOW ALARMS SHALL BE INSTALLED WHERE REQUIRED BY THE AUTHORITY HAVING JURISDICTION (AHJ).

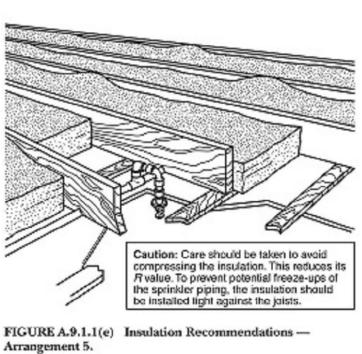

MATERIALS LIST NOTES:


- SERVICE ENTRANCE MATERIALS FROM WATER MAIN CONNECTION TO DISTRIBUTION MANIFOLD ARE EXCLUDED.
- SPRINKLERS AND ASSOCIATED ESCUTCHEONS OR COVER PLATES ARE NOT SUPPLIED BY VIEGA.
- 3. MATERIAL LIST IS SUGGESTED ONLY. CONTRACTOR SHALL CONFIRM REQUIRED MATERIALS PRIOR TO PLACEMENT OF ORDER.

INSTALLATION NOTES







INSTALLATION DETAIL - SPRINKLER BRACKETS

INSULATION DETAILS - ANNEX A.9.1.1 (NFPA 13D 2016)

WATER M	WATER METER PRESSURE LOSSES (PSI) - TABLE 10.4.4(A) NFPA 13D (2016)											
Meter	Flow (gpm)											
Sıze (ın.)	18 or less	B or less 23 26 31 39 5										
5/8"	9	14	18	26	38	*						
3/4"	7		14	22	35	*						
l "	2	3	3	4	6	10						
- /2"	1	I	2	2	4	7						
2"	I	I	l	I	2	3						

TABLE 10.4.4(a) (NFPA 13D 2016)

Heat Gaunaa	Ordinary Temp.	Intermediate Temp
Heat Source	135 - 170 -	175*-225*
Side of Fireplace	36"	2"
Front of Fireplace	60"	36"
Coal or Wood Burning Stove	42"	12"
Kitchen Range	18"	9"
Wall Oven	18"	9"
Hot Air Flues	8"	9"
Uninsulated Heat Ducts	18"	9"
Uninsulated Hot Water Pipes	I 2"	6"
Side of Hot Air Diffusers	24"	12"
Front of Hot Aır Dıffusers	36"	18"
Hot Water Heater or Furnace	6"	3"
Light Fixture O W - 250 W	6"	3"
Light Fixture 250 W - 499 W	2"	6"

TABLE 7.5.6.3 (NFPA 13D 2016)

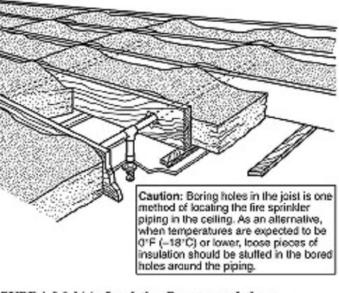


FIGURE A.9.1.1(c) Insulation Recommendations -Arrangement 3.

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THI USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST

1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIF CODES USED OR APPLICABLE: AND 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

Project:	218 OAKHAVEN DRIVE, LOT 4	HOLLY SPRINGS. NC 27540	
Dwg	no.: FP 3		
Title:			
	NOTE	S & [DETAILS
Quot	ation no	: FPN	W2103-002 NC
	n by:		N.M.
	ov. by: Submit	ted	3/3/2021
Scale			N/A
	sion No:		Revision Date:

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name : 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5) Building : SINGLE FAMILY RESIDENCE Location : HOLLY SPRINGS NC 27540 System : NFPA 13D Contract : FPNM2103-002 NC Data File : FPNM2103-002 NC (218 Oakhaven Drive).wx1

