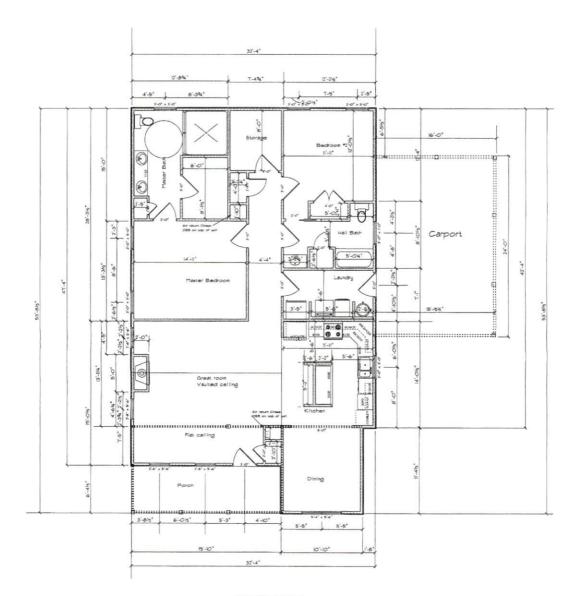
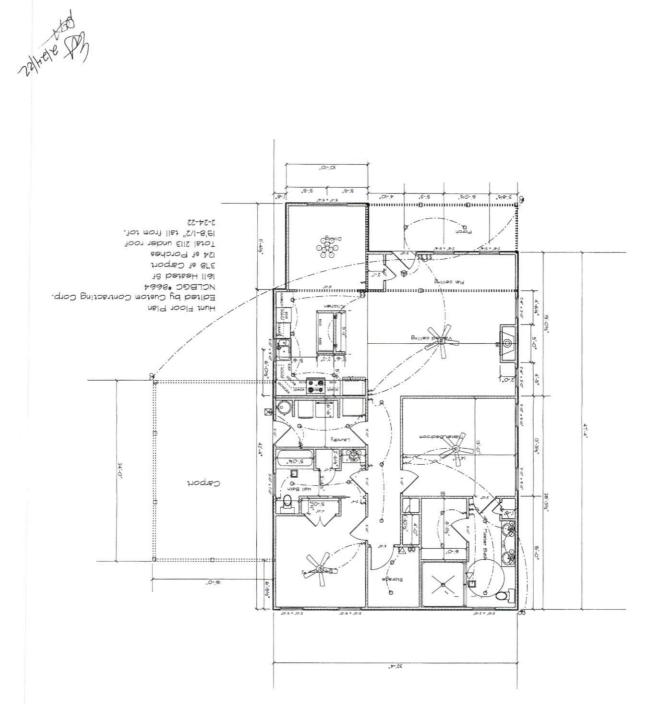


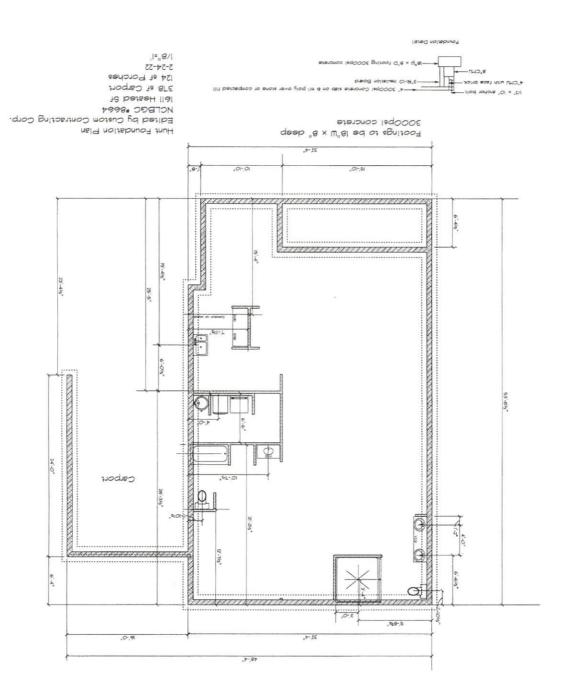
Harnett

1/8"=1



Hunt Plan- Right Elevation




1/8"=1'

Hunt Floor Plan Edited by Custom Contracting Corp. NCLBGC ®8664 IGII Heated Sf 378 sf Carport I24 sf Porches Total 2113 under roof I9'8-I/2" tall from tof. 2-24-22 I/8"=1'

GND abaylon

Trenco 818 Soundside Rd Edenton, NC 27932

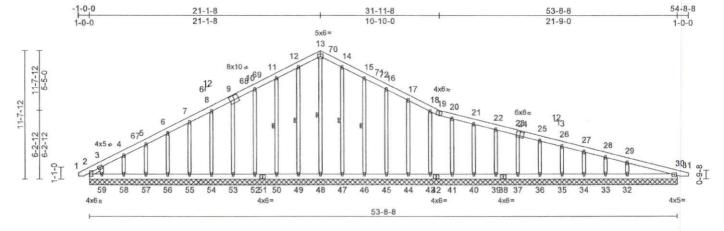
Re: 22020120-A Hunt Residence-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I50710505 thru I50710516

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844



March 11,2022

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

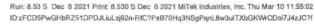
		Truss Type Qty Ply Hunt Residence-Roof							
22020120-A A	01	Roof Special Supported Gable	1	1	Job Reference (optional)	150710505			
Carter Components (Sanford), Sanf	ord, NC - 27332,				: 6 2021 MiTek Industries, Inc. Thu Mar 10 11:54:54 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1			

