

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22010064-A INSTALL 61 Willowcroft-Avery-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I50198497 thru I50198627

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

February 13,2022

Johnson, Andrew **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A1	Hip Girder	1	3	Job Reference (optional)	150198497

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:17 ID:Z_t4uVVDnrXqihxBa0PzvRztL1h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A1	Hip Girder	1	3	Job Reference (optional)	150198497

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:17

ID:Z_t4uVVDnrXqihxBa0PzvRztL1h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

- 13) Use MiTek HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent spaced at 21-3-1 oc max. starting at 7-6-0 from the left end to 28-9-0 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber. 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d
- (0.148"x3.25") toe-nails per NDS guidlines. 16) Minimum of a triple stud required directly beneath this truss to attach LUGT3 tiedown.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
- Uniform Loads (lb/ft)
 - Vert: 1-2=-48, 2-4=-48, 4-11=-58, 11-14=-48,
 - 14-16=-48, 27-29=-20, 24-26=-20, 22-23=-20, 21-22=-20, 19-21=-20, 18-19=-20, 18-32=-20
 - Concentrated Loads (lb)

Vert: 4=-74 (B), 21=-119 (B), 28=-361 (B), 25=-68 (B), 7=-42 (B), 20=-497 (B), 36=-42 (B), 37=-42 (B), 38=-42 (B), 40=-42 (B), 41=-42 (B), 43=-42 (B), 44=-69 (B), 48=-68 (B), 49=-68 (B), 50=-68 (B), 51=-68 (B), 52=-68 (B), 53=-68 (B), 54=-37 (B), 55=-118 (B)

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A2	Нір	1	1	Job Reference (optional)	150198498

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:22 ID:2AJa0_v9OngOACoB7nlKybztKng-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

[1:0-2-0,0-1-12], [3:0-3-0,0-2-1], [6:0-5-12,Edge], [8:0-9-7,Edge], [12:Edge,0-1-11], [15:0-6-0,0-3-8], [16:0-5-0,0-4-8], [17:0-4-0,0-4-4], [18:0-5-0,0-5-4], Plate Offsets (X, Y): [19:0-7-0,0-2-12], [24:0-3-8,0-4-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	-0.39	5	>999	240	MT20	244/190	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.70	5	>666	180	MT18HS	244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.55	12	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 346 lb	FT = 20%	
LUMBER		-	W	EBS 2	2-24=-1502/368, 2-2	23=-37	/1381,		8) *	This truss	has be	een designed for	a live load of 2	20.0psf
TOP CHORD	2x4 SP 2400F 2.0E			3	3-23=-197/1157, 3-2	22=-26	2/1267,		or	the botto	m cho	rd in all areas wh	ere a rectangl	е
BOT CHORD	2x6 SP 2400F 2.0E *	*Except* 5-20:2x4 S	P	2	I-22=-649/254, 4-2	1=-101	/155,		3-	06-00 tall	by 2-0	0-00 wide will fit b	petween the b	ottom
	2400F 2.0E, 24-26:2	x4 SP No.3		1	9-21=-619/4785, 6	-21=-6	52/4779,		Cr	iord and a	iny oth	er members.		
WEBS	2x4 SP No.3 *Excep	t* 19-21,21-6,19-6:2	2x4	-	-19=-4999/677, 6- ⁻	18=-16	(568,		9) 0		VITIEK	connectors recon	Imended to co	onnect
	SP 2400F 2.0E			1	-18=-191/70, 7-17= 2 17_ 257/1270 0 ·	=-134/3 17_ 21/	007, 04/667		и т		ning w	for uplift only on	i al ji(s) 25 ar	10 12.
BRACING				((-17=-204/1379, 9- 16= 226/1945, 10	16-21	04/007,		11	lis conne		for upint only and	a does not cor	ISIGEI
TOP CHORD	Structural wood shea	athing directly applie	ed or	1	0-15-1320/1845, 10	1-15	723/242		10) TI	ie truce i	s. docia	ned in accordanc	o with the 201	5
	3-4-2 oc purlins, exc	cept end verticals, a	nd	1	1-14=-752/238 1-3	2424	8/1288		IO) In	ternationa	l Resid	tential Code sect	ons R502 11	1 and
	2-0-0 oc purlins (4-0	-6 max.): 3-8.	N	OTES	1 11 - 702/200, 1 1		0/1200		R	BO2 10 2 :	and ref	erenced standard	ANSI/TPI 1	i unu
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	C IN	UIES	reaf live leads have		a a mai da sa d fa	-	11) G	raphical p	urlin re	presentation doe	s not depict th	e size
	bracing, Except:	~	1)	Unbalanced	roor live loads have	e been o	considered to	er -	, C	the orien	tation of	of the purlin along	the top and/c	or
	6-0-0 oc bracing: 20	-21.	2)		7 10: Vult 150mph	(2	and quat)		b	ottom cho	rd.			
WEBS	1 Row at midpt	6-19, 9-17	(۷	Vinu. ASCE	h: TCDI -6 Opef: B		Ond gust)			CASE(S) Sta	ndard		
REACTIONS	(lb/size) 12=1467/0	0-3-8, 25=1412/0-3-	7	Cat II: Exp F	S Enclosed: MWFR	S (env	elone) and C-	-C	20/12	0/102(0		lidara		
	Max Horiz 25=-260 (LC 13)		Exterior (2) 0	-1-13 to 4-0-15 Int	erior (1) 4-0-15 to	Ŭ						
	Max Uplift 12=-125 (LC 16), 25=-72 (LC	15)	9-10-6. Exter	ior (2) 9-10-6 to 15	-7-15. I	nterior (1)							
	Max Grav 12=1649 ((LC 2), 25=1613 (LC	\$ 40)	15-7-15 to 26	6-4-10, Exterior (2)	26-4-10) to 31-11-3,							
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Interior (1) 3	I-11-3 to 40-7-11 z	one; ca	ntilever left a	nd C				annu	1 1.	
TOP CHORD	1-2=-1888/539. 2-3=	-3490/812.		for members	and forces & MWF	RS for	reactions sho	-O wn:				11111 00	- In	
	3-4=-3499/860, 4-5=	-3492/871,		Lumber DOI	=1 60 plate grip DC	10 = 1.3	3	, vvii			1	"TH UA	ROIL	
	5-7=-3452/865, 7-8=	-1979/658,	3)		7-10: Pr-20.0 psf	(roof liv	e load: Lumb	or			15	A since	in VIA	1
	8-9=-2580/720, 9-10	=-4826/1236,	5)	DOI =1 15 PI	ate DOI =1 15). Po	=20.0 r	osf (around				AX-	· OFFPH	PNIN	2
	10-11=-3638/972, 11	I-12=-3343/863,		snow): Pf=18	.9 psf (flat roof sno	w: Lum	ber DOL=1.1	5			110	mailel	main	~
	12-13=0/34, 1-25=-1	551/460		Plate DOL=1	.15): Category II: E	XD B: F	ully Exp.:	-			0	: × /		1
BOT CHORD	24-25=-170/335, 23-	24=-386/1913,		Ct=1.10, Lu=	50-0-0	1 /	, , ,					SEA		=
	22-23=-261/2538, 21	1-22=-454/3496,	4)	Unbalanced	snow loads have be	een cor	nsidered for th	nis		-		150		-
	20-21=-335/53, 5-21	=-408/163,	,	design.							a 1	4584	-4 :	
	19-20=-15/87, 18-19	=-279/2076,	5)	This truss ha	s been designed fo	r great	er of min roof	live			5 3	•		1.5
	17-18=-255/2000, 16	D-1/=-880/366/,		load of 12.0	osf or 2.00 times fla	t roof le	oad of 13.9 ps	sf on				· ~	~ · · >	
	15-16=-821/3586, 14	+-15=-789/3212,		overhangs no	on-concurrent with	other liv	ve loads.				24	L:SNGING	ET. O	5
	12-14=-766/3137		6)	Provide adec	juate drainage to pi	revent	water ponding	g.			11	Opingini		S
			7)	All plates are	MT20 plates unles	s other	wise indicate	d.				TEW I	OHR	
												1111		
													1.1.1	

818 Soundside Road Edenton, NC 27932

February 13,2022

lah		Truco	т.			0.	DIV			
		Truss		russ Type		Qty	Ply	INSTALL 61 Willowcroft-	Avery-Roof	150198499
22010064-A	. (2, (,)) 2	A3	R	coor Special		1		Job Reference (optional)	-	
Carter Component	ts (Sanford), Sa	nford, NC - 27332,			ID:0cLkys0Msl2wVixa	gFPbsoztKjf-	-RfC?PsB70	2021 Millek Industries, Inc. Fr Hq3NSgPqnL8w3ulTXbGKWr(Feb 11 10:49:23 Doi7J4zJC?f	Page: 1
		2-8-0 9-6 2-8-0 6-4	0-12 4-12	12-3-313-4-4 3-2-7 1-1-1 3x5=	21-7-4 23- 8-3-0 2	-11-13 <u>28</u> -4-9 4	-3-15 -4-2	35-7-0 32-9-12 34-7-4 39 4-5-13 1-9-8 3 0-11-12	<u>1-3-0</u> 40-8-0 -8-0 1-5-0	
Scale = 1:89 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 $4x8= 5x10 a$ $1 = 2$ 4 $3x6 = 23$ $4x8=$ $\frac{2-9\cdot12}{2\cdot9\cdot12} = 9$	3 10 ¹² 32 32 2 8x - <u>2-8</u> 9-2 4-12 0-0	$3x5 \neq 6x8 =$ x = 4 x = 5 x = 333 x = 1 x = 12 2x4 = 12 2x4 = 12 12 2x4 = 12 12 2x4 = 12 12 2x4 = 12 2x4 = 12 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	■ 6x8= 7 7 17 18 6x12 ≠ 24-9-0 3-0 8 1-6-0	5x8 3738 43 43	$\begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ $	$\frac{12}{14} + \frac{12}{13} + \frac{12}{6} + \frac{12}{6$	1-1-144-0-0_1 1-4-142-7-2
Plate Offsets (X	[2:0-5-4 , Y): [22:0-3-	,0-1-12], [4:0-5-7,Ed 8,0-4-8], [23:0-3-8,0-	ge], [7:0-3-8 -2-0]	8,0-1-12], [12:Edge,0-1	-11], [15:0-6-0,0-3-8], [17:0-2-1	2,0-1-8], [1	8:0-5-8,0-4-0], [20:0-3-0,0	-4-4], [21:0-3-4,0-3-8]],
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/2	(psf) Spacing 20.0 Plate Grip I 20.0 Lumber DC 10.0 Rep Stress 0.0* Code	2 DOL 1. ⁻ DL 1. ⁻ Incr YE	0-0 (15) 15 (15) ES RC2015/TPI2014 (1)	CSI TC 0. BC 0. WB 0. Matrix-MSH	DEFL 55 Vert(I 91 Vert(0 97 Horz(- _L) -0. CT) -0. (CT) 0.	in (loc) l/defl L/d 32 16-17 >999 240 65 16-17 >725 180 45 12 n/a n/a	PLATES GI MT20 24 Weight: 360 lb FT	RIP Ι4/190 Γ = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (I	2x4 SP 24001 2x6 SP 24001 SP No.3 2x4 SP No.3 SP No.1, 18-7 Structural wo 3-4-5 oc purli 2-0-0 oc purli Rigid ceiling to bracing, Exc 6-0-0 oc brac 1 Row at mid Ib/size) 12:	F 2.0E F 2.0E *Except* 6-19 *Except* 18-20,20-7 7:2x4 SP 2400F 2.0f vod sheathing directly ins, except end verti ins (4-5-15 max.): 1- directly applied or 10 cept: ing: 19-20. lpt 3-22, 7-18, 5 =1446/0-3-8, 24=14	9,22-25:2x4 ,8-16:2x4 = y applied or icals, and 2, 4-7. -0-0 oc -21 11/	WEBS 1-2 3-2 4-2 9-1 10 11 5-2 8-1 2-2 NOTES 1) Unbalanced ro this design. 2) Wind: ASCE 7- Vasd=119mph Cot U Exp Pul	23=517/2113, 2-22= 22=-1250/166, 3-21= 21=-545/1834, 18-20 20=-301/3242, 7-18= 16=-239/188, 10-16= -15=-1498/244, 11-1 -14=-753/225, 5-21= 20=-159/376, 7-17=- 17=-1023/390, 8-16= 23=-1522/479 of live loads have be -10; Vult=150mph (3; TCDL=6.0psf; BCD	91/120, -0/852, 208/315- 3273/188, 142/1153, 5=-653/171, 1067/410, 298/1771, 671/2854, 	4, , , , , , , , , , , , , , , , , , ,	 8) * This truss has be on the bottom cho 3-06-00 tall by 2-0 chord and any oth 9) Refer to girder(s) 1 10) Provide mechanic bearing plate capa 24. 11) One RT7A MiTek truss to bearing w connection is for u forces. 12) This truss is desig International Resis R802.10.2 and ref 13) Graphical purplice 	een designed for a liv rd in all areas where 0-00 wide will fit betw er members, with BC for truss to truss conr al connection (by oth able of withstanding 9 connectors recomme alls due to UPLIFT at plift only and does no ned in accordance w dential Code sections erenced standard AN presentation does no	e load of 20.0psf a rectangle veen the bottom :DL = 10.0psf. nections. ers) of truss to i3 lb uplift at joint ended to connect t jt(s) 12. This ot consider lateral ith the 2015 is R502,11.1 and VSI/TPI 1. ot depict the size
FORCES TOP CHORD BOT CHORD	Me Max Horiz 24 Max Uplift 12: Max Grav 12: (lb) - Maximu Tension 1-24=-1582/4 2-3=-1989/54 4-5=-2066/61 6-7=-2251/66 8-9=-5077/12 10-11=-3707 12-13=0/34 23-24=-201/3 21-22=-227/1 19-20=-393/4 18-19=-10/38 16-17=-324/2	echanical =-339 (LC 13) =-138 (LC 16), 24=-1 =1649 (LC 2), 24=16 im Compression/Max 104, 1-2=-1427/388, 15, 3-4=-2414/663, 18, 5-6=-2267/664, 34, 7-8=-2212/710, 173, 9-10=-5008/111 19(17, 11-12=-3403/8) 310, 22-23=-227/141 1960, 20-21=-131/20 18, 6-20=-704/255, 1, 7-18=-90/1610, 2113, 15-16=-764/37	93 (LC 15) 635 (LC 42) kimum 0, 12, 2, 69, 52,	 Cat. II; Exp B; I Exterior (2) 0-1 Exterior (2) 12- 23-11-13, Exte 27-10-14 to 40 exposed ; end members and 1 Lumber DOL=² TCLL: ASCE 7 DOL=1.15 Plat snow); Pf=18.9 Plate DOL=1.1 Ct=1.10, Lu=50 Unbalanced sn design. This truss has load of 12.0 ps overhangs non Provide adenus 	Enclosed; MWFRS (-12 to 2-8-0, Interior -3-3 to 16-2-5, Interior rior (2) 23-11-13 to 2 -7-11 zone; cantileve vertical left and right forces & MWFRS for 1.60 plate grip DOL= -10; Pr=20.0 psf (roc e DOL=1.15); Pg=20 psf (flat roof snow: 5); Category II; Exp -0-0 boen designed for gi f or 2.00 times flat rc -concurrent with oth ate drainage to prev	envelope) : (1) 2-8-0 tr (1) 2-8-0 tr (1) 16-2-: 27-10-14, Ir er left and r exposed;C reactions : 1.33 of live load: 0.0 psf (gro Lumber DC B; Fully Ex considered reater of mi of load of er live load ent water p	and C-C o 12-3-3, 5 to tterior (1) ight 2-C for shown; Lumber und DL=1.15 p.; d for this in roof live 13.9 psf on s. onding.	LOAD CASE(S) Sta	And A	Olivitation of the size
	. 1 10- 7 12/0	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		 All plates are 2 	x4 MT20 unless othe	erwise indio	cated.		EW JOK	

- overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

Job		Truss		Truss Type		Qty	Ply	STALL 61 Willowcroft-Avery-Roof	150100555
22010064-A		A4		Attic		1	1	b Reference (optional)	150198500
Carter Component	ts (Sanford), Sa	anford, NO	C - 27332,		Run: 8.53 S Dec 6 2	021 Print: 8.5 EaPW ztKfx	530 S Dec 6	1 MiTek Industries, Inc. Fri Feb 11 10:49: NSaPanL8w3uITXbGKWrCDoi7.I4z.IC?f	25 Page: 1
			2.7.4 5.0.12 7 2 4	10-6-8 12-3-3 47	21-10-2 21-10-2 21-10-2	2 3-11-13 o	8-2-12	35-7-0 2-9-12 34-7-4 30 2 0 40-8-0	
		ŀ	2-7-4 2-5-8 2-2-7	3-3-4 1-8-11 5	i-3-9 1-8-5 2-7-0	2-1-11	4-3-0	-6-15 1-9-8 3-8-0 1-5-0 0-11-12	
				5x6=	4x5= 4x8= 2	6x10 _∿ x4∎		0 11 12	
	or∏i ⊥			4x6 ¢	5051 7 852 9 	910 ₽			
	11-6			49 49 49			4x5 53		
	3-3-12 2-5-6		6x8= 4	48 41 3x8	40 3 u 2×4=//		51		
	2-2 10-5 -2 10-5 -2 10-5 -2 10-5	1-4-5	6x8 = 6x8 = 47 $1 \qquad 245463$	4-				4x5 12	
	11- -14-15-0 14-0			°			\$	12 6x8≈	
	3 3 2 -	5-4-1						13 1456	6 6
	-1-1-	39				2'	1 20	19	-7-8 -1-1-8 -1-8 -1-1-8 -1-1-8 -1-1-8 -1-1-1-8 -1-1-1-1
		2	x4 II 38 37 3 6x8 = 5x6 =	36 34 32 30 28 5x8	25 24 23 ⁰ 5x6=	22 8x10 🖋		18 17 [™] MT18HS 10x12 = 4x8=	
				2x4 II	5x10= 17 <i>≈</i> 6⊭41₽2	MT18HS	10x12 =	MT18HS 10x12 💊	
			7-	8-8-0 13-8-0 5-0 12-3-4	16-2-0 16-0-0 19-6-10	12		35-8-12	
		ł	<u>2-7-4</u> <u>4-11-1</u> <u>7-3-4</u> 2-7-4 2-3-12 2-4-3	11-3-12 14-1 1-4-12 1-4-12 1-2	11-017-5-0 23-3 1-1-00-1-12 $3-8$	- <u>6</u> 1-6-0	<u>28-2-13</u> 3-5-13	<u>2-11-8 34-5-8 39-3-0</u> -8-11 1-6-0 3-6-4	
Scale = 1:93.2	[1:Edge	e,0-2-0],	[2:0-3-8,0-2-12], [3:0-	1-12 0-11-8 1-3 <u>1-3-0</u> 4-0, 0-3-0 2], [5:0-3-5,0-	3-0 1-3-0 <u>0 2 0 1-11 14</u> -2-12], [6:0-3-0,0-2-12],	[10:0-5-12	.,0-2-10], [1	1-3-4 -0-12,0-2-0], [14:0-4-12,0-3-0], [15:E	Edge,0-0-14],
Plate Offsets (X	, Y): [18:0-8-	4,0-1-4	, [22:0-6-4,0-1-4], [25	:0-2-4,0-3-0], [26:0-3-0),0-2-12], [37:0-3-0,0-1-	12], [38:0-3	3-8,0-2-0],	0-3-8,0-1-8]	
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	TC 0.	.50 Vert(I	- _L) -0.	(loc) l/defl L/d PLATES 20-21 >999 240 MT20	GRIP 244/190
Snow (Pf/Pg) TCDL	18.9/	/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0. WB 0.	.60 Vert(.98 Horz(CT) -0. CT) 0.	20-21 >738 180 MT18HS 15 n/a n/a	244/190
BCLL BCDL		0.0* 10.0	Code	IRC2015/TPI2014	Matrix-MSH	Attic	0.	26-35 >999 360 Weight: 420) lb FT = 20%
LUMBER				BOT CHORD	38-39=-226/331, 37-38	=-26/1215	,	2) Wind: ASCE 7-10; Vult=150mp	h (3-second gust)
BOT CHORD	2x6 SP 2400 2x4 SP 2400	F 2.0E '	*Except* 35-26:2x4 SI	þ	30-37=-3/2076, 34-36= 32-34=0/2838, 30-32=0 24, 28=, 455/2812, 22, 2	0/1949, 0/3121, 28- 04- 402/18	30=0/3121	Cat. II; Exp B; Enclosed; MWFI	RS (envelope) and C-C
WEBS	2x4 SP No.3	*Excep	t* 5-40:2x4 SP No.2		22-23=0/1877, 21-22=0 20-21=-115/2518 19-2	0/2128, 0-464/42	00	12-3-3, Exterior (2) 12-3-3 to 1 to 23-11-13 Exterior (2) 23-11-	3-2-5, Interior (1) 16-2-5
BRACING TOP CHORD	Structural wo	od shea	athing directly applied	or	18-19=-528/4117, 17-1 15-17=-518/3704, 33-3	8=-526/37	32,	(1) 27-10-14 to 40-4-9 zone; ca exposed : end vertical left and	intilever left and right
	4-2-11 oc pu 2-0-0 oc purli	rlins, ex ins (6-0	ccept end verticals, ar -0 max.): 1-3, 6-10.	IC	31-33=-1290/0, 29-31= 27-29=-1177/143, 26-2	-1290/0, ?=-655/71	2	members and forces & MWFRS Lumber DOL=1.60 plate grip D	S for reactions shown; OL=1.33
BOI CHORD	bracing. Exc	directly cept:		WEBS	3-37=-1929/129, 3-36= 35-36=-64/408, 4-35=0	-316/195,)/796, 24-2	6=0/134,	 TCLL: ASCE 7-10; Pr=20.0 psf DOL=1.15 Plate DOL=1.15); P 	(roof live load: Lumber g=20.0 psf (ground
WEBS	6-0-0 oc brac 1 Row at mid	cing: ∠7 cing: 33 1nt	-35, 26-27 1-39, 11-21, 8-22, 9, 2	2	26-40=0/550, 7-40=0/5 13-19=-103/1452, 13-1	75, 12-19= 8=-1808/1	-267/2156, 71,	snow); Pf=18.9 psf (flat roof sn Plate DOL=1.15); Category II; I	ow: Lumber DOL=1.15 Exp B; Fully Exp.;
JOINTS	1 Brace at It	(s)· 1	8-23, 8-26	- ,	14-18=-995/206, 14-17 5-41=-1563/196, 40-41	'=-279/76, =-33/59,		Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have b	been considered for this
REACTIONS /	40, 27, 33, 4 b/size)	1 -1602#	1-3-8 30-1221/		2-37=-120/2084, 2-38= 1-38=-211/2378, 10-21	=-2041/237	, 4, 15	design.5) This truss has been designed f	or greater of min roof live
	Max Horiz 20	echanica	al C 13)		11-21=-1435/335, 11-2 12-20=-1915/390, 8-22	0=-119/11 =-203/462 621/74	15, ,	ioad of 12.0 psf or 2.00 times fl overhangs non-concurrent with	at root load of 13.9 psf on other live loads.
N N	Aax Uplift 15	i=-32 (L)	C 16) C 16) I C 2) 39=2258 /I C 4	(2)	23-26=-344/1455, 8-26 25-26=0/1066 34-35-4	021/14, 6=-240/925 0/652 25.2	, 7 <u>803/0</u>	b) Provide adequate drainage to p	CARO
FORCES	(lb) - Maximu	um Com	pression/Maximum	· /	33-34=-758/29, 27-28= 32-33=-135/399, 28-20	:0/519, :=-474/132	., =-030/0,	L'OR EE	5\$10:1. 11
TOP CHORD	1-39=-2230/2 2-31012/24	219, 1-2	=-1068/169, -2776/283		31-32=-70/33, 29-30=- 7-41=-1158/182	112/68, 6-4	, 1=-39/849	Marxie	+ marine
	4-5=-2206/34 7-8=-1954/40	13, 3-4= 42, 5-6=)8 8-9-	-2170/203, -920/225, 6-7=-953/2 -1843/439	39, NOTES	roof live loads have be		and for	SI	EAL
	9-10=-1707/4	435, 10- /507_12	11=-2655/520, 2-13=-5618/811	this design.	TOOL IIVE IOAUS NAVE DE	CONSIDE	reu IOf	45	844
	13-14=-3991, 15-16=0/28	/656, 14	1-15=-3991/640,					E Parka	RIN
								VOR	INEF
								I. EW	IOHICIN

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A4	Attic	1	1	Job Reference (optional)	150198500

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 3x5 MT20 unless otherwise indicated.
 9) The Fabrication Tolerance at joint 21 = 12%, joint 22 =
- 12%
 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all reas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (10.0 psf) on member(s). 3-4, 4-5, 5-41, 40-41
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 33-35, 31-33, 29-31, 27-29, 26-27
- 13) Refer to girder(s) for truss to truss connections.
- 14) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:25 ID:2PjivEufpt193H8JdEgPW_ztKfx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

							-						
Job		Truss		Truss Type		Qty	Ply	INSTAL	L 61 Willow	vcroft-A	very-Roof		
22010064-A		A5		Attic		1	1	Job Ref	erence (op	tional)		15019	98501
Carter Compone	nts (Sanford), Sa	anford, NC	- 27332,		Run: 8.53 S Dec 6	2021 Print: 8.	530 S Dec 6	2021 MiTe	ek Industries,	Inc. Fri	Feb 11 10:49:27		Page: 1
	3 9-3-14 7-5-17 7-4-17 1-4-17 1-6-9 2-2-5	-1-10-3 -1-10-3 -18■1	3-8-8 7-5-0 3-8-8 3-8-8 3-8-8 3-8-8	$\begin{array}{c} 10-6-8 & 12-3-3 \\ 3-1-8 & 1-8-11 \\ 10^{12} & 5x6= \\ 5x8 \neq 5 \\ 4x6 \neq \\ 6x10= 4 \\ 46 \\ 43 \\ 46 \\ 43 \\ 46 \\ 43 \\ 46 \\ 43 \\ 4 \\ 46 \\ 45 \\ 4 \\ 46 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$\begin{array}{c} \text{ID:XU235GLwYk87} \\ 21-10 \\ 17-6-12 \\ 5-3-9 \\ 1-8-5 \\ 2-7-1 \\ 4x5 \\ 4x5 \\ 4x5 \\ 4x8 \\ 4x$	SjJNfRqYNHzi -2 23-11-13 23-11-13 0 2-1-11 6x10 2x4u 8 9 9 9 9 9	4x5 4x5 50 51 51 51 51 51 51 51 51 51 51	в70Hq3NS <u>32-9-12</u> 4-6-15 0 52	igPqnL8w3u 35- 2 34-7-4 1-9-8 0-11 0-11	17XbGK\ 7-0 <u> 39-</u> 3-{ -12	wrCDoi7J4zJC?f <u>3-0</u> 40-8-0 8-0 1-5-0		
	11-7-1 1-10-3 6-10-8 7 1-10-3 5-0-5 0	37 37 37	x8= 36 4x5=	Image: Weight of the second	7 24 23 22 ⁻⁵ 5x6= 5x8=	21 8x10 ¢ MT18HS	0 19 6 10x12 =		4x5 11 18 17 6x8= MT18HS	12 6x8≈ 2 1353 16 10x12 .	214 1 5 415 φ. 4x8=	114-14 0-10-8 0-10-8 0-10-8 0-6-6	
				9-11-0 13-8-0	17₂£x₄1µ2 0 16-2-0	11ــ 12	1.24			2x4 II			
Scale - 1:02 0		F	<u>3-8-8</u> 7-3-4 ⁷ 3-8-8 3-6-12 0	8-8-0 12-3-4 7-5-0 11-3-12 14 1-4-12 1-4-12 -1-12 0-11-8 1	16-0-0 19-6-10 -11-017-5-0 23 + 11 1 23 2 1-1-00-1-12 3- -3-0 1-3-0	- <u>3-0</u> 24-9-0 -8-6 1-6-0	<u>28-2-13</u> 3-5-13	<u>32-11-8</u> 4-8-11	35-8 3 34-5-8 1-6-0 1-3	3-12 <u>39-</u> 3-6 3-4	- <u>3-0</u> 6-4		
Plate Offsets ()	[3:0-5-0 K, Y): [21:0-6-),0-3-12], -4,0-1-4],	, [4:0-2-10,0-3-2], [5 , [24:0-2-4,0-3-0], [2		0 2 0 1 11 14 12,0-2-14], [11:0-0-12,0 -8,Edge])-2-0], [13:0-	4-4,0-3-0],	[14:Edge,	0-0-14], [1	7:0-8-4	,0-1-4], [18:0-4	-0,Edge],	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.59 Vert(0.67 Vert(0.95 Horz Attic	L LL) -0. CT) -0. (CT) 0. -0.	in (loc 29 19-2 61 19-2 37 1 06 25-3	c) I/defl 0 >999 0 >772 4 n/a 4 >999	L/d 240 180 n/a 360	PLATES MT20 MT18HS Weight: 421 It	GRIP 244/19 244/19 244/19	0 0 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP 2400 2x4 SP 2400 No.3 2x4 SP No.3 Structural wc	F 2.0E F 2.0E * *Except* pod shea	Except* 34-25:2x4 S * 4-38:2x4 SP No.2 thing directly applie	BOT CHORD	36-37=-6/1256, 35-3 33-35=-279/1630, 31 29-31=0/2691, 27-29 23-27=-261/2249, 22 21-22=0/1895, 20-21 19-20=-127/2467, 18 17-18=-542/0265, 22	6=-260/1622 -33=0/2570, 0=0/2691, 2-23=-239/13 =0/2145, 3-19=-481/41 3-17=-541/36	91, 24, 82, 9	2) V C E 1 tt	Vind: ASCE /asd=119m Cat. II; Exp Exterior (2) 2-3-3, Exte o 23-11-13 1) 27-10-14	E 7-10; nph; TC B; Encl 0-1-12 erior (2) , Exterio 4 to 40-	Vult=150mph (DL=6.0psf; BC losed; MWFRS to 4-0-14, Inter) 12-3-3 to 16-2 or (2) 23-11-13 4-9 zone; cant	(3-second CDL=6.0pst (envelope rior (1) 4-0 2-5, Interior to 27-10- ilever left a	gust) f; h=25ft; a) and C-C -14 to r (1) 16-2-5 14, Interior and right t-C-C for
BOT CHORD WEBS	4-3-4 oc purl 2-0-0 oc purl Rigid ceiling bracing. 1 Row at mic	ins, exc ins (6-0- directly a dpt 2	ept end verticals, ar 0 max.): 1-3, 5-9. applied or 10-0-0 oc 2-37, 10-20, 7-21, 8-	WEBS 21,	14-10=-533/3655, 32 30-32=-886/83, 28-31 26-28=-661/0, 25-26 34-35=-4/74, 3-34=-5 25-38=0/495, 6-38=0 11-18=-276/2142, 12	34=-366/82 0=-886/83, =-113/628 999/266, 23-: 9/520, 9-20=- !-18=-109/14	ə, 25=0/129, 207/2210, 24,	e n L 3) T E s	Exposed ; e nembers au umber DO CLL: ASC OOL=1.15 F now); Pf=1	nd vertind L=1.60 E 7-10; Plate D0 8.9 psf	Pr=20.0 psf (no plate grip DOL Pr=20.0 psf (no DL=1.15); Pg= (flat roof snow	or reaction _=1.33 oof live loa 20.0 psf (g r: Lumber [i,c-c for is shown; id: Lumber iround DOL=1.15
JOINTS REACTIONS	1 Brace at Jt 38, 26, 32, 3 (Ib/size) 14 Max Horiz 37 Max Uplift 14	(s): 1, 9 ⊧=1598/0 echanica ′=-400 (L ⊧=-36 (L C	-3-8, 37=1797/ I .C 13) 2 16)		12-17=-1774/177, 13 13-16=-273/77, 4-39: 38-39=-21/28, 2-34=: 2-37=-2486/262, 2-3: 34-36=-516/468, 24- 33-34=0/806, 24-26= 26-27=-44/448, 24-2:	3-17=-991/21 =-1718/208, -169/1738, 6=-72/231, 25=0/1040, 870/0, 32-3 2=-103/442	0, 3=-764/4,	4) U 5) T	Plate DOL= Ct=1.10, Lu Jnbalancec lesign. This truss h bad of 12.0	1.15); (=50-0-(I snow as beer	Category II; Ex 0 loads have bee n designed for 2.00 times flat	p B; Fully E en conside greater of roof load c	Exp.; red for this min roof live of 13.9 psf on
F ORCES TOP CHORD	Max Grav 14 (lb) - Maximu Tension 1-37=-95/77, 3-4=-2250/35 6-7=-2038/41 8-9=-1719/42	=1791 (I um Comp 1-2=-13 55, 4-5=- 12, 7-8=- 44 9-10-	LC 2), 37=2307 (LC pression/Maximum 2/144, 2-3=-2040/2 890/226, 5-6=-930/2 1852/449, -2597/533	52) 16, 235,	27-28-377/223, 30- 28-29=-127/58, 10-2/ 10-19=-123/1098, 11 7-21=-219/490, 8-21: 7-22=-570/21, 22-25: 5-39=-47/907, 6-39=	-102/31, 0=-1420/329 -19=-1881/3 =-1317/57, =0/1327, 7-2 -1250/195	, 97, 5=-36/891,	6) F	Provide ade	equate	drainage to pre	ARO SUCENT Water	ponding.
	10-11=-3252 12-13=-3920 14-15=0/28	/522, 11 /673, 13	-125516/835, -14=-3949/656,	1) Unbalance this design	ed roof live loads have l	been conside	ered for		11111111	PA	SE/ 458 MGIN MEW	AL 44 JOHN	A THINK

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A5	Attic	1	1	Job Reference (optional)	150198501

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 3x5 MT20 unless otherwise indicated.
 9) The Fabrication Tolerance at joint 20 = 16%, joint 21 =
- 12%
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (10.0 psf) on member(s). 3-4, 4-39, 38-39
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-34, 30-32, 28-30, 26-28, 25-26
- 13) Refer to girder(s) for truss to truss connections.
- 14) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:27 ID:XUz35GLwYk87SjJNfRqYNHztKe3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job		Truss		Truss Type		Qty	Ply	INSTALL	61 Willowcrof	t-Avery-Roof	
22010064-A		A6		Attic Girder		1	3	Job Refer	ence (optiona	1)	150198502
Carter Compone	nts (Sanford), Sa	anford, NC	C - 27332,		Run: 8.53 S Dec 6 2	021 Print: 8.5	530 S Dec 6	2021 MiTek	Industries, Inc. F	Fri Feb 11 10:49:29	Page: 1
Scale = 1:95.9 Plate Offsets ()	(2:0-5-4 x, Y): [25:0-2	entord, NC 6-10-8 6-10-8 7-9-11 1-0-2 1-10-3 5-0-9 0-1-1 1-0-3 1-10-3 5-0-9 0-1-1 1-0-3 1-10-3 5-0-9 0-1-1 1-0-3 1-10-3 5-0-9 0-1-1 1-0-3 1-10-3 5-0-1 1-0-3	$\begin{array}{c} 1 - 9 - 3 & 4 - 7 - 2 & 7 \\ 1 - 9 - 3 & 2 - 9 - 14 & 2 \\ 10 \\ 6 \times 8 = \\ 5 \times 6 & = \\ 8 \times 10 \\ 2 & 44 & 3 \\ 1 & & & & \\ 2 & 44 & 3 \\ 2 & 44 & 3 \\ 3 & & & & \\ 3 & & & & \\ 3 & & & &$	3-4 $10-6-53-4$ $10-6-58-2$ $0-11-90-1-12$ $0-11-92-1-13$ $4x5$ $12-3-33-4$ $11-12$ $0-11-92-1-13$ $4x5$ $12-3-35x10x$ $5x66x12 \neq 812 \neq 163x8 = 2x44x5 = 4x6 =9-11-0$ $2x4$ $118-8-0$ $12-3-43-2 + 11-3-128-2 + 11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-0$ $11-3-121-3-12$ $1-3-12$ $1-3-121-3-12$ $1-3-12$ $1-3-12$ $1-3-12$ $1-3-12$ $1-3-12$	Run: 8.53 S Dec 62 ID:n1blhn3ZQAicfxuv. 17-6-12 20-8-6 5-3-9 3-1-10 = 4x5= 40 45 9 46 1 40 39 3x8 2x4= 26 25 II 27 24 252 532 8x10= 6x 4x6= 5x8= THD2 3x5 7, 5264 9 0 16-21 DH26-2 16-0-0 20-8-6 14-11-0 17-6-12 13-0 514192-12], -12, [11:0 514192-12], -8,0-1-8]	23-11-13 3-3-6 x5= 5xii 0 1 x5= 5xii 0 1 x5= 5xii 0 1 x5= 5xii 0 1 10 1 x5= 5xii 0 2 10 1 x5= 5xii 0 2 10 - 7-7 10 - 7-7 10 2 10 2 10 - 7-7 10 - 7-7 10 2 10 2 10 - 7-7 10 - 7-7 10 2 10 2 1	27-8-1 3-8-4 3= 1 6x 3-8-4 3= 1 6x 4 4 55 55 55 55 55 55 55 55	2021 Milek Hq3NSgPqnl 31-6-8 3-10-7 8 4 72 6 7 48 72 6 7 48 72 6 7 48 72 6 7 10-7 10-7 10-7 10-7 10-7 10-7 10-7 10	Industries, Inc. F L8w3ulTXbGKW 4-0-8 13 MT18HS 49 50 1 49 50 1 50 5 5 5 5 7 17 1026THD265x6 THC 35-8-12 5-11-6	10x12 = 10x12 = 10x	Page: 1 ⊥ 4-8],
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MSH	.51 Vert(I .62 Vert(I .93 Horz(Attic	- _L) -0. CT) -0. CT) 0. -0.	in (loc) 27 22-23 58 22-23 05 15 13 25-34	l/defl L/c >999 240 >807 180 n/a n/a >923 360	 PLATES MT20 MT18HS Weight: 1472 lt 	GRIP 244/190 244/190 0 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x6 SP 2400 2x6 SP 2400 2400F 2.0E 2x4 SP No.3 2x4 SP No.3 2.0E, 7-39:2 Structural w 6-0-0 oc pur Rigid ceiling bracing, Ex 6-0-0 oc bra 1 Brace at J 39, 40, 26, 3 (lb/size) 1! Max Horiz 3! Max Uplift 1! Max Grav 1! (lb) - Maximu Tension 1-2=-1453/1 3-4=-6286(2)	DF 2.0E DF 2.0E * S *Except S-34,34-3 x4 SP No ood sheat itins, exco itins, exco itins, exco coept: cing: 35- t(s): 6, S=7592/C lechanica S=-7592/C lechanica S=	*Except* 34-25:2x4 SI ** 3,13-17:2x4 SP 2400F o.2 athing directly applied cept end verticals, and 0 max.): 2-5, 5-6, 8-1 applied or 10-0-0 oc -36,33-35,31-33. 0-3-8, 38=4889/ al LC 9) LC 12), 38=-187 (LC 2 pression/Maximum -2615/135, -5633/237, 5794/72	BOT CHORD P or 1. WEBS 7) 77)	$\begin{array}{l} 37-38=-171/369, 36-37\\ 35-36=-8323/1117, 33\\ 31-33=-3293/980, 29-5\\ 27-29=0/2542, 23-27=\\ 22-23=-959/14300, 20\\ 19-20=-389/8947, 18-1\\ 17-18=-684/11620, 15\\ 32-34=-1167/13416, 33\\ 28-30=-626/4883, 26-2\\ 25-26=-6047/652\\ 2\cdot37=-4733/270, 34-35\\ 6\cdot34=-3904/242, 4\cdot6=-\\ 23-25=-4/1648, 25-39\\ 9\cdot39=-119/2279, 11-22\\ 14-17=-8831/746, 7-40\\ 39-40=-55/484, 1\cdot37=-\\ 3\cdot36=-8570/520, 2\cdot36=\\ 9\cdot36=-17/2306, 9\cdot40=-\\ 11-22=-62/1785, 12-22\\ 13\cdot17=-1021/12382, 13\\ 2\cdot18=-537/5629, 13-1\\ 10-22=-464/3097, 22-2\\ 10-25=-3964/624, 24-2\\ 23\cdot33=-5183/253, 26-2\\ 22\cdot33=-5183/253, 26-2\\ 23-33=-377/5365, 27-2\\ \end{array}$	7=-114/123 -35=-10032 31=0/2542, -1063/1479 22=-279/7; 19=-389/89 -17=-1280/ 0-32=-626/. 28=-743/11; 5=-124/182 2360/202, =-136/2254 2=-516/472; 0=-4269/23; 225/4765, =-184/5191 3579/248, 0=-4004/52 2-19=-68/8 8=-3045/3; 25=-6804/8 25=-2881/5 3=-513/337/ 27=-3869/4 8=-542/55;	4, 2/1242, 11, 351, 47, 18875, 4883, 3, 1, 5, 4, 975, 4, 975, 1, 13, 991, 01, 00, 6, 65, 52,	 All exc CA proc unl Un this Wi Va Ca left exp TC DC sno Pla Ct= Un des 	loads are con cept if noted a (SE(S) section ovided to distri less otherwise balanced roof s design. nd: ASCE 7-1 sd=119mph; 7 t. 1; Exp B; Er t and right exp posed; Lumbe CLL: ASCE 7-1 DL=1.15 Plate bow); Pf=18.9 p tet DOL=1.15) =1.10, LU=50- ibalanced snor sign.	sidered equally ap s front (F) or back Ply to ply connec bute only loads no indicated. I ive loads have be 0; Vult=150mph (3 TCDL=6.0psf; BCD nclosed; MWFRS 0 iosed ; end vertica r DOL=1.60 plate 0; Pr=20.0 psf (roo DOL=1.15); Pg=2 of (flat roof snow:); Category II; Exp 0-0 w loads have beer	polied to all plies, (B) face in the LOAD ctions have been tied as (F) or (B), een considered for B-second gust) DL=6.0psf; h=25ft; (envelope); cantilever I left and right grip DOL=1.33 of live load: Lumber 0.0 psf (ground Lumber DOL=1.15 B; Fully Exp.; In considered for this
5-6=-1625/67, 5-7=-5794/272, 7-8=-3247/159, 8-9=-3867/171, 9-10=-6682/357, 10-11=-7752/529, 11-12=-9529/682, 12-13=-13752/1009, 13-14=-25292/1879, 14-15=-20157/1409, 15-16=0/28, 1-38=-5485/168 1) 3-ply truss (0.131*x3** Top chords staggered Bottom chor staggered Web conner				30-31=-722/50, 28-29= to be connected togethe nails as follows: connected as follows: 2 at 0-9-0 oc, 2x4 - 1 row a rds connected as follow at 0-4-0 oc, 2x4 - 1 row a cted as follows: 2x4 - 1	=-2341/184 er with 10d 2x6 - 2 rows at 0-9-0 oc. vs: 2x6 - 3 r at 0-9-0 oc. row at 0-9-	s ows 0 oc.		THINN WALK	SEA 4584 NGIN February	EER. ON	

٢N 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A6	Attic Girder	1	3	Job Reference (optional)	150198502

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Fri Feb 11 10:49:29

ID:n1blhn3ZQAicfxuvA2vdpxztKd7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (10.0 psf) on member(s). 4-5, 5-7, 7-40, 39-40
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-34, 30-32, 28-30, 26-28, 25-26
- 13) Refer to girder(s) for truss to truss connections.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 187 lb uplift at joint 38.
- 15) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Use MiTek THDH26-2 (With 22-16d nails into Girder & 8-16d nails into Truss) or equivalent at 24-6-0 from the left end to connect truss(es) to front face of bottom chord.
- 19) Use MiTek THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 26-5-0 from the left end to 44-5-0 to connect truss(es) to front face of bottom chord.
- 20) Fill all nail holes where hanger is in contact with lumber.
- 21) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-2=-48, 2-4=-58, 4-5=-78, 5-7=-68, 7-8=-48, 8-11=-58, 11-14=-48, 14-16=-48, 38-41=-20,
- 25-34=-30, 7-40=-20, 39-40=-20
- Concentrated Loads (Ib)
 - Vert: 20=-663 (F), 17=-672 (F), 19=-663 (F), 18=-663 (F), 52=-2437 (F), 53=-663 (F), 54=-663 (F), 55=-663 (F), 55=-663 (F), 55=-663 (F), 57=-663 (F), 58=-664 (F)

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A7	Attic	1	1	Job Reference (optional)	150198503

11-6-3

Scale = 1:82

	, , , , , [1.0 5 0,0 1 12]], [2.0 0 0,0 2 12], [5.0 2 12,0 2	. 12], [11.0 2	4,0 0 0], [10.0 2 0,	0 2 0], [24.0 1 0,0 2	0]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	;/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.93 0.71	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.14 -0.28 0.02 -0.07	(loc) 16-18 16-18 7 9-18	l/defl >999 >756 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 2x4 SP 2400F 2.0E * No.3 2x4 SP No.3 *Except 2.0E, 23-24:2x4 SP I Structural wood shea 6-0-0 oc purlins, exc	*Except* 18-9:2x4 S t* 6-7:2x6 SP 2400F No.2 athing directly applie cept end verticals, a	WE P = ed or nd	EBS	1-21=-69/680, 2-2' 18-23=-211/211, 4 23-25=-49/109, 24 5-25=-30/139, 4-2! 5-24=-1233/318, 3 2-20=-111/463, 18 3-18=-922/685, 17 16-17=-489/319, 1 14-15=-114/162, 1	1=-394/1 -23=-169 -25=-216 5=-188/4 -20=-554 -20=-209 -18=-104 5-16=-53 2-13=-12	41, 18-19=-1 9/234, 5/540, 88, 4/725, 96/837, 4/485, 31/465, 26/209,	7/72,	 Probea 7. This Inte R80 Gra or th bott 	vide mer ring plat s truss is rnationa 02.10.2 a phical p ne orient om chor	chanica te capa s design al Resid and refu urlin re tation c rd.	al connection (b able of withstand ned in accordan dential Code sec erenced standar presentation do of the purlin alon	y others) of trr ing 21 lb uplif ce with the 20 tions R502.1 d ANSI/TPI 1 es not depict g the top and	uss to 't at joint)15 1.1 and the size //or
BOT CHORD	2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. Except: 2-11-0 oc bracing: 10- 4-3-0 oc bracing: 10-	-0 max.): 2-6. applied or 6-0-0 oc 6-18 -16	NC 1)	PTES Wind: ASCE Vasd=119m	11-12=-1049/393, 8-10=-1213/56, 8-9 5 7-10; Vult=150mp ph; TCDL=6.0psf; 1	10-11=-´)=-86/14 hh (3-sec BCDL=6	157/688, 29 cond gust) .0psf; h=25ft	;	12) Attio	c room c CASE(S)	checkee) Star	d for L/360 defle ndard	ction.	
WEBS JOINTS	6-8-0 oc bracing: 9-1 1 Row at midpt 1 Brace at Jt(s): 23.	10 2-21, 18-23, 1-22, 3 3-18	9-20,	Cat. II; Exp I Exterior (2) (10-9-13, Ext 13-9-4 to 24	B; Enclosed; MWF 6-7-12 to 9-7-12, Ir erior (2) 10-9-13 to -1-12 zone; cantile	RS (enve iterior (1) 13-9-4, ver left a	elope) and C) 9-7-12 to Interior (1) and right	-C						
REACTIONS	25, 16, 10 (Ib/size) 7=1038/ M Mechanica Max Horiz 22=437 (L Max Uplift 7=-21 (LC Max Grav 7=1410 (L	∕lechanical, 22=795/ al .C 10) : 10) .C 3), 22=972 (LC 2	, 2) 8)	exposed ; er members an Lumber DOI TCLL: ASCE DOL=1.15 P snow); Pf=13	nd vertical left and d forces & MWFR3 _=1.60 plate grip D 57-10; Pr=20.0 psf Plate DOL=1.15); P 8.9 psf (flat roof sn 15); Cottogor, lli	right exp S for rea OL=1.33 (roof liv g=20.0 p ow: Lum	osed;C-C fo ctions showr e load: Lumb osf (ground ber DOL=1.1	r n; per 15			1.11	WITH CA	ROLI	11.
FORCES	(lb) - Maximum Com	pression/Maximum	- /	Ct=1.10, Lu	=50-0-0	Ехр В; Г	ully Exp.;			U	K	rial	Pun	rin
TOP CHORD BOT CHORD	1-2=-547/273, 2-3=- 4-6=-725/563, 7-9=- 9-24=-551/156, 6-24 21-22=-410/326, 20- 19-20=-1085/2288, 1 15-17=-415/2678, 13 8-13=-34/2388, 7-8=	485/263, 3-4=-427/2 1385/157, =-147/81, 1-22=-94 21=-379/514, 17-19=-1162/2415, 3-15=-34/2388, -1282/551,	244, 4) 5) 1/130 6) 7)	 Provide ade All plates are This truss I on the botton 3-06-00 tall I chord and ar Ceiling dead Bottom chor 	quate drainage to p e 3x5 MT20 unless has been designed m chord in all area: by 2-00-00 wide wi ny other members. I load (10.0 psf) on d live load (40.0 ps	orevent v otherwis I for a liv s where II fit betw membe	vater ponding se indicated. e load of 20.1 a rectangle veen the bott r(s). 23-25, 2 dditional bott	g. Opsf om 24-25 om			R	SEA 458	IL 44	A A A A A A A A A A A A A A A A A A A
	16-18=-2324/580, 14 12-14=-2166/0, 10-1 9-10=-712/691	4-16=-2166/0, 2=-1395/0,	8)	chord dead 1 14-16, 12-14 Refer to gird	load (5.0 psf) appli 4, 10-12, 9-10 ler(s) for truss to tru	ed only t uss conr	o room. 16-1 iections.	8,			11	REW J	OHNS	dr.

