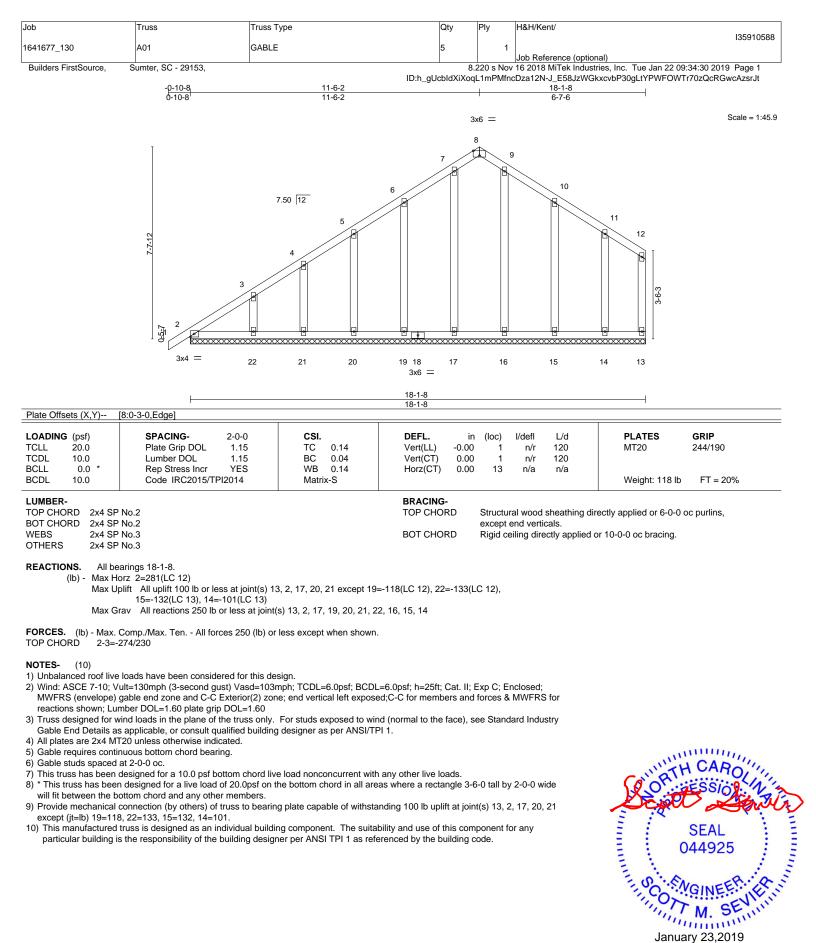


( 

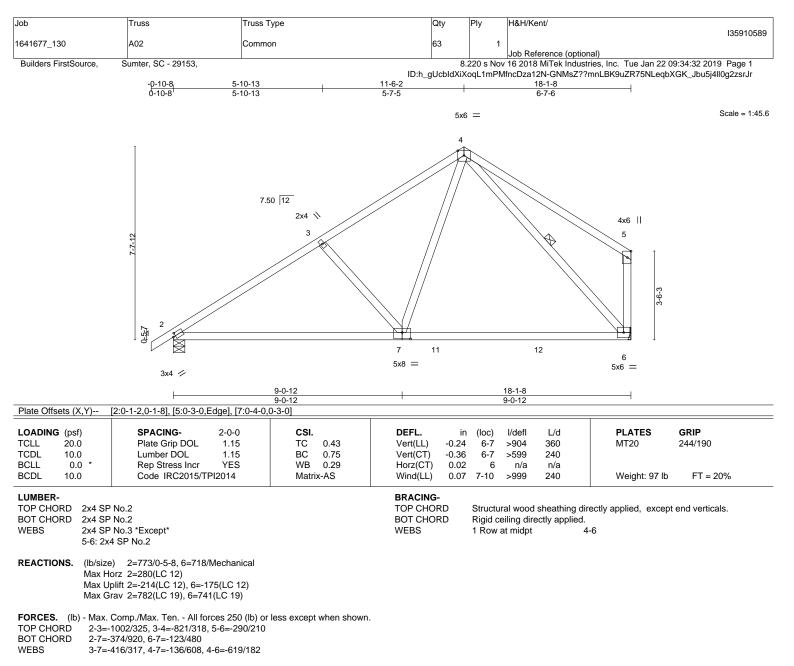
| RE: 1641677_130 - H&H/Ker<br>Site Information:<br>Project Customer: H AND H<br>Lot/Block: ALL<br>Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          | me: 164167<br>Subdivisio                                                                                    |                                                     | 8                                                                         | Trenco<br>818 Soundside Rd<br>Edenton, NC 27932 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| Address:<br>City:<br>General Truss Engineering C<br>Drawings Show Special Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ing Condi                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                     | _                                                                         |                                                 |
| Design Code: IRC2015/TPI20<br>Wind Code: ASCE 7-10 Wind S<br>Roof Load: 40.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | mph                                                                                                         | Design Program<br>Design Method:<br>Floor Load: N/A | MWFRS (Env                                                                | velope)/C-C hybrid Wind ASCE 7-10               |
| Mean Roof Height (feet): 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             | Exposure Categ                                      | ory: C                                                                    |                                                 |
| No.         Seal#         Truss Name           1         135910588         A01           2         135910590         A03           4         135910591         A04           5         135910592         A05           6         135910593         A06           7         135910594         A07           8         135910595         A08           9         135910596         A09           10         135910597         B01           11         135910598         B02           12         135910600         B04           14         135910600         B04           14         135910602         B06           15         135910603         B07           17         135910604         C01           18         135910605         C02           19         135910606         C03           20         135910606         C03           21         135910610         CP02           24         135910612         D02           26         135910613         D03           27         135910614         FG01           28         1359 | 1/23/19 3<br>1/23/19 3<br>1/23/19 3<br>1/23/19 3<br>1/23/19 4<br>1/23/19 4<br>1/23/19 4<br>1/23/19 1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19 | No. Seal#<br>5 1359106;<br>6 1359106;<br>7 1359106;<br>9 1359106;<br>0 1359106;<br>1 1359106;<br>2 1359106; |                                                     | 1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19<br>1/23/19 |                                                 |


TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 1



Sevier, Scott


January 23,2019



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932



#### NOTES- (8)

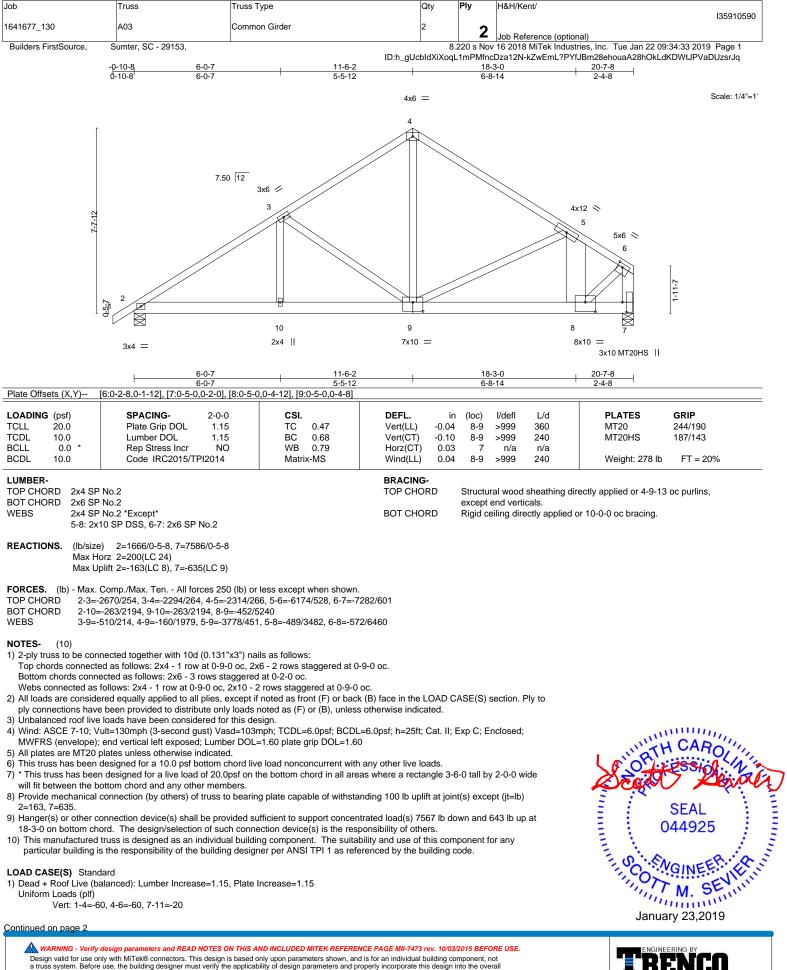
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=214, 6=175.


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



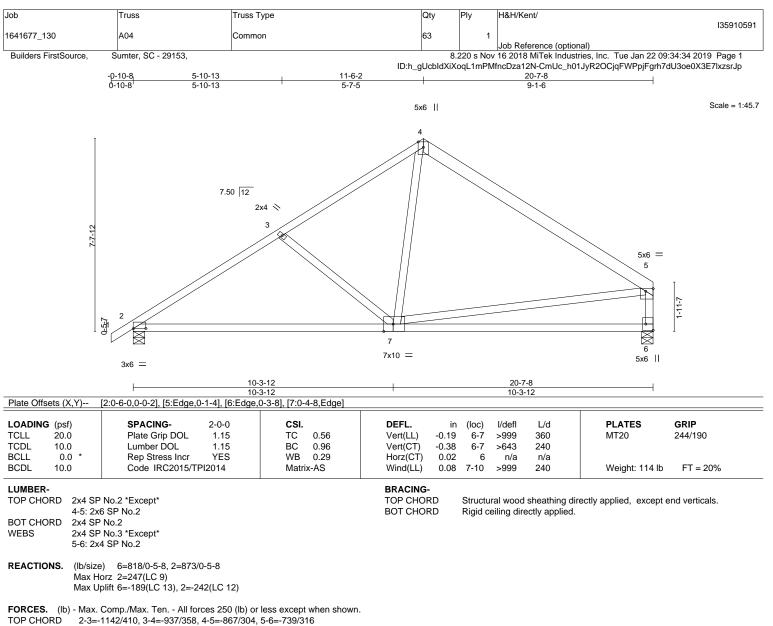
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





818 Soundside Road Edenton, NC 27932

beign valid for dise only with with exercitions. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


| Job                   | Truss               | Truss Type    | Qty | Ply       | H&H/Kent/                                                      |
|-----------------------|---------------------|---------------|-----|-----------|----------------------------------------------------------------|
|                       |                     |               |     |           | 135910590                                                      |
| 1641677_130           | A03                 | Common Girder | 2   | 2         |                                                                |
|                       |                     |               |     | 2         | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |               | 8   | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:34:33 2019 Page 2 |

ID:h\_gUcbIdXiXoqL1mPMfncDza12N-kZwEmL?PYfJBm28ehouaA28hOkLdKDWtJPVaDUzsrJq

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-7567(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





BOT CHORD

2-7=-371/996, 6-7=-100/257 WEBS 3-7=-428/317, 4-7=-60/505, 5-7=-98/470

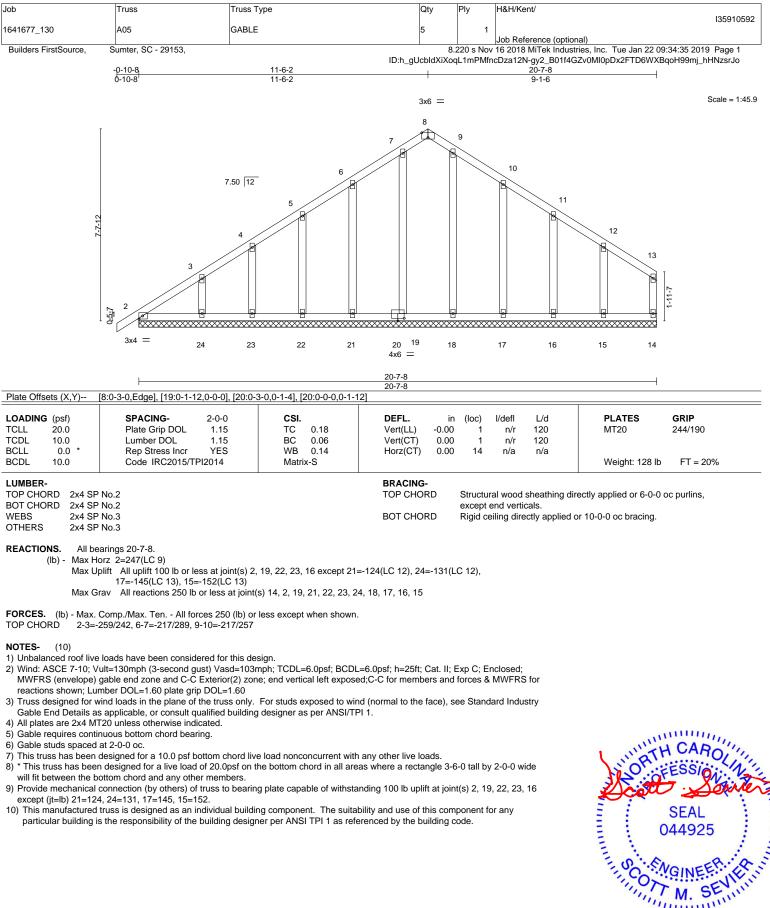
NOTES-(7)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=189, 2=242.

