

136

136 136

136

136

136 136

136 136

136

Trenco RE: 1736601 - H&H/Jordan/ 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: H AND H Project Name: 1736601 Lot/Block: A Subdivision: ALL Model: Address: City: N/A State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2 Wind Code: ASCE 7-10 Wind Speed: 120 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# **Truss Name Date** No. Seal# Truss Name Date I36750767 A01 4/16/19 35 136750801 C05 4/16/19 136 4/16/19 136 4/16/19 136 4/16/19 136 4/16/19 136 4/16/19 136 4/16/19 136 4/16/10 136 4/16/10

750768	A02	4/16/19	36	136750802	C06
750769	A03	4/16/19	37	136750803	C08
750771	A04A	4/16/19	39	136750805	C10
750772	A05	4/16/19	40	136750806	ČİĬ
750773	A05A	4/16/19	41	136750807	C12
750774	A06	4/16/19	42	136750808	C13
750776	Α07 Δ07Δ	4/16/19	43 11	136750809	C14 C15
750777	A08	4/16/19	45	136750811	Č16
750778	A08A	4/16/19	46	136750812	Č17
750779	A09	4/16/19	47	136750813	C18
750780	A10	4/16/19	48	136750814	C19
750782		4/10/19	49 50	136750816	
750783	A12	4/16/19	51	136750817	D02
750784	A12A	4/16/19	52	136750818	D02A
750785	B01	4/16/19	53	136750819	D03
750785	B02 B03	4/16/19	54 55	136750820	D03A
750788	B04	4/16/19	56	136750822	D04A
750789	B05	4/16/19	5 7	136750823	DŎ5
750790	B10	4/16/19	58	136750824	D05A

123456789111234567890123456789012334 136 136 136 136 136 B11 B12 136750791 136750825 D06 4/16/19 136750792 16/19 60 136750826 D06A B13 B14 61 62 63 136750793 136750827 D07 16/19 136750794 136750828 D07A E01 E02 E03 136750829 136750795 B15 136750796 B16 64 136750830 136750797 C01 **6**5 136750831 16/ Č02 C03 C04 66 67 136750798 136750832 J01 9 J02 136750799 136750800 136750833 136750834 68 .103

The truss drawing(s) referenced above have been prepared by

Include the parameters of the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use the building designer should verify applicability of design parameters incorporate these designs into the overall to the state of the set of the overall to

4/16/10

4/16/19 4/16/19

4/16/19

4/16/19

4/16/19 4/16/19

4/16/19

4/16/19

4/16/19

4/16/19

4/16/19

4/16/19

16/19

16/19

16/19

16/19

/19

4/16

April 16,2019

RE: 1736601 - H&H/Jordan/

Trenco 818 Soundside Rd Edenton, NC 27932

No	Seal#	loh ID#	Truss Name	Date
60	126750925	1726601	104	1/16/10
70	136750836	1736601	.105	4/16/19
71	136750837	1736601	J06	4/16/19
72	136750838	1736601	J07	4/16/19
73	136750839	1736601	J08	4/16/19
<u>74</u>	136750840	1736601	J09	4/16/19
75	136750841	1736601	J10	4/16/19
76	136750842	1736601	J11 112	4/16/19
78	130750043	1736601	J12 113	4/10/19
79	136750845	1736601	.114	4/16/19
80	136750846	1736601	J15	4/16/19
81	136750847	1736601	J16	4/16/19
82	136750848	1736601	J17	4/16/19
83	136750849	1736601	J18	4/16/19
84	136750850	1736601	J19	4/16/19
CO 86	130730031	1736601	J20 121	4/16/19
87	136750853	1736601	.122	4/10/19
88	136750854	1736601	J23	4/16/19
89	136750855	1736601	J24	4/16/19

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENGINEERING BY REENCO AMITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 5=168.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITek Affiliat 818 Soundside Road Edenton, NC 27932

REACTIONS. (lb/size) 8=767/Mechanical, 5=767/Mechanical Max Horz 8=268(LC 12) Max Uplift 8=-100(LC 12), 5=-168(LC 12) Max Grav 8=815(LC 19), 5=843(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-718/250

BOT CHORD 7-8=-295/716, 6-7=-97/421, 5-6=-97/421

WEBS 2-7=-299/309, 7-9=-132/587, 3-9=-130/625, 2-8=-696/68, 3-10=-704/173, 5-10=-734/172

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 5=168.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-8=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Vert: 1-3=-60, 3-7=-60, 12-16=-20

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

April 16,2019

	5-9-12	11-2-0	14-7-4	20-0-9		1	29-0-0	
	5-9-12	5-4-4	3-5-4	5-5-5			8-11-7	1
Plate Offsets (X,Y)	[1:Edge,0-1-12], [2:0-5-0,0-4	-8], [8:0-4-0,0-3-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	0-12 CSI. 1.15 TC 00 1.15 BC 1 NO WB 1 14 Matrix-N	0.45 1.00 1.00 MS	DEFL. ir Vert(LL) -0.31 Vert(CT) -0.44 Horz(CT) 0.07 Wind(LL) 0.07	n (loc) 8-9 8-9 7 6 7 8-20	l/defl L/d >999 360 >785 240 n/a n/a >999 240	PLATES MT20 Weight: 212 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 BOT CHORD 2x4 WEBS 2x4 15-1	SP No.2 SP No.2 SP No.3 *Except* 6: 2x4 SP No.2			BRACING- TOP CHORD BOT CHORD WEBS	Structur except Rigid ce 1 Row a	ral wood sheathing end verticals. eiling directly applie at midpt	directly applied or 4-9-15 d or 10-0-0 oc bracing. 3-8	oc purlins,
REACTIONS. (Ib/s Max	size) 12=1190/0-5-8, 6=1236/ (Horz 12=-339(LC 10)	0-5-8						

Max Uplift 12=-187(LC 12), 6=-223(LC 13) Max Grav 12=1190(LC 1), 6=1288(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-2105/403, 2-3=-1236/462, 3-5=-1746/603, 5-6=-1750/421, 1-12=-1226/291
- BOT CHORD 11-12=-307/416, 10-11=-320/1724, 9-10=-25/937, 8-9=-25/937, 6-8=-205/1383
- WEBS
 - 2-11=-93/870, 2-10=-988/407, 10-15=-172/477, 3-15=-161/528, 3-16=-342/1003, 8-16=-357/979, 5-8=-560/413, 1-11=-204/1541

NOTES-(7)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=187, 6=223.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-62, 3-7=-62, 11-12=-21, 10-11=-21, 10-18=-21

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-2126/393, 2-3=-1249/465, 3-5=-1757/604, 5-6=-1762/421, 1-12=-1239/287
- BOT CHORD 11-12=-306/426, 10-11=-315/1745, 9-10=-20/949, 8-9=-20/949, 6-8=-195/1397
- WEBS 2-11=-89/882, 2-10=-1000/408, 10-15=-174/481, 3-15=-162/533, 3-16=-343/1007, 8-16=-358/984, 5-8=-566/415, 1-11=-200/1557

NOTES- (7)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=189, 6=237.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-62, 3-7=-63, 11-12=-21, 10-11=-21, 10-18=-21

ENGINEERING BY REENCO AMITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1	5-9-12	1 ⁻	1-2-0	1	16-9-8	1	2	2-8-0	1	29-0-0	1
	Г	5-9-12	5	-4-4	1	5-7-8	1	5.	-10-8	Т	6-4-0	
Plate Offs	sets (X,Y)	[1:Edge,0-1-12], [2:0-4-0,0	-3-0], [7:0-1-3	3,0-3-2], [11:0-3	-0,Edge]							
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.	.93	Vert(LL)	-0.15	8-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0	.94	Vert(CT)	-0.33	8-9	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.	.98	Horz(CT)	0.21	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matrix-A	S	Wind(LL)	0.11	8-9	>999	240	Weight: 181 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 SLIDER Right 2x4 SP No.3 2-0-0

REACTIONS. (lb/size) 12=1154/0-5-8, 7=1154/0-5-8 Max Horz 12=-322(LC 10) Max Uplift 12=-181(LC 12), 7=-197(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-1923/408, 2-3=-1187/447, 3-5=-1266/460, 5-7=-2807/592, 1-12=-1160/301
- BOT CHORD
 11-12=-319/424, 10-11=-316/1586, 9-10=-37/875, 8-9=-319/1762, 7-8=-394/2362

 WEBS
 2-11=-97/793, 2-10=-922/387, 3-10=-165/448, 3-9=-196/605, 5-9=-1170/420,

5-8=-177/1473, 1-11=-170/1365

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 12, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=181, 7=197.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

5-9

Rigid ceiling directly applied.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. Bate Store S

BRACING-

TOP CHORD

BOT CHORD

WEBS

					_
184	Þ	=	D	_	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEPS 2x4 SP No.2

WEBS 2x4 SP No.3 SLIDER Right 2x4 SP No.3 2-0-0

REACTIONS. (lb/size) 13=1153/0-5-8, 7=1205/0-5-8 Max Horz 13=-333(LC 10) Max Uplift 13=-181(LC 12), 7=-219(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 1-2=-1927/385, 2-3=-1187/446, 3-5=-1266/458, 5-7=-2799/563, 1-13=-1162/289

 BOT CHORD
 12-13=-312/435, 11-12=-301/1596, 10-11=-26/883, 9-10=-284/1757, 7-9=-348/2354

WEBS 2-12=-88/799, 2-11=-926/382, 3-11=-165/448, 3-10=-196/603, 5-10=-1164/405, 5-9=-150/1466, 1-12=-159/1364

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 13, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=181, 7=219.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

5-10

Rigid ceiling directly applied.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	SDACING	2.0.0	DEEL			CDID
Plate Offsets (X,Y)-	- [1:Edge,0-1-12], [2:0-4-0,	,0-3-0], [7:0-1-3,0-3-2], [12:	0-3-0,Edge]			
Г	5-9-12	5-4-4	5-7-8	5-10-8	6-4-0	<u> </u>
1	5-9-12	11-2-0	16-9-8	22-8-0	29-0-0	1

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.98	Vert(LL) -0.15	9-10	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.97	Vert(CT) -0.33	9-10	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.98	Horz(CT) 0.21	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.11	9-10	>999	240	Weight: 183 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

WEBS

LUMBER-

- 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3
- Right 2x4 SP No.3 2-0-0 SLIDER
- REACTIONS. (lb/size) 13=1153/0-5-8, 7=1231/0-5-8 Max Horz 13=-338(LC 10) Max Uplift 13=-181(LC 12), 7=-230(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-1929/372, 2-3=-1188/444, 3-5=-1266/455, 5-7=-2789/548, 1-13=-1163/282
- BOT CHORD 12-13=-309/440, 11-12=-294/1600, 10-11=-21/886, 9-10=-266/1751, 7-9=-324/2345 WFBS 2-12=-84/802, 2-11=-928/379, 3-11=-165/448, 3-10=-194/600, 5-10=-1169/396, 5-9=-135/1458, 1-12=-153/1362

NOTES-(8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Bearing at joint(s) 13, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=181, 7=230.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied, except end verticals.