 μ_{111111} February 13,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A8	Attic	1	1	Job Reference (optional)	150198504

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:32 ID:YIZLoiywYPau4ZiB8fFWx2ztKdG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.5

Scale = $1:85.5$					12	1-3-0	1-4-13	1-3-0						
Plate Offsets (X, Y): [1:0-3-0,0-1-12	2], [2:0-5-8,0-2-12], [1	0:0-2-4,0-	3-0], [17:0-2-	4,0-2-8], [22:0-1-1	2,0-2-0]	0-11-0	U						
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.88	DEFL Vert(LL)	in -0.14	(loc) 15-17	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	18.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.94 0.78	Vert(CT) Horz(CT)	-0.27 0.03	15-17 6	>769 n/a	180 n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH	0110	Attic	-0.07	8-17	>999	360			
BCDL	10.0											Weight: 234 II) FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP 2400F 2.0E No.3	*Except* 17-8:2x4 S	W	EBS	1-19=-63/673, 2- 2-17=-552/512, 1 17-21=-300/185, 21-23=-224/523,	19=-330/3 7-18=-10 3-21=-94, 22-23=-2	886, 3/82, /175, 24/523,		 9) Pro bea 6. 10) This 	vide mee Iring plat s truss is	chanic e capa desig	al connection (b able of withstan ned in accorda	vy others) of tr ding 20 lb upli nce with the 2	russ to ift at joint 015
WEBS	2x4 SP No.3 *Excep 2.0E, 21-22:2x4 SP	ot* 5-6:2x6 SP 2400F No.2			4-21=-482/196, 4 17-19=-1977/885	-22=-120 5, 16-17=-	8/327, 87/526,		Inte R80	ernationa 02.10.2 a	I Resident	dential Code se erenced standa	ctions R502.1 rd ANSI/TPI /	1.1 and 1.
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	eathing directly applie cept end verticals, a)-0 max.): 2-5.	ed or nd		15-16=-509/338, 13-14=-119/165, 10-11=-1061/419 7-9=-1213/72, 7-	14-15=-5 11-12=-1), 9-10=-1 8=-100/14	51/486, 34/216, 72/695, 136, 4-23=0/1	129	11) Gra or ti bott 12) Atti	phical p he orient tom chor c room c	urlin re ation o d. hecke	presentation do of the purlin alo d for L/360 defl	ies not depict ig the top and ection.	the size d/or
BOT CHORD	Rigid ceiling directly bracing. Except: 2-11-0 oc bracing: 1 4-3-0 oc bracing: 9- 6-11-0 oc bracing: 8	7 applied or 6-0-0 oc 5-17 15	N(1) 2)	DTES Unbalance this design Wind: ASC Vasd=119r	d roof live loads ha E 7-10; Vult=150n mph; TCDL=6.0psl	ave been o nph (3-seo ; BCDL=6	considered fo cond gust) 5.0psf; h=25ft	or ::	LOAD	CASE(S)) Sta	ndard		
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 21, 15, 9, 23	2-17, 17-21, 1-20		Cat. II; Exp Exterior (2) 10-11-10, E	B; Enclosed; MW) 6-7-12 to 9-7-12, Exterior (2) 10-11-	FRS (env Interior (1 10 to 15-2	elope) and C) 9-7-12 to -8, Interior (1	-C						
REACTIONS	(lb/size) 6=1038/ Mechanic Max Horiz 20=435 (l Max Uplift 6=-20 (LC Max Grav 6=1410 (l	Mechanical, 20=793/ cal LC 10) C 10) LC 3), 20=972 (LC 2	₈₎ 3)	15-2-8 to 2 exposed ; e members a Lumber DC TCLL: ASC	24-1-12 zone; canti end vertical left and and forces & MWF DL=1.60 plate grip DE 7-10; Pr=20.0 p Plate DOI =1 15):	lever left a d right exp RS for rea DOL=1.33 sf (roof liv Pa-20.0 r	and right bosed;C-C fo loctions showr 3 re load: Lumb bosf (ground	r n; per				WH C	ARO	
FORCES	(lb) - Maximum Corr Tension	npression/Maximum		snow); Pf= Plate DOL:	18.9 psf (flat roof s =1.15): Category II	now: Lum Exp B: F	iber DOL=1.1 fully Exp.:	15				OFFS	bure	in
TOP CHORD	1-2=-547/278, 2-3=- 4-5=-97/546, 6-8=-1 5-22=-145/80, 1-20=	425/247, 3-4=-460/2 384/160, 8-22=-548/ =-933/135	48, (159, 4) 5)	Ct=1.10, Li Provide ad * This truss	u=50-0-0 lequate drainage to s has been designe	prevent oprevent	water ponding e load of 20.	g. Opsf			Ŵ	SE	AL T	
BOT CHORD	19-20=-409/329, 18 16-18=-1297/2457, 12-14=-125/2415, 7	-19=-1230/2321, 14-16=-523/2745, -12=-125/2415,		on the bott 3-06-00 tal chord and	om chord in all are I by 2-00-00 wide any other member	as where will fit betv s.	a rectangle veen the bott	om		THUN I		458	44	
	6-/=-1254/519, 15-1 13-15=-2177/0, 11-1 9-11=-1407/0, 8-9=-	17=-2409/711, 13=-2177/0, 661/632	6) 7)	Ceiling dea Bottom cho chord deac 13-15, 11-1	ad load (10.0 psf) c ord live load (40.0 j d load (5.0 psf) app 13, 9-11, 8-9	on membe psf) and a plied only t	r(s). 21-23, 2 dditional bott to room. 15-1	22-23 tom 17,			I.P.	NOREW	IEER.SC	A LIVE

8) Refer to girder(s) for truss to truss connections.

minim February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	A9	Monopitch Supported Gable	1	1	Job Reference (optional)	150198505

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:33 ID:5g?MJKtyVLC9IdVB5QDfiSztK9g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 m

3-3-8

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-1-12,0-1-5]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Left 2x4 SP Structural v 3-3-8 oc pu Rigid ceilin bracing. (lb/size) 2 (max Horiz 2 Max Uplift 2 (max Grav 2)	2 2 3 No.3 2 wood shea urlins, exc g directly 2=188/3-3 5=188/3-3 2=63 (LC 2=-84 (LC 2=-84 (LC 2=-28 (LC 2=228 (LC 2=228 (LC 2)	2-6-0 athing directly applie cept end verticals. applied or 10-0-0 or -8, 5=92/3-3-8, -8 14), 6=63 (LC 14) 11), 5=-18 (LC 15) 11) 5 2), 5=107 (LC 2), 6	3) 4) ed or 5) c 6) 7) 8) 5=228	TCLL: ASCE DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss th on the bottor 3-06-00 tall h chord and ar	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snc 1.15); Category II; E snow loads have b as been designed fc psf or 2.00 times fla on-concurrent with es continuous botto spaced at 2-0-0 oc has been designed n chord in all areas by 2-00-00 wide will by other members.	(roof liv =20.0 p w: Lum xp B; F een cor or greate at roof le other liv other liv other liv other liv other liv other liv other liv other liv other liv other liv	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; isidered for th er of min roof bad of 13.9 pi re loads. d bearing. e load of 20.0 a rectangle reen the botto	er 5 live sf on Opsf					
FORCES TOP CHORD	(lb) - Maxin Tension 1-2=0/33, 2	num Com 2-4=-173/	pression/Maximum 135, 4-5=-86/157											
BOT CHORD NOTES 1) Wind: ASC Vasd=119	2-5=-33/45 CE 7-10; Vult: Imph; TCDL=	=150mph 6.0psf; B((3-second gust) CDL=6.0psf; h=25ft;								1	and a	OR FESS	ROLIN

- N
- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) -1-4-11 to 1-7-5, Exterior (2) 1-7-5 to 3-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Annun and Summer SEAL 45844 EW February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B1	Common Supported Gable	1	1	Job Reference (optional)	150198506

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:33

Page: 1

ID:VokL3_KAnisvEJqImhOLiFztK95-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f |-1-5-0 |1-5-0 6-2-8 12-5-0 13-9-0 6-2-8 6-2-8 1-4-0 4x5= 5 Æ 12 12 T 4 6 7-11-0 7-8-11 3 7 2 8 1-6-3 9 16 10 ***** *** \times \times 15 14 13 12 11

12-5-0

Scale	- 1	1.51	2
ocale	_		. ~

Scale = 1.51.2												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014 2) Wind: AS(CSI TC BC WB Matrix-MR	0.27 0.13 0.49 nph (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 10=137/1 12=143/1 14=144/1 16=145/1 Max Horiz 16=249 (L Max Uplift 10=-139 (12=-79 (L 15=-158 (Max Grav 10=222 (L 12=181 (L 14=181 (L 16=236 (L))	athing directly applie cept end verticals. applied or 6-0-0 oc 2-5-0, 11=127/12-5-0 2-5-0, 13=142/12-5-0 2-5-0, 15=122/12-5-0 2-5-0 _C 12) (LC 10), 11=-153 (LC C 14), 14=-79 (LC 13 (LC 10), 16=-149 (LC _C 25), 11=255 (LC 2 _C 26), 15=255 (LC 2 _C 26)	Vasd=119 Cat. II; Ex Corner (3) Zone; cani and right e MWFRS fi grip DOL= 3) Truss des only. For see Stand b, or consult or consult or consult 0, 4) TCLL: ASI DOL=1.15 snow); Pfa 9), Plate DOL 3), Ct=1.10 9) 5) This truss (6), load of 12 (4), overhangs (5), 6) All plates a 7) Gable reg	mph; TCDL=6.0ps b B; Enclosed; MW -1-4-4 to 1-7-12, E 6-2-8 to 9-2-8, Ex ilever left and right xposed;C-C for m or reactions shown 1.33 igned for wind loar studs exposed to w ard Industry Gable qualified building of CE 7-10; PT=20.0 p Plate DOL=1.15); 13.9 psf (flat roof = =1.15); Category I has been designer 0 psf or 2.00 times non-concurrent w are 2x4 MT20 unle uires continuous bu	f; BCDL=6 //FRS (env/ Exterior (2) g terior (2) g texposed embers arr ; Lumber I ds in the p vind (norm End Deta designer a sof (roof li Pg=20.0 j snow: Lum I; Exp B; F d for great s flat roof li tith other li ss otherwin other wind	.0psf; h=25ft elope) and C 1-7-12 to 6-2 -2-8 to 13-8-4 ; end vertical d forces & DOL=1.60 pla lane of the tru al to the face ils as applica is per ANSI/TI eload: Lumb bosf (ground iber DOL=1.1 ully Exp.; er of min roof boad of 13.9 pi <i>ve</i> loads. se indicated. d bearing	;-C 2-8, 4 left Jss), ble, Pl 1. er 5 live sf on					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	8) Truss to b braced ag	e fully sheathed fro ainst lateral mover	om one fac nent (i.e. c	e or securely iagonal web)				. (TH CA	RO
TOP CHORD	2-16=-187/242, 1-2= 3-4=-188/267, 4-5=- 6-7=-187/269, 7-8=- 8-10=-175/230	=0/80, 2-3=-147/167, 298/403, 5-6=-299/40 136/157, 8-9=0/76,	9) Gable stud 02, 10) * This trus on the bot 3-06-00 ta	ls spaced at 2-0-0 s has been design com chord in all are	oc. ed for a liv eas where will fit betw	e load of 20.0 a rectangle)psf		\mathcal{O}	in.	A DEES	bisting
BOT CHORD	15-16=-127/124, 14 13-14=-127/124, 12 11-12=-127/124, 10	-15=-127/124, -13=-127/124, -11=-127/124	chord and	any other member	rs.						SEA	L
WEBS	5-13=-473/277, 4-14 3-15=-233/197, 6-12 7-11=-234/200	4=-198/175, 2=-197/173,									-50-	a. 2
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									February	0HN

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B2	Piggyback Base Structural Gable	1	1	Job Reference (optional)	150198507

Scale = 1:71.8

Plate Offsets (X, Y): [6:0-6-4,0-1-12], [8:0-3-4,0-1-12]

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:34 ID:lcuSEJGTfMZ_z8D6mMGOKUztK7u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.64 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.31 0.01	(loc) 13-14 13-14 13	l/defl >934 >464 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p	0.2 0.2 0.3 0.3 wood shea ourlins, exa	athing directly applie cept end verticals, ar 0 max): 6-8	d or id	BOT CHORD	22-23=-159/223, 20-21=-159/223, 17-18=-159/223, 15-16=-219/268, 13-14=0/289 6-17=-350/0, 6-2 8-14=-48/137, 25 27-28=-257/92, 4 10-13=-335/6, 14	21-22=-1 18-20=-1 16-17=-2 14-15=-2 4=-96/401 3-28=-254/ I-27=-296/ I-29=-360/	59/223, 59/223, 19/268, 19/268, , 14-24=-98/4 /88, /103, /292,	41,	5) Thi loa ove 6) Pro 7) All 8) Tru bra 9) Ga 10) * T	s truss h d of 12.0 erhangs wide ade plates a ss to be ced aga ble studs nis truss	as bee) psf or non-co equate re 2x4 fully sl inst late s space has be	n designed for gr 2.00 times flat ro ncurrent with othe drainage to preve MT20 unless othe reathed from one eral movement (i. ed at 2-0-0 oc. sen designed for a	eater of min roof live of load of 13.9 psf on er live loads. ent water ponding. erwise indicated. face or securely e. diagonal web). a live load of 20.0psf
BOT CHORD WEBS JOINTS	Rigid ceili bracing. 1 Row at 1 Brace a 25, 27, 29	midpt t Jt(s): 24,	applied or 10-0-0 oc 6-17			10-29=-313/251, 25-26=-228/218, 7-24=-127/28, 15 5-25=-220/177, 1 20-26=-49/0, 21-	4-26=-232 17-25=-23 5-24=-157/ 8-25=-200 27=-49/14	2/197, 39/222, /20, 6/172, 4, 3-28=-384/1 //22	99,	on 3-0 chc 11) N/A	the botto 6-00 tall ord and a	om cho by 2-0 any oth	rd in all areas wh 0-00 wide will fit b er members, with	ere a rectangle between the bottom BCDL = 10.0psf.
REACTIONS	(Ib/size) Max Horiz Max Uplift Max Grav	13=547/0 17=279/9 20=79/9-9 22=143/9 23=-322 (L 13=-62 (L 17=-39 (L) 22=-180 (L 13=663 (L 17=448 (L 20=87 (L) 22=248 (L)	3-8, 16=181/0-3-8, 9-8, 18=143/9-9-8, 1-8, 21=74/9-9-8, 9-8, 23=193/9-9-8 LC 11) C 14), 16=-85 (LC 9) C 13), 18=-89 (LC 12 LC 13), 23=-134 (LC C 26), 16=196 (LC 2 C 25), 18=196 (LC 2 C 25), 18=196 (LC 2 C 25), 23=273 (LC 26), C 25), 23=273 (LC 26),	, 9) 2), 5),	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=119m Cat. II; Exp B Exterior (2) - 8-11-13, Ext 17-4-12 to 2: exposed; er members an	considered for cond gust) .0psf; h=25ft; elope) and C-0 2, Interior (1) and right loosed;C-C for ctions shown;	12) N/A	(NITH CA	ROLING			
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum	,	Lumber DOL 3) Truss desig	=1.60 plate grip ned for wind load	DOL=1.33	3 lane of the true	SS		V		:Q	K
TOP CHORD	1-2=0/76, 4-5=-215/ 7-8=-364/ 10-11=-37 11-13=-44	2-3=-26/1(165, 5-6=-3 267, 8-9= 75/221, 11- 46/298	58, 3-4=-201/208, 308/279, 6-7=-364/20 421/273, 9-10=-414/; 12=0/76, 2-23=-141/	67, 216, 191,	 4) TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= 	als exposed to W d Industry Gable alified building d 5 7-10; Pr=20.0 p late DOL=1.15); 8.9 psf (flat roof s 1.15); Category II =50-0-0	End Deta esigner as sf (roof liv Pg=20.0 p snow: Lum ; Exp B; F	is as applicables is as applicables is per ANSI/TP e load: Lumbe osf (ground iber DOL=1.15 'ully Exp.;	, 1. er 5		111112	N. M.	4584	E.R. O.N. DHN9 13,2022

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B2	Piggyback Base Structural Gable	1	1	Job Reference (optional)	150198507
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.53 S Dec 6 2	021 Print: 8.	530 S Dec 6	2021 MiTek Industries, Inc. Fri Feb 11 10:49:34	Page: 2

- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:34 ID:lcuSEJGTfMZ_z8D6mMGOKUztK7u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B3	Piggyback Base	3	1	Job Reference (optional)	150198508

Scale = 1:70

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:35 ID:s13fhVbzcTdnthWX2JnVbuztK8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-6-4,0-1-12]], [5:0-3-4,0-1-12]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2019	5/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.73 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.02	(loc) 9-10 9-10 9	l/defl >999 >716 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=820/0-3 Max Horiz 13=-322 (I Max Upliff 9=-71 (LC Max Grav 9=950 (LC (lb) - Maximum Com Tension 1-2=0/76, 2-3=-388/2 4-5=-622/335, 5-6=-{ 7-8=0/76, 2-3=-388/2 4-12=-113/360, 4-10 5-10=-116/356, 3-13 6-9=-697/100, 3-12=-{ 9-00000000000000000000000000000000000	athing directly applied cept end verticals, and -0 max.): 4-5. applied or 10-0-0 oc 4-10 -8, 13=820/0-3-8 LC 11) -14), 13=-71 (LC 13) C 2), 13=950 (LC 2) pression/Maximum 213, 3-4=-799/367, 800/367, 6-7=-387/21 /291, 7-9=-453/291 12=-62/577, =-126/128, =-697/100, -293/247, 6-10=-293/ been considered for	2) I or d 3) 4) 3, 5) 6) 7) (247 8) 9) LC	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) - 8-11-13, Extt 11-11-13 to 1 Interior (1) 11 right exposed for members Lumber DOL TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0 overhangs n Provide aded * This truss ha on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 au Graphical pu or the orienta bottom chorc	7-10; Vult=150mp b); TCDL=6.0psf; E b); TCDL=6.0psf; E closed; MWFF 1-3-4 to 1-8-12, Int erior (2) 8-11-13 to 12-11-3, Exterior (2) 5-11-3 to 23-2-4 zc d); end vertical left and forces & MWF =1.60 plate grip D 7-10; Pr=20.0 psf ate DOL=1.15); Pg 0.9 psf (flat roof sm (15); Category II; E 50-0-0 s been designed fro 50-0-0 s been designed fro pas been designed n chord in all areas by 2-00-00 wide will yo other members, ITEk connectors re ing walls due to UF ion is for uplift only designed in accord Residential Code stan rlin representation tion of the purlin al J. Standard	h (3-sec SCDL=6 SCDL=6 S (env. erior (1) 11-11-' 2) 12-11 one; can and righ FRS for OL=1.33 (roof liv g=20.0 p ow: Lum Exp B; F or greate at roof h for a liv for a li	cond gust) cond gust) const; h=25ft elope) and C 1-8-12 to 13, Interior (1 -3 to 15-11-3 to 15-11-3 to 15-11-3 to 15-11-3 te eload: Lumb soft (ground ber DOL=1.1 ully Exp.; er of min rool ber DOL=1.2 ully Exp.; er of min rool bad of 13.9 p ve loads. water pondin e load of 20.4 a rectangle ween the bott DL = 10.0ps anded to conr jt(s) 13 and es not consid ith the 2015 a R502.11.1 a SI/TPI 1. bt depict the set to p and/or	; -C -C -C -C -C - C 				SEA 4584	ROLINA 4	
											102	WEW JO	Duin	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B4	Piggyback Base	4	1	Job Reference (optional)	150198509

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:36 ID:x?a26ub13z5?KRMUPFmzSOztK7S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.7	
Plate Offsets (X, Y):	[4:0-6-4.0-1-12], [5:0-3-4.0-1-12]

	,, ,, ,, [1.0 0 1,0 1 12]], [0:0 0 1,0 1 12]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.73 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 0.02	(loc) 11-12 11-12 8	l/defl >999 >710 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0	athing directly applied of cept end verticals, and -0 max.): 4-5.	2) or	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) - 8-11-13, Extr 17-3-14 to 2 exposed ; en members an	7-10; Vult=150mph bh; TCDL=6.0psf; B B; Enclosed; MWFR 1-3-4 to 1-8-12, Inte erior (2) 8-11-13 to 1-9-4 zone; cantileve d vertical left and ri d forces & MWFRS	(3-sec CDL=6 S (enve erior (1) 17-3-14 er left a ght exp for rea	ond gust) .0psf; h=25ft; elope) and C- 1-8-12 to I, Interior (1) and right iosed;C-C for ctions shown	; -C						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 8=750/0-3 Max Horiz 12=310 (L Max Uplift 8=-48 (LC Max Grav 8=867 (LC	applied or 10-0-0 oc 4-10 8-8, 12=822/0-3-8 (C 10) 14), 12=-71 (LC 13) C 3), 12=953 (LC 2)	3) 4)	Lumber DOL TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0	=1.60 plate grip DC 7-10; Pr=20.0 psf (late DOL=1.15); Pg: 8.9 psf (flat roof sno .15); Category II; E: 50-0-0 s been designed fo osf or 2.00 times fla	DL=1.33 roof liv =20.0 p w: Lum xp B; F r greate t roof lo	e load: Lumb osf (ground ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 ps	er 5 live sf on						
FORCES	(lb) - Maximum Com Tension 1-2=0/76, 2-3=-388/2	pression/Maximum 210, 3-4=-801/379,	5) 6)	overhangs n Provide adeo * This truss h	on-concurrent with o quate drainage to pr has been designed f	other livevent v	ve loads. water ponding e load of 20.0	g. Opsf						
BOT CHORD	4-5=-623/347, 5-6=-7 2-12=-453/292, 7-8= 11-12=-180/671, 10- 8-10139/541	804/388, 6-7=-332/158 329/153 -11=-84/561,	, 7)	on the bottor 3-06-00 tall to chord and ar	n chord in all areas by 2-00-00 wide will by other members, v liTek connectors red	where fit betw vith BC	a rectangle /een the botto DL = 10.0psf	om					11111	
WEBS	4-11=-124/363, 4-10 5-10=-135/361, 3-12 6-8=-701/185, 6-10=)=-125/128,)=-700/111, :-302/263, 3-11=-293/2	60	truss to bear This connect lateral forces	ing walls due to UP ion is for uplift only	LIFT at and do	jt(s) 12 and 8 es not consid	8. ler		\int		OR FESS	Prinkon	7
NOTES 1) Unbalance this desigr	ed roof live loads have n.	been considered for	8)	This truss is International R802.10.2 at Graphical put	designed in accorda Residential Code s nd referenced stand rlin representation of	ance w ections lard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	ind			~~~	SEA	- F.	

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	B5	Piggyback Base	2	1	Job Reference (optional)	150198510

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:36 ID:T4Y5TMo3lu6kFvaZLc3j6mztK7C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:66.7
---------	--------

	Plate Offsets (X, Y):	[4:0-6-4,0-1-12], [5:0-3-4,0-1-12]
--	-----------------------	------------------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.73 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.02	(loc) 11-12 11-12 8	l/defl >999 >707 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 8=745/0-1 Max Horiz 12=312 (L	athing directly applied cept end verticals, and -0 max.): 4-5. applied or 10-0-0 oc 4-10 -10, 12=816/0-3-8 .C 10)	2) l or d 3)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) - 8-11-13, Exte 17-2-15 to 21 exposed ; en members and Lumber DOL TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1 10, Lu-	7-10; Vult=150mpł h; TCDL=6.0psf; B k; Enclosed; MWFR 1-3-4 to 1-8-12, Inte erior (2) 8-11-13 to -7-6 zone; cantilev d vertical left and rid d forces & MWFRS =1.60 plate grip DC 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E 50-0-0	n (3-sec CDL=6 S (enverior (1) 17-2-1 er left a ght exp for rea DL=1.3 (roof liv =20.0 p w: Lum xp B; F	cond gust) .0psf; h=25ft elope) and C 1-8-12 to 5, Interior (1) and right iosed;C-C foi ctions showr a e load: Lumb bsf (ground ber DOL=1.1 ully Exp.;	; -C n; ver						
FORCES	Max Uplift 8=-47 (LC Max Grav 8=861 (LC (Ib) - Maximum Com	: 14), 12=-70 (LC 13) C 3), 12=947 (LC 2) pression/Maximum	4)	This truss ha load of 12.0 p overhangs no	s been designed fo osf or 2.00 times fla on-concurrent with	or great at roof lo other liv	er of min roof oad of 13.9 p ve loads.	live sf on						
TOP CHORD	Tension 1-2=0/76, 2-3=-387/2 4-5=-615/344, 5-6=-7 2-12=-453/292, 7-8=	211, 3-4=-793/376, 794/386, 6-7=-310/16 312/147	5) 6) 1,	Provide adeo * This truss h on the botton 3-06-00 tall b	uate drainage to p as been designed n chord in all areas y 2-00-00 wide will	revent v for a liv where fit betv	vater ponding e load of 20.0 a rectangle veen the botte	g. Opsf om						
BOT CHORD	11-12=-183/666, 10- 8-10=-140/523	11=-86/555,	7)	chord and an Provide mecl	y other members, w	with BC (by oth	DL = 10.0pst ers) of truss t	f. to				MUL CA	Dille	
WEBS NOTES	4-11=-123/367, 4-10 5-10=-136/357, 3-12 6-8=-709/189, 6-10=	9=-129/126, 2=-693/109, 3-287/257, 3-11=-294/	8) 261	bearing plate One RT7A M truss to bear This connect	at joint(s) 8. iTek connectors re ng walls due to UP ion is for uplift only	comme LIFT at and do	nded to conr jt(s) 12 and es not consid	nect 8. der		(ORTHOR	RACE	Ris
 Unbalance this design 	ed roof live loads have n.	been considered for	9)	lateral forces This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance w ections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	ind				SEA 4584	L -4	

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C1	Roof Special Structural Gable	1	1	Job Reference (optional)	150198511

-1-5-0 1-5-0

4-7-11

4-7-11

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:37

ID:xXeuFW0M2QNBPgy0POOxrZztK6w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 9-10-0 0-10-4 8-11-12 14-3-12 19-2-8 4 4-5-12 4-10-12 4-4-1 12x16 🛷 7 6 5 8 35 4x5、

Page: 1

	0-5-8	8-10-0	10-10-0	18-11-0	19-2-8	
Scale = 1:64.9	0-5-8	8-4-8	2-0-0	8-1-0	0-3-8	

Plate Offsets (X, Y): [7:0-2-8,0-3-4], [16:0-5-8,0-2-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.06 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 166 II	GRIP 244/190	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing, Except:	eathing directly applie xcept end verticals. y applied or 10-0-0 oc	BC W d or	EBS	2 21-22=-214/249, 20 19-20=-212/249, 18 17-18=-240/230, 16 15-16=-33/86, 14-1 12-13=-38/97 6-18=-73/15, 6-24= 7-16=-90/48, 22-28 3-27=-190/78, 9-31 12-32=-108/0, 16-2 29-30=-249/181, 9- 3-26=-208/231, 25)-21=-2 3-19=-2 5=-34/9 -67/70, =-148/6 =-101/6 9=-268, 30=-25 2628	13/246, 15/249, 40/230, 2, 13-14=-37 16-24=-47/4§ 9, 27-28=-14 i, 31-32=-84/7 193, 6/180, 2/220	/90, 9, 4/73, 77,	5) Thi loa ove 6) All 7) Gal 8) Tru bra 9) Gal 9) Gal 10) * Tl	s truss h d of 12.0 rhangs r plates ar ole requi ss to be ced agai ole studs his truss the botto	as bee psf or non-co re 2x4 res co fully sl inst late space has be m cho	en designed for 2.00 times flat ncurrent with of MT20 unless of ntinuous botton heathed from or eral movement ed at 2-0-0 oc. een designed for rd in all areas w	greater of m roof load of her live load herwise india to chord beari the face or se (i.e. diagona r a live load where a recta	in roof live 13.9 psf on s. cated. ing. curely il web). of 20.0psf angle
JOINTS	6-0-0 oc bracing: 1 1 Brace at Jt(s): 24 28, 31	7-18,16-17. ,			5-26=-290/231, 25= 18-25=-316/246, 7= 5-25=-107/81, 4-26	24=-95/ =-81/55	46, 17-24=-8 , 19-26=-141	2/25, /98,	3-0 chc 11) Bea	ord and a aring at j	by 2-0 iny oth oint(s)	er members. 12, 23 conside	rs parallel to	e bottom grain
REACTIONS	(lb/size) 12=145/ 14=59/1 16=164/ 18=185/ 20=73/1 22=237/ Max Horiz 22=289 Max Uplift 12=-45 (15=-48 (18=-129 22=-93 (14=70 (L 16=203 18=305 20=93 (L 22=308	19-2-8, 13=124/19-2- 9-2-8, 15=111/19-2-8, 19-2-8, 17=79/19-2-8, 19-2-8, 21=33/19-2-4, 19-2-8, 23=0/19-2-8, (LC 12) LC 14), 13=-12 (LC 1 LC 14), 16=-31 (LC 1 (LC 10), 19=-39 (LC LC 9) (LC 26), 13=148 (LC 2 (LC 2), 17=96 (LC 25) (LC 26), 19=181 (LC 1) (LC 26), 21=42 (LC 11) (LC 26)	3, N(3, 1) 2) 4), 13), 26), 3), , 3), 3), 3)	DTES Unbalanced this design. Wind: ASCE Vasd=119m Cat. II; Exp E Exterior (2) - 9-10-0, Exte 12-10-0 to 11 exposed ; er members an Lumber DOL Truss desig only. For stu see Standar	20-27=-58/8, 21-28 15-29=-132/109, 14 13-31=-100/58, 10- roof live loads have 7-10; Vult=150mpf bh; TCDL=6.0psf; E 3; Enclosed; MWFR 1-4-6 to 1-7-10, Intr rior (2) 9-10-0 to 12 9-0-12 zone; cantile d vertical left and ri d forces & MWFRS .=1.60 plate grip DC ned for wind loads i uds exposed to wind d Industry Gable Er	=-2/9, 8 I-30=-3 32=-13 a been of (3-sec 3CDL=6 3S (env. erior (1) -10-0, I aver left ight exp. for rea DL=1.3 in the p d (norm ad (norm	-29=-174/13: 6/10, 3/89 considered fo cond gust) .0psf; h=25ft; elope) and C- 1-7-10 to nterior (1) and right oosed;C-C for ctions shown alane of the tru, al to the face is as apolical	r -C ; ; ; ;), ble.	valu des 12) Pro bea 12. 13) N/A	ue using igner sh vide meu tring plat	ANSI/ ould vichanic te capa	TPI 1 angle to g erify capacity of al connection (t able of withstan	Irain formula bearing surf y others) of Jing 45 lb up	. Building 'ace. truss to lift at joint
FORCES	(lb) - Maximum Col Tension 1-2=0/73, 2-3=-251 4-5=-99/121, 5-6=- 7-8=-136/182, 8-9= 10-11=-138/101, 2- 11-12=-141/93	npression/Maximum /221, 3-4=-114/113, 106/160, 6-7=-148/19 -59/105, 9-10=-205/1 -22=-357/289, 12-23=	4) 1, 83, 0/0,	or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=1; Plate DOL=1 Ct=1.10	initiating Gable Er ialified building des 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snc .15); Category II; E	igner as (roof liv j=20.0 p w: Lum Exp B; F	is as applicat s per ANSI/TF e load: Lumb osf (ground iber DOL=1.1 fully Exp.;	5		114	N. M.	NOREW	JOHNS	Ann

February 13,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C1	Roof Special Structural Gable	1	1	Job Reference (optional)	150198511
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.53 S Dec 6 2	2021 MiTek Industries, Inc. Fri Feb 11 10:49:37	Page: 2		

ID:xXeuFW0M2QNBPgy0POOxrZztK6w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) N/A

- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C2	Roof Special	4	1	Job Reference (optional)	150198512

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:37 ID:MfNt09SZLn1xLMH73fYcrMztK6L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0			0-5-8	8-4-8	5	2-0-0		8-1-0		0-3-8			
Plate Offsets	(X Y)· [8·0-4-13 0-1-8]	[9:0-5-8 0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.56 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.25 0.10	(loc) 10 10-11 12	l/defl >999 >918 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-5-2 oc purlins, exo Rigid ceiling directly bracing	athing directly appli sept end verticals. applied or 9-11-5 c	3) ed or ⁴⁾	TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 µ overhangs nu * This truss h	7-10; Pr=20.0 ate DOL=1.15; 3.9 psf (flat rooi .15); Category s been design osf or 2.00 time on-concurrent v as been design	psf (roof liv); Pg=20.0 p f snow: Lum II; Exp B; F ed for greate es flat roof lo with other liv ned for a liv	e load: Lum osf (ground iber DOL=1. ully Exp.; er of min roo oad of 13.9 ve loads. e load of 20	ber .15 of live psf on 0.0psf					
REACTIONS	(lb/size) 11=715/0- Max Horiz 11=289 (L Max Uplift 11=-78 (L Max Grav 11=851 (L (lb) - Maximum Com	5-8, 12=638/ Mech C 12) C 13), 12=-52 (LC C 2), 12=753 (LC 2 pression/Maximum	14) 6) 2) 7)	on the botton 3-06-00 tall b chord and an Refer to girde Bearing at jo	n chord in all a by 2-00-00 wide by other member er(s) for truss to int(s) 11 consid PI 1 angle to c	reas where e will fit betw ers. o truss conr ders parallel grain formula	a rectangle veen the bot nections. to grain val	ttom					
TOP CHORD	Tension 1-2=0/73, 2-3=-364/ 4-5=-875/325, 5-6=- 2-11=-428/252, 8-12	177, 3-4=-1082/309 1078/334, 6-7=-296 =-763/179_7-8=-29	9, 8) 5/138, 96/129	designer sho Provide mecl bearing plate	uld verify capa hanical connect capable of wit	city of beari tion (by oth standing 5	ing surface. ers) of truss 2 lb uplift at	to t joint					
BOT CHORD WEBS	10-11=-317/1059, 9- 8-9=-257/891 4-10=-109/536, 4-9=	10=-74/813, -586/249,	9)	One H2.5A S recommende UPLIFT at jt(Simpson Strong ed to connect tr s) 11. This con	g-Tie connectures to bear	ctors ing walls du or uplift only	e to and					90
NOTES	5-9=-360/1085, 3-11 6-8=-1036/297, 3-10	=-1038/215, =-232/214, 6-9=-23	33/241 10	does not con) This truss is International R802 10 2 ar	sider lateral for designed in ac Residential Co	rces. cordance w ode sections	ith the 2015 R502.11.1	and		(-	J. S.	OR FESS	ROLIN
 Unbalanci this desig Wind: ASf Vasd=119 Cat. II; Ex Exterior (2 9-10-0, Ex 12-10-0 te exposed ; members Lumber D 	ed roof live loads have n. CE 7-10; Vult=150mph Jmph; TCDL=6.0psf; BG p B; Enclosed; MWFRS 2) -1-4-6 to 1-7-10, Inte kterior (2) 9-10-0 to 12- o 19-0-12 zone; cantilev end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO	ceen considered for (3-second gust) CDL=6.0psf; h=25ft (any logon) and C rior (1) 1-7-10 to 10-0, Interior (1) ver left and right ht exposed;C-C fo for reactions showr L=1.33	יי בנ ; -C r ז;	DAD CASE(S)	Standard					Contraction of the second seco	AND PI	SEA 4584	L HNSUIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C3	Roof Special	1	1	Job Reference (optional)	150198513

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:38 ID:?y5QXGc5WTYEoCCRmAmQKuztK69-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.3 Plate Offsets (X, Y): [7:0-4-13,0-1-8], [8:0-5-8,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.57 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.25 0.11	(loc) 9 9-10 11	l/defl >999 >917 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-5-3 oc purlins, exx Rigid ceiling directly bracing. (Ib/size) 10=641/0- Max Horiz 10=267 (L Max Uplift 10=-53 (L Max Grav 10=757 (L (Ib) - Maximum Com Tension 1-2=-316/132, 2-3=- 4-5=-1082/334, 5-6= 1-10=-306/126, 7-11 9-10=-320/1080, 8-9 3-9=-111/549, 3-8=-4 2-10=-1057/263, 5-7 2-9=-237/236, 5-8=-2	athing directly applied cept end verticals. applied or 9-10-12 oc 5-8, 11=641/ Mechar C 12) C 13), 11=-52 (LC 14, C 2), 11=757 (LC 2) pression/Maximum 1089/309, 3-4=-873/3 -296/138, =-765/179, 6-7=-296/ =-73/818, 7-8=-257/8 582/244, 4-8=-257/8 582/244, 4-8=-356/10 =-1043/296, 233/240	3) or 4) : iical 5)) 7) 24, 8) 129 94 81, 9)	TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Bearing at jo using ANSI/T designer sho Provide mecl bearing plate 11. One RT7A M truss to beari connection is forces. This truss is International R802.10.2 ar	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E as been designed in chord in all areas y 2-00-00 wide will y other members. ar(s) for truss to tru int(s) 10 considers PI 1 angle to grain uld verify capacity hanical connection capable of withsta iTek connectors re ing walls due to UP for uplift only and designed in accord Residential Code s and referenced stam	(roof liv g=20.0 p w: Lum Exp B; F for a liv s where I fit betw ss conr parallel of bear (by oth anding 5 comme LIFT at does no lance w sections dard AN	e load: Lumb sofs (ground ber DOL=1.1 'ully Exp.; e load of 20.0 a rectangle veen the botto veen the bo	er 5 Dpsf om e oint ect teral nd						
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=119 Cat. II; Exp Exterior (2 9-10-0, Exp 12-10-0 to exposed ; members : Lumber Di	ed roof live loads have CE 7-10; Vult=150mph mph; TCDL=6.0psf; BG p B; Enclosed; MWFRS !) 0-1-12 to 3-1-12, Inte terior (2) 9-10-0 to 12- 19-0-12 zone; cantilev end vertical left and rig and forces & MWFRS · OL=1.60 plate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rrior (1) 3-1-12 to 10-0, Interior (1) ver left and right oft exposed;C-C for for reactions shown; L=1.33	LC	DAD CASE(S)	Standard					Comme	A A A A A A A A A A A A A A A A A A A	SEA 4584	4 EFR. 60 HNS 13,2022	. Jununun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C4	Roof Special	1	1	Job Reference (optional)	150198514

Scale = 1:77.4

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:38 ID:YIZLoiywYPau4ZiB8fFWx2ztKdG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [10:0-5-8,0-2-8]], [12:0-5-12,0-2-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.59 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.25 0.11	(loc) 11 11-12 9	l/defl >999 >943 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-1-3 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=678/Me Mechanic Max Horiz 14=261 (L Max Uplift 9=-55 (LC Max Grav 9=801 (LC (lb) - Maximum Com Topoio	athing directly applie cept end verticals, ar -0 max.): 1-2. applied or 9-10-6 oc 7-9 echanical, 14=684/ al .C 10) : 14), 14=-63 (LC 13) 2 2), 14=801 (LC 2) pression/Maximum	2) d or nd 3) 4) 5)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) C 10-11-0, Extt 13-11-0 to 20 exposed; en members an Lumber DOL TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Provide aded * This truss F on the bottor 3-06-00 tall b	7-10; Vult=150mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF -1-12 to 0-8-13, In erior (2) 10-11-0 to 0-2-2 zone; cantiler d vertical left and r d forces & MWFRS =1.60 plate grip D -7-10; Pr=20.0 psf late DOL=1.15); Pg 8.9 psf (flat roof snn .15); Category II; E 50-0-0 quate drainage to p nas been designed n chord in all areas y 2-00-00 wide will we other members	h (3-sec BCDL=6 RS (envi- terior (1 13-11-(ver left aright exp S for rea OL=1.33 (roof liv g=20.0 p ow: Lum Exp B; F or event v for a liv s where I fit betw	ond gust) .0psf; h=25ft elope) and C) 0-8-13 to 0, Interior (1) ind right iosed;C-C for ctions shown e load: Lumb ber DOL=1.1 ully Exp.; water ponding e load of 20.0 a rectangle veen the botto	; -C n; per 15 g, Dpsf om						
TOP CHORD	1-14=-259/81, 1-2=-2 3-4=-1207/323, 4-5= 5-6=-950/338, 6-7=-7 8-9=-298/132	249/75, 2-3=-1004/1 1197/315, 1171/343, 7-8=-297/	79, 6) 7) 142,	Refer to gird Provide mec bearing plate 14 and 55 lb	er(s) for truss to tru hanical connection capable of withsta uplift at joint 9.	uss conr (by oth anding 6	ections. ers) of truss t 3 lb uplift at j	to oint					11111	
BOT CHORD	13-14=-220/390, 12- 11-12=-326/1280, 10 9-10=-250/952	·13=-192/520,)-11=-54/897,	8)	This truss is International R802.10.2 ar	designed in accord Residential Code and referenced stan	dance w sections dard AN	th the 2015 R502.11.1 a	ind		\int		ORTHERS	Rin	in series
WEBS	2-12=-141/680, 5-11 5-10=-687/275, 6-10 7-9=-1138/282, 2-13 3-12=-400/213, 4-12 4-11=-361/246, 7-10	=-113/640,)=-387/1200, i=-756/93, !=-341/98,)=-216/237	9) LC	Graphical pu or the orienta bottom chorc DAD CASE(S)	rlin representation ation of the purlin a l. Standard	does no long the	ot depict the s top and/or	size		V	000	SEA 4584	4	and the second s
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								115.	A A A A A A A A A A A A A A A A A A A	NOREW J	EP.	A. C.

JUNION JUNIO February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C5	Roof Special	1	1	Job Reference (optional)	150198515

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:39 ID:0V6j?2zYJjilhiHNiMmIUFztKdF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.4 Plate Offsets (X, Y): [8:0-4-13,0-1-8], [9:0-5-8,0-2-8], [11:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.59 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.26 0.11	(loc) 10 10-11 8	l/defl >999 >932 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-8 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 8=679/ M	athing directly applied cept end verticals, an I-0 max.): 1-2. applied or 10-0-0 oc 6-8 echanical, 12=692/	2) d or nd 3)	Wind: ASCE Vasd=119mp Cat. II; Exp B Exterior (2) 0 Exterior (2) 1 20-2-2 zone; vertical left at forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1	7-10; Vult=150mpl h; TCDL=6.0psf; E ; Enclosed; MWFF -1-12 to 1-6-6, Inte 0-11-0 to 13-11-0, cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E	n (3-sec SCDL=6 S (enver rior (1) Interior right ex -C for n shown; (roof liv =20.0 p ww: Lum Exp B; F	ond gust) .0psf; h=25ft lelope) and C 1-6-6 to 10-1 (1) 13-11-0 t posed ; end hembers and Lumber e load: Lumb sf (ground ber DOL=1.1 ully Exp.:	; -C 1-0, o wer						
FORCES	Mechanic Max Horiz 12=259 (L Max Uplift 8=-55 (LC Max Grav 8=801 (LC (lb) - Maximum Com	aı _C 10) C 14), 12=-64 (LC 13) C 2), 12=801 (LC 2) ppression/Maximum	4) 5)	Ct=1.10, Lu= Provide adeo * This truss h on the botton 3-06-00 tall b	50-0-0 juate drainage to p as been designed n chord in all areas v 2-00-00 wide will	revent v for a liv where fit betv	vater ponding e load of 20.0 a rectangle veen the botto	g. Opsf om						
TOP CHORD	Tension 1-12=-33/22, 1-2=-3 3-4=-1199/322, 4-5= 5-6=-1169/344, 6-7=	6/37, 2-3=-1151/326, 927/327, 297/142. 7-8=-298/ [/]	, 6) 7) 132	chord and an Refer to girde Provide mech bearing plate	y other members. er(s) for truss to tru nanical connection capable of withsta	ss conr (by oth nding 6	ections. ers) of truss t 4 lb uplift at i	to					<i>.</i>	
BOT CHORD	11-12=-217/892, 10-	-11=-314/1265, 251/952	8)	12 and 55 lb	uplift at joint 8.	ancew	th the 2015			~	. ("TH CA	Ro	
WEBS	2-12=-1121/231, 2-1 4-10=-129/658, 4-9= 5-9=-362/1158, 6-8= 3-10=-347/236, 3-11	1=-76/143, 644/249, 1138/283, =-377/85, 6-9=-217/2	9) 238	International R802.10.2 ar Graphical pu or the orienta	Residential Code s ad referenced stand rlin representation ttion of the purlin al	does no ong the	R502.11.1 a ISI/TPI 1. Ist depict the s top and/or	and size		C	tie	ON EXIST	Jus Kin	~
1) Unbalance	ad roof live loads have	been considered for	10		Standard					-	:	SEA		=

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C6	Roof Special	8	1	Job Reference (optional)	150198516

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:40 ID:Uhg6DO_A40qcJssZF4H_0TztKdE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.6

Plate Offsets (X, Y): [1:0-5-0,0-0-14], [8:0-4-13,0-1-8], [9:0-5-8,0-2-8], [12:0-3-0,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.52 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.21 0.11	(loc) 10 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-7-7 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=683/ Mi Mechanic Max Horiz 1=261 (LC Max Uplift 1=-63 (LC Max Grav 1=807 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 6-8 echanical, 8=683/ al C 12) ; 13), 8=-55 (LC 14) C 2), 8=807 (LC 2)	2) d or 3) 4)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) 0 Exterior (2) 1 20-2-2 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the bottom	7-10; Vult=150mph h; TCDL=6.0psf; B ; Enclosed; MWFR -0-0 to 3-0-0, Interi 0-11-0 to 13-11-0, I cantilever left and 1 nd right exposed;C- FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E as been designed fa	(3-sec CDL=6 S (envo or (1) 3 Interior right ex C for n hown; (roof liv =20.0 p w: Lum xp B; F	ond gust) .0psf; h=25ft elope) and C- -0-0 to 10-11 (1) 13-11-0 t possed ; end nembers and Lumber e load: Lumb sf (ground ber DOL=1.1 ully Exp.; e load of 20.0 a rectangle	; -C -0, o Her 15 Dpsf					
FORCES	(lb) - Maximum Com Tension 1-2=-1152/307, 2-3= 3-4=-1202/334, 4-5= 5-6=-1186/345, 6-7=	pression/Maximum 1512/370, 940/327, 297/143, 7-8=-298/	5) 6) 133	3-06-00 tall b chord and an Refer to girde Provide mech bearing plate	y 2-00-00 wide will y other members. er(s) for truss to trus nanical connection capable of withsta	fit betw ss conr (by othe nding 6	veen the botto ections. ers) of truss to 3 lb uplift at i	om to joint					
BOT CHORD	1-12=-290/985, 11-1 10-11=-278/1324, 9- 8-9=-251/962 2-12=-390/172, 4-10 4-9=-627/269, 5-9=- 6-8=-1152/284, 3-10 2-11=0/276, 6-9=-21	2=-302/1040, -10=-57/891, =-155/633, 362/1177, =-437/218, 3-11=0/7 3/235	7) /9, LC	1 and 55 lb u This truss is International R802.10.2 ar	plift at joint 8. Jesigned in accorda Residential Code s Id referenced stance Standard	ance wi ections lard AN	th the 2015 R502.11.1 a ISI/TPI 1.	and		0		WITH CA	ROLLE

NOTES

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	C7	Roof Special Girder	1	2	Job Reference (optional)	150198517

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:40 ID:uGMErQ02MxCBAKb8xCqhe5ztKdB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 13,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:70.7

Plate Offsets (X, Y): [9:0-5-8,0-3-8], [10:0-4-0,0-3-8], [12:0-4-0,0-3-8]

			,	·										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.50 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.08	(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 297 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood sheat 5-8-6 oc purlins, exa Rigid ceiling directly bracing. (Ib/size) 1=2457/ N Machanic Max Horiz 1=259 (LC Max Uplift 1=-121 (L Max Grav 1=3120 (L	athing directly applie cept end verticals. applied or 10-0-0 oc Mechanical, 8=954/ al C 6) C 9), 8=-64 (LC 10) -C 21), 8=1092 (LC 2	2) d or 3) 4) 5) 22)	All loads are except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=119m Cat. II; Exp B left and right exposed; Lu TCLL: ASCE DOL=1.15 P snow); Pf=13	considered equally ed as front (F) or b ction. Ply to ply cor distribute only loads wise indicated. roof live loads hav 7-10; Vult=150mp ph; TCDL=6.0psf; f 3; Enclosed; MWFf exposed; end ver mber DOL=1.60 pl 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof sn	y applie ack (B) nnectior s noted e been h (3-see SCDL=6 RS (env tical left ate grip (roof liv g=20.0 pow: Lun	d to all plies, face in the LC is have been as (F) or (B), considered fo cond gust) 6.0psf; h=25ft; elope); cantile and right DOL=1.33 re load: Lumb osf (ground ber DOL=1.1	DAD r ever er 5	Ca	niform Lo Vert: 1- 9-10=-2 oncentra Vert: 12	oads (II 5=-48, 0, 8-9= ted Loc =-1023	b/ft) 5-7=-48, 12-13=- -20 ads (lb) 3 (F), 16=-1022 (f	20, 10-12=-20, =)	
F ORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-4936/195, 2-3= 3-4=-2117/161, 4-5=	pression/Maximum 3826/225, 1375/159,	6)	Plate DOL=1 Ct=1.10 * This truss h on the bottor	1.15); Category II; I has been designed m chord in all areas	Exp B; F for a lives where	re load of 20.0 a rectangle)psf						
BOT CHORD	5-6=-1947/162, 6-7= 1-12=-282/3944, 11- 10-11=-204/3306, 9- 8-9=-64/1488	-290/99, 7-8=-276/9 12=-295/4656, -10=-69/1610,	7) 8)	3-06-00 tall t chord and ar Refer to gird Provide mec	by 2-00-00 wide wil ny other members. ler(s) for truss to tru chanical connection	ll fit betv uss coni i (by oth	veen the botto nections. ers) of truss t	om				WITH CA	ROUL	
WEBS	2-12=-150/703, 4-10 4-9=-1285/207, 5-9= 6-8=-1835/88, 3-10= 3-11=-4/1327, 2-11=)=-115/1546, =-181/1929, =-1525/195, =-1067/160, 6-9=-73/2	9) 279	bearing plate joint 1 and 6 This truss is International	e capable of withsta 4 lb uplift at joint 8. designed in accord Residential Code	anding dance w section	21 lb uplift at th the 2015 R502.11.1 a	nd		6	L	of the s	Bught	مي
NOTES 1) 2-ply trus: (0.131"x3 Top chord oc. Bottom ch staggered Web conr	s to be connected toget ") nails as follows: ds connected as follows nords connected as follows l at 0-5-0 oc. nected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	10) LC 1)	K802.10.2 a) Hanger(s) or provided suf lb down and lb up at 3-9- of such conn others. DAD CASE(S) Dead + Sno Increase=1	nd referenced stan r other connection of ficient to support or 33 lb up at 1-6-8, 12 on bottom chor nection device(s) is Standard ow (balanced): Lun .15	dard Af device(s oncentra and 139 d. The the res	NSI/TPI 1. s) shall be ated load(s) 1 00 lb down an design/selecti ponsibility of rease=1.15, F	390 d 32 ion Plate			P	SEA 4584	L 4 DHNSON	WWWW HILL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ1	Jack-Open	4	1	Job Reference (optional)	150198518

1-4-13

0-7-8

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:41 ID:bTW_AVOsCRk?5Bgw4KQgScztK58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12 4 Г

3x5 🚅

4

3x5 II

1-10-15

2

Scale = 1:25.2

Plate Offsets (X, Y): [2:0-2-4,0-0-13]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 1 Structural wood sheat 1-10-15 oc purlins. Rigid ceiling directly bracing. (Ib/size) $2=155/0-3$ 5=14/ Mec Max Horiz $2=47$ (LC Max Uplift $2=-80$ (LC Max Grav $2=190$ (LC (LC 32) (Ib) - Maximum Com Tension 1-2=0/33, 2-4=-53/56	I-6-0 athing directly applied applied or 10-0-0 oc 8-8, 4=26/ Mechanica chanical 11) : 11), 4=-14 (LC 15) : 2), 4=31 (LC 2), 5=: pression/Maximum 6	4) 5) d or 6) 7) 1, 8) 15 9)	This truss ha load of 12.0 overhangs n * This truss H on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 a	as been designed f psf or 2.00 times fl on-concurrent with has been designed in chord in all area by 2-00-00 wide wi hy other members. er(s) for truss to tri hanical connectior e capable of withst AiTek connectors r ing walls due to U is for uplift only and designed in accord Residential Code nd referenced star Standard	or great lat roof I of ther li for a liv s where Il fit betv uss com h (by oth anding 1 ecomme PLIFT a I does n dance w sections ndard AN	er of min roof oad of 13.9 p ve loads. e load of 20.0 a rectangle veen the bott nections. ers) of truss t 14 lb uplift at j ended to conr t jt(s) 2. This ot consider la ith the 2015 s R502.11.1 a VSI/TPI 1.	f live sf on Opsf om to joint hect teral						
NOTES NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 vertical lel forces & M DOL=1.6C 2) TCLL: AS DOL=1.15 snow); Pf- Plate DOL Ct=1.10 3) Unbalance design.	CE 7-10; Vult=150mph Pmph; TCDL=6.0psf; BC pB; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C-1 WWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (l 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov =1.15); Category II; Ex- ed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; en considered for this	C nd r s							Continue	Cit	SEA 4584	L HA EEFROOT	And Anna and and and and and and and and and

- 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fohr February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ2	Jack-Open	4	1	Job Reference (optional)	150198519

-1-5-0 1-5-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:41 ID: bk2QkJbXCgtbdoTCaPEfeBztK4t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-15