Page	1
Date	3/3/2021

HYDRAULIC DESIGN INFORMATION SHEET

Name - 218 OAKHAVEN DRIVE LOT 4 Date - 3/3/2021 Location -Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contract No. - FPNM2103-002 NC Contractor - x Calculated By - VIEGA LLC Drawing No. - FPNM2103 Construction: (X) Combustible () Non-Combustible Ceiling Height 10 Drawing No. - FPNM2103-002 NC OCCUPANCY - RESIDENTIAL Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D S Number of Sprinklers Flowing: (X)1 ()2 ()4 () Υ ()Other S Т () Specific Ruling Made by Date Е Listed Flow at Start Point - 17 System Type М Gpm () Dry Listed Pres. at Start Point - 12.03Psi (X) Wet () Deluge () PreAction MAXIMUM LISTED SPACING 18 x 18 D Е Domestic Flow Added - 0 Gpm Additional Flow Added - Gpm Sprinkler or Nozzle Gpm Make RELIABLE Model RFC49 S Ι Elevation at Highest Outlet - 108 Feet Size 7/16 K-Factor 4.9 Temperature Rating 155 G Note: Ν Calculation Gpm Required 17 Psi Required 33.19 At Ref Pt STR Overhead 150 C-Factor Used: Underground 150 Summary Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - x Time of Test - x Static (Psi) - 60 Rated Cap. Cap. А Т @ Psi Elev. Elev. Е Residual (Psi) - 20 Other R Well Flow (Gpm) - 168 Proof Flow Gpm S Elevation - 100 Ρ Location: x Ρ L Source of Information: x Y

Water Supply Curve C

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5) Page 2 Date 3/3/2021

City Wa C C C	ater Sup 1 - Static 2 - Resic 2 - Resic	ply: c Pressur dual Pres dual Flow	e : 60 sure: 20 ⁄ : 168							D	emand: D1 - Eleva D2 - Syste D2 - Syste Hose (Der D3 - Syste Safety Mar	m Flow : m Pressure : mand) :	3.465 16.995 33.191 16.995 26.232
150												1	
140													
130													
P 120													
R ¹¹⁰													
E ¹⁰⁰													
s ⁹⁰													
s ⁸⁰													
U ⁷⁰	C1												
R ⁶⁰													
Е ⁵⁰													
40	D2												
30	9										C2		
20											02		
10													
4		<u></u>	·····	<u> </u>			<u></u>		 <u>.</u>	<u> </u>	<u> </u>	<u> </u>	
	20 40) 60	9 8	80	100 F	12 LOW (N	20 I ^ 1.85)	140	16	50	1	80	

Fittings Used Summary

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

Page 3 Date 3/3/2021

Fitting Le		1/2	3/4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
Е	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0											
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0											
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0											

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5)

	SUPPLY ANALYSIS									
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure				
STR	60.0	20	168.0	59.423	17.0	33.191				

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.5	108.0	4.9	12.03	17.0	
H.1	108.0		13.23		
H.3	108.0		13.81		
H.2	108.0		14.46		
H.6	108.0		14.92		
T.21	108.0		15.52		
H.7	108.0		15.75		
H.11	108.0		15.96		
T.22	108.0		16.04		
T.24	108.0		16.44		
T.25	108.0		16.9		
T.33	108.0		17.23		
S.1	104.0		23.52		
MTR	100.0		31.53		
STR	100.0		33.19		
H.4	108.0		13.15		
H.9	108.0		14.09		
T.23	108.0		14.83		
H.12	108.0		15.49		
T.29	108.0		15.11		
T.27	117.0		11.36		
T.28	117.0		11.86		
T.30	117.0		11.92		
T.31	117.0		12.03		
T.32	117.0		12.32		
T.26	108.0		16.37		
H.10	108.0		15.63		
H.17	108.0		15.77		
H.19	108.0		15.92		
H.18	108.0		15.98		
H.13	108.0		16.07		
H.14	108.0		16.15		
H.15	108.0		16.24		
H.16	117.0		11.93		
H.20	117.0		11.96		

Page 4 Date 3/3/2021

Viega LLC 218 OAKHA . . -----. ..