5-10

Rigid ceiling directly applied.

1 Row at midpt

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

besign valid for dise only with with every contractors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

besign valid for dise only with with every contractors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing dir	ectly applied, except end verticals, and
BOT CHORD	2x6 SP No.2		2-0-0 oc purlins (6-0-0 max.):	3-4.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied.	
		WEBS	1 Row at midpt 2	-8, 4-6
REACTIONS.	(lb/size) 8=767/Mechanical 6=767/Mechanical			

REACTIONS. (lb/size) 8=767/Mechanical, 6=767/Mechanical Max Horz 8=249(LC 12)

Max Uplift 8=-99(LC 12), 6=-140(LC 12)

Max Grav 8=799(LC 19), 6=817(LC 2)

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-695/239, 3-4=-512/248
- BOT CHORD 7-8=-267/674, 6-7=-79/311
- WEBS 2-7=-277/281, 4-7=-120/481, 2-8=-672/58, 4-6=-625/160

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 6=140.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1	5-9-12	11-2-	0	16-9-8	1	2	22-8-0		29-0-0	1	
	Γ	5-9-12	5-4-	4	5-7-8	1		5-10-8		6-4-0		
Plate Off	sets (X,Y)	[1:Edge,0-1-14], [3:0-3-1	2,0-2-0], [4:0-3	3-12,0-2-0], [5:0-	-4-0,0-3-0], [7:0-1-3,0-3-2]	[11:0-5-	4,0-2-8]	, [12:0-3-0),Edge]			
	G (psf)	SPACING-	2-0-0	CSL	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC 0	.96 Vert(LL)	-0.14	9-10	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC 0	.90 Vert(CT)	-0.32	9-10	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB 0	.89 Horz(CT	0.20	7	n/a	n/a			
BCDL	10.0	Code IRC2015/T	PI2014	Matrix-A	S Wind(LL	0.10	9-10	>999	240	Weight: 192 lb	FT = 20%	

		 - () -		
LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing dir	ectly applied, except end verticals, and
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins (6-0-0 max.):	3-4.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied.	
SLIDER	Right 2x4 SP No.3 2-0-0	WEBS	1 Row at midpt 4	-11, 5-10

- REACTIONS. (lb/size) 13=1153/0-5-8, 7=1207/0-5-8 Max Horz 13=-265(LC 8) Max Uplift 13=-169(LC 12), 7=-209(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 1-2=-1888/387, 2-3=-1160/440, 3-4=-910/393, 4-5=-1256/448, 5-7=-2785/574, TOP CHORD 1-13=-1135/295
- BOT CHORD 12-13=-267/383, 11-12=-239/1446, 10-11=-6/897, 9-10=-289/1763, 7-9=-354/2338 WEBS 2-12=-66/740, 2-11=-842/336, 3-11=-140/474, 4-10=-157/545, 5-10=-1109/376, 5-9=-156/1461, 1-12=-138/1339

NOTES-(10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearing at joint(s) 13, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 13=169, 7=209.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	5-9-12	11-2-0		1	6-9-8		22	-8-0	1	29-0-0	
	I	5-9-12	5-4-4			5-7-8		5-1	0-8	I	6-4-0	I
Plate Offse	ts (X,Y)	[1:Edge,0-1-14], [3:0-3-	12,0-2-0], [4:0-3-	12,0-2-0], [5	5:0-3-0,0-3-4]	, [7:0-1-3,0-3-2], [11:0-5-4	,0-2-8]	[12:0-3-0),Edge]		
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.14	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.92	Vert(CT)	-0.32	9-10	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.21	7	n/a	n/a		
BCDL	10.0	Code IRC2015/	TPI2014	Matrix	(-AS	Wind(LL)	0.10	9-10	>999	240	Weight: 192 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing	directly applied, except end verticals, and
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins (6-0-0 max	к.): 3-4.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applie	ed.
SLIDER	Right 2x4 SP No.3 2-0-0	WEBS	1 Row at midpt	4-11, 5-10

- REACTIONS. (lb/size) 13=1152/0-5-8, 7=1233/0-5-8 Max Horz 13=-305(LC 10) Max Uplift 13=-169(LC 12), 7=-222(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-1886/376, 2-3=-1159/442, 3-4=-914/394, 4-5=-1254/447, 5-7=-2775/556, 1-13=-1134/291
- BOT CHORD
 12-13=-283/415, 11-12=-228/1455, 10-11=0/896, 9-10=-269/1756, 7-9=-328/2327

 WEBS
 2-12=-59/752, 2-11=-849/329, 3-11=-141/476, 4-10=-155/543, 5-10=-1108/366, 5-9=-139/1452, 1-12=-142/1338

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) Bearing at joint(s) 13, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- Provide mechanical connection (by others) or truss to bearing plate capable or withstanding 100 ib uplift at joint(s) except (jt=ib) 13=169, 7=222.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

COADING (psf) SPACING- 2-0-0 CSI. TCLL 20.0 Plate Grip DOL 1.15 TC 0.15 TCDL 10.0 Lumber DOL 1.15 BC 0.08 3CLL 0.0 * Rep Stress Incr YES WB 0.14 3CDL 10.0 Code IRC2015/TPI2014 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 19 n/r 120 Vert(CT) 0.00 19 n/r 120 Horz(CT) 0.01 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 195 lb FT = 20%
UMBER- TOP CHORD 2x4 SP No.2 30T CHORD 2x4 SP No.2	BRACING- TOP CHORD Structural wood sheathing di except end verticals, and 2-0	rectly applied or 6-0-0 oc purlins, -0 oc purlins (6-0-0 max.): 6-12.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

SLIDER Right 2x4 SP No.3 2-0-0

REACTIONS. All bearings 29-0-0.

Max Horz 36=-247(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 33, 30, 26, 22, 18, 28, 29, 31, 32, 34, 27, 25, 24, 23, 21 except 36=-231(LC 8), 35=-204(LC 12), 20=-156(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(13)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33, 30, 26, 22, 18, 28, 29, 31, 32, 34, 27, 25, 24, 23, 21 except (jt=lb) 36=231, 35=204, 20=156.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 33, 22, 31, 32, 34, 35, 25, 24, 23, 21, 20.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road

Edenton, NC 27932

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Grav All reactions 250 lb or less at joint(s) 33, 30, 26, 22, 18, 28, 29, 31, 32, 34, 27, 25, 24, 23, 21 except 36=282(LC 11), 35=276(LC 10), 20=283(LC 20)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 1-19=-1124/52, 7-9=-1160/97

 BOT CHORD
 18-19=-332/528, 16-18=0/1777, 14-16=0/1777, 10-14=0/1777, 9-10=-129/339, 15-17=-364/305, 13-15=-1077/0, 12-13=-375/325

 WEBS
 10-12=0/341, 6-12=0/550, 17-18=0/334, 2-17=0/543, 3-5=-1332/362, 1-18=0/635, 7-10=-10/631, 15-18=-1145/126, 10-13=-1146/104

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Ceiling dead load (5.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0 psf) on member(s).6-12, 2-17
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-17, 13-15, 12-13

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

- 9) Attic room checked for L/360 deflection.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 16,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Stutie 312, Alexandria, VA 22314.

A MiTek A1 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.80 0.56 0.29 (-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (I -0.12 16 -0.22 16 0.03 0.13	(loc) 5-18 5-18 10 19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 192 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 21-22,23-24 2x4 SP No.2 2x4 SP No.3 7-11,2-19: 2	2 *Except* :: 2x4 SP No.2 2 3 *Except* x6 SP No.2, 3-5,1-2(0,8-10: 2x4 SP N	lo.2		BRACING TOP CHO BOT CHO	- RD Sti RD Rij 5-i	tructura igid ce -8-0 oc	al wood s iling direc bracing:	sheathing diro ctly applied. 13-18	ectly applied, except e Except:	nd verticals.
REACTIONS.	(Ib/size) 2 Max Horz 2 Max Grav 2	20=1010/0-5-8, 10=1 20=-356(LC 8) 20=1178(LC 21), 10=	095/0-5-8 =1230(LC 21)									
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. Com 1-2=-1276 1-20=-112 19-20=-32 16-18=-36 11-13=0/3 8-11=-7/64	p./Max. Ten All for /20, 2-3=-727/171, 3 3/51, 8-10=-1176/12 8/536, 17-19=0/1781 4/306, 14-16=-1077/ 41, 7-13=0/550, 18-1 40, 16-19=-1140/125	ces 250 (lb) or le -4=-81/429, 4-5= 1 I, 15-17=0/1781, 0, 13-14=-372/3 I9=0/333, 2-18=(, 11-14=-1148/10	ess except =-79/426, 5 11-15=0/1 24 0/543, 3-5= 04	when shown. -7=-728/169, 781, 10-11=- 1333/358, 1	7-8=-1278/25, ·115/347, -19=0/633,						
NOTES- (10 1) Unbalanced 2) Wind: ASCE MWFRS (en 3) All plates are 4) This truss ha 5) * This truss h will fit betwee 6) Ceiling dear	b) roof live load 7-10; Vult=1 vvelope) gable reactions sho e 2x4 MT20 u as been desig has been desig has been desig has been desig has deen desig has de	is have been conside 20mph (3-second gu e end zone and C-C xwn; Lumber DOL=1. Inless otherwise indir gned for a 10.0 psf bu signed for a live load n chord and any othe f) on member(s). 2-3 0 0.0 nsf) and addition	ered for this designed ist) Vasd=95mpt Exterior(2) zone; 60 plate grip DC cated. 200 psf on the r members. , 5-7, 3-5; Wall d al bottom chord	gn. ; TCDL=6 ; end vertic DL=1.60 load noncc bottom ch dead load (0psf; BCDL= al left and rigi ncurrent with ord in all are: (5.0psf) on mi	6.0psf; h=25ft; C ht exposed;C-C any other live k as where a recta ember(s).7-13, 2	Cat. II; Exp (for member nads. ingle 3-6-0 1 -18 16-18 14-	C; Enc rs and tall by	closed; forces & 2-0-0 wid	de	AUNORTH	CAROLIN