3-10-15

3x5 II

3-10-15

Scale = 1:26.3

Plate Offsets (X, Y	Y): [2:0-2-4,0-0-13]
---------------------	----------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 3LIDER BRACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=119 Cat. II; Ext Exterior (2 zone; cant and right e MWFRS fc grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 3-10-15 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=209/0- 5=40/ Me Max Horiz 2=71 (LC Max Uplift 2=-78 (LC Max Uplift 2=-78 (LC Max Grav 2=253 (L (LC 2) (lb) - Maximum Cor Tension 1-2=0/33, 2-4=-189 2-5=-124/91 CE 7-10; Vult=150mpl mph; TCDL=6.0psf; E p B; Enclosed; MWFF c) -1-4-11 to 1-7-5, Int illever left and right ex exposed; C-C for mem or reactions shown; L1 1.33 CE 7-10; Pr=20.0 psf =13.9 psf (flat roof snc ==1.15); Category II; E	2-6-0 eathing directly applie y applied or 10-0-0 oc 3-8, 4=78/ Mechanica echanical (11), 4=-39 (LC 15) C 2), 4=96 (LC 2), 5= npression/Maximum /84 (3-second gust) (CDL=6.0psf; h=25ft; (S (envelope) and C-(erior (1) 1-7-5 to 3-10 posed; end vertical lib bers and forces & umber DOL=1.60 plat (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	4) 5) d or 6) 7) al, 8) 43 9) 443 9) LO C -3 eft re 5	This truss ha load of 12.0 j overhangs ni * This truss h on the bottor 3-06-00 tall b chord and ar Refer to girdu Provide mec bearing plate 4. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar AD CASE(S)	s been designed for osf or 2.00 times fla on-concurrent with as been designed in a chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru hanical connection capable of withsta iTek connectors re ing walls due to UP for uplift only and designed in accord Residential Code s and referenced stand Standard	or greate ta roof k other liv for a liv where I fit betw ss conr (by oth inding 3 comme 2LIFT at does no ance w sections dard AN	er of min roof pad of 13.9 p: ve loads. e load of 20.0 a rectangle veen the bottu- nections. ers) of truss t 9 lb uplift at j ended to comr jt(s) 2. This ot consider la ith the 2015 c R502.11.1 a ISI/TPI 1.	f live sf on Opsf om to joint hect tteral				SEA 4584	RO RO LL L	and an an and and a second s
 Unbalance design. 	ed snow loads have b	een considered for th	is								11	REW J	OHNS	

- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

Fohr February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ3	Jack-Open	2	1	Job Reference (optional)	150198520

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:41 ID:Y7AA9_dnkH7Jt6dahpG7kcztK4r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 ш

6-0-0

Scale = 1:26.4 Plate Offsets (X, Y): [2:0-2-4.0-0-13]

	(,,,,), [2:0 2 :,0 0 :0	-1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.52 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.12 0.02	(loc) 5-8 5-8 2	l/defl >881 >616 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 zone; can and right e MWFRS fr grip DOL= 2) TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=275/0- 5=69/ Me Max Horiz 2=95 (LC Max Uplift 2=-83 (LC Max Uplift 2=-83 (LC Max Uplift 2=-83 (LC (LC 2) (Ib) - Maximum Con Tension 1-2=0/33, 2-4=-241/ 2-5=-279/194 CE 7-10; Vult=150mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) -1-4-11 to 1-7-5, Inte tilever left and right ex exposed; C-C for memior reactions shown; Lt -1.33 CE 7-10; Pr=20.0 psf 5 Plate DOL=1.15); Pg =13.9 psf (flat roof sno .=1.15); Category II; E ed snow loads have be	2-6-0 eathing directly applie / applied or 10-0-0 oc 3-8, 4=125/ Mechanica echanical :11) C 11), 4=-62 (LC 15) C 2), 4=154 (LC 2), 5 npression/Maximum /40 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-ferior (1) 1-7-5 to 5-11. posed ; end vertical lobers and forces & umber DOL=1.60 plat (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; een considered for thi	4) 5) d or 5) cal, 8) =74 9) LC C -4 eft eft 5 is	This truss ha load of 12.0 overhangs n * This truss I on the botton 3-06-00 tall 1 chord and an Refer to gird Provide mec bearing plate 4. One RT7A N truss to bear connection i forces. This truss is International R802.10.2 a DAD CASE(S)	as been designed f psf or 2.00 times f on-concurrent with has been designed n chord in all area by 2-00-00 wide wi ny other members. If the connections capable of withst AiTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star Standard	for great lat roof lik of the r liv d for a liv s where ill fit betv uss comme puiss comme PLIFT at d does no dance w sections indard AN	er of min rool bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott nections. ers) of truss i 2 Ib uplift at j ended to comr jt(s) 2. This of consider la ith the 2015 ir R502.11.1 a ISI/TPI 1.	f live Isf on Opsf iom to joint nect ateral				SEA 4584	ROLL L L HA OHNSUI	and an and an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ4	Jack-Open	1	1	Job Reference (optional)	150198521

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:41 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-6-13 -1-5-0 2-5-10 2-5-10 6x8 🍫 10 F 3 10 3x5 🍫 3-5-3 3-7-6 2 9 1-3-8 0 \geq [e 7 **5**4 \mathbb{R} 6 5x8 🍫 2x4 🛛 ∟11.24 12

Scale = 1:38.6

Plate Offsets (X, Y): [2:0-1-12,0-1-8], [3:0-1-1,Edge], [6:0-2-0,0-2-4]

	(., .). [=], [e.e,_e.ge], [e	,]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-MP	0.23 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-7 6-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; EX Exterior (2 zone; can and right (MWFRS f grip DOL= 2) TCLL: AS DOL=1.15 snow); Pfr Plate DOL Ct=1.10 3) This truss load of 12 overhang:	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 2-6-13 oc purlins, et Rigid ceiling directly bracing. (Ib/size) 3=54/ Mea Mechanic Max Horiz 7=98 (LC Max Grav 3=95 (LC (LC 2) (Ib) - Maximum Com Tension 2-7=-199/96, 1-2=0// 6-7=-180/137, 5-6=-1 2-6=-133/187, 3-6=-1 CE 7-10; Vult=150mph mph; TCDL=6.0psf; Bd prp B; Enclosed; MWFR3 2) -1-4-6 to 1-7-10, Inte tilever left and right exp exposed;C-C for memb for reactions shown; Lu =1.33 CE 7-10; Pr=20.0 psf (flat roof snov _=1.15); Category II; Es has been designed for 2.0 psf or 2.00 times flat s non-concurrent with co	athing directly applie xcept end verticals. applied or 6-0-0 oc chanical, 4=4/ al, 7=176/0-3-8 13) 25), 4=5 (LC 26), 7= pression/Maximum 73, 2-3=-65/38, 3-3= 9/3, 4-5=0/0 95/108 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-frior (1) 1-7-10 to 2-6 josed; end vertical I vers and forces & mber DOL=1.60 plat roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 op S; Fully Exp.; r greater of min roof I toof load of 13.9 ps ther live loads.	4) * Th on 3-0 chc 5) Ref 6) Pro bec 3. 7) On trus (cor 6) Thi Inte 8) Thi 10 10 216 8) Thi 10 10 8) Thi 10 10 8) Thi 10 10 10 10 10 10 10 10 10 10 10 10 10	his truss h the bottor 6-00 tall b ord and ar er to gird, wide meci- tring plate e RT7A M es to bear innection is ces. s truss is trust is trust is po between gonal or v CASE(S)	has been designed in chord in all area by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connections is capable of withst liTek connectors r ing walls due to U is for uplift only and designed in accord Residential Code nd referenced star in inside of top cho ertical web shall in Standard	I for a liv s where ill fit betw uss comme pLIFT at does no dance w sections ndard AN rd bearin tot excee	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 6 lb uplift at ju ended to conn i jt(s) 7. This ot consider lat ith the 2015 is R502,11.1 a ISI/TPI 1. ng and first ad 0.500in.	Opsf om oint nect teral		C. C		SEA 4584 SEA 584 SEA 4584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 584 SEA 585 SEA 595 SEA 50 SEA 50 S SEA 50 S SEA 50 S SEA 50 S SEA 50 S SEA 50 S SEA 5 S SEA S SEA S SEA S SEA S S SEA S S S S	ROL 4 4 6 6 7 13,2022	Amanuan

ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ5	Jack-Open	1	1	Job Reference (optional)	150198522

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:42 ID:4WoH6LHw0JFNYwZjWE4lAeztL1z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.8

Plate Offsets (X, Y): [4:0-1-11,Edge]

	(, .). [1										-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.05 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-11-10 oc purlins, of Rigid ceiling directly bracing. (Ib/size) 4=135/ Me Max Horiz 8=170 (LC Max Uplift 4=-129 (LI Max Grav 4=202 (LC (LC 2) (Ib) - Maximum Com	athing directly applied except end verticals. applied or 10-0-0 oc echanical, 5=16/ al, 8=246/0-3-8 C 13) C 13) C 25), 5=16 (LC 1), 8: pression/Maximum	3) 4) d or 5) 6) 7) =297 8)	This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate joint 4. One RT7A M truss to bear connection is forces. This truss is International	is been designed psf or 2.00 times on-concurrent with as been designe in chord in all area oy 2-00-00 wide w ny other members er(s) for truss to t hanical connection e capable of withs liTek connectors ing walls due to L s for uplift only an designed in accoo Residential Code	for great flat roof le th other line d for a liv as where vill fit betw s. rruss conr on (by oth standing 1 recomme JPLIFT at d does no redance w e sections	er of min roof pad of 13.9 p; ve loads. e load of 20.0 a rectangle veen the bottu- nections. ers) of truss t 29 lb uplift at ended to conrr ; jt(s) 8. This pt consider la ith the 2015 5 R502.11.1 a	live sf on Opsf om nect teral						
TOP CHORD	1 ension 2-8=-281/68, 1-2=0/7 3-4=-288/167, 4-4=0 7-8=-296/251, 6-7=-	73, 2-3=-141/39, //0 186/276, 5-6=0/0 175/20, 2,6-, 240/218	9) LC	 R802.10.2 and referenced standard ANSI/TPI 1. 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. LOAD CASE(S) Standard 										
WEBS	2-7=-124/224, 3-7=- 4-6=-351/508	175/30, 3-6=-249/215	о,									CA	Dille	
NOTES										<u> </u>	1 and	RTHON	TOL	
 Wind: AS: Vasd=112 Cat. II; Ex Exterior (i 4-11-10 z vertical le forces & N DOL=1.6(TCLL: AS DOL=1.11 snow); Pfr Plate DOI Ct=1.10 	CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; BC op B; Enclosed; MWFR3 2) -1-4-6 to 1-7-10, Inte tone; cantilever left and ff and right exposed;C-1 WWFRS for reactions s1 0 plate grip DOL=1.33 3CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snow L=1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C right exposed ; end C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 sp B; Fully Exp.;	r ;							Cannut	Lix .	SEA 4584 SEA 4584 SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA	L H4 OHNSON 13,2022	Annun tur

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof			
22010064-A	CJ6	Jack-Open	2	1	Job Reference (optional)	150198523		

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:42 ID:4WoH6LHw0JFNYwZjWE4IAeztL1z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 1-4-6 oc purlins, exx Rigid ceiling directly bracing. (Ib/size) 3=-16/ Me Machanic Max Horiz 5=79 (LC Max Uplift 3=-59 (LC (LC 9) Max Grav 3=27 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc echanical, 4=12/ al, 5=157/0-3-8 12) : 19), 4=-71 (LC 13), 9), 4=52 (LC 11), 5=	4) d or 6) 6) 7) 5=-2 8) 5=-2 LO	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 4 and 59 lb u One RT7A M truss to beari connection is forces. This truss is a International R802.10.2 ar AD CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta plift at joint 3. iTek connectors re ng walls due to UP for uplift only and designed in accord. Residential Code s id referenced stand	for a liv where fit betw ss conr (by oth nding 7 comme LIFT at does no ance w ections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss to 1 lb uplift at jo nded to conn jt(s) 5. This ot consider lat th the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om oint ect teral nd					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-5=-196/72, 1-2=0/8 4-5=-158/134 2-4=-158/134	pression/Maximum 80, 2-3=-65/81											
WEBS	2-4=-197/231												
 Wind: ASC Vasd=119 Cat. II; Ext Exterior (2 vertical lef forces & M DOL=1.60 TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 This truss load of 12. overhangs 	CE 7-10; Vult=150mph imph; TCDL=6.0psf; BG p B; Enclosed; MWFR3 2) zone; cantilever left at t and right exposed;C- IWFRS for reactions of plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (i 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; E> has been designed for .0 psf or 2.00 times flat s non-concurrent with c	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-f and right exposed; e C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof I t roof load of 13.9 ps ther live loads.	C end 5 live f on							Continue	2	SEA 4584	L DHALT L HA OHNSUIT

February 13,2022

ENGINEERING BY ERENCO A Mitek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof			
22010064-A	CJ7	Jack-Open	1	1	Job Reference (optional)	150198524		

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:42 ID:4WoH6LHw0JFNYwZjWE4IAeztL1z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

| <u>-1-5-0</u> | <u>1-11-4</u> | <u>3-0-6</u> | <u>1-5-0</u> | <u>1-11-4</u> | <u>1-1-2</u> 12 12 F 3x6 4 3 4-6-8 4-8-14 3x6 2 1-6-3 5 2x4 💊 7 \mathbb{Z} 6 2x4 II 4x5 🍫 ⊿11.24 12

3-0-6 2-11-0 1-9-8 1-1-8 1-9-8 0-1-5

Scale = 1:45.6

Plate Offsets (X, Y): [6:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Pf/P TCDL BCLL BCDL	g) 1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.05 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOF BOT CHOF WEBS BRACING TOP CHOF BOT CHOF REACTION	ABER 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. ACING 2x4 SP No.2 overhangs non-concurrent with other live loads. S 2x4 SP No.3 4) ACING This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. S ACTIONS (lb/size) 4=27/ Mechanical, 5=49/ Mechanical, 7=187/0-3-8 Max Horiz 7=132 (LC 13) Max Grav 4=39 (LC 25), 5=98 (LC 11), 7=227 Max Uplift 4=-28 (LC 13), 5=-84 (LC 13) Max Grav 4=39 (LC 25), 5=98 (LC 11), 7=227 One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral formed to consider													
Max Uplift 4=-28 (LC 13), 5=-84 (LC 13) Max Grav 4=39 (LC 25), 5=98 (LC 11), 7=227 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-211/31, 1-2=0/80, 2-3=-88/80, 3-4=-55/38 BOT CHORD 6-7=-257/213, 5-6=-92/108 WEBS 2-6=-188/268, 3-6=-112/85, 3-5=-151/131 NOTES 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-4 to 1-11-4, Interior (1) 1-11-4 to 2-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10							dance w sections ndard AN	th the 2015 R502.11.1 ; ISI/TPI 1.	and		Continue		SEA 4584	L DHN DHN DHN DHN DHN DHN DHN DHN DHN DHN
w	ARNING - Verify d	esign paramete	ers and READ NOTES ON	THIS AND IN	CLUDED MITEK RI	EFERENCE PAGE MII-	-7473 rev. 5	/19/2020 BEFOI	RE USE.				February	/ 13,2022

- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15
- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof				
22010064-A	CJ8	Jack-Open	1	1	Job Reference (optional)	150198525			

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:44 $ID:YiMfKhHYndOE948w4xc_jsztL1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

0		4 40	
Scal	e =	1:46	

Plate Offsets (X, Y): [8:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOB CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015 3)	5/TPI2014 This truss ha	CSI TC BC WB Matrix-MP	0.29 0.06 0.08 for great	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-8-6 oc purlins, ext Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	4) d or : 5) 6)	 This truss h This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 	psi of 2.00 times on-concurrent wit nas been designe m chord in all area by 2-00-00 wide w by other members er(s) for truss to the hanical connection e capable of withs	h other liv d for a liv as where vill fit betv s. russ conr n (by oth tanding 2	ve loads. ve loads. a rectangle veen the botto nections. ers) of truss to 26 lb uplift at ju	o on oint					
FORCES	CTIONS (Ib/size) 5=20/ Mechanical, 6=120/ Mechanical, 9=237/0-3-8 Description Description <thdescription< th=""> <thdescription< td="" thd<=""><td>ect teral nd</td><td></td><td></td><td></td><td></td><td></td></thdescription<></thdescription<>							ect teral nd					
TOP CHORD	1 ension 2-9=-270/14, 1-2=0/8 3-4=-92/0, 4-5=-41/3	80, 2-3=-134/56, 39	LC	R802.10.2 and referenced standard ANSI/TPL1. LOAD CASE(S) Standard									
WEBS	8-9=-339/287, 7-8=- 2-8=-161/278, 3-8=- 4-7=-176/249, 4-6=-	206/236, 6-7=-94/11. 156/15, 3-7=-82/72, 307/256	2									WH CA	Rout
 NOTES Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-4 to 1-11-4, Interior (1) 1-11-4 to 4-7-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 										Commune	A STATE OF THE STA	SEA 4584	EER.ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

February 13,2022
Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ9	Monopitch	1	1	Job Reference (optional)	150198526

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:44 $ID:YiMfKhHYndOE948w4xc_jsztL1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

Scale = 1:49.7

Plate Offsets (X,	Y):	[8:0-4-12,0-1-12]
-------------------	-----	-------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB Matrix-M	0.76 0.10 0.14 IP	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 zone; can and right (MWFRS f grip DOL= 2) TCLL-AS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 5=46/ Mec Mechanicz Max Horiz 9=287 (LC 9=-33 (LC Max Uplift 5=-86 (LC 9=-33 (LC Max Grav 5=88 (LC: 9=370 (LC (Ib) - Maximum Comp Tension 1-2=0/80, 2-3=-216/1 4-5=-221/219, 5-6=0, 8-9=-579/548, 7-8=-4 3-8=-165/78, 3-7=-37 4-6=-432/351, 2-8=-2 CE 7-10; Vult=150mph Omph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) -1-4-4 to 1-7-12, Inter tilever left and right exp exposed;C-C for memb for reactions shown; Lut =1.33	athing directly applie cept end verticals. applied or 7-9-13 oc chanical, 6=138/ al, 9=274/0-3-8 210) (12), 6=-99 (LC 13), 9) 25), 6=214 (LC 25), 26) pression/Maximum 144, 3-4=-229/103, /0, 2-9=-353/212 413/475, 6-7=-304/30 7/51, 4-7=-240/327, 256/354 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- crior (1) 1-7-12 to 5-11 osed; end vertical lit ers and forces & mber DOL=1.60 plat	3) This t load c overh 4) * This on the d or 3-06-(5) Refer 6) Provic bearin 5 and 7) One F truss conne forces 8) This t Intern R802 9) Gap t diago 65	uss has been de f 12.0 psf or 2.00 angs non-concur truss has been of bottom chord in 0 tall by 2-00-00 and any other m to girder(s) for tr e mechanical cc g plate capable of 99 lb uplift at join T7A MiTek conr o bearing walls of ction is for uplift uss is designed ational Residenti 10.2 and referen etween inside of nal or vertical we SE(S) Standar	signed for great) times flat roof li- rent with other li- lesigned for a liv all areas where wide will fit betv embers. uss to truss com- nnection (by oth of withstanding 8 to 6. lectors recomme- due to UPLIFT al- only and does n- in accordance w al Code sections ced standard AN top chord bearin b shall not exceed d	er of min roof pad of 13.9 ps ve loads. e load of 20.0 a rectangle veen the botto nections. ers) of truss t 86 lb uplift at ju ended to conne t jt(s) 9. This ot consider lat ith the 2015 5 R502.11.1 a JSI/TPI 1. ng and first ad 0.500in.	live sf on Dpsf om oint teral		Continue		SEA 4584	ROL L L	
DOL=1.15 snow); Pf= Plate DOL Ct=1.10	5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snow _=1.15); Category II; Ex	=20.0 psf (ground w: Lumber DOL=1.15 φ Β; Fully Exp.;	5							111	February	0HN5	and the second s

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ10	Jack-Open	1	1	Job Reference (optional)	150198527

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:44 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.07 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
JUMBER FOP CHORD SOT CHORD WEBS SRACING FOP CHORD CHORD REACTIONS FORCES FOP CHORD SOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119 Cat. II; Ext Exterior (2 2-11-10 zc vertical leff forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-0-6 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 3=48/ Mer Mechanic: Max Horiz 5=132 (LC Max Grav 3=79 (LC Max Grav 3=79 (LC (LC 2) (Ib) - Maximum Com Tension 2-5=-199/42, 1-2=0/4 4-5=-269/213 2-4=-234/295 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BK o B; Enclosed; MWFR3) -1-4-4 to 1-7-12, Inte one; cantilever left and t and right exposed;C- IWFRS for reactions sl plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (I Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; E) has been designed for 0 psf or 2.00 times flat i non-concurrent with c	athing directly applied cept end verticals. applied or 10-0-0 oc chanical, 4=29/ ial, 5=187/0-3-8 C 13) 25), 4=64 (LC 13) 25), 4=64 (LC 11), 5: apression/Maximum 80, 2-3=-101/120 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rrior (1) 1-7-12 to right exposed ; end C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof li t roof load of 13.9 psf other live loads.	4) d or 5) 6) 7) =228 LC c r ; ; ; ive	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 3 and 45 lb u One RT7A M truss to bearin connection is forces. This truss is International R802.10.2 ar DAD CASE(S)	has been designed in chord in all area by 2-00-00 wide wi by other members. er(s) for truss to tri- hanical connectior capable of withst plift at joint 4. IiTek connectors r ing walls due to U is for uplift only and designed in accorr Residential Code nd referenced star Standard	d for a liv s where ill fit betw uss conr h (by oth anding 6 ecomme PLIFT at d does no dance w sections ndard AN	e load of 20. a rectangle veen the bott eetions. ers) of truss 6 lb uplift at nded to com jt(s) 5. This of consider la th the 2015 R502.11.1 a ISI/TPI 1.	Opsf tom to joint nect ateral and		Continue		SEA 4584	ROLL L 4 EFR.O DHNSIII	and an
												February	13,2022	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ11	Jack-Open	1	1	Job Reference (optional)	150198528

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:45 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

February 13,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:41.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.62 0.18 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.03 -0.01	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-6 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 3=95/ Me Mechanic Max Horiz 5=192 (LC Max Uplift 3=-123 (LC Max Grav 3=150 (LC 5=285 (LC	athing directly applied cept end verticals. applied or 9-9-15 oc chanical, 4=46/ ial, 5=236/0-3-8 C 13), C 13), 4=-29 (LC 13) C 25), 4=-76 (LC 11), C 2)	4) d or 5) d or 6) 7) 8)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate joint 3 and 25 One RT7A M truss to beari connection is forces. This truss is of International R802.10.2 ar	as been designed in chord in all areas y 2-00-00 wide wil y other members. ar(s) for truss to tru- nanical connection capable of withsts b lb uplift at joint 4. iTek connectors re ng walls due to UF for uplift only and designed in accord Residential Code of referenced stan	for a liv s where Il fit betw uss conr (by oth anding 1 ecomme PLIFT at does no dance w sections dard AN	e load of 20.1 a rectangle veen the bott nections. ers) of truss t 23 lb uplift at unded to conr jt(s) 5. This ot consider la ith the 2015 i R502.11.1 a ISI/TPI 1.	Opsf om to t nect ateral					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 2-5=-240/30, 1-2=0/ 4-5=-351/287 2-4=-299/365	npression/Maximum 80, 2-3=-187/176	LC	DAD CASE(S)	Standard								
NOTES	2 200,000	(3-second quist)										200110	11.5
 Winic ASC Vasd=119 Cat. II; Ext Exterior (2 zone; cant and right e MWFRS fr grip DOL= TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 This truss load of 12. overhangs 	mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR t) -1-4-4 to 1-7-12, Inte tilever left and right exp exposed; C-C for memt or reactions shown; Lu -1.33 CE 7-10; Pr=20.0 psf (i Plate DOL=1.15); Pg= -13.9 psf (flat roof snot =11.9); Category II; E: has been designed foi .0 psf or 2.00 times flat s non-concurrent with o	(J-second gust) CDL=6.0psf; h=25f; S (envelope) and C-C prior (1) 1-7-12 to 4-7- posed ; end vertical le bers and forces & imber DOL=1.60 plat roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof I t roof load of 13.9 psi ther live loads.	2 10 oft r r							Commun.		SEA 4584	ROLL L L H H H H N S H N S H N S H N S H N S H H N S H H H H

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ12	Monopitch	1	1	Job Reference (optional)	150198529

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:45 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-0-0

Scale = 1:46.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.96 0.29 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.06 -0.01	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she except end verticals Bigid ceiling directly	t* 3-4:2x4 SP No.2 athing directly applie	3) 4) d, 5)	This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird	as been designed psf or 2.00 times on-concurrent with has been designe n chord in all are by 2-00-00 wide v by other members er(s) for truss to t	l for greate flat roof le th other liv ed for a liv as where will fit betw s. truss conr	er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the both nections.	f live osf on Opsf com					
REACTIONS	(lb/size) 3=127/ M Mechanic Max Horiz 5=309 (Ld Max Uplift 3=-159 (L 5=-37 (LC Max Grav 3=220 (Ld 5=374 (Ld	echanical, 4=57/ ial, 5=274/0-3-8 C 10) C 10), 4=-21 (LC 10) C 25), 4=92 (LC 11), C 26)	6) 7) , 8)	Provide mec bearing plate joint 3 and 2 One RT7A M truss to bear connection is forces. This truss is lateractional	hanical connection capable of withs 1 lb uplift at joint diTek connectors ing walls due to U s for uplift only an designed in acco	on (by oth standing 1 4. recomme JPLIFT at ad does no ordance w	ers) of truss 59 lb uplift a inded to com jt(s) 5. This of consider la ith the 2015	to t nect ateral					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	R802.10.2 a Gap betwee	nd referenced stand	andard AN ord bearir	ISI/TPI 1. Ig and first	and					
BOT CHORD WEBS	1-2=0/80, 2-3=-398/ 2-5=-317/245 4-5=-626/600 2-4=-481/523	382, 3-4=0/0,	LC	diagonal or v AD CASE(S)	vertical web shall Standard	not excee	ed 0.500in.						
NOTES 1) Wind: AS Vasd=119 Cat. II; Ex Exterior (2	CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; B 9 B; Enclosed; MWFR 2) -1-4-4 to 1-7-12, Inte	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 rior (1) 1-7-12 to 5-10	C 0-4							(ti	OR THE CA	Folilia

- zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ13	Jack-Open	1	1	Job Reference (optional)	150198530

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:45 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.8

Plate Offsets (X, Y): [4:0-0-1,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.23 0.05 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 2-6-13 oc purlins, or Rigid ceiling directh bracing. (lb/size) 3=33/ Mo Mechani Max Horiz 5=96 (LC Max Uplift 3=-40 (L Max Gray 3=54 (LC	eathing directly applie except end verticals. y applied or 10-0-0 oc echanical, 4=24/ cal, 5=176/0-3-8 ; 13) C 13), 4=-31 (LC 13) ; 25), 4=50 (LC 11), 5	4) 5) 6) 7) 8) =215	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate 3 and 31 lb u One RT7A M truss to beari connection is forces. This truss is of International	as been designed n chord in all areas y 2-00-00 wide wi y other members. er(s) for truss to tru- nanical connectior capable of withsta plift at joint 4. iTek connectors ru- ng walls due to UI for uplift only and designed in accord	I for a liv s where II fit betw uss conr (by oth anding 4 ecomme PLIFT at does no dance wi sections	e load of 20.0 a rectangle reen the botto ections. ers) of truss to 0 lb uplift at jo nded to conn jt(s) 5. This ot consider lat th the 2015 R502,11.1 a	Dpsf om oint ect teral						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Cor Tension 2-5=-190/92, 1-2=0 4-5=-202/160 2-4=-175/221	npression/Maximum /73, 2-3=-64/82	LOA	R802.10.2 ar	id referenced stan Standard	idard AN	ISI/TPI 1.							
WLD3	2-4=-175/221												(** 5.7	
NOTES												mun	1111	
 Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 zone; can and right e MWFRS fr grip DOL= TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10 This truss 	CE 7-10; Vult=150mpi Pmph; TCDL=6.0psf; E p B; Enclosed; MWFF 2) -1-4-6 to 1-7-10, Int titlever left and right ey exposed;C-C for mem for reactions shown; L =1.33 ICE 7-10; Pr=20.0 psf 5 Plate DOL=1.15; Pg =13.9 psf (flat roof sno L=1.15); Category II; E has been designed fi	h (3-second gust) 3CDL=6.0psf; h=25ft; 3S (envelope) and C-(erior (1) 1-7-10 to 2-6; sposed; end vertical le bers and forces & umber DOL=1.60 plat (roof live load: Lumber g=20.0 psf (ground w: Lumber DOL=1.15; xp B; Fully Exp.; or greater of min roof 1	C -1 eft e r 5							Comme	A A A A A A A A A A A A A A A A A A A	SEA 4584	ROKING STATE	7
load of 12 overhangs	2.0 pst or 2.00 times fla s non-concurrent with	at roof load of 13.9 ps other live loads.	ron									February	13,2022	
Design va a truss sy building c is always fabricatio Safety In	NING - Verify design parame ralid for use only with MITek ystem. Before use, the build design. Bracing indicated is required for stability and to n, storage, delivery, erectio nformation available from	ters and READ NOTES ON T ® connectors. This design is ing designer must verify the to prevent buckling of indiv prevent collapse with possi- n and bracing of trusses and Truss Plate Institute, 2670 C	THIS AND INCL s based only up applicability o idual truss wet ible personal ir d truss system Crain Highway,	UDED MITEK RE poon parameters s f design paramet o and/or chord me njury and property s, see A Suite 203 Waldo	FERENCE PAGE MII- hown, and is for an ind ers and properly incorp embers only. Additionar damage. For general NSI/TPI1 Quality Crite rf, MD 20601	7473 rev. 5. lividual bui oorate this al temporar guidance eria, DSB-	19/2020 BEFORI ding component, design into the ov y and permanent regarding the 89 and BCSI Bu	E USE. , not verall t bracing ilding Cor	nponent			Sta Soundside R Edenton, NC 279	NG BY NCCO A MiTek Affiliate oad 32	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ14	Jack-Open	1	1	Job Reference (optional)	150198531

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:45 ID:cKEuv?GIF07Wwm_XzWZWeRztL2_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.59 0.20 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.03 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119 Cat. 11; Ext Exterior (2 4-10-14 zc vertical lef forces & M DOL=1.16 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) This truss load of 12. overhanss	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 4-11-10 oc purlins, of Rigid ceiling directly bracing. (lb/size) 3=102/ Me Max Uplift 3=-107 (Li Max Uplift 3=-107 (Li Max Uplift 3=-107 (Li Max Grav 3=153 (LC 5=296 (LC (lb) - Maximum Com Tension 2-5=-248/88, 1-2=0/7 4-5=-302/249 2-4=-255/309 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR8 c) -1-4-6 to 1-7-10, Inte one; cantilever left and t and right exposed;C-1 MVFRS for reactions sl plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (fi Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Ex has been designed for 0 psf or 2.00 times flat s non-concurrent with of	athing directly applied except end verticals. applied or 10-0-0 oc echanical, 4=48/ al, 5=245/0-3-8 C 13), 4=-10 (LC 13) C 25), 4=69 (LC 11), C 2) pression/Maximum 73, 2-3=-156/146 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rior (1) 1-7-10 to right exposed ; end C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; regreater of min roof I roof load of 13.9 psf ther live loads.	4) d or 5) 6) 7) 8) LC	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate joint 3 and 10 One RT7A M truss to beari connection is forces. This truss is 6 International R802.10.2 ar	as been designed a chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta) Ib uplift at joint 4. iTek connectors re ng walls due to UF for uplift only and designed in accord Residential Code s ad referenced stan Standard	for a liv s where I fit betw uss conr (by oth anding 1 ecomme PLIFT at does no dance wi sections dard AN	e load of 20. a rectangle veen the bott ections. ers) of truss 07 lb uplift a nded to comi jt(s) 5. This ot consider la th the 2015 R502.11.1 a SI/TPI 1.	Opsf tom tect ateral		Continue		SEA 4584	ROLLA A E.P. OLIVIN	
												in min	IIII	

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof			
22010064-A	CJ15	Jack-Open	1	1	Job Reference (optional)	150198532		

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:46 ID:sAM5JWmp2fQCcJfbZVxdPxztK24-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-0

Coolo	- 1	1.00	0
Scale	= 1	.20	.o

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 2-6-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=166/0- 4=22/ Me Max Horiz 2=105 (LC Max Uplift 2=-7 (LC Max Grav 2=202 (LC (LC 11) (b) Maximum Corr	athing directly applied applied or 10-0-0 oc 3-8, 3=43/ Mechanical chanical C 13) 13), 3=-45 (LC 13) C 2), 3=64 (LC 25), 4=	 4) * This truss on the botto 3-06-00 tall chord and a 5) Refer to gire bearing plat 6) Provide med bearing plat 7) One RT7A I truss to bea connection i forces. 8) This truss is Internationa R802.10.2 a LOAD CASE(S) 	has been design m chord in all ar- by 2-00-00 wide ny other membe der(s) for truss to chanical connector- ring walls due to is for uplift only a designed in acco I Residential Coo and referenced si Standard	ed for a liv eas where will fit betw rs. truss conr ion (by oth istanding 4 s recomme UPLIFT at nd does no ordance wi de sections tandard AN	e load of 20. a rectangle veen the bott ections. ers) of truss i 5 lb uplift at j nded to conr jt(s) 2. This ot consider la ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om to ioint nect uteral					
TOP CHORD BOT CHORD	Tension 1-2=0/66, 2-3=-145/ 2-4=-66/102	100										
NOTES 1) Wind: ASC Vasd=119 Cat. II; Exj Exterior (2 zone; cant and right e MWFRS for grip DOLE 2) TCL LASC	CE 7-10; Vult=150mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR b) -1-4-6 to 1-7-10, Inte ilever left and right exposed;C-C for memb pr reactions shown; Lu (1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rior (1) 1-7-10 to 2-5- posed; end vertical le pers and forces & imber DOL=1.60 plate	4 ft						Û	his	ORTH CA	ROLIN

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 45844 WGINEEPING February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof			
22010064-A	CJ16	Jack-Open	1	1	Job Reference (optional)	150198533		

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:46 ID:GI2DxXohLapmTmNAEdVK0ZztK21-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-13

Scolo	- 1	1.22	5
A DECRET	_		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.39 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 4-7 4-7 3	l/defl >999 >719 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 4-10-13 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=238/0-3 4=57/ Mer Max Horiz 2=177 (LC Max Uplift 3=-96 (LC Max Grav 2=287 (LC (LC 25)	athing directly applie applied or 10-0-0 oc b-8, 3=98/ Mechanica chanical 2 13) 13) 2 2), 3=144 (LC 25),	4) d or 5) 6) 7) al, 8) 4=66	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 au	as been designed n chord in all area by 2-00-00 wide w ny other members er(s) for truss to tr hanical connectio e capable of withsi liTek connectors i ing walls due to U a for uplift only and designed in accor Residential Code nd referenced star	d for a liv is where ill fit betw russ conr n (by oth tanding 9 recomme PLIFT at d does no dance w sections ndard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 6 lb uplift at j ended to conr jt(s) 2. This ot consider la ith the 2015 5 R502.11.1 a USI/TPI 1.	Dpsf om oint nect teral					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	JAD CASE(S)	Standard								
TOP CHORD	1-2=0/66, 2-3=-289/2	220											
BOT CHORD	2-4=-197/221												
 Wind: AS Vasd=119 Cat. II; Ex Exterior (2 zone; can and right MWFRS f grip DOL= TCLL: AS DOL=1.19 snow): Pfr 	CE 7-10; Vult=150mph 3mph; TCDL=6.0psf; Bt tp B; Enclosed; MWFR3 2) -1-4-6 to 1-7-10, Inter tillever left and right exp exposed; C-C for memb for reactions shown; Lu =1.33 ICE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snon	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rior (1) 1-7-10 to 4-1 vosed ; end vertical li ers and forces & mber DOL=1.60 plat roof live load: Lumbe =20.0 psf (ground v: Lumber DOL=1.15	C 0-1 eft er							Comm	ko	SEA	ROLINATION

- snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
 3) This truss has been designed for greater of min roof live
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 45844 WGINEER OTHIN February 13,2022

Job	Truss Type Qty F		Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	CJ17	Jack-Open	1	1	Job Reference (optional)	150198534

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:46 ID:1IXFcGuiS2peQ??jileDLFztK1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-2-6 0-0-10 1-5-0 0-0-10 0-2-11 1-1-12

Scale = 1:31.8

Plate Offsets (X, Y):	[2:Edge,0-6-9]
-----------------------	----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.28 0.03 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 1-5-0 oc purlins, exa Rigid ceiling directly bracing. (lb/size) 3=-13/ Me Mechanic Max Horiz 5=76 (LC Max Uplift 3=-55 (LC 5=-11 (LC Max Grav 3=-27 (LC (LC 19)	athing directly applie cept end verticals. applied or 10-0-0 oc achanical, 4=13/ al, 5=157/0-3-8 13) ; 19), 4=-31 (LC 13), ; 13) 9), 4=29 (LC 11), 5=	3) 4) d or 5) 6) 7) 206 8)	 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 4 and 55 lb uplift at joint 3. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 										
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 2) TCLL: AS(DOL=1.15 snow); Pfa Plate DOL Ct=1.10	(lb) - Maximum Com Tension 2-5=-193/150, 1-2=0 4-5=-179/123 2-4=-179/123 2-4=-136/198 CE 7-10; Vult=150mph mph; TCDL=6.0psf; Bd p B; Enclosed; MWFRS 2) zone; cantilever left at t and right exposed;C- MWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (l 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof sno sl, 2005); Category II; Exp	pression/Maximum /80, 2-3=-65/81 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 kp B; Fully Exp.;	LOA C nd Pr	R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.			Comme	AV PILL	SEA 4584 SEA	ROL HA L HA OHNSOTITION 13,2022	C. MATTING

ENGINEERING BY EREPACED A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Fruss Truss Type Qty Ply		Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	CJ18	Jack-Open	1	1	Job Reference (optional)	150198535

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:46 ID:sRuWtKzT2uZn8wSs3ZldbWztK1p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32

Plate Offsets (X, Y): [5:Edge,0-6-9]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.28 BC 0.07 WB 0.08 Matrix-MP	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) l/d - r 4-5 >9 3 r	lefl L/d n/a 999 199 180 n/a n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-1-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 3=50/ Me Mechanic Max Horiz 5=140 (L1 Max Uplift 3=-68 (LC Max Grav 3=82 (LC (LC 2)	athing directly applied cept end verticals. applied or 10-0-0 oc chanical, 4=29/ cal, 5=188/0-3-8 C 13) C 13), 4=-11 (LC 13) 25), 4=43 (LC 11), 5:	4) * This truss on the botto 3-06-00 tall chord and a 5) Refer to girn 6) Provide me bearing plat 3 and 11 lb 7) One RT7A L 7) One RT7A L truss to bea connection forces. 8) This truss is Internationa R802.10.2 a	has been designed for a I or chord in all areas when by 2-00-00 wide will fit be iny other members. der(s) for truss to truss cor chanical connection (by of re capable of withstanding uplift at joint 4. MiTek connectors recomm ring walls due to UPLIFT. is for uplift only and does a designed in accordance of a designed in accordance of a referenced standard A Standard	ve load of 20.0 e a rectangle ween the botto nections. hers) of truss to 68 lb uplift at jo ended to conne at jt(s) 5. This iot consider late vith the 2015 s R502.11.1 ar NSI/TPI 1.	osf m int ect eral				
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Con Tension 2-5=-200/100, 1-2=(4-5=-266/198 2-4=-202/271	npression/Maximum 0/80, 2-3=-104/122								
NOTES 1) Wind: ASC Vasd=119 Cat. II; Exy Exterior (2 zone; cant and right e MWFRS fo grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) This truss load of 12. overhangs	CE 7-10; Vult=150mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR b) -1-4-4 to 1-7-12, Inte illever left and right ex exposed;C-C for member preactions shown; Lu 1.33 CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg =13.9 psf (flat roof sno =1.15); Category II; E has been designed fo 0 psf or 2.00 times fla s non-concurrent with of	i (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C erior (1) 1-7-12 to 3-0- posed; end vertical le bers and forces & imber DOL=1.60 plate 'roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof li t roof load of 13.9 psf other live loads.	C -4 eft er 5 ive f on					A CONTRACTOR PROVIDENT	SEA 458 NOR SEA 458	L OHNSOLUTION

EFORE USE. ponent, not the overall manent bracing the CSI Building Component SSI Building Component

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ19	Jack-Open	1	1	Job Reference (optional)	150198536

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:47 ID:d_NXY33U9Laf693PXFuVwCztK1h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [4:0-9-8,0-1-8],	[5:Edge,0-6-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	;/TPI2014	CSI TC (C BC (C WB (C Matrix-MP	0.63 0.18 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.03 -0.01	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119 Cat. II; Ext Exterior (2 zone; cant and right e MWFRS for grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-9-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 3=97/ Mec Mechanica Max Horiz 5=200 (LC Max Uplift 3=-124 (Li Max Grav 3=153 (LC 5=287 (LC (lb) - Maximum Com Tension 2-5=-241/79, 1-2=0/8 4-5=-347/272 2-4=-274/349 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR cl) -1-4-4 to 1-7-12, Inte illever left and right exp exposed; C-C for memb por reactions shown; Lu 1.33 CE 7-10; Pr=20.0 psf (fi Plate DOL=1.15); Pg= -13.9 psf (flat roof snov	athing directly applied cept end verticals. applied or 9-10-10 o chanical, 4=46/ al, 5=238/0-3-8 (13) C 13) C 13)	4) d or 6) c 7) 8) LO 4 eft e 5	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate joint 3. One RT7A M truss to beari connection is forces. This truss is o International R802.10.2 ar	as been designed for n chord in all areas w y 2-00-00 wide will fit y other members. ar(s) for truss to truss hanical connection (b capable of withstance iTek connectors recording walls due to UPLI for uplift only and do designed in accordan Residential Code sec d referenced standal Standard	r a liv here t betw c conr y oth Jing 1 omme FT at bes no nce wi ctions rd AN	e load of 20.0 a rectangle veen the bottu nections. ers) of truss t 24 lb uplift at nded to conrr jt(s) 5. This of consider la ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om to teral and		Contraction of the second se	The second se	SEA 4584	ROLINI 4	"Jummer"
Ct=1.10 3) This truss load of 12. overhangs	has been designed for 0 psf or 2.00 times flat	greater of min roof li roof load of 13.9 psf	ive f on								111	OREW JO	OHNSUIT	

of 12.0 psf or 2.00 time 13.9 pst on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ20	Jack-Open	2	1	Job Reference (optional)	150198537

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:47 ID:dFvz7tG99ZjEemsg0JiU6oztK1Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-0-10	3-0-0	5-10-13	6-0-0
0-0-10	2-11-6	2-10-13	0-1-3

Scale = 1:43.9

Plate Offsets (X, Y): [7:Edge,0-6-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.08 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 4=58/ Mea Max Horiz 7=245 (LC Max Uplift 4=-71 (LC Max Grav 4=89 (LC 7=335 (LC	athing directly applie cept end verticals. applied or 9-4-3 oc chanical, 5=129/ al, 7=278/0-3-8 2 13) 13), 5=-83 (LC 13) 25), 5=180 (LC 25), 20	3) 4) d or 5) 6) 7)	This truss ha load of 12.0 overhangs n * This truss H on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4 and 83 lb Chord and ar Refer to gird Provide mec bearing plate 4 and 83 lb Chore RT7A M truss to bear connection is forces.	as been designed i psf or 2.00 times f on-concurrent with has been designed m chord in all area by 2-00-00 wide w hy other members. er(s) for truss to tr hanical connections e capable of withst uplift at joint 5. MiTek connectors r ing walls due to U s for uplift only and	for great lat roof k n other lin d for a liv s where ill fit betv uss conr h (by oth anding 7 ecomme PLIFT at d does no	er of min roof pad of 13.9 p; ve loads. e load of 20.0 a rectangle veen the bottu nections. ers) of truss t '1 lb uplift at j ended to conr i jt(s) 7. This o consider la	live sf on Opsf om oint teral					
	(lb) - Maximum Com Tension 2-7313/46 1-2-0/8	pression/Maximum	8)	International R802.10.2 a	Residential Code nd referenced star	sections ndard AN	R502.11.1 a	Ind					
BOT CHORD	2-7=-313/40, 1-2=0/8 3-4=-109/88 6-7=-403/325, 5-6=-1	148/225	L	DAD CASE(S)	Standard								
WEBS	2-6=-127/297, 3-6=-7	17/97, 3-5=-343/226										minin	linn.
NOTES 1) Wind: ASC Vasd=119 Cat. II; Exj Exterior (2 zone; cant and right e MWFRS fr grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL	CE 7-10; Vult=150mph imph; TCDL=6.0psf; B(p B; Enclosed; MWFR3 2) -1-4-4 to 1-7-12, Inte tilever left and right exp exposed;C-C for memb or reactions shown; Lu -1.33 CE 7-10; Pr=20.0 psf (ri Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C iror (1) 1-7-12 to 5-1 bosed ; end vertical le ers and forces & mber DOL=1.60 plat roof live load: Lumbe -20.0 psf (ground w: Lumber DOL=1.15 φ B; Fully Exp.;	C 1-4 eft e r							Continue	X	SEA 4584	ROLL RACE SOLUTION

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Est. February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ21	Jack-Open	1	1	Job Reference (optional)	150198538

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:48 $ID:hPr3rpfDdPliUhJqu1G_PYztK0w-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 1

818 Soundside Road Edenton, NC 27932

February 13,2022

1-4-9 0-0-10 0-3-2 , 1-3-15

Scale = 1:31.8

Plate Offsets	(X, Y): [2:Edge,0-6-9]												
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 13.9/20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIF	-0-0 .15 .15 /ES RC2015/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.03 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-7-11 oc purlins, e Rigid ceiling directly bracing. (lb/size) 3=-1/ Mechanic Max Horiz 5=84 (LC Max Uplift 3=-43 (LC (LC 13) Max Grav 3=26 (LC (LC 19) 	athing directly applied or xcept end verticals. applied or 10-0-0 oc chanical, 4=15/ ial, 5=158/0-3-8 13) 2 19), 4=-27 (LC 13), 5=- 9), 4=31 (LC 11), 5=200	 3) This truss ha load of 12.0 overhangs n 4) * This truss h on the bottor 3-06-00 tall b chord and ar 5) Refer to gird 6) Provide mec bearing plate 4 and 43 lb u 7) One RT7A M truss to bear connection is forces. 8) This truss is International 	is been designed for psf or 2.00 times flat on-concurrent with or has been designed f in chord in all areas by 2-00-00 wide will by other members. It is the members. It is the members of the hanical connection (e capable of withstar uplift at joint 3. It is connectors read ing walls due to UPI s for uplift only and or designed in accorda Residential Code so	r greate t roof lo other liv for a liv where fit betw ss conr (by oth nding 2 comme LIFT at does no ance w	er of min roof 1 aad of 13.9 ps ve loads. e load of 20.0 a rectangle veen the botto nections. ers) of truss to 7 lb uplift at jo nded to conne jt(s) 5. This of consider lat th the 2015 R502.11.1 at	live f on psf m o point ect eral						
FORCES TOP CHORE BOT CHORE WEBS NOTES 1) Wind: AS Vasd=11 Cat. II; E Exterior vertical lu forces & DOL=1.6 2) TCLL: A [*] DOL=1.1 snow); P Plate DC Ct=1.10	(Ib) - Maximum Corr Tension D 2-5=-186/136, 1-2=(D 4-5=-192/133 2-4=-143/207 SCE 7-10; Vult=150mph J9mph; TCDL=6.0psf; B ixp B; Enclosed; MWFR (2) zone; cantilever left : eft and right exposed;C- MWFRS for reactions s 30 plate grip DDL=1.33 SCE 7-10; Pr=20.0 psf (15 Plate DDL=1.15); Pg: f=13.9 psf (flat roof sno DL=1.15); Category II; E:	pression/Maximum (80, 2-3=-64/84 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; end C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	R802.10.2 a	nd referenced stand Standard	lard AN	ISI/TPI 1.			. antitution .	Oto Manual Andrews	SEA 4584	ROLINI NAVIER	AMULTIN,

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ22	Jack-Open	1	1	Job Reference (optional)	150198539

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:48 ID:2NeyuXjMRxN_aSBnhas96bztK0r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.9

Plate Offsets ((X, '	Y):	[5:Edge,	0-6-9
-----------------	-------	-----	----------	-------

	(, .). [
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.08 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.01 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=11: Cat. II; E: Exterior (zone; car and right MWFRS grip DOL 2) TCLL: AS DOL=1.1 snow); Pi Plate DO Ct=1.10 3) This truss load of 12 overhang	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-3-11 oc purlins, e Rigid ceiling directly bracing. (Ib/size) 3=57/ Me Mechanic Max Horiz 5=148 (LC Max Uplift 3=-76 (LC Max Grav 3=92 (LC (LC 2)) (Ib) - Maximum Corr Tension 2-5=-205/97, 1-2=0/ 4-5=-276/208 2-4=-212/281 CE 7-10; Vult=150mph 9mph; TCDL=6.0ps; B xp B; Enclosed; MWFR 2)-1-4-4 to 1-7-12, Inte thilever left and right expressed; C-C for memb for reactions shown; Lu =1.33 SCE 7-10; Pr=20.0 psf (flat roof snor L=1.15); Pg:=13.9 psf (flat roof snor L=1.15); Category II; E: s has been designed fo 2.0 psf or 2.00 times flat snon-concurrent with or 	athing directly applied except end verticals. applied or 10-0-0 oc chanical, 4=32/ cal, 5=195/0-3-8 C 13) 25), 4=45 (LC 11), 5 pression/Maximum 80, 2-3=-117/129 a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 rior (1) 1-7-12 to 3-2- posed; end vertical le bers and forces & umber DOL=1.60 plate (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof li t roof load of 13.9 psf other live loads.	 4) * This tr on the b 3-06-00 chord at 5) Refer to bearing 3 and 10 7) One RT truss to connect forces. 8) This trus Internati R802.10 LOAD CASI 	uss has been designe ottom chord in all area tall by 2-00-00 wide w wid any other members girder(s) for truss to t mechanical connectio plate capable of withs 1 bu plift at joint 4. 7A MiTek connectors bearing walls due to L on is for uplift only an as is designed in acco onal Residential Code .2 and referenced sta E(S) Standard	d for a liv as where vill fit betv s. russ conr n (by oth tanding 7 recomme JPLIFT at d does no rdance w e sections indard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss to '6 lb uplift at jc ended to conne ; jt(s) 5. This ot consider late ith the 2015 a R502.11.1 ar ISI/TPI 1.	opsf om opint ect teral		Continues.		SEA 4584 February	ROL HA L HA OHNSUIII 13,2022	
WAR Design a truss s building is alway fabricati Safety I	NING - Verify design parameter valid for use only with MiTek® system. Before use, the buildi design. Bracing indicated is s required for stability and to on, storage, delivery, erection nformation available from T	ers and READ NOTES ON T o connectors. This design is ng designer must verify the to prevent buckling of indiv prevent collapse with possi and bracing of trusses and russ Plate Institute, 2670 C	HIS AND INCLUDED MIT a based only upon param applicability of design pa- idual truss web and/or ch ble personal injury and p d truss systems, see rain Highway, Suite 203	EK REFERENCE PAGE MII eters shown, and is for an in rameters and properly inco ord members only. Addition operty damage. For gener, ANSI/TP11 Quality Cr Waldorf, MD 20601	-7473 rev. 5 ndividual bui rporate this nal tempora al guidance iteria, DSB	/19/2020 BEFORE Iding component, design into the ov ry and permanent regarding the -89 and BCSI Bui	E USE. , not verall t bracing ilding Con	nponent			S18 Soundside R Edenton, NC 275	ING BY A Mi Tek Affiliate toad 132	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ23	Jack-Open	1	1	Job Reference (optional)	150198540

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:48 ID:LjZbMwolo5G?wXD7bZUou3ztK0k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Pa

