

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	AT01	Attic	4	1	lab Deference (entional)
Biverside Boof Truss LLC Dan	/ille VA 24541	Bur	1:8 500 s May 17	2021 Print	8 500 s May 17 2021 MiTek Industries Inc. Tue Nov. 9 11:08:47 2021 Page 2
1.1000, 220, Ball		ID:x	XVN1g_eg3Nz	_wT48Pm	hGczX1xV-W54n5527M8BmqcuidA6PrQux45WcJmsRW?J5_XyKxzk

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 12) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	AT02	ATTIC GIRDER	1	4	Job Reference (optional)
Riverside Roof Truss, LLC, Dany	rille, VA. 24541	Run: 8.5 ID:	00 s May 17 (XVN1g_e	2021 Print 3NzLwT4	8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:08:48 2021 Page 2 I8PmhGczX1xVHeAIQ2I7RJcSITvBudeOdQ61UtG2Daalf3fW_yKxzj

- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-29, 7-29; Wall dead load (5.0psf) on member(s).8-13, 4-26
 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 25-26, 23-25, 20-23, 18-20, 16-18, 14-16, 13-14
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=165, 10=299. 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Attic room checked for L/360 deflection.

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-4=-199, 4-5=-229, 5-6=-199, 30-33=-60, 13-26=-90, 5-7=-30
- Drag: 8-13=-30, 4-26=-30 Trapezoidal Loads (plf)
 - Vert: 6=-199-to-7=-225, 7=-255-to-8=-330, 8=-300-to-10=-399