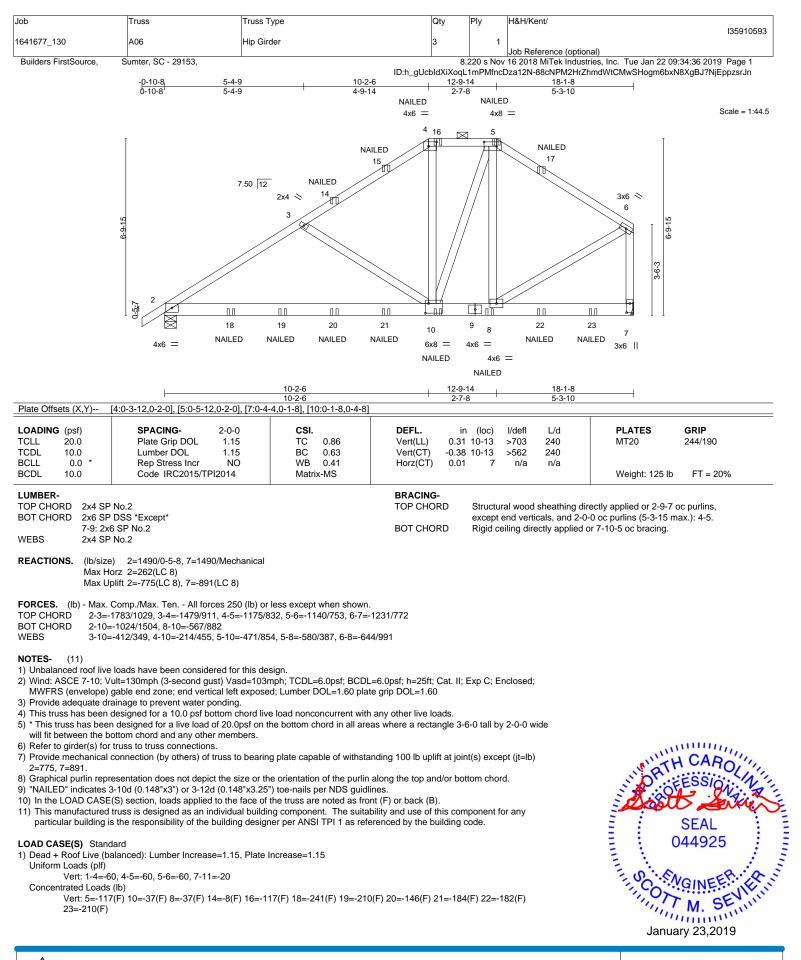

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

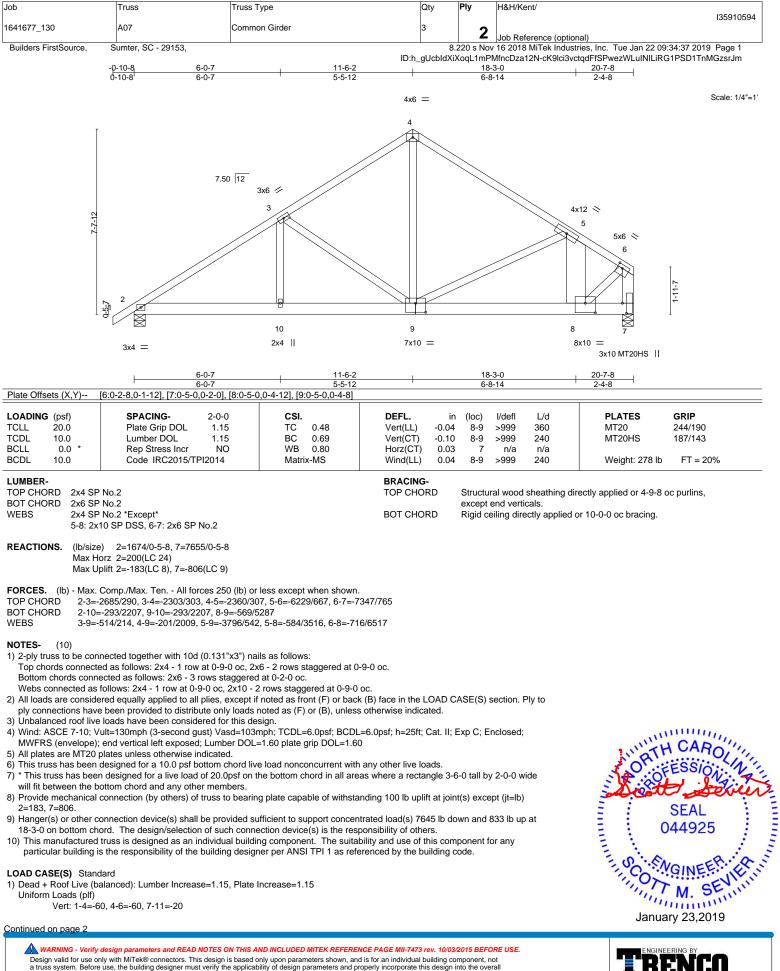


🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






S Μ. munn January 23,2019


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

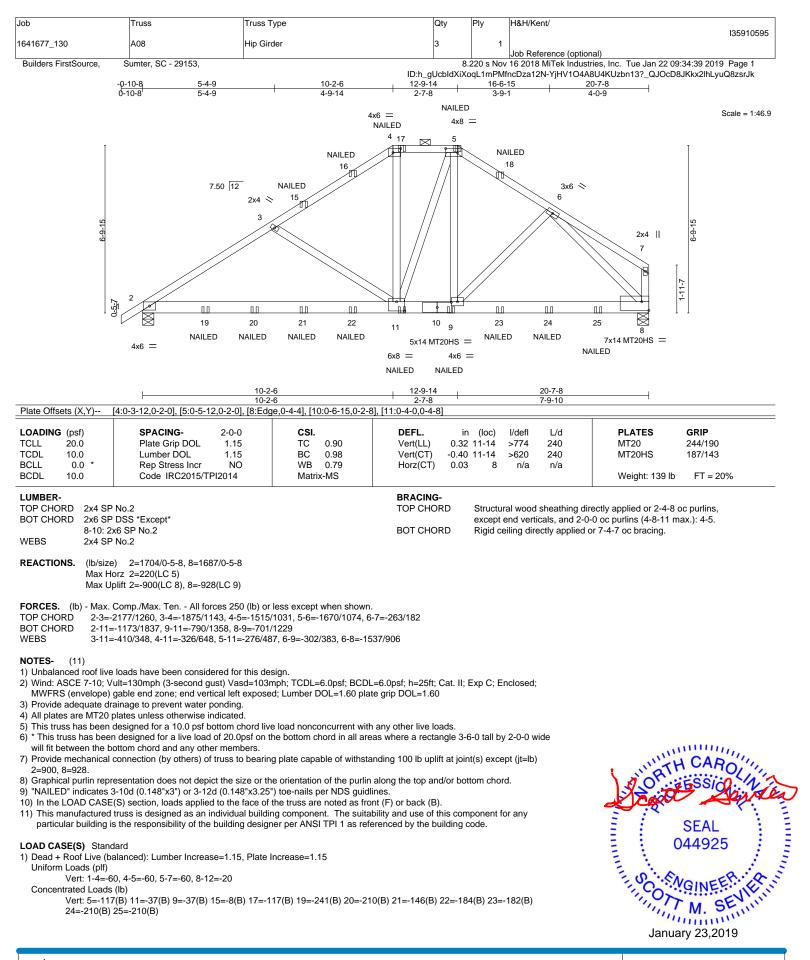
Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

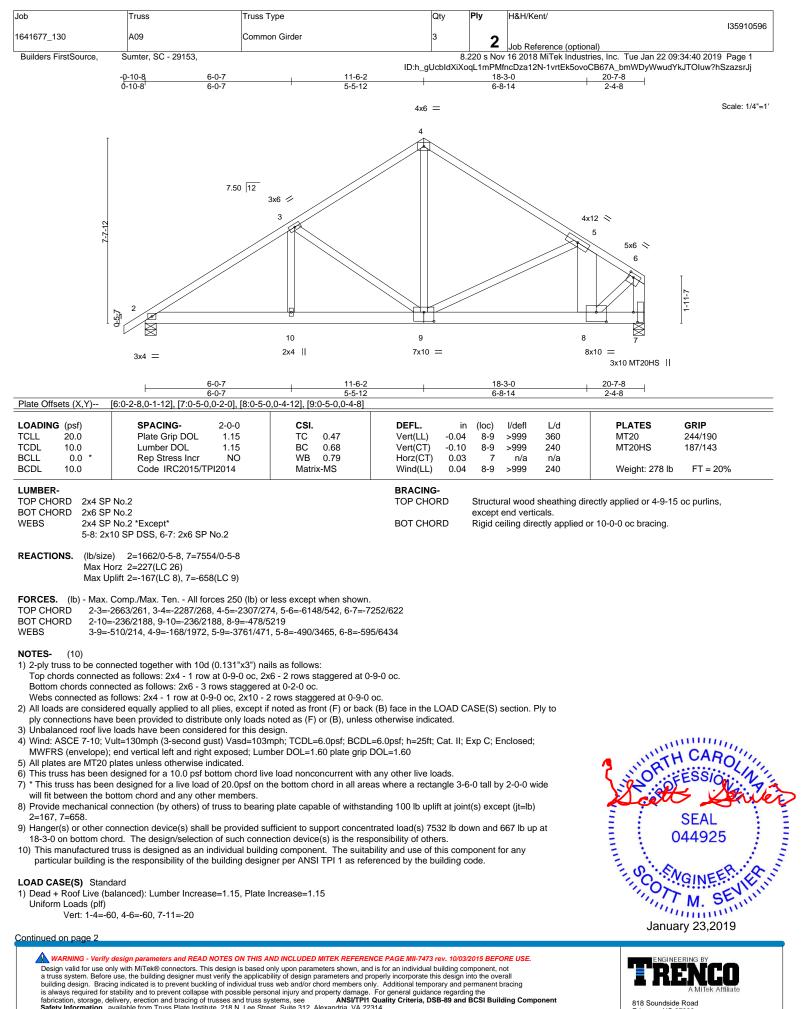


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


| Job                   | Truss               | Truss Type    | Qty | Ply       | H&H/Kent/                                                      |
|-----------------------|---------------------|---------------|-----|-----------|----------------------------------------------------------------|
|                       |                     |               |     |           | 135910594                                                      |
| 1641677_130           | A07                 | Common Girder | 3   | 2         |                                                                |
|                       |                     |               |     | 2         | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |               | 8   | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:34:37 2019 Page 2 |

ID:h\_gUcbIdXiXoqL1mPMfncDza12N-cK9lci3vctqdFfSPwezWLuINILiRG1PSD1TnMGzsrJm

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 8=-7645(F)


> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



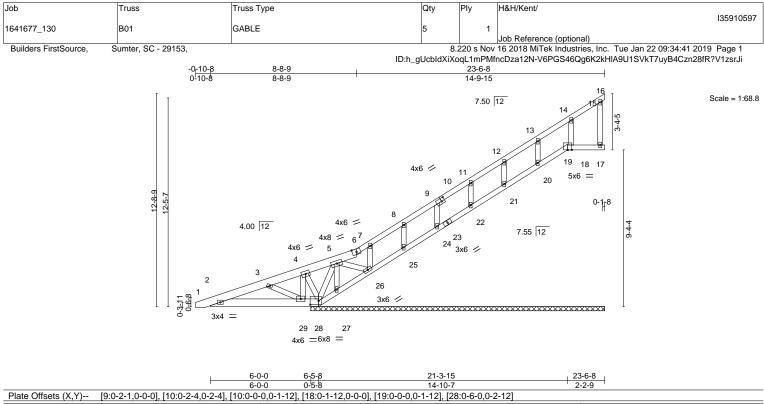


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





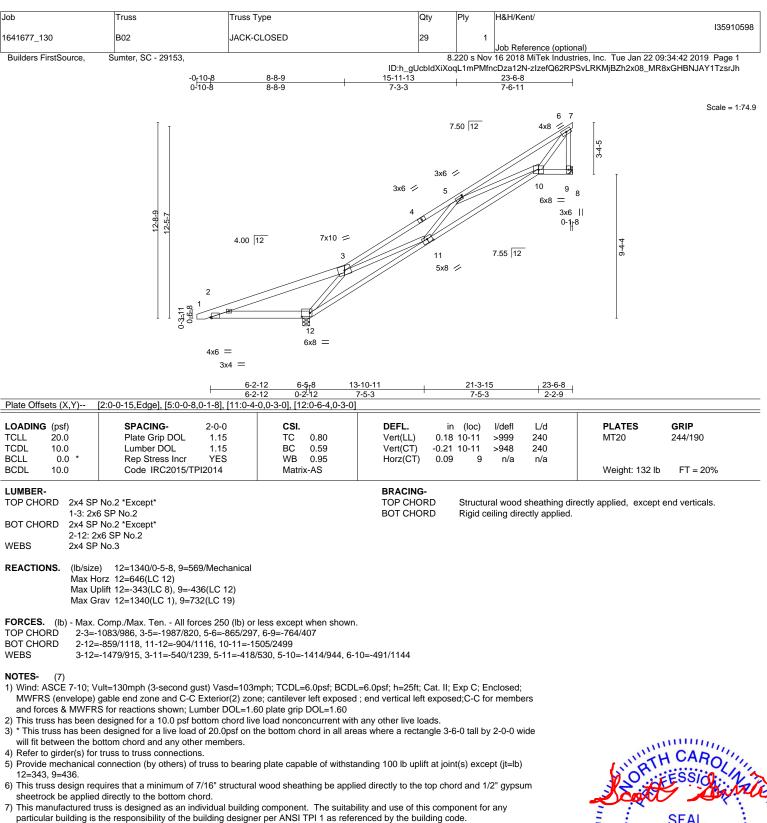
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


| Job                   | Truss               | Truss Type    | Qty | Ply       | H&H/Kent/                                                      |
|-----------------------|---------------------|---------------|-----|-----------|----------------------------------------------------------------|
|                       |                     |               |     |           | 135910596                                                      |
| 1641677_130           | A09                 | Common Girder | 3   | 2         |                                                                |
|                       |                     |               |     | <b>_</b>  | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |               | 8   | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:34:40 2019 Page 2 |

ID:h\_gUcbIdXiXoqL1mPMfncDza12N-1vrtEk5ovoCB67A\_bmWDyWwudYkJTOIuw?hSzazsrJj

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 8=-7532(F)

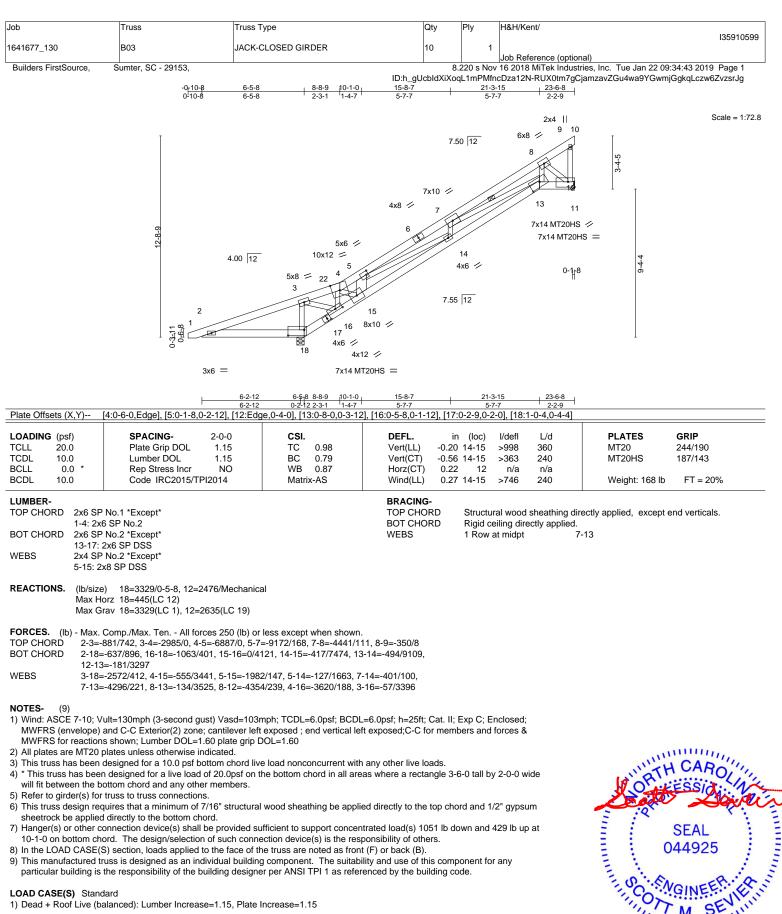
> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






