

 - - 19
 6
 RELIABLE Model RFC49Concealed Pendent Spr FP K=4.9, 155F°, 7/16" Orifice, Maximum Spacing 16'x16' Sprinkler head demand: 13 gpm @ 7.04

 RELIABLE Model RFC49Concealed Pendent Spr FP
 K=4.9, 155F°, 7/16" Orifice, Maximum Spacing 18'x18' Sprinkler head demand: 17 gpm @ 12.03

RELIABLE Model F1-R49-< Recess Pendent Spr 1-4 DN
 K=4.9, 175F°, 7/16" Orifice, Maximum Spacing 16'x16'
 Sprinkler head demand: 13 gpm @ 7.04

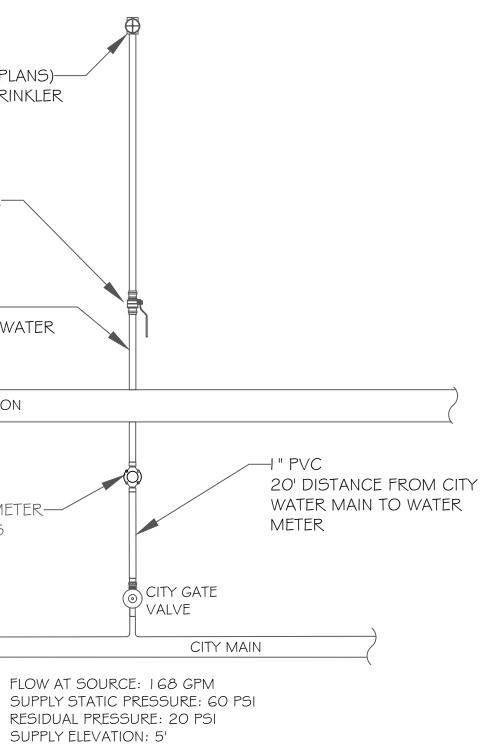
Most Demanding Single He	ad Information	Most Demanding Two Head	d Information
Information	Results	Information	Results
Flow Required at Head (GPM):	17	Flow Required at Head (GPM):	13
Source Pressure at Head (PSI):	12.03	Source Pressure at Head (PSI):	7.04
Maximum Spacing (length):	18	Maximum Spacing (length):	16
Maximum Spacing (Width):	18	Maximum Spacing (Width):	16
Domestic Flow Added (GPM):	0	Domestic Flow Added (GPM):	0
Sprinkler Model:	RFC49	Sprinkler Model:	RFC49
Elevation of Highest Head:	117	Elevation of Highest Head:	117
K-Factor	4.9	K-Factor	4.9
Temperature Rating:	155	Temperature Rating:	155
Flow Required at Source (GPM)	17	Flow Required at Source (GPM)	26.5706
Pressure Required at Source (psi)	40.49	Pressure Required at Source (psi)	55.02
Source Reference Point:	At Ref Pt STR	Source Reference Point:	At Ref Pt STR
C-Factor of Sprinkler Pipe	150	C-Factor of Sprinkler Pipe	150
C-Factor of Service Line	150	C-Factor of Service Line	150
Head Reference Point:	H.13	Head Reference Point:	H.11 & H.12

A irAB1+ irAB1+

S-I (REFER TO LOCATION ON PLANS)-TO DOMESTIC WATER AND SPRINKLER SYSTEM

HOUSE FOUNDATION

I " WATER METER-3 PSI LOSS


FLC SU

WATER SERVICE DETAIL

LEGEND

- Manifold
- Inter Level Connection
- Hot Water Fixture
- irAB1+ Cold Water Fixture
 - Type K Copper w/ ProPress Fittings
 - Type L Copper w/ ProPress Fittings
 - Type M Copper w/ ProPress Fittings
- ViegaPEX Ultra Black

ViegaPEX Ultra	Blue - Cold Plumbing
ViegaPEX Ultra	Red - Hot Plumbing

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS II RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE <u>NOT</u> TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- 1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIRE CODES USED OR APPLICABLE; AND
- 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