Scale =	1:39.7

Plate Offsets (X, Y): [4:0-10-8,0-1-8]], [5:Edge,0-6-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.69 0.20 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.03 -0.01	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-11-11 oc purlins, o Rigid ceiling directly bracing. (lb/size) 3=102/ Ma Machanic Max Horiz 5=208 (LC Max Uplift 3=-131 (LI Max Grav 3=162 (LC 5=296 (LC	athing directly applie except end verticals. applied or 9-8-11 oc echanical, 4=48/ al, 5=245/0-3-8 2 13) C 13) C 13) C 25), 4=61 (LC 11), C 2)	4) d or 6) 7) 8)	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to girde Provide mec bearing plate joint 3. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar	has been designed in chord in all area by 2-00-00 wide wi by other members. er(s) for truss to tr hanical connection e capable of withst liTek connectors r ing walls due to U is for uplift only and designed in accor Residential Code nd referenced star Standard	d for a liv s where ill fit betw uss conr b (by oth anding 1 ecomme PLIFT at d does no dance w sections ndard AN	e load of 20.1 a rectangle veen the bott nections. ers) of truss t 31 lb uplift at nded to conr jt(s) 5. This ot consider la th the 2015 R502.11.1 a ISI/TPI 1.	Opsf om to t nect ateral						
FORCES	(ib) - Maximum Com Tension 2-5=-247/77, 1-2=0/8 4-5=-357/282 2-4=-284/360	pression/maximum 30, 2-3=-200/186												
NOTES 1) Wind: ASC Vasd=119 Cat. II; Exp Exterior (2 4-10-15 zc vertical left	CE 7-10; Vult=150mph mph; TCDL=6.0psf; B0 p B; Enclosed; MWFR c) -1-4-4 to 1-7-12, Inte ne; cantilever left and t and right exposed;C-1	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-6 rior (1) 1-7-12 to right exposed ; end C for members and	C							Ĺ		WHTH CA	ROLIN	20
forces & N DOL=1.60 2) TCLL: ASO DOL=1.15 snow); Pf= Plate DOL Ct=1.10	IWFRS for reactions sl plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (i Plate DOL=1.15); Pg= =13.9 psf (flat roof snow =1.15); Category II; Ex	hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.;	er 5							111111	N. N. N.	SEA 4584	L 4	WHITTER .
 This truss load of 12. overhangs 	has been designed for 0 psf or 2.00 times flat non-concurrent with o	greater of min roof l roof load of 13.9 ps ther live loads.	ive f on									TEW J	OHM	

February 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ24	Jack-Open	1	1	Job Reference (optional)	150198541

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:49 ID:DUo6BHrGsJmQP8XuqOZk2vztK0g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.6

Loading TCLL (roof) Snow (Pf/Pg TCDL 3CLL 3CDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 3-4 2	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 3-3-4 oc purlins, exit Rigid ceiling directly bracing. (Ib/size) 2=48/ Meanic Max Horiz 4=57 (LC Max Grav 2=71 (LC Max Grav 2=71 (LC (LC 2) 	athing directly applie cept end verticals. applied or 10-0-0 oc chanical, 3=21/ al, 4=69/0-3-8 10) 2 13), 3=-5 (LC 13) 24), 3=32 (LC 11), 4	5) 6) d or 5 7) LC	Provide mecl bearing plate 2 and 5 lb up One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar DAD CASE(S)	nanical connectior capable of withst lift at joint 3. iTek connectors r ng walls due to UI for uplift only and designed in accord Residential Code nd referenced star Standard	n (by oth anding 4 ecomme PLIFT at I does no dance w sections idard AN	ers) of truss to 9 lb uplift at jo nded to connu- jt(s) 4. This ot consider lat ith the 2015 R502.11.1 ar ISI/TPI 1.	o pint ect eral						
FORCES	(lb) - Maximum Com Tension 0 1-2=-69/59, 1-4=-61/ 0 3-4=-113/91	pression/Maximum /0												
WEBS	1-3=-95/118													
1) Wind: AS Vasd=11 Cat. II; E Exterior vertical I forces & DOL=1.6	SCE 7-10; Vult=150mph 9mph; TCDL=6.0psf; B(xp B; Enclosed; MWFR3 2) zone; cantilever left a eft and right exposed;C- MWFRS for reactions sl i0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-1 and right exposed ; e C for members and hown; Lumber	C end							0		ORTH CA	ROLIN	in the second
2) TCLL: A DOL=1.' snow); F Plate DC Ct=1.10	SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= f=13.9 psf (flat roof snov L=1.15); Category II; Ex	roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1 kp B; Fully Exp.;	ər 5							THE PARTY OF		SEA 4584	L 14	WILLIN .
3) * This tru on the b 3-06-00 chord ar	ss has been designed for ottom chord in all areas all by 2-00-00 wide will d any other members.	or a live load of 20.0 where a rectangle fit between the botto	psf m								in Plant	NOREW J	EEP.SO	
 Refer to 	girder(s) for truss to trus	s connections.										February	(13.2022	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	CJ25	Jack-Open	1	1	Job Reference (optional)	150198542

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:49 ID:e3UFqJu88E8?GcGTWX6RgYztK0d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.8

Plate Offsets (X, Y): [3:0-7-5,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.17 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.02 0.00	(loc) - 3-4 2	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=110 Cat. II; Ex Exterior (2 zone; can and right WFRS f grip DOL= 2) TCLL: AS DOL=1.10	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 5-8-0 oc purlins, exit Rigid ceiling directly bracing. (Ib/size) 2=106/Mi Mechanic Max Horiz 4=126 (LC Max Uplift 2=-108 (L Max Grav 2=156 (LC 4=178 (LC (Ib) - Maximum Com Tension 1-2=-150/129, 1-4=- 3-4=-227/180 1-3=-182/229 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BG pB; Enclosed; MWFR 2) 1-2-2 to 4-2-2, Interior tilever left and right exp exposed; C-C for memb for reactions shown; Lu =1.33 CE 7-10; Pr=20.0 psf (Is 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov _=1.15); Category II; Ex	athing directly applie cept end verticals. applied or 10-0-0 oc echanical, 3=45/ al, 4=151/0-3-8 2 13) 2 24), 3=55 (LC 11), 2 2) pression/Maximum 133/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-1 or (1) 4-2-2 to 5-7-4 posed ; end vertical I ers and forces & mber DOL=1.60 plat roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.1! cp B; Fully Exp.;	3) d or 5) 6) 7) LC eft e sr 5	* This truss F on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 2. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar DAD CASE(S)	as been designed n chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru- hanical connection capable of withsta liTek connectors re- ing walls due to UP for uplift only and designed in accord Residential Code s and referenced stand Standard	for a liv where fit betw ss conr (by oth nding 1 comme PLIFT at does no ance w sections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 08 lb uplift at nded to conn jt(s) 4. This ot consider la ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om ect teral				SEA 4584	ROLINS LL 14 OHNSU	

February 13,2022

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	D1	Hip Girder	1	1	Job Reference (optional)	150198543

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:50 ID:pBfP8402ZdXR4IcbfKp0csztK0S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.3

2-9-3

Plate Offsets (X, Y): [2:Edge.0-1-13], [8:Edge.0-1-13]

Loading TCLL (root) (psf) 20.0 Spacing Plate Grip DOL Lumber DOL 1.15 CSI TC 0.88 DEFL Vert(LL) in (loc) // deft L/d PLATES GRIP Snow (P//Pg) 18.9/20.0 Plate Grip DOL 1.15 TC 0.98 Vert(LL) -0.29 10-12 >8582 244 MT20 244/190 Snow (P//Pg) 18.9/20.0 Plate Sress Incr NO Code IRC2015/TPI2014 WB 0.45 Horz(CT) 0.10 8 n/a N/a BCDL 0.0° BCDL 10.0 Plate SP setss Incr NO Code IRC2015/TPI2014 WB 0.45 Horz(CT) 0.10 8 n/a N/a Weight: 98 Ib FT = 20% LUMBER TOP CHORD 2x4 SP 2400F 2.0E "CE1.10 Lu=50-0-0 Ubalanced Simol Cole-1.15 Plate DOL=1.15) Plate Sore (Plate DOL=1.15) Plate Sore (Plate DOL=1.15) No Plate Sore (Plate DOL=1.15) Increase=1.15 Uniform Loads (Ibf) Vert : 4=-86 (B), 6=-86 (B), 12=-366 (B), 12=	
LUMBER TOP CHORD2x4 SP 2400F 2.0ETCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15; Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-01)Dead + Snow (balanced): Lumber Increase=1.15, PI Increase=1.151)Dead + Snow (balanced): Lumber Increase=1.15, PI DOL=1.15; Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-01)Dead + Snow (balanced): Lumber Increase=1.15, PI Increase=1.151)Dead + Snow (balanced): Lumber Increase=1.15, PI DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-01)Dead + Snow (balanced): Lumber Increase=1.15, PI Increase=1.151)Dead + Snow (balanced): Lumber Increase=1.15, PI DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-01)Dead + Snow (balanced): Lumber Increase=1.15, PI Increase=1.151)Dead + Snow (balanced): Lumber Increase=1.15, PI Plate DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-01)Dead + Snow (balanced): Lumber Increase=1.15, PI Increase=1.151)Dead + Snow (balanced): Lumber Increase=1.15, PI Plate DOL=1.15; Category II; Exp B; Fully Exp.; 	LATES GRIP 1T20 244/190 1T20HS 187/143 Veight: 98 lb FT = 20%
 Tension 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2.12=-457/3647, 10-12=-695/4452, 8-10=-428/3647 WEBS 4.12=-21/994, 6-10=-21/994, 5-12=-910/298, 5-10=-910/298 NOTES 10) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed; i. Lumber DOL=1.60 plate grip DOL=1.33 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 376 lb down and 47 lb up at 14-11-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 	hced): Lumber Increase=1.15, Plate) 3=-58, 6-9=-48, 13-17=-20 s (lb) 1=-86 (B), 12=-366 (B), 10=-366 (B), 31 (B), 25=-81 (B), 27=-81 (B), 50 (B), 31=-50 (B), 32=-50 (B) H CAR SEAL 45844 HGINEEF, 50 U JOHN

February 13,2022

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	D2	Нір	1	1	Job Reference (optional)	150198544

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:50 ID:ecX5yxIT8hQALqs?VgjP2jztK05-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

22-5-8

1-5-0

<u>-1-5-0</u> 1-5-0 17-0-13 3-11-11 8-0-0 13-0-8 21-0-8 3-11-11 4-0-5 5-0-8 4-0-5 3-11-11 5x8= 6x8 = 12 4 Г 23 24 6 0-1-9 5 \bowtie \bowtie 2x4 = 2x4 = 3x5 🚅 3x5 ≈ 4 7 ⁸ 25 3 22 Ð 70 2 E

Scale = 1:44.5

3-5-3

Plate Offsets (X, Y): [2:0-2-13,0-0-1], [5:0-1-12,0-2-12], [9:0-2-13,0-0-1]

	(, , : , ,		. ,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.59 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.05	(loc) 11-13 13-16 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood shea 4-2-4 oc purlins, exc 2-0-0 oc purlins, (4-3 Rigid ceiling directly bracing. (Ib/size) 2=804/0-3 Max Horiz 2=-40 (LC Max Uplift 2=-167 (L Max Grav 2=1011 (L (Ib) - Maximum Com Tension 1-2=0/34, 2-4=-1777 5-6=-1451/510, 6-7=	2-6-0, Right 2x4 SP I athing directly applie rept -6 max.): 5-6. applied or 8-3-8 oc 8-8, 9=804/0-3-8 : 16) C 11), 9=-167 (LC 1: .C 38), 9=1011 (LC 3: pression/Maximum 7/593, 4-5=-1539/503 -1540/502,	2) No.3 d or 3) 2) 4) 38) 5) 3, 6)	Wind: ASCE Vasd=119m Cat. II; Exp E Exterior (2) - Exterior (2) - Exterior (2) & 13-0-8, Exter to 22-5-3 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded	7-10; Vult=150mp oh; TCDL=6.0psf; 3; Enclosed; MWF 1-4-11 to 1-7-5, In 3-0-0 to 12-2-15, Ir rior (2) 13-0-8 to 1 ne; cantilever left a nd right exposed; /FRS for reactions late grip DOL=1.3; 7-10; Pr=20.0 ps late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; -50-0-0 snow loads have I as been designed f psf or 2.00 times f on-concurrent with quate drainage to 1	bh (3-see BCDL=6 RS (env terior (1 7-3-9, Ir and right C-C for r shown; f (roof liv g=20.0 jow: Lun Exp B; F been col for great lat roof I n other li prevent	cond gust) cond gust) c.Opsf; h=25ff elope) and C of 1-7-5 to 8-0) 1-7-5 to 8-0) 12-2-15 to terior (1) 17- exposed; er nembers and Lumber re load: Lumb re load: Lumb sof (ground hoer DOL=1 fully Exp.; insidered for t er of min rooi poad of 13.9 p ve loads. water pondin	; -C -C, 3-9 nd J ber 15 his f live sf on g.						
BOT CHORD WEBS NOTES 1) Unbalance this design	7-9=-1777/592, 9-10 2-13=-483/1661, 11- 9-11=-496/1661 5-13=0/206, 5-11=-1 4-13=-276/134, 7-11 ed roof live loads have n.	=0/34 =0/34 :13=-356/1450, 20/121, 6-11=0/206 =-275/134 been considered for	9) , 8) , 9) 10	* This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ai O Graphical pu or the orient bottom chord	nas been designed as been designed by 2-00-00 wide wi by other members. MiTek connectors r ing walls due to U tion is for uplift onl designed in accor Residential Code nd referenced star rilin representation ation of the purlin a d. Standard	for a live s where ecomme PLIFT a y and do dance w sections ndard Al a does n along the	vere for dof 20. a rectangle veen the bott ended to com i jt(s) 2 and 9 bes not consist ith the 2015 \$ R502.11.1 a NSI/TPI 1. ot depict the a top and/or	g. Opsf om nect der and size		Contraction of the second seco	A. B.	SEA 4584	ROLIN L 4	A Summing

Fobri

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	D3	Hip	1	1	Job Reference (optional)	150198545

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:51

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	D4	Common	1	1	Job Reference (optional)	150198546

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:52 ID:i1?dFhuCbkcDjM6QtS6vX2ztK?K-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:43.6

Plate Offsets (X, Y): [2:0-3-13,Edge], [8:0-3-13,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.55 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.20 0.04	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanci this design 2) Wind: ASU	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood shea 4-1-13 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=779/0-3 Max Horiz 2=52 (LC Max Uplift 2=-156 (L Max Grav 2=925 (LC (lb) - Maximum Com Tension 1-2=0/33, 2-4=-1709 5-6=-1554/414, 6-8= 2-12=-350/1593, 10- 8-10=-369/1593 5-10=-60/454, 6-10= 4-12=-280/172 ed roof live loads have n. CE 7-10; Vult=150mph	2-6-0, Right 2x4 SP athing directly applie applied or 9-7-14 or 3-8, 8=779/0-3-8 15) C 11), 8=-156 (LC 1 C 2), 8=925 (LC 2) pression/Maximum /460, 4-5=-1554/41 -1709/460, 8-9=0/3: 12=-216/1148, -280/172, 5-12=-60, been considered for (3-second gust)	3) No.3 4) ed or 5) C 6) 2) 7) 4, 8) 4, 8) 4, 8) 7 /454, L r	 TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ba chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar 	7-10; Pr=20.0 psf late DOL=1.15); P, 3.9 psf (flat roof sm l.15); Category II; I snow loads have b s been designed fip psf or 2.00 times fl on-concurrent with has been designed in chord in all areas by 2-00-00 wide will y other members. fiTek connectors re ing walls due to Uf tion is for uplift only b designed in accord Residential Code nd referenced stan Standard	(roof liv g=20.0 p ow: Lum Exp B; F oeen cor or greate at roof k other liv for a liv s where Il fit betw ecomme PLIFT at v and do dance w sections dard AN	e load: Lumb sf (ground ber DOL=1.' ully Exp.; asidered for t er of min roof aad of 13.9 p ve loads. e load of 20.' a rectangle veen the bott nded to conr jt(s) 2 and 8 es not consid ith the 2015 . R502.11.1 a ISI/TPI 1.	ber 15 his f live sf on Opsf om hect der		(Annual Annual Annua		WHTH CA	ROLL	3
vasd=119	empn; ICDL=6.0psf; B	JUL=6.0pst; h=25ft;									•	SEA	L •	-

Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-11 to 1-7-5, Interior (1) 1-7-5 to 10-6-4, Exterior (2) 10-6-4 to 13-6-4, Interior (1) 13-6-4 to 22-5-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	E1	Roof Special Structural Gable	1	1	Job Reference (optional)	150198547

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:52 ID:mwPIOq4c3LV50flJF6tQeDztK?5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-2-8

10 11 0

Page: 1

February 13,2022

818 Soundside Road Edenton, NC 27932

7-8-15

			- H	0-5	9-1		13-1	1-0		1			
Scale = 1:54.9			0-3-8	6-5	5-9	0-11-14	6-2	2-1	0-3	-8			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	j/TPI2014	CSI TC BC WB Matrix-MSH	0.21 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	eathing directly applied	1) 2) I or	Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) - Exterior (2) 7 zone; cantile and right exp	roof live loads 7-10; Vult=15(bh; TCDL=6.0p 3; Enclosed; M 1-4-6 to 1-7-10 '-3-0 to 10-3-0, ver left and rig opsed:C-C for r	have been Omph (3-see osf; BCDL=6 WFRS (env), Interior (1) ht exposed members ar	considered fo cond gust) copsf; h=25ft elope) and C) 1-7-10 to 7- 10-3-0 to 14- ; end vertical d forces &	or ;; -C 3-0, -0-12 left	 13) N/A 14) Bev surfa 10. 15) This Inter 	eled pla ace with s truss is	te or s n truss s desig	him required to p chord at joint(s) 1 ned in accordanc	rovide full bearing 3, 12, 9, 14, 15, 11, we with the 2015 ions R502 11 1 and
BOT CHORD	Rigid ceiling directly bracing. (Ib/size) 9=137/14 11=84/14 13=99/14 15=143/1 Max Horiz 16=223 (L 12=-35 (L 14=-56 (L 11=103 (13=172 (15=174 (/ applied or 6-0-0 oc I-2-8, 10=85/14-2-8, I-2-8, 12=158/14-2-8, I-2-8, 16=193/14-2-8, I-2-8, 16=193/14-2-8, I-2-10, 11=-21 (LC 14), I-C 14), 13=-73 (LC 10), I-C 13), 16=-62 (LC 14), I-C 26), 10=93 (LC 2), I-C 26), 12=193 (LC 2), I-C 25), 14=151 (LC 22), I-C 29), 14=527 (LC 2)	3) 4)), 5), 9)	MWFRS for grip DOL=1.3 Truss design only. For stu see Standarco or consult qu TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 p	reactions show and for wind lo Ids exposed to d Industry Gab alified building 7-10; Pr=20.0 late DOL=1.15 8.9 psf (flat roo .15); Category is been design psf or 2.00 time	ads in the p wind (norm le End Deta designer a:) psf (roof liv); Pg=20.0 ; f snow: Lurr r II; Exp B; F ed for great es flat roof li	an of the tri al to the face ills as applica is per ANS/IT ie load: Lumb osf (ground iber DOL=1. ⁻ fully Exp.; er of min roof oad of 13.9 p	ate uss a), ble, PI 1. ber 15 f live sf on	R80	2.10.2 a) Sta	erenced standard	I ANSI/TPI 1.
FORCES	(lb) - Maximum Con Tension 1-2=0/73, 2-3=-172/	npression/Maximum /157, 3-4=-68/84,	6) 7) 8)	All plates are Gable require	e 2x4 MT20 unl es continuous	less otherwi bottom chor	se indicated. d bearing.	1		~	. In	TH CA	Rollin
BOT CHORD	4-5=-100/130, 5-6=- 7-8=-169/142, 2-16: 15-16=-184/194, 14 13-14=-179/185, 12	-97/119, 6-7=-56/51, =-279/243, 8-9=-192/1 -15=-182/185, I-13=-183/191, 1=-51/04, 9-1050/09	28 9) 10)	braced again Gable studs * This truss h on the bottom	nst lateral move spaced at 2-0- nas been desig n chord in all a	ement (i.e. c 0 oc. Ined for a liv Ireas where	liagonal web) le load of 20. a rectangle). Opsf		U	tin	SFA	Dig Krim
WEBS NOTES	5-12=-43/32, 10-1 5-12=-84/0, 5-13=-7 3-18=-146/19, 7-20 3-17=-205/192, 13- 12-19=-233/183, 7- 4-17=-155/126, 14- 15-18=-113/0, 6-19: 10-20=-39/7	17 57, 57 57 57 50 50 50 50 50 50 50 50 50 50 50 50 50	11) 12)	3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho N/A	by 2-00-00 wide int(s) 9 conside IPI 1 angle to g ould verify capa	e will fit bety ers. ers parallel i grain formul acity of bear	veen the bott to grain value a. Building ing surface.	om		111112	N. N. N.	4584	EF. O

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0-3-8

0.04

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	E2	Roof Special	2	1	Job Reference (optional)	150198548

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:53 ID:qopzYyF1XyNzJzPBdlexINztK_s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	0-3-8	6-9-1	7-8-15	13-11-10	14-3-2
	0-3-8	6-5-9	0-11-14	6-2-11	0-3-8
Scale = 1:51.2					

Plate Offsets (X, Y): [4:0-2-10,Edge]

Exterior (2) -1-4-6 to 1-7-10, Interior (1) 1-7-10 to 7-4-0, Exterior (2) 7-4-0 to 10-4-0, Interior (1) 10-4-0 to 14-1-6

zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.33

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.28	DEFL Vert(LL)	in -0.02	(loc) 9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.32	Vert(CT)	-0.09	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.05	1	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH							Waight: 04 lb	ET - 200/
BCDL	10.0								-	-		weight. 94 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		3)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10	7-10; Pr=20.0 psf (late DOL=1.15); Pg: 8.9 psf (flat roof sno .15); Category II; E.	roof liv =20.0 p w: Lum xp B; F	e load: Lumb osf (ground ber DOL=1. ully Exp.;	ber 15					
TOP CHORD	Structural wood shea 6-0-0 oc purlins, exc	athing directly applie cept end verticals.	d or ⁴⁾	This truss ha load of 12.0	s been designed fo osf or 2.00 times fla	r great t roof le	er of min root ad of 13.9 p	f live sf on					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	5)	* This truss h	on-concurrent with one of the second se	other In or a liv	/e loads. e load of 20.	0psf					
REACTIONS	(lb/size) 7=469/ Me Max Horiz 10=225 (L Max Uplift 7=-38 (LC Max Grav 7=554 (LC	echanical, 10=549/0- .C 10) 14), 10=-64 (LC 13) 2 2), 10=654 (LC 2)	-3-8 6) 7)	3-06-00 tall to chord and ar Refer to gird	by 2-00-00 wide will by other members. er(s) for truss to trus int(s) 10 considers	fit betv ss conr	veen the bott ections.	om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	')	using ANSI/7 designer sho	PI 1 angle to grain	formula formula	a. Building	16					
TOP CHORD	1-2=0/73, 2-3=-267/ 4-5=-751/262, 5-6=-2 6-7=-218/106	148, 3-4=-766/248, 214/116, 2-10=-348/2	8) 231,	Provide mec bearing plate 7.	hanical connection capable of withstar	(by oth nding 3	ers) of truss 8 lb uplift at	to joint					
BOT CHORD	9-10=-228/728, 8-9=	-41/510, 7-8=-192/6	07 9)	One RT7A M	liTek connectors rea	comme	nded to con	nect					
WEBS	4-8=-97/354, 4-9=-10 5-7=-714/219, 3-9=-7	09/392, 3-10=-732/1 184/183, 5-8=-162/1	57, 89	truss to bear connection is	ing walls due to UP	LIFT at	jt(s) 10. This ot consider la	s iteral					900
NOTES				forces.							6	WH CA	ROUL
 Unbalance this design Wind: ASC 	ed roof live loads have n. CE 7-10: Vult-150mph	been considered for	10	 This truss is International R802.10.2 at 	designed in accorda Residential Code s nd referenced stand	ance w ections ard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and		0	And I	ORIEES	Quillan.

Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; LOAD CASE(S) Standard Cast. II; Exp B; Enclosed; MWFRS (envelope) and C-C

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	E3	Roof Special	5	1	Job Reference (optional)	150198549

4x5 II 3

10-3-5

3-4-1

6-11-4

3-3-10

3-7-10

3-7-10

12 10 Г

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:47.8 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.33

WFBS

NOTES

1)

2)

REACTIONS (lb/size)

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

bracing.

Tension

Snow (Pf/Pg)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:53 ID:q4LO6mShXBXZsaCS7qSwxyztK_b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-11-6

3-8-1

Page: 1

4x5 🗸 4x5、 13 11² 12 4 14 7-4-0 2x4 i 2x4 II 8 7 5 5x6= 1-6-10 1-4-11 5x6= 5∟ 12 q 6 3x5 -3x5 -0-3-8 13-11-6 6-5-5 13-7-14 7-5-3 0-3-8 6-1-13 6-2-11 0-3-8 0-11-14 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) Plate Grip DOL 20.0 1.15 тс 0.23 Vert(LL) -0.02 7 >999 240 MT20 244/190 BC 13 9/20 0 Lumber DOL 1 15 0.30 Vert(CT) -0.08 6-7 >999 180 10.0 Rep Stress Incr YES WB 0.39 Horz(CT) 0.04 6 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MSH 10.0 Weight: 89 lb FT = 20%TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 * This truss has been designed for a live load of 20.0psf 4) Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 6-0-0 oc purlins, except end verticals. 3-06-00 tall by 2-00-00 wide will fit between the bottom Rigid ceiling directly applied or 10-0-0 oc chord and any other members. Refer to girder(s) for truss to truss connections. 6=462/ Mechanical, 10=462/ Provide mechanical connection (by others) of truss to 6) Mechanical bearing plate capable of withstanding 37 lb uplift at joint Max Horiz 10=-205 (LC 11) 6 and 37 lb uplift at joint 10. Max Uplift 6=-37 (LC 14), 10=-37 (LC 13) This truss is designed in accordance with the 2015 7) Max Grav 6=546 (LC 2), 10=546 (LC 2) International Residential Code sections R502.11.1 and (Ib) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 1-2=-240/135, 2-3=-743/246, 3-4=-741/257, 4-5=-217/112, 9-10=-560/164, 1-9=-235/119, 5-6=-220/104 8-9=-205/705, 7-8=-43/504, 6-7=-193/611 3-7=-94/363, 3-8=-111/374, 2-9=-705/161, 4-6=-710/218, 2-8=-155/176, 4-7=-175/194 Unbalanced roof live loads have been considered for \cap Wind: ASCE 7-10; Vult=150mph (3-second gust) Lunnun un Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Yuunaan huur Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-5-8 to 3-5-8, Interior (1) 3-5-8 to 7-3-0, SEAL Exterior (2) 7-3-0 to 10-3-0, Interior (1) 10-3-0 to 14-1-6 5844 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

minin February 13,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	E4	Monopitch Girder	1	2	Job Reference (optional)	150198550

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:53 ID:QmBh2YdTEUHZXkG8ymiCVvztK_N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [11:0-2-8,0-3-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.65 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 -0.01	(loc) 9-10 9-10 7	l/defl >999 >839 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. 1 Brace a 15 (b/size)	o.2 o.2 o.3 o.3 I wood shea purlins, ex ing directly at Jt(s): 13, 7=978/ Mi	athing directly applie cept end verticals. applied or 10-0-0 oc	1) od or 2)	2-ply truss to (0.131"x3") n Top chords o oc. Bottom chord 0-4-0 oc. Web connect All loads are except if note CASE(S) sec provided to d unless othern Wind: ASCE	be connected toge ails as follows: onnected as follow is connected as follow ed as follows: 2x4 considered equally is front (F) or ba tion. Ply to ply con istribute only loads vise indicated. 7-10; Vult=150mpt	ether wi s: 2x4 - lows: 2 - 1 row applie ack (B) nection noted n (3-sec	th 10d 1 row at 0-9 x4 - 1 row at at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), cond gust)	-0 DAD	12) N// 13) Thi: Inte R8(14) Gap dia(15) Har pro Ib d up	s truss is rnationa 02.10.2 a b betwee gonal or nger(s) o vided su own and at 4-0-1:	desig I Resid and ref in insid vertica r other fficient I 49 lb 2, 526	ned in accordanc lential Code secti erenced standarc le of top chord be l web shall not ex connection devi to support conce up at 2-0-12, 520 lb down and 49 ll	e with the 2015 ions R502.11.1 and I ANSI/TPI 1. varing and first cceed 0.500in. ce(s) shall be intrated load(s) 526 6 lb down and 49 lb b up at 6-0-12, and
REACTIONS	(ID/SIZE) Max Horiz Max Uplift Max Grav	7=978/ Me 12=347/5- 12=390 (L 7=-255 (L 12=-91 (L 7=1161 (L 12=506 (L	echanical, 11=1574/3 -9-0 C 6), 11=-263 (LC 9) C 5) .C 20), 11=1871 (LC .C 21)), (≨ 2), ⁴⁾	 Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For stude sexposed to wind (normal to the face), Dead + Snow (balanced): Lumber Increase=1 								, and 534 lb down chord. The design/ (s) is the Increase=1.15, Plate	
FORCES	(lb) - Max Tension 1-2=-274, 4-5=-457,	timum Com /131, 2-3=-: /146, 5-6=-:	pression/Maximum 235/135, 3-4=-181/2 264/161, 6-7=-114/1	5) 84, 49,	see Standard industry Gable End Defails as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15							Rojin		
BOT CHORD WEBS	7-8=-195/ 11-12=-3 9-10=-15 4-11=-84	/958, 1-12= 81/307, 10- 1/202, 8-9= 0/71, 4-14=	227/85 -11=-151/202, 151/202 166/97,	6) 7)	Plate DOL=1 Ct=1.10 All plates are Truss to be f	.15); Category II; E 2x4 MT20 unless o ully sheathed from	xp B; F otherwi one fac	ully Exp.; se indicated. e or securely			0	ix	CAOFES	Min Krim
NOTES	13-14=-21 1-15=-210 6-13=-100 5-14=-17/ 2-15=-66/	03/108, 8-1 0/237, 11-1 6/198, 9-13 /312, 10-14 /53	3=-297/126, 5=-230/251, =-106/290, =-30/365, 3-11=-30/	8) 9) 292, 1(1 [°]	braced again Gable studs * This truss h on the botton 3-06-00 tall b chord and ar 0) Refer to girde 1) Provide mecl bearing plate joint 7 and 26	st lateral movemen spaced at 2-0-0 oc. as been designed in a chord in all areas y 2-00-00 wide will y other members. er(s) for truss to trus nanical connection capable of withsta 33 lb uplift at joint 1	t (i.e. d for a liv where fit betv ss conr (by oth nding 2 1.	iagonal web) e load of 20.0 a rectangle veen the botto nections. ers) of truss t 55 lb uplift at	Dpsf om		11111111	The second s	SEA 4584	L 4 0HN500000000000000000000000000000000000

- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 255 lb uplift at joint 7 and 263 lb uplift at joint 11.

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	E4	Monopitch Girder	1	2	Job Reference (optional)	150198550
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.53 S Dec 6	2021 Print: 8.	530 S Dec 6	2021 MiTek Industries, Inc. Fri Feb 11 10:49:53	Page: 2

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:53 ID:QmBh2YdTEUHZXkG8ymiCVvztK_N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-7=-48, 8-12=-20 Concentrated Loads (lb)

Vert: 8=-450 (F), 16=-442 (F), 17=-442 (F), 18=-442 (F), 19=-442 (F)

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	EJ1	Jack-Open	4	1	Job Reference (optional)	150198551

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:54 ID:toXejO?n1?Hjr_SCXwnYXRztK0U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 ш

6-0-0

Scale = 1:26.4 Plate Offsets (X, Y): [2:0-2-4,0-0-13]

Loading TCLL (rod) (pst) 2.0.0 Plate Grip DOL Lumber DOL 1.1.5 (Lumber DOL 1.1.5 (Lumber DOL 1.1.5 (Cd. 0.00) Spacing Plate Grip DOL Lumber DOL 1.1.5 (Cd. 0.00) CSI TC Co.5z (Ver(CT) DEFL 0.0.5z (Ver(CT) in (loc) (loc) (loc) PLATES GRIP C44/190 VEX 0.00 No Rep Stress Incr YES BC 0.37 Ver(CT) 0.02 2 n/a No BCDL 0.00 Rep Stress Incr YES WB 0.00 Horz(CT) 0.02 2 n/a No BCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.02 2 n/a No BCDL 10.0 Rep Stress Incr YES Nits truss has been designed for greater or min rool live load of 12.0 plot 2.00 times at rool load of 13.9 pld on overhangs non-concurrent with other live loads No No No No Pole 0.00 Structural wood sheathing directly applied or on the bottom chord in all areas where a ctracingle 30-600 at IBV 2-000 wide with the 200 for in the bottom chord in all areas where a ctracingle 30-600 at IBV 2-000 wide with the 2015 max Grav 2.2275/0.38,4-125/ Mechanical, 5-869 Mechanical No Pole CT No No REACT NO No No No No No No		(,, 1). [2.0-2-4,0-0-10	2												
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 SLIDER Left 2x4 SP No.2 SLIDER Left 2x4 SP No.2 SUDER Left 2x4 SP No.2 SUDER Left 2x4 SP No.2 SCHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (b/size) 2-275/0-3-8, 4-125/ Mechanical 5-69/ Mechanical Max Horiz 2-95 (LC 11) Max Grav 2-831 (LC 2), 4-154 (LC 2), 5-74 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension One RT7A MITek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces. 1) Wind: ASCE 7-10; Vult=150mph (specified) One RT7A MITek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces. 1) Wind: ASCE 7-10; Vult=150mph (specified) One RTA MITek connectors R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard Standard Virtues ter frail on ight exposed C-C for members and forces & mytreps to reactions shown; Lumber DOL=1.60 plate grip DOL=1.132 Intermetion and member DOL=1.60 plate grip DOL=1.132 port (film inve load: Lumber DOL=1.159 Ptate DOL=1.16) parter DOL 1) Tick Laks CE 7-10; Pre20.0 psf (root inve load: Lumber DOL=1.159 Der Mether DOL=1.16) <t< td=""><td>Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL</td><td>(psf) 20.0 13.9/20.0 10.0 0.0* 10.0</td><td>Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code</td><td>2-0-0 1.15 1.15 YES IRC2015</td><td>5/TPI2014</td><td>CSI TC BC WB Matrix-MP</td><td>0.52 0.37 0.00</td><td>DEFL Vert(LL) Vert(CT) Horz(CT)</td><td>in 0.08 -0.12 0.02</td><td>(loc) 5-8 5-8 2</td><td>l/defl >881 >616 n/a</td><td>L/d 240 180 n/a</td><td>PLATES MT20 Weight: 24 lb</td><td>GRIP 244/190 FT = 20%</td><td></td></t<>	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.52 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.12 0.02	(loc) 5-8 5-8 2	l/defl >881 >616 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASK Vasd=119 Cat. II; Ex Exterior (2 Zone; can and right (MWFRS f grip DOL= 2) TCLL: AS DOL=1.16 snow); Pfi- Plate DOL Ct=1.10 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=275/0-1 5=69/ Me Max Horiz 2=95 (LC Max Uplift 2=-83 (LC Max Uplift 2=-83 (LC Max Uplift 2=-83 (LC Max Grav 2=331 (LI (LC 2) (Ib) - Maximum Con Tension 1-2=0/33, 2-4=-241/ 2-5=-279/194 CE 7-10; Vult=150mph TCDL=6.0psf; B pp B; Enclosed; MWFR 2) -1-4-11 to 1-7-5, Inte tillever left and right ex exposed; C-C for memi for reactions shown; LL =1.33 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg =13.9 psf (flat roof sno L=1.15); Category II; E ed snow loads have be	2-6-0 eathing directly applied v applied or 10-0-0 oc 3-8, 4=125/ Mechanica chanical 11) C 11), 4=-62 (LC 15) C 2), 4=154 (LC 2), 5= hpression/Maximum 40 a (3-second gust) CDL=6.0psf; h=25ft; IS (envelope) and C-C erior (1) 1-7-5 to 5-11- posed; end vertical le bers and forces & umber DOL=1.60 plate (roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; een considered for this	4) 5) d or 6) 7) al, 8) =74 9) LC 5 4 4 fft es r 5	This truss ha load of 12.0 overhangs n * This truss I on the bottoo 3-06-00 tall I chord and an Refer to gird Provide mec bearing plate 4. One RT7A M truss to bear connection i forces. This truss is International R802.10.2 a DAD CASE(S)	as been designed psf or 2.00 times on-concurrent wit has been designe m chord in all area by 2-00-00 wide w ny other members ter(s) for truss to tr thanical connection e capable of withs AITek connectors ring walls due to L s for uplift only an designed in accou Residential Code nd referenced sta Standard	for great flat roof li h other li d for a liv as where vill fit betv s russ conr n (by oth tanding 6 recomme JPLIFT ai d does n rdance w s sections ndard AN	er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott nections. ers) of truss 52 lb uplift at ended to conn ; jt(s) 2. This of consider la ith the 2015 5 R502.11.1 a JSI/TPI 1.	f live ssf on Opsf tom to joint nect ateral and		Continues.		SEA 4584	L DHNSON	Ammung

February 13,2022

ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601
--

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	EJ2	Jack-Open	7	1	Job Reference (optional)	150198552

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:54 ID:1vv1X1IAYxW5nDi6ef7DG3ztL1x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.6

Plate Offsets	(X, Y): [2:0-2-8,0-1-12]], [3:0-1-14,0-3-6]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.68 0.87 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.26 0.41	(loc) 3 3 5	l/defl >322 >269 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 5-2-6 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 4=99/ Mec Mechanic Max Horiz 6=237 (LC Max Uplift 4=-122 (L Max Grav 4=156 (LC 6=333 (LC (lb) - Maximum Com	athing directly applie cept end verticals. applied or 5-1-0 oc chanical, 5=88/ al, 6=277/0-3-8 C 13), 5=-66 (LC 13 C 13), 5=-66 (LC 13 C 25), 5=127 (LC 25) C 2) pression/Maximum	4) 5) 6) 7) 8)), 9)	* This truss h on the bottom 3-06-00 tall b chord and an Refer to girdt Bearing at jo using ANSI/T designer sho Provide mecl bearing plate joint 4 and 66 One RT7A M truss to bear connection is forces.	as been designed n chord in all area y 2-00-00 wide w yy other members arc(s) for truss to tr int(s) 6 considers 'PI 1 angle to grai uld verify capacity hanical connection capable of withsis S Ib uplift at joint 5 iTFek connectors r ing walls due to U for uplift only and designed in accord	d for a liv s where ill fit betw uss control parallel t n formula of bearin n (by oth anding 1 recomme PLIFT at d does not dance w	e load of 20.1 a rectangle veen the bott nections. o grain value a. Building ng surface. ers) of truss t 22 lb uplift at ended to com- jt(s) 6. This ot consider la th the 2015	Dpsf om to teral						
TOP CHORD BOT CHORD NOTES 1) Wind: ASt Vasd=119 Cat. II; Ex Exterior (2	Tension 2-6=-730/555, 1-2=0 3-4=-169/167 3-6=-851/836, 3-5=-1 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFR3 2) -1-4-4 to 1-7-12, Inte	/80, 2-3=-651/541, 8/7 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- rior (1) 1-7-12 to 5-1	LC C 1-4	R802.10.2 ar	nd referenced star Standard	ndard AN	ISI/TPI 1.			(OR THESE	ROLIN	- <u>1</u> -
zone; can and right (MWFRS f grip DOL= 2) TCLL: AS DOL=1.15 snow); Pf: Plate DOL Ct=1.10 3) This truss	tilever left and right exp exposed;C-C for memb or reactions shown; Lu :1.33 CE 7-10; Pr=20.0 psf (i 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Ex has been designed for	bosed ; end vertical I liers and forces & mber DOL=1.60 plat roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1! κρ B; Fully Exp.; • greater of min roof	eft te 5 live							Samura	N. N	SEA 4584	L 14	WWWWWWWW

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 3) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	EJ3	Monopitch	1	1	Job Reference (optional)	150198553

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:54 ID:1vv1X1IAYxW5nDi6ef7DG3ztL1x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-0

Scale = 1:46.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(p 20 13.9/20 10 (10	rsf) 0.0 0.0 0.0 0.0 0.0 * 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.96 0.29 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.06 -0.01	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *E Structural wood except end ver Rigid ceiling di bracing. (Ib/size) 3=12 Max Horiz 5=33 Max Uplift 3=-1 5=-3 Max Grav 3=22 5=37	Except d shea ticals. rectly = 27/ Me hanica 09 (LC 59 (LC 20 (LC 20 (LC 74 (LC	* 3-4:2x4 SP No.2 applied or 7-3-8 oc chanical, 4=57/ Il, 5=274/0-3-8 10) C 10), 4=-21 (LC 10), 9) 25), 4=92 (LC 11), 26)	3) 4) 5) 6) 7) 8)	This truss ha load of 12.0 p overhangs no * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate joint 3 and 21 One RT7A M truss to beari connection is forces. This truss is of	s been designed for osf or 2.00 times fla on-concurrent with or as been designed f n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to trus nanical connection of capable of withstar I buplift at joint 4. iTek connectors rea ng walls due to UPI for uplift only and or designed in accorda Residential Code s	r greate t roof lo other liv or a liv where fit betw ss conr (by othe hding 1 comme LIFT at does no ance wi	er of min roof vad of 13.9 p: re loads. e load of 20.0 a rectangle reen the botto ections. ers) of truss t 59 lb uplift at nded to conn jt(s) 5. This of consider la th the 2015 R502 11 1 a	i live sf on Opsf om to teral					
FORCES	(lb) - Maximum Tension 1-2=0/80, 2-3= 2-5=-317/245	n Comp -398/3	pression/Maximum 82, 3-4=0/0,	9)	R802.10.2 ar Gap between diagonal or v	ard AN bearir t excee	SI/TPI 1. g and first d 0.500in.							
BOT CHORD WEBS	4-5=-626/600 2-4=-481/523			20		Glandard								1111
1) Wind: ASC Vasd=119	CE 7-10; Vult=150 mph; TCDL=6.0p	0mph osf; BC	(3-second gust) DL=6.0psf; h=25ft;									V	OR SESS	ROLIN

- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-4 to 1-7-12, Interior (1) 1-7-12 to 5-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

SEAL

45844

T. ...

- Annan annan anna

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	EJ4	Monopitch	1	1	Job Reference (optional)	150198554

12 12

10

3x6 4 3x6 🍫

1-5-0 1-7-12 1-9-14

3

3x6 . 2

7-8-8

Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:49.7

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

Ct=1.10

BRACING

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:55 ID:1vv1X1IAYxW5nDi6ef7DG3ztL1x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-15

6-0-0

2-6-6

3x5 II 5

ф 6 1-6-3 7 1-5-4 3x5 = 5x6= 9 8 2x4 II 6x8 🥠 ∟11.24 12 1-9-8 3-3-14 6-0-0 1-6-6 1-9-8 2-8-2 Plate Offsets (X, Y): [8:0-4-12,0-1-12] 2-0-0 CSI DEFL PLATES GRIP (psf) Spacing in (loc) l/defl L/d 20.0 Plate Grip DOL 1.15 тс 0.75 Vert(LL) 0.00 7 >999 240 MT20 244/190 BC 13.9/20.0 Lumber DOL 1.15 0.10 Vert(CT) 0.00 6-7 >999 180 10.0 Rep Stress Incr YES WB 0.14 Horz(CT) -0.01 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP Weight: 55 lb FT = 20% 10.0 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 2x4 SP No.2 overhangs non-concurrent with other live loads. 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf 2x4 SP No.3 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom DH JULIU JULIU Plate DOL=1.15); Category II; Exp B; Fully Exp.; February 13,2022

818 Soundside Road Edenton, NC 27932

Annunnin

TOP CHORD	Structura	I wood sheathing directly applied or purlins except end verticals		chord and any other members.			
BOT CHORD	Rigid ceil bracing.	ing directly applied or 7-9-15 oc	5) 6)	Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to			
REACTIONS	(Ib/size) Max Horiz Max Uplift Max Grav	5=45/ Mechanical, 6=139/ Mechanical, 9=274/0-3-8 9=287 (LC 10) 5=-85 (LC 12), 6=-99 (LC 13), 9=-33 (LC 9) 5=87 (LC 25), 6=215 (LC 25), 9=-370 (LC 26)	7) 8)	bearing plate capable of withstanding 85 lb uplift at joint 5 and 99 lb uplift at joint 6. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015			
FORCES	(lb) - Max Tension	kimum Compression/Maximum	0)	Renational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.			
TOP CHORD	1-2=0/80 4-5=-219	, 2-3=-216/144, 3-4=-228/103, /217, 5-6=0/0, 2-9=-353/212	9) 1 C	diagonal or vertical web shall not exceed 0.500in.			
BOT CHORD WEBS	8-9=-578 3-8=-166 4-6=-432	/547, 7-8=-413/475, 6-7=-302/363 /78, 3-7=-39/48, 4-7=-242/329, /351, 2-8=-255/353	LC			11101	HCA
NOTES						Or .	SSI
1) Wind: AS Vasd=119 Cat. II; Ex Exterior (2 zone; can and right MWFRS f grip DOL	CE 7-10; Vu Omph; TCDL (p B; Enclos 2) -1-4-4 to tilever left a exposed;C-1 for reactions =1.33	It=150mph (3-second gust) .=6.0psf; BCDL=6.0psf; h=25ft; ed; MWFRS (envelope) and C-C 1-7-12, Interior (1) 1-7-12 to 5-10-4 nd right exposed; end vertical left C for members and forces & shown; Lumber DOL=1.60 plate			Annonin		SEAL 4584
2) TCLL: AS DOL=1.1 snow); Pf	CE 7-10; Pr 5 Plate DOL =13.9 psf (fl	=20.0 psf (roof live load: Lumber =1.15); Pg=20.0 psf (ground at roof snow: Lumber DOL=1.15				NOR	NGINE EW IC

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	EJ5	Monopitch	1	1	Job Reference (optional)	150198555	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:55 ID:1vv1X1IAYxW5nDi6ef7DG3ztL1x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.7

Plate Offsets (X,	Y):	[8:0-4-12,0-1-12]
-------------------	-----	-------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.76 0.10 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 zone; can and right 6 MWFRS f grip DOL= 2) TCLL: AS DOL=1.15 snow); Pfr	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shei 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (Ib/size) 5=46/ Med Machanic Max Horiz 9=287 (LC 9=-33 (LC Max Uplift 5=-86 (LC 9=-33 (LC Max Grav 5=88 (LC 9=370 (LC (Ib) - Maximum Com Tension 1-2=0/80, 2-3=-216/ 4-5=-221/219, 5-6=0 8-9=-579/548, 7-8=-: 3-8=-165/78, 3-7=-3 4-6=-432/351, 2-8=: CE 7-10; Vult=150mph Omph; TCDL=6.0psf; BG p B; Enclosed; MWFR 2) -1-4-4 to 1-7-12, Inte Itlever left and right exp exposed; C-C for memb or reactions shown; Lu =1.33 CE 7-10; Pr=20.0 psf (I 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof sno	athing directly applied cept end verticals. applied or 7-9-13 oc chanical, 6=138/ al, 9=274/0-3-8 C 10) 25), 6=-99 (LC 13), 9) 25), 6=214 (LC 25), 26) pression/Maximum 144, 3-4=-229/103, /0, 2-9=-353/212 413/475, 6-7=-304/36 7/51, 4-7=-240/327, 256/354 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rior (1) 1-7-12 to 5-10 oosed; end vertical le ters and forces & mber DOL=1.60 plate roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15	 3) This truss load of 12. overhangs 4) * This truss on the bott 3-06-00 ta chord and 5) Refer to gi 6) Provide m bearing pla 5 and 99 ll 7) One RT7A truss to be connection forces. 8) This truss Internation R802.10.2 9) Gap betwee diagonal o LOAD CASE(3) 	has been designed 0 psf or 2.00 times 1 non-concurrent with s has been designed om chord in all area I by 2-00-00 wide w any other members rder(s) for truss to tr achanical connection the capable of withsto uplift at joint 6. MiTek connectors in aring walls due to U is for uplift only and is designed in accord al Residential Code and referenced staten inside of top chord r vertical web shall r 5) Standard	for greats for greats flat roof la h other lind d for a liv as where vill fit betv russ conr n (by oth tanding £ recomme JPLIFT at d does no rdance w e sections ndard AN ord bearin not excee	er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott nections. ers) of truss 86 lb uplift at ended to comu- i jt(s) 9. This of consider la ith the 2015 a R502.11.1 a ISI/TPI 1. rg and first ad 0.500in.	f live osf on .0psf tom to joint nect ateral and				SEA 4584	ROLA Distant L H4	Same
Ct=1.10	·// ·····3· / ··/ -·										February	/ 13,2022	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	EJ6	Jack-Open	3	1	Job Reference (optional)	150198556

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:55 ID:yr9kP0qVT0IISBVDu7_y9HztK_7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.9

Plate Offsets (X, Y): [5:0-0-5,Edge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.93 0.64 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.11 -0.17 0.09	(loc) 4-5 4-5 3	l/defl >621 >408 n/a	L/d 240 180 n/a	PLATES MT18HS Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 zone; cant and right e MWFRS fr grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing. (lb/size) 3=121/ Mu Mechanic Max Horiz 5=245 (LC Max Uplift 3=-154 (L Max Grav 3=190 (LC 5=333 (LC (lb) - Maximum Com Tension 2-5=-287/111, 1-2=0 4-5=0/0 CE 7-10; Vult=150mph imph; TCDL=6.0psf; BK p B; Enclosed; MWFR3 2) -1-4-4 to 1-7-12, Inte illever left and right exp exposed; C- C for memb exposed; C	athing directly applied applied or 10-0-0 oc echanical, 4=66/ al, 5=277/0-3-8 C 13) C 13), 4=-1 (LC 13) C 25), 4=79 (LC 25), C 2) pression/Maximum)/80, 2-3=-232/198 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rior (1) 1-7-12 to 5-1: posed; end vertical lo pers and forces & mber DOL=1.60 plat roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; r greater of min roof I t roof load of 13.9 psl ther live loads.	4) 5) 6) 7) 8) LC 14 eft e r 5 ive f on	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 3 and 1 One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar DAD CASE(S)	has been designer in chord in all area by 2-00-00 wide w y other members er(s) for truss to tr hanical connection e capable of withsi ib uplift at joint 4. fiTek connectors i ing walls due to U is for uplift only and designed in accor Residential Code ind referenced star Standard	d for a liv as where " russ conr n (by oth tanding 1 recomme IPLIFT at d does no rdance w s sections ndard AN	e load of 20. a rectangle veen the bott nections. ers) of truss : 54 lb uplift a ended to comr ; jt(s) 5. This of consider la ith the 2015 a R502.11.1 a ISI/TPI 1.	Dpsf om to teral and				SEA 4584 February	L L H4 DHNSUIN 13,2022
WARN	IING - Verify design paramete	ers and READ NOTES ON 1	THIS AND INC	CLUDED MITEK RI	EFERENCE PAGE MII-	-7473 rev. 5	/19/2020 BEFOR	E USE.				ENGINEER	

- grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof			
22010064-A	F1	Hip Girder	1	1	Ich Reference (optional)	150198557		

Scale = 1:59.2

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:56 ID:BaC7I5x9L9R01ahyvWe40BztK_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-3-4], [3:0-5-7,Edge], [5:0-5-7,Edge], [7:0-3-8,Edge]

					-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.65 0.44 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.20 0.05	(loc) 9-11 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-1-12 oc purlins, ei 2-0-0 oc purlins (4-1 Rigid ceiling directly brading	3) 4) ed or and 5) 6)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalan.cud design. This truss ha load of 12.0 t overhangs no Provide adec	7-10; Pr=20.0 psf ate DOL=1.15); Pg 3.9 psf (flat roof sno .15); Category II; E 50-0-0 snow loads have bu s been designed fo osf or 2.00 times fla on-concurrent with uate drainage to p	(roof liv =20.0 p w: Lum xp B; F een cor r greate tr roof lo other liv revent v	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; asidered for th er of min roof bad of 13.9 ps ve loads. water ponding	er 5 nis live sf on 2.	1) De Inc Ur Cc	ead + Sn crease=' hiform Lo Vert: 1-3 oncentra Vert: 3= 4=-63 (E 22=-46	ow (ba 1.15 bads (II 3=-48, ted Loa -5 (B), -5 (B), 18= (B), 23	alanced): Lumber b/ft) 3-5=-58, 5-8=-48 ads (lb) 5=-5 (B), 11=-46 -63 (B), 20=-63 (=-46 (B)	Increase=1. , 12-13=-20 0 (B), 9=-43 B), 21=-46 (I	15, Plate 9 (B), B),	
REACTIONS	(lb/size) 7=1419/0- Max Horiz 12=-194 (l Max Uplift 7=-752 (Lu Max Grav 7=1998 (L (lb) - Maximum Com	3-8, 12=1382/0-5-8 LC 9) C 12), 12=-761 (LC .C 44), 12=1914 (LC pression/Maximum	7) 11) 242) 8)	 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 7. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R902 10 2 and referenced standard ANSI/CEP1 1 										
TOP CHORD	Tension 1-2=-433/152, 2-3=-2 3-4=-1856/914, 4-5= 5-6=-2380/1100, 6-7 1-12=-378/130	2378/1107, -1872/916, '=-2528/1084, 7-8=0	9) 1/83,											
BOT CHORD WEBS	11-12=-789/1834, 9- 7-9=-719/1833 3-11=-550/1231, 5-9 2-12=-2122/937, 2-1 4-9=-334/305, 4-11=	11=-902/2040, =-535/1222, 1=-172/334, -367/302, 6-9=-179/	10 11 /250) Graphical pu or the orienta bottom chord) "NAILED" ind (0 148"x3 25	rlin representation of ation of the purlin al l. dicates 3-10d (0.14 ") toe-nails per NDS	does no ong the 8"x3") o S quidli	ot depict the s top and/or or 3-12d	size		C	E.	OR TH CA	ROI	en
NOTES 1) Unbalance this design 2) Wind: AS(Vasd=119 Cat. II; Ex left and ric exposed;	ed roof live loads have n. CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR3 ht exposed ; end vertic Lumber DOL=1.60 plat	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantile cal left and right e grip DOL=1.33	12 r ever 13 LC	 Hanger(s) or provided suff Ib down and 389 lb up at selection of s responsibility In the LOAD of the truss a DAD CASE(S) 	other connection de icient to support co 418 lb up at 7-1-9, 13-9-15 on bottom such connection de of others. CASE(S) section, I re noted as front (F Standard	evice(s ncentra and 71 chord. vice(s) oads ap) shall be tited load(s) 7 0 lb down an The design/ is the oplied to the f ck (B).	32 d		THILLIN'S	The second se	SEA 4584	4 EER.O	A Strange

- Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33
- responsibility of others. 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

.10 mmm February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	F2	Нір	1	1	Job Reference (optional)	150198558	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:57 ID:490wrvbfO3MD81OXdZ7zInztJz7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.8 Plate Offsets (X, Y): [3:0-2-8,0-2-8], [4:0-5-7, Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.55 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.21 0.02	(loc) 8-13 9-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 5-7-6 oc purlins, exa 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 6=726/0-3 Max Horiz 10=-227 (Max Uplift 6=-63 (LC Max Grav 6=846 (LC	athing directly applie cept end verticals, ar -0 max.): 3-4. applied or 10-0-0 oc 3-8 8-8, 10=726/0-5-8 LC 11) 14), 10=-60 (LC 13 2 2), 10=846 (LC 2)	3) 44 0 or 5) 0 dor 5) 0 dor 7) 7)	 TCLL: ASCE DOL=1.15 P snow); Pf=11 Plate DOL=' Ct=1.10, Lui Provide adeat This truss I on the botton 3-06-00 tall It chord and an One RT7A N truss to bear This connect lateral forces This truss is International R802.10.2 at 	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snot 1.15); Category II; E 50-0-0 quate drainage to p as been designed n chord in all areas by 2-00-00 wide wil y other members. MiTek connectors re ting walls due to UF tion is for uplift only be designed in accord Residential Code so nd referenced stam	(roof liv g=20.0 p ow: Lum Exp B; F revent v for a liv where I fit betw ecomme PLIFT at and do lance w sections dard AN	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; vater ponding e load of 20.0 a rectangle veen the botto nded to conn jt(s) 10 and (es not consic ith the 2015 R502.11.1 a ISJ/TPI 1.	er 15 Dpsf om nect 6. der					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=119 Cat. II: Exi	(lb) - Maximum Com Tension 1-2=-452/136, 2-3=-i 4-5=-841/331, 5-6=- 9-10=-146/734, 8-9= 3-9=-74/328, 3-8=-1: 2-10=-630/201, 2-9= ed roof live loads have h. CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B: Enclosed: MWFR	pression/Maximum 836/331, 3-4=-700/3 1012/333, 1-10=-39- -10/558, 6-8=-148/7 28/129, 4-8=-98/34 -318/238, 5-8=-377/ been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-	8) 21, 4/147 L 39 /238 C) Graphical pu or the orient: bottom chore OAD CASE(S)	irlin representation ation of the purlin a J. Standard	does no	ot depict the s	size		0	L.L.	SEA	ROLL

Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-6-6, Exterior (2) 9-6-6 to 15-8-13, Interior (1) 15-8-13 to 21-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

ALL MARKED 4584 .10 mmm February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	F3	Common	1	1	Job Reference (optional)	150198559	

Loading

TCDL

BCLL

BCDL

WEBS

WFBS

NOTES

1)

WEDGE

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:57 ID:gssDnhmR5M7EpASDSWOFJkztJyv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 10-6-2, Exterior (2) 10-6-2 to 13-6-2, Interior (1) 13-6-2 to 21-3-8 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

1. Summer of SEAL 45844 104 mmm February 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F4	Roof Special	1	1	Job Reference (optional)	150198560

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:58 ID:8Jy0Yr_jsuPgzxqgVIiT2XztJyd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.9			5-4-13	5-1-5	,	8-1	-10		2-1-5 C)-6-6		
Plate Offsets (2	X, Y): [1:Edge,0-7-4]	, [5:0-2-9,Edge], [6:0	0-3-0,0-2-1]									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.11	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.58	Vert(CT)	-0.23	10-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 146 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		2) Wind: ASC Vasd=119r	E 7-10; Vult=150m nph; TCDL=6.0psf	nph (3-seo ; BCDL=6	cond gust) 6.0psf; h=25f	;					
	2v4 SP No 2		Cat II: Exp	B. Enclosed: MW	FRS (env	elone) and C	-0					

TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 5-1-7 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6. Rigid ceiling directly applied or 10-0-0 oc bracing		Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 10-6-2, Exterior (2) 10-6-2 to 13-6-2, Interior (1) 13-6-2 to 20-7-6, Exterior (2) 20-7-6 to 21-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33	
REACTIONS	bracing. (lb/size) 8=731/0-3-8, 14=713/0-5-8 Max Horiz 14=274 (LC 12) Max Uplift 8=-68 (LC 14), 14=-62 (LC 13) Max Grav 8=840 (LC 2), 14=840 (LC 2)	3)	TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0	
FORCES	(lb) - Maximum Compression/Maximum Tension	4) 5)	Provide adequate drainage to prevent water ponding. * This truss has been designed for a live load of 20 0psf	
TOP CHORD	1-2=-996/269, 2-3=-823/326, 3-4=-832/325, 4-5=-1219/386, 5-6=-796/201, 6-7=-264/131, 1-14=-786/242, 7-8=-306/128	5)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	
BOT CHORD	13-14=-270/353, 12-13=-224/797, 10-12=-179/662, 9-10=-63/143, 8-9=-55/107	6)	One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 14 and 8.	
WEBS	5-10=-951/337, 6-10=-227/1102, 1-13=-18/534, 4-10=-125/409, 2-13=0/73,		This connection is for uplift only and does not consider lateral forces.	
NOTEO	2-12=-430/222, 3-12=-272/779, 4-12=-398/241, 6-9=-691/144	7)	This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPI 1	
1) Unbalance	d roof live loads have been considered for	8)	Graphical purlin representation does not depict the size or the orientation of the purlin along the ton and/or	

this design.