/iega LLC 18 OAKH	AVEN DRI	VE, LOT 4 - O	ne Head (Calculation	n (H.5)			Page 5 Date 3/3/2021		
Hyd. Ref.	Qa	Dia. "C"	Fitting or	-	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****		
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
H.5	6.88	0.863	Vprt	3.8	35.000	12.030		K Factor = 4.90		
o H.1	6.88	150.0 0.0310		0.0 0.0	3.800 38.800	0.0 1.201		Vel = 3.77		
H.1	0.0	0.863	Vprt	3.8	15.000	13.231		Ver = 0.77		
0		150.0		0.0	3.800	0.0				
H.3	6.88	0.0310		0.0	18.800	0.582		Vel = 3.77		
H.3 ว	0.0	0.863 150.0	Vprt	3.8 0.0	17.000 3.800	13.813 0.0				
H.2	6.88	0.0310		0.0	20.800	0.644		Vel = 3.77		
H.2	0.0	0.863	Vprt	3.8	11.000	14.457				
o H.6	6.88	150.0 0.0309		0.0 0.0	3.800 14.800	0.0 0.458		Vel = 3.77		
H.6	0.0	0.863	Vptb	18.4	1.000	14.915		VCI - 0.11		
0		150.0	.	0.0	18.400	0.0				
T.21	6.88	0.0310		0.0	19.400	0.601		Vel = 3.77		
T.21 ว	-3.05	0.863 150.0	Vprt	3.8 0.0	19.000 3.800	15.516 0.0				
, H.7	3.83	0.0104		0.0	22.800	0.238		Vel = 2.10		
H.7	0.0	0.863	Vprt	3.8	16.000	15.754				
)	2.02	150.0		0.0	3.800	0.0		$\lambda = 0.40$		
<u>H.11</u> H.11	<u>3.83</u> 0.0	0.0105	Vort	0.0 3.8	<u>19.800</u> 4.000	0.207		Vel = 2.10		
п. і і Э	0.0	150.0	Vprt	3.8 0.0	4.000 3.800	0.0				
T.22	3.83	0.0105		0.0	7.800	0.082		Vel = 2.10		
T.22	5.86	0.863	Vprt	3.8	3.000	16.043				
o T.24	9.69	150.0 0.0584		0.0 0.0	3.800 6.800	0.0 0.397		Vel = 5.31		
T.24	3.06	0.863	Vprt	3.8	1.000	16.440				
C		150.0		0.0	3.800	0.0				
T.25	12.75	0.0967		0.0	4.800	0.464		Vel = 6.99		
T.25 D	4.25	0.863 150.0		0.0 0.0	2.000 0.0	16.904 0.0				
, Т.33	17.0	0.1650		0.0	2.000	0.330		Vel = 9.32		
T.33	0.0	0.863	Vpel	17.7	7.000	17.234				
	47.0	150.0	Т	2.92	20.620	1.732				
S.1 S.1	17.0	0.1649	25	0.0 2.429	27.620 50.000	4.554 23.520		Vel = 9.32		
5.1 D	0.0	150.0	2E	2.429 0.0	2.429	23.520 4.732		* * Fixed Loss = 3		
MTR	17.0	0.0626		0.0	52.429	3.280		Vel = 6.26		
MTR	0.0	1.049	2E	6.044	20.000	31.532				
o STR	17.0	150.0 0.0637		0.0 0.0	6.044 26.044	0.0 1.659		Vel = 6.31		
	0.0	0.0007		0.0	20.044	1.000		voi – 0.01		
	17.00					33.191		K Factor = 2.95		
H.5	10.11	0.863	Vprt	3.8	14.000	12.030				
o H.4	10.11	150.0 0.0631		0.0 0.0	3.800 17.800	0.0 1.123		Vel = 5.55		
<u>н.4</u> Н.4	0.0	0.863	Vprt	3.8	17.800	13.153		vei - 0.00		
п.4 Э	0.0	0.863 150.0	vpri	3.0 0.0	3.800	0.0				
H.9	10.11	0.0631		0.0	14.800	0.934		Vel = 5.55		