40

Ń

 \sim

 \bigcirc

Ζ

S

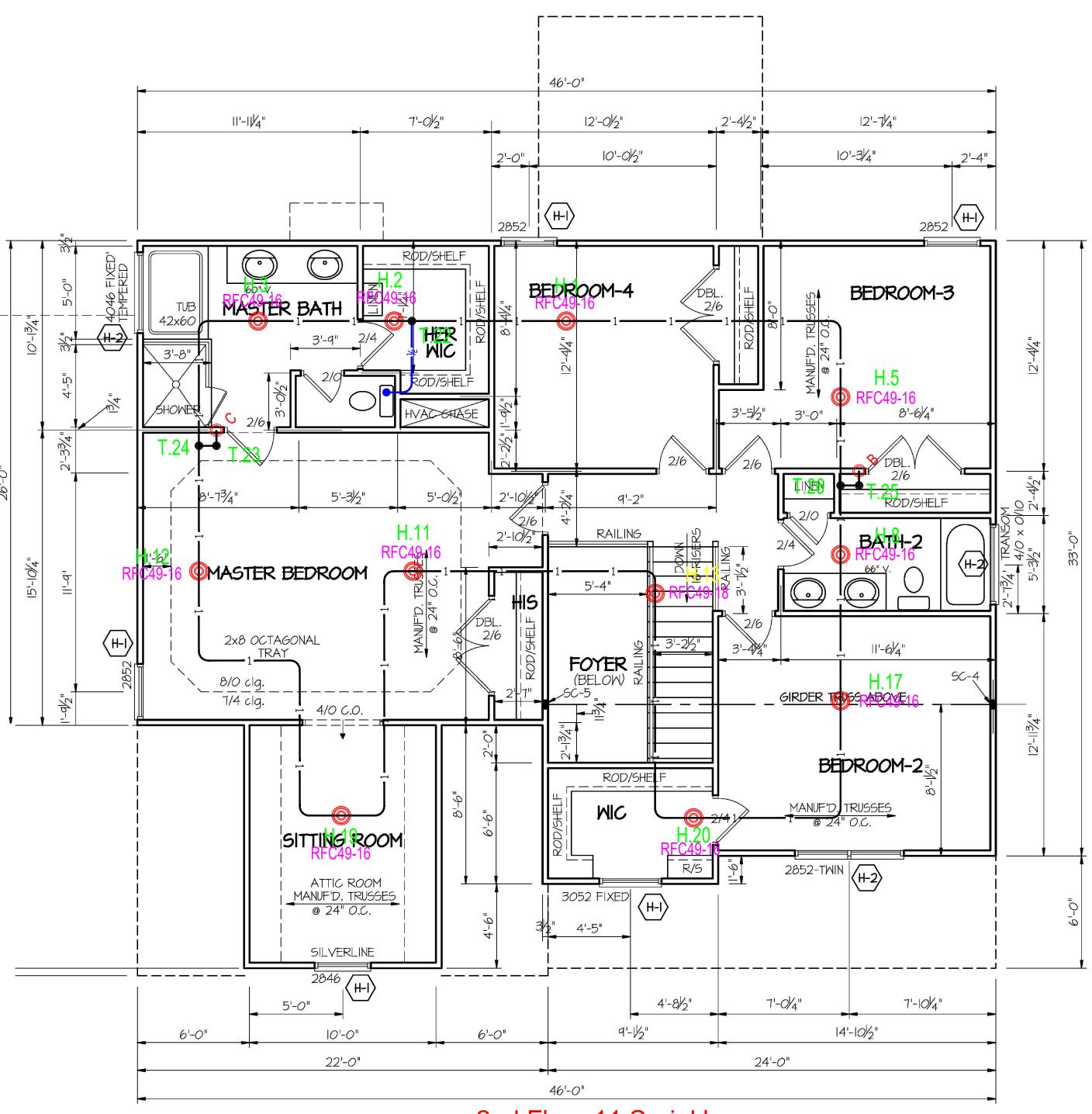
RING

S

OH

HAVEN LOT 12

OAKAH


Dwg no.:

FP 1

Title:

1ST FLOOR PLAN

Quotation no.: FPN	M2106-008 NC
Drawn by:	N.M.
Approv. by:	
Date Submitted:	6/30/2021
Scale:	1/4" = 1'
Revision No:	Revision Date:

2nd Floor 11 Sprinklers

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THE USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS IN RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE <u>NOT</u> TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST:

- CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIRE CODES USED OR APPLICABLE; AND
 PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL
- AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

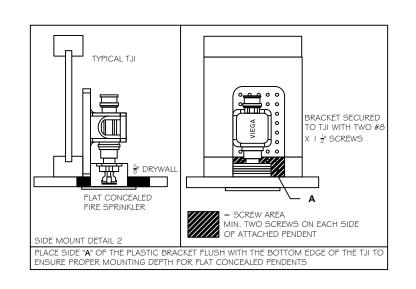
CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY.

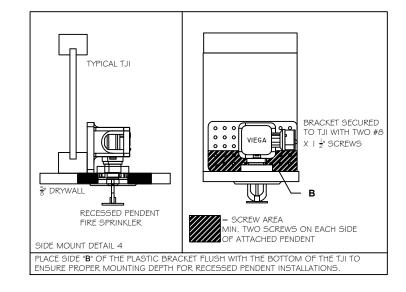
VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

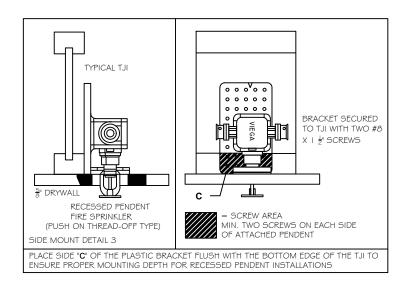
Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