Summer Summer SEAL 45844

ebrust a February 13,2022

Summun

111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F5	Roof Special	1	1	Job Reference (optional)	150198561

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:58 ID:4zbCYLDeOko_IsnK7nYwJXztJyK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:62.9 Plate Offsets (X, Y): [4:0-4-0,0-1-14], [5:0-2-12,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.82 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.50 0.02	(loc) 11-12 11-12 7	l/defl >999 >500 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-2-6 oc purlins, exu 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (lb/size) 7=728/0-3 Max Horiz 12=274 (L Max Uplift 7=-68 (LC Max Grav 7=840 (LC	athing directly applie cept end verticals, ar -0 max.): 4-5. applied or 10-0-0 oc 3-8, 12=715/0-5-8 _C 10) : 14), 12=-62 (LC 13 C 2), 12=840 (LC 2)	2) ed or nd : : : : : : : : : : : : : : : : : :	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) (0 10-6-2, Exter to 18-2-9, Ex left and right exposed;C-C reactions sho DOL=1.33 TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10. Lu=	7-10; Vult=150mph bh; TCDL=6.0psf; B 8; Enclosed; MWFR I-1-12 to 3-1-12, Int ior (2) 10-6-2 to 13 terior (2) 18-2-9 to exposed ; end vert c for members and i bwn; Lumber DOL= 7-10; Pr=20.0 psf late DOL=1.15); Pg 8.9 psf (flat roof sno .15); Category II; E 50-0-0	n (3-sec GCDL=6 SC (env. erior (1 -6-2, In 21-1-12 ical left forces 8 (roof liv =20.0 p wv: Lum xxp B; F	ond gust) .0psf; h=25ft; elope) and C-) 3-1-12 to terior (1) 13-6 2 zone; cantil and right & MWFRS for ate grip e load: Lumb bsf (ground ber DOL=1.1 ully Exp.;	-C -C ever r er 5					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-544/154, 2-3=-4 4-5=-774/284, 5-6=-6 6-7=-812/252	pression/Maximum 822/323, 3-4=-807/2 679/225, 1-12=-452/	4) 5) 97, 166,	Provide adeo * This truss h on the bottor 3-06-00 tall b chord and ar	quate drainage to p has been designed in chord in all areas by 2-00-00 wide will by other members y	revent for a liv where fit betv with BC	water ponding e load of 20.0 a rectangle veen the botto DI = 10 0psf	g. Opsf om					
BOT CHORD WEBS	11-12=-239/773, 9-1 8-9=-144/481, 7-8=- 2-11=-361/251, 3-11 4-11=-382/241, 4-9= 5-8=-264/116, 2-12=	1=-222/732, 38/53 =-202/684, -515/190, 5-9=-181/ -550/160, 6-8=-134/	6) (590, (576 7)	One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar	in the internet of the interne	comme LIFT at and do ance w sections	ith the 2015 SE2 - 10.000 ith the 2015 SE302.11.1 a	nect 7. der		(;	L'II	OR FESS	ROLIN
 Unbalance 	ed root live loads have	been considered for									8 T 16	.0.	

 Unbalanced roof live loads have been considered for this design. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

All Tek Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F6	Roof Special	1	1	Job Reference (optional)	150198562

Scale = 1:65.7

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:49:59 ID:GMIoQwYCoKJ06Awimf2VSRztJxu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	(X, 1). [2.0 0 4,0 2 0],	[0:0 2 0,0 1 12], [0:	o o r,Euge	1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.24 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 10-11 12-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 5-7-2 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. (Ib/size) 1=714/ Me Max Horiz 1=71 (LC Max Uplift 1=-65 (LC Max Grav 1=822 (LC	athing directly applie cept end verticals, ar 0 max.): 1-2, 5-6. applied or 10-0-0 oc echanical, 8=710/0-3 : 10) 13), 8=-70 (LC 14) : 2), 8=822 (LC 2)	2) nd : 3-8 3)	Wind: ASCE Vasd=119m Cat. II; Exp E Exterior (2) (0 10-0-10, Ext 13-2-15 to 1: (1) 18-4-4 to exposed ; er members an Lumber DOL TCLL: ASCE DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1 10, Lu	7-10; Vult=150mp ph; TCDL=6.0psf; 3; Enclosed; MWF)-1-12 to 1-4-11, Ir erior (2) 10-0-10 to 5-4-4, Exterior (2) 20-8-4 zone; cant nd vertical left and d forces & MWFR =1.60 plate grip D =7-10; Pr=20.0 psf late DOL=1.15); P 8.9 psf (flat roof sn 1.15); Category II; I =50-0-0	h (3-sec BCDL=6 RS (env- terior (1) 13-2-1 15-4-4 to ilever lef right exp S for rea OL=1.3 ^c (roof liv g=20.0 p ow: Lum Exp B; F	ond gust) .0psf; h=25ft elope) and C) 1-4-11 to 5, Interior (1)) 18-4-4, Inte t and right tosed;C-C for ctions showr 8 e load: Lumb bef (ground ber DOL=1.1 ully Exp.;	; -C rior r; ; eer						
FORCES	(lb) - Maximum Com Tension 1-15=-233/837, 1-2=	pression/Maximum -268/251, 2-3=-868/	4) 5) 314,	Provide adea * This truss I on the bottor	quate drainage to p nas been designed m chord in all areas	orevent I for a liv s where	water ponding e load of 20.0 a rectangle	g. Opsf						
BOT CHORD	3-4=-810/390, 4-5=-7 6-7=-770/256, 7-8=-7 14-15=-161/551, 12-	781/359, 5-6=-636/2 770/245 14=-156/557,	85, 6)	3-06-00 tall t chord and ar Refer to gird	by 2-00-00 wide winy other members. er(s) for truss to true	ll fit betv uss conr	veen the bott	om						
WEBS	11-12=-129/611, 10- 9-10=-132/598, 8-9= 2-15=-995/264, 5-10 6-9=0/200, 7-9=-56/5 2-12=-127/163, 4-11 5-11=-406/239, 3-11	11=-132/597, -62/98 =0/23, 5-9=-274/62, 505, 2-14=0/96, =-378/831, =-446/224_3-12=-3/	7) 8) 135	Provide mec bearing plate 1. One RT7A M truss to bear connection is	hanical connection e capable of withsta /iTek connectors ru ing walls due to UI s for uplift only and	n (by oth anding 6 ecomme PLIFT at	ers) of truss f 5 lb uplift at j nded to conr jt(s) 8. This of consider la	io ioint nect teral		0	and the	OR DEED	ROLIN	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	9) 10 11 LC	forces. This truss is International R802.10.2 a 0) Graphical pu or the orienta bottom chore 1) Gap betweet diagonal or V DAD CASE(S)	designed in accord Residential Code nd referenced star urlin representation ation of the purlin a d. n inside of top choi vertical web shall n Standard	dance w sections idard AN does no along the rd bearin ot excee	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or ng and first d 0.500in.	and size		CONTRACT.	Pinnin	SEA 4584	L 4	

- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

"minimi February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F7	Roof Special	1	1	Job Reference (optional)	150198563

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:00 ID:W6hWXugWe9BkkULJnPUaVMztaK6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-8-5

Page: 1

0-0-15

Scale - 1.72.8	
00010 - 1.12.0	

	Plate Offsets	(X, Y):	[6:0-5-7,Edge], [21:0-2-8,0-2-0]
--	---------------	---------	----------------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.60 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.59 0.01	(loc) 13-17 15-16 9	l/defl >850 >414 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E No.3 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, ext 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 20 6-0-0 oc bracing: 14 1 Row at midpt (lb/size) 9=891/03	Except* 2-20:2x4 SF athing directly applied cept end verticals, an -0 max.): 1-3, 5-6. applied or 10-0-0 oc -21,19-20. -18 4-14 -8, 22=928/ Mechani	2) d or d 3) cal 4)	Wind: ASCE Vasd=119mp Cat. II; Exp B Exterior (2) 0 10-0-10, Exte 11-0-1 to 12- (1) 17-2-6 to exposed ; en members and Lumber DOL TCLL: ASCE DOL=1.15 PI snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= 200.0lb AC u	7-10; Vult=150mph bh; TCDL=6.0psf; B i; Enclosed; MWFR -1-12 to 3-4-11, Int orior (2) 10-0-10 to 11-7, Exterior (2) 1. 20-8-4 zone; cantild d vertical left and rid forces & MWFRS =1.60 plate grip DC 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E 50-0-0 nit load placed on t	n (3-sec CDL=6 S (env erior (1) 11-0-1, 2-11-7 ever lef ght exp for rea DL=1.3 (roof liv =20.0 p w: Lum xp B; F	ond gust) .0psf; h=25ft; elope) and C-) 3-4-11 to Interior (1) to 17-2-6, Int t and right osed;C-C for ctions shown be load: Lumb bsf (ground ber DCL=1.1 ully Exp.; om chord,	C erior ; er 5					
FORCES	Max Horiz 22=-274 (I Max Grav 9=1058 (L (Ib) - Maximum Com	LC 9) .C 25), 22=1069 (LC pression/Maximum	3) 5)	10-0-10 from apart. Provide adec	left end, supported	l at two	points, 5-0-0 water ponding].					
TOP CHORD	1-22=-997/83, 1-2=-{ 3-4=-1353/126, 4-5= 6-7=-1085/130, 7-8=	556/63, 2-3=-555/56, -681/170, 5-6=-767/1 -804/103, 8-9=-982/1	6) 7) 98, 12	* This truss h on the botton 3-06-00 tall b	as been designed to n chord in all areas v 2-00-00 wide will	for a liv where fit betv	e load of 20.0 a rectangle)psf om					11111
BOT CHORD	21-22=-242/256, 20- 19-20=-52/39, 17-19 12-13=0/786, 10-12= 16-18=-78/0, 15-16=	21=-134/0, 2-21=-71, =0/786, 13-17=0/786 =-76/590, 9-10=-30/58 -78/0, 14-15=-78/0	(95, , 8) 5, 9)	chord and an Refer to girde One RT7A M truss to beari	y other members, v er(s) for truss to trus iTek connectors re ng walls due to UP	with BC ss conr comme LIFT at	DL = 10.0psf nections. nded to conn jt(s) 9. This	lect		6		ORTHCA	Raine
WEBS NOTES 1) Unbalance this design	1-21=-53/1079, 3-21 8-10=-65/721, 7-12= 4-18=0/684, 3-19=-4 4-14=-89/229, 12-14 6-12=0/343, 16-17=- ed roof live loads have n.	=-952/104, 0/401, 18-19=-19/52 36/294, 19-21=-31/1: =-165/121, 7-10=-65 27/16, 13-15=-26/18 been considered for	1, 225, 10) 3/0, 11) LO	connection is forces.) This truss is of International R802.10.2 ar) Graphical pu or the orienta bottom chord AD CASE(S)	for uplift only and designed in accord Residential Code s and referenced stand rlin representation of tion of the purlin al Standard	does no ance w ections dard AN does no ong the	ot consider la R502.11.1 a ISI/TPI 1. ot depict the s top and/or	teral nd size		THUNK.	N. N. N.	SEA 4584	E.F.F. ONIN

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F8	Roof Special	1	1	Job Reference (optional)	150198564

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:00 ID:_AbZU167Pzai5_HVpFsIAeztJvt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.6

ets (X, Y):	[3:0-1-12,0-3-4], [9:0-3-0,0-3-0]	, [19:0-2-12,0-2-0]
	L , , , ,	

Plate Offsets ((X, Y): [3:0-1-12,0-3-4]], [9:0-3-0,0-3-0], [19	:0-2-12,0-	2-0]										_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.62 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.59 0.00	(loc) 13-14 13-14 8	l/defl >888 >414 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 194 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E * No.3 2x4 SP No.3 Structural wood shea 4-5-8 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly	*Except* 2-18:2x4 SF athing directly applie cept end verticals, ar -0 max.): 1-3. applied or 10-0-0 oc	2) d or id 3)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) C 11-1-5, Exter to 20-8-4 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE	7-10; Vult=150mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF I-1-12 to 3-1-12, Int ior (2) 11-1-5 to 14 he; cantilever left ar nd right exposed;C FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf	n (3-sec 3CDL=6 8S (env. erior (1 -1-5, In nd right -C for n shown; (roof liv	cond gust) .0psf; h=25ft elope) and C-) 3-1-12 to terior (1) 14- exposed ; en nembers and Lumber e load: Lumb	; -C 1-5 nd						
WEBS REACTIONS	bracing, Except: 6-0-0 oc bracing: 18- 6-0-0 oc bracing: 12- 1 Row at midpt (Ib/size) 8=892/0-3 Max Horiz 20=-321 (I Max Gray, 8=1067 (I	-19,17-18. -16 4-10 -8, 20=926/ Mechan LC 11) C 29) 20=1057 (I C	4) ical 5)	DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. 200.0lb AC u	late DOL=1.15); Pg 3.9 psf (flat roof snc .15); Category II; E .50-0-0 snow loads have b	j=20.0 p ow: Lum Exp B; F een cor	osf (ground lber DOL=1.1 fully Exp.; nsidered for th om chord, 11	15 his -1-5						
	(Ib) - Maximum Com Tension	pression/Maximum	6) 7)	from left end Provide adec All plates are	, supported at two p quate drainage to p 2x4 MT20 unless	ooints, revent v otherwi	5-0-0 apart. water ponding se indicated.	g.						
BOT CHORD	3-4=-1388/207, 4-5= 5-6=-1147/183, 6-7= 19-20=-269/295, 18- 2-19=-313/127, 17-1 11-15=0/838, 10-11=	-672/201, -874/69, 7-8=-1000/8 19=-119/0, 8=-42/35, 15-17=0/8 =0/838, 8-10=-37/685	36 38, 9) 9, 10	on the bottor 3-06-00 tall b chord and ar Refer to gird) One RT7A M	n chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru liTek connectors re	where fit betw with BC ss conre	a rectangle veen the botto DL = 10.0pst nections.	om f. nect		0		OP. JESS	ROLL	
WEBS	14-16=-159/0, 13-14 1-19=-98/1018, 3-19 3-17=-476/325, 17-1 5-10=-151/954, 6-10 4-12=-540/195, 10-1 16-17=-131/590, 4-1 11-13=-62/21	=-159/0, 12-13=-159 =-1003/38, 7-9=-16/; 9=0/1059, =-29/460, 6-9=-681/(2=-724/125, 6=-66/793, 14-15=0/	//0 734, 0, 11 51, 12	truss to bear connection is forces.) This truss is International R802.10.2 ar) Graphical pu	ing walls due to UF s for uplift only and designed in accord Residential Code s nd referenced stand rlin representation	PLIFT at does no ance w sections dard AN does no	it (s) 8. This ot consider la th the 2015 R502.11.1 a ISI/TPI 1. ot depict the s	teral and size		Contraction of the second		SEA 4584	4	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	LC	or the orienta bottom chorc DAD CASE(S)	ation of the purlin al I. Standard	iong the	e top and/or					NOREW J	CHNSONIN'	

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F9	Roof Special	1	1	Job Reference (optional)	150198565

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:01 ID:m8pQH436VRssvk5RIZFVCbztJtM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:81	
--------------	--

Plate Offsets (X, Y): [3:0-4-0,0-2-8],	[20:0-2-12,0-2-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.62 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.58 0.00	(loc) 13-14 13-14 8	l/defl >916 >423 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E * No.3 2x4 SP No.3 *Except 2400F 2.0E Structural wood shea 4-9-9 oc purlins, exc	Except* 2-19:2x4 SF t* 18-3,4-18:2x4 SP athing directly applied sept end verticals, an or max 1-2	2) d or id 3)	Wind: ASCE Vasd=119m Cat. II; Exp E Exterior (2) (11-1-5, Exte to 20-8-4 zou vertical left a forces & MW DOL=1.60 p TCLL: ASCE	7-10; Vult=150mp bh; TCDL=6.0psf; 3; Enclosed; MWF)-1-12 to 3-1-12, Ir rior (2) 11-1-5 to 1- ne; cantilever left a nd right exposed; (FRS for reactions late grip DOL=1.35 ; 7-10; Pr=20.0 psf	oh (3-sed BCDL=6 RS (env nterior (1 4-1-5, In und right C-C for r shown; 3 f (roof liv	cond gust) .0psf; h=25ft; elope) and C-) 3-1-12 to terior (1) 14- ² exposed ; en nembers and Lumber e load: Lumb	-C I-5 d						
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 19- 6-0-0 oc bracing: 12-	late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; =50-0-0	g=20.0 µ ow: Lum Exp B; F	osf (ground ber DOL=1.1 ully Exp.;	5									
WEBS REACTIONS	1 Row at midpt (Ib/size) 8=896/0-3 Max Horiz 21=-338 (L	4-10 -8, 21=934/ Mechan LC 11)	4) ical 5)	Unbalanced design. 200.0lb AC u from left end	snow loads have t init load placed on supported at two	the bott	om chord, 11 5-0-0 apart	-1-5						
FORCES	Max Grav 8=1065 (L (lb) - Maximum Comp	C 29), 21=1088 (LC pression/Maximum	46) 6) 7)	Provide adeo All plates are	quate drainage to p 2x4 MT20 unless	orevent otherwi	water ponding se indicated.	J.						
TOP CHORD	1-21=-1004/103, 1-2: 2-3=-343/142, 3-4=-1 5-6=-1150/185, 6-7=-	=-335/138, 1388/313, 4-5=-647/´ -918/71, 7-8=-1005/8	8) 180, 37	on the bottor 3-06-00 tall t chord and ar	n chord in all areas by 2-00-00 wide wi by other members,	s where Il fit betv with BC	a rectangle veen the botto DL = 10.0psf	om				TH CA	Rojin	
BOT CHORD	20-21=-336/358, 19-2 2-20=-463/201, 18-19 11-15=0/764, 10-11= 8-9=-31/52, 14-17=-1 12-13=-116/0	20=-107/0, 9=-37/42, 15-18=0/7 =0/764, 9-10=-45/665 116/0, 13-14=-116/0,	9) 64, 10 5,	Refer to gird One RT7A M truss to bear connection is forces.	er(s) for truss to tru fiTek connectors ruing walls due to UI s for uplift only and	uss conr ecomme PLIFT at I does ne	nections. Inded to conn i jt(s) 8. This ot consider la	iect teral		0	li	SEA	lance	the states
WEBS	1-20=-146/1074, 3-2 3-18=-616/431, 18-2 6-10=-1/513, 6-9=-7 10-12=-576/60, 17-1 4-17=-183/928, 14-1	0=-949/46, 7-9=-17/7 0=0/967, 5-10=-103/ 07/0, 4-12=-422/147, 8=-261/720, 5=0/84, 11-13=-86/2	744, 11 871, 12 12) This truss is International R802.10.2 a) Graphical pu or the orienta	designed in accord Residential Code nd referenced star Irlin representation ation of the purlin a	dance w sections idard AN does no along the	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	nd size		11110	N. N.	4584	4	nunnun .
NOTES				bottom chore	J.						11	Opricin	TINS IN	
 Unbalance this design 	ed roof live loads have l n.	been considered for	LC	DAD CASE(S)	Standard						100	TEW J	OHIM	

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F10	Roof Special	1	1	Job Reference (optional)	150198566

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:02 ID:65iKPlennO9sQDjK5kZwC0ztJok-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-4-0,0-3-12], [8:0-5-14,Edge], [21:0-2-8,0-2-0]

Scale = 1:75.7

(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.65 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.61 0.05	(loc) 14-16 14-16 9	l/defl >999 >462 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
10.0											Weight: 217 lb	FT = 20%	
2x6 SP No.2 2x4 SP 2400F 2.0E No.3 2x4 SP No.3 2x4 SP No.3	*Except* 2-20:2x4 SP	1) 2)	Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) 0 11-1-5, Exter	roof live loads have 7-10; Vult=150mph h; TCDL=6.0psf; B 5; Enclosed; MWFR -1-12 to 3-1-12, Intr ior (2) 11-1-5 to 14	been of (3-sec CDL=6 S (enve erior (1 -1-5, In	considered for ond gust) .0psf; h=25ft; elope) and C-0) 3-1-12 to terior (1) 14-1	C -5	13) Gra or ti bott	phical po ne orient om chor CASE(S)	urlin re ation o d. Sta	epresentation doe of the purlin along ndard	s not depict the the top and/or	∋ size
Structural wood shea 4-9-13 oc purlins, e 2-0-0 oc purlins (6-0	athing directly applied xcept end verticals, a I-0 max.): 1-3.	l or nd	to 23-8-4 zor vertical left a forces & MW	ne; cantilever left an nd right exposed;C· FRS for reactions s	d right C for n hown;	exposed ; end nembers and Lumber	t						
Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 20 6-0-0 oc bracing: 13	applied or 10-0-0 oc -21,19-20. -18	3)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Ploto DOL=1	forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15									
1 Row at midpt	4-11		Ct=1 10 Lu=	50-0-0	лр Β, Г	ully Exp.,							
(lb/size) 9=971/0-3 Max Horiz 22=-328 (3-8, 22=1048/ Mechar LC 11)	nical 4)	Unbalanced design.	snow loads have be	en cor	sidered for th	is						
Max Grav 9=1162 (L (Ib) - Maximum Com	₋ C 30), 22=1201 (LC 3 pression/Maximum	30) 5)	200.0lb AC u from left end	nit load placed on t , supported at two p	he bott oints, s	om chord, 11- 5-0-0 apart.	1-5						
Tension 1-22=-1122/93, 1-2= 3-4=-1602/226, 4-5=	452/94, 2-3=-457/94 869/207,	6) , 7) 8)	Provide adeo All plates are * This truss h	uate drainage to pr 2x4 MT20 unless on as been designed f	event v otherwi or a liv	water ponding se indicated. e load of 20.0	psf			6	TH CA	RO	
5-7=-1645/236, 7-8= 21-22=-255/301, 20- 2-21=-231/94, 19-20 12-17=0/940, 11-12=	1585/116, 8-9=-740/ -21=-116/0,)=-35/47, 17-19=0/940 =0/940, 10-11=0/1205	075 D, 5, 9)	on the botton 3-06-00 tall b chord and an Refer to girde	n chord in all areas by 2-00-00 wide will by other members, v er(s) for truss to trus	where fit betw vith BC ss conr	a rectangle /een the botto DL = 10.0psf. /ections.	m		C	L'	Prot ES	lina	مية
8-10=-118/1254, 16- 13-14=-110/0 1-21=-85/1155, 3-21 3-19=-508/294, 19-2 5-11=-190/1353, 7-1 7-10=-245/0, 4-13=- 11_13=_532(114_18)	-18=-110/0, 14-16=-1 ⁻ =-1128/48, 11=0/1240, 1=-551/444, 379/187, -19=-136/577	10/0, 10 11) Bearing at jo using ANSI/T designer sho) One RT7A M truss to beari connection is foreos	int(s) 9 considers part PI 1 angle to grain uld verify capacity of liTek connectors re- ing walls due to UP for uplift only and o	arallel t formula of beari comme LIFT at does no	o grain value a. Building ng surface. nded to conne jt(s) 9. This ot consider late	ect eral		thunder.	- 7	SEA 4584	L 4	www.unu
4-18=-68/754, 16-17	/== 100/011, =0/61, 12-14=-71/19	12) This truss is International R802.10.2 ar	designed in accorda Residential Code s nd referenced stanc	ance w ections lard AN	ith the 2015 R502.11.1 ar ISI/TPI 1.	nd				NOREW J	OHNSON	2
-	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	(psf) 20.0 18.9/20.0 18.9/20.0 18.9/20.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E *Except* 2-20:2x4 SF No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood sheathing directly applied 4-9-13 oc purlins, except end verticals, a 2-0-0 oc purlins (6-0-0 max.): 1-3. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 20-21,19-20. 6-0-0 oc bracing: 13-18 1 Row at midpt 4-11 (lb/size) 9=971/0-3-8, 22=1048/ Mechar Max Horiz 22=-328 (LC 11) Max Grav 9=1162 (LC 30), 22=1201 (LC - (lb) - Maximum Compression/Maximum Tension 1-22=-1122/93, 1-2=-452/94, 2-3=-457/94 3-4=-1602/226, 4-5==869/207, 5-7=-1645/236, 7-8=-1585/116, 8-9=-740, 21-22=-255/301, 20-21=-116/0, 2-21=-231/94, 19-20=-35/47, 17-19=0/944(12-17=0/940, 11-12=0/940, 10-11=0/1205 8-10=-118/1254, 16-18=-110/0, 14-16=-1 13-14=-110/0 1-21=-85/1155, 3-21=-1128/48, 3-19=-508/294, 19-21=-01/240, 5-11=-190/1353, 7-11=-551/444, 7-10=-245/0, 4-13=-379/187, 11-13=-532/114, 18-19=-136/577, 4-18=-68/754, 16-17=0/61, 12-14=-71/19	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0 18.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES CodeCSI TC BC WB Matrix-MSH2x6 SP No.2 2x4 SP 2400F 2.0E *Except* 2-20:2x4 SP No.3 2x4 SP No.3 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.3 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.3 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.3 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.31)Unbalanced roof live loads have this design.2x6 SP No.2 2x4 SP No.310Unbalanced roof live loads have this design.30 Co do co purlins (6-0 or max): 1-3. Rigid celing directly applied or thave at midpt 4-11 (Ib/Size)1010(b/Size)9=971/0-3-8, 22=1048/ Mechanical Max Grav10Max Grav 2-112-231/94, 19-20-35/47, 17-19=0/940, 12-1=-85/1455, 3-21=-1128/48, 3-19=-108/124, 16-18=-110/0, 14-16=-110/0, 12-1=-851/1454, 16-18=-110/0, 14-16=-110/0, 12-1=-851/1454, 16-18=-110/0, 14-16=-110/0, 13-14=-110/01012-2=-255/301, 2.02-1=-1128/48, 3-19=-508/294, 19-21=-0/547, 4-18=-68/754, 16-17=0/61, 12-14=-771/191010Bearing at joint(s) 9 considers pu usig ANSI/FP1 1 ang	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline (psf) \\ 20.0 \\ 18.9/20.0 \\ 10.0$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline (psi) \\ 20.0 \\ 18.9(20.0 \\ 10.0$	(psf) 20.0 18.9/20.0 10.0 0.0.°Spacing Plate Grip DOL 1.15 Lumber DOL 0.0.°2-0-0 1.15 Lumber DOL 1.15 CodeCSI TC TC DC BC 0.65 WB Marix-MSHDEFL to N.6 BC 0.65 WG(TC)DEFL vert(L) -0.27 Vert(CT)in (toc) 14-16 14-16 14-16 14-16 14-16 14-16 14-162x6 SP No.2 2x4 SP 2400F 2.0E "Except" 2-20:2x4 SP No.3 2x4 SP No.31) Unbalanced roof live loads have been considered for this design.1) Unbalanced roof live loads have been considered for this design.13) Graphical p or the orient bottom chor USAB 119mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and CC Exterior (2) 11-15, Exterior (2) 11-15, to 14-15, Interior (1) 14-15, Staretor (2) 11-15, Staretor (2) 11-15, for reactions shown; Lumber DOL=1.05 (Ps2.0.0 psf (roof live load: Lumber DOL=1.3313) Graphical p or the orient bottom chor LADZ CASE(S)2x6 SP No.3 2x4 SP No.311 Unbalanced sond live load: Lumber DOL=1.3313) Stracture (2) 11-15, Exterior (2) 11-15, for reactions shown; Lumber DOL=1.15; Ps2.0.0 psf (roof live load: Lumber DOL=1.15; Ps2.0.0 psf (roof live load: Lumber DOL=1.15; Ps2.0.0 psf (roof live load: Lumber DOL=1.15; Ps2.0.0 psf (root live load: 20.0psf or life rd, supported at two points, 5-0-0 apart. Provide adequate drai	(psf) 20.0 18.9/20.0 18.9/20.0 10.0Spacing Plate Grip DOL 1.15 Rep Stress Incr Code2-0-0 1.15 TC TC CodeCSI TC TC TC CodeDEFL TC 	(pst) Spacing 2-0-0 CSI D. DEFL in (loc) //deft L/d 18.9/20.0 Lumber DOL 1.15 EC 0.70 Vert(L1) -0.27 14-16 >-999 240 0.0 0.0 Code IRC2015/TPI2014 BC 0.65 Vert(L1) -0.61 14-16 -422 MT20 2x4 SP No.3 Code IRC2015/TPI2014 Minix-MSH Vert(L1) -0.61 14-16 -422 MY20 2x4 SP No.3 Vade 118mph; TCDL=6.0pst; BCDL=6.0pst; BCDL	(pst) Spacing 2-0-0 CSI 0.7 DEFL in (loc) Udet Lumber DoL 1.15 TC 0.7 DEFL in (loc) Udet Lumber DoL 1.15 TC 0.7 DEFL in (loc) Udet Lumber DoL 1.15 TC 0.7 DEFL in (loc) Udet Lumber DoL 1.15 TC 0.7 DEFL in (loc) Udet Lumber DoL 1.15 TC 0.7 DEFL in (loc) Udet DEFL in (loc) Udet DEFL in (loc) Udet DEFL in (loc) Udet Desc Desc <thdesc< th=""> Desc Desc</thdesc<>

February 13,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F11	Roof Special	1	1	Job Reference (optional)	150198567

Scale = 1:77.6 Plate Offsets (X, Y): [3:0-4-0,0-3-12], [9:0-5-14,Edge], [22:0-2-12,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.29	15-16	>980	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.65	15-16	>437	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 210 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10: Vult=150mpl	h (3-seo	cond aust)		LOAD	CASE(S)	Sta	ndard	
TOP CHORD	2x6 SP No.2		_/	Vasd=119mp	oh; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft	:			,		
BOT CHORD	2x4 SP 2400F 2.0E	*Except* 2-21:2x4 SF	5	Cat. II; Exp E	; Enclosed; MWFF	RS (env	elope) and C	-C					
	No.3			Exterior (2) 0	-1-12 to 2-10-7, Int	terior (1) 2-10-7 to						
WEBS	2x4 SP No.3			11-1-5, Exter	rior (2) 11-1-5 to 14	-1-5, In	terior (1) 14-	1-5					
BRACING				to 23-8-4 zor	23-8-4 zone; cantilever left and right exposed; end								
TOP CHORD	Structural wood she	athing directly applie	d or	vertical left a	nd right exposed;C	-C for n	nembers and						
	4-9-13 oc purlins, e	xcept end verticals, a	and	forces & MW	FRS for reactions	shown;	Lumber						
	2-0-0 oc purlins (6-0	-0 max.): 1-3.	0)	DOL=1.60 pl	ate grip DOL=1.33								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	3)	TCLL: ASCE	7-10; Pr=20.0 pst	(root liv	e load: Lumb	per					
	bracing, Except:			DOL=1.15 P	late DOL=1.15); Pg	j=20.0 p	ost (ground	15					
	6-0-0 oc bracing: 21	-22,20-21.		Plate DOI -1	15): Category II: F	vn B· F		10					
	6-0-0 oc bracing: 14	-19		Ct=1 10 Lu=	50-0-0	. лр. В, Т	ully Exp.,						
WEBS	1 Row at midpt	5-12	4)	Unbalanced	snow loads have b	een cor	sidered for th	his					
REACTIONS	(lb/size) 10=969/0-	-3-8, 23=1033/	.,	design.									
	Mechanic	al	5)	5) 200.0lb AC unit load placed on the bottom chord, 11-1-5									
	Max Horiz 23=-304 (LC 11)		from left end	5-0-0 apart.								
	Max Grav 10=1162	(LC 30), 23=1214 (LC	^{C 48)} 6)	Provide adeo	quate drainage to p	revent	water ponding	g.					
FORCES	(lb) - Maximum Com	pression/Maximum	7)	All plates are	2x4 MT20 unless	otherwi	se indicated.						
	Tension		8)	* This truss h	has been designed	for a liv	e load of 20.0	0psf					
TOP CHORD	1-23=-1132/80, 1-2=	-790/61, 2-3=-800/60	D,	on the bottor	n chord in all areas	where	a rectangle					minin	1111
	3-4=-15/8/36, 4-5=-	16/1/248, 5-6=-868/2	207,	3-06-00 tall b	y 2-00-00 wide wil	I fit betv	veen the botto	om				W'TH CA	Rolly
	6-8=-1651/231, 8-9=	-1585/112, 9-10=-74	0/74	chord and an	iy other members,	with BC	DL = 10.0psi	r.		~	1	RON	. Chill
BOLCHORD	22-23=-233/292, 21-	-22=-130/0, 40/70_17_20_0/01	9) 2 10	Refer to gird	er(s) for truss to tru	ISS CON	te grain valu				L',	O'. FEBS	IO: V
	2-22=-111/30, 20-21	=-40/70, 17-20=0/91 -0/012 11-12-0/121	∠, IC ∕I) Bearing at jo	Int(s) TO considers	formul	lo grain valu	ie			v		winn
	9-11=-116/1254 16-	-19=-59/0 15-16=-59	-, 1/0	designer sho	uld verify capacity	of bear	a. Building					:2	N 1 2
	14-15=-59/0	10-00/0, 10 10-00	"O, 11	I) One RT74 M	liTek connectors re	comme	ing surface.	hect		-		CEA	(<u> </u>
WEBS	1-22=-62/1325, 3-22	2=-991/15.		truss to bear	ing walls due to UF	PLIFT at	it(s) 10 This	3		-		JLA	- : :
	4-20=-424/253, 3-20	=-263/93, 20-22=0/1	411,	connection is	for uplift only and	does no	ot consider la	iteral		=		4584	4 : =
	6-12=-167/1330, 8-1	2=-531/445,		forces.						-			1 - E -
	8-11=-268/0, 5-14=-	361/168, 12-14=-468	8/81, 12	2) This truss is	designed in accord	lance w	ith the 2015					200 aug	1 1 2 3
	19-20=-170/670, 5-1	9=-92/862, 16-17=0/	95,	International	Residential Code s	sections	R502.11.1 a	and			- 1	1. SNOW	Ett. OS
	13-15=-105/22			R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.				11	ONIGIN	S.S.N
NOTES			13	Graphical pu	rlin representation	does no	ot depict the s	size				INTEW I	OHM
1) Unbalance	ed roof live loads have	been considered for		or the orienta	ation of the purlin a	long the	e top and/or					1111	unin the
this desig	n			bottom chord	1.								

February 13,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F12	Common	6	1	Job Reference (optional)	150198568

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:04 ID:YNfjjSkl2XyJgpSajZAUjVztJm1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-9-9

7-10-7

Scale = 1:64.5

Loading	(psf)	Spacing	2-0-0		CSI	0.06	DEFL	in 0.12	(loc)	l/defl	L/d	PLATES	GRIP
	20.0		1.15			0.90	Vert(LL)	-0.13	7-11	>999	240	101120	244/190
Show (Pt/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.61	vert(CT)	-0.26	7-11	>731	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.03	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 104 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	 4) * This trust has been designed on the bottom chord in all area 3-06-00 tall by 2-00-00 wide w chord and any other members 5) Refer to girder(s) for trust to tr 					ed for a liv as where will fit betv s, with BC truss conr	e load of 20. a rectangle veen the bott DL = 10.0ps nections.	0psf om f.					
TOP CHORD	Structural wood sheathing directly applied,		l, 6)	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 									

7-11-2

7-11-2

	except er		ais.		
BOT CHORD	Rigid ceil	ing direc	tly applie	d or 10-0-0	ос
	bracing.				
WEBS	1 Row at	midpt	2-8, 4-	8	
REACTIONS	(lb/size)	6=539/	Mechani	cal, 8=538/0)-3-8
	Max Horiz	8=-376	(LC 9)		

Max Uplift 6=-40 (LC 14), 8=-101 (LC 14) Max Grav 6=636 (LC 2), 8=673 (LC 26) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-310/329, 2-4=-295/220, 4-5=-749/243, 5-6=-411/118, 1-8=-292/270

BOT CHORD 7-8=-23/648. 5-7=-118/562 WFBS 2-8=-331/222, 4-8=-774/259, 4-7=0/276

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 7-6-9 to 10-6-9, Interior (1) 10-6-9 to 11-0-10, Exterior (2) 11-0-10 to 14-0-10, Interior (1) 14-0-10 to 23-5-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- 6
- 7) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MILLIN annun annun ann THILL WARMAN SEAL 45844 JOY minin February 13,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F13	Нір	1	1	Job Reference (optional)	150198569

1-4-14

1-4-14

, 10¹² 5x8= 4x5 🛷

2

2

σ

2-1 8

0-2-2 H

5-10-12

4-5-14

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:05 ID:cG3OsawiW8qBz65T6Dx?qfztJlo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-6-7

5-0-6

16-4-8

0-10-1

5x6= 3

10-6-0

4-7-4

Scale = 1:71.1	1-6-10 	5-9-0 4-2-6	<u>+ 15-6-7</u> 9-9-7	16-4-8 	
Plate Offsets (X, Y): [1:0-2-0,0-1-8], [2:0-2-4	,0-2-8], [5:0-5-6,Edge]				

Loading	(psf)	Spacing	2-0-0	CSI	0.91	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pa)	18.9/20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.00	7-12	>9999	180	101120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.04	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 132 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.3 *Excep	t* 2-3:2x4 SP No.2,	3) TCLL: ASCE DOL=1.15 P snow): Pf=1/	E 7-10; Pr=20.0 p late DOL=1.15); 8 9 psf (flat roof s	esf (roof liv Pg=20.0 p	ve load: Lumb psf (ground pber DOI =1	ber 15					

	0 0.2.00 01 110.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max): 2-3
BOT CHORD	Rigid ceiling directly applied or 8-9-10 oc bracing.
WEBS	1 Row at midpt 2-8, 1-9
REACTIONS	(lb/size) 6=558/0-3-8, 9=580/0-3-8
	Max Horiz 9=-332 (LC 9)
	Max Uplift 6=-47 (LC 14), 9=-93 (LC 9)
	Max Grav 6=647 (LC 2), 9=643 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-341/296, 2-3=-452/264, 3-4=-547/265, 4-5=-993/273, 5-6=-411/129, 1-9=-608/297
BOT CHORD	8-9=-420/433, 7-8=-319/375, 5-7=-202/593
WEBS	2-8=-676/424, 2-7=-255/570, 3-7=0/150,

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

4-7=-506/260, 1-8=-336/586

Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 9-1-2 to 19-1-1, Interior (1) 19-1-1 to 25-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10. Lu=50-0-0

- Provide adequate drainage to prevent water ponding. 4) 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearing at joint(s) 6 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) One RT7A MiTek connectors recommended to connect
- truss to bearing walls due to UPLIFT at jt(s) 9 and 6. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 8)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F14	Half Hip	1	1	Job Reference (optional)	150198570

Scale = 1:54.5

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:05 ID:uc_2Kz?5sljBJB7p0BZec8ztJlh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10∟

Page: 1

8-1-13		15-6-7	16-4-
8-1-13	I	7-4-10	0-10-

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.74 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 -0.22 0.06	(loc) 6-10 6-10 5	l/defl >999 >877 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (lb/size) 5=569/0-3 Max Horiz 7=-262 (L Max Uplift 5=-46 (LC Max Grav 5=656 (LC (lb) - Maximum Corr	t* 3-5:2x6 SP No.2 athing directly applie cept end verticals, ar -0 max.): 1-3. applied or 10-0-0 oc 3-8, 7=606/0-3-8 C 9) 2 14), 7=-122 (LC 9) C 26), 7=660 (LC 3) pression/Maximum	4) 5) d or nd 6) 7) 7) 8)	 * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/7 designer shot One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 au Graphical pu or the orient 	as been designed in chord in all areas by 2-00-00 wide wi by other members, int(s) 5 considers FPI 1 angle to grain uld verify capacity fiTek connectors n ing walls due to UI ion is for uplift only b designed in accorr Residential Code nd referenced star rlin representation ation of the purlin a	I for a liv s where II fit betw with BC parallel in formula of beari ecomme PLIFT at y and do dance w sections idard AN does no along the	e load of 20.0 a rectangle veen the bottu DL = 10.0psf o grain value a. Building ng surface. anded to conr jt(s) 7 and 5 es not conside ith the 2015 a R502.11.1 a ISI/TPI 1. ot depict the s to pand/or	Opsf om f. der and size					
TOP CHORD	Tension 1-7=-108/78, 1-2=-1 3-4=-818/209, 4-5=- 6-7=-71/373, 4-6=-2	39/143, 2-3=-541/26/ 417/130 03/582	6, Lo	bottom chord OAD CASE(S)	l. Standard								
 VVEBS NOTES 1) Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 Zone; cani and right e MWFRS fr grip DOL= 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10, L 3) Provide acc 	S-0=-111/186, 2-5=- CE 7-10; Vult=150mph Imph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) 0-1-12 to 3-1-12, Inte 2) 8-3-9 to 11-3-9, Inter tilever left and right exp exposed; C-C for memt exposed; C-C for memt or reactions shown; Lu =1.33 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg =18.9 psf (flat roof sno =1.15); Category II; E: _u=50-00 dequate drainage to pr	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-6 erior (1) 3-1-12 to 8-3 ior (1) 11-3-9 to 16-2 posed ; end vertical lu- pers and forces & imber DOL=1.60 plat roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; event water ponding.	-14 5-9, -12 eft er 5							Y Commence	A STATE OF THE STA	SEA 458	L EER. ONIN OHNSUIT

- grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- 3) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JOY munn February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	F15	Half Hip	1	1	Job Reference (optional)	150198571

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:06 ID:FZnxNg3EhqLUPy0mpk9pJBztJlc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G1	Common Supported Gable	1	1	Job Reference (optional)	150198572

Run: 8,53 E Jan 6 2022 Print: 8,530 E Jan 6 2022 MiTek Industries. Inc. Fri Feb 11 16:59:45 ID:Ywiar49d1_EVI126jinS5gztJIV-t?bJ9XTEPVnAWBNBJIjVqq?YHoAuJhQ7itj?qjzm8wS

Page: 1

			1			12-2-14				1			
Scale = 1:44.9										1			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.24 0.08 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 10-0-0 oc purlins, e Rigid ceiling directly bracing. All bearings 12-2-8. Max Horiz 16=198 (I Max Uplift All uplift 1 10, 11, 12 (LC 13) Max Grav All reactio (s) 10, 11	athing directly applic xcept end verticals. applied or 6-0-0 oc .C 12) 00 (lb) or less at joir 2, 14, 16 except 15= ns 250 (lb) or less a , 12, 13, 14, 15, 16	4) 5) ed or 6) 7) 8) 9) -103 tt joint	TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL= ² Ct=1.10 This truss ha load of 12.0 overhangs n All plates are braced again Gable studs * This truss I on the botton 3-06-00 tall I chord and an	7-10; Pr=20.0 p late DOL=1.15); 1 3.9 psf (flat roof s 1.15); Category II as been designed psf or 2.00 times on-concurrent wi e 2x4 MT20 unles ully sheathed froi nst lateral movem spaced at 2-0-0 nas been designe n chord in all are by 2-00-00 wide v ny other members	sf (roof liv Pg=20.0 p now: Lum ; Exp B; F I for great flat roof k th other lin ss otherwin m one fac enent (i.e. d oc. d for a liv as where will fit betw s.	e load: Lumb of (ground ber DOL=1.1 ully Exp.; er of min rool oad of 13.9 p re loads. se indicated. e or securely iagonal web) e load of 20.1 a rectangle reen the bott	ber 15 f live isf on /). Opsf om					
FORCES	(lb) - Max. Comp./M (lb) or less except w 4-5225/274_5-6	ax. Ten All forces hen shown. 225/273	250										
WEBS	5-13=-262/151	223/210											
NOTES												STATLE.	165
 Unbalanc this desig Wind: AS Vasd=111 Cat. II; Ex Corner (3 Corner (3 corne; can and right MWFRS 1 grip DOL= Truss des only. For see Stand 	ed roof live loads have n. CE 7-10; Vult=150mph 3mph; TCDL=6.0psf; Br φ B; Enclosed; MWFR b) -1-4-0 to 1-8-0, Exteri b) 6-1-10 to 9-1-10, Exteri titlever left and right exp exposed;C-C for memb for reactions shown; Lu =1.33 signed for wind loads in studs exposed to wind lard Industry Gable En- expolified building doai	been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- or (2) 1-8-0 to 6-1-1 prior (2) 9-1-10 to 13 bosed; end vertical pers and forces & mber DOL=1.60 pla the plane of the true (normal to the face) d Details as applical	r O, 7-4 left te ss), ole,								Liter Billing	SEA 4584	L HA HA HA HA HA HA HA HA HA HA HA HA HA

- ed; MWFRS (enve Corner (3) -1-4-0 to 1-8-0, Exterior (2) 1-8-0 to 6-1-10, Corner (3) 6-1-10 to 9-1-10, Exterior (2) 9-1-10 to 13-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

104

mmm February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G2	Common	6	1	Job Reference (optional)	150198573

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:06 ID:R2bDXVES4KRswjMDQutKCRztJk6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.2