Viega LLC

Hyd. Ref.	Qa	Dia. "C"	Fitting	Pipe Etna's	Pt	Pt Pv	****** Notoo *****
Point	Qt	Pf/Ft	or Eqv. Ln.	Ftng's Total	Pe Pf	Pn	****** Notes *****
H.9	0.0	0.863	Vprt 3.8	8.000	14.087		
o T.23	10.11	150.0 0.0631	0.0 0.0	3.800 11.800	0.0 0.745		Vel = 5.55
T.23	-4.25	0.863	Vptb 18.4	10.000	14.832		
0	5.00	150.0	0.0	18.400	0.0		
H.12	5.86	0.0230	0.0	28.400	0.654		Vel = 3.21
H.12 ว	0.0	0.863 150.0	Vptb 18.4 Vprt 3.8	2.000 22.200	15.486 0.0		
T.22	5.86	0.0230	0.0	24.200	0.557		Vel = 3.21
	0.0 5.86				16.043		K Factor = 1.46
T.23	4.25	0.863	Vpel 17.7	4.000	14.832		
o T.29	4.25	150.0 0.0127	0.0 0.0	17.700 21.700	0.0 0.275		Vel = 2.33
T.29 T.29	0.0	0.863	0.0	12.000	15.107		Ver = 2.35
0	0.0	150.0	0.0	0.0	-3.898		
T.27	4.25	0.0127	0.0	12.000	0.153		Vel = 2.33
T.27	0.0	0.863	Vptb 18.4	3.000	11.362		
o T.28	4.25	150.0 0.0127	Vpel 17.7 0.0	36.100 39.100	0.0 0.496		Vel = 2.33
T.28	0.0	0.863	Vprt 3.8	1.000	11.858		VCI 2.00
0	0.0	150.0	0.0	3.800	0.0		
T.30	4.25	0.0125	0.0	4.800	0.060		Vel = 2.33
Т.30	-1.50	0.863	Vptb 18.4	2.000	11.918		
o T.31	2.75	150.0 0.0057	0.0 0.0	18.400 20.400	0.0 0.116		Vel = 1.51
T.31	1.50	0.863	Vpel 17.7	1.000	12.034		
0		150.0	Vprt 3.8	21.500	0.0		
T.32	4.25	0.0127	0.0	22.500	0.286		Vel = 2.33
T.32 ว	0.0	0.863 150.0	0.0 0.0	12.000 0.0	12.320 3.898		
T.26	4.25	0.0127	0.0	12.000	0.152		Vel = 2.33
T.26	0.0	0.863	Vpel 17.7	6.000	16.370		
0	4.05	150.0	Vptb 18.4	36.100	0.0		
T.25	4.25	0.0127	0.0	42.100	0.534		Vel = 2.33
	0.0 4.25				16.904		K Factor = 1.03
T.21	3.05	0.863	Vprt 3.8	13.000	15.516		
0		150.0	.0.0	3.800	0.0		
H.10	3.05	0.0068	0.0	16.800	0.115		Vel = 1.67
H.10 o	0.0	0.863 150.0	Vprt 3.8 0.0	16.000 3.800	15.631 0.0		
ы Н.17	3.05	0.0069	0.0	19.800	0.0		Vel = 1.67
H.17	0.0	0.863	Vprt 3.8	19.000	15.768		
0		150.0	.0.0	3.800	0.0		
H.19	3.05	0.0069	0.0	22.800	0.157		Vel = 1.67
H.19 ว	0.0	0.863 150.0	0.0 0.0	8.000 0.0	15.925 0.0		
H.18	3.05	0.0069	0.0	8.000	0.055		Vel = 1.67

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - One Head Calculation (H.5

218 OAKHA	AVEN DRI	Date 3/3/2021					
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln	Pipe Ftng's . Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
H.18	0.0	0.863	Vprt 3.8		15.980		
to		150.0	0.0	3.800	0.0		
H.13	3.05	0.0069	0.0	12.800	0.088		Vel = 1.67
H.13	0.0	0.863	Vprt 3.8	8.000	16.068		
to		150.0	0.0	3.800	0.0		
H.14	3.05	0.0069	0.0	11.800	0.081		Vel = 1.67
H.14	0.0	0.863	Vprt 3.8	10.000	16.149		
to		150.0	. 0.0	3.800	0.0		
H.15	3.05	0.0069	0.0	13.800	0.095		Vel = 1.67
H.15	0.0	0.863	Vptb 18.4	10.000	16.244		
to		150.0	0.0	18.400	0.0		
T.24	3.05	0.0069	0.0	28.400	0.196		Vel = 1.67
	0.0						
	3.05				16.440		K Factor = 0.75
T.30	1.50	0.863	Vprt 3.8	2.000	11.918		
to		150.0	. 0.0	3.800	0.0		
H.16	1.5	0.0019	0.0	5.800	0.011		Vel = 0.82
H.16	0.0	0.863	0.0	16.000	11.929		
to		150.0	0.0		0.0		
H.20	1.5	0.0019	0.0		0.030		Vel = 0.82
H.20	0.0	0.863	Vptb 18.4	19.000	11.959		
io i		150.0	Vprt 3.8		0.0		
T.31	1.5	0.0018	0.0		0.075		Vel = 0.82
	0.0						
	1.50				12.034		K Factor = 0.43

Page 7

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name: 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)Building: SINGLE FAMILY RESIDENCELocation: HOLLY SPRINGS NC 27540System: NFPA 13DContract: FPNM2103-002 NCData File: FPNM2103-002 NC (218 Oakhaven Drive).wx2

