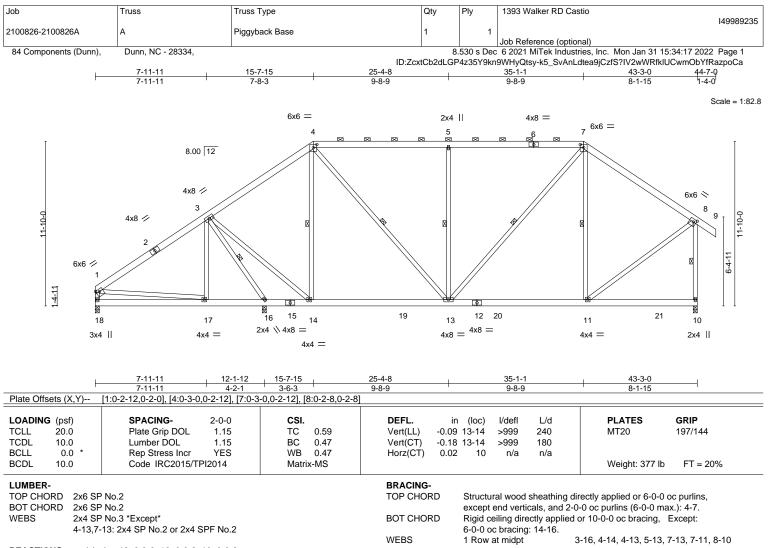


Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2100826-2100826A 1393 Walker RD Castio

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I49989235 thru I49989275


My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

February 1,2022

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

REACTIONS. (size) 18=0-3-8, 16=0-3-8, 10=0-3-8 Max Horz 18=366(LC 11) Max Uplift 18=-45(LC 12), 16=-139(LC 12), 10=-99(LC 13) Max Grav 18=806(LC 1), 16=1270(LC 1), 10=1531(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-938/178, 3-4=-961/300, 4-5=-1142/404, 5-7=-1142/404, 7-8=-1084/323,

1-18=-722/162. 8-10=-1415/337

- BOT CHORD
 17-18=-331/478, 16-17=-232/784, 14-16=-275/188, 13-14=-207/705, 11-13=-131/815

 WEBS
 3-16=-1430/313, 3-14=-94/1085, 4-14=-524/175, 4-13=-180/701, 5-13=-670/308,

 740
 200/270

 741
 -200/270
 - 7-13=-188/550, 7-11=-373/179, 1-17=-48/495, 8-11=-98/1002

NOTES-

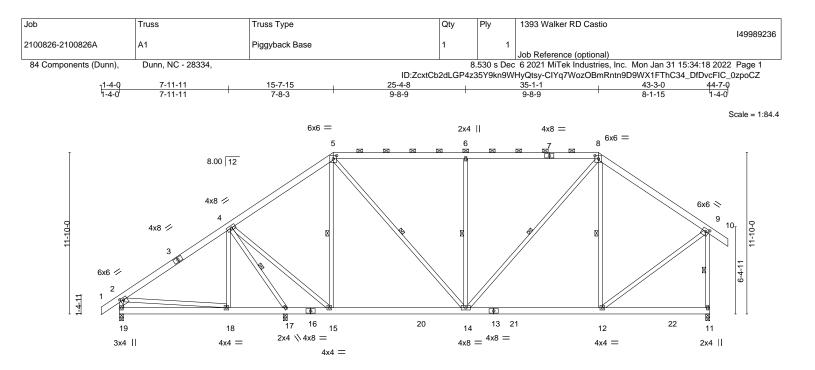
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18, 16, and 10. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Affili 818 Soundside Road Edenton, NC 27932

	7-11-11	12-1-12	15-7-15	25-4-8	35-1-1	43-3-0	
	7-11-11	4-2-1	3-6-3	9-8-9	9-8-9	8-1-15	
Plate Offsets (X,Y)	[2:0-2-12,0-2-0], [5:0-3-0	,0-2-12], [8:0-3-	0,0-2-12], [9:0-2-8,0-2-	8]			
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) I/defl L/d	PLATES GRI	
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.59 BC 0.47	Vert(CT)	-0.09 14-15 >999 240 -0.18 14-15 >999 180	MT20 197/	144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/T	YES PI2014	WB 0.46 Matrix-MS	Horz(CT)	0.02 11 n/a n/a	Weight: 381 lb FT	= 20%
LUMBER-				BRACING-			
	P No.2 P No.2			TOP CHORD		lirectly applied or 6-0-0 oc purl 0-0 oc purlins (6-0-0 max.): 5-8	,
	P No.3 *Except* 8-14: 2x4 SP No.2 or 2x4 S	SPF No.2		BOT CHORD	•	l or 10-0-0 oc bracing, Excep	
- ,.				WEBS		4-17, 5-15, 5-14, 6-14, 8-14, 8	-12, 9-11

REACTIONS. (size) 19=0-3-8, 17=0-3-8, 11=0-3-8 Max Horz 19=382(LC 11) Max Uplift 19=-80(LC 12), 17=-133(LC 12), 11=-100(LC 13) Max Grav 19=903(LC 1), 17=1261(LC 1), 11=1532(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-940/185, 4-5=-962/304, 5-6=-1143/406, 6-8=-1143/406, 8-9=-1085/324,

2-19=-818/233, 9-11=-1416/338

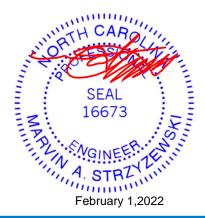
 BOT CHORD
 18-19=-350/519, 17-18=-234/780, 15-17=-275/188, 14-15=-208/707, 12-14=-132/816

 WEBS
 4-17=-1421/308, 4-15=-92/1086, 5-15=-525/173, 5-14=-180/700, 6-14=-670/307, 8-14=-189/551, 8-12=-374/179, 2-18=-50/491, 9-12=-99/1003

NOTES-

1) Unbalanced roof live loads have been considered for this design.

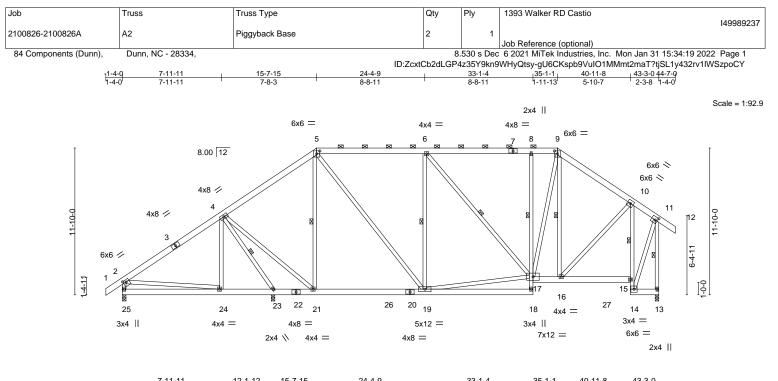
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19, 17, and 11. This connection is for uplift only and does not consider lateral forces.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