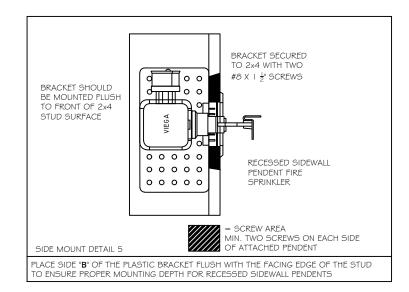
FIRE PROTECTION INSTALLATION NOTES

- I. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE 2016 EDITION OF NFPA 13D OR SECTION P2904 OF THE 2018 INTERNATIONAL RESIDENTIAL CODE (IRC). NFPA 13D IS THE STANDARD FOR THE INSTALLATION OF SPRINKLER SYSTEMS IN ONE- AND TWO-FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 2. INSTALLATION OF THE FIRE PROTECTION SYSTEM SHALL COMPLY WITH ALL LOCAL RESIDENTIAL FIRE PROTECTION CODES AND ALL APPLICABLE STATE REGULATIONS
- 3. SPRINKLER HEADS SHALL MEET ALL GENERAL CARE AND INSTALLATION REQUIREMENTS OF THE SPRINKLER MANUFACTURER. SUBSTITUTION OF SPRINKLER HEADS IS NOT PERMITTED.
- 4. AFTER INSTALLATION OF THE SPRINKLERS, THE ENTIRE SYSTEM SHALL BE PRESSURE TESTED IN ACCORDANCE WITH STATE AND LOCAL CODE REQUIREMENTS. 5. SPRINKLERS SHALL BE LOCATED PER THE LAYOUT. DO NOT INSTALL SPRINKLERS IN AREAS EXPOSED TO TEMPERATURES THAT EXCEED THE MAXIMUM RECOMMENDED AMBIENT TEMPERATURE FOR THE TEMPERATURE RATING USED. MINIMUM DISTANCE OF SPRINKLER HEADS FROM HEAT SOURCES SHALL COMPLY WITH TABLE 7.5.6.3 IN THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES.
- 6. NO DEVIATIONS FROM THE PLAN SHALL BE ALLOWED WITHOUT APPROVAL FROM THE AUTHORITY HAVING JURISDICTION AND DESIGNER. 7. PIPING AND SPRINKLER FITTINGS SHALL BE SUPPORTED IN COMPLIANCE WITH LOCAL PLUMBING CODE AND THE 2016 EDITION OF NFPA 13D, INSTALLATION OF SPRINKLER SYSTEMS IN ONE - AND TWO - FAMILY DWELLINGS AND MANUFACTURED HOMES
- 8. SMOKE DETECTORS SHALL BE INSTALLED IN ACCORDANCE WITH NFPA 72, NATIONAL FIRE ALARM CODE. WHEN NOT EQUIPPED WITH SMOKE DETECTORS. LOCAL WATERFLOW ALARMS SHALL BE REQUIRED.
- 9. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED IN THE SYSTEM WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM.
- 10. A SIGN SHALL BE AFFIXED ADJACENT TO THE MAIN SHUTOFF VALVE THAT STATES IN MINIMUM 1/4" LETTERS, "WARNING: THE WATER SYSTEM FOR THIS HOME SUPPLIES FIRE SPRINKLERS THAT REQUIRE CERTAIN FLOWS AND PRESSURES TO FIGHT A FIRE. DEVICES THAT RESTRICT THE FLOW OR DECREASE THE PRESSURE OR AUTOMATICALLY SHUT OFF THE WATER TO THE FIRE SPRINKLER SYSTEM, SUCH AS WATER SOFTENERS, FILTRATION SYSTEMS, AND AUTOMATIC SHUT-OFF VALVES, SHALL NOT BE ADDED TO THIS SYSTEM WITHOUT A REVIEW OF THE FIRE SPRINKLER SYSTEM BY A FIRE PROTECTION SPECIALIST. DO NOT REMOVE THIS SIGN."
- I. ALL PIPING AND FITTINGS SHALL BE PROPERLY INSULATED AND PROTECTED SO THAT THEY ARE NOT EXPOSED TO TEMPERATURES BELOW 40° F. 12. WHEN THE MAXIMUM STATIC PRESSURE EXCEEDS 80 PSI, A PRESSURE-REDUCING VALVE SHALL BE INSTALLED. NFPA 13D RESTRICTS THE OPERATING PRESSURE OF PEX SYSTEMS TO 80 PSI. PRESSURE DROP THROUGH THE PRESSURE-REDUCING DEVICE SHALL BE INCLUDED IN THE HYDRAULIC CALCULATIONS.
- 13. WHEN A FIRE DEPARTMENT CONNECTION IS REQUIRED, PEX TUBING SHALL NOT BE PERMITTED. CONSULT WITH THE AUTHORITY HAVING JURISDICTION (AHJ) ABOUT THIS REQUIREMENT PRIOR TO INSTALLATION.
- PLUMBING INSTALLATION NOTES:
- I. INSTALLATION OF HOT AND COLD WATER DISTRIBUTION SYSTEMS SHALL BE IN ACCORDANCE WITH THE LOCAL PLUMBING CODE.
- 2. WATER SOFTENERS AND WATER FILTRATION DEVICES SHALL NOT BE INSTALLED WITHOUT A REVIEW OF THE HYDRAULIC CALCULATIONS OF THE SYSTEM. 3. FINAL APPROVAL OF MULTIPURPOSE AND PASSIVE PURGE FIRE SPRINKLER INSTALLATIONS SHALL BE FROM THE AUTHORITY HAVING JURISDICTION. TESTING:
- I. EVERY VIEGA NFPA 13D FIRE PROTECTION INSTALLATION SHALL BE PRESSURE TESTED IN ACCORDANCE WITH NFPA 13D, WHICH STATES THAT SYSTEMS WITHOUT FIRE DEPARTMENT CONNECTIONS SHALL BE TESTED FOR LEAKAGE AT THE NORMAL SYSTEM OPERATING WATER PRESSURE.
- 2. THE AUTHORITY HAVING JURISDICTION (AHJ) MAY REQUIRE A FLOW VERIFICATION TEST OF THE MOST HYDRAULICALLY REMOTE SPRINKLER HEAD(S). THIS FLOW VERIFICATION TEST IS AVAILABLE TO ENSURE THE INSTALLED FIRE PROTECTION SYSTEM OPERATES AS DESIGNED. DOCUMENTATION ON HOW TO PERFORM A FLOW VERIFICATION TEST IS AVAILABLE THROUGH VIEGA TECHNICAL SERVICES.
- 3. THE FLOW VERIFICATION TEST SHALL BE PERFORMED AFTER ALL PIPING, FITTINGS, SPRINKLER HEADS AND PLUMBING CONNECTIONS HAVE BEEN INSTALLED AND PRESSURE TESTING OF THE SYSTEM HAS BEEN COMPLETED. THE FLOW TEST SHOULD OCCUR WHILE IN THE "ROUGH" STAGE OF CONSTRUCTION. FLOW TEST RESULTS SHOULD BE COMPARED TO THE SYSTEM DESIGN VALUES. RESIDUAL PRESSURE (PSI) AND FLOW (GPM) MUST BE EQUAL TO OR GREATER THEN THE DESIGN VALUES TO ENSURE A PROPERLY FUNCTIONING SYSTEM.

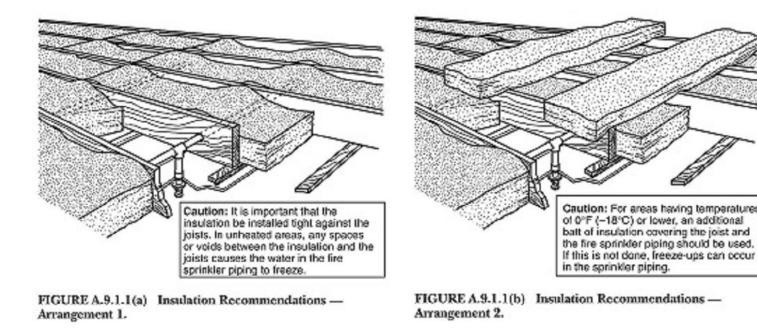

DRAWING AND DESIGN NOTES:

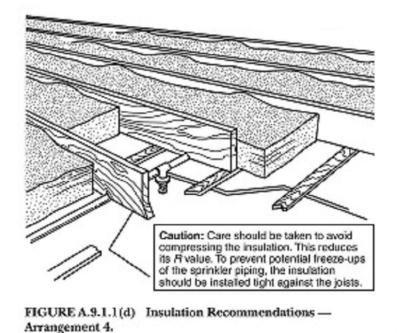

- DESIGN SHALL ENSURE WATER SUPPLY TO THE MOST HYDRAULICALLY DEMANDING SINGLE AND DUAL SPRINKLER HEADS.
- TUBING AND FITTINGS SHALL BE U.L. LISTED FOR RESIDENTIAL FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D 3. VIEGAPEX ULTRA (BLACK IN COLOR) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH NFPA 13D. 4. VIEGA PEX PRESS FITTINGS (POLYMER AND BRONZE) LISTED TO U.L. 1821 FOR RESIDENTIAL WET-PIPE FIRE PROTECTION SYSTEMS IN ACCORDANCE WITH
- NFPA 13D. APPROVED SMOKE DETECTION SYSTEMS AND/OR WATER FLOW ALARMS SHALL BE INSTALLED WHERE REQUIRED BY THE AUTHORITY HAVING JURISDICTION (AHJ).