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	ATGE01	GABLE	1	1	
Biverside Boof Truss LLC Dan	ville VA 24541		Bun: 8 500 s. May 17	7 2021 Print	Job Reference (optional) : 8 500 s May 17 2021 MiTek Industries, Inc. Tue Nov. 9 11:08:49 2021, Page 1
	Ville, VA. 24341	45	ID:xXVN1g_eg3	NzLwT48	PmhGczX1xV-SUBYWm3NuIRT3v15lb8twrzNEuQ3nspk_JoC3QyKzz
	1-0-0 4-2-4	7-7-12 12-8-9 13-10-1	6-0 18-3-7 17-1-15	23-4-4	26-9-12 31-0-0
	1-0-0 4-2-4 '	3-5-8 ' 5-0-13 '1-1-9'1-7	-15 ' 1-7-15 '1-1-9'	5-0-13	' 3-5-8 ' 4-2-4 '
			6x8 =		Scale = 1:76.6
	φ 3x6	$4x6 =$ $4x5 \\ 8.00 \overline{12}_{4x5} \\ 4x5 \\ 4$	62 4x6 = 7 4 35 7 4	x5 // 4x5 // 45 38 T2	4x5 // 4x5 8
	8x8 ≠ 3x6 ST1 3 3x6 2 11 W1 0 1 W1		15-5-0 Bas 8 B3 V		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4x8 = 34 333	2 31 30 27 29 28 26 25 ²⁴	⁴ 22 23 21 20	19	18^{107} 15 14 1312 11 4x8 =
		3x8 = 3x5 = 5x8 = 3x5	= 3x5 = 5x6 =		3x8 =
		3x4 =		4x8 =	= x4 ==
		3x4 =	16-7-12	3x5 = 0	23-4-4
	4-2-4	7-7-12 8-4-4 10-4-4 12-4-4 14-6-0 15	5-6-0 18-11-4 20-1	11-4 22-11-4	4 26-9-12 31-0-0
	4-2-4		<u>1-1-12</u>	5-0 2-0-0	0-0-0 3-0-0 4+2-4
Plate Offsets (X,Y) [3:0	<u>-4-0,0-6-0], [9:0-4-0,0-6-0],</u>	<u>[16:0-2-12,0-2-0], [20:0-2-8,0-3-0], [</u>	25:0-3-8,0-3-0]		
LOADING (psr) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 CSI. 1.15 TC 0.08 1.15 BC 0.06 YES WB 0.12 TPl2014 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT	in 0.00 0.00) 0.02	(loc) I/defl L/d PLATES GRIP 1 n/r 180 MT20 244/190 1 n/r 120 Weight: 297 lb FT = 20%
LUMBER- TOP CHORD 2x8 SP DS T3: 2x4 SF BOT CHORD 2x4 SP DS WEBS 2x4 SP No W8: 2x4 SP OTHERS 2x4 SP No WEDGE Left: 2x4 SP No.3, Right	SS *Except* P DSS SS 0.3 *Except* P No.1, W1: 2x4 SP No.2 0.3 : 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD JOINTS	Structura Rigid cei 10-0-0 o 1 Brace MiTek be insta Installa	al wood sheathing directly applied or 6-0-0 oc purlins. iling directly applied or 10-0-0 oc bracing. Except: ic bracing: 26-29, 19-26, 16-19 at Jt(s): 35, 26, 19 recommends that Stabilizers and required cross bracing alled during truss erection, in accordance with Stabilizer ation guide.
	ana 21.0.0				
(lb) - Max Horz (lb) - Max Horz Max Uplift Max Grav	ngs 31-0-0. 2=269(LC 13) : All uplift 100 lb or less at j 30=-240(LC 16) All reactions 250 lb or less 11 except 2=579(LC 2), 15 10=488(LC 2), 13=473(LC	oint(s) 2, 10, 13, 32 except 15=-337 s at joint(s) 24, 22, 25, 20, 31, 33, 34 =323(LC 36), 30=378(LC 35), 27=35 2), 32=462(LC 2)	(LC 17), 4, 14, 12, 57(LC 7), 18=396(I	LC 7),	
FORCES. (lb) - Max. Co TOP CHORD 2-3=-675 7-45=-71 BOT CHORD 2-34=-43 27-30=-1 12-13=0, WEBS 15-16=-5 7-35=-44	mp./Max. Ten All forces 2 //93, 3-4=-785/88, 4-44=-90 4/196, 8-45=-903/166, 8-9= //482, 33-34=-43/482, 32-33 6/373, 25-27=0/435, 18-20 (471, 11-12=0/471, 10-11=0 /69/164, 8-16=-592/204, 29 /3/231, 28-30=0/296, 17-18	250 (lb) or less except when shown. 3/166, 5-44=-705/196, 5-6=-254/34, -787/76, 9-10=-654/38 3=-43/482, 31-32=-42/458, 30-31=-4 =0/460, 15-18=-11/423, 14-15=0/44 /471, 23-26=0/271, 21-23=0/367, 11 -30=-588/171, 4-29=-596/216, 5-35= -281/0, 15-17=0/285, 9-13=-464/64	, 6-7=-254/42, 12/458, 5, 13-14=0/445, 9-21=0/267 =-443/231, 4, 3-32=-455/80		
 NOTES- 1) Unbalanced roof live ld 2) Wind: ASCE 7-10; Vul gable end zone and C- forces & MWFRS for ri 3) Truss designed for win Gable End Details as a 4) TCLL: ASCE 7-10; Pr- snow: Lumber DOL=1. 5) Unbalanced snow load 6) This truss has been de non-concurrent with ot 7) All plates are 2x4 MT2 8) Gable requires continu 9) Gable studs spaced at 10) This truss has been of Continued on page 2 	bads have been considered t=130mph Vasd=103mph; C Exterior(2) zone; cantileve eactions shown; Lumber DC nd loads in the plane of the applicable, or consult qualifi 30.0 psf (roof live load: Lur 15 Plate DOL=1.15); Categ Is have been considered fo signed for greater of min ro- her live loads. 0 unless otherwise indicate ious bottom chord bearing. 2-0-0 oc. lesigned for a 10.0 psf bottom	for this design. 'CDL=6.0psf; BCDL=6.0psf; h=25ft; ter left and right exposed ; end vertic DL=1.60 plate grip DOL=1.60 truss only. For studs exposed to wi ed building designer as per ANSI/TI hober DOL=1.15 Plate DOL=1.15); P ory II; Exp B; Partially Exp.; Ct=1.10 ' this design. of live load of 12.0 psf or 1.00 times d. om chord live load nonconcurrent wi	; Cat. II; Exp B; Encal left and right ex nd (normal to the f PI 1. g=30.0 psf (ground) s flat roof load of 2: th any other live lo	closed; M posed;C- ace), see d snow); F 3.1 psf or ads.	IWFRS (envelope) -C for members and e Standard Industry Pf=23.1 psf (flat roof n overhangs