11-11 4-2-1	3-6-3	8-8-11			8-8-11		1-11-13	5-10-7	2-3-8	
], [5:0-3-0,0-2-12], [9:0-	3-0,0-2-12], [11:0	-2-3,0-3-0]								
I G- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	F	LATES	GRIP
ip DOL 1.15	TC 0.5	54	Vert(LL)	-0.09 1	19-21	>999	240	Ν	IT20	197/144
DOL 1.15	BC 0.8	30	Vert(CT)	-0.16 1	19-21	>999	180			
ess Incr YES	WB 0.6	62	Horz(CT)	0.07	13	n/a	n/a			
RC2015/TPI2014	Matrix-M	S	. ,					v	Veight: 437 lb	FT = 20%
			BRACING-							
			TOP CHOP	D S	Structu	ral wood	sheathing	directly ap	plied or 6-0-0	oc purlins,
				e	except	end vert	icals, and 2	2-0-0 oc pu	rlins (6-0-0 ma	ax.): 5-9.
o.3			BOT CHOP	RD F	Rigid ce	eiling dir	ectly applie	d or 10-0-0) oc bracing,	Except:
				6	6-0-0 o	c bracino	a: 21-23			•
2 or 2x4 SPF No.2				4	4-1-7 o	c bracing	g: 14-15.			
					1 Row a	at midpt		8-17, 10-	15	
			WEBS		1 Row a	at midpt		4-23, 5-2	1, 6-19, 6-17,	9-16, 11-13
13=0-3-8, 23=0-3-8										
11)										
, , , , ,										
, 11) 12), 13=-100(LC 13), 2	3=-118(LC 12)									
	7-11-11 4-2-1 0], [5:0-3-0,0-2-12], [9:0-3 NG- 2-0-0 Srip DOL 1.15 r DOL 1.15 ress Incr YES RC2015/TPI2014 * No.3 * D.2 or 2x4 SPF No.2 13=0-3-8, 23=0-3-8	0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0 NG- 2-0-0 Srip DOL 1.15 T DOL 1.15 ress Incr YES RC2015/TPI2014 Matrix-Mit	7-11-11 4-2-1 3-6-3 8-8-11 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] NG- CSI. NG- 2-0-0 CSI. rip DOL 1.15 TC 0.54 r DOL 1.15 BC 0.80 ress Incr YES WB 0.62 RC2015/TPI2014 Matrix-MS	T-11 4-2-1 3-6-3 8-8-11 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. NG- 2-0-0 CSI. DEFL. rip DOL 1.15 TC 0.54 Vert(LL) r DOL 1.15 BC 0.80 Vert(CT) ress Incr YES WB 0.62 Horz(CT) RC2015/TPI2014 Matrix-MS BRACING- TOP CHOR * 0.3 BOT CHOR * * 0.2 or 2x4 SPF No.2 WEBS WEBS	7-11-11 4-2-1 3-6-3 8-8-11 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. in NG- 2-0-0 CSI. DEFL. in rip DOL 1.15 TC 0.54 Vert(LL) -0.09 r DOL 1.15 BC 0.80 Vert(CT) -0.16 ress Incr YES WB 0.62 Horz(CT) 0.07 RC2015/TPI2014 Matrix-MS BRACING- * No.3 BOT CHORD * 0.2 or 2x4 SPF No.2 WEBS 13=0-3-8, 23=0-3-8 WEBS	7-11-11 4-2-1 3-6-3 8-8-11 8-8-11 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] 0 0 NG- 2-0-0 CSI. DEFL. in r DOL 1.15 TC 0.54 Vert(LL) -0.09 ress Incr YES WB 0.62 Horz(CT) -0.16 19-21 RC2015/TPI2014 Matrix-MS BRACING- * S BOT CHORD Structure * 0.2 or 2x4 SPF No.2 4-1-7 or 1 Row 13=0-3-8, 23=0-3-8 WEBS 1 Row	7-11-11 4-2-1 3-6-3 8-8-11 8-8-11 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. in (loc) l/defl NG- 2-0-0 CSI. DEFL. in (loc) l/defl irip DOL 1.15 TC 0.54 Vert(LL) -0.09 19-21 >999 r DOL 1.15 BC 0.80 Vert(CT) -0.16 19-21 >999 ress Incr YES WB 0.62 Horz(CT) 0.07 13 n/a RC2015/TPI2014 Matrix-MS BRACING- TOP CHORD Structural wood except end vert * 0.3 * BOT CHORD Rigid ceiling dir 6-0-0 oc bracing * 0.2 or 2x4 SPF No.2 4-1-7 oc bracing 1 Row at midpt 13=0-3-8, 23=0-3-8 WEBS 1 Row at midpt	7-11-11 4-2-1 3-6-3 8-8-11 8-8-11 1-11-13 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. in (loc) //defl L/d NG- 2-0-0 CSI. DEFL. in (loc) //defl L/d r DOL 1.15 TC 0.54 Vert(LL) -0.09 19-21 >999 240 r DOL 1.15 BC 0.80 Vert(CT) -0.16 19-21 >999 180 ress Incr YES WB 0.62 Horz(CT) 0.07 13 n/a n/a x Matrix-MS BRACING- TOP CHORD Structural wood sheathing except end verticals, and 2 * So.3 BOT CHORD Rigid ceiling directly applie 6-0-0 oc bracing: 21-23 * 0.2 or 2x4 SPF No.2 4-1-7 oc bracing: 14-15. 1 Row at midpt 13=0-3-8, 23=0-3-8 WEBS 1 Row at midpt	7-11-11 4-2-1 3-6-3 8-8-11 4-11-13 5-10-7 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. in (loc) I/defl L/d F NG- 2-0-0 CSI. DEFL. in (loc) I/defl L/d F rDOL 1.15 TC 0.54 Vert(CL) -0.09 19-21 >999 240 N ress Incr YES WB 0.62 Vert(CT) -0.16 19-21 >999 180 RC2015/TPI2014 Matrix-MS Horz(CT) 0.07 13 n/a n/a * 0.3 * DC CHORD Structural wood sheathing directly applied or 10-0-0 6-0-0 oc bracing: 21-23 * 0.2 or 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 * 0.2 or 2x4 SPF No.2 1 Row at midpt 8-17, 10- 13=0-3-8, 23=0-3-8 UEBS 1 Row at midpt 4-23, 5-2	7-11-11 4-2-1 3-6-3 8-8-11 4-11-13 5-10-7 2-3-8 0], [5:0-3-0,0-2-12], [9:0-3-0,0-2-12], [11:0-2-3,0-3-0] DEFL. in (loc) I/defl L/d PLATES NG- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES r DOL 1.15 BC 0.80 Vert(CT) -0.16 19-21 >999 240 MT20 ress Incr YES WB 0.62 Vert(CT) -0.16 19-21 >999 180 RC2015/TPI2014 Matrix-MS Weight: 437 lb Weight: 437 lb Weight: 437 lb * 0.3 * TOP CHORD Structural wood sheathing directly applied or 6-0-0 ma * 0.2 or 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing; 6-0-0 oc bracing; 21-23 * 0.2 or 2x4 SPF No.2 13=0-3-8, 23=0-3-8 WEBS 1 Row at midpt 8-17, 10-15

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-873/200, 4-5=-857/317, 5-6=-1023/407, 6-8=-916/373, 8-9=-915/372, 9-10=-1068/346, 10-11=-479/227, 2-25=-774/243, 11-13=-1480/322

 BOT CHORD
 24-25=-349/513, 23-24=-234/695, 21-23=-337/167, 19-21=-209/611, 8-17=-368/184, 16-17=-143/805, 15-16=-117/384, 14-15=-985/199, 10-15=-973/242

 WEBS
 4-23=-1431/323, 4-21=-105/1077, 5-21=-587/168, 5-19=-171/733, 6-19=-476/253,

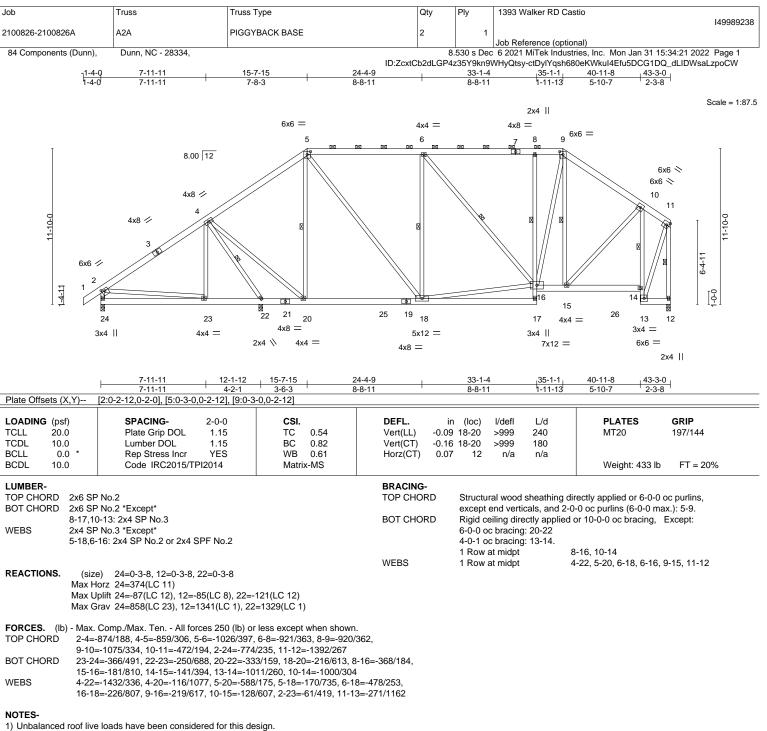
17-19=-220/804, 9-17=-218/617, 10-16=-123/615, 2-24=-65/415, 11-14=-202/1132

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

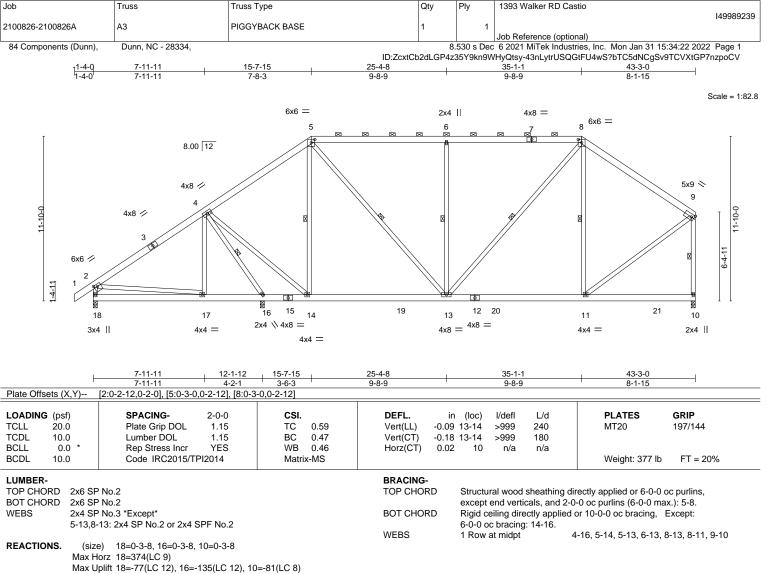
will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 25, 13, and 23.