7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-18, 14-16, 13-14
 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Attic room checked for L/360 deflection.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 16,2019

ENGINEERING BY REENCO A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 6) Ceiling dead load (5.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0 psf) on member(s).6-12, 2-17
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-17, 13-15, 12-13

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

- 9) Attic room checked for L/360 deflection.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

TRENGINEERING BY A MITek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 16,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREERING BY A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply	H&H/Jordan/		136750794
1736601	B14	ATTIC	1 1	leb Deferrer (
Builders FirstSource,	Sumter, SC - 29153,		8.220 s Nov	v 16 2018 MiTek Industr	iai) ies, Inc. Mon Apr 15 15:53:	:42 2019 Page 1
		7-8-8	ID:h9G7FShkwdXsXwp5Zi0S 14-0-4	NOzktn2-0SC5ndWzHr	_z62IMphEPzKPenBkEk5W	/ITkcTGqzQQad
		6-0-12 6-10-10 6-0-12 0-9-14	10-0-8 12-4-8 13-2-6 2-4-0 2-4-0 0-9-14	<u>20-1-0</u> 6-0-12	<u>20-11-8</u> 0-10-8	
		4x6 ⁰⁻⁹⁻¹⁴	0-9-14			Scale = 1:57.1
	Ŧ	4	4x6 \\		т	
		, A				
		2 ³	7	7		
	12.00	12				
				$\langle \rangle$		
	9-7-10		10-4		9-7-10	
	0	-4-13	-4-13		0	
	5x6 = 1	2	ى س		5x6 =	
			7-6-0		8	
		• 18 3×8 =				
	20	19	3x8 — 17 15 ¹² 11		10	
		4x12 =	3x6 = 4x12 =	=		
			470 —			
		6-0-12 6-0-12 9-0-8 2-11-12	11-0-8 14-0-4 2-0-0 2-11-12	<u>20-1-0</u> 6-0-12	———————————————————————————————————————	
Plate Offsets (X,Y) [1:	Edge,0-1-4], [4:0-2-2,Edge], [5:0-2-2,Edge], [8:0-3-8,0-1-4], [2	:0-2-0,Edge], [22:0-1-8,0-1-12], [23:0-2-0,Edge], [24:0-	1-8,0-1-12]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES G	RIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.49 BC 0.60	Vert(LL) -0.07 16-18 Vert(CT) -0.12 16-18	>999 360 >999 240	MT20 24	44/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.62	Horz(CT) 0.02 10	n/a n/a	Woight: 199 lb	ET _ 20%/
		Mathx-AS	Willd(LL) 0.10 19	>999 240		FT = 2078
LUMBER- TOP CHORD 2x6 SP No	p.2 *Except*		BRACING- TOP CHORD Structu	ral wood sheathing dir	ectly applied. except end	verticals. and
21-22,23-2	24: 2x4 SP No.2			c purlins (6-0-0 max.):	4-5.	
WEBS 2x4 SP No	o.3 *Except*		6-0-0 o	c bracing: 13-18	Except.	
7-11,2-19	: 2x6 SP No.2, 3-6: 2x4 SP NO.2, 3-7: 2x4 SP NO.2, 3-7: 2x4 SP NO.2, 3-7: 2x4 SP NO.2, 3-7: 2x4 SP NO.	0.2				
REACTIONS. (lb/size)	20=1016/0-5-8, 10=1073/0-3	5-8				
Max Horz Max Grav	20=-301(LC 8) / 20=1156(LC 2), 10=1203(L0	C 2)				
FORCES (Ib) - Max Co	mn /Max Ten - All forces 25) (lh) or less excent when shown				
TOP CHORD 1-2=-11	78/51, 2-3=-704/182, 6-7=-70	4/181, 7-8=-1180/55, 1-20=-1107	/57,			
BOT CHORD 19-20=-2	154/101 289/375, 17-19=0/1585, 15-1	7=0/1585, 11-15=0/1585, 16-18=	-243/382,			
14-16=-	918/0, 13-14=-255/404 49/359 7-13-0/483 18-194	7/352 2-18-0/480 3-6896/22	3 1-19-0/746			
8-11=0/7	759, 16-19=-1204/80, 11-14=	1202/59	, 110-0/110,			
NOTES- (12)						
1) Unbalanced roof live lo	ads have been considered for	this design.	-6 Opef: h=25ft: Cat. II: Exp.C: Ep	closed:		
MWFRS (envelope) ga	ble end zone and C-C Exterio	r(2) zone; end vertical left and rig	ht exposed;C-C for members and	d forces &		
3) Provide adequate drain	hown; Lumber DOL=1.60 pla age to prevent water ponding	te grip DOL=1.60			annun (CAD
4) All plates are 2x4 MT20) unless otherwise indicated.	hard live load ponconcurrent with	any other live loads		AUNRTH	
6) * This truss has been d	esigned for a live load of 20.0	psf on the bottom chord in all are	as where a rectangle 3-6-0 tall by	y 2-0-0 wide	ATTACK A	Anxin
will fit between the bott7) Ceiling dead load (5.0 g	om chord and any other mem osf) on member(s). 2-3. 6-7. 3	bers. -6: Wall dead load (5.0psf) on m	ember(s).7-13. 2-18			K. 1
8) Bottom chord live load	(40.0 psf) and additional botto	m chord dead load (5.0 psf) app	ied only to room. 16-18, 14-16, 1	3-14 /2" gypsym	S	EAL 🚦 🗄
sheetrock be applied di	rectly to the bottom chord.	ruotural wood sheathing be appli		и дурзин	45	5844
10) Graphical purlin repre 11) Attic room checked for	sentation does not depict the r L/360 deflection.	size or the orientation of the purl	n along the top and/or bottom cho	ord.	E (1)	1. 1
12) This manufactured tru	iss is designed as an individu	al building component. The suita	bility and use of this component f	or any	TUSNO	INEER ON
particular building is tr		y uesiyiler per ANSI TPT TAS fer	erenced by the building code.		II, REIA	OHNS
					ininin v	Junnin
					April	16,2019

818 Soundside Road Edenton, NC 27932 CN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Mi Tek Affi 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD 2-4=-1016/110, 4-6=-1075/208

BOT CHORD 2-8=-63/847, 6-8=-52/841

WEBS 4-8=0/873

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=102, 6=102.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY AMTek Affiliate 818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.
Job	Truss	Truss Type	Qty	Ply	H&H/Jordan/	
					1367	50800
1736601	C04	Common Girder	8	2		
				-	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 15 15:53:48 2019 Page	e 2

ID:h9G7FShkwdXsXwp5Zi0SNOzktn2-rcaM2gbkthl7qzIWAyLpDbfgwcor7qPBrg3nUUzQQaX

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 9-13=-20 Concentrated Loads (lb)

Vert: 8=-747(B) 17=-747(B) 18=-747(B) 19=-747(B) 20=-747(B) 21=-747(B) 22=-747(B)

818 Soundside Road Edenton, NC 27932

			8-1-12				16-3-8				
Plate Offsets (X,Y)	[2:Edge,0-0-0], [4:0-3-1	12,0-3-4], [5:0-3-1	2,0-3-4], [7:	Edge,0-0-0]			0-1-12				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matri	0.33 0.53 0.18 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.18 0.10 0.09	(loc) 9-16 9-12 7 9-16	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 2-0-0, Right 2x4 SP No.3 2-0-0						RD RD	Structu 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing dir (6-0-0 max.): ctly applied c	ectly applied or 6-0-0 c 4-5. or 10-0-0 oc bracing.	oc purlins, except
REACTIONS. (Ib/size) 2=697/0-5-8, 7=697/0-5-8 Max Horz 2=-227(LC 10) Max Uplift 2=-100(LC 12), 7=-100(LC 13)											
FORCES. (lb) - Max. TOP CHORD 2-4= BOT CHORD 2-9= WEBS 4-9=	Comp./Max. Ten All -1016/128, 4-5=-724/20 -151/814, 7-9=-46/736 0/436, 5-9=-168/549	forces 250 (lb) or 6, 5-7=-1016/136	less except	when shown.							
NOTES- (9) 1) Unbalanced roof livv 2) Wind: ASCE 7-10; \ MWFRS (envelope) MWFRS for reaction 3) Provide adequate d 4) This truss has been 5) * This truss has been will fit between the t 6) Bearing at joint(s) 2 capacity of bearing 7) Provide mechanical 2=100, 7=100.	e loads have been cons /ult=120mph (3-second gable end zone and C- s shown; Lumber DOL rainage to prevent wate designed for a 10.0 psl en designed for a 10.0 psl ottom chord and any of , 7 considers parallel to surface. connection (by others)	idered for this det gust) Vasd=95m C Exterior(2) zon =1.60 plate grip D r ponding. bottom chord live ad of 20.0psf on ti ther members. grain value using of truss to bearing	sign. sh; TCDL=6 e; end vertii OL=1.60 e load nonco he bottom c ANSI/TPI 1 g plate capa	6.0psf; BCDL= cal left and rigi concurrent with hord in all area angle to grain able of withstan	6.0psf; h=25ft; C ht exposed;C-C f any other live loa as where a rectar n formula. Buildin nding 100 lb uplif	at. II; Ex or mem ads. ngle 3-6 ng desig	kp C; En bers and -0 tall b gner sho t(s) exce	iclosed; d forces 8 y 2-0-0 wi buld verify ept (jt=lb)	de	A MARTH	CAROLINI

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	L	8-1-12	-1-12			16-3-8					
	I		8-1-12		I		8-1-1	2		1	
Plate Offsets (X,Y)	[4:0-3-4,Edge], [5:0-3-4,E	Edge]									
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.06	9-18	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.06	9-14	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.08	7	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix	<-MS						Weight: 123 lb	FT = 20%
LUMBER-			I		BRACING-					.1	
TODOLLODD				TODOUOD		<u> </u>					

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.2 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
	4-5: 2x4 SP No.2		2-0-0 oc purlins (6-0-0 max.): 4-5.
BOT CHORD	2x6 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
	10-11: 2x4 SP No.2		
WEBS	2x4 SP No.3		