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	ATGE01	GABLE	1	1	
					Job Reference (optional)
Riverside Roof Truss, LLC, Dan	/ille, VA. 24541		Run: 8.500 s May 17	2021 Print	: 8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:08:50 2021 Page 2
			ID:xXVN1g	eg3NzLw	T48PmhGczX1xV-wglwj64?f2ZKh3cHIJf6T2WYzImIWI3tCzYlbsyKxzh

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 12) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-35, 7-35; Wall dead load (5.0psf) on member(s).8-16, 4-29
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 13, 32 except (jt=lb) 15=337, 30=240.
 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 15) Attic room checked for L/360 deflection.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 13, 10 except (jt=lb) 2=130, 14=117, 15=474, 12=122, 17=187.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	ATSGE01	GABLE	1	1	Job Reference (optional)
Riverside Roof Truss, LLC, Dany	ville, VA. 24541	Rur	n: 8.500 s May 17	2021 Print	8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:08:51 2021 Page 2
NOTES-		ID	xxvivig_eg3N	zlwi 48Pr	nnGczx i xv-OsjiwS5eQivinBjDBUS0BL?G2cZiwhFbG0RdHJ/IyKxzg

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-6=-66, 6-11=-66, 19-49=-20, 18-19=-60, 18-52=-20

COAD CASE(S) gatandard

SE (\$) Gtandard

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	G01	Common Girder	1	2	Job Reference (optional)
Riverside Roof Truss, LLC, Dany	ville, VA. 24541	Run:	8.500 s May 1 ID:xXVN1g_	7 2021 Prin eg3NzLw	t: 8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:08:52 2021 Page 2 T48PmhGczX1xV-s3tg8o6GBgp2wNmgQkiaYTbtt6Lc_7gAgH1sflyKxzf

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-66, 3-5=-66, 9-12=-20 Concentrated Loads (lb) Vert: 14=-522(B) 17=-531(B) 18=-531(B) 19=-531(B) 20=-531(B) 21=-518(B)

12) Fill all nail holes where hanger is in contact with lumber.

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	G02	Common Girder	1	2	Job Reference (optional)
Riverside Roof Truss, LLC, Dany	ville, VA. 24541	Ru	in: 8.500 s May 17 ID:xXVN1g_eg3	2021 Print NzLwT48	8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:08:53 2021 Page 2 PmhGczX1xV-LFR3L86uyzxvYXLs_RDp5h72cVhpjasJuxmQCByKxze

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-66, 3-5=-66, 9-12=-20 Concentrated Loads (lb) Vert: 11=-534(B) 17=-531(B) 18=-531(B) 19=-531(B) 20=-531(B) 21=-531(B)

Plate Offsets (X,Y)-- [9:Edge.0-1-8], [16:0-2-3.0-0-8]

Fiale Olisels (A, f) [9.Euge	,0-1-0], [10.0-2-3,0-0-0]							
LOADING (psf) TCLL (roof) 30.0 Snow (Pf/Pg) 23.1/30.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.79 BC 0.24 WB 0.24 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) l, - 9	/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3		BRACI TOP C BOT C WEBS	NG- HORD Structur end veri HORD Rigid ce 1 Row a MiTek be ins Install	ral wood s ticals. siling dired at midpt recomme talled dur ation quid	sheathi ctly app ends th ing trus	ng directly a blied or 10-0 8-9 at Stabilize ss erection,	applied or 6-0-0 oc pu D-0 oc bracing. rs and required cross in accordance with S	Irlins, except bracing tabilizer

REACTIONS. All bearings 12-4-0.