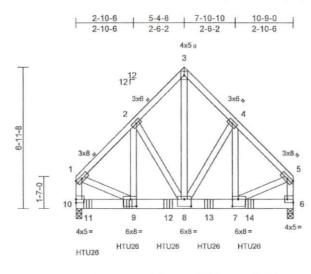
Plate Offsets (X,	Y): [9:0-5-0,0-4-8]	, [24:0-4-0,0-4-4]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-	(e0.0 80.0	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - 30	l/defi n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 461 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 OTHERS 2 SLIDER 1 BRACING TOP CHORD 1 BOT CHORD 1 WEBS 1 REACTIONS (II	.eft 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt 2=93/53- 32=311/5 34=153/5 39=136/5 41=138/5 44=134/5 46=137/5 53=135/5 55=135/5 57=135/5	athing directly applied (applied or 10-0-0 oc 13-48, 12-49, 11-50, 14-47, 15-46 8-8, 30=166/53-8-8, 13-8-8, 33=58/53-8-8, 13-8-8, 37=135/53-8-8 13-8-8, 40=134/53-8-8 13-8-8, 40=134/53-8-8 13-8-8, 45=135/53-8-8 13-8-8, 45=135/53-8-8 13-8-8, 45=135/53-8-8 13-8-8, 52=135/53-8-8 13-8-8, 54=136/53-8-8 13-8-8, 56=136/53-8-8 13-8-8, 56=136/53-8-8 13-8-8, 56=136/53-8-8 13-8-8, 56=136/53-8-8 13-8-8, 56=136/53-8-8 13-8-8, 58=139/53-8-8 13-8-8, 58=139/53-8-8 13-8-8, 58=139/53-8-8 13-8-8, 58=139/53-8-8 13-8-8, 58=139/53-8-8 13-8-8,		Max Uplift	2=-40 (LC 32=-37 (LC 35=-9 (LC 40=-9 (LC 45=-20 (LC 45=-20 (LC 45=-20 (LC 52=-19 (LC 54=-20 (LC 54=-20 (LC 54=-17 (LC 56=-17 (LC 36=-17 (LC 36=-17 (LC 39=176 (LC 41=171 (LC 45=191 (LC 45=191 (LC 45=191 (LC 45=191 (LC 55=160 (LC 55=	16), 3 12), 36 12), 36 12), 39 12), 39 12), 39 12), 39 12), 30 12), 30 12), 30 12), 30 12), 30 12), 30 12), 30 12), 40 15), 5 15), 5 12), 7 10), 7 100, 7 10	$a_{4=-11}$ (LC $a_{3=-9}$ (LC 16; $a_{3=-7}$ (LC 17; $a_{4=-19}$ (LC $a_{4=-27}$ (LC $a_{5=-19}$ (LC $a_{5=-19}$ (LC $a_{5=-10}$ (LC $a_{5=-10}$ (LC $a_{5=-10}$ (LC $a_{5=-10}$ (LC $a_{5=-10}$ (LC $a_{3=-5}$ (LC 1; $a_{3=-5}$, 16), ,), ,), , 2), , 16), , 15), , 15), , 15), , 15), , 15), , 22), , 40), , 20), , 39), , 32), , 22), , 21), , 22), , 21), , 21), , 21), , 21), , 21), , 21), , 21), , 21), , 22), , 21), , 22), , 2	TOP CF		4-5=-7 7-8=-6 11-12 13-14 15-16 17-18 19-20 21-22 25-26 28-29	=-125/355, 12-13 =-135/370, 14-15 =-106/286, 16-17 =-73/191, 18-19= =-51/133, 20-21= =-39/88, 22-23=- =-46/22, 26-27=-3	'5, 6-7=-80/111, 1254, 10-11=-106/302 =-135/382, =-125/338, =-90/238, -44/136, -42/109, 40/66, 23-25=-43/44, 59/8, 27-28=-82/16, 141/43, 30-31=0/12

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a futus system. Before use, the building designer must verify the applicability of design parameters and property during the design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent obless with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Tension

818 Soundside Road Edenton, NC 27932


Job		Truss	Truss Type	Qty	Ply	Hunt Residence-Roof	
22020120-A		A01	Roof Special Supported Gable	1	1	Job Reference (optional)	150710505
Carter Compone	nts (Sanford), S	anford, NC - 27332,				2021 MiTek Industries, Inc. Thu Mar 10 11:54:54	Page: 2
BOT CHORD	57-58=-38/1 55-56=-38/1 50-52=-38/1 46-47=-38/1 46-47=-38/1 44-45=-38/1 41-43=-38/1 41-43=-38/1 39-40=-38/1 32-33=-38/1 13-48=-194 34-35=-38/1 32-33=-38/1 15-68=-120/8 3-59=-85/15 15-46=-1511 17-44=-128/20-41=-131/20-41 22-39=-136/20-41	33, 58-59=-38/163, 63, 56-57=-38/163, 63, 56-55=-38/163, 63, 52-53=-38/163, 63, 49-50=-38/163, 63, 47-48=-38/163, 63, 45-48=-38/163, 63, 40-41=-38/163, 63, 37-39=-38/163, 63, 37-39=-38/163, 63, 33-34=-38/163, 63, 33-34=-38/163, 63, 30-32=-38/163, 128, 12-49=-178/101, 1/156, 10-52=-153/100, 12, 8-54=-121/83, 7-55=-120/8 13, 5-57=-120/98, 4-58=-124/1 18, 14-47=-160/99, 1155, 16-45=-127/100, 161, 18-43=-125/101, 183, 21-40=-137/64, 167, 26-35=-137/66, 175, 28-33=-69/39, 153, 557=-137/66, 175, 28-33=-69/39, 155, 57=-137/66, 175, 28-33=-69/39, 155, 16-45=-127/100, 155, 16-45=-127/100,	3,	jD2gQqAa?KHy3yEz;	j631-RIC?P⊴	B70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	
 this design Wind: ASC Vasd=103r Cat. II; Exp. Corner (3) Corner (3) 54-4-3 zon vertical left forces & M DOL=1.60 Truss desi only. For s see Standa or consult (4) TCLL: ASC DOL=1.15 Snow); Pf= Plate DOL: Ct=1.10 Unbalance design. This truss I load of 12. overhangs All plates a Gable requ Gable stud This truss on the bott 3-06-00 tal 	E 7-10; Vult= E 7-10; Vult= B; Enclosed; -0-9-6 to 4-7- 21-1-8 to 26- e; cantilever l and right exp WFRS for reac gned for wind tuds exposed rd Industry G gned for wind tuds exposed rd Industry G unalified build E 7-10; Pr=2 Plate DOL=1 13.9 psf (flat n =1.15); Categ d snow loads has been desi 0 psf or 2.00 ti non-concurre re 2x4 MT20 ires continuo s spaced at 2 has been de n	ds have been considered for 130mph (3-second gust) .0psf; BCDL=6.0psf; h=25ft; ; MWFRS (envelope) and C-C 2, Exterior (2) 4-7-2 to 21-1-8, 5-15, Exterior (2) 26-5-15 to eft and right exposed ; end toosed;C-C for members and tictions shown; Lumber L=1.33 1 loads in the plane of the trus: 1 to wind (normal to the face), table End Details as applicable ing designer as per ANSI/TPI 0.0 psf (roof live load; Lumber .15); Pg=20.0 psf (ground roof snow: Lumber DOL=1.15 ory II; Exp B; Fully Exp.; have been considered for this ligned for greater of min roof lin times flat roof load of 13.9 psf nt with other live loads. unless otherwise indicated. us bottom chord bearing. -0-0 oc. signed for a live load of 20.0p II areas where a rectangle vide will fit between the bottom	s a, 1. ve on				