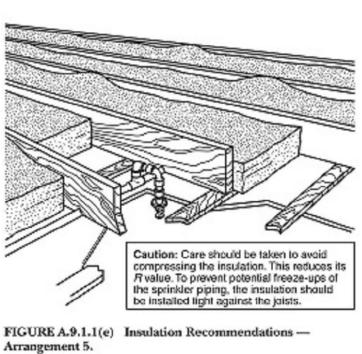

MATERIALS LIST NOTES:


- SERVICE ENTRANCE MATERIALS FROM WATER MAIN CONNECTION TO DISTRIBUTION MANIFOLD ARE EXCLUDED.
- SPRINKLERS AND ASSOCIATED ESCUTCHEONS OR COVER PLATES ARE NOT SUPPLIED BY VIEGA.
- 3. MATERIAL LIST IS SUGGESTED ONLY. CONTRACTOR SHALL CONFIRM REQUIRED MATERIALS PRIOR TO PLACEMENT OF ORDER.

INSTALLATION NOTES







INSTALLATION DETAIL - SPRINKLER BRACKETS

INSULATION DETAILS - ANNEX A.9.1.1 (NFPA 13D 2016)

WATER METER PRESSURE LOSSES (PSI) - TABLE 10.4.4(A) NFPA 13D (2016)												
Meter		Flow (gpm)										
Sıze (ın.)	18 or less	23	26	31	39	52						
5/8"	9	14	18	26	38	*						
3/4"	7		14	22	35	*						
l "	2	3	3	4	6	10						
- /2"	1	1	2	2	4	7						
2"	I	I	l	I	2	3						

TABLE 10.4.4(a) (NFPA 13D 2016)

Heat Gaunaa	Ordinary Temp.	Intermediate Temp
Heat Source	135 - 170 -	175*-225*
Side of Fireplace	36"	2"
Front of Fireplace	60"	36"
Coal or Wood Burning Stove	42"	12"
Kitchen Range	18"	9"
Wall Oven	18"	9"
Hot Air Flues	8"	9"
Uninsulated Heat Ducts	18"	9"
Uninsulated Hot Water Pipes	I 2"	6"
Side of Hot Air Diffusers	24"	12"
Front of Hot Aır Dıffusers	36"	18"
Hot Water Heater or Furnace	6"	3"
Light Fixture O W - 250 W	6"	3"
Light Fixture 250 W - 499 W	2"	6"

TABLE 7.5.6.3 (NFPA 13D 2016)

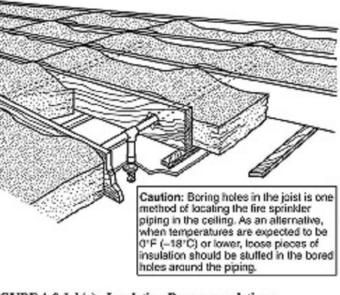


FIGURE A.9.1.1(c) Insulation Recommendations -Arrangement 3.

VIEGA LLC'S DESIGN SERVICES DEPARTMENT HAS PREPARED THIS SERIES OF DRAWINGS AS THE FIRST DESIGN FOR PLUMBING, RADIANT, SNOW MELTING OR FIRE SUPPRESSION SYSTEMS FOR THI USE OF YOU, OUR CUSTOMER, IN PREPARING / OBTAINING SPECIFICATIONS, BIDS AND PROPOSALS RELATION TO THE SALE OF THESE SYSTEMS. THESE DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY YOU AND HAVE BEEN PREPARED TO APPROPRIATE PROFESSIONAL STANDARDS OF DESIGN BASED UP THAT INFORMATION. THESE DRAWINGS ARE NOT TO BE CONSIDERED FINAL AND, PRIOR TO PERFORMING ANY WORK ASSOCIATED WITH THESE DESIGNS OR DRAWINGS, YOU MUST

1.) CHECK AND CONFIRM ALL PIPE SIZES, CALCULATIONS, MATERIALS, PLUMBING AND / OR FIF CODES USED OR APPLICABLE: AND 2.) PRESENT THE DRAWINGS TO YOUR PROFESSIONAL ENGINEER FOR REVIEW AND APPROVAL AND HAVE THE DRAWINGS MARKED "FINAL" BY YOUR PROFESSIONAL ENGINEER.

IF YOUR PROFESSIONAL ENGINEER REPORTS ANY ERRORS IN THE DRAWINGS OR MAKES ANY CHANGES IN THE DRAWINGS, THESE ERRORS OR CHANGES MUST BE COMMUNICATED TO VIEGA LLC'S DESIGN SERVICES DEPARTMENT FOR A DETERMINATION IF A REVISION TO THE DESIGN IS NECESSARY

VIEGA LLC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, ASSOCIATED WITH THE DESIGN OF THE SYSTEM OR ITS USE. ALL DESIGNS ARE PROVIDED "AS IS" AND IT IS YOUR SOLE RESPONSIBILITY TO CONFIRM AND ENSURE THAT THE SYSTEM TO BE INSTALLED WILL OPERATE AND FUNCTION IN COMPLIANCE WITH ALL APPLICABLE CODES AND IN ACCORDANCE WITH ALL APPLICABLE SPECIFICATIONS.

Design Services Department 1900 Southwood Drive - Nashua, NH 03063 Tel: 877-843-4262 x 351 Fax: 316-425-8466

Project:	OAKAHAVEN LOT 12	HOLLY SPRINGS. NC 27540		
Dwg	no.: FP 3			
Title:	NOTE	5 & 1	DETAILS	5
			M2106-008 NC	
_	n by:	··· ···	N.M.	
Appro	ov. by:			
	Submit	ted:	6/30/2021	
Scale			N/A	
Revis	sion No:		Revision	Date:
1				

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name: OAKAHAVEN LOT 12 - One Head Calculation (H.13)Building: SINGLE FAMILY RESIDENCELocation: HOLLY SPRINGS NC 27540System: NFPA 13DContract: FPNM2106-008 NCData File: FPNM2106-008 NC (Oakhaven Dr - Lot 12).wx1