(lb) - Max Horz 16=323(LC 13)

Max Uplift All uplift 100 b or less at joint(s) 9, 13, 14, 12, 11, 10 except 16=-188(LC 14), 15=-214(LC 16) Max Grav All reactions 250 lb or less at joint(s) 9, 13, 14, 12, 11, 10 except 16=322(LC 13), 15=256(LC 29)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-16=-374/326, 1-2=-540/488, 2-3=-420/384, 3-4=-364/338, 4-5=-301/287

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 13, 14, 12, 11, 10 except (jt=lb) 16=188, 15=214.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Wind: ASCE 7-10; Vuit=130mph Vasd=103mph; ICDL=6.0pst; BCDL=6.0pst; h=25tt; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=152.
 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=149.
 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-708/93, 3-4=-488/114, 4-9=-254/164, 2-8=-658/171

TOP CHORD

BOT CHORD 7-8=-572/695. 6-7=-273/546

WEBS 4-7=0/275, 4-6=-606/220, 2-7=-150/301

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit 6) between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 6=151.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-66, 4-7=-66, 10-12=-20, 9-10=-60, 9-15=-20

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 24, 25, 27, 28, 29, 22, 21, 20, 19, 16 except (jt=lb) 30=177, 18=160.

13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-66, 4-6=-66, 9-11=-20, 8-9=-60, 8-14=-20

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF				
21-6482-A	T02A	Common	2	1	lab Deference (entionel)				
Biverside Boof Truss LLC, Dan	ville VA 24541	Bi	In: 8 500 s May 17	2021 Print	8 500 s May 17 2021 MiTek Industries Inc. Tue Nov. 9 11:09:00 2021 Page 2				
			ID:xXVN1g_eg3NzLwT48PmhGczX1xV-ebMipXCHI7pvubNCuPrSt9w6fK_Zsk0LVXzHxH						

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-4=-66, 4-6=-66, 10-12=-20, 9-10=-60, 7-9=-20

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=128, 14=128.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 23.1 psf on overhangs
- non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 16, 17, 14, 13, 12.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	T04	ROOF SPECIAL GIRDER	1	3	Job Reference (optional)
Riverside Roof Truss, LLC, Dan	ville, VA. 24541	Ri	un: 8.500 s May 17 D:xXVN1g_eg3N	2021 Print zLwT48Pi	8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:09:03 2021 Page 2 mhGczX1xV-2A2rSZE9b2CUI36nZXO9UoYa4X9v306oCUBxYcyKxzU

NOTES-11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

W4

W5

17

12

4x8 =

R⁵

24-8-0

19⁹

6x6 =

in (loc)

9

-0.10 11-12

-0.19 11-12

0.11

end verticals

1 Row at midpt

1 Row at midpt

Installation guide.

12 9-1-

l/defl

>999

>999

n/a

I/d

360

240

n/a

Rigid ceiling directly applied or 5-8-1 oc bracing. Except:

6-10

Structural wood sheathing directly applied or 4-4-1 oc purlins, except

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

PLATES

Weight: 239 lb

MT20

2-15, 3-12, 5-12, 10-12, 7-10, 8-9, 7-9

GRIP

244/190

FT = 20%

n

11

2x4 ||

DEFL

BRACING-

TOP CHORD

BOT CHORD

WEBS

Vert(LL)

Vert(CT)

Horz(CT)

<u>∾</u> 18

∰x8 =

REACTIONS.	(lb/size)	16=1051/0-5-8	(min. 0-1-8), 9	9=1051/0-3-8	(min. 0-1-10)
	Max Horz Max Uplif	z 16=563(LC 13) ft16=-18(LC 16).	9=-300(LC 16	5)	
	Max Grav	/16=1219(LC 2)	, 9=1401(LC 2	. ⁽ 9)	

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 1-2=-494/45, 2-3=-1361/549, 3-4=-1171/186, 4-5=-880/212, 5-6=-1067/253, 6-7=-1064/399, 1-16=-1186/92
- BOT CHORD 15-16=-719/662, 3-13=-466/404, 12-13=-1070/1609, 6-10=-453/248, 10-18=-201/347, 18-19=-201/347, 9-19=-201/347
- WEBS 2-15=-1591/826, 13-15=-1203/1518, 2-13=-720/1362, 3-12=-763/675, 5-12=-499/234, 10-12=-650/1313, 7-10=-634/1687, 1-15=-64/896, 7-9=-1277/559

NOTES-

LOADING (psf)

Snow (Pf/Pg) 23.1/30.0

TOP CHORD 2x4 SP No.2

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER-

WEBS

1) Unbalanced roof live loads have been considered for this design.