This connection is for uplift only and does not consider lateral forces. 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24, 12, and 22.

This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Max Grav 18=905(LC 1), 16=1260(LC 1), 10=1457(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-944/176, 4-5=-965/295, 5-6=-1146/397, 6-8=-1146/397, 8-9=-1064/308,

2-18=-821/227. 9-10=-1341/281

- BOT CHORD
 17-18=-368/496, 16-17=-259/774, 14-16=-267/178, 13-14=-216/710, 11-13=-168/821

 WEBS
 4-16=-1420/315, 4-14=-97/1085, 5-14=-524/177, 5-13=-178/701, 6-13=-669/308,
 - 8-13=-190/550, 8-11=-378/205, 2-17=-46/495, 9-11=-137/1008

NOTES-

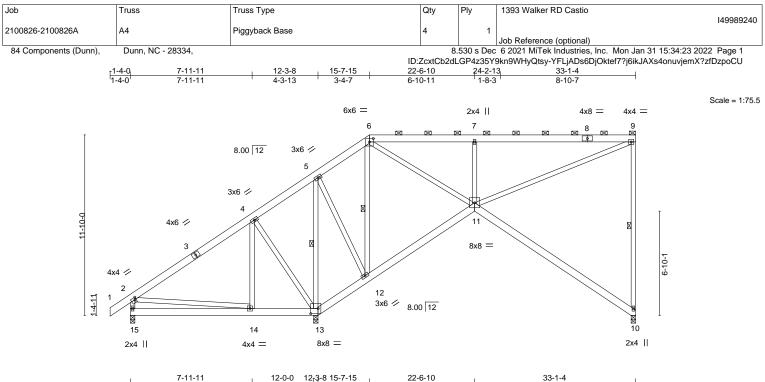
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18, 16, and 10. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

	7-11-11	12-0-0 12-3-6 13-7-15	22-0-10			
	7-11-11	4-0-5 0-3-8 3-4-7	6-10-11	10-6-10	•	
e Offsets (X,Y)	[2:0-1-0,0-1-12], [6:0-3-0,0-2-12], [13:0-	5-12,0-4-0]				
DADING (psf) CLL 20.0 CDL 10.0 CLL 0.0 CLL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.66 BC 0.49 WB 0.57 Matrix-MS	Vert(LL) -0.16	(loc) I/defl L/d 10-11 >999 240 10-11 >752 180 10 n/a n/a		GRIP 244/190 FT = 20%
Max H Max U	No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing d except end verticals, and 2- Rigid ceiling directly applied 1 Row at midpt	0-0 oc purlins (6-0-0 max.)	
TOP CHORD 2-4=- BOT CHORD 14-15 WEBS 4-14=	Comp./Max. Ten All forces 250 (lb) or 253/388, 4-5=-178/595, 6-7=-617/218, 7 5=-475/509, 13-14=-283/169, 12-13=-59 =0/327, 4-13=-554/218, 5-13=-1063/265 =-213/897, 7-11=-649/298, 9-11=-236/60	7-9=-617/218, 9-10=-525/213 9/109 , 5-12=-125/752, 6-12=-816/2				

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

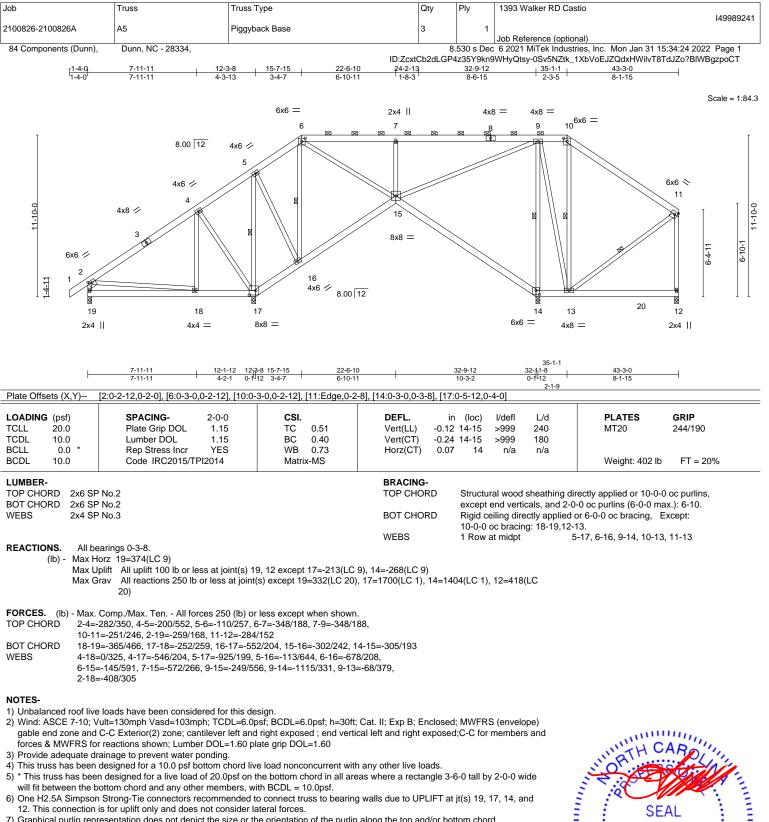
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

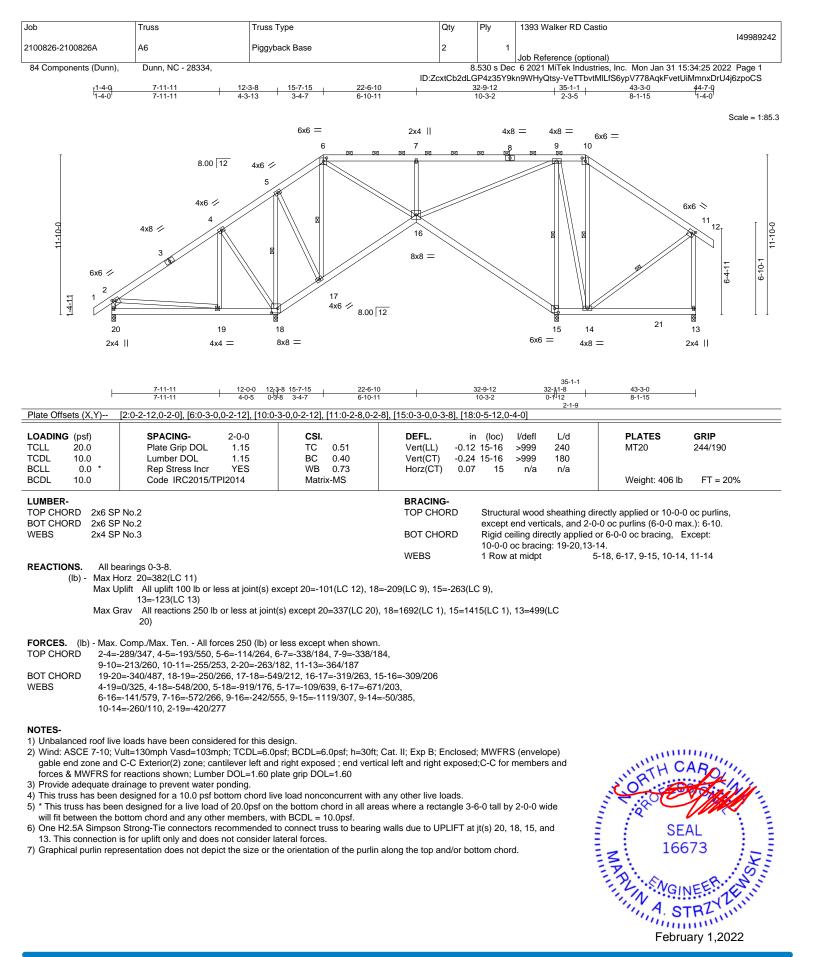
6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15.