SLIDER Left 2x4 SP No.3 1-11-12, Right 2x4 SP No.3 1-11-12

REACTIONS. (lb/size) 2=722/0-5-8, 7=722/0-5-8 Max Horz 2=-242(LC 10) Max Uplift 2=-111(LC 12), 7=-111(LC 13)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-985/108, 4-5=-700/177, 5-7=-985/132

BOT CHORD 2-9=-132/790, 7-9=-41/726

WEBS 4-9=0/402, 5-9=-122/513

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 2, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=111, 7=111.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE FACE INFERTOR FOR INFERTOR OF THE ADDRESS OF THE STATE ADDRESS OF THE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Jordan/	
					1367508	305
1736601	C10	Common Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 15 15:53:52 2019 Page 2	
		ID:h9G7FS	hkwdXsX\	vp5Zi0SN	Ozktn2-jNptu2eFxvFYJb2HPoQINRqPNDBR3eYmmH1?dFzQQaT	

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb)

Vert: 8=-747(B) 9=-747(B) 7=-747(B) 6=-758(B) 11=-747(B) 12=-747(B) 13=-747(B) 14=-747(B)

818 Soundside Road Edenton, NC 27932

	L	8-1-12	8-3 ₁ 8	16-1-8			
	1	8-1-12	0-1-12	7-10-0	1		
Plate Offsets (X,Y)	[2:0-2-13,Edge], [8:0-4-13,Edge]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL)	-0.10 10-15	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.56	Vert(CT)	-0.20 10-15	>973 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.37	Horz(CT)	0.12 8	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL)	0.04 10	>999 240	Weight: 92 lb	FT = 20%
		1					

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12, Right 2x4 SP No.3 1-11-12

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-13 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=698/0-5-8, 8=698/0-3-8 Max Horz 2=-254(LC 10)

Max Uplift 2=-106(LC 12), 8=-104(LC 13)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-4=-1156/281, 4-5=-908/137, 5-6=-932/180, 6-8=-1118/242
- BOT CHORD 2-10=-286/1076, 8-10=-94/847

WEBS 4-10=-332/286, 5-10=-111/985, 6-10=-304/303

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=106, 8=104.

Π.	11	м	R	F	R	-

10.0

BCDL

 LOWBER

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 1-11-12, Right 2x4 SP No.3 1-11-12

BRACING-TOP CHORD BOT CHORD

0.04

Wind(LL)

Structural wood sheathing directly applied or 5-1-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 89 lb

>999

8

240

REACTIONS. (lb/size) 1=645/0-5-8, 7=645/0-3-8 Max Horz 1=231(LC 9)

Max Uplift 1=-92(LC 13), 7=-94(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

TOP CHORD 1-3=-1153/302, 3-4=-917/159, 4-5=-924/202, 5-7=-1129/281

BOT CHORD 1-8=-321/1061, 7-8=-133/858

WEBS 3-8=-329/285, 4-8=-141/974, 5-8=-304/300

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

FT = 20%

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Jordan/
					136750809
1736601	C14	Common Girder	2	່າ	
				_	Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8.2	220 s No	v 16 2018 MiTek Industries, Inc. Mon Apr 15 15:53:55 2019 Page 2
		ID:h9G7F5	ShkwdXsX	wp5Zi0S	NOzktn2-8yV0W3g7Dgd7A2ns4wzS?4SrsQAiG?RDSFFfEazQQaQ

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 7-10=-20 Concentrated Loads (lb)

Vert: 6=-747(B) 10=-756(B) 13=-747(B) 14=-747(B) 15=-747(B) 16=-747(B) 17=-747(B) 18=-747(B)

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Bearing at joint(s) 2, 8, 13, 14, 11, 10, 2, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 2=112, 8=105, 14=327, 10=408, 2=112, 8=105.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0	1 12		1000			
	8-	1-12		8-1-12		1	
Plate Offsets (X,Y)	[2:0-2-13,Edge], [5:0-4-4,0-1-12], [6:0-4-4	4,0-1-12], [7:0-0-0,0-0-0], [9:0	0-0-0,0-0-0], [9:0-2-1	13,Edge]			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.22	DEFL. ir Vert(LL) -0.09	n (loc) l/defl 9 11-20 >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.54 WB 0.19	Vert(CT) -0.19 Horz(CT) 0.10	9 11-20 >999 9 n/a	240 n/a	Waisht OZ Ib	FT 200/
BCDL 10.0	Code IRC2015/1P12014	Matrix-MS	Wind(LL) 0.03	5 11 >999	240	weight: 97 lb	FI = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 S	P No.2		TOP CHORD	Structural wood	d sheathing direct	ly applied or 5-1-1	5 oc purlins,
BOT CHORD 2x4 S	P No.2			except	Ū		
				0 0 0	(0.0.0	0	

2x4 SP No.3 WEBS Left 2x4 SP No.3 1-11-12, Right 2x4 SP No.3 1-11-12 BOT CHORD SLIDER

2-0-0 oc purlins (6-0-0 max.): 5-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=704/0-5-8, 9=704/0-5-8 Max Horz 2=-237(LC 10) Max Uplift 2=-106(LC 12), 9=-106(LC 13)

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-4=-1158/263, 4-5=-933/114, 5-6=-687/144, 6-7=-933/139, 7-9=-1158/251
- BOT CHORD 2-11=-256/1042, 9-11=-73/888
- WFBS 4-11=-326/270, 5-11=0/465, 6-11=-68/526, 7-11=-321/289

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 2, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=106, 9=106.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CHERKICE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 16,2019

A MITER Affiliate B18 Soundside Road Edenton, NC 27932

			L	8-1-12		1		16-3-8			L	
			1	8-1-12				8-1-12			1	
Plate Off	sets (X,Y)	[8:0-3-0,0-2-12], [9:0-4-0,	0-3-0], [10:0-3	3-0,0-2-12]								
	G (nsf)	SPACING-	2-0-0	CSI		DEFI	in	(loc)	l/defl	L/d		GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.2	21 \	Vert(LL)	-0.10	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.4	49 \	Vert(CT)	-0.21	9-10	>914	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.5	55 H	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix-AS	s \	Wind(LL)	0.02	9	>999	240	Weight: 112 lb	FT = 20%
LUMBER	र-				E	BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except*
	2-10,6-8: 2x6 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. (lb/size) 10=725/0-5-8, 8=725/0-5-8 Max Horz 10=-312(LC 10) Max Uplift 10=-118(LC 12), 8=-118(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-392/172, 3-4=-828/105, 4-5=-876/148, 5-6=-389/170, 2-10=-442/204, TOP CHORD 6-8=-427/207 BOT CHORD 9-10=-235/926, 8-9=-26/740 4-9=-68/893, 5-9=-237/284, 3-9=-240/261, 3-10=-747/60, 5-8=-772/77 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=118, 8=118.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

a truss systems. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Scale = 1:65.0

EW

818 Soundside Road Edenton, NC 27932

104

minim April 16,2019

		17 18 3x6 ≠ 19 3x4 =	*****	****			
			13-5-4 13-5-4	<u> 13-</u> 11-0 0-5-12			
Plate Offsets (X,Y)	SPACINC 2.0.0	<u>-0,0-1-12]</u>	DEEL in			CPIP	—
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.15 BC 0.10	Vert(LL) 0.01 Vert(CT) 0.00	1 n/r 120 1 n/r 120	MT20	244/190	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.14 Matrix-S	Horz(CT) -0.00	11 n/a n/a	Weight: 76 lb	FT = 20%	
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins,	
BOT CHORD 2x4 SP WEBS 2x4 SP 10-20: 2	No.2 No.3 *Except* 2x6 SP No.2		BOT CHORD	except end verticals. Rigid ceiling directly applied o 10-0-0 oc bracing: 15-16,12-1	or 6-0-0 oc bracing, I 3.	Except:	
OTHERS 2x4 SP	No.3			.			
REACTIONS. All be (lb) - Max He Max Up Max Gi	arings 13-11-0. orz 19=405(LC 12) olift All uplift 100 lb or less at joint(s) 1 ⁻¹ 12), 18=-520(LC 12) rav All reactions 250 lb or less at joint(19), 18=317(LC 10)	l, 16, 17 except 19=-202(LC s) 11, 16, 17 except 19=647	: 10), 12=-114(LC 12) (LC 12), 12=305(LC -	, 15=-144(LC 19), 15=304(LC			
FORCES. (lb) - Max. 0 TOP CHORD 2-19= BOT CHORD 18-19 WEBS 2-18=	Comp./Max. Ten All forces 250 (lb) or -354/295, 2-3=-417/360, 3-4=-360/300, =-578/483 -400/483	less except when shown. 4-5=-284/235					
 NOTES- (12) 1) Wind: ASCE 7-10; V/ MWFRS (envelope) reactions shown; Lur 2) Truss designed for w Gable End Details as 3) All plates are 2x4 MT 4) Gable requires contir 5) Truss to be fully sheat 6) Gable studs spaced 7) This truss has been of 8) * This truss has been of 8) * This truss has been of 9) Bearing at joint(s) 19 designer should verif 10) Provide mechanical (jt=lb) 19=202, 12=- 11) Beveled plate or should state 	ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zon mber DOL=1.60 plate grip DOL=1.60 ind loads in the plane of the truss only. s applicable, or consult qualified building 720 unless otherwise indicated. nuous bottom chord bearing. athed from one face or securely braced at 2-0-0 oc. designed for a 10.0 psf bottom chord livn of designed for a 10.0 psf bottom chord livn ot designed for a 10.0 psf bottom chord livn ot cond and any other members. 0, 20, 11, 12, 15, 16, 17, 18 considers pa fy capacity of bearing surface. I connection (by others) of truss to beari 114, 15=144, 18=520. im required to provide full bearing surfar	ph; TCDL=6.0psf; BCDL=6.0 e; end vertical left exposed; For studs exposed to wind (designer as per ANSI/TPI 1 against lateral movement (i.0 e load nonconcurrent with ar he bottom chord in all areas irallel to grain value using Al ng plate capable of withstan ce with truss chord at joint(s)	Opsf; h=25ft; Cat. II; E C-C for members and (normal to the face), s e. diagonal web). ny other live loads. where a rectangle 3-i NSI/TPI 1 angle to gra ding 100 lb uplift at jo) 20, 11, 12, 15, 16, 1	xp C; Enclosed; forces & MWFRS for ee Standard Industry 6-0 tall by 2-0-0 wide ain formula. Building pint(s) 11, 16, 17 except 7, 18.	Aster and a state of the state	A CAROLINA SEAL 45844	In Summing
12) This manufactured	truss is designed as an individual buildir	ng component. The suitabili	ty and use of this corr	ponent for any	1. AL	IL INHOUNT	