| OP CHORD     2x4 SP No.2 *Except*     TOP CHORD     Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.       VOT CHORD     2x4 SP No.2 *Except*     BOT CHORD     Rigid ceiling directly applied or 6-0-0 oc bracing.       2x8 SP No.2     2x8 SP No.2     BOT CHORD     Rigid ceiling directly applied or 6-0-0 oc bracing.       VEBS     2x4 SP No.3     2x4 SP No.3     Structural wood sheathing directly applied or 6-0-0 oc bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOADING         (psf)           FCLL         20.0           FCDL         10.0           BCLL         0.0           BCDL         10.0                                                                                                                                                                                                                                                                                                  | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>CSI.</b><br>TC 0.18<br>BC 0.19<br>WB 0.26<br>Matrix-S                                                                                                                                                                                                            | DEFL.inVert(LL)0.00Vert(CT)-0.00Horz(CT)-0.01                                                                                                                                                            | ) 1-2 n/r                                                                                                               | L/d<br>120<br>120<br>n/a    | PLATES<br>MT20<br>Weight: 131 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>GRIP</b><br>244/190<br>FT = 20% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <ul> <li>OP CHORD 2-3=-616/510, 3-4=-802/747, 4-5=-964/895, 5-6=-539/415, 6-7=-535/424, 7-8=-501/400, 8-9=-419/333, 9-11=-344/274, 11-12=-267/214</li> <li>OT CHORD 2-29=-442(610, 22-29=-691/861, 7-2-8=-717/443, 26-27=-712/438</li> <li>4-29=-370/287, 5-28=-610/383, 3-29=-280/285, 4-28=-330/455, 5-26=-387/634</li> <li><b>IOTES-</b> (10)</li> <li>) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60</li> <li>) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>) All plates are 2x4 MT20 unless otherwise indicated.</li> <li>) Gable studs spaced at 2-0-0 oc.</li> <li>) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.</li> <li>) Bearing at joint(s) 16, 19, 20, 21, 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity to bearing surface.</li> <li>) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 19, 17, 18, 20, 21, 22, 24, 27 except (it=lb) 28=777, 25=110, 26=434.</li> <li>) Non Standard bearing condition. Review required.</li> <li>) Non Standard bearing condition. Review required.</li> <li>) Non Standard bearing condition.</li> <li>) Non Standard bearing condition. Tweiwer the plate and plate pipe DASI TPI 1 as referenced by the building code.</li> </ul> | 1-6: 2xi<br>30T CHORD 2x4 SP<br>2-28: 2<br>VEBS 2x4 SP<br>DTHERS 2x4 SP<br>REACTIONS. All be<br>(lb) - Max Hi<br>Max U                                                                                                                                                                                                                                                                                                                | 6 SP No.2 *Except*<br>x6 SP No.2 *Except*<br>x6 SP No.2<br>No.3<br>No.3<br>No.3<br>earings 17-6-8.<br>orz 28=648(LC 12)<br>plift All uplift 100 lb or less at joint(s) 1<br>except 28=-777(LC 8), 25=-110(LC<br>rav All reactions 250 lb or less at joint                                                                                                                                                                                                                                                                                                                                                 | 12), 26=-434(LC 1)<br>(s) 16, 19, 17, 18, 20, 21, 2                                                                                                                                                                                                                 | TOP CHORD<br>BOT CHORD<br>4, 27                                                                                                                                                                          | except end ver                                                                                                          | ticals.                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oc purlins,                        |
| <ul> <li>Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60</li> <li>Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>All plates are 2x4 MT20 unless otherwise indicated.</li> <li>Gable studs spaced at 2-0-0 oc.</li> <li>This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.</li> <li>Bearing at joint(s) 16, 19, 20, 21, 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 19, 17, 18, 20, 21, 22, 24, 27 except (it=lb) 28=777, 25=110, 26=434.</li> <li>Non Standard bearing condition. Review required.</li> <li>This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.</li> </ul>                                                                                                                                                                                                                                      | OP CHORD 2-3=-<br>8-9=-<br>OT CHORD 2-29=                                                                                                                                                                                                                                                                                                                                                                                             | 616/510, 3-4=-802/747, 4-5=-964/895, 4<br>-419/333, 9-11=-344/274, 11-12=-267/2<br>442/610, 28-29=-691/861, 27-28=-717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-6=-539/415, 6-7=-535/42<br>14<br>/443, 26-27=-712/438                                                                                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Wind: ASCE 7-10; V<br/>MWFRS (envelope)<br/>and forces &amp; MWFR</li> <li>Truss designed for w<br/>Gable End Details a:</li> <li>All plates are 2x4 M</li> <li>Gable studs spaced</li> <li>This truss has been<br/>will fit between the b</li> <li>Bearing at joint(s) 16<br/>should verify capacit</li> <li>Provide mechanical<br/>21, 22, 24, 27 excep</li> <li>Non Standard bearin</li> <li>This manufactured</li> </ul> | gable end zone and C-C Exterior(2) zor<br>S for reactions shown; Lumber DOL=1.<br>vind loads in the plane of the truss only.<br>s applicable, or consult qualified building<br>T20 unless otherwise indicated.<br>at 2-0-0 oc.<br>designed for a 10.0 psf bottom chord liv<br>n designed for a live load of 20.0psf on<br>ottom chord and any other members.<br>5, 19, 20, 21, 22 considers parallel to gra-<br>ty of bearing surface.<br>connection (by others) of truss to bearin<br>the (jt=lb) 28=777, 25=110, 26=434.<br>ng condition. Review required.<br>truss is designed as an individual buildi | e; cantilever left exposed<br>50 plate grip DOL=1.60<br>For studs exposed to win<br>g designer as per ANSI/TF<br>e load nonconcurrent with<br>the bottom chord in all area<br>ain value using ANSI/TPI 1<br>ig plate capable of withsta<br>ng component. The suital | ; end vertical left exposed<br>d (normal to the face),<br>1 1.<br>any other live loads.<br>as where a rectangle 3-<br>angle to grain formula<br>nding 100 lb uplift at joi<br>pility and use of this cor | ed;C-C for memb<br>see Standard Ind<br>6-0 tall by 2-0-0<br>. Building design<br>nt(s) 16, 19, 17, 1<br>nponent for any | pers<br>ustry<br>wide<br>er | in the second se | VGINEER.                           |

billing design. Bilandig indicates to be prevent buckning of individual duss web anator ford internoes only. Additional emporary and permanent blanding is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






SEAL 044925 MGINEER January 23,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

#### Continued on page 2

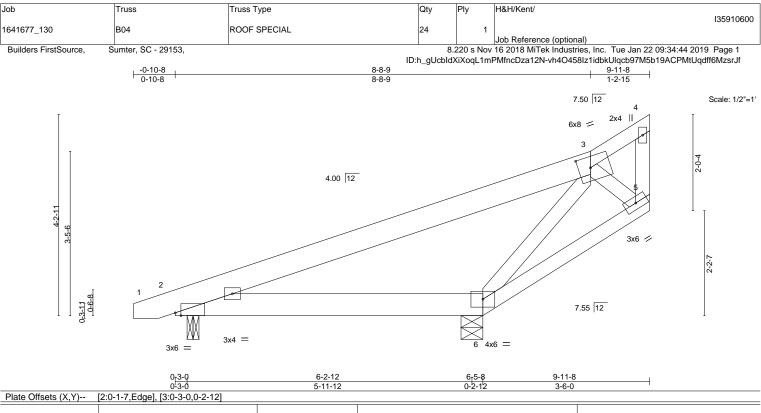
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



//////// January 23,2019

| [ | Job                     | Truss              | Truss Type         | Qty                                                                        | Ply       | H&H/Kent/                                                      |  |  |  |
|---|-------------------------|--------------------|--------------------|----------------------------------------------------------------------------|-----------|----------------------------------------------------------------|--|--|--|
|   |                         |                    |                    |                                                                            |           | 135910599                                                      |  |  |  |
|   | 1641677_130             | B03                | JACK-CLOSED GIRDER | 10                                                                         | 1         |                                                                |  |  |  |
|   |                         |                    |                    |                                                                            |           | Job Reference (optional)                                       |  |  |  |
|   | Builders FirstSource, S | umter, SC - 29153, |                    | 8.                                                                         | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:34:43 2019 Page 2 |  |  |  |
|   |                         |                    | ID:h_gU            | ID:h_gUcbIdXiXoqL1mPMfncDza12N-RUX0tm7gCjamzavZGu4wa9YGwmjGgkqLczw6ZvzsrJg |           |                                                                |  |  |  |

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 1-22=-60, 4-22=-140(F=-80), 4-5=-140(F=-80), 5-9=-260(F=-200), 9-10=-220(F=-200), 18-19=-20, 13-18=-20, 11-13=-20 Concentrated Loads (lb)

Vert: 15=-1023(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| LOADING (psf)    | SPACING- 2-0-0       | CSI.      | DEFL. i                                                                     | n (loc) l/   | defl L/d             | PLATES        | GRIP           |
|------------------|----------------------|-----------|-----------------------------------------------------------------------------|--------------|----------------------|---------------|----------------|
| TCLL 20.0        | Plate Grip DOL 1.15  | TC 0.38   | Vert(LL) 0.08                                                               | 3 6-9 >      | 999 240              | MT20          | 244/190        |
| TCDL 10.0        | Lumber DOL 1.15      | BC 0.36   | Vert(CT) -0.06                                                              | 6 6-9 >      | 999 240              |               |                |
| BCLL 0.0 *       | Rep Stress Incr YES  | WB 0.18   | Horz(CT) -0.00                                                              | ) 2          | n/a n/a              |               |                |
| BCDL 10.0        | Code IRC2015/TPI2014 | Matrix-AS |                                                                             |              |                      | Weight: 57 lb | FT = 20%       |
| LUMBER-          |                      |           | BRACING-                                                                    |              |                      |               |                |
| TOP CHORD 2x6 SF | PNo.2 *Except*       |           | TOP CHORD Structural wood sheathing directly applied, except end verticals. |              |                      |               | end verticals. |
| 3-4: 2x          | 4 SP No.2            |           | BOT CHORD                                                                   | Rigid ceilir | ng directly applied. |               |                |
| BOT CHORD 2x6 SF | PNo.2 *Except*       |           |                                                                             | -            |                      |               |                |
| 5-6: 2x          | 4 SP No.2            |           |                                                                             |              |                      |               |                |
| WEBS 2x4 SF      | P No.3               |           |                                                                             |              |                      |               |                |

REACTIONS. (Ib/size) 6=595/0-5-8, 2=227/0-3-0 Max Horz 6=200(LC 12) Max Uplift 6=-267(LC 12), 2=-172(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-333/343

 BOT CHORD
 2-6=-343/424

WEBS 3-6=-554/510

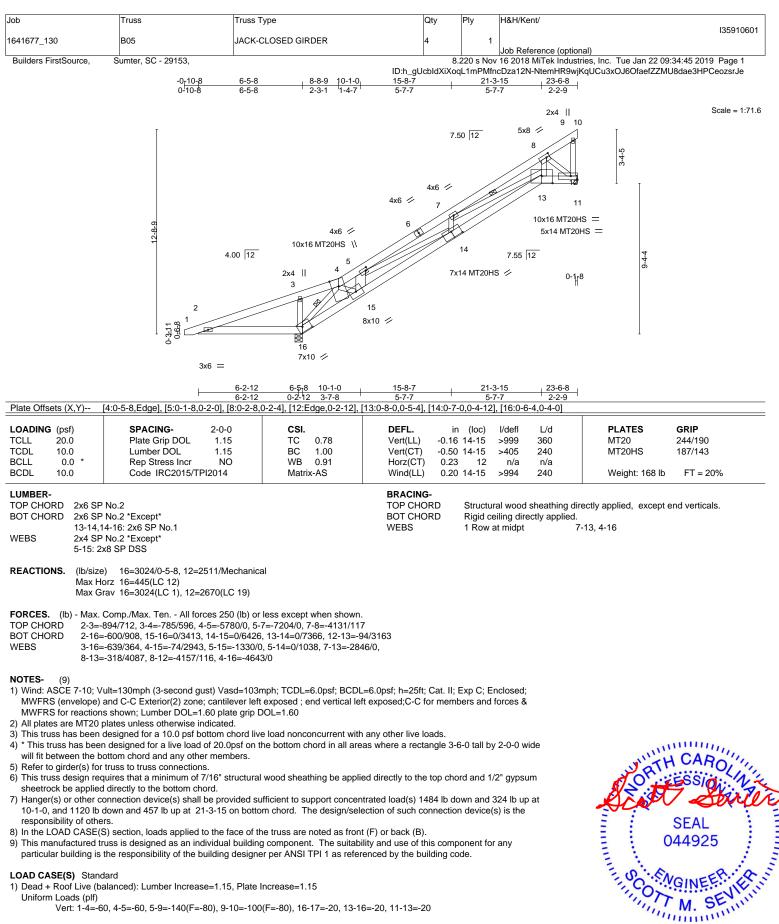
NOTES- (6)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=267, 2=172.