Page 1 Date 3/3/2021

HYDRAULIC DESIGN INFORMATION SHEET

Name - 218 OAKHAVEN DRIVE LOT 4 Date - 3/3/2021 Location -Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contractor - x Contract No. - FPNM2103-002 NC Calculated By - VIEGA LLC Drawing No. - FPNM2103 Construction: (X) Combustible () Non-Combustible Ceiling Height 10 Drawing No. - FPNM2103-002 NC OCCUPANCY - RESIDENTIAL Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: ()1 (X)2 ()4 () S Y S ()Other Т () Specific Ruling Made by Date Е Listed Flow at Start Point - 13 Gpm (X) Wet () Dry М MAXIMUM LISTED SPACING 16 x 16 Domestic Flow Added Listed Pres. at Start Point - 7.04 Psi () Deluge () PreAction Sprinkler or Nozzle D Ε Domestic Flow Added - 0 Gpm Additional Flow Added - Gpm Gpm Make RELIABLE Model RFC49 S Ι Elevation at Highest Outlet - 117 Feet Size 7/16 K-Factor 4.9 Temperature Rating 155 G Note: Ν CalculationGpm Required 26.229Psi Required 50.22At Ref Pt STRSummaryC-Factor Used:Overhead 150Underground Underground 150 Pump Data: Rated Cap. Water Flow Test: Tank or Reservoir: W Date of Test - x Time of Test - x Static (Psi) - 60 Cap. А @ Psi Elev. Т Elev. Ε Other Residual (Psi) - 20 R Well Proof Flow Gpm Flow (Gpm) - 168 Elevation S - 100 Ρ Location: x Ρ L Source of Information: x Υ

Water Supply Curve C

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Page 2 Date 3/3/2021

City Water Supply: C1 - Static Pressure : 60 C2 - Residual Pressure: 20 C2 - Residual Flow : 168		Demand: D1 - Elevation : 7.363 D2 - System Flow : 26.229 D2 - System Pressure : 50.217 Hose (Demand) : D3 - System Demand : 26.229 Safety Margin : 8.495
150		
140		
130		
P 120		
R ¹¹⁰		
E 100		
S 90		
S 80		
1, 70		
C1 R 60		
E 50		
40 40		
30		C2
20		
10 D1		
20 40 60 80 100	<u>. </u>	<u> </u>
FLOW	(N^ 1.85)	

Fittings Used Summary

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Page 3 Date 3/3/2021

Fitting Le	egend Name	1/2	3/	1	1¼	1½	2	21/2	3	3½	4	5	6	0	10	12	14	16	10	20	24
Abbrev.	Name	/2	74	1	1 74	1 /2	2	Z/2	3	3/2	4	5	0	0	10	12	14	16	18	20	24
F	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
T	90' Flow thru Tee	3	4	5	6	8	10	12	, 15	17	20	25	30	35	50	60	71	81	91	101	121
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0											
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0											
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0											

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

Page 4 Date 3/3/2021

			SUPPLY	ANALYSIS		
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
STR	60.0	20	168.0	58.712	26.23	50.217

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.20	117.0	4.9	7.04	13.0	
T.31	117.0		8.83		
T.32	117.0		11.5		
T.26	108.0		16.83		
T.25	108.0		21.83		
T.33	108.0		22.57		
S.1	104.0		34.46		
MTR	100.0		46.51		
STR	100.0		50.22		
H.16	117.0	4.9	7.29	13.23	
T.30	117.0		8.35		
T.28	117.0		8.76		
T.27	117.0		12.14		
T.29	108.0		17.08		
T.23	108.0		18.95		
H.12	108.0		20.07		
T.22	108.0		21.02		
T.24	108.0		21.42		
H.9	108.0		19.1		
H.4	108.0		19.28		
H.5	108.0		19.5		
H.1	108.0		19.97		
H.3	108.0		20.2		
H.2	108.0		20.46		
H.6	108.0		20.64		
T.21	108.0		20.88		
H.10	108.0		20.94		
H.17	108.0		21.02		
H.19	108.0		21.12		
H.18	108.0		21.15		
H.13	108.0		21.2		
H.14	108.0		21.25		
H.15	108.0		21.3		
H.7	108.0		20.94		
H.11	108.0		21.0		