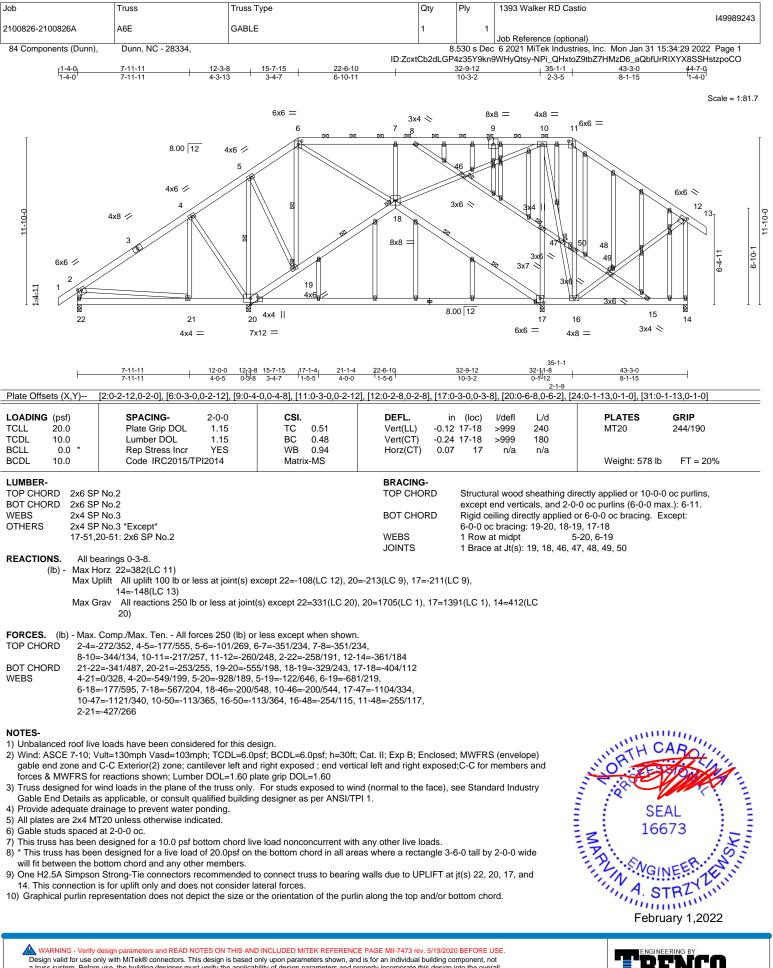

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 13. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

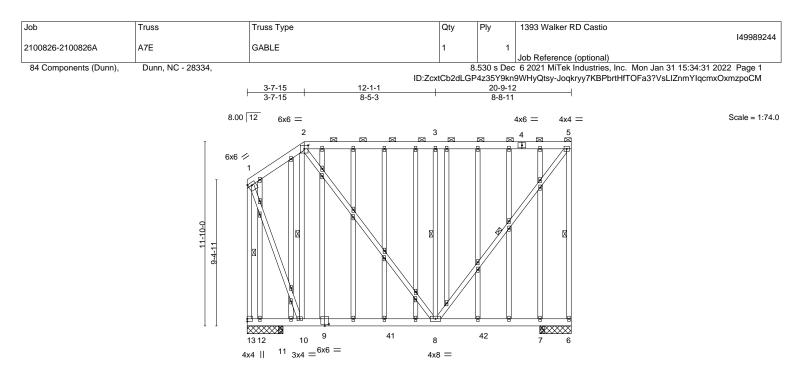
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

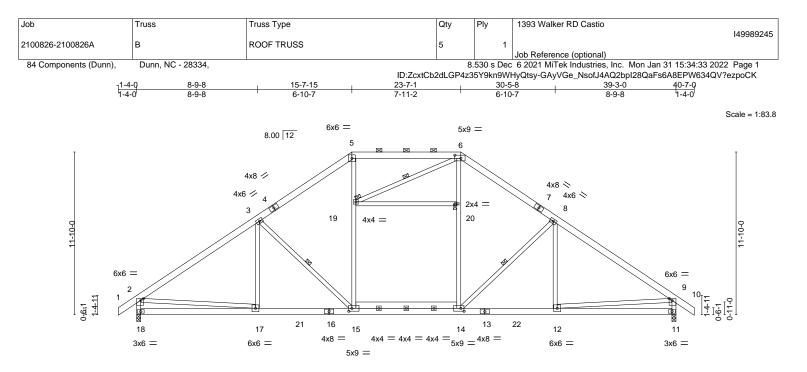

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

		2-0-0	3-7-15	12-1-1 8-5-3			<u>8-9-8</u> 6-8-7	2	20-9-12		
Plate Offsets (X,Y)	[1:0-2-12,0-2-0], [2:0-3-0			0-0-3			0-0-7		2-0-4		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.8: BC 0.2: WB 0.4 Matrix-MS	2 9 7	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.06	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 372 lb	GRIP 197/144 D FT = 20%
	P No.2 P No.3 *Except* 3: 2x4 SP No.2 or 2x4 SP	PF No.2		•	BRACING TOP CHOP BOT CHOP WEBS	RD RD	except Rigid c	end verti	icals, and 2- ectly applied	lirectly applied or 6-0-0 0-0 oc purlins (6-0-0 m or 10-0-0 oc bracing. 5-6, 2-10, 3-8, 5-8, 1-1	ax.): 2-5.
(lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 1-2= BOT CHORD 8-103	earings 0-3-8 except (jt=l- lorz 13=-275(LC 10) lplift All uplift 100 lb or li Grav All reactions 250 lb 7=297(LC 18) Comp./Max. Ten All fo -337/191, 2-3=-390/159, =-181/259 =-498/245, 2-8=-134/344	ess at joint(s) 1 o or less at joint prces 250 (lb) or 3-5=-390/159, 4	1 except 6=-252(I (s) 12, 7 except 6 r less except when 5-6=-702/302, 1-1	LC 9), 13=-165 =676(LC 1), 13 n shown. 3=-750/97),			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; \ gable end zone and Lumber DOL=1.60 g 3) Truss designed for \ Gable End Details a 4) Provide adequate d 5) All plates are 2x4 M 6) Gable studs spaced	e loads have been consid /ult=130mph Vasd=103m C-C Exterior(2) zone; er olate grip DOL=1.60 wind loads in the plane of us applicable, or consult or rainage to prevent water T20 unless otherwise ind	dered for this de hph; TCDL=6.0 hd vertical left e f the truss only. ualified building ponding. licated.	esign. osf; BCDL=6.0psf xposed;C-C for m For studs expos g designer as per	; h=30ft; Cat. II embers and for ed to wind (nor ANSI/TPI 1.	rces & MW	FRS for	reactio	ons shown	istry	SE MA	AROLIN

A STRZ February 1,2022

	8-9-8 8-9-8	15-7-15 6-10-7	23-7-1 7-11-2	30-5-8 6-10-7		9-3-0 3-9-8	
Plate Offsets (X,Y)	[2:0-2-8,0-1-12], [6:0-5-4,0-2-12], [9:0-2	2-8,0-1-12], [14:0-2-12,0-2	2-8], [15:0-2-12,0-2-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.63 BC 0.62 WB 0.62 Matrix-MS	Vert(LL) -0.20 Vert(CT) -0.27 Horz(CT) 0.04	n (loc) l/defl 0 15-17 >999 7 15-17 >999 4 11 n/a 3 14-15 690	L/d 240 180 n/a 360	PLATES MT20 Weight: 352 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S	P No.2 P No.2 P No.3 *Except* 0-11: 2x4 SP No.2 or 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS JOINTS		als, and 2-0-0 o ctly applied or 10 3-15	y applied or 4-5-7 c c purlins (5-1-14 m 0-0-0 oc bracing. , 8-14, 6-19	
Max	ze) 18=0-3-8, 11=0-3-8 Horz 18=317(LC 11) Jplift 18=-48(LC 12), 11=-48(LC 13) Grav 18=1802(LC 1), 11=1802(LC 1)				-, -		

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2357/191, 3-5=-2011/241, 5-6=-1611/251, 6-8=-2012/241, 8-9=-2357/191,

2-18=-1713/242. 9-11=-1713/242

 BOT CHORD
 17-18=-262/614, 15-17=-22/2004, 14-15=0/1590, 12-14=0/1858, 11-12=-86/439

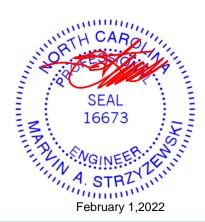
 WEBS
 3-15=-567/311, 15-19=-39/705, 5-19=0/737, 14-20=-40/706, 6-20=0/745, 8-14=-566/310, 2-17=0/1493, 9-12=0/1493