5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





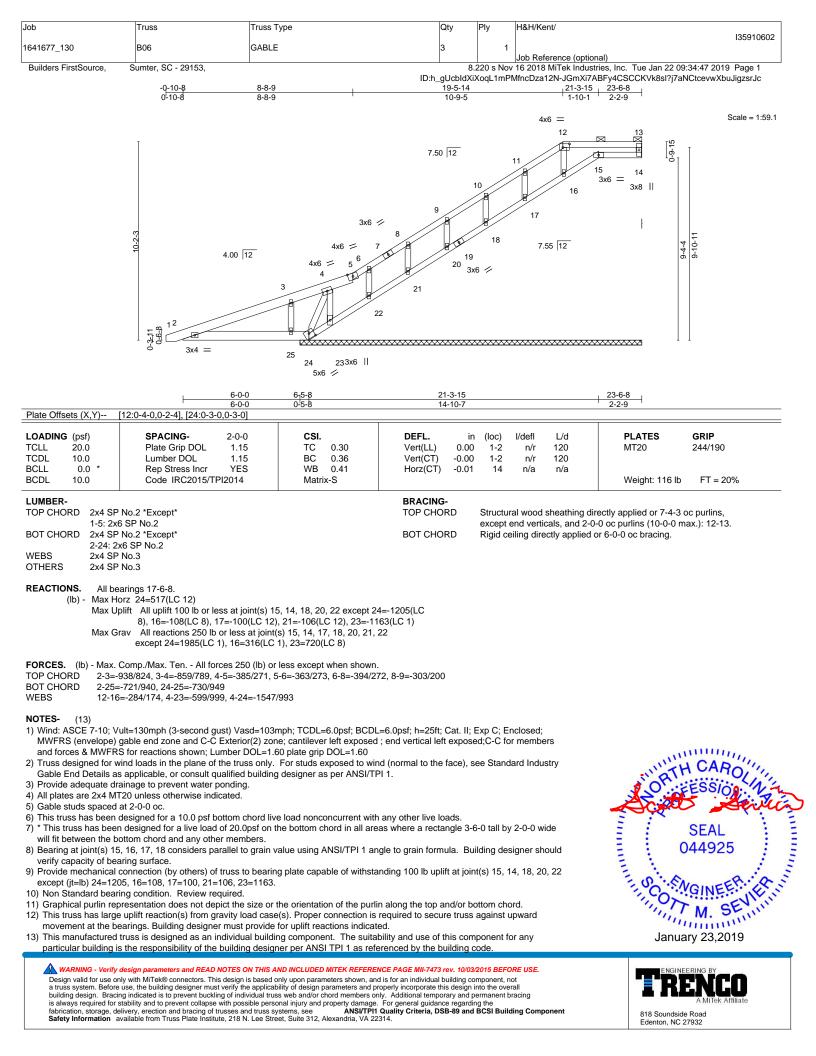
January 23,2019

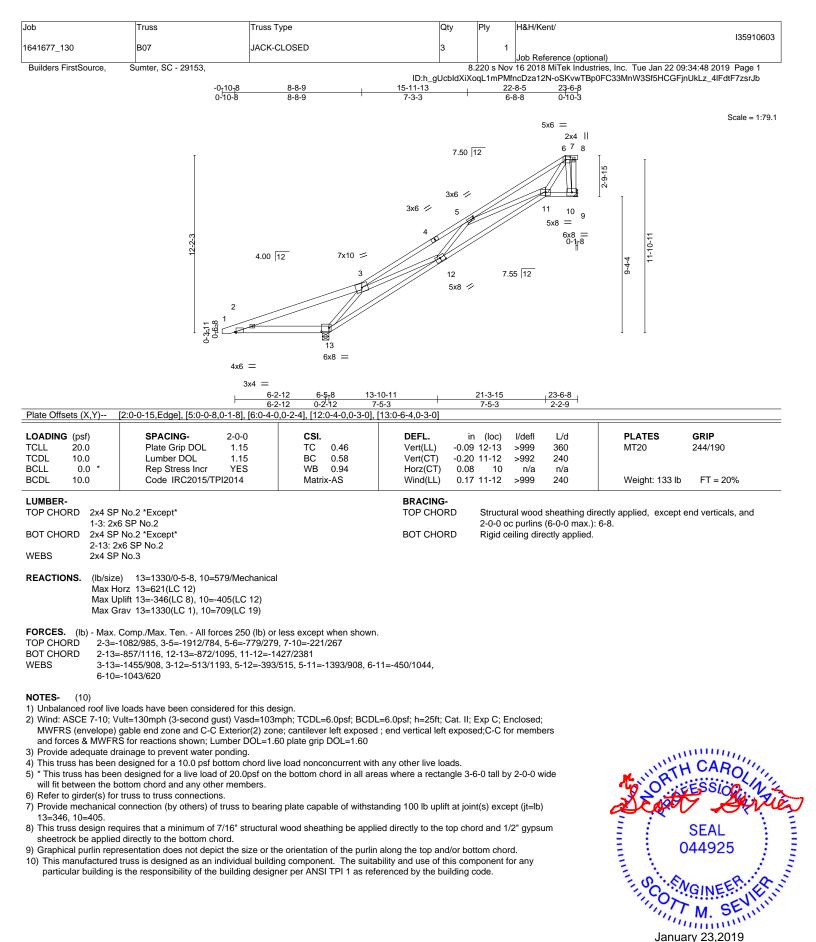


### Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

| Job                     | Truss              | Truss Type         | Qty | Ply       | H&H/Kent/                                                      |
|-------------------------|--------------------|--------------------|-----|-----------|----------------------------------------------------------------|
|                         |                    |                    |     |           | 135910601                                                      |
| 1641677_130             | B05                | JACK-CLOSED GIRDER | 4   | 1         |                                                                |
|                         |                    |                    |     |           | Job Reference (optional)                                       |
| Builders FirstSource, S | umter, SC - 29153, |                    | 8.  | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:34:45 2019 Page 2 |
|                         |                    |                    |     |           |                                                                |

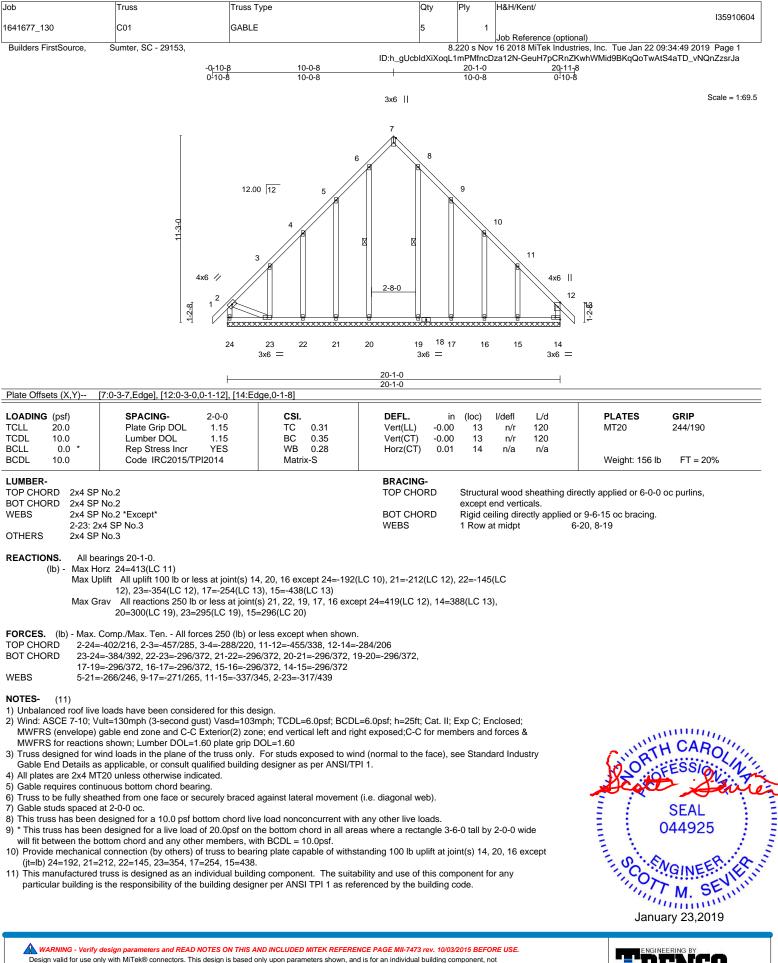

ID:h\_gUcbldXiXogL1mPMfncDza12N-NtemHR9wjKqUCu3xOJ6OfaefZZMU8dae3HPCeozsrJe


LOAD CASE(S) Standard

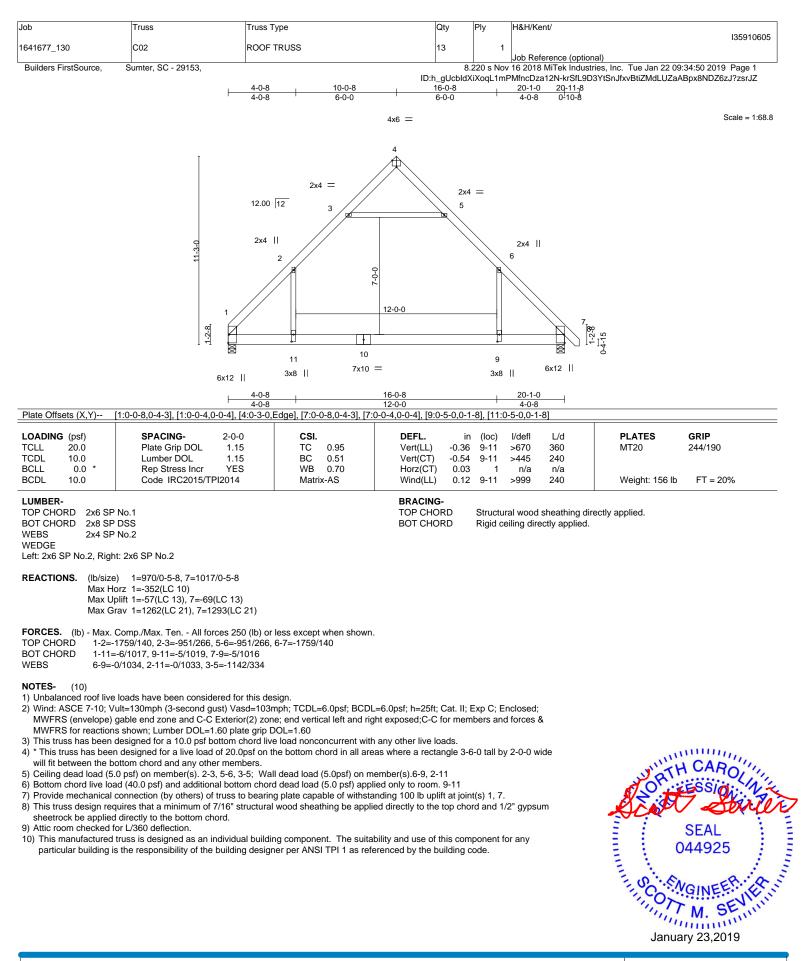
Concentrated Loads (lb) Vert: 13=-1090(F) 15=-1450(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





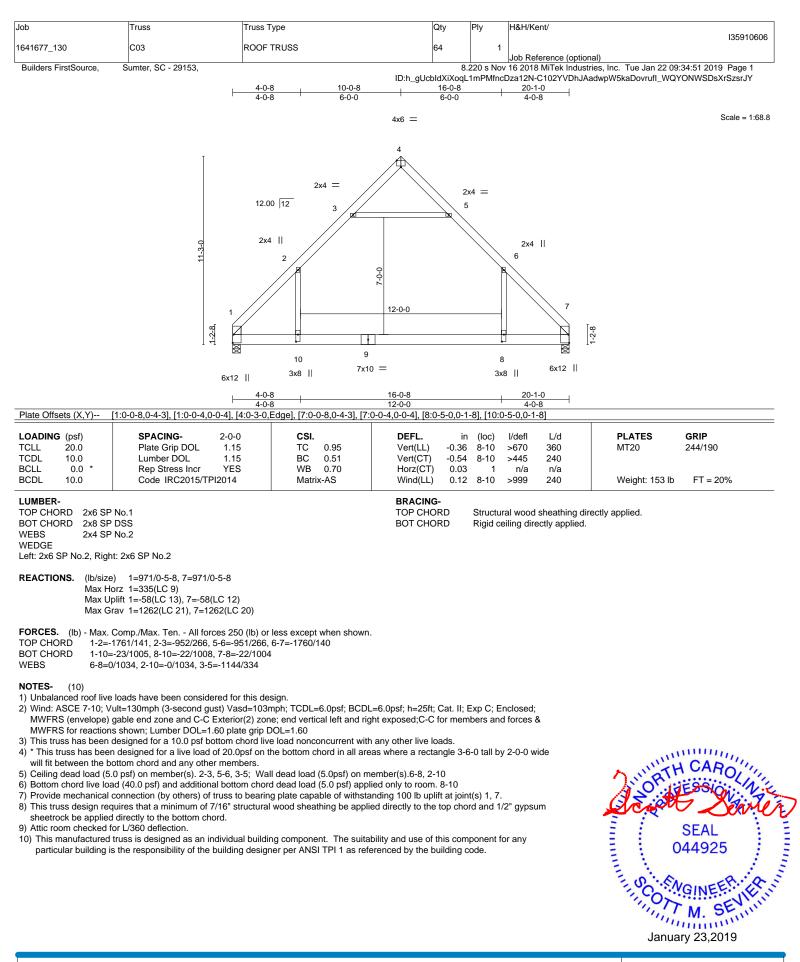




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road

Edenton, NC 27932

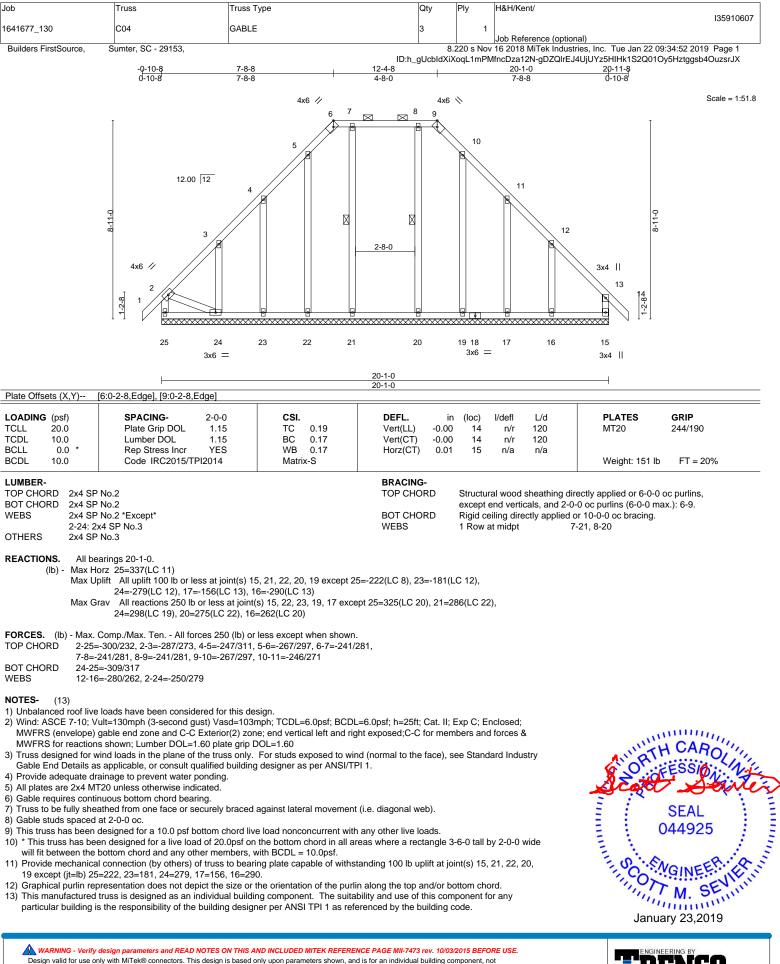



Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





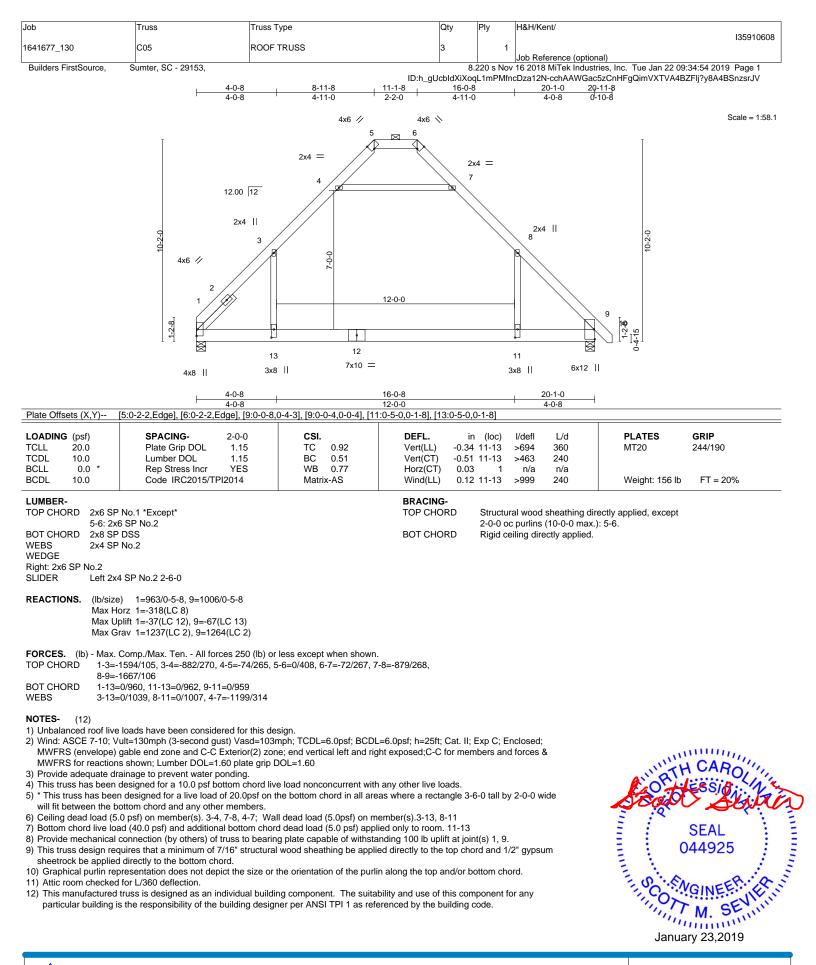
Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