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading (pst) Spacing 2-0-0 CSI UP DEFL in (loc) Ide Chr Defl Line PLATES GRIP Now (PP/Pg) 13.920.0 0.00 Rep Stress Incr YES 0.02 Vert(CT) 0.00 7 >999 240 MT20 24/1190 CDL 0.00 Code IRC2015/TPI2014 Matrix-MSH 0.00 Horz(CT) 0.01 6 n/a n/a CDL 0.00 2x4 SP No.2 Vert(CT) 0.01 6 n/a n/a N FT = 20% LUMBER 10.00 Structural wood sheathing directly applied or 10x-00 oc FT = 102/40 This truss has been designed for a live load of 2.00, pst on overhangs non-concurrent with other live loads No-00 all by 20.00 all dire directs No-00 all by 20.00 all dire diret													-		
 LUMBER TOP CHORD 2x4 SP No.2 AY SP No.2 CHORD 2x4 SP No.2 AY SP No.3 This truss has been designed for greater of min roof live lead of 12.0 p5 or 2.00 times fit aroo load of 13.9 ps on overhangs non-concurrent with other live leads. This truss has been designed for a live load of 20.0 psrf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will the thewene the bottom chord and any other members. One RT7A MTek connectors recommended to connect truss to bearing walls due to UPLIFT at J(s) 8 and 6. This connection is for uplift only and does not consider lateral forces. One RT7A MTek connectors recommended to connect truss to bearing walls due to UPLIFT at J(s) 8 and 6. This connection is for uplift only and does not consider lateral forces. This truss has been designed for a contraction is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.01.2.2 and referenced standard ANS//TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design. Wirts ASCE 7-10; Vult=150mph (3-second gust) Vasde 113mph; TCDL=-0.0 ptietin (1) 1-8-10 to 13-74 zone; cantiluever left and right exposed; or divertional left and right exposed; C- for members and forces 8 MWFRS for reactions shown; Lumber DOL=1.80 plate grip DOL=1.33 	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.23 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.03 0.01	(loc) 7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%	
3) TCLL: ASCE 7-10; Pr=20.0 psf (root live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15): Category II: Exp B: Evily Exp :	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=119r Cat. II; Exç Exterior (2) Exterior (3) Exterior (3	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 6=477/0-3 Max Horiz 8=198 (LC Max Uplift 6=-59 (LC Max Uplift 6=-59 (LC (lb) - Maximum Com Tension 1-2=0/71, 2-3=-464// 4-5=0/73, 2-8=-516// 7-8=-230/385, 6-7=- 3-7=0/167, 4-7=-112 ad roof live loads have b C 7-10; Vult=150mph mph; TCDL=6.0psf; BC D B; Enclosed; MWFR3 D B; Enclosed; MWFR3 D B; Enclosed; MWFR4 D B; Enclosed; MWFR3 D B; E	athing directly applie cept end verticals. applied or 10-0-0 oc 1-8, 8=475/0-3-8 2 12) 14), 8=-58 (LC 13) 2), 8=566 (LC 2) pression/Maximum 161, 3-4=-463/161, 271, 4-6=-518/273 125/373 //243, 2-7=-128/251 been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C-1 or (1) 1-8-0 to 6-1-11 prior (1) 9-1-10 to 13 bosed ; end vertical I ers and forces & mber DOL=1.60 plat roof live load: Lumber 20.0 psf (ground v: Lumber DOL=1.15 roof live load: Lumber 20.0 psf (ground	4) 5) d or 5) 7) LC 0, -7-4 eft se 5	This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall t chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 a	is been designed for psf or 2.00 times fits on-concurrent with has been designed in chord in all areas by 2-00-00 wide will y other members. ItTek connectors re ing walls due to UP ion is for uplift only designed in accord Residential Code s and referenced stand Standard	or greate at roof le other lin for a liv where fit betv comme 'LIFT at and do ance w sections dard AN	er of min roof aad of 13.9 p ve loads. e load of 20.0 a rectangle veen the botti nded to conr jt(s) 8 and 6 es not consid ith the 2015 R502.11.1 a (SI/TPI 1.	f live sf on Opsf om hect der and			CO.	SEA 4584	ROUN L H4	And

- D, Interior (1) Exterior (2) 6-1-10 to 9-1-10, Interior (1) 9-1-10 to 13-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3)
- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

104

minin February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G3	Common Girder	1	2	Job Reference (optional)	150198574

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:07 ID:5drBcQaeFE5IvA3odUu7tYztJjf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.6

Plate Offsets (X,	Y):	[9:0-3-8,0-3-0]
-------------------	-----	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.87 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 166 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (Ib/size) 6=3455/0- Max Horiz 10=166 (L Max Grav 6=3745 (L (Ib) - Maximum Com Tension 1-2=-3394/0, 2-3=-21 4-5=-3277/0, 1-10=-2 9-10=-59/417, 8-9=0 6-7=0/165 1-9=0/2369, 5-7=0/2 2-8=-1028/0, 3-8=0/2 4-7=0/957	athing directly applied cept end verticals. applied or 10-0-0 oc -3-8, 10=3133/0-3-8 .C 6) .C 20), 10=3365 (LC pression/Maximum 553/0, 3-4=-2555/0, 2897/0, 5-6=-3571/0 //2638, 7-8=0/2484, 425, 2-9=0/1169, 3029, 4-8=-866/0,	4) d or 5) 6) 20) 7) 8) 9)	Wind: ASCE Vasd=119mp Cat. II; Exp B left and right exposed; Lur TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the bottom 3-06-00 tall b chord and an One RT7A M truss to bear This connect lateral forcess This truss is o International R802.10.2 ar Hanger(s) or	7-10; Vult=150mph h; TCDL=6.0psf; B ; Enclosed; MWFR exposed ; end vert nber DOL=1.60 pla 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E as been designed in chord in all areas y 2-00-00 wide will y other members. iTek connectors re ng walls due to UP ton is for uplift only designed in accord Residential Code s d referenced stanc other connection d	n (3-sec CDL=6 S (env. ical left tte grip (roof liv =20.0 p w: Lum xp B; F for a liv where fit betw comme LIFT at and do ance w ections dard AN evice(s	cond gust) .0psf; h=25fi elope); cantil and right DOL=1.33 e load: Lumb osf (ground iber DOL=1. iully Exp.; e load of 20. a rectangle veen the bott .000 million of the consi ith the 2015 .000 million for the consi ith the 2015 .000 million of the consi .000 million of the c	t; lever ber 15 0psf tom nect 6. der and					1117
NOTES			-,	provided sufficient to support concentrated load(s) 1206								Dalli	
 NOTES 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-3-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 				Ib down at 1 down at 5-9- Ib down at 9 selection of s responsibility DAD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-3 Concentrate Vert: 5=-{ 12=-1041	-10-8, 1193 lb down 12, and 1048 lb do -9-12 on bottom ch uch connection der of others. Standard w (balanced): Lum 15 ads (lb/ft) =-48, 3-5=-48, 6-10 ad Loads (lb) 884 (F), 8=-1031 (F (F), 13=-967 (F), 1	n at 3- wn at 5 ord. Th vice(s) ber Inc =-20 5), 11=- 14=-908	10-8, 1078 lb 7-9-12, and 7 ne design/ is the rease=1.15, 1148 (F), 3 (F)) 1056 Plate		Continue		SEA 4584	4 HANSING AND

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G4	Common Supported Gable	1	1	Job Reference (optional)	150198575

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:07 ID:s9KCI9gfMi6csOhK5A1?CEztJjX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-4-8

Scolo	_	1.40 7	
SUGIE	_	1.43./	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.12 0.39	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 8=72/12- 10=138/1 14=72/12 Max Horiz 14=-202 Max Uplift 8=-105 (L 10=-79 (L 13=-152 Max Grav 8=168 (L 10=178 (L 12=177 (L) 14=175 (L)	eathing directly applie cept end verticals. / applied or 10-0-0 oc 4-8, 9=145/12-4-8, 2-4-8, 11=108/12-4-8 2-4-8, 13=145/12-4-8 (2) d or 3) 3, 4), 3), 9) 5), 6) 4), 7) 24), 7)	Wind: ASCE Vasd=119mp Cat. II; Exp E Corner (3) 0- Corner (3) 6- zone; cantile and right exp MWFRS for 1 grip DOL=1.1. Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 All plates are Gable require Truss to be f braced again	7-10; Vult=150m sh; TCDL=6.0psf 3; Enclosed; MW/ 1-12 to 3-1-12, E 2-4 to 9-2-4, Ext vore left and right tosed;C-C for me reactions shown; 33 need for wind load dids exposed to w d Industry Gable alified building d (7-10; Pr=20.0 p late DOL=1.15); 3.9 psf (flat roof s .15); Category II = 2x4 MT20 unless es continuous bo ully sheathed from st lateral movem	nph (3-sec ; BCDL== FRS (env Exterior (2) 9 exposed ambers ar Lumber I is in the p ind (norm End Deta esigner a: sf (roof liv Pg=20.0 p now: Lum ; Exp B; F ss otherwit totom chor m one fac enert (i.e. c	cond gust) 5.0psf; h=25ft; elope) and C-) 3-1-12 to 6-7 -2-4 to 12-2-1 ; end vertical and forces & DOL=1.60 pla lane of the tru, al to the face, ils as applicat s per ANSI/TF re load: Lumb basf (ground aber DOL=1.1 fully Exp.; se indicated. rd bearing. se or securely liagonal web).	C 2-4, 2 left te sss), ple, 211. er 5					
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-14=-129/90, 1-2=-	npression/Maximum	9) 16,	* This truss h on the bottor 3-06-00 tall b	nas been designe n chord in all are by 2-00-00 wide v	ed for a liv as where will fit betw	e load of 20.0 a rectangle veen the botto)psf om		~		HTH CA	ROLIN
BOT CHORD	6-7=-141/126, 7-8= 13-14=-101/108, 12 11-12=-101/108, 10 9-10=-101/108, 8-9	-239/349, 5-6=-191/2 -123/83 -13=-101/108, -11=-101/108, =-101/108	10,	chord and ar	iy other members	S.				U	in.	SEA	Wijka ja
WEBS	4-11=-399/278, 3-12 2-13=-247/223, 5-10	2=-197/165, D=-197/165, 6-9=-246	6/222									4584	4
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									A. A.	NOREW W	EEP. ONIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fold February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G5	Common	2	1	Job Reference (optional)	150198576

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:08 ID:Gk?LwBjYfdUBjsPvmlbiptztJjU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.2

Plate Offsets (X, Y): [1:0-3-4,0-1-8], [3:0-3-4,0-1-8]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.23 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.03 0.00	(loc) 5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 4-409(0-3	athing directly applic cept end verticals. applied or 10-0-0 or 3-8 6-409/0-3-8	4) 5) ed or c 6)	* This truss I on the botton 3-06-00 tall I chord and an One RT7A N truss to bear This connec lateral forces This truss is International	has been designed in chord in all area by 2-00-00 wide wi hy other members. diTek connectors r ing walls due to U tion is for uplift onl s. designed in accorr Residential Code	I for a liv s where II fit betv ecomme PLIFT at y and do dance w sections	e load of 20. a rectangle veen the bott inded to conr jt(s) 6 and 4 es not consid ith the 2015 R502.11.1 a	Opsf om nect der					
	Max Horiz 6=-202 (L Max Uplift 4=-37 (LC Max Grav 4=483 (LC	C 11) C 13), 6=-37 (LC 14) C 2), 6=483 (LC 2)	L	R802.10.2 a DAD CASE(S)	nd referenced star Standard	idard AN	ISI/TPI 1.						
ORCES	Tension	pression/maximum											
TOP CHORD	1-2=-453/170, 2-3=- 3-4=-443/184	453/170, 1-6=-442/1	184,										
3OT CHORD VEBS	5-6=-244/300, 4-5=- 2-5=0/152, 1-5=-93/2	134/207 214, 3-5=-96/218											
NOTES													
) Unbalance this design ?) Wind: ASG Vasd=119 Cat. II; Ex Exterior (2 Exterior (2) 	ed roof live loads have n. CE 7-10; Vult=150mph)mph; TCDL=6.0psf; B p; B; Enclosed; MWFR 2) 0-1-12 to 3-1-12, Inter 0 6-2-4 to 9-2-4. Interio	been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- erior (1) 3-1-12 to 6-: r(1) 9-2-4 to 12-2-1	r C 2-4,							0	L'I'	ORTH CA	ROLING

- Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-2-4, Exterior (2) 6-2-4 to 9-2-4, Interior (1) 9-2-4 to 12-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 5) TCLL: ASCE 7-10; PT=20.0 psf (root live load: Lumbel DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

SEAL 45844 WGINEEFR SOTUL February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	G6	Common Girder	1	2	Job Reference (optional)	150198577

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:09 ID:9VFsmYm2jr_dCTjg?8fe_jztJjQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-3-4	6-2-4	9-1-4	12-4-8
3-3-4	2-11-0	2-11-0	3-3-4

Scolo	- 1.54 1	
Scale	= 1:54.1	

Loa TCL Sno TCC BCL BCC	ding .L (roof) w (Pf/Pg) DL L DL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.52 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 187 lb	GRIP 244/190 FT = 20%	
LUN TOF BOT WEI BRA TOF BOT REA FOF TOF BOT WEI 1)	ACTIONS CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD S CHORD CHORD S CHORD S CHORD S CHORD CHORD S CHORD CHORD S CHORD CHORD S CHORD CHORD S CHORD CHORD CHORD S CHORD CHOR	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 6=2121/0- Max Horiz 10=-202 (I Max Upliff 6=-204 (Li Max Grav 6=2516 (L (lb) - Maximum Com Tension 1-2=-1970/201, 2-3= 3-4=-1504/230, 4-5= 1-10=-1878/173, 5-6 9-10=-202/274, 8-9= 7-8=-87/1345, 6-7=-3 2-8=-616/166, 3-8=-2 4-7=-53/653 to be connected toget) nails as follows: s connected as follows: ords connected as follows ords connected as follows ected as follows: 2x4 - re considered equally oted as front (F) or bad	athing directly applied cept end verticals. applied or 10-0-0 oc 3-8, 10=1816/0-3-8 LC 5) C 9), 10=-177 (LC 10 C 2), 10=2154 (LC 2 pression/Maximum -1505/230, -1972/200, =-1873/172 -180/1402, 30/157 81/1263, 2-9=-52/645 250/1859, 4-8=-619/1 her with 10d : 2x4 - 1 row at 0-9-0 cows: 2x4 - 1 row at 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LO/ ections have been	4) d or 5))))) 7) 7) 8) 8) 9, 9) 165, 9) 165, 9) 11) AD	Wind: ASCE Vasd=119mp Cat. II; Exp B left and right ryposed; Lur TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the botton 3-06-00 tall b chord and an One RT7A M truss to beari This connect lateral forces This truss is International R802.10.2 ar Hanger(s) or provided suff lb down and 52 up at 9-94, , bottom chord device(s) is ti DAD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-3: Concentrate	7-10; Vult=150mp h; TCDL=6.0psf; E ; Enclosed; MWFF exposed ; end veri mber DOL=1.60 pla 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snd .15); Category II; E as been designed n chord in all areas y 2-00-00 wide wil y other members. iTek connectors re ng walls due to UF ion is for uplift only designed in accord Residential Codes and referenced stan other connection of icient to support or 52 lb up at 1-9-4, an and 622 lb down and 52 lb lb up at 7-9-4, an and 622 lb down a . The design/sele- he responsibility of Standard w (balanced): Lurr 15 ads (lb/ft) =-48, 3-5=-48, 6-10 ad cate the top the top the top the top the top the top the top the top the top the top the t	h (3-sec BCDL=6 RS (envi- tical left ate grip (roof liv =20.0 p =20.0	cond gust) .0psf; h=25ft elope); cantil and right DOL=1.33 e load: Lumb bsf (ground iber DOL=1.1 iully Exp.; e load of 20.1 a rectangle ween the bott ended to comr i jt(s) 10 and tes not consid ith the 2015 is R502.11.1 a ISI/TPI 1. i) shall be ated load(s) 6 lown and 52 i) Shall be to down and 52 i) shall be to down and 52 i) shall be to down and 52 i) up at 11-9- such connec	; ever 15 Opsf om ect 6. der and 16 b up 2 lb 4 on tion Plate				SEA 4584	ROLINE A	
3)	provided to unless oth Unbalance this design	o distribute only loads erwise indicated. ed roof live loads have n.	noted as (F) or (B), been considered for		Vert: 11= 14=-519	-519 (B), 12=-519 (B), 15=-519 (B), 1	(B), 13= 6=-524	=-519 (B), (B)				111	DREW J	OHNSUI	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	H1	Common Supported Gable	1	1	Job Reference (optional)	150198578

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:09 ID: IT daG98VQNuDQEaeK8 jwkFztJix-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

12-7-0

Coolo		1.51	E
Scale	=	i.:) i	.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T 2) V	PI2014 Wind: ASCE /asd=119mp Cat. II; Exp B	CSI TC BC WB Matrix-MR 7-10; Vult=150m h; TCDL=6.0psf; i; Enclosed; MWF	0.27 0.14 0.50 ph (3-sec ; BCDL=6 FRS (env(DEFL Vert(LL) Vert(CT) Horz(CT) ond gust) .0psf; h=25ft; elope) and C-	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	athing directly applied cept end verticals. applied or 6-0-0 oc	dor M	Corner (3) 6- Corner (3) 6- cone; cantilevent and right exp MWFRS for r grip DOL=1.3	33 3-8 to 9-3-8, Extend ver left and right osed;C-C for me reactions shown; 33	erior (2) 9 exposed (mbers an Lumber [-3-8 to 13-11- end vertical d forces & DOL=1.60 pla	-6, -4 left ite					
REACTIONS	bracing. (lb/size) 10=146/1 12=143/1 14=143/1 16=146/1 Max Horiz 16=-252 (Max Uplift 10=-138 (12=-78 (L 15=-158 (Max Grav 10=228 (L 12=180 (L 14=179 (L 16=236 (l	2-7-0, 11=128/12-7-0 2-7-0, 13=143/12-7-0 2-7-0, 15=128/12-7-0 2-7-0 LC 11) LC 10), 11=-153 (LC C 14), 14=-77 (LC 13 LC 10), 16=-148 (LC LC 25), 11=256 (LC 2 C 26), 13=297 (LC 1 C 25), 15=260 (LC 2 C 26)	9), C 9), C 9), C 9), C 9), C 9), C 9), C 9), C 9) C 10,	only. For stu see Standarc or consult qu rCLL: ASCE DOL=1.15 PI Plate DOL=1 Ct=1.10 This truss ha oad of 12.0 p overhangs no All plates are	ds exposed to wird loads ds exposed to wird alified building de 7-10; Pr=20.0 p ate DOL=1.15); F .9 ps (flat roof si .15); Category II; s been designed bsf or 2.00 times pn-concurrent wit 2x4 MT20 unles	for greate flat roof liv so for greate for greate flat roof liv so ther liv so ther wi	alto the face) ils as applicat s per ANSI/TF e load: Lumb ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 ps ve loads. se indicated.), ble, Pl 1. er 5 live sf on					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) (8) T b	Jable require Truss to be fu praced again	es continuous boi ully sheathed fror st lateral movem	ttom chor n one fac ent (i.e. d	d bearing. e or securely iagonal web).				. (TH CA	Rout
TOP CHORD	2-16=-187/244, 1-2= 3-4=-195/273, 4-5=- 6-7=-194/275, 7-8=- 8-10=-180/242	=0/80, 2-3=-148/168, 304/408, 5-6=-304/40 137/158, 8-9=0/80,	9) 0)7, 10) * 0	Gable studs s This truss h on the bottom	spaced at 2-0-0 c as been designe n chord in all area ov 2-00-00 wide w	oc. d for a liv as where vill fit betw	e load of 20.0 a rectangle)psf		C	k.	2 ADE S	bistain
BOT CHORD	15-16=-129/126, 14- 13-14=-129/126, 12- 11-12=-129/126, 10-	-15=-129/126, -13=-129/126, -11=-129/126	c	chord and an	y other members	S.	veen me bout	5111				SEA	
WEBS	5-13=-480/284, 4-14 3-15=-239/202, 6-12 7-11=-241/202	l=-196/173, 2=-196/173,								LI IV		4584	4
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										REW J	OHNGUIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	H2	Common	3	1	Job Reference (optional)	150198579

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:10 ID:5RQTJsCeEvWWW?Tb6iJ5RJztJis-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52.5

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.90 0.23 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.03 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORD 30T CHORD WEBS BRACING FOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (lb/size) 5=412/0-3 Max Horiz 7=239 (LC Max Uplift 5=-39 (LC Max Grav 5=486 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 8-8, 7=492/0-3-8 C 10) 1 13, 7=-50 (LC 13) C 2), 7=587 (LC 2)	4) 5) ed or 6) 7)	This truss ha load of 12.0 j overhangs n * This truss h on the bottor 3-06-00 tall k chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 at	is been designed for psf or 2.00 times fla on-concurrent with has been designed for n chord in all areas by 2-00-00 wide will ny other members. ITEk connectors re- ing walls due to UP ion is for uplift only designed in accord: Residential Code s de referenced stance	r great t roof k other liv for a liv where fit betv comme LIFT at and do ance w ections dard AN	er of min roof bad of 13.9 p re loads. e load of 20.1 a rectangle reen the bott nded to conr jt(s) 7 and 5 es not consid ith the 2015 R502.11.1 a [S]/TPI 1.	f live sf on Opsf om nect der					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	LO	AD CASE(S)	Standard								
FOP CHORD	1-2=0/80, 2-3=-456/ 2-7=-533/278, 4-5=-4	183, 3-4=-446/173, 448/187											
3OT CHORD WEBS	6-7=-295/333, 5-6=- 3-6=0/167, 2-6=-139	127/192)/263. 4-6=-88/214											
OTES	,	,											
) Unbalance this design ?) Wind: AS(Vasd=119 Cat. II; Ex	ed roof live loads have n. CE 7-10; Vult=150mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFR;	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-	c							\mathcal{O}		OP FESS	ROLIN

- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
 Exterior (2) -1-4-4 to 1-7-12, Interior (1) 1-7-12 to 6-3-8,
 Exterior (2) 6-3-8 to 9-3-8, Interior (1) 9-3-8 to 12-5-4
 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces &
 MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load; Lumber)
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

SEAL 45844 WGINEERSOT

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	НЗ	Common Girder	1	2	Job Reference (optional)	150198580

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:10 ID:sERwZPVJLbgz0rtP4SFyyaztJiT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

T	3-3-14	6-3-8	9-3-2 9-3-2 1	12-7-0
	3-3-14	2-11-10	1-8-0 1-3-10	3-3-14

Scale = 1:55.5

Plate Offsets	(X, Y): [8:0-3-8,0-3-12]], [9:0-3-4,0-4-8], [10	:0-5-0,0-4	-12], [11:0-3-8,	0-4-4]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.43 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep 10-3:2x4 SP 2400F 2	t* 12-1,7-6:2x6 SP N 2.0E	3) 4) lo.2,	Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E left and right	roof live loads hav 7-10; Vult=150mp bh; TCDL=6.0psf; 3; Enclosed; MWF exposed ; end ve	ve been oh (3-seo BCDL=6 RS (env rtical left	considered fo cond gust) 6.0psf; h=25ft elope); cantile and right	or ; ever	Co	Vert: 1-3 oncentra Vert: 10 14=-204	3=-48, ted Lo =-213 I2 (B),	3-6=-48, 7-12=-2 ads (lb) 1 (B), 9=-5230 (B 15=-775 (B), 16=	0), 13=-1615 (B), 779 (B)	
TOP CHORD	Structural wood shea 4-8-10 oc purlins, ex Rigid ceiling directly	athing directly applie xcept end verticals. applied or 10-0-0 oc	d or 5)	exposed; Lui TCLL: ASCE DOL=1.15 Pl spow): Pf=13	mber DOL=1.60 p 7-10; Pr=20.0 ps late DOL=1.15); P 9 psf (flat roof sn	late grip f (roof liv g=20.0 p	DOL=1.33 ve load: Lumb osf (ground ober DOI =1.1	er						
REACTIONS	bracing. (lb/size) 7=7072/0- Max Horiz 12=210 (L Max Grav 7=7693 (L	.3-8, 12=6321/0-3-8 .C 6) .C 21), 12=6507 (LC	4) 6)	Plate DOL=1 Ct=1.10 * This truss h	.15); Category II; has been designed	Exp B; F	ully Exp.; re load of 20.0	Opsf						
FORCES	(lb) - Maximum Com Tension 1-2=-5936/0, 2-3=-53 4-5=-6453/0, 5-6=-69	pression/Maximum 388/0, 3-4=-5304/0, 594/0, 1-12=-5847/0	, 7)	3-06-00 tall to chord and an One RT7A M truss to bear	by 2-00-00 wide w by other members. IITek connectors r ing walls due to U	ecomme PLIFT at	ended to conr t jt(s) 12 and	om nect 7.						
BOT CHORD WEBS	6-7=-6503/0 11-12=-195/507, 10- 8-9=0/4620, 7-8=0/3 1-11=0/4114, 6-8=0/ 2-10=-676/0, 3-10=0 5-8=0/191, 4-9=-223	11=0/4223, 9-10=0/- 88 4594, 2-11=0/885, /7308, 4-10=-2793/2 /3532, 5-9=-283/32	4572, 8) 244, 9)	This connect lateral forces This truss is International R802.10.2 ar Use MiTek T	ion is for uplift onl designed in accor Residential Code nd referenced star HD26 (With 18-16	y and do dance w sections ndard AN 6d nails i	ith the 2015 R502.11.1 a NSI/TPI 1. nto Girder &	and				TH CA	Route	
NOTES 1) 2-ply trus (0.131"x3 Top chorn oc, 2x6 - Bottom cl staggerei Web con 2) All loads except if CASE(S) provided unless cf	s to be connected toget ") nails as follows: ds connected as follows 2 rows staggered at 0-9 hords connected as follo d at 0-2-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or bac section. Ply to ply conn to distribute only loads i benuise indicated	ther with 10d :: 2x4 - 1 row at 0-9-1 -0 oc. :ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO iections have been noted as (F) or (B),	0 10 11 AD LC 1)	12-10d x 1-1. 3-10-8 oc ma 9-11-4 to cor) Fill all nail hoc) Hanger(s) or provided suff lb down and 11-11-4 on b connection d DAD CASE(S) Dead + Sno locrease-1	/2 nails into Truss ax. starting at 2-0- nect truss(es) to l other connection icient to support of 199 lb up at 7-11 ottom chord. The evice(s) is the res Standard bw (balanced): Lut 15) or equi 12 from back fac is in cor device(s oncentra -4, and § design/ ponsibili	valent space the left end to e of bottom c htact with lum s) shall be ated load(s) 5 263 lb down a selection of s ty of others. rease=1.15, l	d at bord. ber. 716 at uch Plate		Contraction of the second seco	Kee State	SEA 4584 VORENJ	L H4 OHNSOT	1

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	HJ1	Roof Special Girder	1	1	Job Reference (optional)	150198581

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:11 ID:zH1nyiKR4Ymp0XsVl39hLUztL1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.3

Plate Offsets (X, Y): [2:0-2-0,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TP 5) Re 6) Pro be joir 7) Or	PI2014 efer to girde ovide mecl aring plate nt 5. ne RT7A M	CSI TC BC WB Matrix-MSH er(s) for truss to tru- hanical connection a capable of withsta liTek connectors re	0.57 0.24 0.35 Iss conr (by oth anding 4	DEFL Vert(LL) Vert(CT) Horz(CT) Horz(CT) eections. ers) of truss t 12 lb uplift at nded to conr	in 0.03 -0.04 0.00	(loc) 6-7 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
REACTIONS	Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing. (Ib/size) 5=355/ Me Max Horiz 7=309 (LC Max Uplift 5=-412 (Li Max Grav 5=609 (LC (Ib) - Maximum Com	athing directly applie cept end verticals. applied or 6-0-0 oc echanical, 7=428/0-4 C 6) C 6), 7=-271 (LC 5) C 21), 7=647 (LC 22) pression/Maximum	d or tru con for 8) Th I-9 R8 9) "N. NE 10) In	iss to beari nnection is rces. his truss is of ternational 302.10.2 ar AILED" inc DS guidline the LOAD	ing walls due to UF s for uplift only and designed in accord Residential Code s nd referenced stan dicates 2-12d (0.14 s. CASE(S) section,	PLIFT at does no lance w sections dard AN 8"x3.25 loads al	jt(s) 7. This ot consider la th the 2015 R502.11.1 a ISI/TPI 1. ") toe-nails p opplied to the f	teral and er face						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119r Cat. II; Exp left and rig exposed; L 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL: Ct=1.10 3) This truss load of 12. overhangs 4) * This truss on the bott 3-06-00 tal chord and	(ii) - Maximum Com Tension 1-2=0/94, 2-3=-577/3 4-5=-191/148, 2-7=-3 6-7=-301/202, 5-6=-3 2-6=-264/463, 3-5=-3 2=6=-264/463, 3-5=-3 2=7-10; Vult=150mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFR; ht exposed; end vertic umber DOL=1.60 plat DC=7-10; Pr=20.0 psf (Plate DOL=1.60 plat DC=7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 13.9 psf (flat roof snow =1.15); Category II; E) has been designed for 0 psf or 2.00 times flat non-concurrent with c is has been designed for tom chord in all areas is II by 2-00-00 wide will any other members.	320, 3-4=-241/173, 592/246 323/393 501/372, 3-6=-104/1 (3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantile cal left and right e grip DOL=1.33 roof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; c greater of min roof I roof load of 13.9 ps ther live loads. pr a live load of 20.0 where a rectangle fit between the botto	of LOAD 1) D Ir 80 C ver er 5 ive f on psf m	the truss a CASE(S) Dead + Sno norcease=1. Jniform Loa Vert: 1-2= Concentrate Vert: 6=-3 12=-1 (B)	Ire noted as front (I Standard ww (balanced): Lum .15 ads (Ib/ft) =-48, 2-4=-48, 5-7= ed Loads (Ib) 3 (B), 8=33 (B), 10), 14=-17 (F), 15=-	-) or ba iber Inc 20 =-28 (F) 19 (B)	ck (B). rease=1.15, I , 11=-33 (B),	Plate			A LE	SEA 4584	ROLINA L 4 EFR. ON DHNS 13,2022	and an an an an an

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	HJ2	Diagonal Hip Girder	1	1	Job Reference (optional)	150198582

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:12 ID:zH1nyiKR4Ymp0XsVl39hLUztL1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.5

Plate Offsets (X, Y): [7:0-3-0,0-3-8], [8:0-3-0,0-3-8]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014 4) * This truss f	CSI TC BC WB Matrix-MSH	0.57 0.22 0.29 for a liv	DEFL Vert(LL) Vert(CT) Horz(CT) e load of 20.	in 0.02 -0.02 -0.01 0psf	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (Ib/size) 6=410/ Ma Max Horiz 9=283 (LC Max Uplift 6=-401 (L	athing directly applie cept end verticals. applied or 10-0-0 oc echanical, 9=453/0-4 C 6), 9=-260 (LC 5)	ed or 9 	 on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 6. One RT7A M truss to bear connection is forces. This truss is 	n chord in all areas by 2-00-00 wide wil hy other members. er(s) for truss to tru hanical connection e capable of withsta fiTek connectors re ing walls due to UF s for uplift only and designed in accord	where I fit betw ss conr (by oth anding 4 ecomme PLIFT at does no lance w	a rectangle veen the bott nections. ers) of truss 01 lb uplift a nded to com jt(s) 9. This ot consider la ith the 2015	to to t nect ateral					
FORCES	Max Grav 6=659 (LC (lb) - Maximum Com Tension 2-9=-250/115, 1-2=0) (International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.										
BOT CHORD WEBS	8-9=-319/364, 7-8=- 3-9=-614/320, 3-8=- 4-7=-249/340, 4-6=-	368/433, 6-7=-385/5 149/149, 3-7=-98/22 636/422	33 10, I	 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate 								Un.	
 Wind: ASt Vasd=119 Cat. II; Ex left and rig exposed; TCLL: AS DOL=1.15 snow); Pfr Plate DOI Ct=1.10 This truss load of 12 overhang; 	CE 7-10; Vult=150mph pmph; TCDL=6.0psf; B(p B; Enclosed; MWFR; ght exposed; end vertic Lumber DOL=1.60 plat CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov _=1.15); Category II; E> has been designed for .0 psf or 2.00 times flat s non-concurrent with c	(3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantile cal left and right te grip DOL=1.33 roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1{ xp B; Fully Exp.; r greater of min roof I t roof load of 13.9 ps ther live loads.	ever er 5 live if on	Uniform Lo Vert: 1-2 Concentrat Vert: 7=- 14=-1 (F	ads (lb/ft) =-48, 2-5=-48, 8-9= ed Loads (lb) 23 (F), 3=33 (F), 1(), 15=0 (B), 17=-94	=-20, 7-i D=-2 (B) . (F)	3=-20, 6-7=-2 , 12=-60 (B),	20				SEA 4584	L DHNSUIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

.10 minim February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	HJ3	Diagonal Hip Girder	2	1	Job Reference (optional)	150198583

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:12 ID:toXejO?n1?Hjr_SCXwnYXRztK0U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.9

Plate Offsets (X, Y): [2:0-2-2,0-1-4]

		(psf)	Spacing	2-0-0		CSI	0.20	DEFL	in	(loc)	l/defl	L/d		GRIP
Spow (Pf/Pg)	12	20.0		1.15			0.59	Vert(LL)	0.03	6.0	>999	190	IVI 1 20	244/190
TCDI	13.	9/20.0	Ron Stross Incr	1.15 NO			0.52		-0.11	6-9	>012	100 n/o		
		0.0*	Codo	IRC201		Notrix MD	0.25	11012(01)	0.01	0	n/a	n/a		
		10.0	Code	IRCZUI	0/1712014	IVIAUIX-IVIP							Waight: 12 lb	ET - 200/
BCDL		10.0											Weight. 42 lb	FT = 2076
LUMBER				5)	* This truss h	nas been designed	l for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP No.	.2			on the bottor	n chord in all area	s where	a rectangle						
BOT CHORD	2x4 SP No.	.2			3-06-00 tall b	y 2-00-00 wide wi	ill fit betv	een the bott	om					
WEBS	2x4 SP No.	.3			chord and ar	y other members.								
SLIDER	Left 2x4 SF	P No.3 2	2-6-0	6)	Refer to gird	er(s) for truss to tr	uss conr	ections.						
BRACING				7)	Provide mec	hanical connection	ו (by oth	ers) of truss t	0					
TOP CHORD	Structural w	wood shea	athing directly applie	d or	bearing plate	capable of withst	anding 5	2 lb uplift at j	oint					
	6-0-0 oc pi	urlins, exe	cept end verticals.	•	6. 0 DTT 1	·								
BOT CHORD	Rigid ceilin	g directly	applied or 10-0-0 oc	8)	One RITA N	III ek connectors r		nded to conr	nect					
	bracing.				truss to bear	ing walls due to U	PLIFIAt	Jt(S) 2. This	torol					
REACTIONS	(lb/size) 2	2=402/0-4	I-9, 6=304/ Mechanic	al	forces	s for uplint only and	a does no		lerai					
	Max Horiz 2	2=97 (LC	10)	9)	This trues is	designed in accor	dance w	ith the 2015						
	Max Uplift 2	2=-137 (L	C 7), 6=-52 (LC 11)	5)	International	Residential Code	sections	R502 11 1 a	and					
	Max Grav 2	2=480 (LC	C 2), 6=350 (LC 2)		R802.10.2 a	nd referenced star	Indard AN	ISI/TPI 1.						
FORCES	(lb) - Maxin	num Com	pression/Maximum	10) "NAILED" ind	dicates 3-10d (0.1	48"x3") c	or 2-12d						
	Tension				, (0.148"x3.25	") toe-nails per NE)S auidli	nes.						
TOP CHORD	1-2=0/34, 2	2-4=-592/	128, 4-5=-65/21,	11) In the LOAD	CASE(S) section,	loads a	plied to the	face					
	5-6=-118/5	2			of the truss a	re noted as front	(F) or ba	ck (B).						
BOT CHORD	2-6=-154/5	92		LC	AD CASE(S)	Standard								
WEBS	4-6=-613/1	46		1)	Dead + Sno	w (balanced): Lur	nber Inc	rease=1.15.	Plate					
NOTES				,	Increase=1	.15							mun	1111
1) Wind: AS	CE 7-10; Vult	=150mph	(3-second gust)		Uniform Loa	ads (lb/ft)							W'TH CA	Roll
Vasd=119	mph; TCDL=	6.0psf; B0	CDL=6.0psf; h=25ft;		Vert: 1-5	=-48, 6-7=-20					∧	1	R	. City
Cat. II; Ex	p B; Enclosed	d; MWFR	S (envelope); cantile	ver	Concentrate	ed Loads (lb)					- 13	52	O'. HESS	Idia Vila
left and rig	ght exposed ;	end vertion	cal left and right		Vert: 13=	-30 (F=-15, B=-15	5), 14=-1	(F=-1, B=-1)	,			IN	mary	mans
exposed;	Lumber DOL=	=1.60 plat	te grip DOL=1.33		15=-25 (F=-12, B=-12)							:2	K: =
TCLL: AS	CE 7-10; Pr=2	20.0 psf (roof live load: Lumbe	r							-		0.54	

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	HJ4	Diagonal Hip Girder	1	1	Job Reference (optional)	150198584

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:13 ID:FB4NtQvupYBJoGXZo5ccxmztK_0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48

Plate Offsets (X, Y): [2:Edge,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2	2014	CSI TC BC WB Matrix-MSH	0.57 0.71 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.41 0.00	(loc) 5-6 5-6 5	l/defl >791 >261 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119n Cat. II; Exp left and rigf exposed; Li 2) TCLL: ASC DOL=1.15 snow); Pf=' Plate DOL= Ct=1.10 3) This truss f load of 12.0 overhangs 4) * This truss on the botto 3-06-00 tall chord and a	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 5=362/ Me Max Horiz 6=280 (LC Max Uplift 5=-276 (LC Max Grav 5=569 (LC (lb) - Maximum Comp Tension 2-6=-351/104, 1-2=0 3-4=-273/188, 4-5=-1 5-6=-270/346 3-5=-379/276, 3-6=-2 E 7-10; Vult=150mph mph; TCDL=6.0psf; BC 9 B; Enclosed; MWFRS nt exposed; end vertic umber DOL=1.60 plat E 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pg= 13.9 psf (flat roof snow =1.15); Category II; Ex has been designed for 0 psf or 2.00 times flat non-concurrent with o s has been designed for 0 psf or 2.00 times flat non-concurrent with o s has been designed for 0 psf or 2.00 times flat non-concurrent with o s has been designed for 0 psf or 2.00 times flat non-concurrent with o s has been designed for 0 psf or 2.00 times flat non-concurrent with o s has been designed for 0 psf or 2.00 times flat non-concurrent with o	athing directly applied sept end verticals. applied or 10-0-0 oc echanical, 6=427/0-5 (6) C 6), 6=-163 (LC 9) (2 1), 6=585 (LC 22) pression/Maximum /91, 2-3=-362/83, 191/155 215/305 (3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantilev ral left and right e grip DOL=1.33 roof live load: Lumbe 20.0 psf (ground w: Lumber DOL=1.15 tp B; Fully Exp.; greater of min roof li roof load of 13.9 psf ther live loads. or a live load of 20.0p where a rectangle li between the bottor	5) Ref(6) Prov bea joint 7) One d or trus con forc 8) This con (0.1 10) In th COAD C 1) De Inc UN Co ver	er to girde vide mech ring plate t 5. e RT7A M s to bearing s to bearing 2.10.2 arcs in turns a CASE(S) and + Sno crease=1. hiform Loa Vert: 1-2- oncentrate Vert: 7=3 13=-1 (B)	er(s) for truss to trunanical connection capable of withsta iTek connectors re ng walls due to UF for uplift only and designed in accord Residential Code s do referenced stam- ticates 3-10d (0.14 ") toe-nails per ND CASE(S) section, I re noted as front (F Standard w (balanced): Lum 15 ads (lb/ft) =-48, 2-4=-48, 5-6= ed Loads (lb) 1 (F), 10=-24 (B), 7 , 14=-3 (F), 15=-25	ss conr (by oth- inding 2 comme PLIFT at does no lance wisections sections sections ance wisections sections ance wisections ance wisections ance wisections ance wisections sections ance wisections ance wisection sections ance wisection sections ance wisection sections ance wisection ance wisection sections ance wisection ance wisection and ance wisection ance wis	ections. ers) of truss I 76 lb uplift at nded to conr jt(s) 6. This t consider la th the 2015 R502.11.1 a R502.11.1 a SI/TPI 1. r 2-12d hes. splied to the F ck (B). rease=1.15, I (F), 12=-1 (F) =-20 (F)	to t nect and face Plate),		Continues.		SEA 4584 SEA	RO(4 4 0HNS111 13,2022	and an

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	HJ5	Diagonal Hip Girder	1	1	Job Reference (optional)	150198585

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:14 ID:jOel4lwXasJAQQ6mMp7rUzztK_?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.21 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 5-6 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi 	athing directly applic	6) 7) ed or	One RT7A M truss to bear connection is forces. This truss is International R802.10.2 a	fiTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star	ecomme PLIFT at d does n dance w sections ndard AN	inded to conr jt(s) 6. This ot consider la ith the 2015 s R502.11.1 a ISI/TPI 1.	nect ateral and					
BOT CHORD	Rigid ceiling directly bracing. (Ib/size) 4=383/ M Max Horiz 6=255 (LC Max Uplift 4=-305 (L Max Grav 4=596 (LC	applied or 10-0-0 o echanical, 6=308/0- C 6) C 6), 6=-143 (LC 5) C 20), 6=484 (LC 21	c 8) 6-8 ⁹⁾ LC) 1)	 "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 									
FORCES	(lb) - Maximum Com Tension 1-6=-438/143, 1-2=-	197,	Increase=1.15 Uniform Loads (b/ft) Vert: 1-3=-48, 4-6=-20 Concentrated Loads (lb)										
BOT CHORD WEBS	3-4=-205/169 5-6=-252/213, 4-5=- 2-4=-514/272, 2-5=0	256/430)/144, 1-5=-211/387		Vert: 7=2 14=-6 (B	26 (B), 10=-31 (F),), 15=-14 (F), 16=-	11=-42 -23 (B)	(B), 12=-1 (B	3),					
NOTES 1) Wind: AS Vasd=119 Cat. II; E> left and ri exposed; 2) TCLL: AS DOL=1.1;	CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; Br wp B; Enclosed; MWFR3 ght exposed ; end vertii Lumber DOL=1.60 plat SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg=	(3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantile cal left and right te grip DOL=1.33 roof live load: Lumb =20.0 psf (ground	ever er							C	È	OR TH CA	ROLIN

- 2 snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 3) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 305 lb uplift at joint 4.

A Bas ANTION ANTION SEAL 45844 Fohr February 13,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	11	Monopitch Supported Gable	1	1	Job Reference (optional)	150198586

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:14 ID:P?IFgWGW09mHl9r4W7JpnAztJb0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3	
----------------	--

00010 = 1.30.3														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.07 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 10-13 10-13 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=181/8- 8=145/8- 10=222/8 Max Horiz 2=107 (LC Max Uplift 2=-72 (LC (LC 15), 5 15), 11=- Max Grav 2=220 (LC (LC 22), 5 2), 11=22	eathing directly applied cept end verticals. r applied or 10-0-0 oc 11-8, 6=50/ Mechanica 11-8, 9=94/8-11-8, -11-8, 11=107 (LC 14) C 11), 6=-8 (LC 12), 8=- 5=-25 (LC 11), 10=-50 72 (LC 11) C 2), 6=59 (LC 2), 8=17 0=112 (LC 2), 10=261 (00 (LC 2)	2) 3) or 4) 1, 5) -29 6) 71 (LC 8) 9)	Truss design only. For stu- see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs nu Gable studs * This truss h on the bottor 3-06-00 tail t chord and ar Refer to gird! Provide mec	ned for wind loads uds exposed to wind d Industry Gable E valified building des 7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sm .15); Category II; I snow loads have b us been designed f psf or 2.00 times fl on-concurrent with spaced at 2-0-0 oc has been designed n chord in all areas by 2-00-00 wide wi by other members. er(s) for truss to tru hanical connectior	in the p id (norm nd Deta signer a (roof liv g=20.0 j ow: Lun Exp B; F been col or great at roof l or great at roof l c, for a liv s where ll fit betv uss conn o (by oth	lane of the tru al to the face ils as applica is per ANSI/TI e load: Lumb bosf (ground uber DOL=1.1 iully Exp.; asidered for the er of min roof bad of 13.9 pi ve loads. the load of 20.0 a rectangle veen the botto nections. ers) of truss t	uss .), ble, Pl 1. i live f live sf on Opsf om						
FORCES	(lb) - Maximum Con Tension 1-2=0/25, 2-3=-239/	123. 3-4=-140/82.	10)	bearing plate 6.	e capable of withsta	anding 8	B lb uplift at jo	pint				minin	un,	
30T CHORD	4-5=-112/76, 5-6=-6 2-10=-121/79, 9-10= 7-8=-54/71	50/65, 6-7=0/22 =-54/71, 8-9=-54/71,	10)	IN/A						(and a	OR FESS	ROL	Nº11
WEBS NOTES 1) Wind: ASI Vasd=119 Cat. II; Ex Corner (3 zone; can and right of MWFRS f grip DOL=	5-8=-127/203, 4-9=- CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; B p: B; Enclosed; MWFR) -1-4-13 to 1-7-3, Exte tilever left and right ex exposed;C-C for memt for reactions shown; Lu =1.33	90/95, 3-10=-185/184 n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C erior (2) 1-7-3 to 9-6-12 posed ; end vertical left pers and forces & umber DOL=1.60 plate	11) 12) t LO	This truss is International R802.10.2 an See Standar Detail for Co consult quali AD CASE(S)	designed in accord Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	dance w sections dard AN ack Trus russ as ner.	ith the 2015 s R502.11.1 a ISI/TPI 1. s Connection applicable, or	and		Comme	P. C.	SEA 4584 WGIN February	L H4 EFER OHNS	North Color

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	12	Monopitch	5	1	Job Reference (optional)	150198587

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:15

Carter Components (Sanford), Sanford, NC - 27332,

ID:IzZ8kDKfrhParwk1Jgv_UDztJax-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 9-8-8 -1-5-0 4-11-7 1-5-0 4-11-7 4-9-1 12 3 3x5 II 4 2x4 🕿 11 10 3 3-0-14 2-11-5 9 2 0-6-3 -0-5 3x6 =

9-8-8

3x5 =

Scale = 1:30.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.53 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.21 0.01	(loc) 5-8 5-8 2	l/defl >999 >549 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 2=395/0-5 Max Horiz 2=111 (L0 Max Uplift 2=-113 (L Max Grav 2=473 (L0 (lb) - Maximum Com Tension 1-2=0/26, 2-3=-695/ 4-5=-37/258 2-5=-351/657 3-5=-637/322	athing directly applied cept end verticals. applied or 9-6-2 oc 3-8, 4=319/ Mechanica C 14) .C 11), 4=-61 (LC 15) C 2), 4=376 (LC 2) npression/Maximum 243, 3-4=-109/41,	5) or 7) al 9) 10)	* This truss h on the bottor 3.06-00 tall b chord and ar Refer to girde Provide mec bearing plate 4. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar Gap betweer diagonal or v AD CASE(S)	has been designen n chord in all area by 2-00-00 wide w by other members er(s) for truss to t hanical connectic e capable of withs tiTek connectors ing walls due to L s for uplift only an designed in accoo Residential Code nd referenced sta n inside of top cho rertical web shall Standard	d for a liv as where vill fit betw russ conr n (by oth tanding 6 PLIFT at d does no rdance w e sections ndard AN ord bearin not excee	e load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at inded to com jt(s) 2. This of consider la th the 2015 R502.11.1 a ISI/TPI 1. g and first ed 0.500in.	Opsf om to joint nect ateral					
NOTES 1) Wind: ASC Vasd-119	CE 7-10; Vult=150mph	(3-second gust)											

- Wind: ASCE 7-10; Vult=150mpn (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-13 to 1-7-3, Interior (1) 1-7-3 to 9-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

February 13,2022

SEAL

45844

Summer and

Jumminine .

Page: 1

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	13	Monopitch Girder	1	2	Ich Reference (ontional)	150198588

4-11-7

4-11-7

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:15 ID:x4jl1_TZF3n0gc39SUcZRYztJam-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-8-8

4-9-1

Page: 1

818 Soundside Road Edenton, NC 27932

Plate Offsets (X, Y): [1:Edge,0-1-0], [1:0-1-1,0-11-1]

Scale = 1:36.7

Loading (CUL) (1007) (es) (201) Spacing (201) 20-0 (201) CSI (201) DFL (200) (es) (201) Matrix - MSH (201) DFL (201) DFL (201) <thdfl (201)</thdfl 															
 LUMER IOP CHORD 2:45 PNo.3 STOCHORD 2:45 PNo.3 STACING IOP CHORD 5:41 c2:43 SPNo.3 STACING IOP CHORD 5:40 c2 puttins, except and varicals. STOCHORD 2:45 PNo.3 STACING 100 CP CHORD 1:54 and 1:400 Stacing 1:4100; 1:4203 C2:-10; PH20.0 pst ICLL 1:5 SAE 1:500; ICLL 1:5; Calegod 1:1000 DCL=115 FILE DCL=115; FILE DCL=115; FILE DCL=115; FILE 1:5; Calegod 1:1000 DCL=115 FILE DCL=115; FILE DCL=115; FILE DCL=115; FILE 1:5; Calegod 1:1000 DCL=115 FILE DCL=115; F	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.60 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.01	(loc) 4-5 4-5 1	l/defl >999 >896 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%	
	LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3 Top chorc oc. Bottom ch 0-6-0 oc. Web comr 2) All loads a except if n CASE(S) provided t unless oth	2x4 SP No.2 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood shea 5-8-1 oc purlins, exx Rigid ceiling directly bracing. (Ib/size) 1=1801/0- Max Horiz 1=105 (LC Max Uplift 1=-205 (L (Max Grav 1=2135 (L (Ib) - Maximum Com Tension 1-2=-4190/411, 2-3= 1-5=-400/4065, 4-5= 2-4=-4122/432, 2-5= is to be connected toget ") nails as follows: Is connected as follows: sconnected as follows: nords connected as follows nords connected as follows nords connected equally noted as fort (F) or bac section. Ply to ply conno o distribute only loads nerwise indicated.	t* 3-4:2x4 SP No.1 athing directly applied cept end verticals. applied or 10-0-0 oc 3-8, 3=1942/ Mecha C 10) C 7), 3=-227 (LC 11) C 2), 3=2303 (LC 2) pression/Maximum -185/31, 3-4=-182/2 -400/4065 -106/1900 ther with 10d s: 2x4 - 1 row at 0-9-0 cws: 2x4 - 1 row at 0-9-0 cws: 2x4 - 1 row at 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ lections have been noted as (F) or (B),	3) d or hical (5) (6) (1) (10) (10) (11) (12) (12) (12) (12) (12) (12) (12	Wind: ASCE Vasd=119mp Cat. II; Exp B left and right exposed; Lur TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced : design. * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate joint 3. One RT7A M truss to beari connection is forces.) This truss is of International R802.10.2 ar) Gap betweer diagonal or v) Hanger(s) or provided suff lb down and at 3-0-0, 733 down and 64 up at 9-0-0 c such connection	7-10; Vult=150mph bh; TCDL=6.0psf; B ; Enclosed; MWFR exposed ; end vert nber DOL=1.60 pla 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E snow loads have be as been designed in a chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta iTek connectors re ng walls due to UP for uplift only and designed in accord Residential Code s and referenced stand i inside of top chore ertical web shall no other connection d icient to support co 64 lb up at 1-0-0, 75 8 lb down and 64 lb lb up at 7-0-0, and no bottom chord. T	a (3-sec GCDL=6 S (env. ical left ate grip (roof liv) =20.0 p w: Lum ixp B; F een cor for a liv where fit betw ss conr (by oth nding 2 comme LIFT at does no ance w sections dard AN d bearin ot excee levice(s nocentra 733 lb c up at d 741 lb he design	cond gust) 1.0psf; h=25ft; elope); cantile and right DOL=1.33 e load: Lumb bosf (ground iber DOL=1.1 ully Exp.; asidered for th e load of 20.0 a rectangle ween the botto nections. ers) of truss t ict onsider lat ended to connn jt(s) 1. This ot consider lat ith the 2015 is R502.11.1 a ISI/TPI 1. ng and first ed 0.500in.) shall be tated load(s) 7: lown and 64 ll 5-0-0, and 733 o down and 64 ll 5-0-0, and 73 o down and 64 ll	ever 5 5 opsf om ect teral nd 33 b up 3 lb of ers.	1) De In Ur Co	ead + Sr crease= hiform Lo Vert: 1-3 Vert: 5= (F), 13=	ow (ba 1.15 bads (II 3=-48, -618 (I -625 (I	alanced): Lumbe b/ft) 4-6=-20 ads (lb) F), 10=-618 (F), F) F) SEA 4584 4584 4584	Increase=1	.15, Plate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	K1	Monopitch	2	1	Job Reference (optional)	150198589

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:16 ID:LCSHodvmXRSmcIOG7ImERLztJaB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	- 1	1.42	Q

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.39 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.11 0.00	(loc) - 5-6 5	l/defl n/a >736 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (Ib/size) 5=211/ Mi Max Horiz 6=284 (LC Max Uplift 5=-136 (L Max Grav 5=315 (LC	athing directly applic cept end verticals. applied or 10-0-0 or echanical, 6=300/0- C 10), C 10), 6=-14 (LC 13 C 25), 6=364 (LC 26	4) ed or 6) c 7) 3-8) 8)	* This truss on the botto 3-06-00 tall chord and a Refer to girr Provide men bearing plat joint 5. One RT7A I truss to bea connection forces. This truss is Internationa	has been desigr m chord in all ar by 2-00-00 wide ny other membe der(s) for truss to chanical connect e capable of with WiTek connector ring walls due to is for uplift only a designed in acc I Residential Coo	need for a liv eas where will fit betw ers. b truss conr tion (by oth hstanding 1 rs recomme b UPLIFT at and does no cordance w de sections	e load of 20. a rectangle veen the bot nections. ers) of truss 36 lb uplift a nded to con jt(s) 6. This ot consider la ith the 2015 R502.11.1	.0psf tom to at nect ateral and					
TOP CHORD	(ID) - Maximum Com Tension 1-2=0/73, 2-3=-191/2 5-7=-139/103, 4-7=- 5-6=-268/318	pression/Maximum 234, 3-4=-114/112, 143/107, 2-6=-299/3	L0 328	R802.10.2 a DAD CASE(S)	and referenced s Standard	tandard AN	ISI/TPI 1.						