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16

Цvd	0-	Dia.	Eitti ∽	a	Pipe	Pt	Pt	
Hyd. Ref.	Qa	Dia. "С"	Fittin or	-	Pipe Ftng's	Pl Pe	Pi Pv	****** Notes *****
Point	Qt	Pf/Ft		Ln.	Total	Pf	Pn	Notes
	0.07	0.000) (4)-	10.4	10.000	7.040		K Faster 4.00
H.20 o	8.27	0.863 150.0	Vptb Vprt	18.4 3.8	19.000 22.200	7.040 0.0		K Factor = 4.90
T.31	8.27	0.0435	vpr	0.0	41.200	1.792		Vel = 4.54
T.31	5.97	0.863	Vpel	17.7	1.000	8.832		
0		150.0	Vprt	3.8	21.500	0.0		
T.32	14.24	0.1188		0.0	22.500	2.673		Vel = 7.81
T.32	0.0	0.863 150.0		0.0 0.0	12.000 0.0	11.505 3.898		
o T.26	14.24	0.1188		0.0	12.000	3.898 1.426		Vel = 7.81
T.26	0.0	0.863	Vpel	17.7	6.000	16.829		-
0		150.0	Vptb	18.4	36.100	0.0		
T.25	14.24	0.1188		0.0	42.100	5.002		Vel = 7.81
T.25	11.99	0.863		0.0	2.000	21.831		
o T.33	26.23	150.0 0.3680		0.0 0.0	0.0 2.000	0.0 0.736		Vel = 14.39
T.33	0.0	0.863	Vpel		7.000	22.567		VGI - 17.03
0	0.0	150.0	T	2.92	20.620	1.732		
S.1	26.23	0.3679		0.0	27.620	10.162		Vel = 14.39
S.1	0.0	1.053	2E	2.429	50.000	34.461		
	00.00	150.0		0.0	2.429	4.732		* * Fixed Loss = 3
MTR	26.23	0.1396		0.0 6.044	52.429	7.320		Vel = 9.66
MTR o	0.0	1.049 150.0	2E	6.044 0.0	20.000 6.044	46.513 0.0		
STR	26.23	0.1422		0.0	26.044	3.704		Vel = 9.74
	0.0							
	26.23					50.217		K Factor = 3.70
H.20	4.73	0.863		0.0	16.000	7.040		
o H.16	4.73	150.0 0.0155		0.0 0.0	0.0 16.000	0.0 0.248		Vel = 2.59
H.16	13.23	0.863	Vprt	3.8	2.000	7.288		K Factor = 4.90
0	10.20	150.0	vpr	0.0	3.800	0.0		1(1 actor = 4.90
T.30	17.96	0.1826		0.0	5.800	1.059		Vel = 9.85
T.30	-11.99	0.863	Vptb	18.4	2.000	8.347		
0 T 21	E 07	150.0		0.0	18.400	0.0		
T.31	5.97	0.0238		0.0	20.400	0.485		Vel = 3.27
	0.0 5.97					8.832		K Factor = 2.01
T.30	11.99	0.863	Vprt	3.8	1.000	8.347		
0		150.0		0.0	3.800	0.0		
T.28	11.99	0.0865		0.0	4.800	0.415		Vel = 6.58
T.28	0.0	0.863	Vptb	18.4	3.000	8.762		
0 T 27	11.00	150.0	Vpel		36.100	0.0		$V_{0} = 6.59$
T.27	11.99	0.0864		0.0	39.100	3.380		Vel = 6.58
Т.27 о	0.0	0.863 150.0		0.0 0.0	12.000 0.0	12.142 3.898		
T.29	11.99	0.0865		0.0	12.000	1.038		Vel = 6.58
T.29	0.0	0.863	Vpel	17.7	4.000	17.078		
0		150.0	•	0.0	17.700	0.0		
T.23	11.99	0.0865		0.0	21.700	1.876		Vel = 6.58