TRENCIO AMITEK Atfiliate 818 Soundside Road

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



818 Soundside Road

Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verifly the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road Edenton, NC 27932



|              |                       |          | 12-0-0<br>12-0-0 |      |       |        |     |               |          |
|--------------|-----------------------|----------|------------------|------|-------|--------|-----|---------------|----------|
| OADING (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL.            | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| CLL 20.0     | Plate Grip DOL 1.15   | TC 0.50  | Vert(LL)         | 0.01 | 5     | n/r    | 120 | MT20          | 244/190  |
| CDL 10.0     | Lumber DOL 1.15       | BC 0.35  | Vert(CT)         | 0.02 | 5     | n/r    | 120 |               |          |
| BCLL 0.0 *   | Rep Stress Incr YES   | WB 0.09  | Horz(CT)         | 0.00 | 4     | n/a    | n/a |               |          |
| 3CDL 10.0    | Code IRC2015/TPI2014  | Matrix-S | . ,              |      |       |        |     | Weight: 41 lb | FT = 20% |

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. 2=228/12-0-0, 4=228/12-0-0, 6=549/12-0-0 (lb/size) Max Horz 2=-48(LC 13) Max Uplift 2=-103(LC 8), 4=-109(LC 9), 6=-120(LC 8)

Max Grav 2=235(LC 23), 4=235(LC 24), 6=549(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 3-6=-366/288 WEBS

NOTES-(9)

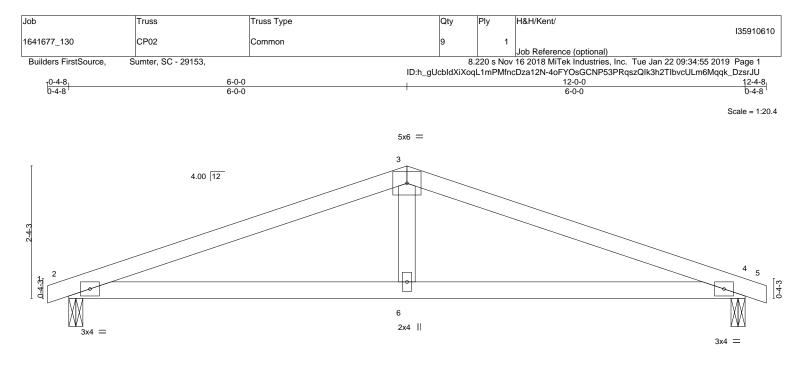
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=103, 4=109, 6=120.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Contraction of the State 044925 //////// January 23,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



LUMBER-



|                                                                                                       | <u>6-0-0</u><br>6-0-0                                                           |                                       | ł                                                                                | <u>12-0-0</u><br>6-0-0 |                                                    |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|------------------------|----------------------------------------------------|
| OADING         (psf)           CLL         20.0           CDL         10.0           SCLL         0.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES | CSI.<br>TC 0.44<br>BC 0.43<br>WB 0.10 | <b>DEFL.</b> in (lo<br>Vert(LL) 0.10 6-1<br>Vert(CT) -0.09 6-1<br>Horz(CT) -0.01 | 12 >999 240            | PLATES         GRIP           MT20         244/190 |
| CDL 10.0                                                                                              | Code IRC2015/TPI2014                                                            | Matrix-AS                             | 1012(01) -0.01                                                                   | 4 1/a 1/a              | Weight: 41 lb FT = 20%                             |
| UMBER-                                                                                                |                                                                                 | 1                                     | BRACING-                                                                         |                        |                                                    |

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

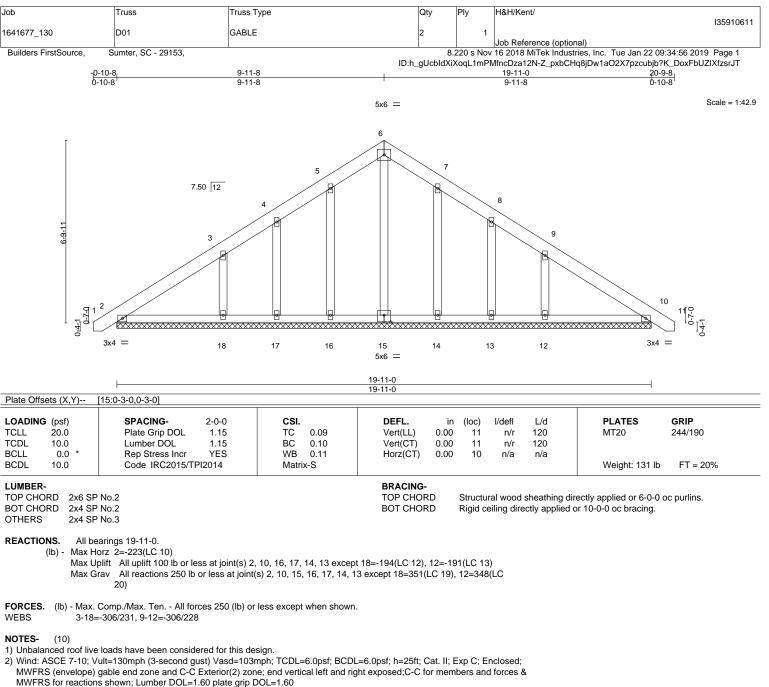
LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

- REACTIONS. (lb/size) 2=503/0-3-0, 4=503/0-3-0 Max Horz 2=-48(LC 13) Max Uplift 2=-312(LC 8), 4=-312(LC 9)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-902/1210, 3-4=-902/1210

2-6=-1072/826, 4-6=-1072/826 BOT CHORD

WEBS 3-6=-407/267

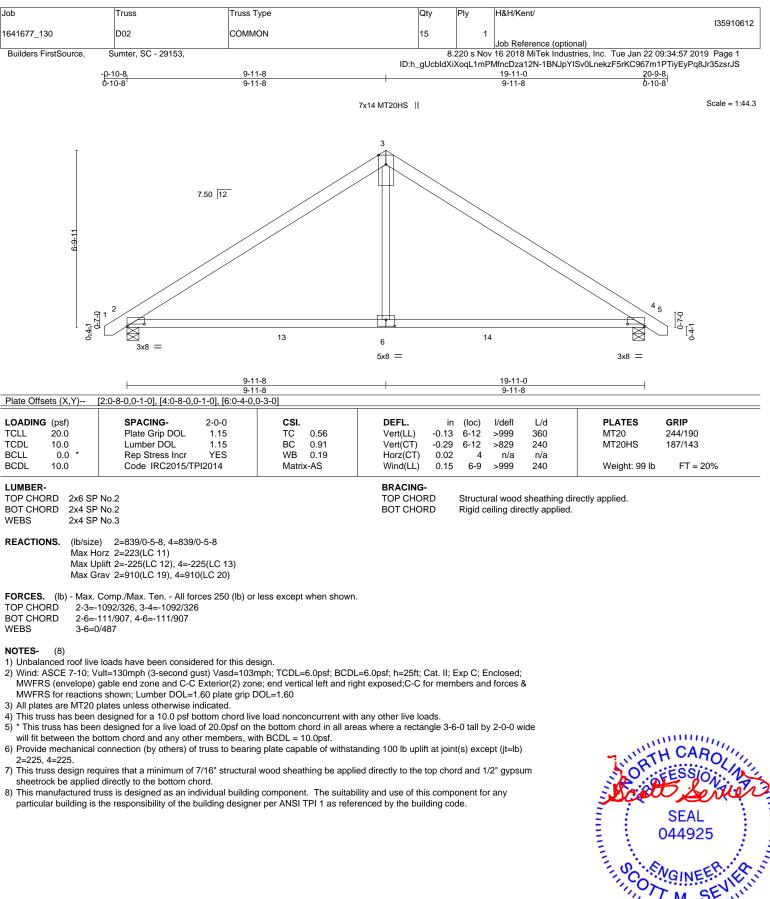

NOTES-(7)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=312. 4=312.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



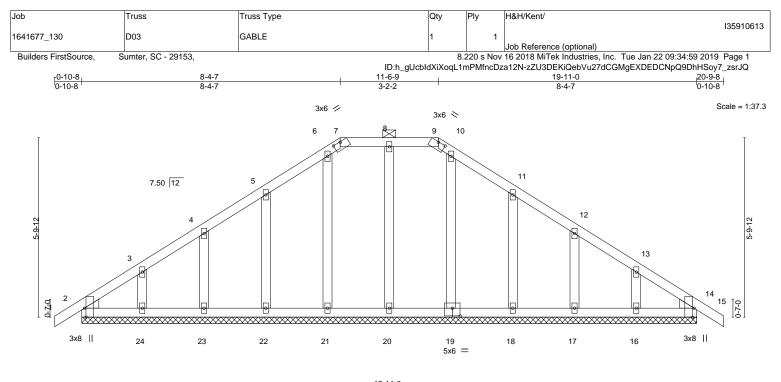
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 16, 17, 14, 13 except (jt=lb) 18=194, 12=191.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.




818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE INFORMATION TO BE ONE OPEN
Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



<u>19-11-0</u> 19-11-0

| Plate Offsets (X,Y) [2:0-3-8,Edge], [2:0-0-10,0-4-12], [2:0-0-5,0-0-8], [7:0-3-0,0-0-3], [9:0-3-0,0-0-3], [14:0-3-8,Edge], [14:0-0-10,0-4-12], [14:0-0-5,0-0-8], [19:0-3-0,0-3-0] |                                        |                                                                                             |                                 |                            |                          |                   |                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|----------------------------|--------------------------|-------------------|------------------------|--|
| L <b>OADING</b> (psf)<br>TCLL 20.0                                                                                                                                                | SPACING- 2-0-0<br>Plate Grip DOL 1.15  | CSI.<br>TC 0.06                                                                             | <b>DEFL.</b> i<br>Vert(LL) -0.0 | n (loc) l/defl<br>0 14 n/r | L/d<br>120               | PLATES<br>MT20    | <b>GRIP</b><br>244/190 |  |
| TCDL         10.0           BCLL         0.0 *                                                                                                                                    | Lumber DOL 1.15<br>Rep Stress Incr YES | BC 0.03<br>WB 0.07                                                                          | Vert(CT) -0.0<br>Horz(CT) 0.0   | 0 14 n/r                   | 120<br>n/a               | WIZO              | 244/130                |  |
| BCDL 10.0                                                                                                                                                                         | Code IRC2015/TPI2014                   | Matrix-S                                                                                    |                                 |                            |                          | Weight: 114 lb    | FT = 20%               |  |
|                                                                                                                                                                                   | SP No.2                                | BRACING-<br>TOP CHORD                                                                       |                                 |                            | ectly applied or 6-0-0 o | c purlins, except |                        |  |
| BOT CHORD 2x4<br>OTHERS 2x4                                                                                                                                                       | BOT CHORD                              | 2-0-0 oc purlins (6-0-0 max.): 7-9.<br>Rigid ceiling directly applied or 10-0-0 oc bracing. |                                 |                            |                          |                   |                        |  |

WEDGE Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=194(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 23, 17, 14 except 22=-110(LC 12), 24=-122(LC 12), 18=-113(LC 13), 16=-117(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 23, 24, 19, 18, 17, 14, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

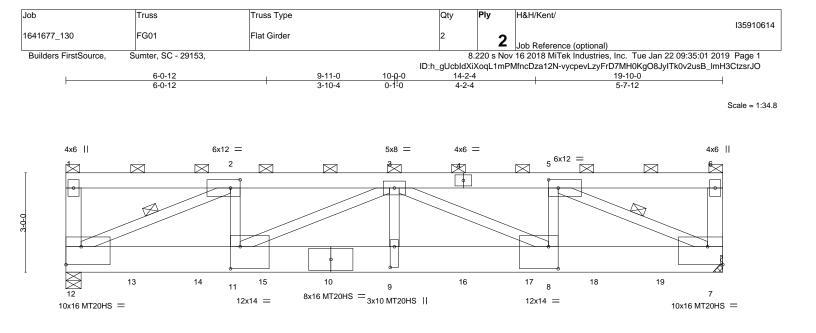
7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 23, 17, 14 except (jt=lb) 22=110, 24=122, 18=113, 16=117.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

## TRENCO A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6-0-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9-11-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14-10-4                                                                                                                                                                                                                                                                                                                                                                                                                | 19-10-0                                                                        |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-0-12<br>[2:0-3-8.0-3-0], [5:0-3-8.0-3-0], [7:Edd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-10-4<br>ie.0-6-8], [8:0-3-8.0-8-0], [9:0-                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-11-4<br>-7-8,0-1-8], [11:0-3-8,0-8-0], [12:Edge,0                                                                                                                                                                                                                                                                                                                                                                    | 4-11-12                                                                        | · · · · · · · · · · · · · · · · · · ·        |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI.<br>TC 0.51<br>BC 0.69<br>WB 0.94<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL.         in         (loc)         l/defl           Vert(LL)         -0.16         9         999           Vert(CT)         -0.35         9         >671           Horz(CT)         0.06         7         n/a           Wind(LL)         0.13         9         >999                                                                                                                                              | L/d <b>PLATES</b><br>360 MT20<br>240 MT20HS<br>n/a<br>240 Weight:              | 244/190<br>S 187/143                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        | s (4-0-6 max.): 1-6, except en<br>rectly applied or 10-0-0 oc bra<br>2-12, 5-7 |                                              |
| Max He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e) 12=7424/0-5-8, 7=7587/Mechani<br>orz 12=-74(LC 21)<br>plift 12=-612(LC 4), 7=-623(LC 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                              |
| FOP CHORD         1-12=           6-7=-3           BOT CHORD         11-12           WEBS         2-12=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comp./Max. Ten All forces 250 (lb)<br>292/58, 1-2=-559/89, 2-3=-12312/20<br>293/56<br>=-202/12312, 9-11=-56/15643, 8-9=-<br>-13081/136, 2-11=0/5647, 3-11=-371<br>0/2920                                                                                                                                                                                                                                                                                                                                                                                                         | 12, 3-5=-12304/124, 5-6=-569<br>56/15643, 7-8=-124/12304                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                              |
| <ul> <li>Top chords connected<br/>Bottom chords connected<br/>Bottom chords connected as</li> <li>2) All loads are conside<br/>ply connections have</li> <li>3) Wind: ASCE 7-10; V<br/>MWFRS (envelope);</li> <li>4) Provide adequate dr<br/>(5) All plates are MT20 g</li> <li>5) This truss has been<br/>will fit between the b</li> <li>3) Refer to girder(s) for</li> <li>6) Provide mechanical<br/>12=612, 7=623.</li> <li>10) Graphical purlin rep</li> <li>11) Hanger(s) or other<br/>2-0-12, 698 lb down<br/>down at 6-0-4, 698<br/>698 lb down and 15<br/>at 16-0-4, 698 lb dow</li> </ul> | e been provided to distribute only load<br>ult=130mph (3-second gust) Vasd=10<br>end vertical left exposed; Lumber DC<br>ainage to prevent water ponding.<br>Jolates unless otherwise indicated.<br>designed for a 10.0 psf bottom chord<br>in designed for a live load of 20.0psf o<br>ottom chord and any other members.<br>truss to truss connections.<br>connection (by others) of truss to bea<br>presentation does not depict the size is<br>connection device(s) shall be provide<br>in and 195 lb up at 2-0-12, 664 lb down<br>and 195 lb up at 12-0-12, 698 lb down and | at 0-9-0 oc.<br>ared at 0-4-0 oc.<br>t if noted as front (F) or back<br>is noted as (F) or (B), unless<br>D3mph; TCDL=6.0psf; BCDL=<br>DL=1.60 plate grip DOL=1.60<br>live load nonconcurrent with <i>i</i><br>n the bottom chord in all area<br>ring plate capable of withstan<br>or the orientation of the purlin<br>d sufficient to support concer<br>m and 456 lb up at 4-0-12, 2491 lb<br>8 lb down and 195 lb up at 8<br>195 lb up at 14-0-12, 2491 lb<br>54 lb down and 456 lb up at 4-0- | 6.0psf; h=25ft; Cat. II; Exp C; Enclosed<br>any other live loads.<br>s where a rectangle 3-6-0 tall by 2-0-0 v<br>ding 100 lb uplift at joint(s) except (jt=lb<br>along the top and/or bottom chord.<br>trated load(s) 664 lb down and 456 lb u<br>98 lb down and 195 lb up at 4-0-12, 24<br>-0-12, 698 lb down and 195 lb up at 10<br>o down at 14-1-12, 664 lb down and 455<br>18-0-4, and 698 lb down and 195 lb up | wide<br>p)<br>up at<br>91 lb<br>-0-12,<br>6 lb up<br>at                        | SEAL<br>044925<br>MGINEER<br>January 23,2019 |
| Continued on page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | -                                            |
| Design valid for use or<br>a truss system. Before<br>building design. Braci<br>is always required for s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | design parameters and READ NOTES ON THI:<br>hy with MiTek® connectors. This design is base<br>use, the building designer must verify the appling<br>indicated is to prevent buckling of individual<br>stability and to prevent collapse with possible pr<br>aliveng, exercing and thraining of theses and this                                                                                                                                                                                                                                                                   | d only upon parameters shown, and<br>cability of design parameters and pro<br>truss web and/or chord members only<br>ersonal injury and property damage.                                                                                                                                                                                                                                                                                                                                         | perly incorporate this design into the overall<br>Additional temporary and permanent bracing                                                                                                                                                                                                                                                                                                                           |                                                                                | ENGINEERING BY<br>RENCO<br>A MITCK Atfiliate |