6-9-4

WEBS 3-6=-419/344, 3-5=-415/345, 3-7=-195/211

NOTES

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -1-4-6 to 1-7-10, Interior (1) 1-7-10 to 6-7-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	К2	Monopitch	2	1	Job Reference (optional)	150198590

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:16 ID:MIW7xGK5XtkxhW?o7uNCpWztJZf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-9-4

Scale = 1:45.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.39 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.11 0.00	(loc) - 5-6 4	l/defl n/a >736 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 4=60/Me Mechania Max Horiz 6=284 (L Max Uplift 4=-14 (L0 6=-14 (L0 Max Grav 4=92 (LC 6=364 (L	eathing directly applie cept end verticals. / applied or 10-0-0 oc echanical, 5=151/ ral, 6=300/0-3-8 C 10) C 13), 5=-89 (LC 10), C 13) C 25), 5=223 (LC 25), C 26)	3) 4) d or 5; 5) 6) 7) 8)	This truss ha load of 12.0 overhangs n * This truss I on the botto 3-06-00 tall I chord and ar Refer to gird Provide mec bearing platte 4 and 89 lb to One RT7A N truss to bear connection is forces. This truss is International	as been designed psf or 2.00 times on-concurrent wit has been designe n chord in all area by 2-00-00 wide w by other members er(s) for truss to t hanical connectic e capable of with a plift at joint 5. IfTek connectors ing walls due to L s for uplift only an designed in accoo Residential Code	I for greate flat roof lo th other lin d for a liv as where will fit betw s. truss conr on (by oth standing 4 recomme UPLIFT at d does no ordance wi e sections?	er of min roo bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott nections. ers) of truss 8 lb uplift at nded to conn jt(s) 6. This ot consider la th the 2015 . R502 11 1	f live psf on opsf to joint nect ateral					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Con Tension 1-2=0/73, 2-3=-192, 5-7=-2/3, 4-7=-4/3, 5-6=-268/318	npression/Maximum /234, 3-4=-114/112, 2-6=-299/328	9) LC	R802.10.2 a Gap betwee diagonal or v	nd referenced sta n inside of top cho vertical web shall Standard	andard AN ord bearir not excee	ISI/TPI 1. ag and first ed 0.500in.						
WEBS NOTES 1) Wind: AS Vasd=119 Cat. II; Ex Exterior (2 zone; can and right MWFRS f grip DOL= 2) TCLL: AS DOL=1.19 Snow); Pf Plate DOI Ct=1.10	3-6=-419/345, 3-5= CE 7-10; Vult=150mpf Omph; TCDL=6.0psf; B qp B; Enclosed; MWFR 2) -1-4-6 to 1-7-10, Intri tilever left and right ex exposed;C-C for mem for reactions shown; Lu =1.33 GCE 7-10; Pr=20.0 psf 5 Plate DOL=1.15); Pg =13.9 psf (flat roof sno L=1.15); Category II; E	414/345, 3-7=-195/2 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- erior (1) 1-7-10 to 6-7 posed ; end vertical I bers and forces & umber DOL=1.60 plat (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1! xp B; Fully Exp.;	12 -8 eft er 5							Comme		SEA 4584	L EER. ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Est. February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	КЗ	Monopitch	1	1	Job Reference (optional)	150198591

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:17 ID:EWIendNca6ENA8IZMkS8zMztJZb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

3x5=

Page: 1

2x4 1

> Ø 3x5 =

5

1-3-8

Scale = 1:49.3														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.39 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.11 0.00	(loc) - 4-5 4	l/defl n/a >736 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (Ib/size) 4=219/ Mo Max Horiz 5=261 (LC Max Uplift 4=-135 (L Max Grav 4=325 (LC (Ib) - Maximum Com	athing directly applic cept end verticals. applied or 10-0-0 or echanical, 5=219/0- C 10) C 10) C 24), 5=301 (LC 25 puression/Maximum	5) 6) c 7) 3-8 LO)	Provide mec bearing plate joint 4. One RT7A M truss to bear connection i forces. This truss is International R802.10.2 a AD CASE(S)	chanical connection e capable of withs MiTek connectors ring walls due to I s for uplift only ar designed in accor I Residential Cod and referenced sta Standard	on (by oth standing 1 recomme UPLIFT a nd does n ordance w e sections andard AN	ers) of truss 35 lb uplift a ended to com jt(s) 5. This of consider la th the 2015 R502.11.1 a USI/TPI 1.	to tt nect ateral and						
TOROLODO	Tension													
TOP CHORD	3-6=-136/102, 1-5=-	141/107, 4-6=-131/s 141/109	98,											
BOT CHORD	4-5=-273/330 2-5335/257 2-4	433/353 2-6195/3	212											
NOTES	2-3=-333/237, 2-4=-	433/333, 2-0=-193/2	.12											
 Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 zone; can and right e MWFRS f grip DOL= TCLL: AS DOL=1.15 snow); Pfr Plate DOL Ct=1.10 * This trus on the bot 3-06-00 ta chord and 	CE 7-10; Vult=150mph pmph; TCDL=6.0psf; Bi p B; Enclosed; MWFR; 2) 0-1-12 to 3-4-10, Inté tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snot =1.15); Category II; Ex- ss has been designed fi tom chord in all areas all by 2-00-00 wide will I any other members.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- erior (1) 3-4-10 to 6- posed ; end vertical pers and forces & imber DOL=1.60 pla roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1 xp B; Fully Exp.; or a live load of 20.0 where a rectangle fit between the botto	C 7-8 left te er 5 0psf om							C	A States and a state of the sta	SEA 4584 SEA SEA SEA SEA SEA SEA SEA SEA SEA SEA	L HA OHNSUIT	
4) Refer to a	irder(s) for truss to trus	ss connections										111111	un line	

6-9-4

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.

Fobr

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	К4	Monopitch	6	1	Job Reference (optional)	150198592

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:17 ID:M01ZV4XIX6tXD8o3czBC?6ztJZO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-9-4

Scale = 1:27.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-9-4 oc purlins, exi Rigid ceiling directly bracing. (Ib/size) 3=13/ Mer Max Horiz 5=138 (LC Max Uplift 3=-73 (LC Max Grav 3=67 (LC (Ib) - Maximum Com Tension 1-2=0/73, 2-3=-78/11 2-5=-187/198 4-5=-208/209 2-4=-205/209	athing directly applied cept end verticals. applied or 10-0-0 oc chanical, 5=159/0-3-8 C 12) C 10), 5=-36 (LC 9) 9), 5=202 (LC 19) pression/Maximum 01, 3-4=-114/135,	4) d or 6) 7) 5 8) 9) LC	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar Gap betweer diagonal or v	has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection e capable of withsta liTek connectors re- ing walls due to UFs for uplift only and designed in accord Residential Code sind referenced stan in inside of top chor- vertical web shall no Standard	for a liv s where Il fit betw uss conru- (by oth anding 7 ecomme PLIFT at does no dance w sections dard AN d bearin ot excee	e load of 20.0 a rectangle veen the bottc nections. ers) of truss to 3 lb uplift at jo unded to connu- jt(s) 5. This ot consider lat ith the 2015 i R502.11.1 at ISI/TPI 1. ug and first ad 0.500in.	ipsf om opint ect eral					
NOTEO													

NOTES

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

С 2000 minung VIIII WARANTA SEAL 45844 February 13,2022

111111

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB1	Piggyback	1	1	Job Reference (optional)	150198593

Scale = 1:34.3 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

this design.

Snow (Pf/Pg)

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:17 ID:iRwpsXqW_KPsyWFMqh5EpwztKg0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Max Horiz 1=-42 (LC 13) 1=-24 (LC 11), 2=-38 (LC 15), Max Uplift 8=-35 (LC 16), 11=-50 (LC 12), 12=-11 (LC 12), 13=-38 (LC 15), 16=-35 (LC 16) Max Grav 1=54 (LC 47), 2=81 (LC 46), 8=71 (LC 38), 9=43 (LC 37), 10=212 (LC 37), 11=484 (LC 37), 12=214 (LC 37), 13=81 (LC 46), 16=71 (LC 38) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-59/56, 2-3=-79/55, 3-4=-154/114, 4-5=-90/84, 5-6=-90/84, 6-7=-154/114, 7-8=-79/55, 8-9=-26/15 2-12=-26/89, 11-12=-26/89, 10-11=-26/89, BOT CHORD 11) N/A 8-10=-26/89 WEBS 5-11=-400/200, 3-12=-144/122, 7-10=-143/123 NOTES

1) Unbalanced roof live loads have been considered for

- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing. 7)
- 8) Gable studs spaced at 4-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) N/A

12) This truss is designed in accordance with the 2015

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Detail for Connection to base truss as applicable, or 14) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantieter and property incorporate dust using in the overlain of the optimized and property incorporate and begin into the overlain building design. Bracing indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB2	Piggyback	1	1	Job Reference (optional)	150198594

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:18 ID:fjkZFvIQVWeiz6?cQbmcDRztKe7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.2			I									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 55 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x6 SP No.2 2x4 SP 2400F 2.0E 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-6.	2)	Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-4-8 to 3-4-8, Interior (1) 3-4-8 to 4-9-10, Exterior (2) 4-9-10 to 11-4-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	3)	only. For studs exposed to wind loads in the plane of the fuces, see Standard Industry Cable End Datails as applicable
REACTIONS	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4) 5) 6) 7) 8) 9)	see Standard industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2.06.00 full by 2.00 00 wide will fit between the bottom
FORCES	(lb) - Maximum Compression/Maximum Tension	10)	chord and any other members.
TOP CHORD	1-2=-123/114, 2-3=-144/79, 3-4=-245/143, 4-5=-158/154, 5-6=-158/154, 6-7=-245/141, 7-8=-127/55, 8-9=-32/13	,	
BOT CHORD	2-12=-28/114, 11-12=-27/113, 10-11=-27/113, 8-10=-27/114	11)	N/A
WEBS	5-11=-156/55, 3-12=-297/223, 7-10=-294/223		
1) Unbalance this design	d roof live loads have been considered for	12)	This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Ply	INSTALL 61 Willowcroft-Avery-Roof				
22010064-A	PB3	Piggyback	1	3	Job Reference (optional)	150198595			

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:18 ID:rNyZiHreuKJJt0xGYY3AXxztKdQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scol	-	1.40	0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.03 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 174 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=37/10-4-14, 2=-13/10-4-14, 6=-20/10-4-14, 7=37/10-4-14, 8=260/10-4-14, 9=194/10-4-14, 10=262/10-4-14, 11=-13/10-4-14, 14=-20/10-4-14, 11=-13/10-4-14, 14=-20/10-4-14, 11=-13/10-4-14, 14=-20/10-4-14, 11=-13/10-4-14, Max Horiz 1=120 (LC 12) Max Uplift 1=-68 (LC 9), 2=-34 (LC 29), 6=-78 (LC 12), 8=-159 (LC 14), 10=-157 (LC 13), 11=-34 (LC 2), 8=-362 (LC 26), 9=222 (LC 2), 10=362 (LC 25), 11=54 (LC 14), 14=77 (LC 14).				 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-4-8 to 3-4-8, Interior (1) 3-4-8 to 5-10-5, Exterior (2) 5-10-5 to 8-10-5, Interior (1) 8-10-5 to 11-4-1 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground scow); Partical Partical						 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard 					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 3-ply truss Top chord follows: 2> Bottom ch follows: 2>	(lb) - Maximum Com Tension 1-2=-155/145, 2-3=- 4-5=-149/120, 5-6=- 2-10=-35/76, 9-10=- 6-8=-35/76 4-9=-138/13, 3-10=- is to be connected togel is connected with 10d (6 - 2 rows staggered a ords connected with 11 (4 - 1 row at 0-9-0 oc.	pression/Maximum 138/113, 3-4=-160/11 118/88, 6-7=-25/11 35/76, 8-9=-35/76, 367/297, 5-8=-366/29 ther as follows: (0.131"x3") nails as at 0-9-0 oc. 0d (0.131"x3") nails a	7) 8) 9) 77 10) 10) 135 11)	Ct=1.10 Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an N/A This truss is o International R802.10.2 ar	es continuous bott spaced at 4-0-0 od as been designed n chord in all areas y 2-00-00 wide wi y other members. designed in accord Residential Code id referenced star	om chor c. I for a liv s where Il fit betw dance wi sections indard AN	d bearing. e load of 20.0 a rectangle veen the botto ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om Ind		Comme	The second secon	SEA 4584	ROLING HINGONIU	Summun	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB4	Piggyback	1	1	Job Reference (optional)	150198596

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:20 ID:rNyZiHreuKJJt0xGYY3AXxztKdQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.02 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	UMBER OP CHORD 2x6 SP No.2 2) Truss de only. For see Stand or consul OT CHORD 2x4 SP 2400F 2.0E see Stand or consul or consul VEBS 2x4 SP No.3 3) TCLL: AS DOL=1.1 OP CHORD Structural wood sheathing directly applied or 5-7-5 oc purlins, except end verticals. 3) TCLL: AS DOL=1.1 OT CHORD Structural wood sheathing directly applied or 5-7-5 oc purlins, except end verticals. 5) Gable rec IOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 5) Gable rec IEACTIONS (lb/size) 1=3/4-11-7, 8=90/4-11-7, 5=74/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 7=0/4-11-7, 8=90/4-11-7, 8=-33 (LC 10), 6=-102 (LC 13), 8=-33 (LC 10), 6=-102 (LC 13), 8=-33 (LC 10), 5=-46 (LC 10), 6=-102 (LC 13), 8=-33 (LC 10), 5=-108 (LC 25), 6=253 (LC 25), 8=122 (LC 25) 8)				Ined for wind loads in the plane of the truss uds exposed to wind (normal to the face), 'd Industry Gable End Details as applicable, ualified building designer as per ANSI/TPI 1. E 7-10; Pr=20.0 psf (roof live load: Lumber Plate DOL=1.15); Pg=20.0 psf (ground 3.9 psf (flat roof snow: Lumber DOL=1.15 1.15); Category II; Exp B; Fully Exp.; res continuous bottom chord bearing. s spaced at 4-0-0 oc. has been designed for a live load of 20.0psf im chord in all areas where a rectangle by 2-00-00 wide will fit between the bottom iny other members. oint(s) 1, 7, 2, 5, 2 considers parallel to grain ANSI/TPI 1 angle to grain formula. Building ould verify capacity of bearing surface.											
FORCES TOP CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 zone; can and right of MWFRS f grip DOL=	(lb) - Maximum Com Tension 1-2=-435/446, 2-3=-; 5-7=0/0, 4-5=-167/1; 2-6=-110/120, 5-6=-; 3-6=-262/210 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR3; 2) 0-4-8 to 3-4-8, Interior tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33	pression/Maximum 290/297, 3-4=-157/16 33 111/120 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-Co r (1) 3-4-8 to 5-5-9 bosed ; end vertical le iers and forces & mber DOL=1.60 plate	9) ;1, 10 LC : : :	This truss is of International R802.10.2 ar See Standard Detail for Con consult qualif PAD CASE(S)	designed in accord Residential Code s nd referenced stand I Industry Piggyba nnection to base tr ied building desigr Standard	lance w sections dard AN ck Trus: uss as a ner.	ith the 2015 R502.11.1 a ISI/TPI 1. s Connection applicable, or	ind		Continue	the second	SEA 4584 SEA 4584 SEA	L H4 H4 OHNS			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 February 13,2022

ENGINEERING BY ANITEK Affiliate B18 Soundside Road Edenton, NC 27932
Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB5	Piggyback	1	1	Job Reference (optional)	150198597

Loading

TCDL

BCLL

BCDL

WEBS

7-8=-192/152

8-9=-80/104

2-11=-96/141, 10-11=-65/91, 9-10=-65/91,

5-10=-396/203, 4-11=-297/314, 6-9=-219/165

BOT CHORD

WEBS

NOTES

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:21 ID:rNyZiHreuKJJt0xGYY3AXxztKdQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB7	Piggyback	1	1	Job Reference (optional)	150198598

0-6-9

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:22 ID:HPK40zFru3R7M_evDfl9nHztK7v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-9-7

Scale = 1:31

Plate Offsets	(X, Y): [2:0-	-2-7,0-1-0],	[4:0-2-7,0-1-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)15/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 3-11-5 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=74/2-9-7, 4=74/2-9-7, 6=75/2-9-7, 7=74/2-9-7, 10=74/2-9-7 Max Horiz 2=-46 (LC 11), 7=-46 (LC 11) Max Uplift 2=-12 (LC 13), 4=-16 (LC 14), 6=- (LC 13), 7=-12 (LC 13), 10=-16 (L 14) Max Grav 2=90 (LC 2), 4=90 (LC 2), 6=87 (LC 2), 7=90 (LC 2), 10=90 (LC 2); FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/19, 2-3=-53/42, 3-4=-51/43, 4-5=0/19					 Truss desig only. For st see Standar or consult qi TCLL: ASCI DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 This truss hi load of 12.0 overhangs r Gable requii Gable studs * This truss on the botto 3-06-00 tall chord and a N/A 	ned for wind load: uds exposed to wi d Industry Gable I Jalified building de 7-10; Pr=20.0 ps Plate DOL=1.15); F 3.9 psf (flat roof si 1.15); Category II; as been designed psf or 2.00 times on-concurrent wit res continuous bot spaced at 1-4-0 c has been designe m chord in all area by 2-00-00 wide w ny other members	s in the p ind (norm End Deta ssigner a: sf (roof liv Pg=20.0 ; now: Lum Exp B; F for great flat roof li h other li ttom chor oc. d for a liv as where vill fit betw s.	lane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb osf (ground iber DOL=1.1 fully Exp.; er of min roof bad of 13.9 p ve loads. d bearing. er load of 20.1 a rectangle veen the both	uss), ble, Pl 1. er 15 flive sf on Opsf om						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=119 Cat. II; Ex Exterior (2 vertical le forces & N DOL=1.6(1-2=0/19, 2-6=-22/5 3-6=-32/0 ed roof live I n. CE 7-10; Vu Omph; TCDL cp B; Enclose 2) zone; can ft and right e WWFRS for I D plate grip I	, 2-3=-53/42 52, 4-6=-22/) loads have llt=150mph .=6.0psf; BC ed; MWFRS tilever left <i>a</i> exposed;C-1 reactions sl DOL=1.33	2, 3-4=-51/43, 4-5=0, 52 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 and right exposed ; e C for members and hown; Lumber	/19 C end	 10) This truss is Internationa R802.10.2 a 11) See Standa Detail for Cc consult qual LOAD CASE(S) 	designed in acco I Residential Code nd referenced sta rd Industry Piggyb nnection to base ified building desig Standard	rdance w sections Indard AN ack Trus ack Truss as a gner.	ith the 2015 is R502.11.1 a ISI/TPI 1. is Connection applicable, or	ind		Continue.		SEA 4584	ROLL L HA OHNSOLUTION	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	PB8	Piggyback	9	1	Job Reference (optional)	150198599

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:23 ID:OqVHU9aLr9VwFXxLUcGG3gztK8m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 = 2x4 II 2x4 =

2-9-7

Scale = 1:31

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{llllllllllllllllllllllllllllllllllll$	athing directly applied applied or 10-0-0 oc 7, 4=74/2-9-7, 7, 7=74/2-9-7, -7 211), 7=-46 (LC 11) 13), 4=-16 (LC 14), 6 7=-12 (LC 13), 10=-16 2), 4=90 (LC 2), 6=87 -90 (LC 2), 10=90 (LC apression/Maximum 2, 3-4=-51/43, 4-5=0/	3) 4) 4 or 5) 6) 6) 6) 7 2 2) 9) 19	Truss desig only. For str see Standar or consult qr TCLL: ASCE DOL=1.15 F snow); Pf=1 Plate DOL=: Ct=1.10 This truss ha load of 12.0 overhangs r Gable requi Gable studs * This truss on the botto a,06-00 tall chord and a N/A	Ined for wind load uds exposed to w d Industry Gable ualified building d E 7-10; Pr=20.0 p Vate DOL=1.15); 3.9 psf (flat roof s 1.15); Category II as been designed psf or 2.00 times ion-concurrent wi res continuous bo spaced at 4-0-0 has been designed m chord in all are by 2-00-00 wide i ny other member	ds in the pl vind (norm End Detai lesigner as vsf (roof liv Pg=20.0 p snow: Lum l; Exp B; F d for greate f flat roof l fu to other liv bottom chor oc. ed for a liv vas where will fit betw 's.	lane of the tru al to the face ils as applical s per ANSI/TK el load: Lumb ssf (ground iber DOL=1.1 'ully Exp.; er of min roof bad of 13.9 p: <i>re</i> loads. d bearing. e load of 20.0 a rectangle <i>veen</i> the botto	uss), ble, PI 1. er 5 live sf on Opsf					11.
BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=119 Cat. II; Ex Exterior (2 vertical le forces & N DOL=1.60	2-6=-22/52, 4-6=-22, 3-6=-32/0 ed roof live loads have n. CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; B4 pB; Enclosed; MWFR? 2) zone; cantilever left a ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33	/52 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and hown; Lumber	10) 11) ; ; ad) This truss is Internationa R802.10.2 a) See Standa Detail for Cc consult qual DAD CASE(S)	designed in acco I Residential Cod und referenced st rd Industry Piggy nnection to base ified building des Standard	ordance wi le sections andard AN back Truss truss as a igner.	ith the 2015 IR502,11.1 a ISI/TPI 1. s Connection applicable, or	ind		0	Laure Providence	SEA 4584 SEA 4584	L EEP. SOLUTION

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL1	Valley	1	1	Job Reference (optional)	150198600

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:23 ID:FyeiKJtXBFhukUgrEhdt9ZztKdN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 13,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:99.4

Plate Offsets (X, Y): [8:Edge,0-3-8], [9:0-3-8,0-3-0], [14:0-2-12,0-3-0]

													-		
Loading		(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in n/c	(loc)	l/defl	L/d	PLATES	GRIP	
	10.0	20.0	Plate Grip DOL	1.15			0.97	Vert(LL)	n/a	-	n/a	999	101120	244/190	
Snow (PI/Pg)	13.8	9/20.0		1.15			0.20	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.97	Horiz(IL)	0.01	8	n/a	n/a			
BCLL		0.0*	Code	IRC2015	5/TPI2014	Matrix-MSH									
BCDL		10.0											Weight: 158 lb	FI = 20%	
LUMBER				1)	Wind: ASCE	7-10; Vult=150mpl	n (3-sec	cond gust)							
TOP CHORD	2x4 SP No.2	2			Vasd=119mp	oh; TCDL=6.0psf; B	BCDL=6	.0psf; h=25ft;							
BOT CHORD	2x4 SP No.2	2			Cat. II; Exp E	; Enclosed; MWFR	RS (env	elope) and C-	C						
WEBS	2x4 SP No.3	3			Exterior (2) 0	-0-5 to 3-0-5, Interi	ior (1) 3	-0-5 to 18-1-1							
OTHERS	2x4 SP No.3	3			zone; cantile	ver left and right ex	posed	; end vertical	left						
BRACING					and right exp	osed;C-C for mem	bers an	d forces &							
TOP CHORD	Structural w 6-0-0 oc pu	vood shea rlins, exc	athing directly applied cept end verticals.	d or	grip DOL=1.3	Bactions snown; Li	umber I	DOL=1.60 pla	te						
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 6-0-0 oc	2)	I russ design only. For stu	ds exposed to wind	in the p d (norm	ane of the tru	iss),						
WEBS	1 Row at m	idpt	7-8. 5-11. 6-9. 9-14		see Standard	I Industry Gable Er	nd Deta	ils as applicat	ole,						
REACTIONS	(lb/size) 1	=143/18-	2-8 8=31/18-2-8	0)	or consult qu	alified building des	igner as	s per ANSI/TE	41. 						
	(10/0120) 1)=157/18-	2-8 11=288/18-2-8	3)	TOLL: ASCE	7-10; Pr=20.0 psr	(root liv	e load: Lumb	er						
	1	2=238/18	3-2-8, 13=366/18-2-8	1	DOL=1.15 PI	ale DOL=1.15); Pg	j=20.0 μ	bar DOL -1.1	F						
	Max Horiz 1	=604 (LC	(10)		Plate DOI = 1	15): Category II: E	w. Luii vn B· E		5						
	Max Uplift 1	=-91 (LC	11), 8=-626 (LC 12)		Ct-1 10		.хр В, Г	ully Exp.,							
	9	=-261 (L	C 9), 11=-140 (LC 13	3), <u>4</u>)	Gable require	es continuous hotto	m chor	d bearing							
	1	2=-144 (I	LC 13), 13=-166 (LC	13) 5)	Gable stude	spaced at 4-0-0 oc		a boaring.							
	Max Grav 1	=341 (LC	10), 8=447 (LC 9),	6)	* This truss h	as been designed	for a liv	e load of 20 ()psf						
	9	=573 (LC	25), 11=508 (LC 24	-), ⁽⁰⁾	on the hotton	n chord in all areas	where	a rectandle	por						
	1	2=449 (L	C 24), 13=534 (LC 2	24)	3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om					111.	
FORCES	(lb) - Maxim	num Com	pression/Maximum		chord and an	y other members,	with BC	DL = 10.0psf	-				White CA	Dalle	
	Tension			7)	Provide mecl	nanical connection	(by oth	ers) of truss to	0		•		"ath un	TO !!!	
TOP CHORD	1-2=-890/94	49, 2-3=-7	700/736, 3-5=-533/57	77,	bearing plate	capable of withsta	nding 9	1 lb uplift at jo	oint		Λ	5	Or FESS	in All	
	5-6=-344/38	82, 6-7=-´	188/181, 8-14=-633/	546,	1.							XX	MOT	mina	ren.
	1-13=-354/5	55 511 12-1	3=-323/359										:2.7	× :	-
Ber energy	11-12=-323	/359 9-1	1=-323/359										CEA	r 1	1
	8-9=-140/15	54	1= 020/000,								-	:	SEA	- :	=
WEBS	3-12=-341/2	224 2-13	=-413/253								=	:	4584	4 :	-
	5-11=-385/2	247 6-9=	-1002/818								-				
	6-14=-966/1	1031.9-1	4=-1386/1553											1	2
NOTES		,.										- 7	1. ENG	-cRi T	3
NOTES												1	GIN	= c0 .	
												1	REIA	NN	
													The VV J	Jun	
													- minin	1111	
													Echruce	12 2022	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL2	Valley	1	1	Job Reference (optional)	150198601

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:24 ID:BLISI?unjtxbznqDL5fLE_ztKdL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.9

Plate Offsets (X, Y): [8:Edge,0-1-8]

.oading FCLL (roof) Snow (Pf/Pg) FCDL 3CLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.63 0.18 0.37	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%	
JUMBER OP CHORD 30T CHORD VEBS JTHERS 3RACING TOP CHORD 30T CHORD VEBS EACTIONS FORCES TOP CHORD 30T CHORD NEBS VOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 7- 1 Row at midpt (lb/size) 1=110/16- 8=304/16- 11=312/16 Max Horiz 1=536 (LC Max Uplift 1=-93 (LC 10=-142 (L) Max Grav 1=295 (LC 8=392 (LC 11=439 (L) (lb) - Maximum Com Tension 1-2=-763/822, 2-3=-4 -6=-178/188, 7-12= 1-11=-350/464, 10-1 8-10=-245/267, 7-8= 3-10=-346/224, 2-11 8-13=-264/40, 4-13= 4-12=-285/309, 12-1	athing directly applied sept end verticals. applied or 6-0-0 oc -8. 6-7, 4-8 2-8, 7=109/16-2-8, 2-8, 10=253/16-2-8, 3-2-8 3-10) 9), 7=-220 (LC 10), LC 13), 11=-147 (LC 24), 10=474 (LC 24) 3-24), 10=474 (LC 24) 3-24), 10=474 (LC 24) 3-257/643, 3-4=-424/47 -457/397, 6-12=-205 1=-245/267, -111/123 =-362/234, -495/319, 3=-331/351	1) d or 2) 3) (13) 5) (13) 5) (146) 7) (146)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) 0 zone; cantile and right exp MWFRS for I grip DOL=1.3 Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 Gable studs : * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1.	7-10; Vult=150mpl h; TCDL=6.0psf; E ; Enclosed; MWFF -0-5 to 3-0-5, Interiver left and right ex- osed;C-C for mem eactions shown; Li 33 ned for wind loads i ds exposed to wind I ndustry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15; Pg .9 psf (flat roof snc .15); Category II; E es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withsta	h (3-sec SCDL=6 SCDL=6 SS (envi- ior (1) 3 posed : bers an umber I in the pl d (norm nd Detai igner as (roof liv j=20.0 p ow: Lum con chor for a liv ; where I fit betw with BC (by oth unding 9	ond gust) .0psf; h=25ft; lope) and C- -0-5 to 16-1-1 end vertical d forces & OOL=1.60 pla ane of the tru al to the face}, Is as applicat per ANS//TF e load: Lumb ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle reen the botto DL = 10.0psf ers) of truss to 3 lb uplift at jo	-C I left iss), ole, PI1. er 5 0 psf om o oint				SEA 4584	ROL 4 E.P. O. HNS 13,2022	J

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL3	Valley	1	1	Job Reference (optional)	150198602

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:24 ID:fXJqyLvPUA3SbxPPvpAanCztKdK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68

Plate Offsets (X, Y): [7:Edge,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.52 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (Ib/size) 1=77/14- 8=257/14 10=265/14 (Ib/size) 1=77/14- 8=257/14 10=265/14 (Ib/size) 1=77/14- 8=468 (L Max Uplift 1=-104 (I 8=-141 (I 10=-112 Max Grav 1=277 (L 8=463 (L 10=333 (eathing directly applie coept end verticals. / applied or 10-0-0 oc 6-7, 4-8 2-8, 7=77/14-2-8, 1-2-8, 9=277/14-2-8, 4-2-8 C 10) C 11), 7=-126 (LC 1: .C 13), 9=-155 (LC 1: (LC 13) C 10), 7=163 (LC 24) C 24), 9=434 (LC 24) LC 24)	2) 3) od or 2 4) 5) 6) 2), 7) 3),),	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 Gable studs : * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate joint 1.	ned for wind loads ds exposed to win l Industry Gable E alfied building de 7-10; Pr=20.0 ps ate DOL=1.15); P .9 psf (flat roof sn .15); Category II; es continuous bott spaced at 4-0-0 o as been designed n chord in all area y 2-00-00 wide w y other members nanical connection capable of withst	in the pind (norm and Deta signer as f (roof liv g=20.0 p ow: Lum Exp B; F tom chor c. d for a liv s where ill fit betv , with BC n (by oth canding 1	lane of the tru al to the face ills as applical s per ANSI/TF e load: Lumb osf (ground iber DOL=1.1 'ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 04 lb uplift at	iss), ole, ol 1. er 5 5 0psf 0 0					111	
FORCES	(lb) - Maximum Con Tension	npression/Maximum								~		"TH CA	RO	
TOP CHORD	1-2=-798/813, 2-3= 4-6=-243/251, 6-7=	-654/662, 3-4=-475/4 -183/157 0 243/268	83,								in	Safes	Piater	in
WEBS	8-9=-243/268, 7-8= 3-9394/268, 2-10	0=-243/268 -243/268 316/206 4-8417/	314									2 SEA		ann.
NOTES	5-3=-334/200, 2-10	<u>−−310/200, 4−0</u> <u>−</u> −417/	514							-		SEA	L .	=
 Wind: ASG Vasd=119 Cat. II; Ex Exterior (2 zone; can and right e MWFRS f grip DOL= 	CE 7-10; Vult=150mph pmph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) 0-0-5 to 3-1-4, Interi tilever left and right ex exposed;C-C for memi or reactions shown; Lu =1.33	n (3-second gust) CDL=6.0psf; h=25ft; IS (envelope) and C- or (1) 3-1-4 to 14-1-1 posed ; end vertical I bers and forces & umber DOL=1.60 plat							1110.00	T	4584	EER. 60 0HN9.00 (13,2022	unne.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL4	Valley	2	1	Job Reference (optional)	150198603

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:25 ID:fXJqyLvPUA3SbxPPvpAanCztKdK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12-2-8 3x5 🍫 5 a 2x4 II 4 13 2x4 II 10-2-5 3 Ø 2x4 🛛 12 2 12 10Γ 0-0-4 1 6 9 8 7 3x5= 3x5 🛷 2x4 II 2x4 🛛 2x4 🛛 12-2-8

10-2-5

ŀ

grip DOL=1.33

Scale = 1.62 1						-								
Plate Offsets	(X, Y): [5:0-1-11,0-1-8	3], [6:Edge,0-1-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.40 0.49	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=38/12-2 9=230/12 Max Horiz 1=400 (LC Max Uplift 1=-113 (L 7=-124 (L 9=-89 (LC Max Grav 1=238 (LC 9=282 (LC	Pathing directly applie cept end verticals. r applied or 6-0-0 oc 5-6 2-8, 6=34/12-2-8, -2-8, 8=288/12-2-8, -2-8 C 10) .C 11), 6=-118 (LC 1: C 13), 8=-160 (LC 1: C 13), 8=-160 (LC 2), C 10), 6=109 (LC 9), C 24), 8=453 (LC 24) C 24)	2) 3) d or 4) 5) 6) 2), 7) 3), ,	Truss desig only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Gable studs * This truss I on the bottor 3-06-00 tall I chord and ar Provide mect bearing plate 1.	ned for wind loads in ids exposed to wind d Industry Gable En- ialified building desig : 7-10; Pr=20.0 psf (late DOL=1.15); Pg= 3.9 psf (flat roof snoo .15); Category II; E: es continuous bottor spaced at 4-0-0 oc. has been designed f n chord in all areas by 2-00-00 wide will y other members, w hanical connection (e capable of withstar	n the p I (norm d Deta gner a: roof livi =20.0 p w: Lum xp B; F m chor fit betw where fit betw who alivi where (by oth noting 1	lane of the tru ial to the face, ils as applicat s per ANSI/TF re load: Lumb osf (ground hber DOL=1.1 fully Exp.; rd bearing. re load of 20.0 a rectangle veen the bott CDL = 10.0psf ers) of truss to 13 lb uplift at	iss), ble, 21 1. er 5 5 Dpsf om o joint					110	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=119 Cat. II; Ex Exterior (i zone; can and right MWFRS 1	(lb) - Maximum Corr Tension 1-2=-728/735, 2-3=- 4-5=-198/201, 5-6=- 1-9=-217/253, 8-9=- 6-7=-213/233 3-8=-400/275, 2-9=- CE 7-10; Vult=150mph 3mph; TCDL=6.0psf; B tp B; Enclosed; MWFR 2) 0-0-5 to 3-0-5, Interiv tillever left and right exp exposed;C-C for memt for reactions shown; Lu	npression/Maximum 598/599, 3-4=-406/4 95/85 213/233, 7-8=-213/2 293/208, 4-7=-392/3 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-1 or (1) 3-0-5 to 12-1-1 posed ; end vertical I posed ; end vertical I posed a forces & umber DOL=1.60 plat	08, 33, 10 C eft							C. Million	A STATE OF THE STA	SEA 4584 VOREW J	L H4 EEP.50	A mountaine

400000 February 13,2022

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL5	Valley	2	1	Job Reference (optional)	150198604

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:25 ID:7jtDAhw1FUCJD5zcTWhpJPztKdJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52.9

Plate Offsets (X, Y): [5:Edge,0-1-8]

Loading	of)	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1.15		CSI TC	0.96	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf	/Pα) 13.9	9/20.0	Lumber DOI	1 15		BC	0.29	Vert(TL)	n/a	-	n/a	999	11120	211/100
TCDL	. 9)	10.0	Rep Stress Incr	YES		WB	0.39	Horiz(TL)	0.01	5	n/a	n/a		
BCLL		0.0*	Code	IRC2015	5/TPI2014	Matrix-MSH	0.00		0.01	0	1.00			
BCDL		10.0	0000		"TT 12011								Weight: 62 lb	FT = 20%
LUMBER				3)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumbe	er					
TOP CHO	ORD 2x4 SP No.2	2			DOL=1.15 PI	ate DOL=1.15); Pg	j=20.0 p	osf (ground	_					
BOT CHO	ORD 2x4 SP No.2	2			snow); Pf=13	9.9 psf (flat roof sno	w: Lum	ber DOL=1.1	5					
WEBS	2x4 SP No.3	3			Plate DOL=1	.15); Category II; E	хр В; Е	ully Exp.;						
OTHERS	2x4 SP No.3	3		4	Ct=1.10			al la sue de su						
BRACING	3			4)	Gable require	es continuous dotto	om chor	d bearing.						
TOP CHO	ORD Structural w	vood shea	athing directly applie	dor 5)	* This trues h	spaced at 4-0-0 oc	for a liv	a load of 20.0	Incf					
	6-0-0 oc pu	rlins, exo	cept end verticals.	6)	on the botton	as been designed	whore	a rectandle	ры					
BOT CHO	ORD Rigid ceiling	g directly	applied or 6-0-0 oc		3-06-00 tall b	v 2-00-00 wide will	fit betv	veen the botto	om					
	bracing.				chord and an	y other members,	with BC	DL = 10.0psf.						
REACTIO	ID/SIZE) 1	=138/10-	2-8, 5=-6/10-2-8,	7)	Provide mecl	nanical connection	(by oth	ers) of truss to	0					
	0 Max Llaria d	222 (10-	2-8, 7=375/10-2-8		bearing plate	capable of withsta	nding 3	80 lb uplift at jo	oint					
	Max Horiz 1	=333 (LC	, 10) 0) E 100 (LC 0E)		1.									
		=-30 (LC	9), 5=-152 (LC 25), C 13) 7-186 (LC 13	2)										
	Max Grav 1	-240 (1 0	(10), 7 = 100 (10 10)	-341										
	(L	LC 24). 7	=553 (LC 24)	-011										
FORCES	(lb) - Maxim	um Com	pression/Maximum											
1 011020	Tension		probolon/maximum											
TOP CHO	ORD 1-2=-560/55	55. 2-3=-3	332/323. 3-4=-161/1	58.										
	4-5=-33/27			,										16.
BOT CHO	DRD 1-7=-242/37	70, 6-7=- ⁻	181/198, 5-6=-181/19	98									What CA	Dalle
WEBS	2-7=-450/30	06, 3-6=-3	387/349								~	5	"ath on	TO/ 11
NOTES												~	OVERSE	is: All
1) Wind	ASCE 7-10; Vult=	=150mph	(3-second gust)									$\mathbf{F}_{\mathbf{x}}$	right	Uninas
Vasd	=119mph; TCDL=6	6.0psf; B0	CDL=6.0psf; h=25ft;										:0 4	K 2
Cat. I	I; Exp B; Enclosed	l; MWFR	S (envelope) and C-C	2									0-1	
Exter	ior (2) 0-0-5 to 3-0-	 -5, Interio 	or (1) 3-0-5 to 10-1-1								=	-	SEA	L : E
zone	cantilever left and	l right exp	osed ; end vertical le	eft							-		4584	
and r	ght exposed;C-C f	for memb	ers and forces &	_										T (* 5)
	KS IOF REACTIONS SP	nown; Lu	mber DOL=1.60 plat	е								1		
2) True	CL≓1.33	d loade in	the plane of the true									-7	1. En	CR: ZS
only	For studs exposed	d to wind	(normal to the face)	55								11	GIN	E.F. GUN
see S	tandard Industry G	Gable End	Details as applicab	le.								1	REIN	HN
or co	nsult qualified build	ding desid	ner as per ANSI/TP	I 1.									TIT VV J	U
	1	3	,										i annu	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL6	Valley	1	1	Job Reference (optional)	150198605

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:25 ID:cwRbN0xf0oKAqFYo0EC2sdztKdI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-3-8

2-8-12

Page: 1

18-6-12

18-6-12

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.57 0.43	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. 1 Row at r (lb/size) Max Horiz Max Uplift Max Grav (lb) - Maxii Tension 1-2=-661/¢ 4-5=-514/¢ 9-15=-543 1-14=-468 12-13=-24 9-10=-108 4-13=-322 5-12=-378 7-15=-358	22 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25	athing directly applie cept end verticals. applied or 6-0-0 oc 8-9, 7-10 3-8, 9=64/21-3-8, 1-3-8, 12=295/21-3- 1-3-8, 14=444/21-3- 2 (12) 11), 9=-302 (LC 12) LC 15), 13=-117 (LC LC 11) 2 (1), 9=216 (LC 13) C 29), 12=521 (LC C 28), 14=557 (LC pression/Maximum 623/639, 3-4=-647/6 328/370, 7-8=-137/1 =-131/95 4=-240/268, 12=-240/268, 12=-240/268, 5=-462/505	1) ed or 2) 8, 3) 8 (), 21), 4) (), 5) (28), 6) (21) 7) (389, 6) (143, 8)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) 0 zone; cantile and right exp MWFRS for I grip DOL=1.3 Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. Gable require Gable studs * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 1.	7-10; Vult=150mp bh; TCDL=6.0psf; E i; Enclosed; MWFF -1-0 to 3-1-0, Inter ver left and right ex osed;C-C for mem reactions shown; L and for wind loads ds exposed to win a Industry Gable En alified building des 7-10; Pr=20.0 psf ate DOL=1.15; Pg .9 psf (flat roof snd .15); Category II; E snow loads have b es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withsta	h (3-sec 3CDL=6 3S (envi- ior (1) 3 (posed) bers an umber I in the pi d (norm and Deta igner as (roof liv g=20.0 p bw: Lum Exp B; F een cor or chor 5 for a liv where (by oth anding 6	ond gust) .0psf; h=25ft elope) and C -1-0 to 21-2-; end vertical d forces & DOL=1.60 pla ane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb ber DOL=1.1 ully Exp.; isidered for th d bearing. e load of 20.0, a rectangle reen the bottt DL = 10.0psi ers) of truss t 1 lb uplift at j	C C 12 left uss), ble, Pl 1. er 5 nis Opsf om oont		Continue.		SEA 4584	ROLING BURNES	Annumper.

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL7	Valley	1	1	Job Reference (optional)	150198606

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:02:02 ID:cwRbN0xf0oKAqFYo0EC2sdztKdI-MLN6wN7A8b2kRELWrZgdtjAyq0vyvdWHDhPl8Hzm8uJ

February 13,2022

818 Soundside Road Edenton, NC 27932 Page: 1

14-0-6

F

Scale = 1:74.2

Plate Offsets (X, Y): [8:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.14 0.29	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt All bearings 14-7-8. Max Horiz 1=468 (LC Max Uplift All uplift 1 1, 10 exce 9=-158 (L Max Grav All reaction (s) 1, 7 ex 9=439 (LC)	t* 6-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 6-7, 4-8 C 10) 00 (lb) or less at join apt 7=-234 (LC 10), C 13) uns 250 (lb) or less at cept 8=353 (LC 25), C 24), 10=325 (LC 24)	2) 3) 4) 5) 6) t(s) 7) t joint 4) 50	only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P Plate DOL=1 Ct=1.10 Gable requir Gable studs * This truss H on the bottor 3-06-00 tall H chord and ar Provide mecc bearing plate joint(s) 1.	ads exposed to wind loads i adds exposed to wind d Industry Gable Ei alified building des 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof sm 1.15); Category II; E es continuous bott spaced at 4-0-0 oc nas been designed n chord in all areas by 2-00-00 wide wil y other members, hanical connection e capable of withsta	d (norm nd Deta signer as (roof liv g=20.0 p ow: Lum Exp B; F om chor : for a liv s where I fit betv with BC (by oth anding 1	ale of the face) ils as applicat s per ANSI/TP e load: Lumbe osf (ground iber DOL=1.1! ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf. ers) of truss to 00 lb uplift at	ss sle, sle, er 5 5 ppsf om 5						
FORCES TOP CHORD BOT CHORD WEBS 1) Wind: ASC Vasd=119 Cat. II; Ext Exterior (2 zone; cant and right e MWFRS fr grip DOL=	(lb) - Max. Comp./M: (lb) or less except w 1-2=-695/702, 2-3=- 7-11=-479/424 1-10=-243/273, 9-10 3-9=-373/249, 2-10= 4-12=-398/252, 4-11 11-12=-358/385 CE 7-10; Vult=150mph mph; TCDL=6.0psf; Bt o B; Enclosed; MWFR 0 0-1-0 to 3-4-4, Interio liever left and right exp exposed;C-C for memb or reactions shown; Lu 1.33	ax. Ten All forces 2 hen shown. 537/571, 3-4=-347/3)=-243/266, 8-9=-243 312/209, =-284/300, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-10 ro (1) 3-4-4 to 14-6-1 bors and forces & mber DOL=1.60 plat	250 83, 3/266 2 2 eft te							O THIMM		SEA 4584	ROZ NARAS	Junum un

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL8	Valley	1	1	Job Reference (optional)	150198607

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:27 $ID:qopzYyF1XyNzJzPBdlexINztK_s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

12-5-8

Scale	_	1.51
Scale	_	1.01

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.79 0.22 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 6=31/12-(8=264/12 10=42/12 Max Horiz 10=293 (I Max Uplift 6=-83 (LC 8=-18 (LC 10=-35 (L Max Grav 6=81 (LC 8=309 (Ld 10=130 (I	athing directly applie cept end verticals. applied or 6-0-0 oc 5-8, 7=252/12-5-8, 5-8, 9=236/12-5-8, 5-8 C 12) 14), 7=-151 (LC 15 C 15), 9=-107 (LC 15 C 13) 11), 7=343 (LC 28), C 2), 9=279 (LC 2), C 12)	2) 3) d or 4) 5) 6) 9), 7) 8)	Truss desig only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. Gable requir Truss to be f braced agair Gable studs * This truss f on the bottor 3-06-00 tall k chord and ar	ned for wind load ids exposed to v d Industry Gable ialified building of 7-10; Pr=20.0 g late DOL=1.15); 3.9 psf (flat roof f 1.15); Category I snow loads have es continuous br ully sheathed fro st lateral mover spaced at 4-0-0 has been design m chord in all are by 2-00-00 wide by other member	ds in the p vind (norm End Deta lesigner a: osf (roof liv Pg=20.0 ¢ snow: Lum I; Exp B; F e been cor bottom chor om one fac nent (i.e. d oc. ed for a liv asa where will fit betv 's.	lane of the tru ial to the face ils as applica s per ANSI/TI re load: Lumb sof (ground ber DOL=1.1 fully Exp.; msidered for the d bearing. se or securely liagonal web) re load of 20.0 a rectangle veen the bott	uss), ble, PI 1. er 5 his Dpsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-10=-151/125, 1-2= 3-4=-373/375, 4-5=-	-429/389, 2-3=-379/ 170/167, 5-6=-93/87	356,								. ("TH CA	RO
BOT CHORD	9-10=-143/162, 8-9= 6-7=-157/172	=-143/162, 7-8=-157/	172,							\int	A.	ORIFESS	10:1
WEBS	3-8=-227/152, 2-9=-	214/184, 4-7=-396/3	01								N/V	· · · · ·	
NOTES		(2 second suct)										× 0-1	, N
1) Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 12-3-12 z vertical lef forces & M DOL=1.60	CE /-10; Vult=150mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) 0-1-12 to 3-1-12, Intrope; cantilever left and ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- erior (1) 3-1-12 to right exposed ; end C for members and hown; Lumber	С							111115	N. M. M.	SEA 4584	L 14 EER.SC

H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL9	Valley	1	1	Job Reference (optional)	150198608

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:02:45 ID:q4LO6mShXBXZsaCS7qSwxyztK_b-bdTMx4e80pTd6r8ns5xi6oSG?MbPU4rc6tKW8Hzm8te