- 9) Bearing at joint(s) 19, 20, 11, 12, 15, 16, 17, 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 16, 17 except (jt=lb) 19=202, 12=114, 15=144, 18=520.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 20, 11, 12, 15, 16, 17, 18.
- 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

		6-11-8	13-5-4		13 ₁ 11 ₋ 0						
		6-11-8	6-5-12		0-5-12						
Plate Offsets (X,Y)	[2:0-3-8,Edge], [3:0-3-0,0-3-4], [4:0-0-6	,0-1-8], [8:0-0-0,0-0-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.49 WB 0.48 Matrix-AS	DEFL. ir Vert(LL) -0.08 Vert(CT) -0.18 Horz(CT) 0.04 Wind(LL) 0.13	(loc) 7-8 7-8 9 7	l/defl L >999 36 >891 24 n/a n >999 24	/d 60 40 /a 40	PLATES MT20 MT20HS Weight: 83 lb	GRIP 244/190 187/143 FT = 20%			
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. WEBS 2x4 SP No.3 *Except* 4-9: 2x6 SP No.2 WEBS											
REACTIONS. (lb/size) 8=605/0-5-8, 9=539/Mechanical Max Horz 8=394(LC 12) Max Uplift 9=-335(LC 12) Max Grav 8=605(LC 1), 9=611(LC 19) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 700 CHORD 2-8=-684/351, 2-3=-1653/681, 3-4=-339/32, 5-9=-676/335 BOT CHORD 7-8=-641/656, 5-7=-1050/1970 7-8=-641/656, 2-5=-1475/700											
 NOTES- (9) 1) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lu 2) All plates are MT20 3) This truss has been will fit between the b 5) Refer to girder(s) for 6) Bearing at joint(s) 8 	fult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zor mber DOL=1.60 plate grip DOL=1.60 plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on iottom chord and any other members. truss to truss connections.	nph; TCDL=6.0psf; BCDL= ne; end vertical left expose re load nonconcurrent with the bottom chord in all are NNSI/TPI 1 angle to grain f	6.0psf; h=25ft; Cat. II; E ed;C-C for members and any other live loads. as where a rectangle 3- ormula. Building desigr	xp C; Er forces & 6-0 tall b er shoul	nclosed; & MWFRS for y 2-0-0 wide d verify			A CARO			

6) Bearing at joint(s) 8 considers parallel to grain value using ANSI/ I PI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=335.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affi 818 Soundside Road Edenton, NC 27932

		L	6-1	1-8		1	3-5-4		13-11-0				
		41 [4:0 0 0 0 4	6-1	1-8		6	-5-12		0-5-12				
Plate Offsets (X, Y)	[2:0-3-8,Edge], [3:0-3-0,0-3	3-4], [4:0-0-6,0-1	-8], [8:0-0	-0,0-0-0]									
LOADING (psf)	SPACING-	2-0-0	CSI.		D	EFL.	in	(loc)	l/defl	L/d	F	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.68	Ve	ert(LL)	-0.08	7-8	>999	360	1	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.49	Ve	ert(CT)	-0.18	7-8	>891	240	1	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.48	H	orz(CT)	0.04	9	n/a	n/a			
BCDL 10.0	Code IRC2015/TPI	2014	Matrix	-AS	W	ind(LL)	0.13	7	>999	240	1	Weight: 84 lb	FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x 4-5	4 SP No.2 4 SP No.2 4 SP No.3 *Except* 2 2x6 SP No.2			I	BF TC BC W	RACING- DP CHOR DT CHOR EBS	D D	Structu Rigid co 1 Row	ral wood s eiling dire at midpt	sheathing di ctly applied.	irectly ap 3-5	oplied, except	end verticals.
REACTIONS. (Ib Ma Ma Ma	/size) 8=632/0-5-8, 9=537/M ax Horz 8=367(LC 12) ax Uplift 8=-8(LC 12), 9=-306(L ax Grav 8=632(LC 1), 9=619(L	echanical .C 12) C 19)											
FORCES.(lb) - MTOP CHORD2BOT CHORD7WEBS2	fax. Comp./Max. Ten All forc: -8=-702/376, 2-3=-1641/675, 3 -8=-697/713, 5-7=-1094/2014 -7=-417/1230, 3-5=-1480/807	es 250 (lb) or les -4=-339/61, 5-9	s except =-711/364	when shown.									
NOTES- (9)													
1) Wind: ASCE 7-1 MWFRS (envelo MWFRS for rea	0; Vult=120mph (3-second gus ope) gable end zone and C-C E ctions shown; Lumber DOL=1.6	st) Vasd=95mph xterior(2) zone; 60 plate grip DO	TCDL=6 end vertic L=1.60	.0psf; BCDL=6 al left and righ	6.0psf; ł nt expos	n=25ft; Ca ed;C-C fo	at. II; Ex or mem	p C; En bers and	closed; d forces &	k			
2) All plates are M	120 plates unless otherwise ind	licated.				P 1	-l						
 4) * This truss has 	been designed for a 10.0 psr bot	f 20.0psf on the	bad nonco	ncurrent with ord in all area	any otn as where	er live loa e a rectar	ias. Igle 3-6	-0 tall by	y 2-0-0 wi	de			
will fit between t	he bottom chord and any other	members.											AMMININ
5) Refer to girder(s	 for truss to truss connections. 											1111	A CARO'
6) Bearing at joint(s) 8 considers parallel to grain	value using ANS	I/TPI 1 ar	igle to grain fo	ormula.	Building	designe	er should	d verify		^	"al	
capacity of bear	ing surface.											S.0	ESSIN
Provide mechar	lical connection (by others) of tr	russ to bearing p	late capa	ble of withstar	nding 10	0 lb uplif	at joint	(s) 8 ex	cept (jt=lb))		1 Avia	Maria a
9=306.											- L A	Yes -	

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 4-7: 2x4 SP No.2

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied. 1 Row at midpt 4-7, 3-7

REACTIONS. (lb/size) 9=602/0-5-8, 6=522/0-3-0 Max Horz 9=385(LC 12) Max Uplift 6=-305(LC 12) Max Grav 9=602(LC 1), 6=634(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-511/0, 2-9=-546/45
- BOT CHORD 8-9=-480/461.7-8=-234/446
- WEBS 3-8=0/266, 3-7=-604/319, 2-8=-16/339

NOTES-(6)

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=305.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICAL AND IN fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- REACTIONS. (lb/size) 9=630/0-5-8, 6=519/0-3-0 Max Horz 9=396(LC 12) Max Uplift 6=-305(LC 12) Max Grav 9=630(LC 1), 6=632(LC 19)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-509/0, 2-9=-574/68
- BOT CHORD 8-9=-483/458, 7-8=-233/444
- WEBS 3-8=0/265, 3-7=-602/318, 2-8=-14/347

NOTES- (6)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=305.
- 5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

		1-11-8 4-10-8	4-1-8	2-5-8 0-4-0	
Plate Offsets (X,Y) [2:0-3-8,Edge], [3:0-4-0,0-3-0], [7	(:0-3-0,0-1-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.45 WB 0.25 Matrix-AS	DEFL. in Vert(LL) -0.06 Vert(CT) -0.14 Horz(CT) 0.06 Wind(LL) 0.06	(loc) I/defl L/d 10-11 >999 360 10-11 >999 240 6 n/a n/a 11-12 >999 240	PLATES GRIP MT20 244/190 Weight: 107 lb FT = 20%
LUMBER- TOP CHORD 22 BOT CHORD 25 WEBS 25 4-	4 SP No.2 4 SP No.2 4 SP No.3 *Except* 7: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing din Rigid ceiling directly applied. 1 Row at midpt 4	ectly applied, except end verticals.
REACTIONS. (I M M M	o/size) 15=602/0-5-8, 6=522/0-3-0 ax Horz 15=385(LC 12) ax Uplift 6=-305(LC 12) ax Grav 15=602(LC 1), 6=588(LC 19)			
FORCES. (lb) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 25(2-3=-571/6, 7-9=-648/346, 13-15=-58 14-15=-304/176, 12-13=-689/726, 11- 2-11=-213/418, 3-11=-38/289, 3-9=-6((lb) or less except when shown. 5/30, 2-13=-540/75 12=-689/726, 10-11=-276/516, 9- 30/357, 13-14=-197/340	10=-276/516		
NOTES- (6)	10. \/		Construction Optimized III Fr		

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=305.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Jordan/	
1736601	D04A	ROOF SPECIAL	5	1		136750822
Buildora EiratSouroo	Sumtor SC 20152			20 c Nov	Job Reference (option	al)
	Sumer, SC - 29153,	-1-3-8 1-11-8 6-10-0 1-3-8 1-11-8 4-10-8	0.2 ID:h9G7FShkwd 10-11-8 4-1-8	ZO S NOV XsXwp5Z 13-5- 2-5-8	i0SNOzktn2-rt5ocUoPt <u>0 13₁11₁0</u> 8 0-6-0	vuiNbYnf09oPBsWLSe3cb3hlpgBa?zQQaG
	11:15 1 1	5x8 = 2 4x6 = 15 14 2x4 2x4 3x6 =	8.00 12	3x4 0 2x4 8 3x6 =	4 4 4 4 4 8 8 1 1 6 0 1 1 1 1	Scale = 1:59.2
Ploto Offecto (X X) [2:0	2.9 Edge] [2:0.4.0.0.2.0] [$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>10-11-8</u> 4-1-8	13-5- 2-5-8	<u>0 13-9</u> -0 8 0-4-0	
Loading (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TP12014 YES	CSI. TC 0.66 BC 0.45 WB 0.25 Matrix-AS	DEFL. in Vert(LL) -0.06 Vert(CT) -0.14 Horz(CT) 0.06 Wind(LL) 0.06	(loc) 10-11 10-11 6 11-12	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 107 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No 4-7: 2x4 SP	.2 .2 .3 *Except* P No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structura Rigid ce 1 Row a	al wood sheathing dir iling directly applied. t midpt 4	ectly applied, except end verticals. 7, 3-9
REACTIONS. (lb/size) Max Horz Max Uplift Max Grav FORCES. (lb) - Max. Cor TOP CHORD 2-3=-568 BOT CHORD 14-153	15=630/0-5-8, 6=519/0-3-0 15=336(LC 12) 6=-305(LC 12) 15=630(LC 1), 6=586(LC 19 mp./Max. Ten All forces 25/ //6, 7-9=-647/346, 13-15=-61.)) (Ib) or less except when shown. 2/54, 2-13=-568/100 12688/115_10-11276/514_9.	10276/514			

88/715, 10-1 88/715, 11-12

WEBS 2-11=-203/418, 3-11=-39/288, 3-9=-658/357, 13-14=-205/348

NOTES-(6)

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=305.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

13-5-0	
13-5-0	

Plate Offsets ()	X,Y) [[17:0-3-8,0-3-0]										
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	if) 0 0 .0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix-	0.22 0.08 0.23 ·S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.00	(loc) 1 2 11	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 10-11: 2 2x4 SP	No.2 No.2 No.3 *Except* 2x4 SP No.2 No.3				BRACING- TOP CHOR BOT CHOR WEBS	D D	Structur except e Rigid ce 6-0-0 oc 1 Row a	al wood s and vertic iling direc bracing: t midpt	sheathing d als. ctly applied 17-18.	irectly applied or 6-0-0 o or 10-0-0 oc bracing, E 10-11, 9-12	c purlins, Except:

REACTIONS. All bearings 13-5-0.