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collepse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSITPH</u> 1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Hunt Residence-Roof	
22020120-A	C03	Common Girder	1	2	Job Reference (optional)	150710506
Carter Components (Sanf	ord), Sanford, NC - 27332,	Run: 8.53 S Dec 6	2021 Print: 8.	530 S Dec 6	2021 MiTek Industries, Inc. Thu Mar 10 11:55:02	Page: 1

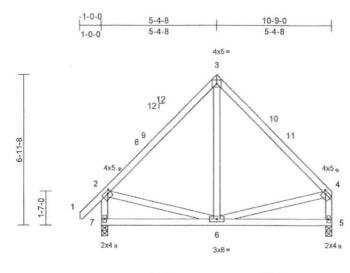
Carter Components (Sanford), Sanford, NC - 27332,

7-10-10 2-10-6 5-4-8 10-9-0 + ł +2-10-6 2-6-2 2-6-2 2-10-6

Scale = 1:52.6 Diate Offsets (X, V): [1:0-3-7 Edge] [5:0-3-7 Edge] [6:Edge 0-2:0] [7:0-3-8 0-4-4] [8:0-4-0 0-4-4] [9:0-3-8 0-4-4]

	late Olisets (X, 1).	[1.0-0-1, Lugo],	[0.0-0-1,Lugo],	[0.Edg0,0.2.0], [1.0.0.0,0	 10:0 0 0,0 4 4]		
1				The same the field		 N. 10	ĺ

Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr N	-0-0 .15 .15 IO RC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.53 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 185 lb	GRIP 244/190 FT = 20%	
BRACING TOP CHORD Structural wood she 6-0-0 oc purfins, ex BOT CHORD Rigid celling directly bracing. REACTIONS (Ib/size) 6=3520/0 Max Horiz 10=141 (I Max Grav 6=4137 (I FORCES (Ib) - Maximum Con Tension TOP CHORD 1-2=-3618/0, 2-3=-2	applied or 10-0-0 oc -3-8, 10=4390/0-3-8 LC 2), 10=5188 (LC 2) ppression/Maximum 1883/0, 3-4=-2883/0, 3725/0, 5-6=-3731/0 0/2503, 7-8=0/2501, 2606, 2-9=0/1182, 827, 4-8=-922/0, ther with 10d s: 2x4 - 1 row at 0-9-0 lows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ick (B) face in the LOAD nections have been noted as (F) or (B),	Vasd=103n Cat. II; Exp left and righ exposed; L 5) TCLL: ASC DOL=1.15 snow;): Pf= Plate DOL= Ct=1.10 6) * This truss on the bott 3-06-00 tall chord and a 7) One H2.5A recommend UPLIFT at only and do 8) This truss i niternation R802.10.2 9) Use Simps 11-10dx1 1 spaced at end to 8-7- chord. 10) Fill all nail I LOAD CASE(S 1) Dead + Si Increase= Uniform L Vert: 9	now (balanced): Lu	BCDL=6 RS (envirtical left late grip of (roof liv ² g=20.0 p now: Lum Exp B; F d for a liv as where rill fit betw. is connective eral force ridance wit s to beari connective eral force ridance wit s ections ndard AN 26 (20-11) y Girder) ng at 0-7- es) to fror r is in con mber Inco 10=-20 26 (F), 12	.0psf, h=25ft elope); cantil and right DOL=1.33 e load: Lumt ssf (ground ber DOL=1. ully Exp.; e load of 20. a rectangle even the bott ctors ing walls due on is for uplif is. ith the 2015 R F502.11.1 a ISI/TPI 1. dd Girder, or equivalen 0 from the le that face of bot ttact with lum rease=1.15,	ever Der 15 Opsf om t to t and t ft tom hber.				M. T.M.	25 EER.LA	in the second second

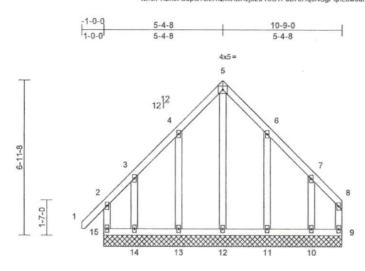

WARNING-Veity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 rev. Stratuto BEFORE DOE:
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent buckling of individual truss systems, see ANSUTPH Quality Critería, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Hunt Residence-Roof	
22020120-A	C02	Common		5	1	Job Reference (optional)	150710507
Carter Components (Sanf	ord), Sanford, NC - 27332,		Run: 8.53 S Dec 6 2	021 Print: 8.	530 S Dec 6	2021 MiTek Industries, Inc. Thu Mar 10 11:55:01	Page: 1

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Mar 10 11:55:01 ID:4UyjG1tlDMx7dQwd_TGmkVzj62r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:49.4