Plate Offsets (X,Y)-- [10:0-2-0,0-3-0], [13:0-5-8,0-5-12]

30.0

10.0

10.0

2x4 SP No 3

BOT CHORD 2x4 SP No.2 *Except*

0.0

B2,B4: 2x4 SP No.3

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x6 🖉

3 T.ł

W7

7x8 =

CSI.

ΤС

BC

WB

Matrix-MS

0.87

0.58

0.71

3x5 🥢

2

16 15 14 2x4 ||

2x4 || 4x8 =

2-0-0

1.15

1.15

YES

3x5

5-0-3

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 9 = 300.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Max Grav 16=1204(LC 2), 9=-305(LC 16) Max Grav 16=1204(LC 2), 9=1390(LC 29)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-488/40, 2-3=-1341/544, 3-4=-1150/182, 4-5=-858/208, 5-6=-1019/246, 6-7=-1016/393, 1-16=-1171/89
- BOT CHORD 15-16=-730/673, 3-13=-478/418, 12-13=-1077/1607, 6-10=-453/248, 10-18=-192/321, 18-19=-192/321, 9-19=-192/321
- WEBS 2-15=-1568/826, 13-15=-1216/1525, 2-13=-721/1343, 3-12=-775/686, 5-12=-477/227, 10-12=-647/1284, 7-10=-637/1668, 1-15=-61/884, 7-9=-1273/577

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 9=305.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8=103.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-66, 6-10=-66, 14-17=-20, 13-14=-60, 13-20=-20