Page 5

Viega LLC ... -1 - - 1 -

	Viega LLC 218 OAKH	AVEN DRI	VE, LOT 4 - T	wo Head Calculation	on (H.20 & H.16	5)	Page 6 Date 3/3/2021
Point Qt Pfrt Eqv. Ln. Total Pf Pn T23 -4.17 0.863 Vptb 18.4 10.000 18.954 to 150.0 0.0 18.400 0.0 18.954 H.12 0.0 0.0883 Vptb 18.4 2.000 20.069 T22 7.82 0.0392 0.0 24.200 0.949 Vel = 4.29 T.2 1.89 0.663 Vptt 3.8 3.000 21.018 to 150.0 0.0 3.800 0.0 1.999 Vel = 5.33 T.24 9.71 0.6565 0.0 4.800 1.8954 0.0 to 150.0 0.0 3.800 1.00 1.8954 0.0 11.99 21.81 S640 1.8954 0.0 1.8954 0.0 to 150.0 0.0 3.800 1.0 1.800 1.8054 to 150.0 0.0 3.800 1.8054		Qa					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ot	-				******* Notes ******
to 150.0 0.0 18.400 0.0 H12 7.82 0.0393 0.0 28.400 1.115 Vel = 4.29 H12 0.0 0.392 0.0 24.200 0.0949 Vel = 4.29 T.22 7.82 0.0392 0.0 24.200 0.949 Vel = 4.29 T.22 7.82 0.0392 0.0 24.200 0.949 Vel = 5.33 T.24 9.71 0.0683 Vprt 3.8 1.000 21.416 to 150.0 0.0 3.800 0.0 1.8400 1.8400 T.24 9.71 0.0665 0.0 4.800 0.415 Vel = 5.33 T.25 11.99 0.0665 0.0 4.800 0.415 Vel = 2.57 T.23 4.17 0.0123 0.0 11.800 14.99 1.0 1.420 1.9 1.160 0.03.3800 0.0 1.44 1.0 0.145 Vel = 2.29 H4 0.0 0.8		Q	1 1/1 (Total		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-4.17					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.82					Vel = 4.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H.12	0.0	0.863	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 82					Vel = 4.29
to 150.0 0.0 3.800 0.0 T.24 9.71 0.0585 0.0 6.800 0.398 Vel = 5.33 T.24 2.28 0.863 Vprt 3.8 1.000 21.416 to 150.0 0.0 3.800 0.0 7.25 Vel = 6.58 0.0 11.99 21.831 K Factor = 2.57 K 7.23 4.17 0.0123 0.0 11.800 1.45 Vel = 2.29 H.9 0.0 0.863 Vprt 3.8 1.000 19.099 1.0 1.800 0.145 Vel = 2.29 1.44 1.0 1.000 1.800 0.0 1.81 Vel = 2.29 1.44 1.0 0.0 3.800 0.0 1.81 Vel = 2.29 1.44 1.0 0.863 Vprt 3.8 14.000 1.82 Vel = 2.29 1.41 1.41 1.50.0 0.0 3.800 0.0 1.50.0 1.50.0 0.0 3.800 0.0 1.50.0 1.50.0 1.50.0							VCI - 4.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to		150.0	. 0.0		0.0	
to 150.0 0.0 3.800 0.0 T.25 11.99 0.0865 0.0 4.800 0.415 Vel = 6.58 0.0 11.99 21.831 K Factor = 2.57 T.23 4.17 0.863 Vprt 3.8 8.000 18.954 to 150.0 0.0 3.800 0.0 1.800 0.145 Vel = 2.29 H.9 4.17 0.0122 0.0 1.800 0.181 Vel = 2.29 H.4 4.17 0.0122 0.0 1.800 0.181 Vel = 2.29 H.4 0.0 0.863 Vprt 3.8 14.000 19.280 to 150.0 0.0 3.800 0.0 14.80 Vel = 2.29 H.5 0.0 0.863 Vprt 3.8 35.000 19.498 to 150.0 0.0 3.800 0.475 Vel = 2.29 H.1 0.0 0.863 Vprt 3.8 15.000 to <							Vel = 5.33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	to		150.0			0.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T.25		0.0865	0.0	4.800	0.415	Vel = 6.58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						21 831	K Factor = 2.57
to 150.0 0.0 3.800 0.0 H.9 4.17 0.0123 0.0 11.800 0.145 Vel = 2.29 H9 0.0 0.863 Vprt 3.8 11.000 19.099 to 150.0 0.0 3.800 0.0 H4 4.17 0.0122 0.0 14.800 0.181 Vel = 2.29 H4 0.0 0.863 Vprt 3.8 14.000 19.280 to 150.0 0.0 3.800 0.218 Vel = 2.29 H.5 4.17 0.0122 0.0 3.800 0.475 Vel = 2.29 H.5 0.0 0.863 Vprt 3.8 15.000 19.973 to 150.0 0.0 3.800 0.20 Vel = 2.29 H.3 4.17 0.0122 0.0 18.800 0.203 to 150.0 0.0 3.800 0.0 1.14.20 H.1 <t< td=""><td>T.23</td><td></td><td>0.863</td><td>Vprt 3.8</td><td>8.000</td><td></td><td></td></t<>	T.23		0.863	Vprt 3.8	8.000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 4 7		. 0.0			
to 150.0 0.0 3.800 0.0 H.4 4.17 0.0122 0.0 14.800 0.181 Vel = 2.29 H.4 0.0 0.863 Vptt 3.8 14.000 19.280 to 150.0 0.0 3.800 0.0 14.800 19.280 H.5 4.17 0.0122 0.0 17.800 0.218 Vel = 2.29 H.5 0.0 0.863 Vptt 3.8 35.000 19.498 to 150.0 0.0 3.800 0.0 19.498 to 150.0 0.0 3.800 0.0 19.73 to 150.0 0.0 3.800 0.0 14.800 to 150.0 0.0 3.800 0.0							Vel = 2.29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0					
to150.00.03.8000.0H.54.170.01220.017.8000.218Vel = 2.29H.50.00.863Vprt3.835.00019.498to150.00.03.8000.475Vel = 2.29H.14.170.01220.038.8000.475Vel = 2.29H.10.00.863Vprt3.815.00019.973to150.00.03.8000.230Vel = 2.29H.30.00.863Vprt3.817.00020.203to150.00.03.8000.016.00H.24.170.01230.020.8000.255Vel = 2.29H.30.00.863Vprt3.817.00020.458to150.00.03.8000.016.00150.0H.64.170.01220.014.8000.181Vel = 2.29H.60.00.863Vptb18.41.00020.639to150.00.018.4000.0150.0150.0to150.00.018.8000.0876150.016.8000.0876to150.00.03.8000.01.111.25H.100.00.863Vprt3.816.00020.944to150.00.03.8000.01.125H.100.00.863Vprt3.819.0001.024to150.00.0<							Vel = 2.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0		•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.17					Vel = 2.29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.17					Vel = 2.29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 4 7					Val - 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Vel = 2.29
H.20.00.863 150.0Vprt3.811.000 3.80020.458 0.0to150.00.03.8000.0H.64.170.01220.014.8000.181Vel = 2.29H.60.00.863Vptb18.41.00020.639 0.0150.0150.0T.214.170.01220.019.4000.237Vel = 2.29T.21-1.890.863Vprt3.813.00020.876 0.0150.0to150.00.03.8000.014.10H.102.280.00400.016.80020.944 0.012.5H.100.00.863Vprt3.816.00020.944 toto150.00.03.8000.014.125H.170.00.863Vprt3.819.00021.024 toto150.00.03.8000.011.25H.170.00.863Vprt3.819.00021.024 toto150.00.03.8000.014.125H.192.280.00400.022.8000.091Vel = 1.25H.190.00.8630.08.00021.115 	to		150.0	. 0.0	3.800	0.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Vel = 2.29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.0		•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.17					Vel = 2.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.17					Vel = 2.29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T.21		0.863	Vprt 3.8	13.000	20.876	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 28					Vel = 1.25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							VOI - 1.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to		150.0	. 0.0	3.800	0.0	
to150.00.03.8000.0H.192.280.00400.022.8000.091Vel = 1.25H.190.00.8630.08.00021.115to150.00.00.00.00.0							 Vel = 1.25
H.19 2.28 0.0040 0.0 22.800 0.091 Vel = 1.25 H.19 0.0 0.863 0.0 8.000 21.115 to 150.0 0.0 0.0 0.0		0.0					
to 150.0 0.0 0.0 0.0	H.19	2.28	0.0040	0.0	22.800	0.091	Vel = 1.25
		0.0					
		2.28					Vel = 1.25