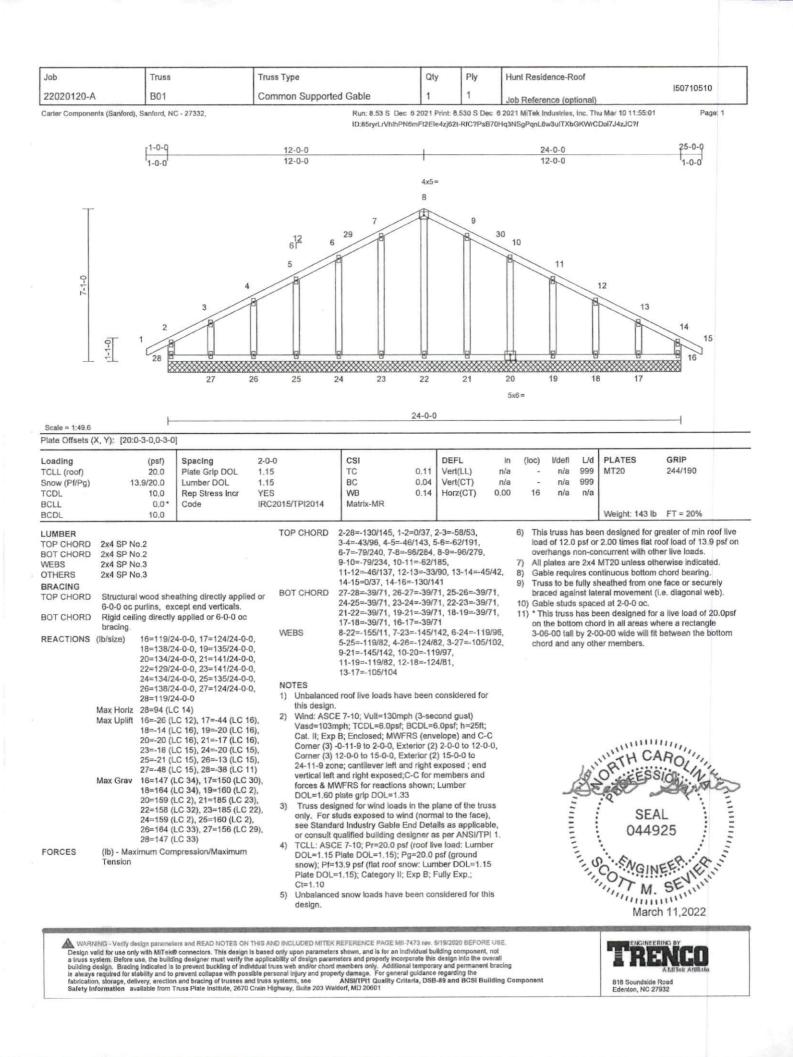

Plate Offsets (X, Y): [2:0-1-12,0-1-8], [4:0-1-12,0-1-8]											1
Loading (psf) TCLL (roof) 20.0 Snow (Pl/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 1.15 1.15 YES RC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.17 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.02 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%	
6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc 3-8, 7=409/0-3-8 (10) (2), 7=487 (LC 2) pression/Maximum 112, 3-4=-370/105, 368/105 68/113 168, 4-6=-34/161 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C terior (1) 2-0-12 to 5-4-8 or (1) 8-4-8 to 10-7-4 posed ; end vertical left bers and forces & imber DOL=1.60 plate iroof live load; Lumber =20.0 psf (ground w: Lumber DOL=1.15	load of 12.0 overhangs in 5) * This truss if on the bottor a	s been designed fo osf or 2.00 times fit on-concurrent with as been designed in chord in all areas y 2-00-00 wide wil y other members. impson Strong-Tie d to connect truss s) 7 and 5. This co consider lateral fo designed in accord Residential Code s d referenced stan Standard	at roof lo other liv for a liv where I fit betw connection rces. lance w sections	bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2015 R502.11.1 a	osf on Opsf tom e to only		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		SEA 0449	EEP. HA	The annumber

I NE 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hunt Residence-Roof	
22020120-A	C01	Common Supported Gable	1	1	Job Reference (optional)	150710508
Carter Components (Sanfo	rd), Sanford, NC - 27332,	Run: 8.53 S D	ec 6 2021 Print:	8.530 S Dec	6 2021 MiTek Industries, Inc. Thu Mar 10 11:55:01	Page: 1

ID:clPK2hs7S3pG7GLRQmIXBHzj62s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

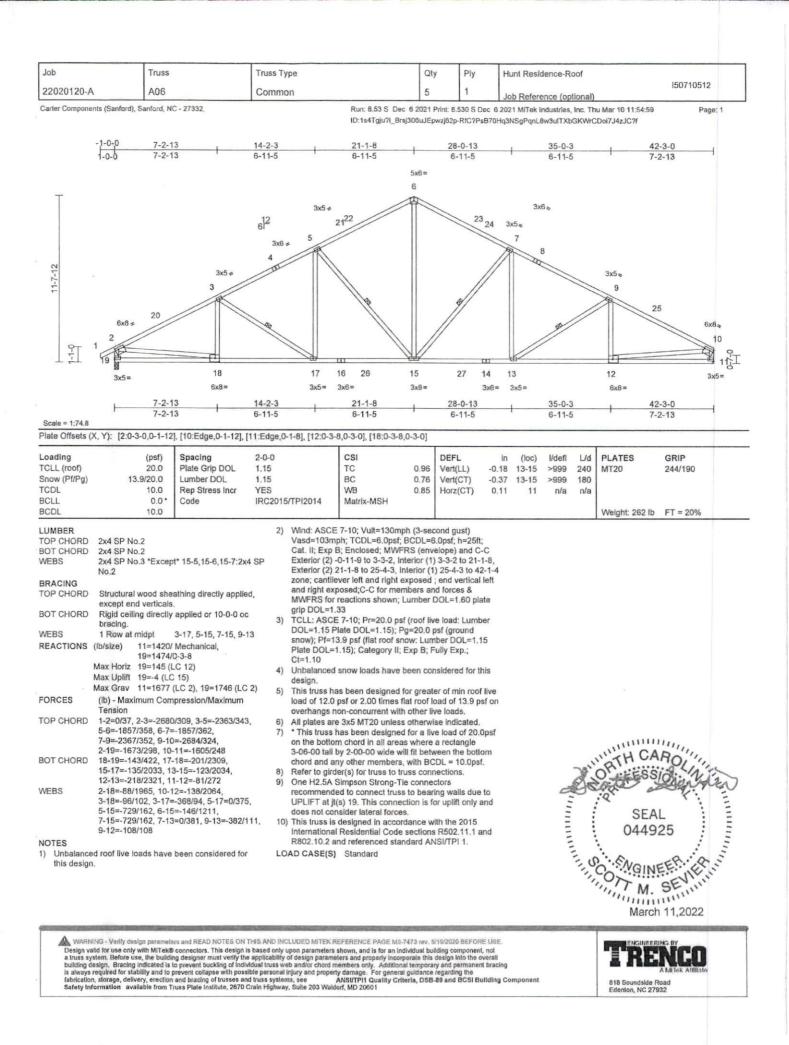

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.09 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - 9	l/defi n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD 30T CHORD 30T CHORD WEBS NOTES 1) Unbalanc this desig	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc (Rigid ceil bracing, (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 2-15=-15: 3-4=-105; 6-7=-104; 14-15=-7 11-12=-7 5-12=-29 3-14=-15; 7-10=-17; ed roof live I	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	(LC 10) (LC 10), 10=-110 (LC (LC 14), 13=-53 (LC 1 (LC 10), 15=-126 (LC LC 11), 10=224 (LC 2 (LC 26), 12=184 (LC (LC 25), 14=203 (LC	ed or 3; 9), 3), 29) 5; 6), 14), 11), 6; 7; 8; 554, 1(68, 88	Vasd=103m Cal. II; Exp I Corner (3) -C Corner (3) -C Corner (3) 5 zone; cantile and right exp MWFRS for grip DOL=1. Truss desig only. For sti see Standar or consult qu TCLL: ASCE DOL=1.15 P DOL=1.15	7-10; Vult=130r ph; TCDL=6.0ps B; Enclosed; MW -11-4 to 2-0-12, -4-8 to 8-4-8, Ex ever left and right posed;C-C for m reactions shown as defor wind loar uds exposed to 4 d Industry Gable jalified building of 5 7-10; Pr=20.0 p late DOL=1.15); 3.9 psf (flat roof 1 1.15); Category I as been designer psf or 2.00 times on-concurrent w a 2x4 MT20 und st lateral mover spaced at 2-0-0 has been design m chord in all are by 2-00-00 wide my other member on the st lateral mover part of a lateral mover part of a lateral mover spaced at 2-0-0 has been design m chord in all are by 2-00-00 wide my other member	f; BCDL=6 //FRS (envi Exterior (2) & terior	:0psf; h=25ft; lelope) and C. 2) 2-0-12 to 5 4-8 to 10-7-4 ; end vertical d forces & OOL=1.60 pla lane of the fr. al to the face sper ANSI/Tf e load; Lumb osf (ground bsf (ground bsf (ground bsf (ground to 13.9 p ve loads, se indicated, d bearing, e or securely iagonal web) e load of 20.0 a rectangle	-C -4-8, 4 left left uss), ble, PI 1. ver 15 f live sf on		C. C	Contraction of the second seco	SEA 0449 0449 0449 0449	25 EER. ER.	Paning.