HYDRAULIC DESIGN INFORMATION SHEET

Name - OAKAHAVEN LOT 12 Date - 6/30/2021 Location -Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contractor - x Contract No. - FPNM2106-008 NC Calculated By - VIEGA LLC Drawing No. - FPNM210 Construction: (X) Combustible () Non-Combustible Ceiling Height 9 Drawing No. - FPNM2106-008 NC OCCUPANCY - RESIDENTIAL S Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: (X)1 ()2 Y ()4 () S ()Other Т () Specific Ruling Made by Date Ε Listed Flow at Start Point - 17 М Gpm System Type Listed Pres. at Start Point - 12.03Psi (X) Wet () Dry () Deluge () PreAction D MAXIMUM LISTED SPACING 18 x 18 Domestic Flow Added - 0 Additional Flow Added -Е Gpm Sprinkler or Nozzle S Gpm Make RELIABLE Model RFC49 Ι Elevation at Highest Outlet - 117 Feet Size 7/16 K-Factor 4.9 G Note: Temperature Rating 155 Ν Calculation Gpm Required 17 Psi Required 40.49 At Ref Pt STR Overhead 150 Summary C-Factor Used: Underground 150 Water Flow Test: Pump Data: W Tank or Reservoir: A Date of Test - x Rated Cap. Cap. Time of Test – x @ Psi Т Elev. Static (Psi) - 60 Elev. Е Residual (Psi) - 20 R Other Well Flow (Gpm) - 168 Proof Flow Gpm Elevation - 100 S Ρ Location: x Ρ L Source of Information: x Y

/ater Supply: 21 - Static Pressure : 60 22 - Residual Pressure: 20 22 - Residual Flow : 168	Demand: D1 - Elevation : 7.36 D2 - System Flow : 16.99 D2 - System Pressure : 40.49 Hose (Demand) : D3 - System Demand : 16.99 Safety Margin : 18.93
C1	
D2	
	C2

Page 2

Water Supply Curve C

Viega LLC

Fittings Used Summary

Viega LLC OAKAHAVEN LOT 12 - One Head Calculation (H.13)

Page 3 Date 6/30/2021

Fitting Le	egend																				
Abbrev.	Name	1/2	3/4	1	1¼	11⁄2	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
Е	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	1	1	1	1	1	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0											
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0											
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0											

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC OAKAHAVEN LOT 12 - One Head Calculation (H.13)

Page 4 Date 6/30/2021

SUPPLY ANALYSIS										
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure				
STR	60.0	20	168.0	59.423	17.0	40.49				

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.13	117.0	4.9	12.03	17.0	
H.20	117.0		13.07		
H.17	117.0		13.91		
H.8	117.0		14.59		
T.26	117.0		15.0		
T.25	117.0		16.66		
T.29	108.0		21.05		
T.30	108.0		22.83		
T.33	108.0		22.98		
H.14	108.0		23.17		
H.18	108.0		23.51		
T.34	108.0		24.08		
H.16	108.0		24.43		
H.15	108.0		24.64		
T.31	108.0		25.36		
T.32	108.0		25.58		
S.1	104.0		28.56		
MTR	100.0		38.44		
STR	100.0		40.49		
H.11	117.0		12.81		
H.19	117.0		13.7		
H.12	117.0		14.61		
T.24	117.0		15.03		
T.23	117.0		16.76		
T.27	108.0		21.17		
T.28	108.0		23.04		
H.9	108.0		24.9		
H.5	117.0		15.0		
H.1	117.0		15.01		
T.22	117.0		15.02		
H.2	117.0		15.02		
H.3	117.0		15.03		
H.7	108.0		22.86		
H.4	108.0		22.94		
H.6	108.0		23.02		

Viega LLC OAKAHAVEN LOT 12 - One Head Calculation (H.13)

Page Date 5

Hyd.	Qa	Dia.	Fitting	Pipe	Pt	Pt	
Ref.		"C"	or	Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
H.13	9.16	0.863	Vprt 3.8	16.000	12.030		K Factor = 4.90
0	0.40	150.0	0.0	3.800	0.0		
H.20	9.16	0.0526	0.0	19.800	1.041		Vel = 5.02
H.20 ว	0.0	0.863 150.0	0.0 0.0	16.000 0.0	13.071 0.0		
H.17	9.16	0.0526	0.0	16.000	0.841		Vel = 5.02
H.17	0.0	0.863	Vprt 3.8	9.000	13.912		
о Н.8	9.16	150.0 0.0527	0.0 0.0	3.800 12.800	0.0 0.674		Vel = 5.02
H.8	0.0	0.863	Vprt 3.8	4.000	14.586		
0		150.0	. 0.0	3.800	0.0		
T.26	9.16	0.0526	0.0	7.800	0.410		Vel = 5.02
Т.26 о	-0.75	0.863 150.0	Vptb 18.4 Vpel 17.7	1.000 36.100	14.996 0.0		
T.25	8.41	0.0449	0.0	37.100	1.664		Vel = 4.61
T.25	0.0	0.863	0.0	11.000	16.660		
o T.29	8.41	150.0 0.0449	0.0 0.0	0.0 11.000	3.898 0.494		Vel = 4.61
T.29	0.0	0.863	Vptb 18.4	3.487	21.052		Ver 4.01
C	0.0	150.0	Vpel 17.7	36.100	0.0		
T.30	8.41	0.0449	0.0	39.587	1.776		Vel = 4.61
Т.30	-2.04	0.863 150.0	Vprt 3.8 0.0	2.000 3.800	22.828 0.0		
o T.33	6.37	0.0269	0.0	5.800	0.0		Vel = 3.49
T.33	0.0	0.863	Vprt 3.8	3.000	22.984		
0	0.07	150.0	0.0	3.800	0.0		
H.14 H.14	6.37	0.0268	0.0 Vprt 3.8	6.800 9.000	0.182		Vel = 3.49
п. 14 0	0.0	0.863	Vprt 3.8 0.0	3.800	23.100		
H.18	6.37	0.0268	0.0	12.800	0.343		Vel = 3.49
H.18	0.0	0.863	Vptb 18.4	3.000	23.509		
о Т.34	6.37	150.0 0.0268	0.0 0.0	18.400 21.400	0.0 0.574		Vel = 3.49
T.34	0.0	0.863	Vprt 3.8	9.000	24.083		VCI - 0.40
С		150.0	0.0	3.800	0.0		
H.16	6.37	0.0269	0.0	12.800	0.344		Vel = 3.49
H.16 o	0.0	0.863 150.0	Vprt 3.8 0.0	4.000 3.800	24.427 0.0		
Н.15	6.37	0.0268	0.0	7.800	0.0		Vel = 3.49
H.15	0.0	0.863	Vptb 18.4	5.000	24.636		
0	0.07	150.0	Vprt 3.8	22.200	0.0		
T.31	6.37	0.0268	0.0	27.200	0.729		Vel = 3.49
T.31 o	10.63	1.025 150.0	0.0 0.0	3.000 0.0	25.365 0.0		
T.32	17.0	0.0713	0.0	3.000	0.214		Vel = 6.61
T.32	0.0	1.025	E 2.7	8.000	25.579		
	17.0	150.0	T 6.75	9.450	1.732		
S.1	17.0	0.0713	0.0	17.450	1.245		Vel = 6.61