NOTES-

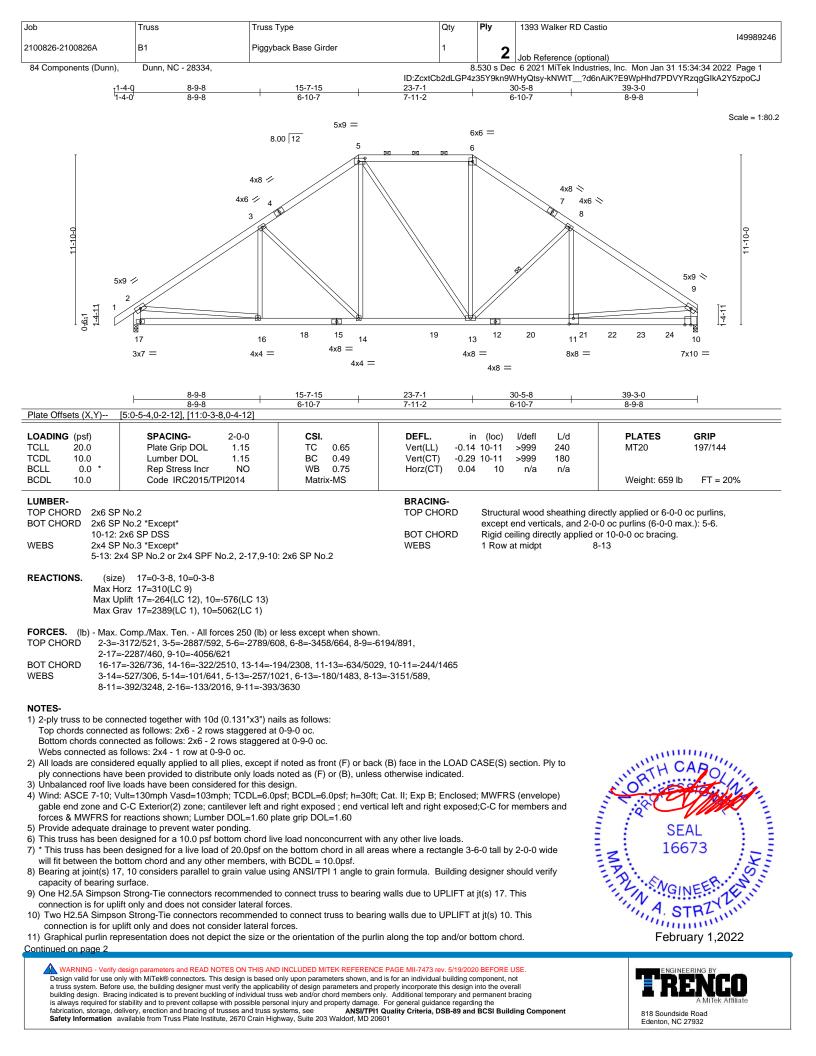
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Ceiling dead load (5.0 psf) on member(s). 19-20; Wall dead load (5.0 psf) on member(s). 15-19, 14-20
- 7) Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 14-15
- 8) Bearing at joint(s) 18, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18 and 11. This connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

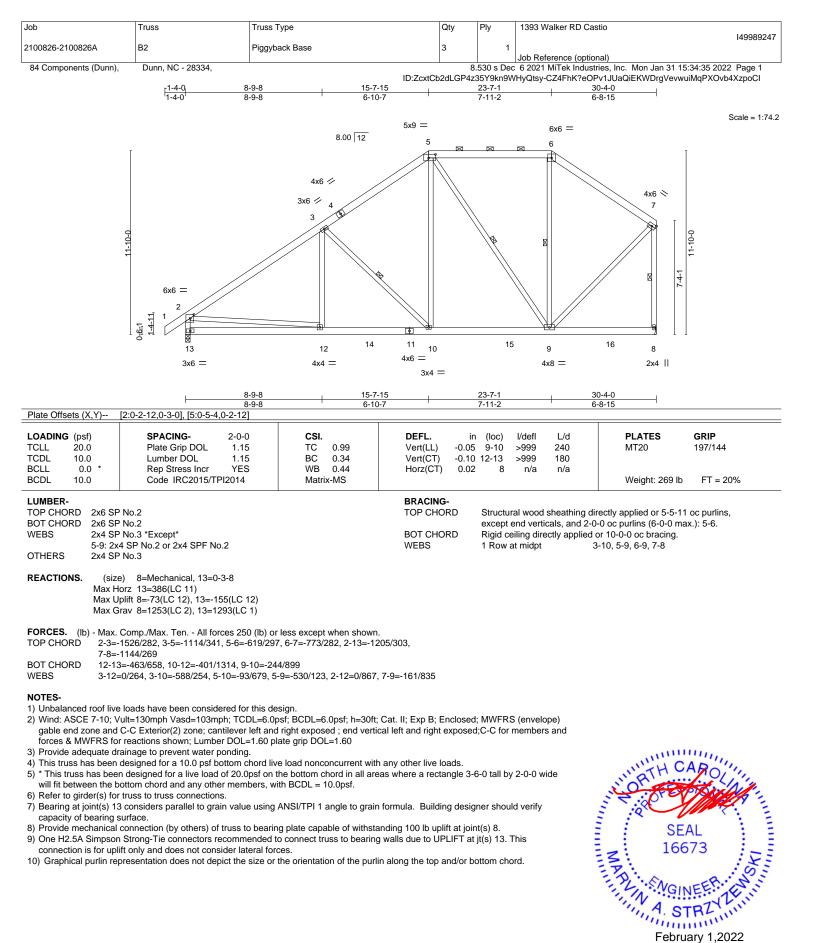
11) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio
					149989246
2100826-2100826A	B1	Piggyback Base Girder	1	ົ່	
				_	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.530 s Dec	6 2021 MiTek Industries, Inc. Mon Jan 31 15:34:35 2022 Page 2
		ID:ZcxtC	b2dLGP4z	:35Y9kn9V	/HvQtsv-CZ4FhK?eOPv1JUaQiEKWDrgavvugiHwPXOvb4XzpoCl

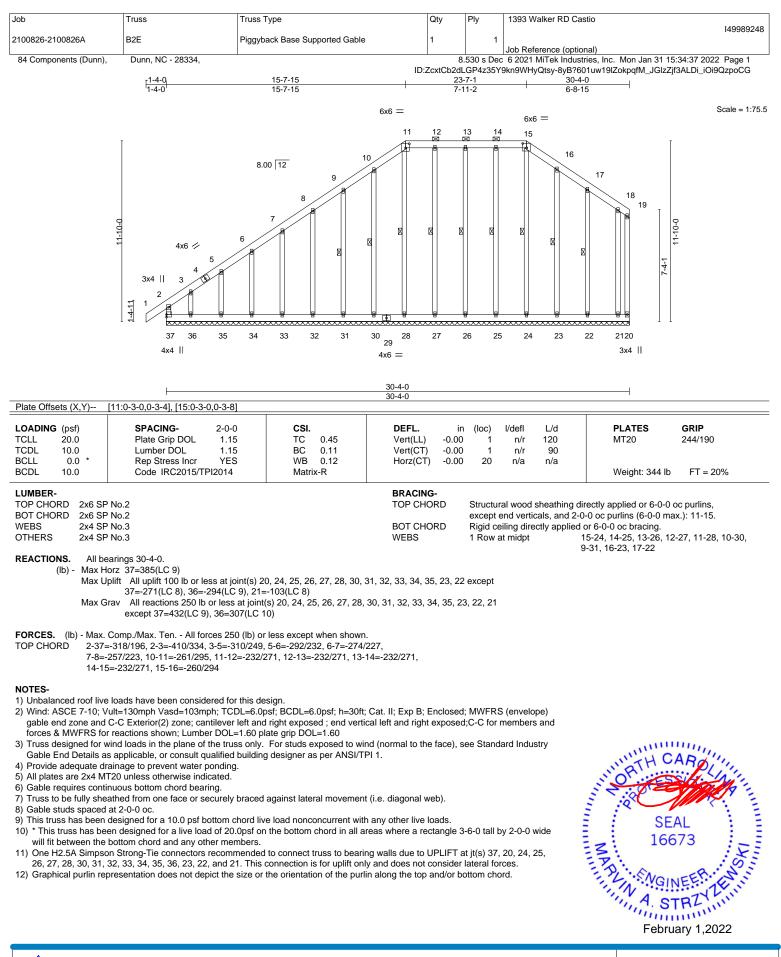
NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2269 lb down and 277 lb up at 30-5-8, 513 lb down and 73 lb up at 31-2-4, 513 lb down and 73 lb up at 33-2-4, and 513 lb down and 73 lb up at 35-2-4, and 513 lb down and 73 lb up at 37-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

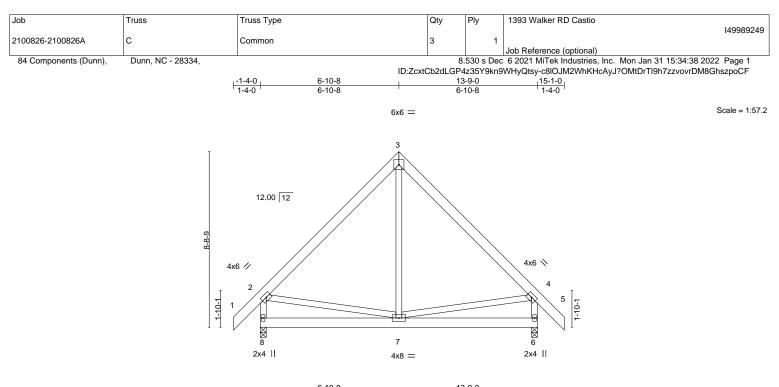
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-5=-60, 5-6=-60, 6-9=-60, 10-17=-20