(lb) - Max Horz 18=385(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=-289(LC 10), 17=-657(LC 12) Max Grav All reactions 250 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=803(LC 12), 17=365(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-18=-844/640, 2-3=-448/377, 3-4=-397/325, 4-5=-320/263, 5-7=-250/206
- BOT CHORD 17-18=-431/354
- WEBS 2-17=-646/786

NOTES- (10)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 13, 14, 15, 16 except (it=lb) 18=289, 17=657.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.22 BC 0.09 WB 0.24 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) -0.00	n (loc) I/defl L/d) 1 n/r 120) 2 n/r 120) 11 n/a n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2 No.2		BRACING- TOP CHORD	Structural wood sheathing except end verticals.	directly applied or 6-0-0 o	c purlins,
WEBS 2x4 SP 10-11:	PNo.3 *Except* 2x4 SP No.2		BOT CHORD	Rigid ceiling directly applied 6-0-0 oc bracing: 17-18.	d or 10-0-0 oc bracing, E	Except:
OTHERS 2x4 SP	9 No.3		WEBS	1 Row at midpt	10-11, 9-12	

REACTIONS. All bearings 13-5-0.

(lb) - Max Horz 18=396(LC 12)

 Max Uplift
 All uplift 100 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=-266(LC 10), 17=-652(LC 12)

 Max Grav
 All reactions 250 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=789(LC 12), 17=353(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-18=-830/603, 2-3=-440/381, 3-4=-396/327, 4-5=-320/263, 5-7=-250/206
- BOT CHORD 17-18=-437/356

WEBS 2-17=-650/798

NOTES- (10)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 13, 14, 15,
- 16 except (jt=lb) 18=266, 17=652. 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.41 WB 0.25	DEFL. in Vert(LL) -0.04 Vert(CT) -0.08 Horz(CT) -0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.01	6	>999	240	Weight: 96 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BS 2x4 SP No.3 *Except* 4-5: 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied, except end verticals.
 Rigid ceiling directly applied.
 1 Row at midpt 4-5, 3-5

REACTIONS. (lb/size) 5=524/Mechanical, 7=590/0-5-8 Max Horz 7=386(LC 12) Max Uplift 5=-322(LC 12) Max Grav 5=640(LC 19), 7=590(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-489/0, 2-7=-528/33

BOT CHORD 6-7=-485/469, 5-6=-222/422

WEBS 3-5=-584/309, 2-6=-48/329

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=322.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.51 BC 0.41 WB 0.25 Matrix-AS	DEFL. Vert(LL) - Vert(CT) - Horz(CT) - Wind(LL)	in -0.04 -0.08 -0.01 0.01	(loc) 5-6 5-6 5 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4	SP No.2		BRACING- TOP CHORD)	Structu	ıral wood	sheathing of	directly applied, except	end verticals.

BOT CHORD

WEBS

Rigid ceiling directly applied.

4-5, 3-5

1 Row at midpt

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3 *Except*

 4-5: 2x4 SP No.2

 REACTIONS.
 (lb/size) 5=522/Mechanical, 7=6

(lb/size) 5=522/Mechanical, 7=618/0-5-8 Max Horz 7=397(LC 12) Max Uplift 5=-322(LC 12)

Max Grav 5=638(LC 19), 7=618(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-487/0, 2-7=-556/56

BOT CHORD 6-7=-488/466, 5-6=-222/421

WEBS 3-5=-582/309, 2-6=-45/337

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=322.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

		1-11-8 6-10-0 1-11-8 4-10-8	4-1-8	13-5-0 13-5-8		
Plate Offsets (X,Y)	[2:0-3-8,Edge], [3:0-4-0,0-3-0]			200 000		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.71 BC 0.37 WB 0.24 Matrix-AS	DEFL. in Vert(LL) -0.04 Vert(CT) -0.08 Horz(CT) 0.05 Wind(LL) 0.06	(loc) l/defl L/d 9-10 >999 360 9-10 >999 240 6 n/a n/a 10-11 >999 240	PLATES GRIP MT20 244/190 Weight: 106 lb FT =	0 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF 4-6: 2x	P No.2 P No.2 P No.3 *Except* 44 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir Rigid ceiling directly applied. 1 Row at midpt 4	ectly applied, except end vertic	als.

REACTIONS. (lb/size) 6=526/Mechanical, 14=589/0-5-8 Max Horz 14=385(LC 12) Max Uplift 6=-319(LC 12) Max Grav 6=594(LC 19), 14=589(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-543/0, 6-8=-627/336, 12-14=-572/23, 2-12=-519/62

- BOT CHORD 13-14=-293/155, 11-12=-698/746, 10-11=-698/746, 9-10=-263/488, 8-9=-263/488
- WEBS 2-10=-261/442, 3-10=-20/266, 3-8=-630/342, 12-13=-173/328

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=319.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-541/0, 6-8=-626/336, 12-14=-599/46, 2-12=-546/87

BOT CHORD 13-14=-301/162, 11-12=-698/734, 10-11=-698/734, 9-10=-262/486, 8-9=-262/486

WEBS 2-10=-251/441, 3-10=-21/265, 3-8=-628/342, 12-13=-181/336

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=319.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 16,2019

2=164, 4=164.6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	1					19-11-0						
	1					19-11-0						1
Plate Offsets	s (X,Y)	[2:0-2-11,Edge], [2:0-0-0,	,0-1-1], [5:0-3	-0,0-2-4], [9:0-	·3-0,0-2-4], [12:0-2-11,Edge], [1	2:Edge	e,0-1-1],	[17:0-3-0),0-3-0]		
LOADING (TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 212014	CSI. TC BC WB Matrix	0.16 0.11 0.05 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.00	(loc) 13 13 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 90 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI OTHERS	D 2x4 SP D 2x4 SP 2x4 SP	2 No.2 2 No.2 2 No.3				BRACING- TOP CHOR BOT CHOR	D	Structu 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing dir (6-0-0 max.):	rectly applied or 6-0-0 5-9. or 10-0-0 oc bracing.	oc purlins, except

10-11-0

WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=-58(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 17, 18, 16, 12 except 20=-119(LC 12), 14=-118(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 17, 18, 19, 16, 15, 12 except 20=310(LC 23), 14=310(LC 24)

= :)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (12)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17, 18, 16, 12 except (jt=lb) 20=119, 14=118.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

REACTIONS. (Ib/size) 2=319/0-3-0, 5=199/0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-167(LC 8), 5=-116(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=167, 5=116.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

REACTIONS. (Ib/size) 2=319/0-3-0, 5=199/0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-167(LC 8), 5=-116(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

 Wind: ASCÉ 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=167, 5=116.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

3CLL 0.0 * Rep Stress Incr YES WB	0.07 Horz(CT) (0.00 1 0.00 6	n/r 120 n/a n/a		
3CDL 10.0 Code IRC2015/1PI2014 Matri 	BRACING- TOP CHORD	Structural	wood sheathing directly	Weight: 43 lb	FI = 20%

TOP CHORD	2X6 SP NO.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-6-0.

(lb) - Max Horz 2=130(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7 except 8=-121(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=367(LC 1)

```
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
```

```
3-8=-275/244
WEBS
```

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7 except (jt=lb) 8=121.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8-6-0 Plate Offsets (X,Y)--[2:0-8-0,0-0-4], [3:0-5-5,Edge], [4:0-3-8,Edge] SPACING-DEFL. GRIP LOADING (psf) 2-0-0 CSI. in (loc) l/defl L/d PLATES 244/190 TCLL 20.0 Plate Grip DOL 1.15 тс 0.50 Vert(LL) 0.23 4-7 >437 240 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.42 Vert(CT) -0.19 4-7 >526 240 MT20HS 187/143 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 2 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-AS Weight: 39 lb FT = 20%

TOP CHORD2x6 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 4=334/0-5-8, 2=339/0-3-0 Max Horz 2=124(LC 8) Max Uplift 4=-196(LC 8), 2=-148(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are MT20 plates unless otherwise indicated.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=196, 2=148.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are MT20 plates unless otherwise indicated.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=242, 5=289.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8				9-5-8						10-0-0
		0-6-8				8-11-0						0-6-8
Plate Offsets	s (X,Y)	[2:0-4-12,0-1-9], [6:Edge,	0-2-0]									
LOADING (p	psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	0.0	Plate Grip DOL	1.15	TC C	0.38	Vert(LL)	-0.13	6-11	>884	360	MT20	244/190
TCDL 1	0.0	Lumber DOL	1.15	BC (0.55	Vert(CT)	-0.27	6-11	>442	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	YES	WB C).17	Horz(CT)	-0.02	2	n/a	n/a		
BCDL 1	0.0	Code IRC2015/TF	912014	Matrix-A	AS	Wind(LL)	0.28	6-11	>421	240	Weight: 45 lb	FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS SLIDER REACTIONS	 2x4 SP 2x4 SP 2x4 SP 4-6: 2x4 Left 2x6 (lb/size Max Ho Max Up 	No.2 No.2 *Except* 4 SP No.3 5 SP No.2 2-0-0 e) 6=366/0-3-0, 2=475/0 orz 2=86(LC 11) plift 6=-193(LC 8), 2=-258	0-3-0 3(LC 8)			BRACING- TOP CHOF BOT CHOF	2D	Structu 2-0-0 o Rigid co	ral wood : c purlins (eiling dire	sheathing dire (6-0-0 max.): ctly applied.	ectly applied, except 4-5.	end verticals, and
FORCES. (TOP CHORD BOT CHORD WEBS	(lb) - Max. (D 2-4=-{ D 2-6=-{ 4-6=-{	Comp./Max. Ten All for 590/713 519/434 391/395	ces 250 (lb) or l	less except wl	hen shown.							
NOTES- (1) Wind: ASC MWFRS ((9) CE 7-10; V envelope)	ult=120mph (3-second gu gable end zone and C-C	ıst) Vasd=95mp Exterior(2) zone	oh; TCDL=6.0 e: cantilever le	psf; BCDL=6.0)psf; h=25ft; Ca posed : end ve	at. II; Ex ertical le	ې C; En t and ri	closed; aht expos	sed:		

porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding.