Viega LLC OAKAHAVEN LOT 12 - One Head Calculation (H.13)

Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.		Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes	*****
			- 1							
S.1	0.0	1.053	2E	2.429	80.000	28.556				
to MTR	17.0	150.0 0.0626		0.0 0.0	2.429 82.429	4.732 5.157		* * Fixed Vel = 6.:		
MTR to	0.0	1.049 150.0	E T	3.022 7.555	20.000 12.089	38.445 0.0			- <i>i</i>	
STR	17.0 0.0	0.0637	G	1.511	32.089	2.045		Vel = 6.		
	17.00					40.490		K Factor	= 2.67	
H.13 to	7.83	0.863 150.0	Vprt	3.8 0.0	16.000 3.800	12.030 0.0				
H.11	7.83	0.0393		0.0	19.800	0.778		Vel = 4.1	29	
H.11	0.0	0.863	Vprt	3.8	19.000	12.808				
to		150.0		0.0	3.800	0.0			~~	
H.19	7.83	0.0393		0.0	22.800	0.897		Vel = 4.	29	
H.19 to	0.0	0.863 150.0		0.0 0.0	23.000 0.0	13.705 0.0				
H.12	7.83	0.0393		0.0	23.000	0.904		Vel = 4.	29	
H.12	0.0	0.863	Vprt	3.8	7.000	14.609				
to		150.0		0.0	3.800	0.0				
T.24	7.83	0.0394		0.0	10.800	0.425		Vel = 4.	29	
T.24 to	0.75	0.863 150.0	Vptb Vpel	18.4 17.7	1.000 36.100	15.034 0.0				
T.23	8.58	0.0466	vper	0.0	37.100	1.729		Vel = 4.	71	
T.23	0.0	0.863		0.0	11.000	16.763				
to		150.0		0.0	0.0	3.898				
T.27	8.58	0.0465		0.0	11.000	0.512		Vel = 4.	71	
T.27	0.0	0.863	Vptb	18.4	4.000	21.173				
to T.28	8.58	150.0 0.0466	Vpel	17.7 0.0	36.100 40.100	0.0 1.869		Vel = 4.	71	
T.28	2.05	0.863	Vprt	3.8	23.000	23.042				
to		150.0	, pro	0.0	3.800	0.0				
H.9	10.63	0.0691		0.0	26.800	1.853		Vel = 5.	83	
H.9	0.0	0.863	Vprt	3.8	3.000	24.895				
to T.31	10.63	150.0 0.0691		0.0 0.0	3.800 6.800	0.0 0.470		Vel = 5.	83	
1.51	0.0	0.0091		0.0	0.000	0.470		Vei – 3.	00	
	10.63					25.365		K Factor	= 2.11	
T.26	0.75	0.863	Vprt	3.8	5.000	14.996				
to		150.0	I	0.0	3.800	0.0				
H.5	0.75	0.0005		0.0	8.800	0.004		Vel = 0.4	41	
H.5	0.0	0.863	Vprt	3.8	21.000	15.000				
to H.1	0.75	150.0 0.0005		0.0 0.0	3.800 24.800	0.0 0.013		Vel = 0.4	41	
H.1	0.75	0.863	Vprt	3.8	9.000	15.013		voi – 0.4	T I	
to	0.0	150.0	vpru	0.0	3.800	0.0				
T.22	0.75	0.0005		0.0	12.800	0.007		Vel = 0.4	41	
T.22	0.0	0.863		0.0	1.000	15.020				
to	0.75	150.0		0.0	0.0	0.0			11	
H.2	0.75	0.0		0.0	1.000	0.0		Vel = 0.4	41	

Page Date

6

6/30/2021

Viega LLC С

Hyd.	Qa	Dia.	Fitting]	Pipe	Pt	Pt	
Ref.	01	"C"	or		Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
H.2	0.0	0.863	Vprt	3.8	8.000	15.020		
to	010	150.0	. 6	0.0	3.800	0.0		
H.3	0.75	0.0005		0.0	11.800	0.006		Vel = 0.41
H.3	0.0	0.863	Vprt	3.8	11.000	15.026		
to		150.0	•	0.0	3.800	0.0		
T.24	0.75	0.0005		0.0	14.800	0.008		Vel = 0.41
	0.0							
	0.75					15.034		K Factor = 0.19
T.30	2.04	0.863	Vprt	3.8	6.000	22.828		
to		150.0		0.0	3.800	0.0		
H.7	2.04	0.0033		0.0	9.800	0.032		Vel = 1.12
H.7	0.0	0.863	Vprt	3.8	20.000	22.860		
to		150.0		0.0	3.800	0.0		
H.4	2.04	0.0033		0.0	23.800	0.078		Vel = 1.12
H.4	0.0	0.863	Vprt	3.8	20.000	22.938		
to		150.0		0.0	3.800	0.0		
H.6	2.04	0.0033		0.0	23.800	0.078		Vel = 1.12
H.6	0.0	0.863	Vprt	3.8	4.000	23.016		
to		150.0		0.0	3.800	0.0		
T.28	2.04	0.0033		0.0	7.800	0.026		Vel = 1.12
	0.0 2.04					23.042		K Factor = 0.42

Viega LLC Technical Services Department 1900 Southwood Drive Nashua, NH 03063 603-882-7171

Job Name:OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12)Building:SINGLE FAMILY RESIDENCELocation:HOLLY SPRINGS NC 27540System:NFPA 13DContract:FPNM2106-008 NCData File:FPNM2106-008 NC (Oakhaven Dr - Lot 12).wx2