Page: 1

Scale = 1:43.7

Loading TCLL (roof) (psf) 200 Spacing Plate Grip DOL 2-0-0 1.15 CSI TC 0.42 DEFL Ver(TL) in (loc) Videf L/d PLATES GRIP Now (PIPg) 13.97.00 Lumber DOL 1.15 BC 0.18 WB 0.24 Ver(TL) n/a - n/a 999 MT20 244/190 BCLL 0.00 Rep Stress Incr YES WB 0.24 Ver(TL) 0.00 8 n/a n/a 999 MT20 244/190 BCLL 0.00 2x4 SP No.2 Code IRC2015/TPI2014 Matrix-MSH Weight: 46 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Structural wood sheating directly applied or 6-0-0 oc bracing. 7 This taba DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate Structural wood sheating directly applied or 6-0-0 oc fracing. 6 Gable stude spaced at 4-0-0 oc. 7 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 oc putil upift 100 (lb) or less at joint(s) 1, 8 except 6=-131 (LC 28), 8-399 (LC 2) FT = 1293 (LC 12) FT = 1203 (LC 12) FT = 1203 (LC 12			i			· · · · · ·								
Topow (PP/Pg) 13.9/20.1 Lumber DOL 1.15 BC 0.18 Vert(T) n/a - n/a 999 mile Links TCDL 10.0 Rep Stress Incr YES WB 0.24 Vert(T) n/a - n/a 999 Mile Weight: 46 lb FT = 20% LUMBER 10.0 TCL: ASCE 7-10; Pr=20.0 psf (root live load: Lumber Weight: 46 lb FT = 20% LUMBER 30 TCL: ASCE 7-10; Pr=20.0 psf (ground snow; Pr=3.3 psf (flat roof snow: Lumber DOL=1.15; Preacting Preacting<	Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI TC	0 42	DEFL	in n/a	(loc)	l/defl n/a	L/d	PLATES MT20	GRIP 244/190
Show (in fig) 10.02 Euhole Dot FT 10.0 Euhole Dot FT Euhole Dot FT 10.0 E	Spow (Pf/Pg)	13 9/20 0		1.15		BC	0.42	Vort(TL)	n/a	_	n/a	000	11120	244/100
BCLL 0.0* Codes into income Incode codes into incodes income Incode codes into incodes income Incode codes into incodes inco		10.0/20.0	Ren Stress Incr	VES		WB	0.10	Horiz(TL)	0.00	8	n/a	n/a		
BCDL 0.0 0.00 Weight 46 lb FT = 20% UMBER 0.0 0.0 Weight: 46 lb FT = 20% ULMBER 2x4 SP No.2 0.0	BCU	0.0*	Code	IRC2014	5/TPI2014	Matrix-MSH	0.24		0.00	0	n/a	Π/α		
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof ive load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. 3) TCLL: ASCE 7-10; Pr=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 BRACING TOP CHORD BRACING (b) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=339 (LC 2) 3) TCLL: ASCE 7-10; Pr=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=339 (LC 2) 3) TCLL: ASCE 7-10; Pr=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 4) Unbalanced connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=175. FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 7) N accept (jt=lb) 6=130, 7=175. TOP CHORD 1-8=-126/282 M and may then the top top M accept 1=26/22 M accept 1=26/22	BCDL	10.0	Code	11(0201)	J/1112014	Matrix-WOIT							Weight: 46 lb	FT = 20%
LUMBER 3) TCLL: ASCE 7-10, pr=20.0 psf (root live load: Lumber TOP CHORD 2x4 SP No.2 DDL=1.15 Plate DDL=1.15 WEBS 2x4 SP No.3 Plate DDL=1.15 Plate DDL=1.15 OTHERS 2x4 SP No.3 Ct=1.10 BRACING Ct=1.10 Unbalanced snow loads have been considered for this design. Gable requires continuous bottom chord bearing. Gable requires continuous bottom chord bearing. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc brinzing. Sale requires continuous bottom chord bearing. BOT CHORD All bearings 9-1-3. (ib) - Max Horiz 1=230 (LC 12) Sale studies spaced at 4-0-0 oc. (ib) - Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 6=-131 (LC 29), 7=-175, (LC 15) Browide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=-175. FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=339 (J2G 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) C 28), 8=339 (J3G 6, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-128/282						· · · · · · · · · ·				-				
TOP CHORD 2x4 SP No.2 DOL=1.15 Field DOL=1.15, Person Poll=1.15, Person Poll=1.15 BOT CHORD 2x4 SP No.3 snow; PI=13.9 ps (filts roof snow: Lumber DOL=1.15) CHERS 2x4 SP No.3 ct=1.10 BRACING	LUMBER			3)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumb	er					
BOI CHORD 24 SP No.3 OTHERS 24 SP No.3 OTHERS 24 SP No.3 OTHERS 24 SP No.3 OTHERS 24 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS All bearings 9-1-3. (b) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (b) or less at joint(s) 1, 8 except 6=-131 (LC 29), 7=-175 Max Grav All reactions 250 (b) or less at joint(s) 1, 6 except 7=356 (LC 28), 8=399 (LC 12) Max Grav All reactions 250 (b) or less at joint(s) TOP CHORD 1-2=-437/353, 2-3=-390/390, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282	TOP CHORD	2x4 SP No.2			DUL=1.15 P	ale DOL=1.15); P(g=20.0 μ	bsi (ground	E					
 WEBS 2X4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 cc bracing. REACTIONS All bearings 9-1-3. (lb) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (b) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 Cate study space dat 4-0-0 cc. Cable study space dat 4-0-0 cc. Gable study space dat 4-0-0 cc. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 BOT CHORD 1-8=-126/282 	BOLCHORD	2x4 SP No.2			Plate DOI = 1	15): Category II: F	JW. LUII Evo B. E		5					
OTHERS 2/4/5 P N0.3 BRACING For CHORD BRACING 6-0.0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS All bearings 9-1-3. (lb) - Max Horiz 1-230 (LC 12) Max Uplif All uplif 100 (lb) or less at joint (s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less etapoly TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261	WEBS	2X4 SP No.3			$C_{t=1}$ 10	. 15), Calegoly II, I	_лр В, Г	ully Lxp.,						
BRACING 1/0 CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. 0/0 cepurlins, except end verticals. 0/0 cepurlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. Gable studs spaced at 4-0-0 oc. 0/0 cepurlins, except end verticals. REACTIONS All bearings 9-1-3. Gable studs spaced at 4-0-0 oc. 0/0 cepurlins, except end verticals. (ib) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (lb) or less at joint (s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) 3/06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=175. 8/0 FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 1/0 except 7=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 0/0 except 7=-390/396, 3-11=-267/229, 4-11=-252/261	UTHERS	2X4 SP N0.3		4)	Unbalanced	snow loads have h	neen cor	sidered for t	his					
 TOP CHORD Structural wood sheating directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS All bearings 9-1-3. (Ib) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (lb) or less at joint(s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-128/282 Cable requires continuous bottom chord bearing. Gable requires continuous bottom chord na la reas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=175. FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-8=-128/282 	BRACING	o		. ''	design.				110					
 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS All bearings 9-1-3. (lb) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (lb) or less at joint(s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 	TOP CHORD	Structural wood she	athing directly applie	ed or 5)	Gable require	es continuous botto	om chor	d bearing.						
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=175. * FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-8=-426/282 BOT CHORD 1-8=-126/282 	BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	6)	Gable studs	spaced at 4-0-0 oc								
REACTIONS All bearings 9-1-3. on the bottom chord in all areas where a rectangle (lb) - Max Horiz 1=230 (LC 12) a.06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift All uplift 100 (lb) or less at joint(s) 1, 8 except 6=-131 (LC 29), 7=-175 B.06-00 tall by 2-00-00 wide will fit between the bottom Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (jt=lb) 6=130, 7=175. FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282		bracing.		7)	* This truss h	nas been designed	for a liv	e load of 20.0	Opsf					
 (ib) - Max Horiz 1=230 (LC 12) Max Uplift All uplift 100 (lb) or less at joint (s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 	REACTIONS	All bearings 9-1-3			on the bottor	n chord in all areas	s where	a rectangle						
 Max Uplift All uplift 100 (lb) or less at joint(s) 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 	(lb) -	Max Horiz 1=230 (L0	C 12)		3-06-00 tall b	y 2-00-00 wide wil	ll fit betv	veen the botte	om					
 1, 8 except 6=-131 (LC 29), 7=-175 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 	()	Max Uplift All uplift 1	00 (lb) or less at ioin	nt(s)	chord and an	ly other members.	(h., ath							
(LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282		1, 8 excer	ot 6=-131 (LC 29), 7=	=-175 8)	Provide med	nanical connection	i (by oth anding 1	00 lb uplift of	0					
Max Grav All reactions 250 (lb) or less at joint (s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282		(LC 15)			ioint(s) 1 8 e	vcent (it-lb) 6-130	1 7-17F							
(s) 1, 6 except 7=356 (LC 28), 8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282		Max Grav All reaction	ons 250 (lb) or less at	it joint	joint(3) 1, 0 e	soept (jt=ib) 0=130	5, 7–175							
8=399 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 WITTED 1-8=-126/282		(s) 1, 6 ex	cept 7=356 (LC 28),	,										
FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282 WITTED 1-8=-126/282		8=399 (LC	C 2)											
(b) or less except when shown. TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282	FORCES	(lb) - Max. Comp./M	ax. Ten All forces 2	250										
TOP CHORD 1-2=-437/353, 2-3=-390/396, 3-11=-267/229, 4-11=-252/261 BOT CHORD 1-8=-126/282		(lb) or less except w	hen shown.											
4-11=-252/261 BOT CHORD 1-8=-126/282	TOP CHORD	1-2=-437/353, 2-3=-	390/396, 3-11=-267/	/229,										
BUTCHORD 1-8=-126/282		4-11=-252/261											minin	1111
	BOLCHORD	1-8=-126/282	405/404									6	I'L CA	Pall
WEBS 3-6=-342/221, 4-1=-465)/424	WEBS	3-8=-342/227, 4-7=-	485/424								1	1	A	PULL.
	NUIES		(2 accord suct)									*	O`FES\$	10 in Nation
Vande 110 mbit 17 CPU = 6 Onst ReCPL = 6 Onst to 25th	I) Wind: ASC	r = 7-10; Vuit=150mpn												Survey
Vasue i Temipri, TODLe-o.opsi, Biodle-o.opsi, Tiezon, Cat III Exp 8: Englosed: MWEPS (envelope) and C-C		B: Enclosed: MW/ER	S (envelope) and C-(C								() (:2	K : 3
Exterior (2) 0-1-0 to 2-9-13 to 9-0-7	Exterior (2	0.0-1-0 to 2-9-13 Inter	for (1) 2-9-13 to 9-0-	-7								8	CEA	1 1 2
zone: cantilever left and right exposed : end vertical left	zone: cant	ilever left and right ext	osed : end vertical l	left							-	:	SEA	- : :
and right exposed;C-C for members and forces &	and right e	exposed;C-C for memb	pers and forces &								=	:	4584	4 : =
MWFRS for reactions shown; Lumber DOL=1.60 plate	MWFRS fo	or reactions shown; Lu	mber DOL=1.60 plat	te							-			
grip DOL=1.33	grip DOL=	1.33												1. 1. 2. 3
2) Truss designed for wind loads in the plane of the truss	2) Truss desi	gned for wind loads in	the plane of the trus	SS								- 7	L'SNOW	EFR. ON
only. For studs exposed to wind (normal to the face),	only. For s	studs exposed to wind	(normal to the face)),								11	ON HIN	S. S.
see Standard Industry Gable End Details as applicable,	see Standa	ard Industry Gable En	d Details as applicab	DIE,									TEW I	OHM
or consult qualified building designer as per ANSI/TPLT.	or consult	quained building desig	grier as per ANSI/TP	-1 1.									11111	unin .
Echnicary 12 2022													Eebruan	13 2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL10	Valley	2	1	Job Reference (optional)	150198609

5-2-3

2x4 u 8 2

Carter Components (Sanford), Sanford, NC - 27332

TCDL

BCLL

BCDL

WEBS

WEBS

2)

3)

grip DOL=1.33

Ct=1.10

MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.;

Run: 8 53 E. Jan. 6 2022 Print: 8 530 E. Jan. 6 2022 MiTek Industries. Inc. Fri Feb 11 17:02:57 ID:Mtn0vQS3mtOiEQdGZ7whPlztK_c-FxCuSBogBV_wYh24Zd9WcKyKBBj9IYbNslE9Zbzm8tS

3

2x4 🛚

4

4-4-1

l/defl

n/a 999

n/a 999

n/a n/a

(loc)

4

L/d

PLATES

Weight: 25 lb

MT20

GRIP

244/190

FT = 20%

Page: 1

12 10 ∟ Р 5 2x4 II 2x4 II 2x4 🖌 5-2-3 Scale = 1:31.2 Loading Spacing 2-0-0 CSI DEFL (psf) in TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.34 Vert(LL) n/a BC Snow (Pf/Pg) 13 9/20 0 Lumber DOL 1 15 0.06 Vert(TL) n/a 10.0 Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 LUMBER Gable requires continuous bottom chord bearing. 4) 5) Gable studs spaced at 4-0-0 oc. TOP CHORD 2x4 SP No.2 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf BOT CHORD 6) on the bottom chord in all areas where a rectangle 2x4 SP No.3 3-06-00 tall by 2-00-00 wide will fit between the bottom OTHERS 2x4 SP No.3 chord and any other members. BRACING Provide mechanical connection (by others) of truss to 7) TOP CHORD Structural wood sheathing directly applied or bearing plate capable of withstanding 44 lb uplift at joint 5-2-3 oc purlins, except end verticals. 4, 15 lb uplift at joint 1 and 101 lb uplift at joint 5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing REACTIONS (size) 1=5-2-3, 4=5-2-3, 5=5-2-3 Max Horiz 1=162 (LC 10) 1=-15 (LC 9), 4=-44 (LC 10), Max Uplift 5=-101 (LC 13) 1=117 (LC 25), 4=94 (LC 24), Max Grav 5=278 (LC 24) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-315/293 2-5=-266/224 NOTES 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces &

4-4-1

 \cap Manual and and a start of the s Summer in SEAL 5844 mmm February 13,2022

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL11	Valley	1	1	Job Reference (optional)	150198610

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:03:56 ID:Mtn0vQ\$3mtOiEQdGZ7whPlztK_c-0HGCrMVgldPY7m3QWWjMVmuK8zp0d8m3QQ0n7gzm8sX Page: 1

Scale = 1:50.5

Plate Offsets (X, Y): [5:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.24 0.41	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. All bearings 9-2-3. Max Horiz 1=298 (LC Max Uplift All uplift 1 except 5= 13), 7=-17 Max Grav All reactio (s) 1, 5 ex 7=506 (LC	athing directly applie cept end verticals. applied or 6-0-0 oc C 10) 00 (lb) or less at join -263 (LC 25), 6=-133 '2 (LC 13) ns 250 (lb) or less at cept 6=431 (LC 24), C 24)	3) d or 5) 6) 7) t(s) 1 3 (LC : joint	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Gable studs * This truss f on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate joint(s) 1 exc	7-10; Pr=20.0 psl late DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; I es continuous bott spaced at 4-0-0 of nas been designed n chord in all area by 2-00-00 wide wi y other members, hanical connectior capable of withst ept (jt=lb) 5=262,	f (roof liv g=20.0) ow: Lurr Exp B; F oom chor c. I for a liv s where II fit betv with BC n (by oth anding 1 7=171, 6	e load: Lumbi ssf (ground iber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the bottc DL = 10.0psf ers) of truss to 00 lb uplift at b=133.	er 5 Dpsf Dm D						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 Zone; can and right (MWFRS f grip DOL= 2) Truss des only. For see Stand or consult	 (lb) - Max. Comp./Ma (lb) or less except wi 1-10=-517/473, 2-10 1-7=-222/333 2-7=-426/312, 3-6= CE 7-10; Vult=150mph Omph; TCDL=6.0psf; B(p B; Enclosed; MWFR3; 2) 0-0-5 to 3-0-5, Interici tilever left and right exg exposed; C-C for memb or reactions shown; Lu =1.33 igned for wind loads in studs exposed to wind qualified building desir 	ax. Ten All forces 2 hen shown. =-490/503, 2-3=-288 469/425 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C or (1) 3-0-5 to 9-0-12 bosed ; end vertical livers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	250 5/282 C eft e s , le, l 1.							Continue		SEA 4584	ROLIN L 4 EER.GO	and annunning

February 13,2022

ENGINEERING BY EREPACEO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL12	Valley	1	1	Job Reference (optional)	150198611

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:21:19 ID:Mtn0vQS3mtOiEQdGZ7whPlztK_c-_xnVl?7vg4pZl2lt73xxGjbZ1Pp9Vx3bGCATFjzm8cE

Page: 1

February 13,2022

818 Soundside Road Edenton, NC 27932

7-2-3 2x4 II 3 ø 2x4 II 2 6-0-1 6-0-1 8 12 10 Г 1 0-0-4 4 5 2x4 II 2x4 II 2x4 🍫 7-2-3

Scale = 1:38.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.73 0.11 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directh bracing.	eathing directly applie ccept end verticals. / applied or 10-0-0 oc	3) 4) d or 5) 6)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno. .15); Category II; E es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members	(roof liv =20.0 p w: Lum xp B; F om chor for a liv where l fit betw	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto	er 5 Opsf om					
REACTIONS 1=7-2-3, 4=7-2-3, 5=7-2-3 Max Horiz 1=7-2-3, 4=7-2-3, 5=7-2-3 Max Horiz 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 4, 22 lb uplift at joint 5. Max Grav 1=165 (LC 25), 4=-131 (LC 24), 5=392 (LC 24) 220 (LC 24)													
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=115 Cat. II; Ex Exterior (2 zone; can and right e MWFRS f grip DOL= 2) Truss des only. For see Stand or consult	(lb) - Max. Comp./N (lb) or less except v 1-8=-426/383, 2-8= 1-5=-176/253 2-5=-375/297 CE 7-10; Vult=150mpl mph; TCDL=6.0ps; E p B; Enclosed; MWFF p B; Enclosed; MWFF p B; Enclosed; MWFF j 0-0-5 to 3-0-5, Inter tilever left and right ex exposed; C-C for mem or reactions shown; L =1.33 igned for wind loads i studs exposed to win lard Industry Gable En qualified building des	lax. 1 en All forces 2 /hen shown. -407/407 (CDL=6.0psf; h=25ff; S (envelope) and C-C or (1) 3-0-5 to 7-0-12 posed ; end vertical lubers and forces & umber DOL=1.60 plat in the plane of the trus d (normal to the face), id Details as applicab igner as per ANSI/TP	C eft s le, le, l 1.							Contraction of the second seco		SEA 4584	L DHNSUIT

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL13	Valley	1	1	Job Reference (optional)	150198612

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:29 ID:WhQK2gmpmGs00bQAEB1F1LztK7E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	3-11-4	7-7-0	7-10-8
Г	3-11-4	3-7-12	0-3-8

Scale = 1:62.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.17 0.95	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 4=101/7-1 6=101/7-1 Max Horiz 6=371 (LC 6=229 (L Max Grav 4=193 (LC 6=468 (LC	athing directly applic cept end verticals. applied or 7-3-7 oc 3-4 10-8, 5=312/7-10-8, 10-8 C 10) C 10), 5=-387 (LC 10 C 9) C 24), 5=623 (LC 24 C 12)	2) 3) ed or 4) 5) 6) 7))),	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requirt Truss to be f braced again Gable studs * This truss F on the bottor 3-06-00 tall b chord and ar	hed for wind loads to exposed to wind a Industry Gable E alified building des 7-10; Pr=20.0 psf late DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; I es continuous bott ully sheathed from ist lateral moveme spaced at 4-0-0 oc has been designed in chord in all areas by 2-00-00 wide will by other members,	in the p d (norm nd Deta signer a: (roof liv g=20.0 p ow: Lum Exp B; F om chor one fac nt (i.e. d : : for a liv s where Il fit betv with BC	ane of the tru al to the face Is as applical sper ANSI/TF e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e or securely iagonal web) e load of 20.0 a rectangle veen the botto DL = 10.0psf	uss), ble, PI 1. er 5 5 0psf om					
FORCES	(lb) - Maximum Com Tension 1-6=-757/728, 1-2=-	pression/Maximum 599/631, 2-3=-116/1	114,										90.
BOT CHORD WEBS	4-8=-156/114, 3-8=- 5-6=-660/682, 4-5=- 5-7=-1050/900, 2-7= 2-8=-263/289	160/117 126/138 =-607/464, 1-7=-745	/733,								A	ORTH CA	ROLIN
NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2)	CE 7-10; Vult=150mph pmph; TCDL=6.0psf; Bi p B; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- arior (1) 3-1-12 to 7-	-C 8-12								Ch.	SEA 4584	L 14

Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 7-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL14	Valley	1	1	Job Reference (optional)	150198613

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Fri Feb 11 10:50:30 ID:?t_iF0nRXa_tdl?NnuYUZZztK7D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-4	7-7-0	7-10-8
3-11-4	3-7-12	0-3-8

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:56

(psf)

20.0

10.0

0.0

10.0

13 9/20 0

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

bracing.

Tension

1 Row at midpt

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

grip DOL=1.33

WEBS

NOTES

2)

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL15	Valley	1	1	Job Reference (optional)	150198614

7-2-2

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:31 ID:?t_iF0nRXa_tdl?NnuYUZZztK7D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2 8 12 10 ⊏ Δ 5 2x4 🛛 2x4 2x4 II 7-2-2 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.73 Vert(LL) n/a 999 MT20 244/190 n/a 1 15 BC Lumber DOL 0.11 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a Code IRC2015/TPI2014 Matrix-MP Weight: 35 lb FT = 20%TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 Gable requires continuous bottom chord bearing. 4) 5) Gable studs spaced at 4-0-0 oc. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 22 lb uplift at joint 1. annun ning VIIII WARNAND SEAL 5844 mmm February 13,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a uses system, before use, include use to building designer must vering the approximation to design hot the overfall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

(psf) 20.0 13 9/20 0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc 1=92/7-2-2, 4=87/7-2-2, 5=297/7-2-2 Max Horiz 1=230 (LC 10) Max Uplift 1=-22 (LC 9), 4=-62 (LC 10), 5=-146 (LC 13) 1=165 (LC 25), 4=131 (LC 24), 5=391 (LC 24) (lb) - Maximum Compression/Maximum 1-2=-425/406, 2-3=-214/207, 3-4=-210/187 1-5=-176/254, 4-5=-130/141 2-5=-374/296 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

2x4 🛛 3 2x4 🛛 0-0-9 6-0-0

Scale	- 1	1.40	Λ	

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

1)

2)

NOTES

TOP CHORD

BOT CHORD

grip DOL=1.33

REACTIONS (lb/size)

bracing.

Max Grav

Tension

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL16	Valley	1	1	Job Reference (optional)	150198615

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:25:44 $ID:T4Y5TMo3lu6kFvaZLc3j6mztK7C-jwlgMcL8GVCz2m3p8DB4Vb3yAEG55p6bCwt_2szm8Y5$

Page: 1

Scale = 1:29.8

Loading TCLL (roof)	(r 2	osf) 0.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.28	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDI	13.9/2	0.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	-	n/a	999 n/a		
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MP	0.00		0.00	·	1.70			
BCDL	1	0.0						-					Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural woo 4-9-5 oc purlin	od shea	athing directly applie	5) 6) 7) d or	Gable studs * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 4, 13 lb uplift	spaced at 4-0-0 oc. has been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta at joint 1 and 91 lb	for a liv where fit betv (by oth nding 4 uplift a	e load of 20.0 a rectangle veen the botto ers) of truss to 1 lb uplift at jo t joint 5.	psf om o pint					
BOT CHORD	OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.													
REACTIONS	EACTIONS (size) $1=4-9-5, 4=4-9-5, 5=4-9-5$ Max Horiz $1=148$ (LC 10) Max Uplift $1=-13$ (LC 9), $4=-41$ (LC 10), $5=-91$ (LC 13) Max Grav Max Grav $1=107$ (LC 25), $4=86$ (LC 24), $5=255$ (LC 24)													
FORCES	(lb) - Max. Cor (lb) or less exc	mp./Ma cept wh	ax. Ten All forces 2 nen shown.	250										
TOP CHORD	1-2=-288/268													
 NOTES Wind: ASt Vasd=119 Cat. II; Ex Exterior (2 zone; can and right (MWFRS f grip DOL= Truss des only. For see Stanc or consult TCLL: AS DOL=1.15 snow); Pf: Plate DOL 	CE 7-10; Vult=15 Omph; TCDL=6.0 pp B; Enclosed; M 2) 0-0-5 to 3-0-5, tilever left and rig exposed; C-C for or reactions show- 1.33 igned for wind lo studs exposed to lard Industry Gat qualified building CE 7-10; Pr=20.0 5 Plate DOL=1.1 =13.9 psf (flat roo _=1.15); Categor	50mph psf; BC INTERS Interio ght exp memb- wn; Lur ads in o wind ole Enc g desig 0 psf (r 5); Pg= of snow y II; Ex	(3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C-(r (1) 3-0-5 to 4-7-14 losed; end vertical le ers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) 1 Details as applicab giner as per ANSI/TP coof live load: Lumbe 20.0 psf (ground v: Lumber DOL=1.15 p B; Fully Exp.;	C eft s le, l 1. sr 5							Continue		SEA 4584	ROLING INTERNET
4) Gable req	uires continuous	botton	n chord bearing.										Thinn 1	mini

4	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL17	Valley	1	1	Job Reference (optional)	150198616

2-4-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:25:59 ID:T4Y5TMo3lu6kFvaZLc3j6mztK7C-npiLWIWYk65qL4ihXsyccmBaoHND6blofm?H3Uzm8Xs

2x4 🛛

Page: 1

2x4 🍫

Scale = 1:21.7

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999			
BCU	10.0	Code	YES IRC2015/TPI2014	WB Matrix-MP	0.00	Horiz(IL)	0.00	3	n/a	n/a			
BCDL	10.0	oode	1102013/1112014	Matrix Wi							Weight: 9 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		 Provide me bearing plat and 3 lb u 	chanical connection e capable of with plift at joint 1.	on (by oth standing 2	ers) of truss t ?7 lb uplift at j	oint						
BRACING	RACING												
	2-4-8 oc purlins, except end verticals.												
BOT CHORD	OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS	(size) 1=2-4-8, 3 Max Horiz 1=67 (LC Max Uplift 1=-3 (LC Max Grav 1=89 (LC	3=2-4-8 10) 13), 3=-27 (LC 10) 2), 3=103 (LC 24)											
FORCES	(lb) - Max. Comp./Ma (lb) or less except w	ax. Ten All forces hen shown.	250										
NOTES 1) Wind: AS Vasd=119 Cat. II; Ex Exterior (2 vertical le forces & M DOL=1.60	CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; Bi yp B; Enclosed; MWFR 2) zone; cantilever left a ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber	C end										
 Truss des only. For see Stand or consult 	signed for wind loads in studs exposed to wind dard Industry Gable En-	the plane of the trus (normal to the face) d Details as application oner as per ANSI/TE	ss), ble, PI 1.) A	ORTH C	Stra Kein	
3) TCLL: AS DOL=1.15 snow); Pf Plate DOI Ct=1 10	of considict quanties building designer as per ANS/ FPT.) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15) Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct 4.10												
 4) Gable req 5) Gable stu 6) * This trus on the box 3-06-00 ta chord and 	uires continuous botto ds spaced at 4-0-0 oc. ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members.	m chord bearing. or a live load of 20.0 where a rectangle fit between the botto)psf om							N. A.	NOREW	NEER SOLUTION	

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	VL18	Valley	1	1	Job Reference (optional)	150198617	

Scale = 1:46.2

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:29:06 ID:4B5LV6kgHEpS2ftOAsfFAIzJJm2-pnV2lhnrhZfIHpVd_epShBRVLgBcQ94KfMog79zm8Ux Page: 1

February 13,2022

818 Soundside Road Edenton, NC 27932

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.21 0.16 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 13-3-8. Max Horiz 1=-170 (L Max Uplift All uplift 1 1, 5 excer (LC 13) Max Grav All reactio (s) 1, 5 ex 7=355 (LC (lb) - Max. Comp./Mi	athing directly applied applied or 10-0-0 oc C 9) 00 (lb) or less at joint ot 6=-176 (LC 14), 8= ns 250 (lb) or less at iccept 6=388 (LC 25), C 24), 8=394 (LC 24) ax. Ten All forces 2	4) d or 5) 6) 7) t(s) 8) -181 joint	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint(s) 1, 5 e	7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof snc .15); Category II; E es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y 2-00-00 wide will y other members, nanical connection capable of withsta xcept (jt=lb) 8=180	(roof liv =20.0 p w: Lum xp B; F om chor for a liv where fit betw with BC (by oth nding 1 , 6=175	e load: Lumb osf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 00 lb uplift at b.	er 5 Dpsf Com Co					
WEBS	(lb) or less except w 2-8=-390/299 4-6=-	hen shown. 386/296											
NOTES	20 000,200, 10	000,200											
 Unbalanc this desig Wind: AS Vasd=119 Cat. II; Ex Exterior (2 Exterior (2 zone; can and right MWFRS f grip DOL= Truss des only. For see Stanc or consult 	ed roof live loads have n. CE 7-10; Vult=150mph Pmph; TCDL=6.0psf; Bi pp B; Enclosed; MWFR: 2) 0-0-4 to 3-0-4, Interio 2) 0-0-4, Interio 2	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C or (1) 3-0-4 to 6-8-0, or (1) 9-8-0 to 13-3-12 posed ; end vertical levers and forces & mber DOL=1.60 plate the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	C 2 fft s le, 1.							Continue		SEA 4584	ROLL A ER.ONIN DHNSUIT

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL19	Valley	1	1	Job Reference (optional)	150198618

Run: 8 53 E. Jan. 6 2022 Print: 8 530 E. Jan. 6 2022 MiTek Industries. Inc. Fri Feb 11 17:29:29 ID:4B5LV6kgHEpS2ftOAsfFAIztJm2-eCOkaY3HHeY2XLm2qzjr72uPux?8JVQixRtORJzm8Ua

Page: 1

GRIP

244/190

FT = 20%

Ct=1.10

Gable requires continuous bottom chord bearing. 5)

on the bottom chord in all areas where a rectangle

6) Gable studs spaced at 4-0-0 oc. 7) * This truss has been designed for a live load of 20.0psf

9-11-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=9-11-8, 3=9-11-8, 4=9-11-8 Max Horiz 1=-126 (LC 9) Max Uplift 1=-29 (LC 29), 3=-27 (LC 28), 4=-156 (LC 13)

Structural wood sheathing directly applied or

(psf)

20.0

10.0

10.0

13 9/20 0

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

Max Grav 1=71 (LC 28), 3=73 (LC 29), 4=734 (LC 2) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-9=-188/277, 9-10=-157/288, 2-10=-156/319, 2-11=-153/315, 11-12=-154/284, 3-12=-173/273 BOT CHORD 1-4=-313/238. 3-4=-310/236 WEBS 2-4=-681/369

NOTES

Scale = 1:37.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

Snow (Pf/Pg)

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-0-0, Exterior (2) 5-0-0 to 8-0-0, Interior (1) 8-0-0 to 9-11-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1, 27 lb uplift at joint 3 and 156 lb uplift at joint 4.

A MANUTURIA Contraction of the SEAL mmm February 13,2022

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteers and property incorporate using the dust very are approached to test planteers and property incorporate using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL20	Valley	1	1	Job Reference (optional)	150198619

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:30:05 ID:hJhUYCIQyYsmaJ8USQ8PRVztJjR-a7aL8sVsoi5xstWzxXNIaeNbHSJUkqX0D1bliEzm8U0

Page: 1

Scale = 1:30.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9	3/20.0	Lumber DOL	1.15		BC	0.15	Vert(IL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES			0.07	Horiz(IL)	0.00	3	n/a	n/a		
BCLL		10.0	Code	IRC201	5/TPI2014	Matrix-MP							Woight: 26 lb	ET - 20%
BODL		10.0											Weight. 20 lb	F1 = 20 %
LUMBER				5)	Gable require	es continuous botto	om chor	d bearing.						
TOP CHORD	2x4 SP No.2	2		6)	Gable studs	spaced at 4-0-0 oc								
BOT CHORD	2x4 SP No.2	2		7)	* This truss h	as been designed	for a liv	e load of 20.0	pst					
OTHERS	2x4 SP No.3	3			3-06-00 tall b	v 2-00-00 wide will	l fit hetv	a reclarigie	m					
BRACING	Chrysternel		thing disectly applie	م م	chord and an	v other members.	i nit bett	veen the botte	,,,,,					
TOP CHORD	6-7-8 oc pur	000 SNE2	athing directly applie	ed or 8)	Provide mecl	nanical connection	(by oth	ers) of truss to	С					
BOT CHORD	Rigid ceiling	directly	applied or 6-0-0 oc		bearing plate	capable of withsta	inding 8	3 lb uplift at jo	oint					
	bracing.	,,			4.									
REACTIONS	(size) 1=	=6-7-8, 3	=6-7-8, 4=6-7-8											
	Max Horiz 1=	=-82 (LC	11)											
	Max Uplift 4	=-83 (LC	13)											
	Max Grav 1=	=67 (LC)	28), 3=69 (LC 29), 4	1=435										
FORCES	(L) Max C	-0 2) `omn /Mr		250										
TORGEO	(lb) or less e	except wh	nen shown.	200										
WEBS	2-4=-348/20)3												
NOTES														
1) Unbalanc	ed roof live loa	ids have	been considered for											
this desig	n.													
2) Wind: AS	CE 7-10; Vult=	150mph	(3-second gust)											
Vasd=119	9mph; ICDL=6	5.0pst; BC	DL=6.0pst; h=25ft;	<u>_</u>									mun	un,
Exterior ((p B; Enclosed; 2) 0-0-4 to 3-0-	, IVIVERS	s (envelope) and C-	C							_	. ("TH CA	Rollin
Exterior (2	2) 3-4-0 to 6-4-	0. Interio	r (1) 6-4-0 to 6-7-12								<u> </u>	1	R	N. S. Maria
zone; can	tilever left and	right exp	osed ; end vertical I	eft								Ea	U. FESP	ania mán
and right	exposed;C-C fo	or memb	ers and forces &									(\mathcal{N})		y vyv v v o
MWFRS	for reactions sh	nown; Lui	mber DOL=1.60 plat	te									× •	
grip DOL:	=1.33	La e de Se	4								=		SEA	Liz
3) Truss des	signed for wind	IDads In	(normal to the face)	SS							=		158/	и <u>;</u> =
see Stand	ard Industry G	able Enc	Details as applicat	, Ne							=		400-	TT
or consult	t qualified build	ling desid	iner as per ANSI/TP	911.							-		N	1. 2
4) TCLL: AS	CE 7-10; Pr=2	0.0 psf (r	oof live load: Lumbe	ər								-7	A. ENG	- CR .: R3
DOL=1.1	5 Plate DOL=1.	.15); Pg=	20.0 psf (ground									1	GIN	E.F. GUN
snow); Pf	=13.9 psf (flat r	roof snov	v: Lumber DOL=1.1	5								1	REIN	OHN
Plate DOI	L=1.15); Categ	ory II; Ex	р в; Fully Exp.;										The J	
C = 1.10													11111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL21	Valley	1	1	Job Reference (optional)	150198620

1-7-12

1-7-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:30:19 ID:hJhUYCIQyYsmaJ8USQ8PRVztJjR-AqQe4egeV?sxX1afITda9by0r57c0Bs3RD_1BQzm8To

3-0-1

1-4-5

3

Page: 1

2x4 🛛 2x4 🥠 2x4 💊

3-3-8

Scale - 1.24 5

Ocale = 1.24.0													
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI C 3C VB Astrix-MP	0.02 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	11(02013/11	12014	nati i A-ivii							Weight: 12 lb	FT = 20%
.UMBER FOP CHORD 30T CHORD 2THERS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=3-3-8, (Size) 1=3-3-8, (Construction) Max Horiz 1=-38 (LOC) Max Uplift 1=-2 (LOC)	athing directly applie applied or 6-0-0 oc 3=3-3-8, 4=3-3-8 2 11) 14), 3=-4 (LC 14), 4=	7) * 1 or 3- c 8) Pr d or 1,	This truss has the bottom c 06-00 tall by 2 lord and any o ovide mechar earing plate ca 4 lb uplift at jo	been designed f hord in all areas 2-00-00 wide will other members. nical connection apable of withstar oint 3 and 22 lb u	for a liv where fit betw (by oth nding 2 uplift at	e load of 20.0 a rectangle veen the botto ers) of truss t lb uplift at joi joint 4.	opsf om o int					
	Max Grav 1=49 (LC (LC 2)	28), 3=50 (LC 29), 4	=174										
ORCES	(ID) - Max. Comp./M (Ib) or less except w	ax. Ten All forces 2 hen shown.	250										
NOTES													
 Unbalance this design 	ed roof live loads have n.	been considered for											
 Wind: ASC Vasd=119r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 Truss desir 	CE 7-10; Vult=150mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left : t and right exposed;C- IWFRS for reactions s plate grip DOL=1.33 aned for wind loads in	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; c C for members and hown; Lumber	C Ind							C	te	ORTH CA	ROLIN
only. For s see Standa	studs exposed to wind ard Industry Gable En	d Details as applicab	, le,							1111		SEA	
 or consult of TCLL: ASC DOL=1.15 snow); Pf= Plate DOL: Ct=1.10 	Qualified building desi CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg: (13.9 psf (flat roof sno =1.15); Category II; E:	gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1 xp B; Fully Exp.;	5							1111	N. A.	4384 NOREW	EEP.ON
Gable requiredGable stud	uires continuous botto ls spaced at 4-0-0 oc.	m chord bearing.										Februar	y 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL22	Valley	2	1	Job Reference (optional)	150198621

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:34 ID:PpKWNyuW?pB2N_Ft0LkmMwztJaD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.4

Plate Offsets (X, Y): [1:0-3-7.Edge]. [12:0-0-8.0-3-0]

	X, 1). [1.0 0 7,Euge],	[12:0 0 0,0 0 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.17 0.52	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she: 5-6-0 oc purlins, exi Rigid ceiling directly bracing, Except: 8-2-11 oc bracing: 9	athing directly applied cept end verticals. applied or 10-0-0 oc -10.	1) d or 2)	Wind: ASCE Vasd=119mp Cat. II; Exp E Exterior (2) C zone; cantile and right exp MWFRS for grip DOL=1.; Truss desig only. For stu see Standard or consult qu	7-10; Vult=150m; pb; TCDL=6.0psf; 3; Enclosed; MWF p-1-12 to 3-1-12, Ir ver left and right e bosed;C-C for men reactions shown; I 33 ned for wind loads ids exposed to wird d Industry Gable E ialified building de:	oh (3-sec BCDL=6 RS (env nterior (1 exposed nbers an Lumber I in the p nd (norm ind Deta signer as	cond gust) .0psf; h=25ft; elope) and C-) 3-1-12 to 5-/ g end vertical I d forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANSI/TF	C 4-4 left te ss , ole, PI 1.						
REACTIONS	(lb/size) 6=24/5-6- 8=146/5-6 10=5/5-6- Max Horiz 10=285 (L Max Uplift 6=-235 (L 8=-87 (LC 10=-501 (Max Grav 6=161 (LC 8=209 (LC 10=763 (L	0, 7=77/5-6-0, 5-0, 9=102/5-6-0, 0 C 10) C 12), 7=-58 (LC 9), 13), 9=-621 (LC 10) LC 11) C 9), 7=181 (LC 12), 2 24), 9=506 (LC 11), C 10)	3) , 4) 5) , 6) 7)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Truss to be f braced agair Gable studs * This truss f	 7-10; Pr=20.0 psi late DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; es continuous bott ully sheathed from lateral moveme spaced at 2-0-0 or as been designec 	f (roof liv g=20.0 p ow: Lum Exp B; F com chor o one fac ent (i.e. d c. d for a liv	e load: Lumbo osf (ground ber DOL=1.1: ully Exp.; d bearing. e or securely iagonal web). e load of 20.0	er 5 Ipsf					10.	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,	on the bottor 3-06-00 tall b	n chord in all area by 2-00-00 wide wi	s where ill fit betv	a rectangle	, m		•		TH CA	Roilin	
TOP CHORD	1-10=-1426/1393, 1- 2-3=-401/410, 3-4=-2 6-12=-367/353, 5-12	·2=-503/503, 233/247, 4-5=-115/11 !=-110/101	16,	chord and ar	y other members.					C	TN	Whotes's	biski	م
BOT CHORD	9-10=-499/505, 8-9= 6-7=-109/118	-158/172, 7-8=-158/1	172,							11		SFA		1
WEBS NOTES	3-8=-271/216, 9-11= 2-11=-196/188, 7-13 4-13=-425/346, 1-11 4-12=-474/513, 12-1	-1201/1191, =-145/111, =-1114/1144, 3=-488/526								11111	R	4584	4 ER.O.	WIIIIII.
												Eebruan	0HN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL23	Valley	1	1	Job Reference (optional)	150198622

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:35 ID:MIW7xGK5XtkxhW?o7uNCpWztJZf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

4-0-14

Coolo	1.120
JUCAIE =	1429

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.86 0.51 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 30 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{l} 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.3} \\ 2x4 \ \text{SP No.3} \\ 3x4 \ \text{SP No.3} \\ \end{array}$	athing directly applie xcept end verticals. applied or 10-0-0 oc 14, 5=154/4-0-14, 14 C 10) C 12), 5=-222 (LC 10) C 11) C 10) C 10) C 10)	3) 4) d or 5) 6) 7) 8)	TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 All plates are Gable requiri Truss to be f braced again Gable studs * This truss t on the bottor 3-06-00 tall b chord and ar	7-10; Pr=20.0 ps ate DOL=1.15); F 8.9 psf (flat roof sr .15); Category II; MT20 plates unli- es continuous bot ully sheathed from st lateral movement spaced at 4-0-0 c ias been designe n chord in all area y 2-00-00 wide w y other members	of (roof live Pg=20.0 p now: Lum Exp B; F ess other tom choir n one fac ent (i.e. c c. d for a liva as where will fit betw s.	e load: Lumbo sf (ground iber DOL=1.1: 'ully Exp.; wise indicated d bearing. e or securely liagonal web). e load of 20.0 a rectangle veen the botto	er 5 d. psf m					
FORCES	(lb) - Maximum Com Tension 1-6=-374/318 1-2=-	pression/Maximum	55										
BOT CHORD	3-4=-136/121 5-6=-131/142, 4-5=-	131/142	,										
WEBS	2-5=-425/422											WHY CA	Pall
NOTES 1) Wind: ASC Vasd=119 Cat. II; Exp Exterior (2 zone; cant and right e MWFRS fc grip DOL= 2) Truss des only. For s see Standa or consult	CE 7-10; Vult=150mph mph; TCDL=6.0psf; B D B; Enclosed; MWFR) 0-1-12 to 3-1-12, Intri ilever left and right exp xposed; C-C for memb or reactions shown; Lu 1.33 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	(3-second gust) (CDL=6.0psf; h=25ft; S (envelope) and C- erior (1) 3-1-12 to 3-1 posed ; end vertical lo pers and forces & imber DOL=1.60 plat h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	C 1-2 eft e ss le, l 1.							Contraction	L'un P	SEA 4584	L LA CONTRACTOR

818 Soundside Road Edenton, NC 27932

February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL24	Valley	1	1	Job Reference (optional)	150198623

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:35 ID:MIW7xGK5XtkxhW?o7uNCpWztJZf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-3-1

Scale = 1:33.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.05 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood s 4-0-14 oc purlins Rigid ceiling direct bracing. (Ib/size) 1=59/4 5=173, Max Horiz 1=158 Max Uplift 1=-23 5=-104 Max Grav 1=118 5=234	heathing directly appli except end verticals. tly applied or 10-0-0 o -3-1, 4=45/4-3-1, 4-3-1 (LC 10) LC 9), 4=-50 (LC 10), (LC 13) (LC 25), 4=76 (LC 24) LC 24)	3) ed or 5) 6) c 7)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1.	7-10; Pr=20.0 psi late DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; es continuous bott spaced at 4-0-0 or has been designec n chord in all area by 2-00-00 wide wi by other members. hanical connectior e capable of withst	f (roof livy g=20.0 p ow: Lum Exp B; F com chor c. f for a liv s where ill fit betw n (by oth anding 2	e load: Lumb ssf (ground ber DOL=1.' ully Exp.; d bearing. e load of 20. a rectangle veen the bott ers) of truss 1 3 lb uplift at j	per 15 Opsf om ro oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=119 Cat. II; Ex Exterior (2 zone; cant and right e MWFRS fi grip DOL= 2) Truss des only. For see Stand or consult	(lb) - Maximum C Tension 1-2=-323/299, 2- 1-5=-138/163, 4- 2-5=-238/211 CE 7-10; Vult=150m mph; TCDL=6.0psf p B; Enclosed; MW 2) -0-2-3 to 2-9-13, 1 itiever left and right exposed;C-C for me or reactions shown; =1.33 signed for wind load studs exposed to w lard Industry Gable qualified building d	ompression/Maximum =-161/156, 3-4=-152/ =-92/99 ph (3-second gust) BCDL=6.0psf; h=-25ft; rRS (envelope) and C- terior (1) 2-9-13 to 3- exposed; end vertical mbers and forces & Lumber DOL=1.60 pla s in the plane of the tru nd (normal to the face End Details as applica signer as per ANSI/TI	141 ;-C 11-2 left ate Jss), ble, PI 1.							Continue		SEA 4584 February	EER. ON MANY MARK

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof	
22010064-A	VL25	Valley	1	1	Job Reference (optional)	150198624

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:36 ID:t0uvblv8m7Jv_8p3Z2F?u8ztJaC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

4-3-2

Scale	= 1:42.6
ooulo	- 1.42.0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(13.9/2	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MR	0.77 0.47 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 30 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wo 4-3-2 oc purli Rigid ceiling of bracing. (Ib/size) 4=: 6=: Max Horiz 6=: Max Uplift 4=: Max Grav 4=: 6=:	ood shea ins, exc directly 53/4-3-2 218 (LC -58 (LC -58 (LC -118 (L 83 (LC 253 (LC	athing directly appliec xept end verticals. applied or 10-0-0 oc 2, 5=162/4-3-2, 2 10) 12), 5=-208 (LC 10), C 11) 24), 5=299 (LC 24), 5 10)	3) 4) d or 5) 6) 7) 8)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 All plates are Gable requir Truss to be f braced agair Gable studs * This truss f on the bottor 3-06-00 tall b chord and ar	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snc .15); Category II; E MT20 plates unles es continuous bott ully sheathed from ist lateral movemer spaced at 4-0-0 oc nas been designed n chord in all areas by 2-00-00 wide wil ly other members.	(roof liv j=20.0 p ow: Lum Exp B; F om chor one fac nt (i.e. d for a liv where I fit betv	e load: Lumb osf (ground iber DOL=1.1 ully Exp.; wise indicate d bearing. e or securely iagonal web). e load of 20.0 a rectangle veen the botto	er 5 d. Dpsf om						
FORCES	(lb) - Maximu Tension	im Com	pression/Maximum												
TOP CHORD	1-6=-364/306 3-4=-142/127	6, 1-2=-4 7	472/433, 2-3=-162/16	61,											
BOT CHORD WEBS	5-6=-131/142 2-5=-420/415	2, 4-5=-´ 5	131/142										WH CA	Rout	
NOTES 1) Wind: ASC Vasd=119i Cat. II; Exp Extorior (2)	CE 7-10; Vult=1 mph; TCDL=6.0 b B; Enclosed; I	50mph 0psf; B0 MWFR\$	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C	, 6								Ô	REE	Nin	

Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 4zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GINEER SOUND February 13,20 THIMMOUTH PARTY

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof				
22010064-A	VL26	Valley	1	1	Job Reference (optional)	150198625			

Run: 8.53 E Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries, Inc. Fri Feb 11 17:30:53 ID:LCSHodvmXRSmcIOG7ImERLztJaB-AMTUDG4zUS87cGBCIcEYXmMIXokV_ZZ4FVDqOSzm8TG

Page: 1

4-3-1 2x4 🛛 3 le 2x4 II 8 4-3-5 4-3-5 2 12 12 ∟ 0 1 0-0-4 4 5 2x4 II 2x4 II 2x4 🅢

4-3-1

Scale = 1:30.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	12014	CSI TC BC WB Matrix-MP	0.32 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 4-3-1 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-3-1,4 Max Horiz 1=158 (LC Max Uplift 1=-25 (LC 5=-103 (L Max Grav 1=115 (LC 5=233 (LC (lb) - Max. Comp./M (lb) or less except w 1-2=-330/304	athing directly applie cept end verticals. applied or 10-0-0 oc 4=4-3-1, 5=4-3-1 C 10) S 9), 4=-51 (LC 10), C 13) C 25), 4=82 (LC 24), C 24) ax. Ten All forces 2 hen shown.	5) Ga 6) * T on 3-C chc 7) Prc be; d or 4, 2 ;	able studs s his truss h the botton 06-00 tall b ord and an ovide meck aring plate 25 lb uplift	spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withste at joint 1 and 103), for a liv s where Il fit betw I (by oth anding 5 Ib uplift	e load of 20.0 a rectangle veen the botto ers) of truss tr 1 lb uplift at jo at joint 5.	0psf om o oint				Weight. 22 ib	11 - 2078	
 Wind: ASI Vasd=119 Cat. II; EX Exterior (2 zone; can and right + MWFRS ff grip DOL= Truss des only. For see Stanc or consult TCLL: AS DOL=1.15 snow); Pf: Plate DOL Ct=1.10 Gable req 	CE 7-10; Vult=150mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR 2) 0-0-4 to 3-0-4, Interior tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33 igned for wind loads in studs exposed to wind lard Industry Gable En- qualified building desig CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg =13.9 psf (flat roof snov =1.15); Category II; E: uires continuous bottoo	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-tor r(1) 3-0-4 to 4-1-9 posed; end vertical I bers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; m chord bearing.	C eft ss le, l 1. er 5							Commen	Ann	SEA 4584	ROLU L 4	and an annun an

February 13,2022

ENGINEERING BY AMITEK ATfillar 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	VL27	Valley	1	1	Job Reference (optional)	150198626	

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:37 ID:DxiN2IMnAv9ga?z5Nw28T2ztJif-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-8

Scale = 1:31.6

Plate Offsets (X, Y): [6:0-4-3,0-1-8]

	, , , , , , , , , , , , , , , , , , , ,													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.11 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she: 3-4-8 oc purlins, exi Rigid ceiling directly bracing. (Ib/size) 4=42/3-4- 6=42/3-4- Max Horiz 6=125 (LC Max Uplift 4=-27 (LC 6=-33 (LC Max Grav 4=61 (LC 6=106 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 8, 5=125/3-4-8, 8 2 10) 10), 5=-96 (LC 13), 9 24), 5=189 (LC 24), 2 12)	3) 4) d or 5) 6) 7)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requir Truss to be f braced agair Gable studs * This truss F on the bottor 3-06-00 tall f chord and ar	57-10; Pr=20.0 p late DOL=1.15); 3.9 psf (flat roof s 1.15); Category II es continuous bo iully sheathed fro nst lateral movern spaced at 4-0-0 nas been designe n chord in all are by 2-00-00 wide w hy other members	sf (roof liv, Pg=20.0 p now: Lum ; Exp B; F ottom chor m one fac nent (i.e. d oc. ed for a liv, as where will fit betw s.	e load: Lumb sf (ground ber DOL=1.1 ully Exp.; d bearing. e or securely iagonal web). e load of 20.0 a rectangle veen the botto	er 5						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-6=-150/117, 1-2=-2 3-4=-90/79	244/224, 2-3=-99/97	,										0	
30T CHORD WEBS VOTES I) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.6C 2) Truss des only. For see Stand or consult	5-6=-74/80, 4-5=-74/ 2-5=-226/209 CE 7-10; Vult=150mph imph; TCDL=6.0psf; BG p B; Enclosed; MWFR3 2) zone; cantilever left at t and right exposed;C- IWFRS for reactions si plate grip DOL=1.33 signed for wind loads in studs exposed to wind ard Industry Gable Enq qualified building design	(80) (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-f and right exposed; e C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	C nd ss le, l 1.							Comments.	A STATE OF THE STA	SEA 4584	ROLAR L 4	Annunnun.

818 Soundside Road Edenton, NC 27932

EW JOHN February 13,2022

Job	Truss	Truss Type	Qty	Ply	INSTALL 61 Willowcroft-Avery-Roof		
22010064-A	VL28	Valley	1	1	Job Reference (optional)	150198627	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Fri Feb 11 10:50:37 ID:h7GmGeMQxCHXC9XHxeZN0GztJie-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 = MT20HS 8x12 II 2x4 II 3-4-8

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

"in min February 13,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:41.1 Plate Offsets (X, Y): [4:Edge.0-1-8]

	(, , L · J·,····]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.70 0.58 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 28 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-4-8 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=43/3-4- 6=43/3-4- 6=43/3-4- Max Horiz 6=202 (LC Max Uplift 4=-63 (LC 6=-165 (L Max Grav 4=76 (LC 6=222 (LC	t* 3-4:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 oc 8, 5=124/3-4-8, 8 5 (12) (12), 5=-227 (LC 10) C 11) 24), 5=275 (LC 24), 210)	3) 4) d or 5) 6) 7) 8)	TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 All plates are Gable requir Truss to be f braced again Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar	7-10; Pr=20.0 ps late DOL=1.15); F 8.9 psf (flat roof sr .15); Category II; MT20 plates unle es continuous bot ully sheathed from st lateral moverm spaced at 4-0-0 o nas been designed n chord in all area by 2-00-00 wide w by other members	If (roof liv Pg=20.0 µ how: Lur Exp B; F ess other tom chor n one fac ent (i.e. d ic. d for a liv s where ill fit betv	e load: Lumbe sf (ground iber DOL=1.1 ully Exp.; wise indicated d bearing. e or securely iagonal web). e load of 20.0 a rectangle veen the botto	er 5 I. psf m						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 2) Truss des only. For see Stand or consult	(lb) - Maximum Com Tension 1-6=-336/295, 1-2=- 3-4=-108/97 5-6=-131/139, 4-5=- 2-5=-385/377 CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR 2) zone; cantilever left a 2) zone; cantilever left a th and right exposed; C- MWFRS for reactions s 0) plate grip DOL=1.33 signed for wind loads in studs exposed to wind lard Industry Gable En qualified building design	pression/Maximum 363/342, 2-3=-110/1 131/139 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI	16, C nd SS Ie, 11.							Comme	Line P	SEA 4584 SEA SEA SEA 4584 SAGIN	L DHNSULL	ۍ

