

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0419-1680 Jordan A&B

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E12888999 thru E12889031

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844



April 5,2019

Gilbert, Eric

**IMPORTANT NOTE:** Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.



| Job                    | Truss           | Truss Type | Qty        | Ply       | Jordan A&B                                                       |
|------------------------|-----------------|------------|------------|-----------|------------------------------------------------------------------|
|                        |                 |            |            |           | E12888999                                                        |
| B0419-1680             | A1              | GABLE      | 1          | 1         |                                                                  |
|                        |                 |            |            |           | Job Reference (optional)                                         |
| Comtech, Inc., Fayette | ville, NC 28309 |            |            | 8.130 s M | ar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:18 2019 Page 2 |
| -                      |                 | ID         | :3B2lliU9a | TYR6OtFv  | gEVAlyq8tk-CbMFMEI1uupjvyNDnG6elhn9iutU5z8AhX7?aozTkdJ           |

# NOTES-

8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 28, 24, 16, 26, 27, 30, 32, 25, 23, 22, 21, 19 except (jt=lb) 34=136, 31=196, 20=131, 29=102, 33=156, 18=185.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 31, 20, 29, 30, 32, 33, 23, 22, 21, 19, 18.

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





GI mmm April 5,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER VETERCING FAGE MILETATION 1997. INVALUED BLI ONE OCC.
Design valid for use only with MITEK® connectors. This design is based only upon parameters and properly incorporate this design into the overall
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component
ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.









A. GILP April 5,2019

| (                                                                           |                                                                |                                                  |                                             |                     |                                                  |                                    |                   |
|-----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------|--------------------------------------------------|------------------------------------|-------------------|
| Jop                                                                         | Truss                                                          | Truss Type                                       | Qty                                         | Ply                 | Jordan A&B                                       |                                    | F12889002         |
| B0419-1680                                                                  | A4                                                             | ROOF SPECIAL                                     | 2                                           | 1                   |                                                  |                                    | L 12009002        |
| Comtech Inc Eavet                                                           |                                                                |                                                  |                                             | 8 130 c M           | Job Reference (option                            | al)<br>stries Inc. Fri Apr. 5.14:1 | 38-22 2019 Page 1 |
|                                                                             | 10 2000                                                        |                                                  | ID:3B2lliU9aT                               | YR6OtFvg            | EVAlyq8tk-5MbmCcM                                | Ky6J9NZh_06BavXxhJV9               | K1f6lb95CjZzTkdF  |
|                                                                             | 6-6-0                                                          | 13-7-11                                          | 21-2-1                                      |                     | 29-0-0                                           | <u> </u>                           |                   |
|                                                                             |                                                                |                                                  |                                             |                     |                                                  |                                    |                   |
|                                                                             |                                                                |                                                  | 5x8 =                                       |                     |                                                  |                                    | Scale = 1:68.4    |
|                                                                             |                                                                |                                                  |                                             |                     |                                                  |                                    |                   |
| Ţ                                                                           |                                                                | 8.00 12                                          |                                             |                     |                                                  |                                    |                   |
|                                                                             |                                                                | $\Rightarrow$                                    |                                             |                     |                                                  |                                    |                   |
|                                                                             |                                                                | $\phi$                                           |                                             |                     |                                                  |                                    |                   |
|                                                                             |                                                                | 19                                               |                                             | )                   |                                                  |                                    |                   |
|                                                                             | 3x4 // <sup>3)</sup>                                           | .6                                               |                                             |                     | 2x4                                              |                                    |                   |
| 4                                                                           |                                                                | 3                                                |                                             | - A                 | 5 4x6 📎                                          |                                    |                   |
| 1-0-1                                                                       | 184 S                                                          |                                                  | <b>A</b> /                                  | ľ                   | R.                                               |                                    |                   |
| ÷                                                                           |                                                                |                                                  |                                             |                     | A A                                              |                                    |                   |
|                                                                             | 3x6 //                                                         |                                                  |                                             |                     | æ 2'                                             | 1                                  |                   |
|                                                                             | 1                                                              |                                                  |                                             |                     |                                                  | $\mathbf{A}$                       |                   |
| 5                                                                           |                                                                |                                                  |                                             |                     |                                                  |                                    |                   |
| -1                                                                          |                                                                |                                                  |                                             | 185                 |                                                  | 8 <sup>6</sup> 8                   | 1-9-1             |
| 1 1                                                                         | 3                                                              | 5x8 — <u>4 2x4 =</u><br>(6    11                 | - 5x12                                      | 2x4 =               |                                                  |                                    |                   |
|                                                                             | 13 3x4    2x                                                   | 4 =                                              | 10                                          | 9                   | _                                                | 4x4 =                              |                   |
|                                                                             | 4.00 12                                                        | 6x6 =                                            |                                             | 3x4                 | . =                                              |                                    |                   |
|                                                                             | 5-9-12                                                         | 11-2-0                                           | 21-2-1                                      |                     | 29-0-0                                           |                                    |                   |
| Plate Offsets (X Y) [6:                                                     | 5-9-12<br>0-3-0 Edge] [11:0-3-0 0-3-8]                         | <u>5-4-4</u><br>12:0-2-5 0-1-8] [12:0-3-12 0-3-6 | 10-0-1<br>8] [17 <sup>.</sup> 0-0-0 0-1-12] |                     | 7-9-15                                           | I                                  |                   |
|                                                                             | 0 0 0,20g0], [110 0 0,0 0 0],                                  |                                                  |                                             |                     |                                                  | _                                  |                   |
| LOADING (psf)                                                               | SPACING- 2-1-8<br>Plate Grip DOI 1 15                          | <b>CSI.</b><br>TC 0.71                           | DEFL. in<br>Vert(LL) -0.09                  | 1 (loc)<br>9-11     | I/defl L/d                                       | PLATES<br>MT20                     | GRIP<br>244/190   |
| TCDL 10.0                                                                   | Lumber DOL 1.15                                                | BC 0.39                                          | Vert(CT) -0.22                              | 9-11                | >999 240                                         |                                    | 210,000           |
| BCLL 0.0 *                                                                  | Rep Stress Incr NO                                             | WB 0.76<br>Matrix-S                              | Horz(CT) 0.07                               | 7<br>Q              | n/a n/a                                          | Weight: 226 lb                     | FT - 20%          |
| BODE 10.0                                                                   |                                                                | Matrix 0                                         |                                             | 5                   | 2333 240                                         | Weight: 220 ib                     | 11 - 2070         |
|                                                                             |                                                                |                                                  | BRACING-                                    | 20000               | purling (2.5.10 max)                             | avaant and varticals               |                   |
| 1-2: 2x4 S                                                                  | SP No.1, 6-8: 2x6 SP No.1                                      |                                                  |                                             | (Switche            | d from sheeted: Space                            | $r_{\rm r}$ = 2-0-0).              |                   |
| BOT CHORD 2x6 SP N                                                          | 0.1                                                            |                                                  | BOT CHORD                                   | Rigid cei           | iling directly applied o                         | r 10-0-0 oc bracing.               |                   |
| 4-11,4-9:                                                                   | 2x4 SP No.2, 15-16: 2x6 SP N                                   | o.1                                              | WEBS                                        | T-Brace:            | 2                                                | ·9<br>k4 SPF No.2 - 3-11, 15-      | 16                |
|                                                                             |                                                                |                                                  |                                             | Fasten (2           | 2X) T and I braces to                            | narrow edge of web w               | ith 10d           |
|                                                                             |                                                                |                                                  |                                             | (0.131"x<br>Brace m | 3") nails, 6in o.c.,with<br>ust cover 90% of web | 3in minimum end dista              | nce.              |
| REACTIONS. (lb/size)                                                        | 13=1466/0-5-8, 7=1589/0-5-                                     | 3                                                |                                             |                     |                                                  | 5                                  |                   |
| Max Horz<br>Max Unlif                                                       | z  13=-273(LC 8)<br>ft 13=-83(I C 12)  7=-111(I C 1            | 3)                                               |                                             |                     |                                                  |                                    |                   |
|                                                                             |                                                                |                                                  |                                             |                     |                                                  |                                    |                   |
| FORCES. (lb) - Max. Co<br>TOP CHORD 1-3=-23                                 | omp./Max. Ten All forces 250<br>86/467 3-4=-1621/502 4-5=-2    | (lb) or less except when shown                   | -1414/333                                   |                     |                                                  |                                    |                   |
| BOT CHORD 12-13=-                                                           | 257/334, 11-12=-236/2004, 9-                                   | 11=-42/1218, 7-9=-225/1694                       |                                             |                     |                                                  |                                    |                   |
| WEBS 3-12=-2                                                                | 1/832, 3-11=-1066/286, 11-15<br>46/1819_4-16=-383/1254_9-1     | =-60/414, 4-15=-137/704, 5-9=-5<br>5=-303/953    | 527/365,                                    |                     |                                                  |                                    |                   |
| 1-12=*2                                                                     | 10, 1010, 7 10-300/1207, 81                                    |                                                  |                                             |                     |                                                  |                                    |                   |
| NOTES-                                                                      | ade have been considered for                                   | this design                                      |                                             |                     |                                                  |                                    |                   |
| 2) Wind: ASCE 7-10; Vult                                                    | =130mph (3-second gust) Vas                                    | d=103mph; TCDL=6.0psf; BCDI                      | L=6.0psf; h=15ft; Cat. II;                  | Exp C; en           | closed;                                          |                                    |                   |
| MWFRS (envelope) an                                                         | d C-C Exterior(2) 0-1-12 to 4-6                                | -9, Interior(1) 4-6-9 to 13-7-11,                | Exterior(2) 13-7-11 to 18                   | -0-8 zone;          | C-C for                                          |                                    |                   |
| <ul><li>and forces &amp;</li><li>3) This truss has been de</li></ul>        | signed for a 10.0 psf bottom cl                                | nord live load nonconcurrent with                | ש∟=ו.ט<br>n any other live loads.           |                     |                                                  |                                    | CAD               |
| 4) * This truss has been d                                                  | lesigned for a live load of 30.0                               | osf on the bottom chord in all are               | eas with a clearance grea                   | ater than 6         | -0-0                                             | "RTH                               |                   |
| <ol> <li>between the bottom ch</li> <li>Bearing at joint(s) 13 c</li> </ol> | ord and any other members.<br>onsiders parallel to grain value | using ANSI/TPI 1 angle to grain                  | n formula. Building desig                   | ner should          | d verify                                         | Giver                              | PN                |

capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb)

7=111.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-64, 4-8=-64, 12-13=-21, 11-12=-21, 7-11=-21, 15-16=-60



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932



BRACING-TOP CHORD

WEBS

BOT CHORD

T-Brace:

## LUMBER-

| TOP CHORD | 2x4 SP No.1 *Except*                      |
|-----------|-------------------------------------------|
|           | 6-8: 2x6 SP No.1                          |
| BOT CHORD | 2x6 SP No.1                               |
| WEBS      | 2x4 SP No.3 *Except*                      |
|           | 4-11,4-9: 2x4 SP No.2, 14-15: 2x6 SP No.1 |
|           |                                           |

# REACTIONS. (lb/size) 12=1432/Mechanical, 7=1442/0-5-8 Max Horz 12=-256(LC 8) Max Uplift 12=-79(LC 12), 7=-101(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 3-4=-1608/502, 4-5=-1809/527, 5-7=-1952/438
- BOT CHORD 11-12=-153/1269, 9-11=-46/1150, 7-9=-221/1497
- WEBS 11-14=-80/286, 4-14=-155/606, 4-15=-228/994, 9-15=-144/672, 5-9=-432/286, 3-12=-1646/322

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-2-3, Exterior(2) 13-2-3 to 17-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 7=101.
- 7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 7-13=-20, 14-15=-60



818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied, except end verticals.

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

2x4 SPF No.2 - 3-12, 14-15

Rigid ceiling directly applied or 10-0-0 oc bracing.

Brace must cover 90% of web length.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





19-8-0

|                                                                    | [9.0-2-0,Euge]                                                                                          |                                                   |                                                                                                                                                                                                                                                                 |                                                                                              |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.34<br>BC 0.41<br>WB 0.18<br>Matrix-S | DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.01         12-13         n/r         120           Vert(CT)         -0.01         12-13         n/r         120           Horz(CT)         0.00         n/a         n/a | PLATES         GRIP           MT20         244/190           Weight: 164 lb         FT = 20% |
| LUMBER-                                                            |                                                                                                         | ·                                                 | BRACING-                                                                                                                                                                                                                                                        |                                                                                              |

TOP CHORD

BOT CHORD

WEBS

Plate Offcotc (X V)

| TOP CHORD | 2x4 SP No.1 |
|-----------|-------------|
| BOT CHORD | 2x4 SP No.1 |
| WEBS      | 2x6 SP No.1 |
| OTHERS    | 2x4 SP No 3 |

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SPF No.2 - 8-18, 7-20, 10-17, 11-16 T-Brace: Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

#### REACTIONS. All bearings 19-8-0.

Max Horz 25=295(LC 12) (lb) -

[0:0.2.0 Edgo]

- Max Uplift All uplift 100 lb or less at joint(s) 18, 21, 23, 15 except 25=-401(LC 10), 20=-110(LC 12), 22=-115(LC 12), 24=-617(LC 12), 16=-114(LC 13)
- Max Grav All reactions 250 lb or less at joint(s) 20, 22, 23, 16 except 25=599(LC
  - 12), 18=327(LC 19), 21=272(LC 19), 24=508(LC 10), 17=276(LC 22), 15=261(LC 20)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-25=-352/246, 1-2=-440/332