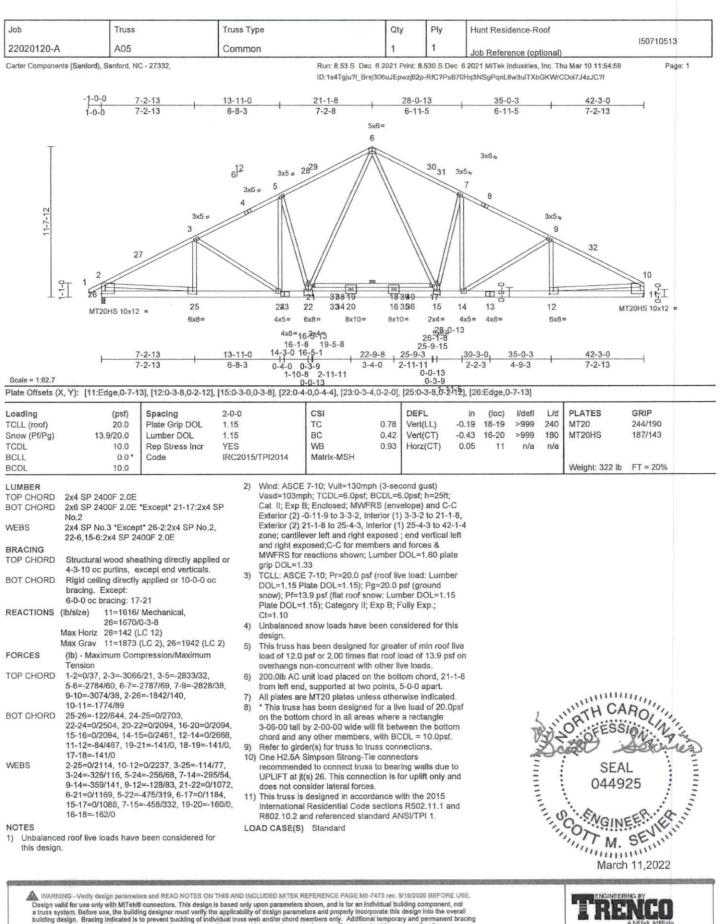

VARNING - Varify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual intruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual intuss esta funds. See <u>ANSIFP11</u> Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway. Suite 203 Waldorf, MD 20601

lob		Truss		Trus	s Type			Qt	y P	ly H	Hunt Res	dence-R	oof			
2020120-A		B02			mmon			8	1						150710509	
	ts (Sanford), Sar		C - 27332,				Run: 8.53 S De		Print: 8.530		Job Refer			u Mar 10 11:55:01	Pag	ie: 1
							ID:85ryrLrVhlhP									
		-1-0-0	0-	1-12			12-0-0			7-10-4		1	2	24-0-0	25-0-0	
		1-0-0	6-	1-12			5-10-4	1		5-10-4		1	(6-1-12	1-0-0	
								4x5 =								
-	Г							4								
					12 6	2	15	-		16						
						3x5 ≄				10	3	x5 e				
					3							5				
7-1-0				/	1						/	3				
			4x5 = 14	/			\sim			//	/		/	17	4x8 ⇔	
		2	//						/	//					6	
	1-1-0	4							//						7	
	LÉL	13	e X		[11		10		9	aimmaka awa		8	
			2x4 n			(5=		3x8=			x5=	4x5=			2x4 II	
		ł		1-12 1-12			12-0-0 5-10-4			7-10-4 5-10-4			_	24-0-0 5-1-12		
Scale = 1:51.4 Plate Offsets (X	(Y): [2:0-2-0	0-1-121	, [6:0-3-0,0-1-8]													
oading		psf)	Spacing	2-0-	0		CSI		DEFL		(100)	1/deft		DI ATEO	0010	
CLL (roof)		20.0	Plate Grip DOI	L 1.15			TC	0.50	Vert(LL)		11-12	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg) CDL	13.9/	10.0	Lumber DOL Rep Stress Inc	1.15 x YES			BC WB	0.38 0.40	Vert(CT Horz(CT			>999 n/a	180 n/a			
BCLL		0.0*	Code	IRC	2015/TP	2014	Matrix-MSH							Weight: 138 lb	FT = 20%	
UMBER		10.0			3) TC	LL: ASC	E 7-10; Pr=20.0 ps	sf (roof liv	le load: Lu	mber				Weight. 150 lb	11 - 20%	
OP CHORD	2x4 SP No.2 2x4 SP No.2				DC)L=1.15 P	late DOL=1.15); I 3.9 psf (flat roof s	Pg=20.0	osf (groun	d						
VEBS	2x4 SP No.3				Pla		1.15); Category II;			1.10						
OP CHORD			athing directly a		4) Un	balanced	snow loads have	been cor	nsidered f	or this						
OT CHORD			cept end vertication applied or 10-0-		5) Th		as been designed									
EACTIONS (bracing.	856/0.3	-8, 13=856/0-3-	8			psf or 2.00 times on-concurrent wit			9 psf on						
1	Max Horiz 13	=94 (LC	: 14)				has been designe m chord in all area									
			16), 13=-6 (LC 1 .C 2), 13=1015 (by 2-00-00 wide w ny other members		veen the l	ottom						
ORCES	(lb) - Maximu Tension	m Com	pression/Maxim	um	7) Or	e RT7A	AiTek connectors ring walls due to L	recomme								
OP CHORD			/179, 3-4=-1032		Th		tion is for uplift on									
IOT CHORD	2-13=-955/21 12-13=-74/24	4, 6-8=	-955/214		8) Th	is truss is	designed in acco									
	9-11=-68/115	6, 8-9=	-35/209	-	R8	02.10.2 a	Residential Code nd referenced sta									
VEBS	4-11=-39/527	, 5-11=	17/83, 3-11=-40 -407/105, 5-9=-		LOAD	CASE(S)	Standard							UNU CA	Pall	
IOTES	2-12=-39/957												Q:	R	B.LINA	5
) Unbalanced this design.	t roof live load	s have	been considered	d for								L	1è	000 2	Sina	E.
) Wind: ASCI			(3-second gust) CDL=6.0psf; h=2									111	:	SEA	, ` \	1111
Cat. II; Exp	B; Enclosed; I	WFR	6 (envelope) and	1 C-C								1111111	1	0449	•	
Exterior (2)	12-0-0 to 15-0	-0, Inte	rior (1) 2-0-7 to rior (1) 15-0-0 to	0								11.				
vertical left	and right expo	sed;C-(right exposed ; o C for members a										- 0	NGIN	EER	111
	WFRS for reac plate grip DOL		nown; Lumber										",	OTT	SEVIEW	
														M.		
															h 11,2022	