Concentrated Loads (lb)

Vert: 11=-2200(B) 21=-513(B) 22=-513(B) 23=-513(B) 24=-513(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

		6-10-8 6-10-8		3-9-0 -10-8		1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.43 BC 0.19 WB 0.10 Matrix-MP	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) -0.0	3 6-7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-255(LC 10) Max Uplift 8=-64(LC 12), 6=-64(LC 13)

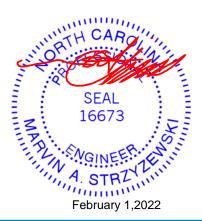
Max Grav 8=627(LC 1), 6=627(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-470/111, 3-4=-470/111, 2-8=-575/194, 4-6=-575/194

WEBS 3-7=0/253, 2-7=-7/293, 4-7=-7/293

NOTES-

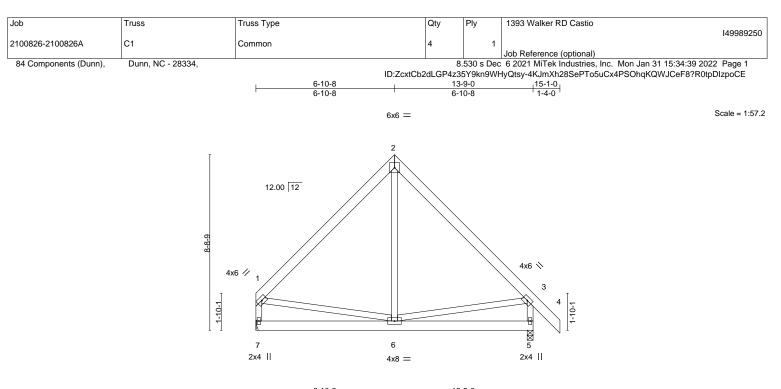

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

		+		6-10-8 6-10-8		13-9 6-10	-		1	T	
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.43	DEFL. Vert(LL)	in -0.02	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.03	5-6	>999	180	WI120	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/T	YES PI2014	WB Matrix	0.10 ĸ-MP	Horz(CT)	0.00	5	n/a	n/a	Weight: 118 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 7=Mechanical, 5=0-3-8 Max Horz 7=-242(LC 8)

Max Uplift 7=-53(LC 13), 5=-63(LC 13) Max Grav 7=533(LC 1), 5=632(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-440/102, 2-3=-476/110, 1-7=-482/128, 3-5=-580/193

WEBS 2-6=0/252, 1-6=-21/278, 3-6=-6/297

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

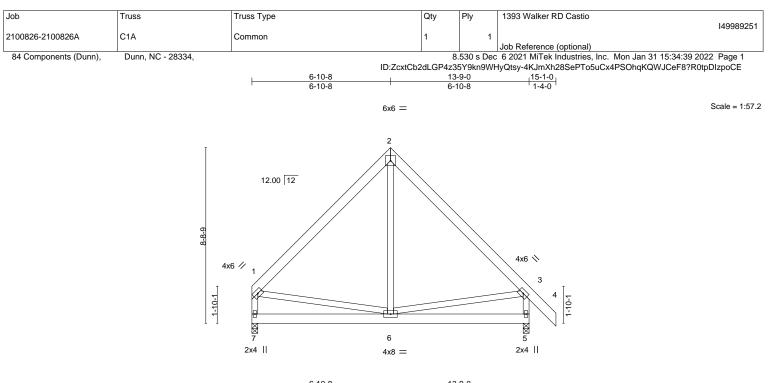
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
connection is for uplift only and does not consider lateral forces.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

	ł	6-10-8	6-10-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.43 BC 0.19 WB 0.10 Matrix-MP	DEFL. in (loc) l/defl Vert(LL) -0.02 5-6 >999 Vert(CT) -0.03 5-6 >999 Horz(CT) 0.00 5 n/a	L/d PLATES GRIP 240 MT20 244/190 180 n/a Weight: 118 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. 7=0-3-8, 5=0-3-8 (size) Max Horz 7=-242(LC 8) Max Uplift 7=-53(LC 13), 5=-63(LC 13)

Max Grav 7=533(LC 1), 5=632(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-440/102, 2-3=-476/110, 1-7=-482/128, 3-5=-580/193

WEBS 2-6=0/252, 1-6=-21/278, 3-6=-6/297

NOTES-

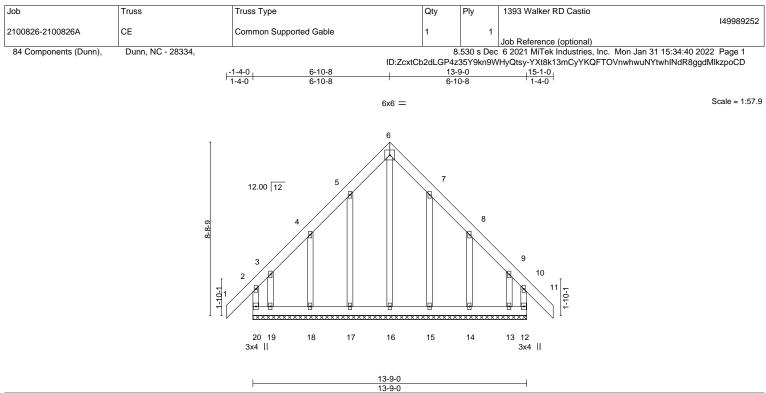
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

			13-9-0		1			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) -0.00	11	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00	11	n/r	90		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.41	Horz(CT) -0.00	12	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R					Weight: 136 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD 2x6 SP No.2

	270 01 100.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 13-9-0.

(lb) - Max Horz 20=-254(LC 10)

Max Uplift All uplift 100 b or less at joint(s) 17, 15 except 20=-278(LC 8), 12=-258(LC 9), 18=-121(LC 12), 19=-241(LC 9), 14=-121(LC 13), 13=-228(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 17, 18, 15, 14 except 20=329(LC 20), 12=313(LC 19), 16=289(LC 13), 19=300(LC 10), 13=285(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 5-6=-220/313, 6-7=-220/313

WEBS 6-16=-345/173

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio	
2100826-2100826A	M1	Monopitch Supported Gable	1	1		149989253
2100020 2100020/					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,	ID:Z	cxtCb2dLGP4 -6-0 -6-0		c 6 2021 MiTek Industries, Inc. Mon Jan 31 /HyQtsy-1jRWxN4OzFgA1P1a3URwT6wc0K′	
			3x4	 6		Scale = 1:51
		2x 4 $2x4 $ $8x8 =$ 3 2 3 3 3 3 3 3 3 3 3 3				

ł

LOADING (psf)	SPACING- 2-0-0	CSI.		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.68	Vert(LL) 0.0	0 1-2	n/r	120	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.22	Vert(CT) 0.0	0 1-2	n/r	90		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.38	Horz(CT) -0.0	0 7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R					Weight: 65 lb	FT = 20%
LUMBER-			BRACING-					
TOP CHORD 2x6 S	P No.2		TOP CHORD	Structu	ural wood	sheathing dir	ectly applied or 6-0-0) oc purlins,
BOT CHORD 2x4 S	P No.2 or 2x4 SPF No.2			except	t end vertig	cals.		•
WEBS 2x4 S	WEBS 2x4 SP No.3				ceiling dire	ctly applied o	or 10-0-0 oc bracing.	
OTHERS 2x4 S	P No.3		WEBS	1 Row	at midpt	6	-7	

REACTIONS. All bearings 6-6-0.