Page	1
Date	6/30/2021

HYDRAULIC DESIGN INFORMATION SHEET

Name - OAKAHAVEN LOT 12 Date - 6/30/2021 Location -Building - SINGLE FAMILY RESIDENCE System No. - NFPA 13D Contractor - x Contract No. - FPNM2106-008 NC Calculated By - VIEGA LLC Drawing No. - FPNM210 Construction: (X) Combustible () Non-Combustible Ceiling Height 9 Drawing No. - FPNM2106-008 NC OCCUPANCY - RESIDENTIAL S Type of Calculation: ()NFPA 13 Residential ()NFPA 13R (X)NFPA 13D Number of Sprinklers Flowing: ()1 (X)2 Y ()4 () S ()Other Т () Specific Ruling Made by Date Ε Listed Flow at Start Point - 13 М Gpm System Type Listed Pres. at Start Point - 7.04 Psi (X) Wet () Dry () Deluge () PreAction D MAXIMUM LISTED SPACING 16 x 16 Domestic Flow Added - 0 Additional Flow Added -Е Gpm Sprinkler or Nozzle Additional Flow Added S Gpm Make RELIABLE Model RFC49 Elevation at Highest Outlet - 117 Feet Ι Size 7/16 K-Factor 4.9 G Note: Temperature Rating 155 Ν Calculation Gpm Required 26.5706 Psi Required 55.02 At Ref Pt STR C-Factor Used: Summary Overhead 150 Underground 150 Water Flow Test: Pump Data: W Tank or Reservoir: Rated Cap. Date of Test – x А Cap. Time of Test - x @ Psi Т Elev. Static (Psi) - 60 Elev. E Residual (Psi) - 20 R Other Well Flow (Gpm) - 168 Proof Flow Gpm Elevation - 100 S Ρ Location: x Ρ L Source of Information: x Y

Viega LLC Page 2 OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12) Date 6/30/2021 City Water Supply: C1 - Static Pressure : 60 Demand: D1 - Elevation : 7.363 D1 - Elevation17.503D2 - System Flow: 26.571D2 - System Pressure: 55.018Hose (Demand):D3 - System Demand: 26.571Safety Margin: 3.663 C2 - Residual Pressure: 20 C2 - Residual Flow : 168 150 140 130 P 120 R ¹¹⁰ E ¹⁰⁰ s ⁹⁰ s ⁸⁰ U 70 C1 R ⁶⁰ D2 Q E ⁵⁰ 40 30 C2 20 10 **D1** 80 140 180 20 40 60 100 120 160 FLOW (N ^ 1.85)

Water Supply Curve C

Fittings Used Summary

Viega LLC OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12)

Page 3 Date 6/30/2021

Fitting Le	egend																				
Abbrev.	Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	1	1	1	1	1	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Vpel *	PEX Press 90 Elbow - Poly	12.6	18.9	17.7	18.6	29.4	36.4	0	0	0											
Vprt *	PEX Press Tee - Run-Poly	3.9	3.6	3.8	6.4	7.9	10.2	0	0	0											
Vptb *	PEX Press Tee - Branch-Poly	14	19.1	18.4	18.7	28.3	37.5	0	0	0											

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Viega LLC OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12)

SUPPLY ANALYSIS Node at Static Residual Available Source Pressure Pressure Flow Pressure **Total Demand Required Pressure** STR 60.0 20 168.0 58.681 26.57 55.018

Page Date

4

6/30/2021

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H.11	117.0	4.9	7.04	13.0	
H.13	117.0		7.96		
H.20	117.0		8.88		
H.17	117.0		9.62		
H.8	117.0		10.22		
T.26	117.0		10.58		
T.25	117.0		14.19		
T.29	108.0		19.16		
T.30	108.0		23.01		
T.33	108.0		23.37		
H.14	108.0		23.78		
H.18	108.0		24.56		
T.34	108.0		25.86		
H.16	108.0		26.63		
H.15	108.0		27.11		
T.31	108.0		28.76		
T.32	108.0		29.25		
S.1	104.0		33.83		
MTR	100.0		50.34		
STR	100.0		55.02		
H.19	117.0		7.35		
H.12	117.0	4.9	7.67	13.57	
T.24	117.0		9.65		
T.23	117.0		13.8		
T.27	108.0		18.93		
T.28	108.0		23.42		
H.9	108.0		27.68		
H.3	117.0		9.84		
H.2	117.0		9.98		
T.22	117.0		10.0		
H.1	117.0		10.16		
H.5	117.0		10.47		
H.7	108.0		23.08		
H.4	108.0		23.22		
H.6	108.0		23.37		

Viega LLC OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12)

Page 5 Date 6/30/2021

Hyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
H.11	8.57	0.863	Vprt 3.8	16.000	7.040		K Factor = 4.90
to	0.57	150.0	0.0	3.800	0.0		
<u>H.13</u>	8.57	0.0464	0.0	19.800	0.919		Vel = 4.70
H.13 to	0.0	0.863 150.0	Vprt 3.8 0.0	16.000 3.800	7.959 0.0		
H.20	8.57	0.0464	0.0	19.800	0.919		Vel = 4.70
H.20	0.0	0.863	0.0	16.000	8.878		
to		150.0	0.0	0.0	0.0		
H.17	8.57	0.0464	0.0	16.000	0.743		Vel = 4.70
H.17	0.0	0.863	Vprt 3.8	9.000	9.621		
to H.8	8.57	150.0 0.0464	0.0 0.0	3.800 12.800	0.0 0.594		Vel = 4.70
H.8	0.0	0.863	Vprt 3.8	4.000	10.215		VCI - 7.70
to	0.0	150.0	0.0	3.800	0.0		
T.26	8.57	0.0464	0.0	7.800	0.362		Vel = 4.70
T.26	4.22	0.863	Vptb 18.4	1.000	10.577		
to	10 - 0	150.0	Vpel 17.7	36.100	0.0		
T.25	12.79	0.0974	0.0	37.100	3.613		Vel = 7.02
T.25	0.0	0.863	0.0	11.000 0.0	14.190		
to T.29	12.79	150.0 0.0974	0.0 0.0	11.000	3.898 1.071		Vel = 7.02
T.29	0.0	0.863	Vptb 18.4	3.487	19.159		
to	0.0	150.0	Vpel 17.7	36.100	0.0		
T.30	12.79	0.0974	0.0	39.587	3.855		Vel = 7.02
T.30	-2.88	0.863	Vprt 3.8	2.000	23.014		
to	0.01	150.0	0.0	3.800	0.0		
T.33	9.91	0.0607	0.0	5.800	0.352		Vel = 5.44
T.33 to	0.0	0.863 150.0	Vprt 3.8 0.0	3.000 3.800	23.366 0.0		
H.14	9.91	0.0607	0.0	6.800	0.413		Vel = 5.44
H.14	0.0	0.863	Vprt 3.8	9.000	23.779		
to		150.0	0.0	3.800	0.0		
H.18	9.91	0.0608	0.0	12.800	0.778		Vel = 5.44
H.18	0.0	0.863	Vptb 18.4	3.000	24.557		
to T.34	9.91	150.0 0.0607	0.0 0.0	18.400 21.400	0.0 1.299		Vel = 5.44
T.34	0.0	0.863		9.000	25.856		Vei – 5.44
1.34 to	0.0	150.0	Vprt 3.8 0.0	3.800	25.850		
H.16	9.91	0.0608	0.0	12.800	0.778		Vel = 5.44
H.16	0.0	0.863	Vprt 3.8	4.000	26.634		
to	_	150.0	0.0	3.800	0.0		
H.15	9.91	0.0606	0.0	7.800	0.473		Vel = 5.44
H.15	0.0	0.863	Vptb 18.4	5.000	27.107		
to T.31	9.91	150.0 0.0607	Vprt 3.8 0.0	22.200 27.200	0.0 1.652		Vel = 5.44
T.31	16.66	1.025	0.0	3.000	28.759		vei – 0.44
to	10.00	150.0	0.0	0.0	0.0		
T.32	26.57	0.1630	0.0	3.000	0.489		Vel = 10.33