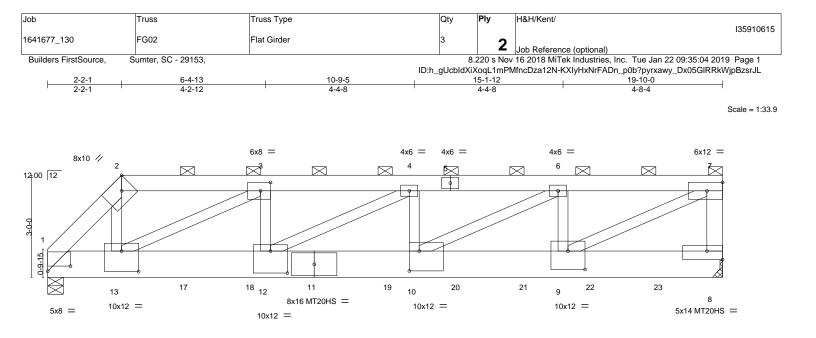
ta anays required to stability and to prevent condoce with possible personal injury and poperty damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

| Job                   | Truss               | Truss Type  | Qty | Ply        | H&H/Kent/                                                      |
|-----------------------|---------------------|-------------|-----|------------|----------------------------------------------------------------|
|                       |                     |             |     |            | 135910614                                                      |
| 1641677_130           | FG01                | Flat Girder | 2   | 2          |                                                                |
|                       |                     |             |     | <b>_</b>   | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |             | 8   | .220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:35:01 2019 Page 2 |

ID:h\_gUcbldXiXoqL1mPMfncDza12N-vycpevLzyFrD7MH0Kg08JyITk0v2usB\_ImH3CtzsrJO 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-6=-60, 7-12=-20 Concentrated Loads (Ib)

Vert: 10=-698(É) 9=-698(B) 13=-1247(F=-549, B=-698) 14=-1247(F=-549, B=-698) 15=-3189(F=-2491, B=-698) 16=-698(B) 17=-3189(F=-2491, B=-698) 18=-1247(F=-549, B=-698) 19=-1247(F=-549, B=-698) 14=-1247(F=-549, B=-698) 14=-12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





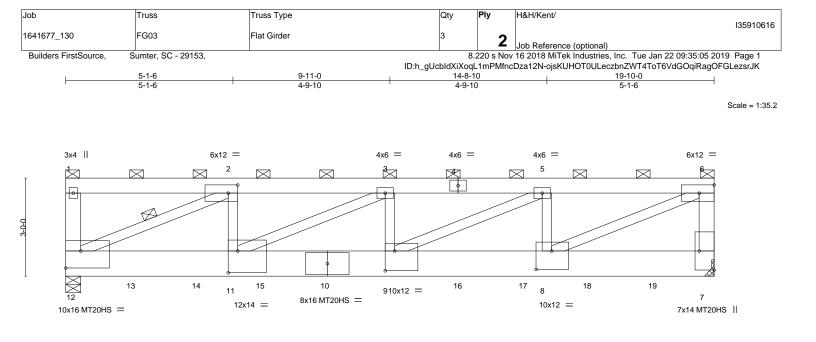
| 2-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-4-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-9-5                                                                                                                                                                                                                                                                                                                                                                                               | 15-1-12                                                                                                                                                                                                                                                                                                                                       | 19-10-0                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| 2-2-1<br>Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-4-8<br>-8,0-3-0], [8:Edge,0-3-0], [                                                                                                                                                                                                                                                                                                                                                                | <u>4-4-8</u><br>9:0-6-0,0-6-8], [10:0-3-8,0-7-0], [12:0-6-0,0-7- <sup>-</sup>                                                                                                                                                                                                                                                                 | <u>4-8-4</u> '<br>[2], [13:0-6-0,0-7-4]                                        |  |  |  |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>CSI.</b><br>TC 0.64<br>BC 0.61<br>WB 0.76<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                            | DEFL.         in         (loc)         I/defl         L           Vert(LL)         -0.15         10-12         >999         36           Vert(CT)         -0.33         10-12         >712         24           Horz(CT)         0.04         8         n/a         n/a           Wind(LL)         0.14         10-12         >999         24 | 0 MT20 244/190<br>0 MT20HS 187/143<br>a                                        |  |  |  |
| LUMBER-       BRACING-         TOP CHORD       2x6 SP No.2         BOT CHORD       2x10 SP DSS         WEBS       2x4 SP No.2 *Except*         7-8: 2x6 SP No.2, 3-13,4-12,6-10,7-9: 2x4 SP SS                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                |  |  |  |
| Max H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e) 1=6689/0-5-8, 8=7657/Mechanical<br>lorz 1=82(LC 8)<br>lplift 1=-757(LC 5), 8=-811(LC 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                |  |  |  |
| FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       1-2=-9073/976, 2-3=-5957/662, 3-4=-14418/910, 4-6=-15571/718, 6-7=-11844/494, 7-8=-6378/285         BOT CHORD       1-13=-700/6334, 12-13=-910/14418, 10-12=-718/15571, 9-10=-494/11844, 8-9=-65/437         WEBS       2-13=-630/6173, 3-13=-9638/298, 3-12=-42/4518, 4-12=-1368/0, 4-10=-49/355, 6-10=-254/4246, 6-9=-2115/227, 7-9=-487/12937                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                |  |  |  |
| <ul> <li>Top chords connect<br/>Bottom chords conn<br/>Webs connected as</li> <li>2) All loads are considid<br/>ply connections hav</li> <li>3) Wind: ASCE 7-10; M<br/>MWFRS (envelope)</li> <li>4) Provide adequate didididi and the factorial<br/>5) All plates are MT20</li> <li>6) This truss has been<br/>will fit between the bit factorial factorial factorial<br/>1=757, 8=811.</li> <li>10) Graphical purlin re</li> <li>11) Hanger(s) or other<br/>2-0-12, 664 lb dow<br/>lb up at 8-0-12, 65<br/>14-0-12, 2456 lb d<br/>and 456 lb up at 1</li> </ul> | e been provided to distribute only loads<br>/ult=130mph (3-second gust) Vasd=103r<br>; end vertical left exposed; Lumber DOL-<br>rainage to prevent water ponding.<br>plates unless otherwise indicated.<br>designed for a 10.0 psf bottom chord liv<br>in designed for a live load of 20.0psf on t<br>pottom chord and any other members.<br>r truss to truss connections.<br>connection (by others) of truss to bearin<br>presentation does not depict the size or<br>connection device(s) shall be provided s<br>in and 456 lb up at 4-0-12, 2456 lb dowr<br>8 lb down and 195 lb up at 10-0-12, 669<br>own at 14-1-12, 664 lb down and 456 lb | 0-9-0 oc.<br>d at 0-4-0 oc.<br>noted as front (F) or back-<br>noted as (F) or (B), unless<br>mph; TCDL=6.0psf; BCDL<br>=1.60 plate grip DOL=1.60<br>e load nonconcurrent with<br>he bottom chord in all are:<br>g plate capable of withsta<br>the orientation of the purlii<br>sufficient to support conce<br>in at 6-0-4, 1470 lb down as<br>3 lb down and 195 lb up ar<br>up at 16-0-4, 698 lb dow | =6.0psf; h=25ft; Cat. II; Exp C; Enclosed;<br>any other live loads.<br>as where a rectangle 3-6-0 tall by 2-0-0 wide<br>nding 100 lb uplift at joint(s) except (jt=lb)<br>n along the top and/or bottom chord.<br>ntrated load(s) 640 lb down and 425 lb up at<br>and 911 lb up at 6-0-12, 698 lb down and 195                                | SEAL<br>044925<br>January 23,2019                                              |  |  |  |
| Design valid for use o<br>a truss system. Before<br>building design. Bracc<br>is always required for<br>fabrication, storage, d                                                                                                                                                                                                                                                                                                                                                                                                                                  | v design parameters and READ NOTES ON THIS A<br>nhy with MiTek® connectors. This design is based on<br>e use, the building designer must verify the applicabing<br>indicated is to prevent buckling of individual trus<br>stability and to prevent collapse with possible perso-<br>tability and to prevent collapse with possible perso-<br>telivery, erection and bracing of trusses and truss sy<br>available from Truss Plate Institute, 218 N. Lee Stre                                                                                                                                                                                      | only upon parameters shown, and<br>vility of design parameters and pro-<br>s web and/or chord members on<br>onal injury and property damage.<br>rstems, see <b>ANSI/TPI1</b>                                                                                                                                                                                                                         | I is for an individual building component, not<br>operly incorporate this design into the overall<br>ly. Additional temporary and permanent bracing<br>For general guidance regarding the<br>Quality Criteria, DSB-49 and BCSI Building Componen                                                                                              | ENGINEERING BY<br>A MITEK Affiliate<br>818 Soundside Road<br>Edenton, NC 27932 |  |  |  |

| Job                   | Truss               | Truss Type  | Qty | Ply       | H&H/Kent/                                                      |
|-----------------------|---------------------|-------------|-----|-----------|----------------------------------------------------------------|
|                       |                     |             |     |           | 135910615                                                      |
| 1641677_130           | FG02                | Flat Girder | 3   | 2         |                                                                |
|                       |                     |             |     |           | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |             | 8.  | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:35:04 2019 Page 2 |

ID:h\_gUcbldXiXoqL1mPMfncDza12N-KXlyHxNrFADn\_p0b?pyrxawy\_Dx05GIRRkWjpBzsrJL 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 8-14=-20

Concentrated Loads (lb) Vert: 11=-698(B) 13=-559(F) 17=-549(F) 18=-3927(F=-2456, B=-1470) 19=-698(B) 20=-698(B) 21=-3154(F=-2456, B=-698) 22=-1247(F=-549, B=-698) 23=-1247(F=-549, B=-698) 23=-1247(F=-569, B=-698) 23=-1247

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9-11-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14-8-10                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19-10-0                                                                         |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5-1-6 '<br>[2:0-3-8,0-3-0], [7:Edge,0-5-8], [8:0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-9-10<br>5-12 0-6-121 [0:0-3-8 0-7-4] [                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-9-10                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-1-6                                                                           | ·                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2.0-3-6,0-3-0], [7.Euge,0-3-6], [8.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>5-12,0-0-12]; [9:0-3-8,0-7-4]; [</u>                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0-3-6,0-6-0J, [12.Euge,0-6-4]                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                               |
| COADING         (psf)           TCLL         20.0           TCDL         10.0           3CLL         0.0           3CDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI.<br>TC 0.65<br>BC 0.66<br>WB 0.73<br>Matrix-MS                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL.         in         (loc)         l/defl           Vert(LL)         -0.16         9         >999           Vert(CT)         -0.35         9         >672           Horz(CT)         0.04         7         n/a           Wind(LL)         0.13         9         >999                                                                                                                                                                 | L/d <b>PLATES</b><br>360 MT20<br>240 MT20HS<br>n/a<br>240 Weight: 339 lb        | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>2</sup> No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-4-11 max.): 1-6, except end ver<br>ctly applied or 10-0-0 oc bracing.<br>2-12 | ticals.                                       |
| Max H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e) 12=7389/0-5-8, 7=7552/Mechar<br>lorz 12=-74(LC 6)<br>Jplift 12=-636(LC 4), 7=-647(LC 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ical                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                               |
| OP CHORD         1-12:           6-7=           3OT CHORD         11-12           VEBS         2-12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comp./Max. Ten All forces 250 (lb<br>=-266/58, 1-2=-476/89, 2-3=-12390/2<br>-6089/113<br>2=-255/12390, 9-11=-105/15389, 8-9<br>=-13264/195, 2-11=0/5681, 3-11=-33<br>-127/13244                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,<br>55, 3-5=-15389/105, 5-6=-12<br>=-177/12386, 7-8=-63/485                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                               |
| <ul> <li>Top chords connect<br/>Bottom chords conn<br/>Webs connected as</li> <li>All loads are conside<br/>ply connections hav</li> <li>Wind: ASCE 7-10; \<br/>MWFRS (envelope)</li> <li>Provide adequate di</li> <li>All plates are MT20</li> <li>This truss has been</li> <li>* This truss has been&lt;</li></ul> | re been provided to distribute only loa<br>/ult=130mph (3-second gust) Vasd=:<br>; end vertical left exposed; Lumber D<br>rainage to prevent water ponding.<br>plates unless otherwise indicated.<br>designed for a 10.0 psf bottom chore<br>en designed for a live load of 20.0psf<br>bottom chord and any other members<br>r truss to truss connections.<br>I connection (by others) of truss to be<br>presentation does not depict the size<br>connection device(s) shall be provid<br><i>in</i> and 195 lb up at 2-0-12, 664 lb dc<br>8 lb down and 195 lb up at 6-0-12, 6<br>95 lb up at 12-0-12, 698 lb down an | d at 0-9-0 oc.<br>gered at 0-4-0 oc.<br>pt if noted as front (F) or back<br>ds noted as (F) or (B), unless<br>03mph; TCDL=6.0psf; BCDL<br>OL=1.60 plate grip DOL=1.60<br>d live load nonconcurrent with<br>on the bottom chord in all area<br>aring plate capable of withsta<br>or the orientation of the purlin<br>ed sufficient to support conce<br>wn and 456 lb up at 4-0-12, 498<br>b down and 195 lb up at 4<br>195 lb up at 14-0-12, 2456<br>364 lb down and 456 lb up at | =6.0psf; h=25ft; Cat. II; Exp C; Enclosed;<br>any other live loads.<br>as where a rectangle 3-6-0 tall by 2-0-0 wi<br>nding 100 lb uplift at joint(s) except (jt=lb)<br>n along the top and/or bottom chord.<br>ntrated load(s) 664 lb down and 456 lb up<br>398 lb down and 195 lb up at 4-0-12, 245f<br>8-0-12, 698 lb down and 195 lb up at 10-0<br>lb down at 14-1-12, 664 lb down and 456<br>18-0-4, and 698 lb down and 195 lb up at | de<br>at<br>5 lb<br>-12,<br>lb up                                               | SEAL<br>044925<br>M. SEVILLING                |
| onunded on page z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                               |                                               |
| Design valid for use o<br>a truss system. Before<br>building design. Brac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | only with MiTek® connectors. This design is ba<br>e use, the building designer must verify the ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed only upon parameters shown, and<br>licability of design parameters and pr<br>l truss web and/or chord members on                                                                                                                                                                                                                                                                                                                                                              | operly incorporate this design into the overall<br>ly. Additional temporary and permanent bracing                                                                                                                                                                                                                                                                                                                                          |                                                                                 | ERING BY<br>ENCO<br>A MITEK Affiliate         |

binding design. Dialong individual to be prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