Plate Offsets (X,Y)-- [2:0-3-8,Edge]

(lb) - Max Horz 10=312(LC 11)

Max Holz 10=512(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 7, 8 except 10=-161(LC 8), 9=-308(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8 except 10=403(LC 20), 9=303(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-918/1008, 2-3=-445/517, 3-4=-637/565, 4-5=-267/262

WEBS 4-9=-471/501, 3-10=-1507/1276

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8 except (jt=lb) 10=161, 9=308.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio
					149989254
2100826-2100826A	M1GR	Roof Special Girder	1	2	
				-	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.530 s Dec	6 2021 MiTek Industries, Inc. Mon Jan 31 15:34:42 2022 Page 1

ID:ZcxtCb2dLGP4z35Y9kn9WHyQtsy-Vv?u9j51kZo1fZcmdCy90JSr9kHirTGR8_6TqdzpoCB

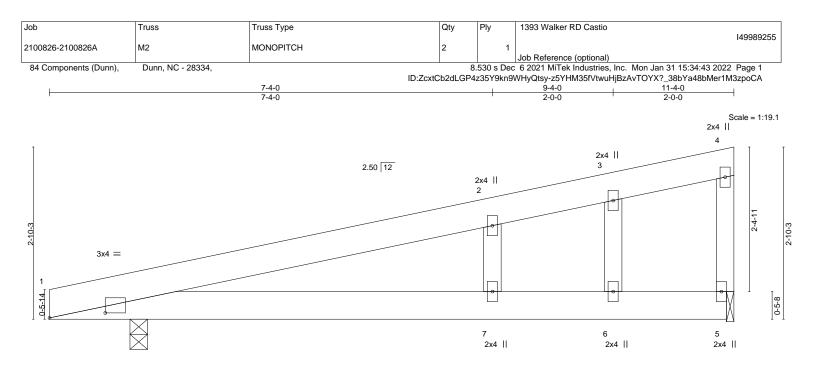
Scale = 1:53.0

0<u>-4-8 1-11-0</u> 0-4-8 1-6-8 7-3-0 5-4-0 6x162:00 12 12 Æ 4x4 = 4x6 = 4 Ð 8-8-9 8-4-1 7-2-1 7-2-1 N.C Æ 7 8 9 10 6 5 2x4 || 2x4 || 10x12 =

Plate Offsets (X,Y)	[1:0-2-12,0-2-8], [3:0-2-8,0-3-0]					
CADING (psf) `CLL 20.0 `CDL 10.0 3CLL 0.0 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.46 WB 0.65 Matrix-MS	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.13 Horz(CT) 0.00	5-6 > 5-6 >	/defl L/d 9999 240 661 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 182 lb FT = 20%
CDL 10.0	Code IRC2015/1912014	Matrix-INIS				Weight: 182 lb F1 = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	DSS		BRACING- TOP CHORD BOT CHORD	except er	d verticals, and 2-	directly applied or 6-0-0 oc purlins, -0-0 oc purlins (6-0-0 max.): 3-4. d or 6-0-0 oc bracing.
Max He Max U	e) 5=Mechanical, 7=0-3-8 orz 7=205(LC 11) plift 5=-242(LC 9), 7=-207(LC 8) rav 5=2302(LC 2), 7=1906(LC 2)					
OP CHORD 1-2=- OT CHORD 6-7=-	Comp./Max. Ten All forces 250 (lb) (1642/272, 2-3=-950/139, 3-4=-544/48, 279/308 490/3133, 3-6=-958/251, 4-6=-196/82	, 4-5=-809/183				
Top chords connected Bottom chords connected Bottom chords connected Webs connected as ply connections have Unbalanced roof live Unbalanced roof live Unbalanced roof live Wind: ASCE 7-10; V gable end zone and forces & MWFRS for Drovide adequate dr. To This truss has been V7 * This truss has been will fit between the b B) Refer to girder(s) for	nected together with 10d (0.131"x3") r ed as follows: 2x6 - 2 rows staggered a ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except e been provided to distribute only load e loads have been considered for this c (ult=130mph Vasd=103mph; TCDL=6.0 C-C Exterior(2) zone; cantilever left ar r reactions shown; Lumber DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord I n designed for a live load of 20.0psf or bottom chord and any other members, truss to truss connections. connection (by others) of truss to bear	at 0-9-0 oc, 2x4 - 1 row at 0 ed at 0-7-0 oc. t if noted as front (F) or back s noted as (F) or (B), unless design. 0psf; BCDL=6.0psf; h=30ft; nd right exposed ; end vertice plate grip DOL=1.60 live load nonconcurrent with n the bottom chord in all are with BCDL = 10.0psf.	k (B) face in the LOAD (s otherwise indicated. Cat. II; Exp B; Enclosed cal left and right exposed n any other live loads. eas where a rectangle 3-	l; MWFRS (d;C-C for m 6-0 tall by 2	,	SEAL 16673
 One H2.5A Simpso connection is for up Graphical purlin rep Hanger(s) or other 2-0-12, and 1231 lb 	on Strong-Tie connectors recommended oblift only and does not consider lateral presentation does not depict the size of connection device(s) shall be provided to down and 93 lb up at 4-0-12, and 12 device(s) is the responsibility of other	forces. or the orientation of the purli d sufficient to support conce 203 lb down and 93 lb up at	in along the top and/or b entrated load(s) 1233 lb	ottom choro down and 9	is ib up at	A STRT
 0) One H2.5A Simpso connection is for up 1) Graphical purlin rep 2) Hanger(s) or other 2-0-12, and 1231 lb 	blift only and does not consider lateral presentation does not depict the size of connection device(s) shall be provided to down and 93 lb up at 4-0-12, and 12 device(s) is the responsibility of other	forces. or the orientation of the purli d sufficient to support conce 203 lb down and 93 lb up at	in along the top and/or b entrated load(s) 1233 lb	ottom choro down and 9	is ib up at	A STRZY LINE February 1,2022

AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio
					149989254
2100826-2100826A	M1GR	Roof Special Girder	1	2	
				_	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.530 s Dec	6 2021 MiTek Industries, Inc. Mon Jan 31 15:34:42 2022 Page 2
		ID:Zo	xtCb2dLG	P4z35Y9k	n9WHyQtsy-Vv?u9j51kZo1fZcmdCy90JSr9kHirTGR8_6TqdzpoCB


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

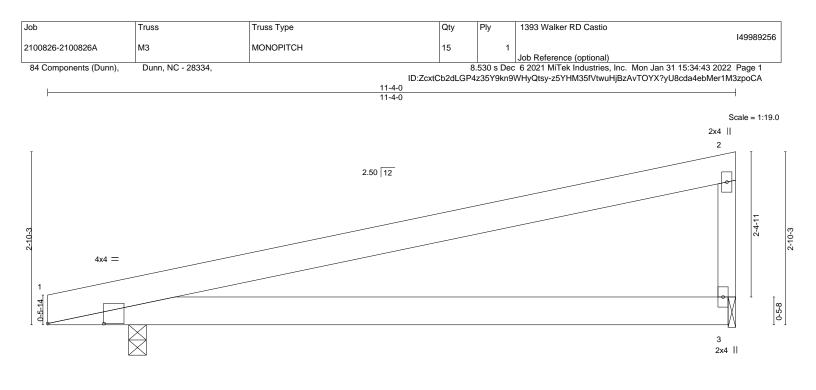
Vert: 6=-1179(F) 8=-1179(F) 10=-1179(F)

	1-5-12 0-1-12 [1:0-11-1,0-1-0]	7-4-0 5-10-4		9-4-0 2-0-0	<u> 11-4-0</u> 2-0-0
OADING (psf) CLL 20.0 CDL 10.0 SCLL 0.0 * SCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.51 BC 0.55 WB 0.03 Matrix-MP	Vert(LL) 0.14	(loc) l/defl L/d 7-12 >933 240 7-12 >480 180 1 n/a n/a	PLATES GRIP MT20 244/190 Weight: 60 lb FT = 20%
JMBER- DP CHORD 2x6 SP DT CHORD 2x6 SP				Structural wood sheathing dir	rectly applied or 6-0-0 oc purlins,

TOP CHORD2x6 SP No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc |
except end verticals.WEBS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 5=0-1-8 Max Horz 1=94(LC 11)

Max Uplift 1=-88(LC 8), 5=-76(LC 12) Max Grav 1=508(LC 1), 5=387(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.

Plate Offsets (X,) [1:0-11-1,0-0-0]										
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	тс	0.68	Vert(LL)	-0.10	3-8	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.24	3-8	>564	180		
BCLL 0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	k-MP						Weight: 56 lb	FT = 20%

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

1-4-0

1-4-0

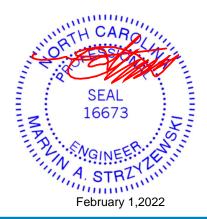
1-5-12 0-1-12

REACTIONS. (size) 1=0-3-8, 3=0-1-8 Max Horz 1=94(LC 11)

Max Uplift 1=-88(LC 8), 3=-76(LC 12)

Max Grav 1=508(LC 1), 3=387(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-262/159


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

	1393 Walker RD Castio	Ply	Qty	Гуре	Truss Type	Truss	lob
149989							
	Job Deference (aptional)	2	2	itch	MG1 Monopitch	MG1	2100826-2100826A
on Jan 31 15:34:44 2022 Page	Job Reference (optional) c 6 2021 MiTek Industries, Inc. Mor		2		Dunn, NC - 28334,	Dunn NC - 28	84 Components (Dunn),
d d5kX5vX1rJPvkblbauWzpoC	kn9WHyQtsy-RI6faP6HGA2lutm9kd_	P4z35Y9	cxtCb2dL0	ID	Dunn, NO - 20004,	Dunin, NO - 20	of components (Bunn),
,	,,		10-5-4 5-2-10	5-2-10			
		I.	5-2-10	5-2-10			
Scale = 1							
		3					
			2x	8.00 12			
			ø	'			
			\checkmark	3x6 🚧			
				2 \$			
				A A			
				4x6 /			
			\		23		
		×	//	13-7	13-4		
			//	P-4-11			
			/	bi b			
		$\langle \rangle $					
		<u></u>					
		×					
		4	7	6 5			
		6x6 =		2x4 3x4 =			