WEBS 2-24=-324/349

## NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-2-12 to 4-7-9, Exterior(2) 4-7-9 to 13-2-3, Corner(3) 13-2-3 to 17-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 21, 23, 15 except (jt=lb) 25=401, 20=110, 22=115, 24=617, 16=114.
- 10) Non Standard bearing condition. Review required.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being real of the set only water the building designer must verify the subject of building designer much the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





Comtech, Inc., Fayetteville, NC 28309

8.130 s Mar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:29 2019 Page 1 ID:3B2lliU9aTYR60tFvgEVAlyq8tk-OiWQg?RxIGB9jejKw4pDi?ksZKX1AzUnCll4TfzTkd8

Scale = 1:73.3



| LOADING (psf)       | SPACING-                    | 2-0-0           | CSI.                   | DEFL.   | n (loc) l/defl L/c | d PLATES | GRIP |  |
|---------------------|-----------------------------|-----------------|------------------------|---------|--------------------|----------|------|--|
| Plate Offsets (X,Y) | [2:0-0-0,0-0-12], [5:0-3-0, | Edge], [9:0-2-8 | 3,0-3-0], [10:0-4-0,0- | 5-0]    |                    |          |      |  |
|                     |                             |                 | 6-1-4                  | 7-11-8  | 6-1-4              |          |      |  |
|                     |                             | L               | 6-1-4                  | 14-0-12 | 20-2-0             | 1        |      |  |

| LUADING (pst)                                                                                                                | SPACING- 2-0-0                                                                                                                                          | 631.                                                | DEFL.               | In        | (IOC)    | i/defi      | L/a             | PLAIES                    | GRIP        |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|-----------|----------|-------------|-----------------|---------------------------|-------------|
| TCLL 20.0                                                                                                                    | Plate Grip DOL 1.15                                                                                                                                     | TC 0.77                                             | Vert(LL)            | -0.13     | 9-11     | >999        | 360             | MT20                      | 244/190     |
| TCDL 10.0                                                                                                                    | Lumber DOL 1.15                                                                                                                                         | BC 0.45                                             | Vert(CT)            | -0.25     | 9-11     | >948        | 240             |                           |             |
| BCLL 0.0 *                                                                                                                   | Rep Stress Incr YES                                                                                                                                     | WB 0.08                                             | Horz(CT)            | 0.01      | 8        | n/a         | n/a             |                           |             |
| BCDL 10.0                                                                                                                    | Code IRC2015/TPI2014                                                                                                                                    | Matrix-S                                            | Wind(LL)            | 0.13      | 9-11     | >999        | 240             | Weight: 216 lb            | FT = 20%    |
| LUMBER-                                                                                                                      |                                                                                                                                                         |                                                     | BRACING-            |           |          |             |                 |                           |             |
| TOP CHORD 2x6 SP                                                                                                             | ' No.1                                                                                                                                                  |                                                     | TOP CHORI           | D         | Structu  | ral wood    | sheathing dir   | ectly applied or 5-4-1 of | oc purlins. |
| BOT CHORD 2x10 S                                                                                                             | P No.1                                                                                                                                                  |                                                     | BOT CHORI           | D         | Rigid c  | eiling dire | ectly applied c | r 10-0-0 oc bracing.      |             |
| WEBS 2x6 SP                                                                                                                  | No.1 *Except*                                                                                                                                           |                                                     |                     |           |          |             |                 |                           |             |
| 3-4,6-7                                                                                                                      | : 2x4 SP No.3                                                                                                                                           |                                                     |                     |           |          |             |                 |                           |             |
| WEDGE                                                                                                                        |                                                                                                                                                         |                                                     |                     |           |          |             |                 |                           |             |
| Left: 2x6 SP No.2, Right                                                                                                     | nt: 2x4 SP No.3                                                                                                                                         |                                                     |                     |           |          |             |                 |                           |             |
| REACTIONS. (Ib/size<br>Max H<br>Max G                                                                                        | <ul> <li>2=1074/0-3-8, 8=1019/0-3-8</li> <li>orz 2=322(LC 9)</li> <li>rav 2=1218(LC 20), 8=1180(LC 20)</li> </ul>                                       |                                                     |                     |           |          |             |                 |                           |             |
| FORCES.         (lb) - Max.           TOP CHORD         2-3=-           BOT CHORD         2-11=           WEBS         4-6=- | Comp./Max. Ten All forces 250 (lb) or<br>1502/27, 3-4=-775/167, 4-5=-150/631, 5<br>=0/888, 9-11=0/888, 8-9=0/888<br>1672/465, 3-11=-27/643, 7-9=-34/600 | less except when shown.<br>-6=-143/626, 6-7=-783/17 | 74, 7-8=-1478/19    |           |          |             |                 |                           |             |
| NOTES-<br>1) Unbalanced roof live<br>2) Wind: ASCE 7-10; V                                                                   | e loads have been considered for this dee<br>(ult=130mph (3-second gust) Vasd=103n                                                                      | sign.<br>nph; TCDL=6.0psf; BCDL                     | .=6.0psf; h=15ft; C | at. II; E | Exp C; e | nclosed;    | . 4.0           |                           |             |

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-14 to 3-7-15, Exterior(2) 3-7-15 to 10-1-0, Corner(3) 10-1-0 to 14-5-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11

7) Attic room checked for L/360 deflection.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Comtech. Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:31 2019 Page 1 ID:3B2IliU9aTYR6OtFvgEVAlyq8tk-K5eA5hTBqtRtyyti2VrhnQpC27DVet\_4g3nBYYzTkd6

Scale = 1.73.3



| Plate Offsets (X,                                                                                                                    | Y) [2:0-0-0,0-0-8], [5:0-3-                                                 | 0,Edge], [9:0-2-8,0                      | )-3-0], [10:0-5·                            | 6-0,0-5-8]                |                                                       |                                      |                                    |                                       |                                 |                                                  |                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------|--|
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | * Rep Stress Inc.<br>Code IRC2015                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>/TPI2014 | CSI.<br>TC ()<br>BC ()<br>WB ()<br>Matrix-S | 0.77<br>0.45<br>0.08<br>S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.13<br>-0.25<br>0.01<br>0.09 | (loc)<br>9-11<br>9-11<br>8<br>9-11 | l/defl<br>>999<br>>948<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 215 lb          | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER-<br>TOP CHORD 2<br>BOT CHORD 2<br>WEBS 2<br>3                                                                                 | 2x6 SP No.1<br>2x10 SP No.1<br>2x6 SP No.1 *Except*<br>3-4,6-7: 2x4 SP No.3 |                                          |                                             |                           | BRACING-<br>TOP CHOR<br>BOT CHOR                      | :D<br>:D                             | Structu<br>Rigid c                 | ral wood<br>eiling dire               | sheathing dire                  | ectly applied or 5-6-9 o<br>r 10-0-0 oc bracing. | c purlins.                         |  |
| REACTIONS.                                                                                                                           | (lb/size) 2=1074/0-3-8, 8= <sup>-</sup><br>Max Horz 2=258(LC 9)             | 1019/0-3-8                               |                                             |                           |                                                       |                                      |                                    |                                       |                                 |                                                  |                                    |  |