	T				A	DIV	DOOTON KAT'E			ŋ
JOD	Trus	S			Qty	Ply	POSTON-KATIE	LASSEK RES	PLAN 24376 ROOF	
21-6482-A	T10		Roof Special Structural Gable		1	1	Job Reference	(optional)		
Riverside Roof Tru	uss, LLC, Danville, V	/A. 24541		R	lun: 8.500 s May 1 D:xXVN1g_eg3N	7 2021 Print: JzLwT48Pr	: 8.500 s May 17 2 nhGczX1xV-tKF	021 MiTek Ind 6icJwAuyeT	ustries, Inc. Tue Nov 911: ZxwoVZk3ocDy3?TgC	09:09 2021 Page 1 agaQeGmGyKxzO
		-1 <mark>-0-</mark> (1-0-0	<u>) 5-3-12 10-7-8 5-3-12 5-3-12 </u>	<u>17-9-4</u> 7-1-12	24-11-0	28-6-5	<u>5 31-0-0</u> 2-5-11			
			00.2 00.2	=	=	0.0	2011			Seela 1:116.0
						ţ	5x6 =			Scale = 1.116.0
							3x4			
		I		8	8.00 12	3x4	9 10			
						8 ST20				
					T2	W1//				
				3x5 -			₩4 ₩03 ෆ			
				3x0 7	8114	🛛 🆊 S	6T22\$T23 6			
		=		6		ST21 Bd 3x	4 \			
		6-6	3x8 🚧	ST12	28T13ST16W	Д в	st, j	т		
			5	ST10	ST15	12	56 ¹¹			
			3x6 // 3x5 // ST3 ST5	W7	W6 W5	100 min =	6x6 =	N		
			ST1 4V10 ST6 B2	ST9 Stal	SI19	9		-1-1		
		2	T1 ST2 ST4 W815		199 <u>4</u>			05		
		∞ 1 _W		x12 =	¹⁴ 54	13				
			W11 17 16	4	×10 =			1		
		-	o 1/ 10							
		7x	8 = 5x8 = 5-3-12 10-7-8	17-9-4	24-11-0	J 31-	0-0			
Plate Offsets (X Y) [9·0-1-0	⊤ 0-1-8] [12:0-2-4 Edae	5-3-12 5-3-12 [18:Edge 0-6-4] [25:0-1	7-1-12	7-1-12 0-1-9 0-1-01 [4	6-1	1-0 0-1-01 [45:0-1.	13 0-1-01		
)	<u>0 1 0], [12.0 2 4,20g0</u>	, [10.20g0,0 0 4], [20.0 1	<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0 1 0,0 1 0], [٦		<u>0 1 0], [+0.0 1</u>	10,0 1 0]		
TCLL (roof)	30.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC	0.84	DEFL. Vert(LL)	in -0.16 1	(loc) l/defl 14-15 >999	L/d 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg) 2 TCDL	23.1/30.0 10.0	Lumber DOL	1.15 BC	0.81	Vert(CT) -0.32 1	14-15 >999	240		2.1,100
BCLL	0.0 *	Rep Stress Incr Code IRC2015/	YES WB TPI2014 Matr	0.99 rix-MS	Horz(C1) 0.11	11 n/a	n/a	Weight: 392 I	b FT = 20%
	10.0			Р						
TOP CHORD	2x4 SP No.2			D T(OP CHORD	Structura	al wood sheath	ning directly	applied or 2-10-4 oc	purlins, except
BOT CHORD	2x4 SP No.2 *E	xcept*		B		end verti Bigid cei	icals. iling directly ar	polied or 10	-0-0 oc bracing Exc	ent:
WEBS	2x4 SP No.3	10.0		D.		6-6-14 0	c bracing: 17-	18	o o oo brading, Exe	opi.
OTHERS	2x4 SP No.3					6-3-9 oc 1 Row a	bracing: 14-15	5. 8-12		
				W	/EBS	1 Row a	t midpt	5-14, 7-	14, 9-12, 10-11, 9-11	
						MiTek	recommends t	hat Stabiliz	ers and required cros	s bracing
						Installa	ation guide.			Stabilizer
REACTIONS.	(lb/size) 18=1 Max Horz 18=5	401/0-5-8 (min. 0-1-1 i82(I C 13)	5), 11=1322/0-3-8 (min. 0)-2-0)						
	Max Uplift18=-	103(LC 16), 11=-332(L	.C 16)							
	Max Grav 18=1	629(LC 2), 11=1679(L	C 30)							
FORCES. (lb)	- Max. Comp./	Max. Ten All forces 2	250 (lb) or less except whe	en shown.	1000					
TOP CHORD	2-3=-2140/15 7-8=-1350/29	9, 3-4=-1985/176, 4-5= 4, 8-9=-1320/440, 2-18	=-3066/497, 5-6=-1703/26 3=-1572/202	1, 6-7=-1411/	/286,					
BOT CHORD	17-18=-814/9	32, 5-15=-277/1062, 1	4-15=-867/2620, 8-12=-45	50/248, 12-55	5=-188/381,					
WEBS	4-17=-1083/4	81, 11-56=-188/381 16, 15-17=-699/2011,	4-15=-260/873, 5-14=-145	52/491, 7-14=	-304/249,					
	12-14=-593/1	831, 7-12=-371/188, 9	-12=-589/2131, 2-17=-12/	1321, 9-11=-	1559/523					
NOTES-										
 Unbalanced Wind: ASCE 	l roof live loads = 7-10: Vult-130	have been considered	for this design.	sf: h=25ft: Ca	at II: Eyn B: En	Iclosed: M	IWERS (envelo	ne)		
gable end zo	one and C-C Ex	terior(2) zone; cantilev	er left and right exposed ;	end vertical	left and right ex	xposed;C-	C for members	s and		
forces & MV 3) Truss desig	VFRS for reaction aned for wind log	ons shown; Lumber D0 ads in the plane of the	DL=1.60 plate grip DOL=1 truss only For studs exp	.60 osed to wind	(normal to the	face) see	Standard Indu	istrv		
Gable End I	Details as applic	able, or consult qualifi	ed building designer as pe	er ANSI/TPI 1	1.					
4) TCLL: ASCE snow: Lumb	= 7-10; Pr=30.0 er DOL=1.15 P	psi (root live load: Lur late DOL=1.15): Cated	nder DOL=1.15 Plate DOL ory II; Exp B; Partially Exc	_=1.15); Pg=3).; Ct=1.10	30.0 pst (groun	a snow); I	Pt=23.1 pst (fla	at root		
5) Unbalanced	snow loads have	ve been considered fo	this design.	1 00 41	troof least a fo	0 1	overbar			
o) This truss ha	as been design ent with other li	ed for greater of min rove loads.	ion live load of 12.0 pst of	1.00 times fla	at 1001 10a0 of 2	.s. i pst on	overnangs			
7) All plates an	e 2x4 MT20 unl	ess otherwise indicate	d.							
9) This truss ha	as been design	ed for a 10.0 psf bottor	n chord live load nonconc	urrent with ar	ny other live loa	ads.				
10) * This truss	s has been desi	gned for a live load of	20.0psf on the bottom cho	ord in all area f	s where a recta	angle 3-6-	0 tall by 2-0-0	wide will		
11) Provide me	echanical conne	ection (by others) of tru	ss to bearing plate capabl	e of withstan	ding 100 lb upl	ift at joint(s) except (jt=lb) 18=103		