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

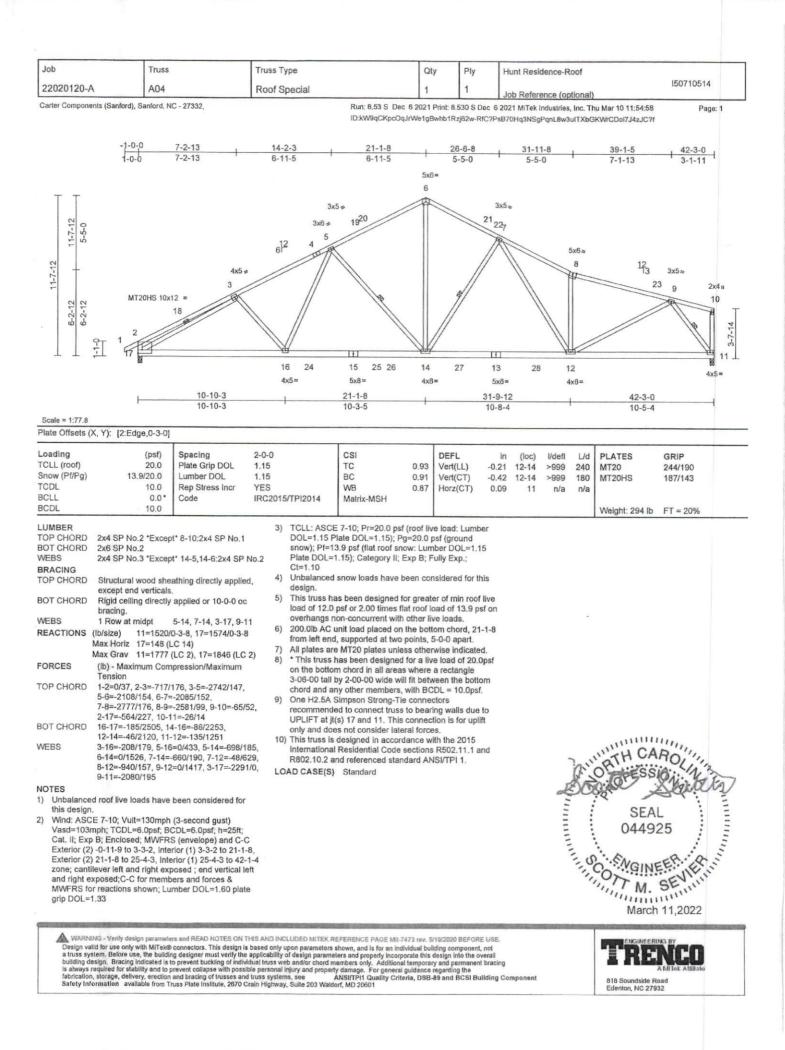
818 Soundside Road Edenton, NC 27932




Job	Truss	Truss Type	Qty	Ply	Hunt Residence-Roof	
22020120-A	A07	Common Supported Gable	1	1	Job Reference (optional)	150710511
Wind: ASCE 7-10	ford), Sanford, NC - 27332, ; Vult=130mph (3-second gu CDL=6.0psf; BCDL=6.0psf;	ID:gvHad?qtw ust)			c 6 2021 MiTek Industries, Inc. Thu Mar 10 11:55:00 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page:
Corner (3) -0-11-9 Corner (3) 21-1-8 zone; cantilever le and right exposed	closed; MWFRS (envelope) to 3-1-8, Exterior (2) 3-1-8 to 25-1-8, Exterior (2) 25-1- fit and right exposed ; end v ;C-C for members and force ons shown; Lumber DOL=1	to 21-1-8, 8 to 43-2-9 ertical left 5 &				
only. For studs ex see Standard Indu	or wind loads in the plane of (posed to wind (normal to the ustry Gable End Details as a d building designer as per A	ne face), applicable,				
 TCLL: ASCE 7-10 DOL=1.15 Plate 0 snow); Pf=13.9 ps 	; Pr=20.0 psf (roof live load OL=1.15); Pg=20.0 psf (gro f (flat roof snow: Lumber D0 Category II; Exp B; Fully Ex	: Lumber ound DL=1.15				
Unbalanced snow design.	loads have been considere	d for this				
load of 12.0 psf or	en designed for greater of m 2.00 times flat roof load of incurrent with other live load	13.9 psf on				

- All plates are 2x4 MT20 unless otherwise indicated.
- B) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).10) Gable studs spaced at 2-0-0 oc.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual iruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings of individual iruss eval and/or chord members only. Additional temporary and permanent bracing is always required for stability and bracing of irusses and iruss systems, see ANSIFTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



MARNING - Venity design parameters and READ NOTES ON THIS AND INCLUDED MITCK REPERENCE PAGE MII-7473 rev. STW2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters ahow, and is for an Individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in bare overall building design. Braceing indicated is to prevent buckling of Individual Linuss web and/or chord members only. Additional lemporary and permanent bracing is always required for stability and to prevent outlings with possible personal injury and propyrty damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSUTPH</u> quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Roa on, NC 27932