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Max Grav 2=1224(LC 20), 8=1184(LC 20)

2-3=-1484/0, 3-4=-774/140, 4-5=-127/630, 5-6=-113/624, 6-7=-783/149, 7-8=-1459/0 TOP CHORD

BOT CHORD 2-11=0/865, 9-11=0/865, 8-9=0/865

4-6=-1672/365, 3-11=0/620, 7-9=-0/574 WEBS

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-14 to 3-7-15, Interior(1) 3-7-15 to 10-1-0, Exterior(2) 10-1-0 to 14-5-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11





🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





Comtech. Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:32 2019 Page 1 ID:3B2lliU9aTYR6OtFvgEVAlyq8tk-oHCY11TpbBZka6SvcDMwJeMNoXZkNKEEvjWk4\_zTkd5

Scale = 1.73.3



| Plate Offsets ()                                                | X,Y)                                  | [2:0-0-0,0-0-8], [5:0-3-0,E                                                    | Edge], [9:0-2-8,                       | 0-3-0], [10:0                    | -5-0,0-5-8]                 |                                                       |                                      |                                    |                                       |                                 |                                                  |                                    |
|-----------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|----------------------------------|-----------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------|
| LOADING (psi<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0<br>BCDL 10.0 | f)<br>0<br>0 *<br>0                   | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2015/TF | 2-0-0<br>1.15<br>1.15<br>YES<br>Pl2014 | CSI.<br>TC<br>BC<br>WB<br>Matrix | 0.77<br>0.45<br>0.08<br>x-S | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.13<br>-0.25<br>0.01<br>0.09 | (loc)<br>9-11<br>9-11<br>8<br>9-11 | l/defl<br>>999<br>>948<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 215 lb          | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS                       | 2x6 SP<br>2x10 S<br>2x6 SP<br>3-4,6-7 | PNo.1<br>PNo.1<br>No.1 *Except*<br>: 2x4 SPNo.3                                |                                        | 1                                |                             | BRACING-<br>TOP CHOF<br>BOT CHOF                      | RD<br>RD                             | Structu<br>Rigid c                 | ıral wood<br>eiling dire              | sheathing dire                  | ectly applied or 5-6-9 c<br>r 10-0-0 oc bracing. | oc purlins.                        |
| REACTIONS.                                                      | (lb/size<br>Max H                     | e) 2=1074/0-3-8, 8=101                                                         | 9/0-3-8                                |                                  |                             |                                                       |                                      |                                    |                                       |                                 |                                                  |                                    |

Max Grav 2=1224(LC 20), 8=1184(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1484/0, 3-4=-774/140, 4-5=-127/630, 5-6=-113/624, 6-7=-783/149, 7-8=-1459/0 TOP CHORD

BOT CHORD 2-11=0/865, 9-11=0/865, 8-9=0/865

4-6=-1672/365, 3-11=0/620, 7-9=-0/574 WEBS

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-14 to 3-7-15, Interior(1) 3-7-15 to 10-1-0, Exterior(2) 10-1-0 to 14-5-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11





🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

RENCO

April 5,2019

818 Soundside Road Edenton, NC 27932



- 4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





 Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

| Job               | Truss               | Truss Type    | Qty        | Ply       | Jordan A&B                                                |          |
|-------------------|---------------------|---------------|------------|-----------|-----------------------------------------------------------|----------|
|                   |                     |               |            |           | E                                                         | 12889013 |
| B0419-1680        | C4                  | Common Girder | 1          | 2         |                                                           |          |
|                   |                     |               |            | 2         | Job Reference (optional)                                  |          |
| Comtech, Inc., Fa | etteville, NC 28309 |               |            | 8.130 s M | ar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:36 2019 | Page 2   |
|                   |                     | ID:3B         | 2lliU9aTYF | R6OtFvgEV | Alyq8tk-h2R38OWKfQ4A3jmgr2RsUUWCZ8p8J?CppLUyDl            | lzTkd1   |

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| TCLL<br>TCDL<br>BCLL<br>BCDL | (psi)<br>20.0<br>10.0<br>0.0 *<br>10.0 | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2015/TI | 2-0-0<br>1.15<br>1.15<br>YES<br>PI2014 | TC<br>BC<br>WB<br>Matri | 0.05<br>0.01<br>0.05<br>x-S | Vert(LL)<br>Vert(CT)<br>Horz(CT) | -0.00<br>-0.00<br>0.00 | (IOC)<br>12<br>12<br>12 | n/r<br>n/r<br>n/r<br>n/a | 120<br>120<br>n/a | Weight: 112 lb            | 244/190<br>FT = 20% |  |
|------------------------------|----------------------------------------|--------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------------|----------------------------------|------------------------|-------------------------|--------------------------|-------------------|---------------------------|---------------------|--|
| LUMBER-                      | RD 2x4 SP                              | No.1                                                               |                                        |                         |                             | BRACING<br>TOP CHO               | RD                     | Structu                 | ral wood                 | sheathing di      | rectly applied or 6-0-0 c | oc purlins.         |  |

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.3 OTHERS

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 2=-92(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 17, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 12, 2, 18, 19, 20, 21, 22, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 10-0-0, Corner(3) 10-0-0 to 14-4-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 19, 20, 21, 22. 17. 16. 15. 14.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at building component, not besign valid for use only with MITeK exconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                                                 |                     |                                                                    | 10-0-0                       |                        |                      |        |                                           |                              |                          |                               | 20-0-0                   |                       |                        |
|-------------------------------------------------|---------------------|--------------------------------------------------------------------|------------------------------|------------------------|----------------------|--------|-------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|-----------------------|------------------------|
|                                                 |                     |                                                                    | 10-0-0                       | 1                      |                      | _      |                                           |                              |                          |                               | 10-0-0                   |                       |                        |
| LOADING (psi<br>TCLL 20.<br>TCDL 10.<br>BCLL 0. | f)<br>0<br>0<br>0 * | <b>SPACING-</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr | 2-0-0<br>1.15<br>1.15<br>YES | CSI.<br>TC<br>BC<br>WB | 0.57<br>0.74<br>0.17 |        | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.16<br>-0.35<br>0.03 | (loc)<br>4-7<br>4-7<br>4 | l/defl<br>>999<br>>666<br>n/a | L/d<br>360<br>240<br>n/a | <b>PLATES</b><br>MT20 | <b>GRIP</b><br>244/190 |
| BCDL 10.                                        | 0                   | Code IRC2015/TP                                                    | 2014                         | Matrix                 | k-S                  | \<br>\ | Wind(LL)                                  | 0.05                         | 2-7                      | >999                          | 240                      | Weight: 91 lb         | FT = 20%               |

# LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 4=839/0-5-8, 2=839/0-5-8 Max Horz 2=54(LC 16) Max Uplift 4=-62(LC 13), 2=-62(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-1181/282, 3-4=-1181/282

 BOT CHORD
 2-7=-133/1003, 4-7=-133/1003

BOT CHORD 2-7=-133/1003, 4-7=-' WEBS 3-7=0/453

# NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-0-0, Exterior(2) 10-0-0 to 14-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-8-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.



|                                                       | 21                                                                              | · · · · · · · · · · · · · · · · · · ·        | 12-11-3<br>12-11-3                        |                              |                 | 13-<br>0-8                  | 8-0<br>-13               |                |                        |
|-------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------|-----------------|-----------------------------|--------------------------|----------------|------------------------|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 * | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES | <b>CSI.</b><br>TC 0.15<br>BC 0.10<br>WB 0.04 | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>0.00<br>-0.00<br>-0.02 | (loc)<br>1<br>1 | l/defl<br>n/r<br>n/r<br>n/a | L/d<br>120<br>120<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| BCDL 10.0                                             | Code IRC2015/TPI2014                                                            | Matrix-R                                     |                                           |                              |                 |                             |                          | Weight: 73 lb  | FT = 20%               |

## LUMBER-

| TOP CHORD | 2x4 SP No.1 |
|-----------|-------------|
| BOT CHORD | 2x4 SP No.1 |
| WEBS      | 2x4 SP No.3 |
| OTHERS    | 2x4 SP No.3 |

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 12-13.

REACTIONS. All bearings 13-8-0.

(lb) - Max Horz 21=449(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 21, 11, 12, 16, 18, 19 except 13=-342(LC 12), 17=-104(LC 12), 20=-112(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 12, 13, 15, 16, 17, 18, 19, 20 except 21=287(LC 12)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 5-7=-208/268, 7-8=-275/349, 8-9=-300/374
- BOT CHORD 20-21=-556/445, 19-20=-544/435, 18-19=-548/437, 17-18=-547/437, 16-17=-547/437,
  - 15-16=-548/437, 13-15=-543/426, 9-14=-326/417, 13-14=-326/417

# NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-8-0, Exterior(2) 3-8-0 to 13-8-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studie exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

- Bearing at joint(s) 21, 11, 13, 15, 16, 17, 18, 19, 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 11, 12, 16, 18, 19 except (jt=lb) 13=342, 17=104, 20=112.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 12, 13, 15, 16, 17, 18, 19, 20.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



6-10-0

7

8

2-1-1

9-4-4

#### 8.130 s Mar 11 2018 MiTek Industries, Inc. Fri Apr 5 14:38:42 2019 Page 1 ID: 3B21 liU9aTYR6OtFvgEVAlyq8tk-VCoKOSb4EGqJneDqBJYGjlm6cZ?6jmciCGxGQPzTkcx and a strength of the strength13-8-0



6-10-0

6-10-0

Scale = 1.64.9



-0<u>-10-8</u> 0-10-8

|                                                        | <u>6-10-0</u><br>6-10-0 | <u>12-11-3</u><br>6-1-3 | 13-8-0<br>0-8-13 |      |  |
|--------------------------------------------------------|-------------------------|-------------------------|------------------|------|--|
| Plate Offsets (X,Y) [2:0-1-4,0-1-12], [5:0-2-14,0-1-8] |                         |                         |                  | <br> |  |
|                                                        |                         |                         |                  | <br> |  |

| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.69<br>BC 0.32<br>WB 0.47<br>Matrix-S | DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.07         11-12         >999         360           Vert(CT)         -0.17         11-12         >954         240           Horz(CT)         0.04         9         n/a         n/a           Wind(LL)         0.07         11         >999         240 | PLATES         GRIP           MT20         244/190           Weight: 81 lb         FT = 20% |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LUMBER-                                                                                                                              |                                                                                                         |                                                   | BRACING-                                                                                                                                                                                                                                                                                                                                        |                                                                                             |

TOP CHORD

BOT CHORD

# LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS

Structural wood sheathing directly applied or 4-3-3 oc purlins, except end verticals. Rigid ceiling directly applied or 7-11-7 oc bracing.

REACTIONS. (lb/size) 12=593/0-5-8, 9=539/Mechanical Max Horz 12=310(LC 12) Max Uplift 9=-210(LC 12)

Max Grav 12=593(LC 1), 9=597(LC 19)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-12=-668/356, 2-3=-1629/571, 3-5=-1740/715
- BOT CHORD 11-12=-568/617, 10-11=-616/1236, 5-10=-870/429
- WEBS 2-11=-319/1229, 3-11=-410/254, 5-11=-374/834

# NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=210.



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at building component, not besign valid for use only with MITeK exconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





BRACING-

TOP CHORD

BOT CHORD

WEBS

| FORCES | (lb) - Max | Comp /Max | Ten | - All forces | 250 (lb | ) or less | excent | when | showr |
|--------|------------|-----------|-----|--------------|---------|-----------|--------|------|-------|

(lb/size) 7=532/Mechanical, 9=587/0-5-8

Max Grav 7=792(LC 19), 9=612(LC 19)

TOP CHORD 2-3=-526/0, 2-9=-573/32

2x4 SP No.1

2x4 SP No.1

2x4 SP No.3

BOT CHORD 8-9=-427/432, 7-8=-194/444

WEBS 3-8=0/303, 3-7=-613/270, 2-8=-3/390

Max Horz 9=307(LC 12) Max Uplift 7=-203(LC 12)

## NOTES-

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=203.
- 6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

2x4 SPF No.2 - 4-7, 3-7

Rigid ceiling directly applied or 9-6-15 oc bracing.

Brace must cover 90% of web length.

except end verticals.