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=193, 2=258.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Vert: 1-3=-60, 3-4=-60, 5-7=-20

Concentrated Loads (lb)

Vert: 4=-24(B) 5=-14(B) 14=-51(B) 15=-3(B) 16=-3(B) 17=-3(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

	F	0-6-8	2-9-8 2-3-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.01 BC 0.02 WB 0.02 Matrix-MP	DEFL. in (loc) l/defl Vert(LL) -0.00 10 >999 3 Vert(CT) -0.00 10 >999 2 Horz(CT) -0.00 5 n/a Wind(LL) 0.00 10 >999 2	L/d PLATES GRIP 360 MT20 244/190 240 n/a 240 Weight: 16 lb FT = 20%

2x6 SP No.2 *Except* TOP CHORD 3-4: 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 5=71/Mechanical, 2=163/0-3-0 Max Horz 2=38(LC 8) Max Uplift 5=-43(LC 8), 2=-85(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(9)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-9-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

```
LUMBER-
```

TOP CHORD 2x6 SP No.2 2x6 SP No.2 BOT CHORD

REACTIONS. 3=52/Mechanical, 4=23/Mechanical, 2=166/0-3-0 (lb/size) Max Horz 2=45(LC 8) Max Uplift 3=-34(LC 8), 4=-14(LC 8), 2=-83(LC 8) Max Grav 3=52(LC 1), 4=38(LC 3), 2=166(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(6)

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8			4-11-0					6-5-8	
Plate Offsets (X,	(,Y) [2:	:0-4-0,0-1-9]			440					1-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *)	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	2-0-0 1.15 1.15 NO 014	CSI. TC 0.60 BC 0.23 WB 0.16 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.01	(loc) 8-13 8-13 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 4-8: 2x4 SP No.2 SLIDER Left 2x6 SP No.2 2-0-0 REACTIONS. (lb/size) 7=503/0-7-0, 2=414/0-3-0 Max Horz 2=101(LC 12)			BRACING- TOP CHOR BOT CHOR	D	Structu except Rigid c	ral wood end verti eiling dire	sheathing diri icals, and 2-0- ectly applied c	ectly applied or 6-0-0 0 oc purlins: 5-8, 5-6. r 8-7-4 oc bracing.	oc purlins,		
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Co 2-4=-33 2-8=-25 5-7=-70	π /=-3(LC 8), 2=-154(LC 8) pmp./Max. Ten All forces (2/223 (3/322, 7-8=-462/610) (2/531	8) s 250 (lb) or ∣	less except when shown.							

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 6-3-12 zone; cantilever left exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 2=154.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 186 lb down and 205 lb up at 5-1-0, and 200 lb down at 5-1-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 5-6=-60, 7-9=-20 Concentrated Loads (lb)

Vert: 15=-360(F=-200)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCED A Mi Tek Affiliate 818 Soundside Road

Edenton, NC 27932

		0-6-8	1									
Plate Off	sets (X,Y)	[2:0-4-8,0-2-1]										
LOADING TCLL TCDL BCLL BCDL	G (psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.36 0.32 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.07 -0.02	(loc) 5-12 5-12 2	l/defl >746 >999 n/a	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/T	712014	Matri	x-AS						Weight: 28 lb	F1 = 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 2-0-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=319/0-3-0, 5=199/0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-167(LC 8), 5=-116(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

0-6-8

NOTES- (10)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=167, 5=116.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1 (0-6-8	
	- (0-6-8	1
Plate Offsets (X,Y)	[2:0-4-0.0-1-9]		

LOADING TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.36 BC 0.26 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.03 5-10 >999 360 MT20 244/19 Vert(CT) -0.07 5-10 >999 240 MT20 244/19 Horz(CT) 0.02 2 n/a n/a A A)
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.04 5-10 >999 240 Weight: 26 lb FT :	= 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 2-0-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

- REACTIONS. (lb/size) 2=319/0-3-0, 5=199/0-1-8 Max Horz 2=87(LC 11) Max Uplift 2=-107(LC 8), 5=-57(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCÉ 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=107.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 7=544/0-7-0, 2=423/0-3-0 Max Horz 2=82(LC 12) Max Uplift 2=-64(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-352/7

BOT CHORD 2-8=-57/361, 7-8=-68/648

WEBS 5-7=-745/63

NOTES- (9)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 6-3-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-6=-60, 7-9=-20

Concentrated Loads (lb) Vert: 15=-410

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8			
Plate Offsets (X,Y)	[4:Edge,0-1-14]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.31 WB 0.00 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) 0.09 4-9 >766 240 Vert(CT) -0.07 4-9 >999 240 Horz(CT) -0.00 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 21 lb FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 2=319/0-3-0, 4=199/0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-173(LC 8), 4=-110(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

0-6-8

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=173, 4=110.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:18.0

⊢ <u>0-6</u>	3-8 <u>2-9-7</u> 3-8 <u>2-2-15</u>	4-5-1 1-7-10	6-0-11	7-8-6	9-4-0	9-5-8 10-0-0
Plate Offsets (X,Y)	[3:0-5-0,0-2-6], [8:Edge,0-1-8], [9:Edge,	0-2-0], [14:0-1-11,0-0-7]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.46 WB 0.01 Matrix-MS	DEFL. in Vert(LL) 0.08 12 Vert(CT) -0.10 12 Horz(CT) 0.01	loc) l/defl L/d 2-13 >999 240 2-13 >999 240 10 n/a n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (Ib/size	No.2 No.2 No.2) 10=409/0-3-0, 2=487/0-3-0		BRACING- TOP CHORD S e BOT CHORD R	tructural wood sheathing di kcept end verticals, and 2-0 igid ceiling directly applied	rectly applied or 6-0-0 I-0 oc purlins (6-0-0 m or 10-0-0 oc bracing.) oc purlins, lax.): 3-8.
Max He Max U	orz 2=38(LC 5) olift 10=-245(LC 5) 2=-290(LC 4)					
FORCES. (lb) - Max. TOP CHORD 2-3=-1 BOT CHORD 2-14= 9-10=	Comp./Max. Ten All forces 250 (lb) or 615/328, 3-4=-598/328, 4-5=-598/328, 5 -329/590, 13-14=-333/598, 12-13=-333/ -333/598	less except when shown, -6=-598/328, 6-7=-598/3 598, 11-12=-333/598, 10	28, 7-8=-598/328 -11=-333/598,			
 NOTES- 1) Wind: ASCE 7-10; V MWFRS (envelope) exposed; Lumber DC 2) Provide adequate dr 3) This truss has been 4) * This truss has been 4) * This truss has been 4) * This truss has been 5) Provide mechanical 10=245, 2=290. 6) Graphical purlin repr 7) Use Simpson Strong 2-0-12 from the left 6 8) Fill all nail holes whe 9) Hanger(s) or other ct 4-0-12, 4 lb down an chord. The design/s 10) In the LOAD CASE LOAD CASE(S) Stand 	ult=120mph (3-second gust) Vasd=95m gable end zone; cantilever left and right DL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti ottom chord and any other members. connection (by others) of truss to bearin esentation does not depict the size or th -Tie LUS24 (4-10d Girder, 2-10d Truss, end to 9-10-4 to connect truss(es) to bac re hanger is in contact with lumber. connection device(s) shall be provided su d 39 lb up at 6-0-12, and 4 lb down and election of such connection device(s) is (S) section, loads applied to the face of tard	ph; TCDL=6.0psf; BCDL= exposed ; end vertical lef e load nonconcurrent with he bottom chord in all are g plate capable of withsta e orientation of the purlin Single Ply Girder) or equ k face of bottom chord. fficient to support concen 39 lb up at 8-0-12, and the responsibility of other the truss are noted as fro	6.0psf; h=25ft; Cat. II; Exp t and right exposed; porch any other live loads. as where a rectangle 3-6-0 inding 100 lb uplift at joint(s along the top and/or bottor ivalent spaced at 2-0-0 oc i trated load(s) 4 lb down an 15 lb down and 49 lb up at s. nt (F) or back (B).	C; Enclosed; eft and right tall by 2-0-0 wide) except (jt=lb) n chord. max. starting at d 39 lb up at 9-10-4 on top	ALLOR T	H CARO
1) Dead + Roof Live (bi Uniform Loads (plf) Vert: 1-3=-6 Concentrated Loads Vert: 8=-15(alanced): Lumber Increase=1.15, Plate I 0, 3-8=-60, 2-9=-20 (lb) B) 9=-7(B) 12=0(B) 21=-34(B) 22=0(B) 2	ncrease=1.15 23=0(B)			TNDRE	MGINEER. ON

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:18.5

F	0-6-8	4-9-7 4-2-15		<u>9-5-8</u> 4-8-1	
Plate Offsets (X,Y)	[3:0-1-12,0-0-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.27 WB 0.29 Matrix-AS	DEFL. in Vert(LL) 0.04 Vert(CT) -0.04 Horz(CT) -0.01	(loc) l/defl L/d 6-7 >999 240 6-7 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS (Ib/size Max H: Max U	No.2 No.2 No.3 a) 6=387/0-3-0, 2=453/0-3-0 orz 2=56(LC 11) plift 6=-191(LC 9), 2=-250(LC 8)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directl 2-0-0 oc purlins (6-0-0 max.): 3-4 Rigid ceiling directly applied.	y applied, except end verticals, and
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-7=- WEBS 3-6=-	Comp./Max. Ten All forces 250 (Il 722/824 844/678, 6-7=-822/670 619/724	o) or less except when shown.			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) porch left and right e 3) Provide adequate dr	e loads have been considered for thi ult=120mph (3-second gust) Vasd= gable end zone and C-C Exterior(2) exposed;C-C for members and force ainage to prevent water ponding.	s design. 95mph; TCDL=6.0psf; BCDL=6.0p zone; cantilever left and right exp s & MWFRS for reactions shown;	psf; h=25ft; Cat. II; Ex oosed ; end vertical le Lumber DOL=1.60 p	p C; Enclosed; ft and right exposed; ate grip DOL=1.60	