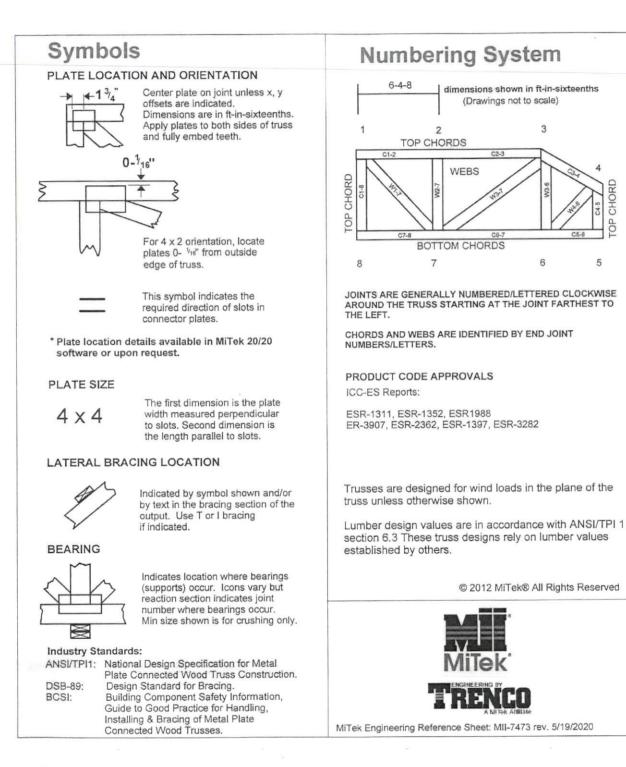
Job	Truss	Truss Type	Qty	Ply	Hunt Residence-Roof	
22020120-A	A03	Roof Special	5	1	Job Reference (optional)	150710515
arter Components (Sanford	i, Sanford, NC - 27332,				3 2021 MiTek Industries, Inc. Thu Mar 10 11:54:58 70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	Page; 1
-1-0-0 1-0-0	7-2-13 14-2-3 7-2-13 6-11-5	<u>21-1-8</u> <u>28-1-4</u> 6-11-5 6-11-12 5x6=	+ <u>31-11-8</u> 3-10-4	1 37-0-1 5-1-€		-8-8 54-8-8 0-7 1-0-0
11-7-12 6-2-12 1-1-0 6-2-12 6-2-12 5-5-0	6 ¹² 4x5 = 30 3 222 3	4x6 + 32 5 @1 7	x5-=	Sx8= 9 1 6x	4x6= 4x6= 12 10 11 5x8= 11 12 36 2x4 // 10 3L 17 16	

	22 38 21 39 40	20 41 42	19	12	17	16	
6x81	4x5= 6x8=	4×8=	6x8=		6x8=	4x6=	4x5=
9-7-5	21-1-8	28-3-0	35-2-10	42-2-4	47-1-4	53-8-8	
9-7-5	11-6-3	7-1-8	6-11-10	6-11-10	4-11-0	6-7-4	-

Scale = 1:99

Scale - 1.99		and the second					And the second second second second							
Plate Offsets (X, Y): (17:0-4-0,0-4-0	0], [19:0-4-0,0-3-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 ES RC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.97 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.68 0.20	(loc) 20-22 20-22 16	l/defl >999 >827 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 393 lb	GRIP 244/190 FT = 20%	×
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS WEBS	2.0E 2x4 SP No.3 *Excep Left 2x4 SP No.3 - Structural wood she 2-5-14 oc purlins. Rigid celling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (ib/size) 2=1645/0 16=2698; Max Horiz 2=-115 (i) Max Uplift 14=-517	eathing directly applied o (applied or 2-2-0 oc 6-20, 8-20, 9-19, 10-17 12-16 -3-8, 14=-438/0-3-8, /0-3-8 -C 13) LC 2), 14=-57 (LC 15),	2) 3) 4)	this design. Wind: ASCE Vasd=103mj Cat. II; Exp E Exterior (2) - Exterior	roof live loads have 7-10; Vult=130mpi ph; TCDL=6.0psf; E 3; Enclosed; MWFF 0-9-6 to 4-7-2, Inte 1-1-8 to 26-5-15, I cantilever left and nd right exposed; (FRS for reactions ate grip DOL=1.33 5: 7-10; Pr=20.0 psf late DOL=1.15); P(3.9 psf (flat roof sm .15); Category II; E snow loads have b the been designed fit psf or 2.00 times fit	h (3-sec 3CDL=6 SS (env rior (1) - nterior (right ex -C for m shown; (roof liv =20.0 p w: Lum Exp B; F een cor or great	cond gust) cond gust) copsf; h=25ft; elope) and C- 4-7-2 to 21-1-1 1) 26-5-15 to posed ; end nembers and Lumber we load: Lumbur ber DOL=1.1 fully Exp.; insidered for the er of min roof	C 8, 5 Ilve	LOAD	CASE(S)	Sta			
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=0/26, 2-4=-316 6-7=-2322/182, 7-8: 8-9=-2954/181, 9-11 10-12=-1327/151, 1 13-14=-56/2236, 14 2-22=-84/2720, 20- 19-20=0/2619, 18-1 17-18=-82/3709, 16 14-16=-2100/73 4-22=-219/184, 6-2 6-20=-699/207, 7-2	0=-4420/191, 2-13=-52/2366, i-15=0/12 22=0/2432, 9=-25/3634, i-17=-21/1193, 2=-19/462, 0=0/1646, 8-20=-955/19 -1629/111, 9-18=-11/118 7=-3108/68,	7) 8) 3, ⁹⁾	200.0lb AC u from left end * This truss I on the bottor 3-06-00 tall I chord and an One H2.5A S recommende UPLIFT at ju only and doe H10A Simps connect trus This connect lateral forces) This truss is International	on-concurrent with init load placed on , supported at two has been designed m chord in all areas by 2-00-00 wide will y other members, Simpson Strong-Tie d to connect truss (a) 2 and 16. This d is not consider late on Strong-Tie com is to bearing walls of tion is for uplift only is, designed in accorror Residential Code nd referenced stan	the bott points, i for a liv where I fit betw with BC connections to bear to bear and for a liv and do live to U and do liance w sections	tom chord, 21 5-0-0 apart. re load of 20.0 DL = 10,0psf ctors ing walls due on is for uplift ss. recommended PLIFT at jt(s) bes not consid tith the 2015 s R502.11.1 a	opsf om to d to 14. ler		- Continuer		SEA 0449	25	and an and and and and and and and and a

March 11,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss estables, see ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