T-Brace:

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

# A MITek Affilia 818 Soundside Road Edenton, NC 27932



| 1 1010 0110 | 0010 (71, 17) |                       |          |                                                                                                     |
|-------------|---------------|-----------------------|----------|-----------------------------------------------------------------------------------------------------|
| LOADING     | G (psf)       | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in (loc) I/defl L/d PLATES GRIP                                                               |
| TCLL        | 20.0          | Plate Grip DOL 1.15   | TC 0.40  | Vert(LL) -0.05 11-12 >999 360 MT20 244/190                                                          |
| TCDL        | 10.0          | Lumber DOL 1.15       | BC 0.56  | Vert(CT) -0.12 11-12 >999 240                                                                       |
| BCLL        | 0.0 *         | Rep Stress Incr YES   | WB 0.30  | Horz(CT) 0.03 8 n/a n/a                                                                             |
| BCDL        | 10.0          | Code IRC2015/TPI2014  | Matrix-S | Wind(LL)         0.07         12-13         >999         240         Weight: 94 lb         FT = 20% |
|             | )_            |                       |          | BRACING.                                                                                            |

| LUMBER-   |                                     | BRACING-  |                          |                                            |  |
|-----------|-------------------------------------|-----------|--------------------------|--------------------------------------------|--|
| TOP CHORD | 2x4 SP No.1                         | TOP CHORD | Structural wood sheat    | hing directly applied or 6-0-0 oc purlins, |  |
| BOT CHORD | 2x4 SP No.1 *Except*                |           | except end verticals.    |                                            |  |
|           | 13-15,9-11: 2x4 SP No.3             | BOT CHORD | Rigid ceiling directly a | pplied or 6-0-0 oc bracing.                |  |
| WEBS      | 2x4 SP No.3 *Except*                | WEBS      | 1 Row at midpt           | 5-8                                        |  |
|           | 5-8: 2x4 SP No.2, 2-16: 2x6 SP No.1 |           | T-Brace:                 | 2x4 SPF No.2 - 3-10                        |  |
|           |                                     |           | Fasten (2X) T and I b    | races to narrow edge of web with 10d       |  |
|           |                                     |           | (0.131"x3") nails, 6in d | o.c.,with 3in minimum end distance.        |  |
|           |                                     |           | Brace must cover 90%     | 6 of web length.                           |  |

# REACTIONS. (lb/size) 8=528/Mechanical, 16=589/0-5-8 Max Horz 16=306(LC 12) Max Uplift 8=-203(LC 12) Max Grav 8=585(LC 19), 16=589(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-524/0, 8-10=-655/291, 14-16=-516/117, 2-14=-488/120

BOT CHORD 15-16=-347/151, 13-14=0/528, 12-13=-259/517, 11-12=-259/517, 10-11=-273/517 WEBS 3-10=-651/333

# NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=203.

6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| BCDL 10   | .0       | Code IRC2015/1P12014       | Matrix-S | Wind(LL) 0.0 | 12-13                                                     | >999 240              | Weight: 94 lb $FI = 20\%$               |  |  |
|-----------|----------|----------------------------|----------|--------------|-----------------------------------------------------------|-----------------------|-----------------------------------------|--|--|
| LUMBER-   |          |                            |          | BRACING-     |                                                           |                       |                                         |  |  |
| TOP CHORD | 2x4 SP   | No.1                       |          | TOP CHORD    | Structu                                                   | ral wood sheathing    | g directly applied or 6-0-0 oc purlins, |  |  |
| BOT CHORD | 2x4 SP   | No.1 *Except*              |          |              | except                                                    | end verticals.        |                                         |  |  |
|           | 13-15,9  | -11: 2x4 SP No.3           |          | BOT CHORD    | Rigid ce                                                  | eiling directly appli | ed or 10-0-0 oc bracing, Except:        |  |  |
| WEBS      | 2x4 SP   | No.3 *Except*              |          |              | 6-0-0 o                                                   | c bracing: 15-16,1    | 3-15.                                   |  |  |
|           | 5-8: 2x4 | SP No.2, 2-16: 2x6 SP No.1 |          | WEBS         | 1 Row a                                                   | at midpt              | 5-8                                     |  |  |
|           |          |                            |          |              | T-Brace                                                   | e:                    | 2x4 SPF No.2 - 3-10                     |  |  |
|           |          |                            |          |              | Fasten (2X) T and I braces to narrow edge of web with 10d |                       |                                         |  |  |
|           |          |                            |          |              | (0.131")                                                  | x3") nails. 6in o.c.  | with 3in minimum end distance.          |  |  |

Brace must cover 90% of web length.

REACTIONS. (Ib/size) 16=605/0-5-8, 7=515/0-3-8 Max Horz 16=306(LC 12) Max Uplift 7=-195(LC 12) Max Grav 16=605(LC 1), 7=570(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-554/14, 8-10=-722/317, 14-16=-531/124, 2-14=-508/130

BOT CHORD 15-16=-341/136, 13-14=0/563, 12-13=-271/547, 11-12=-271/547, 10-11=-229/402

WEBS 3-10=-683/345, 3-12=-30/277

## NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=195.

5) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

# SEAL 036322 April 5,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A REPALS A MiTek Affiliate 818 Soundside Road Edenton, NC 27932





13-6-0 13-6-0

|       | (psf) | SPACING-        | 2-0-0 | CSI.  |      | DEFL.    | in    | (loc) | l/defl | l /d | PLATES         | GRIP     |
|-------|-------|-----------------|-------|-------|------|----------|-------|-------|--------|------|----------------|----------|
|       | 20.0  | Plate Grip DOL  | 1.15  | TC    | 0.56 | Vert(LL) | 0.00  | 2     | n/r    | 120  | MT20           | 244/190  |
| DL 1  | 10.0  | Lumber DOL      | 1.15  | BC    | 0.49 | Vert(CT) | 0.00  | 2     | n/r    | 120  | -              |          |
| LL    | 0.0 * | Rep Stress Incr | YES   | WB    | 0.18 | Horz(CT) | -0.00 | 11    | n/a    | n/a  |                |          |
| CDL 1 | 10.0  | Code IRC2015/TP | 12014 | Matri | x-R  |          |       |       |        |      | Weight: 121 lb | FT = 20% |

| LUMBER-   |                      | BRACING-                                                       |                                                                   |  |  |  |  |
|-----------|----------------------|----------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| TOP CHORD | 2x4 SP No.1          | TOP CHORD                                                      | Structural wood sheathing directly applied or 5-10-11 oc purlins, |  |  |  |  |
| BOT CHORD | 2x4 SP No.1          |                                                                | except end verticals.                                             |  |  |  |  |
| WEBS      | 2x6 SP No.1 *Except* | BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. |                                                                   |  |  |  |  |
|           | 10-11: 2x4 SP No.2   | WEBS                                                           | T-Brace: 2x4 SPF No.2 - 10-11, 9-12, 8-13                         |  |  |  |  |
| OTHERS    | 2x4 SP No.3          |                                                                | Fasten (2X) T and I braces to narrow edge of web with 10d         |  |  |  |  |
|           |                      |                                                                | (0.131"x3") nails, 6in o.c., with 3in minimum end distance.       |  |  |  |  |
|           |                      |                                                                | Brace must cover 90% of web length.                               |  |  |  |  |

# REACTIONS. All bearings 13-6-0.

- (lb) Max Horz 18=439(LC 12)
  - Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 13, 14 except 18=-329(LC 10), 15=-117(LC 12), 17=-1041(LC 12)
  - Max Grav All reactions 250 lb or less at joint(s) 11, 15, 16 except 18=1078(LC 12), 12=276(LC 19), 13=265(LC 19), 14=271(LC 19), 17=444(LC 10)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-18=-670/535, 2-3=-727/582, 3-4=-385/317, 4-5=-339/278, 5-7=-260/214 WEBS 3-17=-521/602

#### NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-0, Exterior(2) 3-6-0 to 13-4-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 13, 14 except (jt=lb) 18=329, 15=117, 17=1041.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.