Viega LLC 218 OAKHAVEN DRIVE, LOT 4 - Two Head Calculation (H.20 & H.16)

218 OAKH/	AVEN DRI	Date 3/3/2021						
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
H.18	0.0	0.863	Vprt	3.8	9.000	21.148		
to	2.28	150.0 0.0040		0.0 0.0	3.800	0.0 0.051		$V_{0} = 1.25$
H.13					12.800			Vel = 1.25
H.13	0.0	0.863 150.0	Vprt	3.8 0.0	8.000 3.800	21.199 0.0		
to H.14	2.28	0.0040		0.0	11.800	0.047		Vel = 1.25
H.14	0.0	0.863	Vprt	3.8	10.000	21.246		1.20
to	0.0	150.0	vpr	0.0	3.800	0.0		
H.15	2.28	0.0041		0.0	13.800	0.056		Vel = 1.25
H.15	0.0	0.863	Vptb	18.4	10.000	21.302		
to	0.0	150.0	.	0.0	18.400	0.0		
T.24	2.28	0.0040		0.0	28.400	0.114		Vel = 1.25
	0.0							
	2.28					21.416		K Factor = 0.49
T.21	1.88	0.863	Vprt	3.8	19.000	20.876		
to		150.0		0.0	3.800	0.0		
H.7	1.88	0.0029		0.0	22.800	0.065		Vel = 1.03
H.7	0.0	0.863	Vprt	3.8	16.000	20.941		
to		150.0		0.0	3.800	0.0		
H.11	1.88	0.0028		0.0	19.800	0.055		Vel = 1.03
H.11	0.0	0.863	Vprt	3.8	4.000	20.996		
to	4.00	150.0		0.0	3.800	0.0		
T.22	1.88	0.0028		0.0	7.800	0.022		Vel = 1.03
	0.0					04.040		
	1.88					21.018		K Factor = 0.41

Page 7