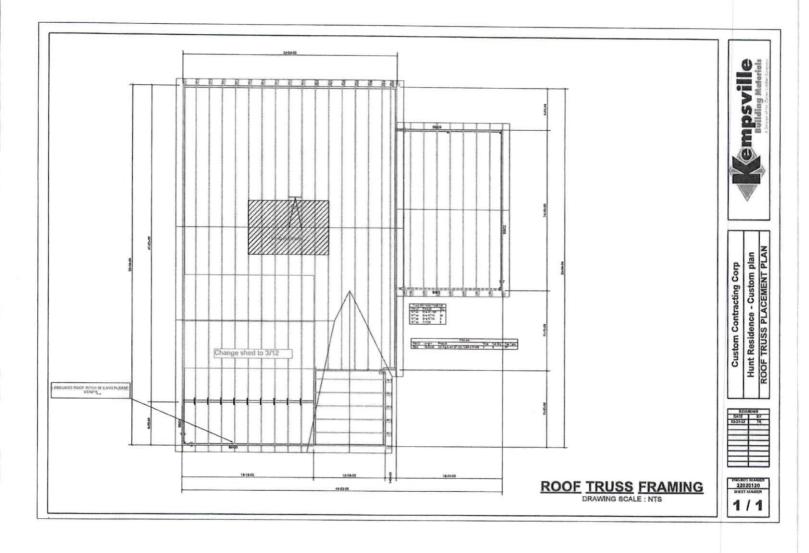
Job		Truss		Truss Ty	pe		Qty	Ply	н	unt Resid	lence-Ro	oof		
22020120-/	4	A02		Roof S	pecial		4	1	Jo	b Refere	nce (opt	ional)		150710516
arter Compone	-1-0-0 1-0-0	Sanford, NC - 7-2-13 7-2-13	27332, 14-2-3 6-11-5		21-1-8	Run: 8.53 S Der ID:NZMx9dUalg 28-1-4 6-11-12		KOzj63?-RfC		1q3NSgPq		XbGKV	7-8-1 5	Page: 3-8-8 54-8-8 3-0-7 1-0-0
11-7-12 6-2-12 1-1-0 6-2-12 6-2-12	2 3	x5 = 30 9-7-5 9-7-5	6 ¹² 2x4 x 4 22 3 4x5=		-8	*	4x5e 45 8 19 6x8=	8x8# 9 35-2-10 6-11-10	18 6x8 II	4x5= 4x 10 1 3L 12 42-2-1 6-11-1	1 45 1 1 1 1 17 6x8	8= 47-		1415 a d 4x5= 1-8-8 -7-4
Scale = 1:99 late Offsets (X, Y): [17:0-	-4-0,0-4-0], [19:0-4-0,0-3-8]											
oading CLL (roof) now (Pf/Pg) CDL CLL CDL	13.	20.0 F .9/20.0 L 10.0 F	Spacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	- I	CSI TC 3C WB Matrix-MSH	0.76 \ 0.85 \	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.62 0.19	(loc) 20-22 20-22 16	l/defl >999 >906 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 393 lb	GRIP 244/190 FT = 20%
UMBER OP CHORD OT CHORD /EBS LIDER RACING OP CHORD OT CHORD OT CHORD ORCES OP CHORD OT CHORD	Left 2x4 SF Structural v 2-11-6 cc p Rigid ceilin bracing, E 4-10-3 oc l 1 Row at n (lb/size) Max Horiz Max Horiz Max Uplift Max Grav (lb) - Maxin Tension 1-2=0/26, 2 6-7=-2128/ 10-12=-136 13-14=-186 2-22=-233/ 19-20=-162 17-18=-292 14-16=-183/ 6-20=-658/ 8-20=-955/ 0-18=-13/	.2 .3 *Except* 2 P No.3 2-6 wood sheath purlins. ig directly ap Except: bracing: 14-1 nidpt 6-2 2=1548/0-3-1 16=2504/0-3 2=-115 (LC 1 14=-419 (LC 2=1832 (LC num Compre 2-4=-2971/38 (393, 7-8=-2) 7/1962, 14-1 /2556, 20-22 2/2447, 18-1 3/3588, 16-1 3/203 (167, 6-22=-1 /207, 7-20=-1 /210, 8-19=-2 5/184, 9-18= 5/184, 9-18= 5/184, 9-18=	ing directly applie plied or 10-0-0 oc 16. 20, 8-20, 9-19, 10- -16 8, 14=-347/0-3-8, -8 13) 3), 16=-14 (LC 16 2), 14=-5 (LC 15), 2) ession/Maximum 39, 4-6=-2796/414 122/385, 4238/459, 3=-188/2093, 5=0/12 =-165/258, 9=-271/3438, 7=-72/1239, 12/468, 166/1472, 24/642, -44/1203, =-2897/268,	1) 2) d or (17, 3) (5) (4) (5) (5) (6) (7) (8) (9)	Cat. II; Exp B; I Exterior (2) -0-1 Exterior (2) 21- 54-4-3 zone; ci vertical left and forces & MWFF DOL=1.60 plat. TCLL: ASCE 7. DOL=1.15 Plat snow); Pf=13.9 Plate DOL=1.1 Ct=1.10 Unbalanced sn design. This truss has i load of 12.0 ps overhangs non * This truss has on the bottom of 3-06-00 tall by chord and any One H2.5A Sim recommended UPLIFT at jt(s) only and does u H10A Simpson connect fruss to This connection lateral forces. This truss is de International Ref	10; Vult=130mp ; TCDL=6.0psf; Enclosed; MWF 9-6 to 4-7-2, Inte 1-8 to 26-5-15, antilever left and right exposed; (3S for reactions e grip DOL=1.33 -10; Pr=20.0 psi e DOL=1.15); P psf (flat roof sn 5); Category II; ow loads have 1 been designed f or 2.00 times fi -concurrent with s been designed 1 f or 2.00 times fi -concurrent with s been designed 2 hor 2.00 wide wi other members, pson Strong-Ti to connect truss 2 and 16. This on to consider late Strong-Tie com n is for uplift on! signed in accorr esidential Code referenced star	bh (3-secon BCDL=6.0 RS (envelo erior (1) 4-7 Interior (1) 4 right expo C-C for me shown; LU 3 (forof live i g=20.0 psf ow: Lumbe Exp B; Full been consi for greater lat roof loa n other live if or a live i s where a ill fib betwee with BCDI e connectors rea due to UPL y and does dance with sections R	nd gust) psf, h=25f pse) and C 7-2 to 21-1- 26-5-15 to based ; end mbers and imbers and imber doad: Lumbi (ground ar DOL=1.1 ly Exp.; dered for ti of min roof d of 13.9 p loads. load of 20.0 rectangle en the bott L = 10.0psi rs g walls due is for upliff commende LFT at J((s) a not conside the 2015 ts02.11.1 a	; -C -8, -8 15 15 15 15 15 15 15 15 15 15 15 15 15		The American		SEA 0449	EER.

Design valid for use only with Mi texe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorpate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent localispse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and fruss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A Mi Tek Attillate 818 Soundside Road Edenton, NC 27932

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury


1. Additional stability bracing for truss system, e.g.

CHORD

OP 0

5

- diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