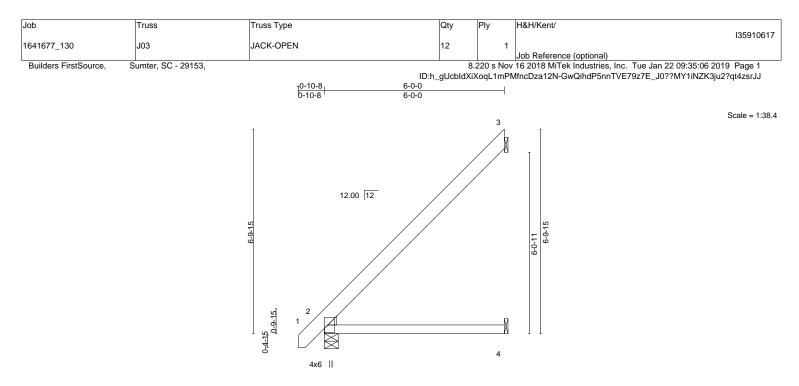
818 Soundside Road Edenton, NC 27932

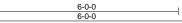
| Job                   | Truss               | Truss Type  | Qty | Ply       | H&H/Kent/                                                      |
|-----------------------|---------------------|-------------|-----|-----------|----------------------------------------------------------------|
|                       |                     |             |     |           | 135910616                                                      |
| 1641677_130           | FG03                | Flat Girder | 3   | 2         |                                                                |
|                       |                     |             |     | <b>_</b>  | Job Reference (optional)                                       |
| Builders FirstSource, | Sumter, SC - 29153, |             | 8   | 220 s Nov | 16 2018 MiTek Industries, Inc. Tue Jan 22 09:35:05 2019 Page 2 |

ID:h\_gUcbldXiXoqL1mPMfncDza12N-ojsKUHOT0ULeczbnZWT4ToT6VdGOqiRagOFGLezsrJK 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)


Vert: 1-6=-60, 7-12=-20 Concentrated Loads (Ib)

Vert: 10=-698(B) 9=-698(B) 13=-1247(F=-549, B=-698) 14=-1247(F=-549, B=-698) 15=-3154(F=-2456, B=-698) 16=-698(B) 17=-3154(F=-2456, B=-698) 18=-1247(F=-549, B=-698) 19=-1247(F=-549, B=-698) 19=-1247(F=-549, B=-698) 10=-1247(F=-549, B=-598) 10=-1247(F=-549, B=-598) 10=-1247(F=-549, B=-598) 10=-1247(F=-549, B=-598) 10=-12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.







| DADING (psf) | <b>SPACING-</b> 2-0-0 | CSI.      | DEFL.       | in (loc) | l/defl L/d | PLATES GRIP            |
|--------------|-----------------------|-----------|-------------|----------|------------|------------------------|
| CLL 20.0     | Plate Grip DOL 1.15   | TC 0.38   | Vert(LL)    | 0.08 4-7 | >946 240   | MT20 244/190           |
| CDL 10.0     | Lumber DOL 1.15       | BC 0.29   | Vert(CT) -( | 0.08 4-7 | >858 240   |                        |
| BCLL 0.0 *   | Rep Stress Incr YES   | WB 0.00   | Horz(CT) -( | 0.02 3   | n/a n/a    |                        |
| 3CDL 10.0    | Code IRC2015/TPI2014  | Matrix-AS |             |          |            | Weight: 33 lb FT = 20% |

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

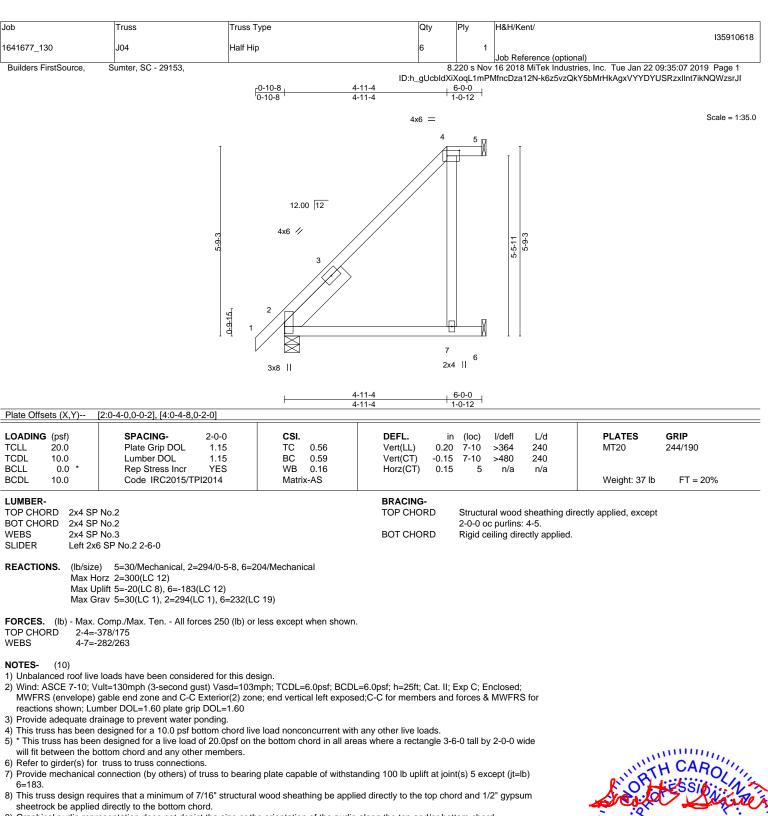
REACTIONS. (lb/size) 3=177/Mechanical, 2=286/0-5-8, 4=57/Mechanical Max Horz 2=343(LC 12)

Max Uplift 3=-261(LC 12) Max Grav 3=231(LC 19), 2=286(LC 1), 4=96(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7)

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

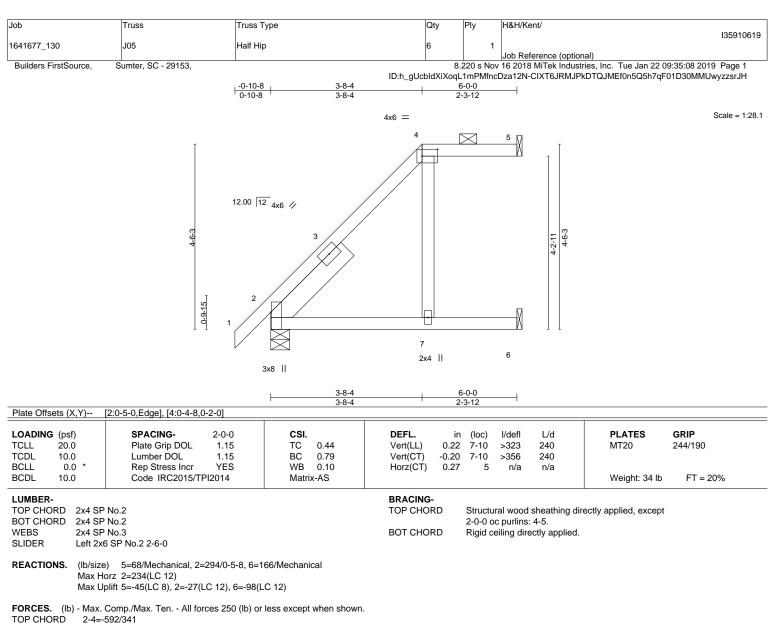
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=261
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010, 00526. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Contraction of the 111111111 SEAL 44925 ///////// January 23,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





WEBS 4-7=-273/271

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

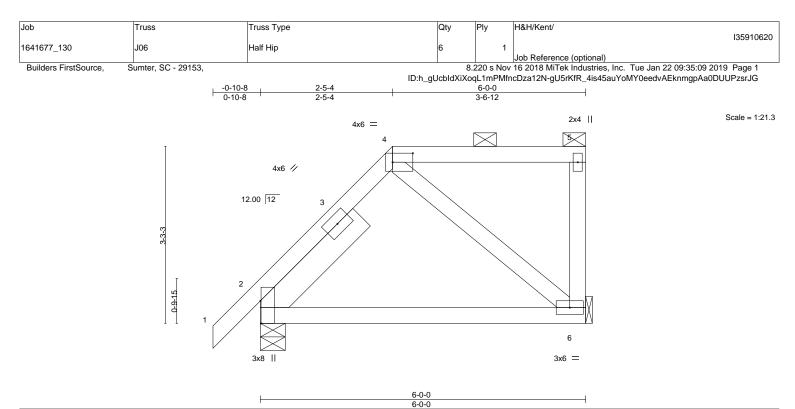
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any

particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road Edenton, NC 27932



| Plate Offsets (X,Y) | [2:0-5-0,Edge], [4:0-4-8,0-2-0] |           |                |       |           |                 |          |
|---------------------|---------------------------------|-----------|----------------|-------|-----------|-----------------|----------|
| LOADING (psf)       | <b>SPACING-</b> 2-0-0           | CSI.      | DEFL. in       | (loc) | l/defl L/ | d PLATES        | GRIP     |
| TCLL 20.0           | Plate Grip DOL 1.15             | TC 0.22   | Vert(LL) -0.03 | 6-9   | >999 36   | 0 MT20          | 244/190  |
| TCDL 10.0           | Lumber DOL 1.15                 | BC 0.25   | Vert(CT) -0.06 | 6-9   | >999 24   | 0               |          |
| BCLL 0.0 *          | Rep Stress Incr YES             | WB 0.06   | Horz(CT) 0.01  | 2     | n/a n/    | a               |          |
| BCDL 10.0           | Code IRC2015/TPI2014            | Matrix-AS | Wind(LL) 0.01  | 6-9   | >999 24   | 0 Weight: 38 lb | FT = 20% |
|                     |                                 |           |                |       |           |                 |          |
| LUMBER-             |                                 |           | BRACING-       |       |           |                 |          |

 LUMBER
 BRACING 

 TOP CHORD
 2x4 SP No.2
 TOP CHORD
 Structur

 BOT CHORD
 2x4 SP No.2
 2-0-0 oc

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ce

 SLIDER
 Left 2x6 SP No.2 2-6-0
 Structur

 RD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 4-5.
 RD Rigid ceiling directly applied.

REACTIONS. (Ib/size) 2=291/0-5-8, 6=230/Mechanical Max Horz 2=169(LC 12) Max Uplift 2=-52(LC 12), 6=-92(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-442/107

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

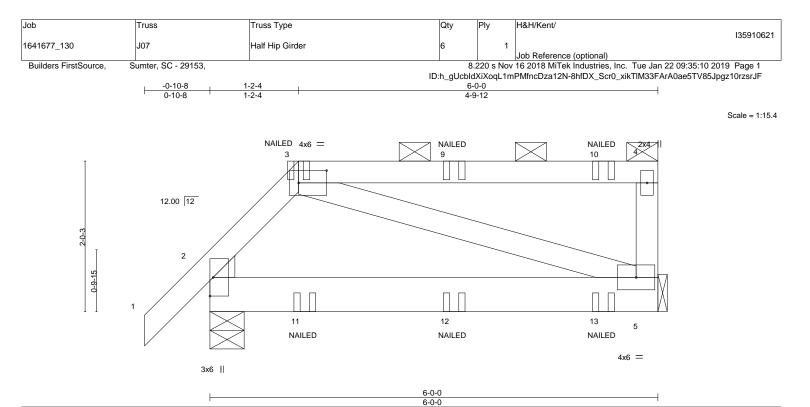
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| LUMBER<br>TOP CHO |         | 2 No.2          |        |       |       | BRACING-<br>TOP CHOR |       | Structu | iral wood | sheathing d | lirectly applied or 6-0-0 | ) oc purlins |
|-------------------|---------|-----------------|--------|-------|-------|----------------------|-------|---------|-----------|-------------|---------------------------|--------------|
| BCDL              | 10.0    | Code IRC2015/T  | PI2014 | Matri | ix-MP | Wind(LL)             | -0.00 | 5-8     | >999      | 240         | Weight: 35 lb             | FT = 20%     |
| BCLL              | 0.0 *   | Rep Stress Incr | NO     | WB    | 0.06  | Horz(CT)             | 0.00  | 2       | n/a       | n/a         |                           |              |
| TCDL              | 10.0    | Lumber DOL      | 1.15   | BC    | 0.16  | Vert(CT)             | -0.02 | 5-8     | >999      | 240         |                           |              |
| TCLL              | 20.0    | Plate Grip DOL  | 1.15   | TC    | 0.50  | Vert(LL)             | -0.01 | 5-8     | >999      | 360         | MT20                      | 244/190      |
| LOADIN            | G (psf) | SPACING-        | 2-0-0  | CSI.  |       | DEFL.                | in    | (loc)   | l/defl    | L/d         | PLATES                    | GRIP         |

BOT CHORD

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.2

Plate Offsets (X,Y)--

REACTIONS. (lb/size) 2=306/0-5-8, 5=261/Mechanical Max Horz 2=104(LC 8) Max Uplift 2=-103(LC 8), 5=-118(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

[2:0-0-8,0-2-14], [2:0-0-4,0-0-4], [3:0-4-8,0-2-0]

NOTES- (10)

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=103, 5=118.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

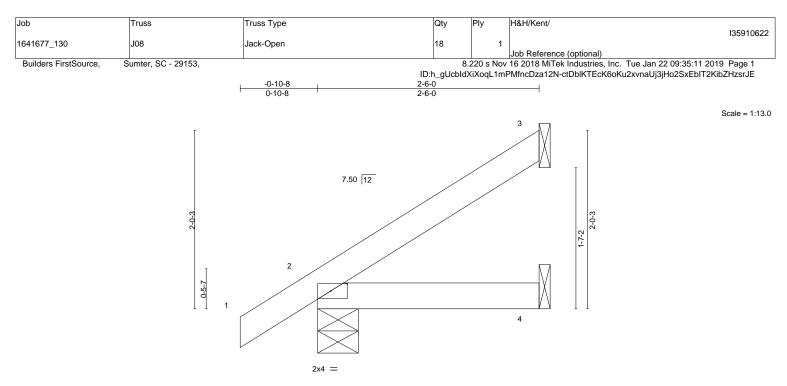
10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

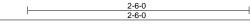
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 3=-2(F) 9=-2(F) 10=-12(F) 11=-8(F) 12=-8(F) 13=-13(F)





except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.







| LOADING (psf) | SPACING- 2-0-0       | CSI.      | DEFL. in       | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------------|----------------------|-----------|----------------|-------|--------|-----|---------------|----------|
| TCLL 20.0     | Plate Grip DOL 1.15  | TC 0.09   | Vert(LL) -0.00 | (.00) | >999   | 360 | -             | 244/190  |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.08   | Vert(CT) -0.00 | 4-7   | >999   | 240 |               | 211/100  |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.00   | Horz(CT) 0.00  | 3     | n/a    | n/a |               |          |
| BCDL 10.0     | Code IRC2015/TPI2014 | Matrix-MP | Wind(LL) -0.00 | 4-7   | >999   | 240 | Weight: 10 lb | FT = 20% |

### LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

Plate Offsets (X Y)-- [2:0-2-4 0-1-0]

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=60/Mechanical, 2=159/0-5-8, 4=28/Mechanical Max Horz 2=104(LC 12) Max Uplift 3=-58(LC 12), 2=-40(LC 12) Max Grav 3=70(LC 19), 2=159(LC 1), 4=44(LC 3)

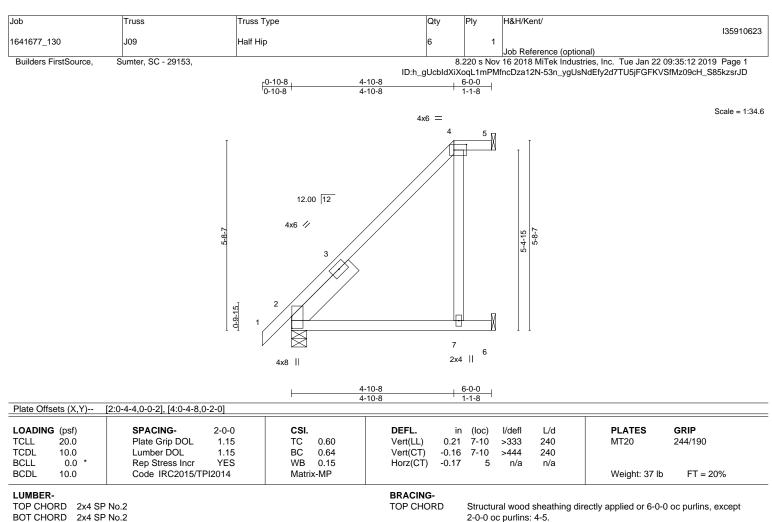
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (6)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

 BOT CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 2-6-0

REACTIONS. (lb/size) 5=32/Mechanical, 2=294/0-5-8, 6=202/Mechanical Max Horz 2=296(LC 12) Max Uplift 5=-21(LC 8), 6=-178(LC 12) Max Grav 5=32(LC 1), 2=294(LC 1), 6=228(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-327/168

WEBS 4-7=-272/256

**NOTES-** (9)

1) Unbalanced roof live loads have been considered for this design.

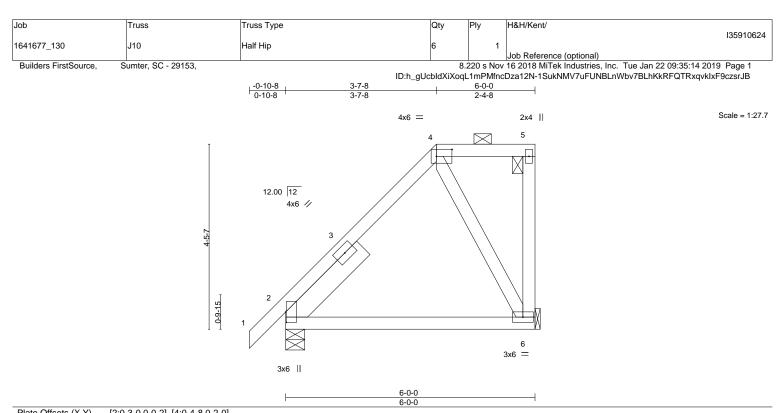
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6=178.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| TCDL 10.0<br>BCLL 0.0 *    | Lumber DOL 1.15<br>Rep Stress Incr YES        | BC 0.28<br>WB 0.08<br>Matrix-AS | Vert(CT) -0.07<br>Horz(CT) 0.02<br>Wind(LL) 0.05 | 2   | >946 240<br>n/a n/a<br>>999 240 | Weight: 40 lb FT = 20%                             |
|----------------------------|-----------------------------------------------|---------------------------------|--------------------------------------------------|-----|---------------------------------|----------------------------------------------------|
| LOADING (psf)<br>TCLL 20.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.45 | CSI.<br>TC 0.32                 | DEFL. in<br>Vert(LL) -0.03                       | 6-9 | I/defl L/d<br>>999 360          | PLATES         GRIP           MT20         244/190 |

 LUMBER 

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 2-6-0

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 4-5. BOT CHORD Rigid ceiling directly applied.

REACTIONS. (lb/size) 2=291/0-5-8, 6=230/Mechanical Max Horz 2=231(LC 12) Max Uplift 2=-27(LC 12), 6=-116(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-438/102

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

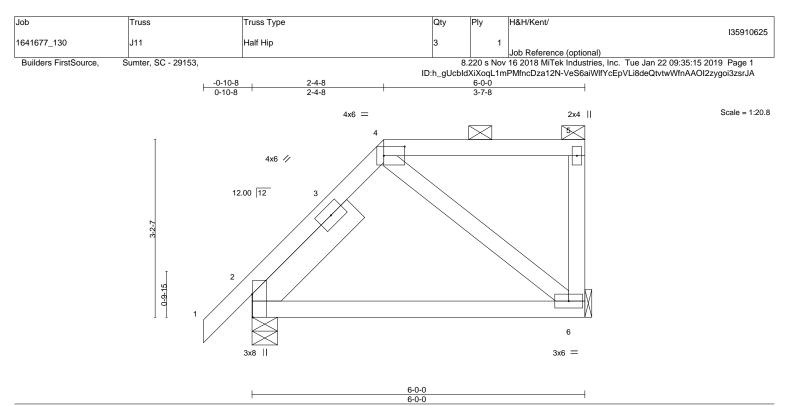
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=116.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any

particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| .OADING (psf) | <b>SPACING-</b> 2-0-0 | CSI.      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------------|-----------------------|-----------|----------|-------|-------|--------|-----|---------------|----------|
| CLL 20.0      | Plate Grip DOL 1.15   | TC 0.23   | Vert(LL) | -0.03 | 6-9   | >999   | 360 | MT20          | 244/190  |
| CDL 10.0      | Lumber DOL 1.15       | BC 0.25   | Vert(CT) | -0.06 | 6-9   | >999   | 240 |               |          |
| BCLL 0.0 *    | Rep Stress Incr YES   | WB 0.06   | Horz(CT) | 0.01  | 2     | n/a    | n/a |               |          |
| BCDL 10.0     | Code IRC2015/TPI2014  | Matrix-MP | Wind(LL) | 0.01  | 6-9   | >999   | 240 | Weight: 38 lb | FT = 20% |

TOP CHORD

BOT CHORD

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x6 SP No.2 2-6-0

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=291/0-5-8, 6=230/Mechanical Max Horz 2=166(LC 12) Max Uplift 2=-53(LC 12), 6=-92(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-441/106

**NOTES-** (8)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

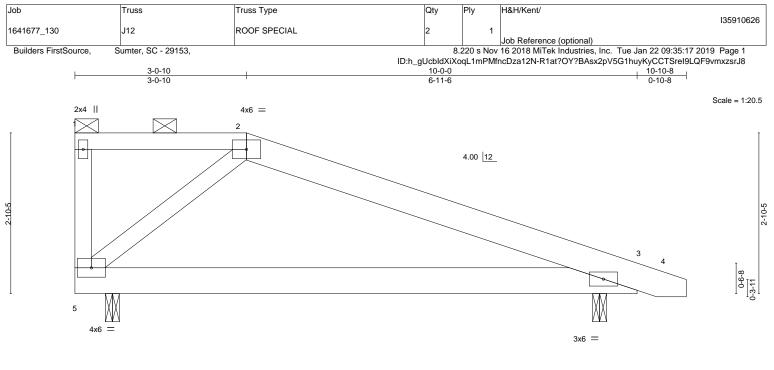
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any

particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| <u>0-6-8</u><br>0-6-8                                                                                                                |                                                                                     | <u>9-5-8</u><br>8-11-0                             |                                             | 10-0-0<br>0-6-8                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | CSI.DEFL.TC0.48Wert(LIBC0.30WB0.10Matrix-ASWind(Li | T) -0.11 5-10 >999 240<br>T) 0.00 3 n/a n/a | PLATES         GRIP           MT20         244/190           Weight: 56 lb         FT = 20% |

- LUMBER-
- TOP CHORD
   2x4 SP No.2 \*Except\*

   2-4: 2x6 SP No.2

   BOT CHORD
   2x6 SP No.2

   WEBS
   2x4 SP No.3

- BRACING-
- BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-2. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 5=368/0-3-0, 3=457/0-3-0 Max Horz 5=-140(LC 9) Max Uplift 5=-145(LC 9), 3=-168(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-340/189

BOT CHORD 3-5=-59/286

WEBS 2-5=-326/307

NOTES- (8)

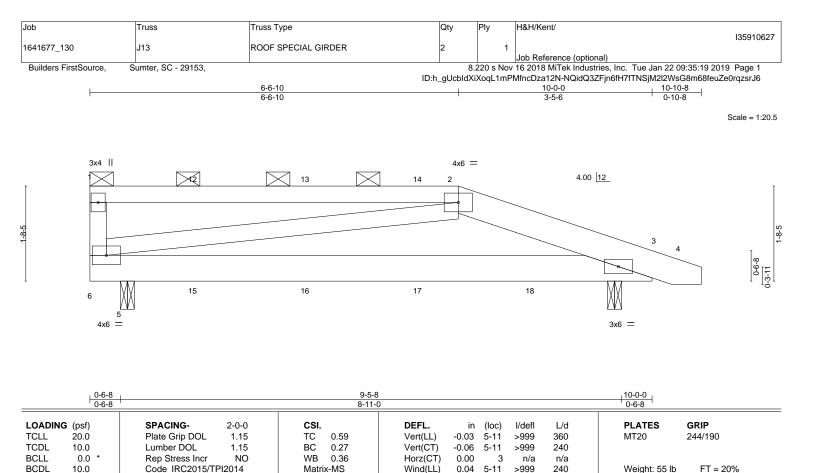
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=145, 3=168.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





BRACING-

TOP CHORD

BOT CHORD

| LUMBER- |  |
|---------|--|
|         |  |
|         |  |

- TOP CHORD 2x4 SP No.2 \*Except\* 2-4: 2x6 SP No.2
- BOT CHORD2x6 SP No.2WEBS2x4 SP No.2
- REACTIONS. (lb/size) 5=398/0-3-0, 3=453/0-3-0 Max Horz 5=-79(LC 6) Max Uplift 5=-289(LC 4), 3=-313(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-607/397

BOT CHORD 5-6=-388/561, 3-5=-322/561

WEBS 2-6=-473/327

**NOTES-** (9)

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=289, 3=313.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 46 lb down and 32 lb up at 0-1-12, 67 lb down and 26 lb up at 1-11-4, and 67 lb down and 26 lb up at 3-11-4, and 67 lb down and 26 lb up at 5-11-4 on top chord, and 8 lb down and 22 lb up at 0-1-12, 3 lb down and 22 lb up at 1-11-4, 3 lb down and 22 lb up at 3-11-4, and 3 lb down and 22 lb up at 5-11-4, and 3 lb down and 22 lb up at 5-11-4, and 47 lb down and 22 lb up at 5-11-4, and 3 lb down and 22 lb up at 5-11-4, and 42 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

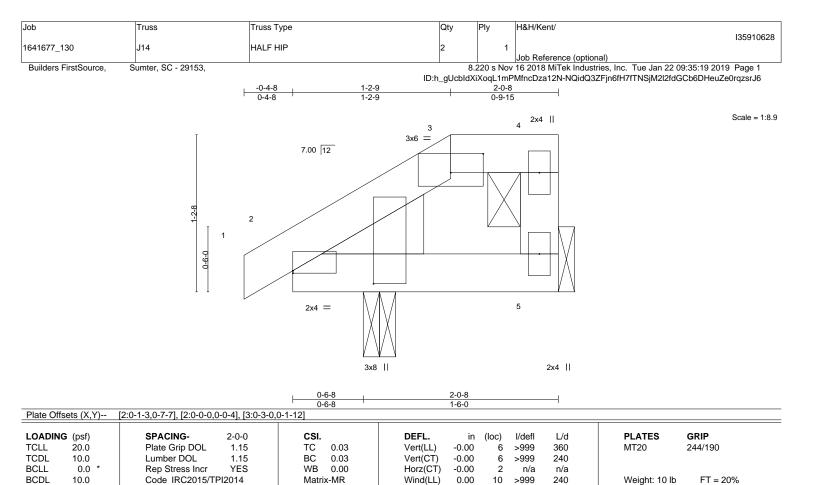
9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

# LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 6-7=-20

Concentrated Loads (lb) Vert: 6=-2(F) 1=-1(F) 15=-1(F) 16=-1(F) 17=-1(F) 18=-20(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-2.

Rigid ceiling directly applied or 10-0-0 oc bracing





BRACING-

TOP CHORD

BOT CHORD

LUMBER-

WEBS

WEDGE Left: 2x6 SP No.2 REACTIONS. (I

BOT CHORD

TOP CHORD 2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

(lb/size)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5=33/Mechanical, 2=141/0-3-0

## **NOTES-** (9)

1) Unbalanced roof live loads have been considered for this design.

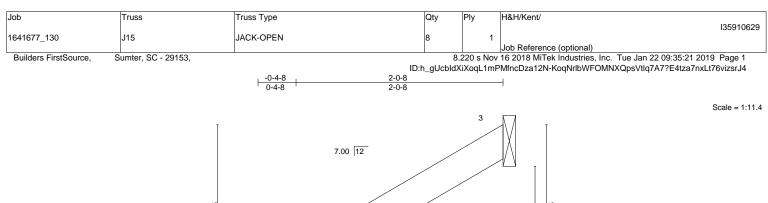
Max Uplift 5=-26(LC 8), 2=-36(LC 12) Max Grav 5=39(LC 24), 2=141(LC 1)

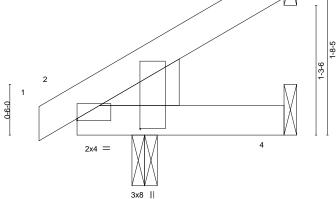
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

Max Horz 2=48(LC 12)

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.




818 Soundside Road Edenton, NC 27932


Structural wood sheathing directly applied or 2-0-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.







| LOADING (psf) | SPACING- 2-0-0       | CSI.      | DEFL. in       | (loc) l/defl | L/d | PLATES (     | GRIP     |
|---------------|----------------------|-----------|----------------|--------------|-----|--------------|----------|
| TCLL 20.0     | Plate Grip DOL 1.15  | TC 0.03   | Vert(LL) 0.00  | 9 >999       | 240 | MT20 2       | 244/190  |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.03   | Vert(CT) -0.00 | 9 >999       | 240 |              |          |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.00   | Horz(CT) -0.00 | 3 n/a        | n/a |              |          |
| BCDL 10.0     | Code IRC2015/TPI2014 | Matrix-MP | (              |              |     | Weight: 9 lb | FT = 20% |

# LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x6 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=26/Mechanical, 4=11/Mechanical, 2=143/0-3-0 Max Horz 2=70(LC 12) Max Uplift 3=-35(LC 12), 4=-15(LC 9), 2=-29(LC 9) Max Grav 3=32(LC 19), 4=21(LC 3), 2=143(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

Plate Offsets (X V)-- [2:0-0-0 0-0-4] [2:0-1-3 0-7-7]

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