Viega LLC OAKAHAVEN LOT 12 - Two Head Calculation (H.11 & H.12)

Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
	Q		L97.	L	- Otdi			
T.32	0.0	1.025	E	2.7	8.000	29.248		
to S.1	26.57	150.0 0.1631	Т	6.75 0.0	9.450 17.450	1.732 2.846		Vel = 10.33
S.1 to	0.0	1.053 150.0	2E	2.429 0.0	80.000 2.429	33.826 4.732		* * Fixed Loss = 3
MTR	26.57	0.1430		0.0	82.429	11.786		Vel = 9.79
MTR	0.0	1.049 150.0	E T	3.022 7.555	20.000 12.089	50.344 0.0		
to STR	26.57	0.1457	G	1.555	32.089	0.0 4.674		Vel = 9.86
	0.0 26.57					55.018		K Factor = 3.58
H.11	4.43	0.863	Vprt	3.8	19.000	7.040		
to H.19	4.43	150.0 0.0137		0.0 0.0	3.800 22.800	0.0 0.313		Vel = 2.43
H.19	0.0	0.863		0.0	23.000	7.353		
to H.12	4.43	150.0 0.0137		0.0 0.0	0.0 23.000	0.0 0.316		Vel = 2.43
H.12	13.57	0.863	Vprt	3.8	7.000	7.669		K Factor = 4.90
to T.24	18.0	150.0 0.1834		0.0 0.0	3.800 10.800	0.0 1.981		Vel = 9.87
T.24	-4.22	0.863	Vptb	18.4	1.000	9.650		Ver - 9.07
to	10 70	150.0	Vpel	17.7	36.100	0.0		$V_{\rm cl} = 7.6$
T.23 T.23	<u>13.78</u> 0.0	0.1119		0.0	37.100	4.151		Vel = 7.56
to		150.0		0.0	0.0	3.898		
T.27 T.27	13.78 0.0	0.1119	Vptb	0.0	<u>11.000</u> 4.000	1.231 18.930		Vel = 7.56
to		150.0	Vpel	17.7	36.100	0.0		
T.28 T.28	13.78 2.88	0.1119	Vort	0.0	40.100	4.487		Vel = 7.56
to	2.00	150.0	Vprt	3.8 0.0	3.800	0.0		
H.9	16.66	0.1590		0.0	26.800	4.261		Vel = 9.14
H.9 to	0.0	0.863 150.0	Vprt	3.8 0.0	3.000 3.800	27.678 0.0		
T.31	16.66	0.1590		0.0	6.800	1.081		Vel = 9.14
	0.0 16.66					28.759		K Factor = 3.11
T.24	4.22	0.863	Vprt	3.8	11.000	9.650		
to H.3	4.22	150.0 0.0125		0.0 0.0	3.800 14.800	0.0 0.185		Vel = 2.31
H.3	0.0	0.863	Vprt	3.8	8.000	9.835		Ver - 2.51
to		150.0	·	0.0	3.800	0.0		Val - 0.04
<u>H.2</u> H.2	4.22	0.0125		0.0	11.800	0.148		Vel = 2.31
to		150.0		0.0	0.0	0.0		
T.22 T.22	4.22	0.0130	Vprt	0.0 3.8	1.000 9.000	0.013		Vel = 2.31
to		150.0	vpr	0.0	3.800	0.0		
H.1	4.22	0.0125		0.0	12.800	0.160		Vel = 2.31

Page Date

6

6/30/2021

Viega LLC

Hyd.	Qa	Dia.	Fitting	9	Pipe	Pt	Pt	****** Notoo *****
Ref.		"C"	or		Ftng's	Pe	Pv	******* Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
H.1	0.0	0.863	Vprt	3.8	21.000	10.156		
to	0.0	150.0	vpr	0.0	3.800	0.0		
H.5	4.22	0.0125		0.0	24.800	0.311		Vel = 2.31
H.5	0.0	0.863	Vprt	3.8	5.000	10.467		-
to	010	150.0		0.0	3.800	0.0		
T.26	4.22	0.0125		0.0	8.800	0.110		Vel = 2.31
	0.0							
	4.22					10.577		K Factor = 1.30
T.30	2.88	0.863	Vprt	3.8	6.000	23.014		
to		150.0	•	0.0	3.800	0.0		
H.7	2.88	0.0062		0.0	9.800	0.061		Vel = 1.58
H.7	0.0	0.863	Vprt	3.8	20.000	23.075		
to		150.0		0.0	3.800	0.0		
H.4	2.88	0.0062		0.0	23.800	0.147		Vel = 1.58
H.4	0.0	0.863	Vprt	3.8	20.000	23.222		
to		150.0		0.0	3.800	0.0		
H.6	2.88	0.0062		0.0	23.800	0.147		Vel = 1.58
H.6	0.0	0.863	Vprt	3.8	4.000	23.369		
to		150.0		0.0	3.800	0.0		
T.28	2.88	0.0062		0.0	7.800	0.048		Vel = 1.58
	0.0							
	2.88					23.417		K Factor = 0.60