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=191, 2=250.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8		<u>1-9-0</u> 1-2-8		2-0-1 0-3-1	<u>2-9-8</u> 0-9-7	———————————————————————————————————————
Plate Offsets (X,Y)	[3:0-3-0,0-2-12]							
LOADING (psf)	SPACING- 2-	0-0 C	SI.	DEFL.	in (loc) l/def	L/d	PLATES	GRIP

TCLL 20.0 Dista Crip DOL 1.15 TC 0.07 V/ort/LL\ 0.00 6 x 000 260 MT20 244/100	SI. DEFL. in (loc) I/defl L/d PLATES GRIP	CSI.	SPACING- 2-0-0	LOADING (psf)
10LL 20.0 Plate Glip DOL 1.15 10 0.07 Vett(LL) -0.00 6 >999 360 W120 244/190	C 0.07 Vert(LL) -0.00 6 >999 360 MT20 244/190	TC 0.07	Plate Grip DOL 1.15	TCLL 20.0
TCDL 10.0 Lumber DOL 1.15 BC 0.07 Vert(CT) -0.00 6 >999 240	3C 0.07 Vert(CT) -0.00 6 >999 240	BC 0.07	Lumber DOL 1.15	TCDL 10.0
BCLL 0.0 * Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 5 n/a n/a	VB 0.00 Horz(CT) 0.00 5 n/a n/a	WB 0.00	Rep Stress Incr YES	BCLL 0.0 *
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MR Wind(LL) 0.00 6 >999 240 Weight: 10 lb FT = 20%	/latrix-MR Wind(LL) 0.00 6 >999 240 Weight: 10 lb FT = 20%	Matrix-MR	Code IRC2015/TPI2014	BCDL 10.0

BRACING-

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-9-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=54/Mechanical, 2=209/0-3-0 Max Horz 2=35(LC 8) Max Uplift 5=-32(LC 9), 2=-126(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=126.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	F	0-6-8 0-6-8	2-9-8 2-3-0	I
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.07 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 9 >999 360 Vert(CT) -0.00 9 >999 240 Horz(CT) -0.00 3 n/a n/a Wind(LL) 0.00 9 >999 240	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=43/Mechanical, 4=16/Mechanical, 2=212/0-3-0 Max Horz 2=43(LC 8) Max Uplift 3=-24(LC 12), 4=-10(LC 9), 2=-125(LC 8) Max Grav 3=43(LC 1), 4=34(LC 3), 2=212(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right
- exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=125.

SEAL 45844 April 16,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-9-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

		0-6-8			5-1	11-8				
		0-6-8				1				
Plate Off	sets (X,Y)	[4:Edge,0-1-14]								
LOADIN TCLL TCDL BCU	G (psf) 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.36 BC 0.31 WB 0.00	DEFL. Vert(LL) Vert(CT) Hor7(CT)	in (loc) 0.09 4-11 -0.07 4-11 -0.00 2	l/defl >762 >999	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TP	12014	Matrix-AS		0.00 2	n/u	n/a	Weight: 22 lb	FT = 20%

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=319/0-3-0, 4=199/0-1-8 Max Horz 2=74(LC 11) Max Uplift 2=-178(LC 8), 4=-105(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=178, 4=105.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8		4-11-0 4-4-8					<u>5-11-8</u> 1-0-8	4
Plate Offsets (X,Y)	[2:0-4-0,0-1-9], [7:Edge,0-1-14]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.25 BC 0.13 WB 0.12 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.01	(loc) 8-13 8-13 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF 4-8: 2x SLIDER Left 2x REACTIONS. (Ib/sizt Max H	P No.2 P No.3 *Except* 4 SP No.2 6 SP No.2 1-11-12 e) 2=319/0-3-0, 7=199/0-1-8 lorz 2=96(LC 12)		BRACING- TOP CHOR BOT CHOR	D	Structu except Rigid c	ral wood end verti eiling dire	sheathing dira icals, and 2-0- ectly applied o	ectly applied or 5-11- 0 oc purlins: 5-8, 5-6. r 10-0-0 oc bracing.	8 oc purlins,
FORCES. (Ib) - Max. TOP CHORD 5-6=-	pint 2=-172(LC 8), 7=-92(LC 9) Comp./Max. Ten All forces 250 (lb) or -224/356, 6-7=-219/328	less except when shown.							

URL

WEBS 6-8=-465/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 5-9-12 zone; cantilever left exposed; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 7.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 2=172.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8		4-9-8					9-	5-8	1	10-0-0
		0-6-8		4-3-0					4-	8-0	1	0-6-8
Plate Offset	s (X,Y)	[2:0-4-0,0-1-9], [5:Edge,0)-1-8]									
LOADING (TCLL 2 TCDL 6 BCLL BCDL 7	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.39 0.26 0.24 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.05 -0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS SLIDER	D 2x4 SF D 2x4 SF 2x4 SF Left 2x	P No.2 P No.2 P No.3 6 SP No.2 1-11-12				BRACING- TOP CHOF BOT CHOF	RD RD	Structu 2-0-0 o Rigid ce	ral wood c purlins eiling dire	sheathing dired (6-0-0 max.): 4 ectly applied.	ctly applied, except I-5.	end verticals, and
REACTION	S. (Ib/size Max H Max U	e) 6=366/0-3-0, 2=475/ lorz 2=75(LC 11) lplift 6=-192(LC 8), 2=-25	0-3-0 9(LC 8)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-565/658 BOT CHORD 2-7=-678/523, 6-7=-694/528 WEBS 4-6=-461/605												
NOTES-												

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=192, 2=259.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8	2-9-8		6-4-12		9-5-8	8	10-0-0
	0-6-8	2-3-0	1	3-7-4		3-0-1	2	0-6-8
Plate Offsets (X,Y)	[2:0-3-12,0-7-13]			1				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 NO IPI2014	CSI. TC 0.17 BC 0.22 WB 0.14 Matrix-MS	DEFL. i Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) 0.0	n (loc) 3 8-9 3 8-9 0 7	l/defl L/d >999 240 >999 240 n/a n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.2	No.2 No.2 No.2			BRACING- TOP CHORD BOT CHORD	Structura except e Rigid cei	al wood sheathing dir nd verticals, and 2-0- ling directly applied o	ectly applied or 6-0-0 0 oc purlins (6-0-0 m or 10-0-0 oc bracing.	l oc purlins, iax.): 3-5.
REACTIONS. (Ib/size Max He Max U	e) 2=448/0-3-0, 7=400 orz 2=50(LC 7) plift 2=-249(LC 4), 7=-2	6/0-3-0 49(LC 5)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-9=- WEBS 5-8=-	Comp./Max. Ten All f 511/270, 3-4=-567/306. 270/479, 8-9=-269/475 304/573	orces 250 (lb) or 4-5=-567/306, 5	less except when shown -6=-287/173					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) exposed; Lumber DO 3) Provide adequate dr 4) This truss has been will fit between the b 6) Provide mechanical 2=249, 7=249. 7) Graphical purlin repr 8) Use Simpson Strong 4-0-12 from the left c 9) Fill all nail holes whe 10) Hanger(s) or other 4-0-12, 1 lb down a chord. The design/ 11) In the LOAD CASE 	e loads have been consi ult=120mph (3-second gable end zone; cantile DL=1.60 plate grip DOL ainage to prevent wate designed for a 10.0 psf in designed for a live loa ottom chord and any of connection (by others) · resentation does not de p-Tie LUS24 (4-10d Gird and to 9-10-4 to connect ere hanger is in contact connection device(s) sf und 48 lb up at 6-0-12, (selection of such connu- (S) section, loads appli	dered for this der gust) Vasd=95m ver left and right =1.60 ponding. bottom chord live d of 20.0psf on the ner members. of truss to bearin bict the size or the ler, 2-10d Truss, t truss(es) to bac with lumber. and 1 lb down an action device(s) is ed to the face of	sign. bh; TCDL=6.0psf; BCDL= exposed ; end vertical lef e load nonconcurrent with the bottom chord in all are g plate capable of withsta e orientation of the purlin Single Ply Girder) or equ k face of bottom chord. ufficient to support conce d 48 lb up at 8-0-12, and s the responsibility of other the truss are noted as fro	=6.0psf; h=25ft; Cat. II; ft and right exposed; po n any other live loads. eas where a rectangle 3 anding 100 lb uplift at jo along the top and/or bo ivalent spaced at 2-0-0 entrated load(s) 1 lb dow d 22 lb down and 58 lb o ers. int (F) or back (B).	Exp C; Enci rch left and -6-0 tall by int(s) excep ottom chord oc max. sta vn and 48 ll up at 9-10-	losed; right 2-0-0 wide ot (jt=lb) I. arting at b up at 4 on top	Aring	SEAL 45844
LOAD CASE(S) Stand 1) Dead + Roof Live (ba Uniform Loads (plf)	dard alanced): Lumber Incre	ase=1.15, Plate I	ncrease=1.15				NORE	WGINEE GOTT

- chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

Vert: 1-3=-60, 3-5=-60, 6-10=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REW

JOY The John

April 16,2019

Job	Truss	Truss Type	Qty	Ply	H&H/Jordan/	
					13675	50854
1736601	J23	Half Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 15 15:54:27 2019 Page	2

ID:h9G7FShkwdXsXwp5Zi0SNOzktn2-C6Q6E03Chffb?zE?yeYzIqnPNKBimY9wpE?MLjzQQZw

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-22(B) 6=-2(B) 18=4(B) 19=4(B) 20=4(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8	2-9-8 2-3-0	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 5 >999 360 Vert(CT) -0.00 5 >999 240 Horz(CT) -0.00 3 n/a n/a Wind(LL) 0.00 8 >999 240	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (lb/size) 3=49/Mechanical, 2=190/0-3-0, 4=10/Mechanical Max Horz 2=38(LC 8) Max Uplift 3=-32(LC 12), 2=-101(LC 8), 4=-9(LC 9) Max Grav 3=49(LC 1), 2=190(LC 1), 4=33(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=101.

Structural wood sheathing directly applied or 2-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