Scale = 1:57.3



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



|                                                                                                                                      | 0-3-0<br>0-3-0                                                                     |                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                     | I                                                                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014 | CSI.<br>TC 0.52<br>BC 0.27<br>WB 0.00<br>Matrix-P | DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.02         2-4         >999         360           Vert(CT)         -0.06         2-4         >999         240           Horz(CT)         0.00         4         n/a         n/a           Wind(LL)         0.01         2-4         >999         240 | PLATES         GRIP           MT20         244/190           Weight: 26 lb         FT = 20% |  |  |

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 4=326/0-1-8, 2=376/0-3-0 Max Horz 2=57(LC 4) Max Uplift 4=-32(LC 8), 2=-45(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed;

- MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 76 lb down at 2-0-12, and 117
- Ib down and 23 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-3=-60, 2-4=-20 Concentrated Loads (lb)
  - Vert: 5=-68(B) 6=-117(B)



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| 0-3-0<br>0-3-0                                                     |                                                                                                         |                                                   | <u>6-0-0</u><br>5-9-0                                                          |                                             |                               |                                 |                                 |                                    |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------|---------------------------------|------------------------------------|--|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.45<br>BC 0.32<br>WB 0.00<br>Matrix-P | DEFL. ir<br>Vert(LL) -0.01<br>Vert(CT) -0.03<br>Horz(CT) 0.00<br>Wind(LL) 0.00 | n (loc)<br>2-4<br>2-4<br>4<br>4<br>2-4<br>2 | l/defl<br>>999<br>>999<br>n/a | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 26 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |

# LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

BRACING-TOP CHORD

 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 Directly applied or 40.0 occupations

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=223/0-1-8, 2=294/0-3-0 Max Horz 2=57(LC 8) Max Uplift 4=-30(LC 12), 2=-57(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-10-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                     | 0-3-0<br>0-3-0     |           |      | 8-0-0    |       |       |        |     |               |          |
|---------------------|--------------------|-----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Plate Offsets (X,Y) | [2:0-4-4,Edge]     | T         | 1    |          |       |       |        |     | T             |          |
| LOADING (psf)       | SPACING- 2         | -0-0 CSI. |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL 20.0           | Plate Grip DOL     | 1.15 TC   | 0.89 | Vert(LL) | -0.05 | 2-4   | >999   | 360 | MT20          | 244/190  |
| TCDL 10.0           | Lumber DOL         | 1.15 BC   | 0.58 | Vert(CT) | -0.09 | 2-4   | >993   | 240 |               |          |
| BCLL 0.0 *          | Rep Stress Incr    | YES WB    | 0.00 | Horz(CT) | 0.00  |       | n/a    | n/a |               |          |
| BCDL 10.0           | Code IRC2015/TPI20 | 014 Matri | x-P  | Wind(LL) | 0.10  | 2-4   | >908   | 240 | Weight: 35 lb | FT = 20% |
| LUMBER-             | ·                  | ·         |      | BRACING  |       |       |        |     |               |          |

#### LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WEBS

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=337/0-3-0, 4=305/0-1-8 Max Horz 2=69(LC 8)

Max Uplift 2=-129(LC 8), 4=-125(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-4-8 to 4-0-5, Interior(1) 4-0-5 to 7-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=129, 4=125.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





| 0 -                                                                                                                                            | 10                                                                                  |                                                          | 0 + 0                                                                                                             |                                                                 |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0-4                                                                                                                                            | I-8 <sup>1</sup>                                                                    |                                                          | 8-0-0                                                                                                             |                                                                 | 1                                                                                           |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0         *           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | <b>CSI.</b><br>TC 0.18<br>BC 0.04<br>WB 0.11<br>Matrix-P | DEFL.         ii           Vert(LL)         -0.00           Vert(CT)         0.00           Horz(CT)         0.00 | n (loc) l/defl L/d<br>) 1 n/r 120<br>) 1 n/r 120<br>) 1 n/a n/a | PLATES         GRIP           MT20         244/190           Weight: 37 lb         FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 S<br>BOT CHORD 2x6 S                                                                                                  | P No.1<br>P No.1                                                                    |                                                          | BRACING-<br>TOP CHORD                                                                                             | Structural wood sheathing dir except end verticals.             | ectly applied or 6-0-0 oc purlins,                                                          |

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

| TOP CHORD | 2X4 3P NO. 1 |
|-----------|--------------|
| BOT CHORD | 2x6 SP No.1  |
| WEBS      | 2x6 SP No.1  |
| OTHERS    | 2x4 SP No.3  |

**REACTIONS.** All bearings 7-10-8.

(lb) - Max Horz 2=98(LC 8)

- Max Uplift All uplift 100 lb or less at joint(s) 5, 2 except 7=-132(LC 12)
- Max Grav All reactions 250 lb or less at joint(s) 5, 2, 6 except 7=372(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

WEBS 3-7=-290/372

# NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-4-8 to 4-0-0, Exterior(2) 4-0-0 to 7-9-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2 except (jt=lb) 7=132.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Ouality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



```
REACTIONS. (lb/size) 2=496/0-3-0, 5=465/0-1-8
Max Horz 2=101(LC 8)
Max Uplift 2=-57(LC 8), 5=-62(LC 12)
```

| FORCES. | (lb) - | Max. | Comp./Max. | Ten. | - , | All forces | 250 | (lb) | or | less | except | when | shown |
|---------|--------|------|------------|------|-----|------------|-----|------|----|------|--------|------|-------|
|         |        | 2 2  | 705/047    |      |     |            |     |      |    |      |        |      |       |

```
        TOP CHORD
        2-3=-765/247

        BOT CHORD
        2-5=-325/696
```

```
WEBS 3-5=-686/369
```

# NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-4-8 to 4-0-5, Interior(1) 4-0-5 to 11-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932



| 0-4-8<br>0-4-8                                                                                                                                 |                                                                                     | 1                                                 | 12-4-8<br>12-0-0                                              |                                                                                          |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0         *           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | CSI.<br>TC 0.11<br>BC 0.05<br>WB 0.08<br>Matrix-S | DEFL. in<br>Vert(LL) -0.00<br>Vert(CT) 0.00<br>Horz(CT) -0.00 | n (loc) l/defl L/d<br>) 1 n/r 120<br>) 1 n/r 120<br>) 8 n/a n/a                          | PLATES         GRIP           MT20         244/190           Weight: 61 lb         FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 S<br>BOT CHORD 2x6 S<br>WEBS 2x6 S<br>OTHERS 2x4 S                                                                    | P No.1<br>P No.1<br>P No.1<br>P No.3                                                |                                                   | BRACING-<br>TOP CHORD<br>BOT CHORD                            | Structural wood sheathing dire except end verticals.<br>Rigid ceiling directly applied o | ectly applied or 6-0-0 oc purlins,<br>r 10-0-0 oc bracing.                                  |

# REACTIONS. All bearings 11-10-8.

(lb) - Max Horz 2=144(LC 8)

- Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 9, 10, 11 except 12=-102(LC 12)
- Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11 except 12=326(LC 1)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. WEBS 3-12=-213/254

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-4-8 to 4-0-0, Exterior(2) 4-0-0 to 11-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 9, 10, 11 except (jt=lb) 12=102.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| Plate Off | sets (X,Y) | [3:0-0-0,0-0-0], [4:0-0-0,0-0-0 | )]   |        |      |          |       |       |        |     |               |          |
|-----------|------------|---------------------------------|------|--------|------|----------|-------|-------|--------|-----|---------------|----------|
| LOADIN    | G (psf)    | SPACING- 2-                     | -0-0 | CSI.   |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL      | 20.Ó       | Plate Grip DOL 1                | 1.15 | TC     | 0.38 | Vert(LL) | -0.03 | 2-4   | >999   | 360 | MT20          | 244/190  |
| TCDL      | 10.0       | Lumber DOL 1                    | 1.15 | BC     | 0.20 | Vert(CT) | -0.05 | 2-4   | >999   | 240 |               |          |
| BCLL      | 0.0 *      | Rep Stress Incr Y               | /ES  | WB     | 0.00 | Horz(CT) | -0.00 | 4     | n/a    | n/a |               |          |
| BCDL      | 10.0       | Code IRC2015/TPI20              | 14   | Matrix | k-P  | Wind(LL) | 0.00  | 2     | ****   | 240 | Weight: 18 lb | FT = 20% |
|           |            |                                 |      |        |      | 1        |       |       |        |     |               |          |

#### LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

 BRACING 

 TOP CHORD
 Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=256/0-3-0, 4=181/0-1-8 Max Horz 2=55(LC 8) Max Uplift 2=-51(LC 8), 4=-27(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 4-9-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers an allel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| Plate Offsets (X,Y | - [3:0-0-0,0-0-0], [4:0-0-0,0-0-0] |          |             |          |        |     |               |          |
|--------------------|------------------------------------|----------|-------------|----------|--------|-----|---------------|----------|
| LOADING (psf)      | SPACING- 2-0-0                     | CSI.     | DEFL.       | in (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL 20.0          | Plate Grip DOL 1.15                | TC 0.29  | Vert(LL) -0 | 0.03 2-4 | >999   | 360 | MT20          | 244/190  |
| TCDL 10.0          | Lumber DOL 1.15                    | BC 0.20  | Vert(CT) -0 | 0.05 2-4 | >999   | 240 |               |          |
| BCLL 0.0           | Rep Stress Incr YES                | WB 0.00  | Horz(CT) 0  | 0.00 4   | n/a    | n/a |               |          |
| BCDL 10.0          | Code IRC2015/TPI2014               | Matrix-P | Wind(LL) 0  | 0.00 2   | ****   | 240 | Weight: 18 lb | FT = 20% |
|                    |                                    |          |             |          |        |     | 1             |          |

BRACING-

#### LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=256/0-3-0, 4=181/0-1-8 Max Horz 2=55(LC 8) Max Uplift 2=-51(LC 8), 4=-27(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-9-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers an allel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                                                                    |                                                                                     | <u>3-3-7</u><br><u>3-3-7</u>                             |                                                                                                                                                                                                                | 5-0-0<br>1-8-9                                                                                                                                                                    | -                                  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | <b>CSI.</b><br>TC 0.11<br>BC 0.39<br>WB 0.05<br>Matrix-P | DEFL.         in         (loc)           Vert(LL)         -0.04         2-6           Vert(CT)         -0.09         2-6           Horz(CT)         0.03         4           Wind(LL)         0.05         2-6 | I/defl         L/d         PLATES           >999         360         MT20           >651         240            n/a         n/a            >999         240         Weight: 18 lb | <b>GRIP</b><br>244/190<br>FT = 20% |

# LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 4=50/Mechanical, 2=259/0-3-0, 5=137/Mechanical Max Horz 2=36(LC 8) Max Uplift 4=-17(LC 8), 2=-57(LC 8), 5=-3(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 9) Provide adequate drainage to prevent water ponding.
  4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                                                                                                                                      | <u>1-6-14</u><br>1-6-14                                                            |                                                          |                                                                                                                                                    |                                                                 |                                                                                                         |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|
| Plate Offsets (X,Y)                                                                                                                  | [4:0-0-0,0-1-12], [4:0-4-0,0-1-12], [6:0-0-0                                       | ,0-1-12]                                                 |                                                                                                                                                    |                                                                 |                                                                                                         |                                       |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014 | <b>CSI.</b><br>TC 0.14<br>BC 0.30<br>WB 0.04<br>Matrix-P | DEFL.         in           Vert(LL)         -0.03           Vert(CT)         -0.06           Horz(CT)         0.03           Wind(LL)         0.04 | (loc) l/defl<br>6-7 >999<br>6-7 >860<br>4 n/a<br>6-7 >999       | L/d PLATES<br>360 MT20<br>240<br>n/a<br>240 Weight: 17                                                  | <b>GRIP</b><br>244/190<br>Ib FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 SP<br>BOT CHORD 2x4 SP<br>WEBS 2x4 SP                                                                       | No.1<br>No.1<br>No.3                                                               |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD                                                                                                                 | Structural wood s<br>except end vertica<br>Rigid ceiling direct | sheathing directly applied or 5-<br>als, and 2-0-0 oc purlins: 3-4.<br>ctly applied or 6-0-0 oc bracing | -0-0 oc purlins,<br>g.                |

REACTIONS. (lb/size) 4=95/Mechanical, 6=88/Mechanical, 2=251/0-3-0

Max Horz 2=20(LC 8) Max Uplift 4=-33(LC 8), 2=-59(LC 8)

Max Grav 4=95(LC 0), 2=33(LC 0)Max Grav 4=95(LC 1), 6=116(LC 3), 2=251(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

# NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