11=332. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	POSTON-KATIE LASSEK RES PLAN 24376 ROOF
21-6482-A	T10	Roof Special Structural Gable	1	1	Job Beference (optional)
Riverside Roof Truss, LLC, Danville, VA. 24541			Run: 8.500 s May 17 2021 Print: 8.500 s May 17 2021 MiTek Industries, Inc. Tue Nov 9 11:09:10 2021 Page 2 ID:xXVN1g_eg3NzLwT48PmhGczX1xV-LWzUwyJYxC4V4887TW0oHGLnzMPEC7Wpp4OpliyKxzN		

NOTES-12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit
- between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 11=144, 13=107, 9=144, 8=107.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WEBS 2-9=-387/207, 4-6=-387/207

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=160, 6=160.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=128, 6 = 128

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav 1=111(LC 2), 3=111(LC 2), 4=181(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

Weight: 18 lb

Structural wood sheathing directly applied or 4-8-0 oc purlins, except

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

REACTIONS. (lb/size) 1=174/4-8-0 (min. 0-1-8), 3=174/4-8-0 (min. 0-1-8)

Max Uplift1=-12(LC 16), 3=-47(LC 16) Max Grav 1=202(LC 2), 3=208(LC 29)

Code IRC2015/TPI2014

NOTES-

BCDL

WFBS

LUMBER-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

Matrix-P

BRACING-

TOP CHORD

BOT CHORD

end verticals.

Installation guide.

- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.

10.0

2x4 SP No.3

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

Max Horz 1=102(LC 13)

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

TOP CHORD

BOT CHORD

end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=88/2-8-0 (min. 0-1-8), 3=88/2-8-0 (min. 0-1-8) Max Horz 1=51(LC 13) Max Uplift1=-6(LC 16), 3=-24(LC 16) Max Grav 1=102(LC 2), 3=105(LC 29)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof
- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WFBS

BRACING-TOP CHORD BOT CHORD

end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied or 2-7-8 oc purlins, except

REACTIONS. (lb/size) 1=86/2-7-8 (min. 0-1-8), 3=86/2-7-8 (min. 0-1-8) Max Horz 1=50(LC 13) Max Uplift1=-6(LC 16), 3=-23(LC 16) Max Grav 1=100(LC 2), 3=103(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof
- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WFBS

BRACING-TOP CHORD BOT CHORD

end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied or 4-7-8 oc purlins, except

REACTIONS. (lb/size) 1=172/4-7-8 (min. 0-1-8), 3=172/4-7-8 (min. 0-1-8) Max Horz 1=101(LC 13) Max Uplift1=-12(LC 16), 3=-47(LC 16) Max Grav 1=200(LC 2), 3=206(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof
- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Horz 1=-18(LC 14) Max Uplift1=-9(LC 16), 3=-9(LC 17)

Max Grav 1=110(LC 2), 3=110(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof

- snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.