						5-2-10 5-2-10		0-5-4 -2-10					
LOADING (TCLL 2	(psf) 20.0	SPACING- Plate Grip DOL	5-0-0 1.15	CSI. TC	0.76		DEFL. Vert(LL)	in -0.01	(loc) 4-5	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 NO	BC WB	0.16 0.57		Vert(CT) Horz(CT)	-0.02 0.00	4-5 4	>999 n/a	180 n/a		
BCDL 1	10.0	Code IRC2015/TF	912014	Matri	k-MP		. ,					Weight: 241 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-8-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

3-4

TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3 *Except*
	3-4: 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 6=0-3-8, 4=0-3-8 Max Horz 6=676(LC 9) Max Uplift 4=-730(LC 12) Max Grav 6=1020(LC 20), 4=1411(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-621/36, 2-3=-297/159, 3-4=-312/209, 1-6=-935/0

TOP CHORD

BOT CHORD 5-6=-913/771, 4-5=-424/606

WFBS 2-5=-381/496, 2-4=-1272/890, 1-5=-255/756

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

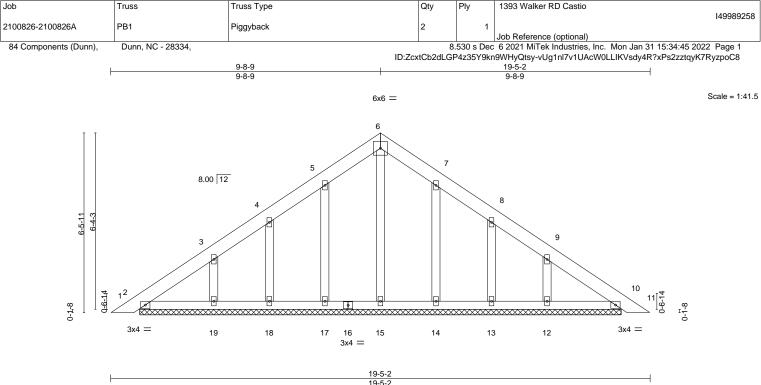
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope)

gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	19-5-2									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) 0.00	1 0	n/r	120	MT20	197/144		
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) 0.00	10	n/r	90				
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00	10	n/a	n/a				
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 115 lb	FT = 20%		

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

REACTIONS. All bearings 17-4-0.

(lb) -Max Horz 2=-153(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 13, 19, 17, 14, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 15, 18, 13, 19, 17, 14, 12, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

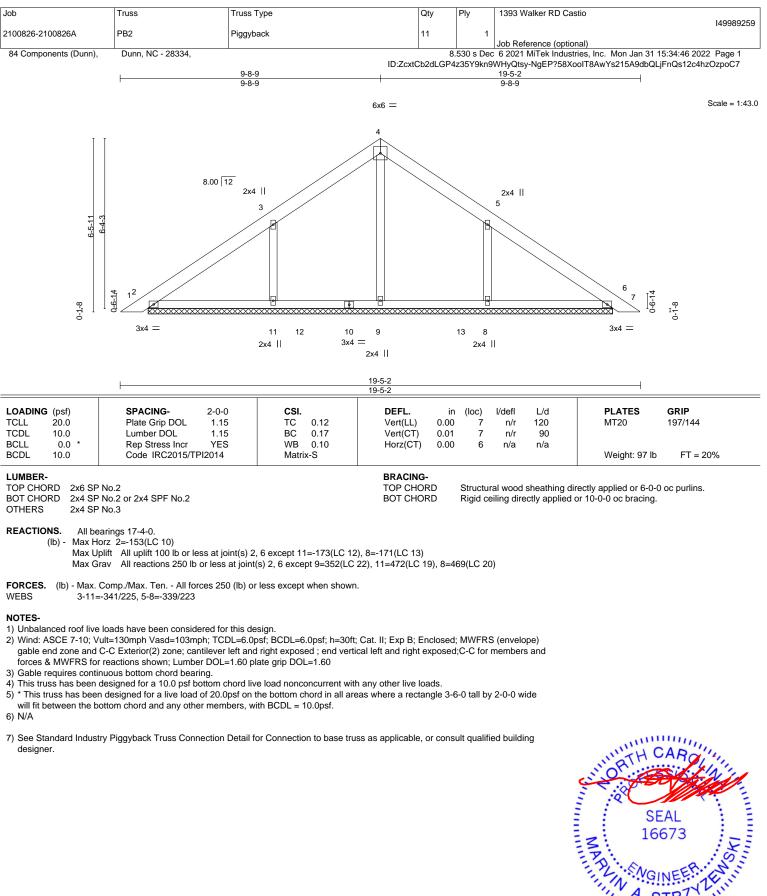
4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

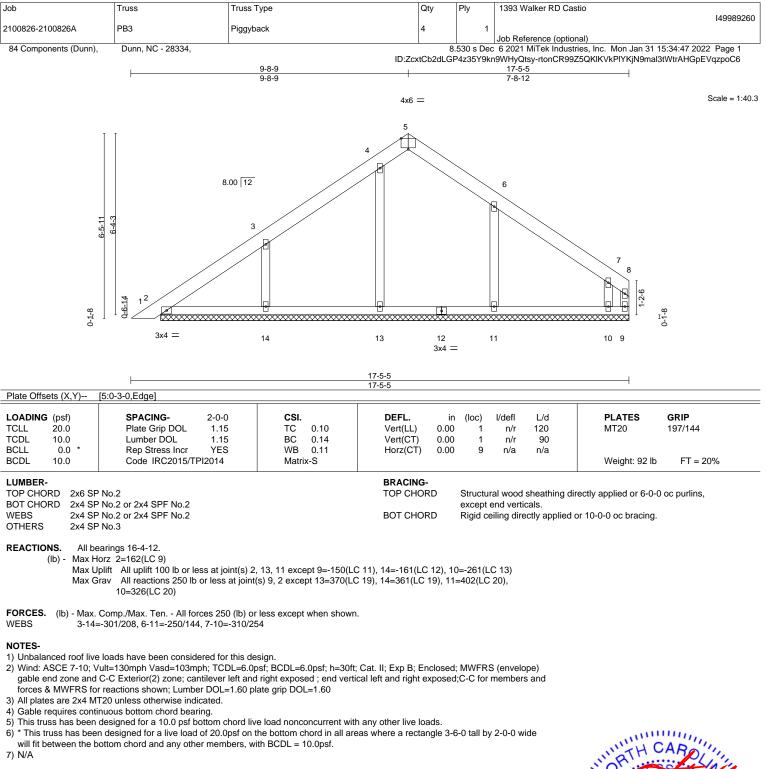
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6)

will fit between the bottom chord and any other members.

7) N/A

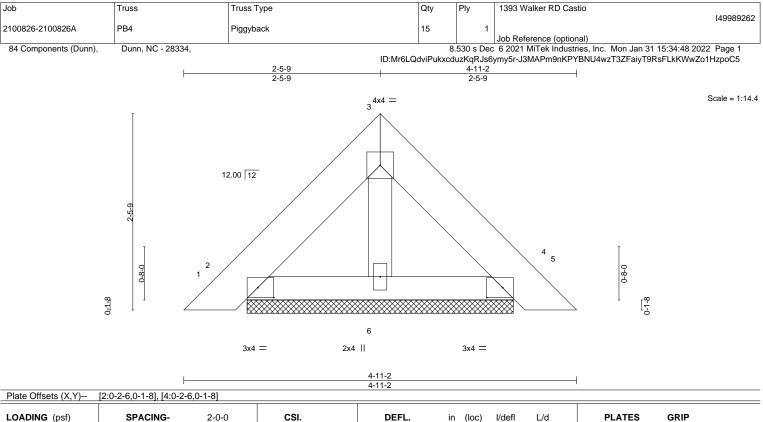

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.



 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Edenton, NC 27932

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOI	_ 1.15	TC	0.02	Vert(LL)	0.00	4	n/r	120	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	4	n/r	90		
BCLL 0.0	* Rep Stress Inc.	r YES	WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code IRC201	5/TPI2014	Matrix	k-P						Weight: 23 lb	FT = 20%
LUMBER-					BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.2 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. (size) 2=3-4-1, 4=3-4-1, 6=3-4-1

Max Horz 2=-53(LC 10) Max Uplift 2=-28(LC 13), 4=-34(LC 13)

Max Grav 2=117(LC 1), 4=117(LC 1), 6=100(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

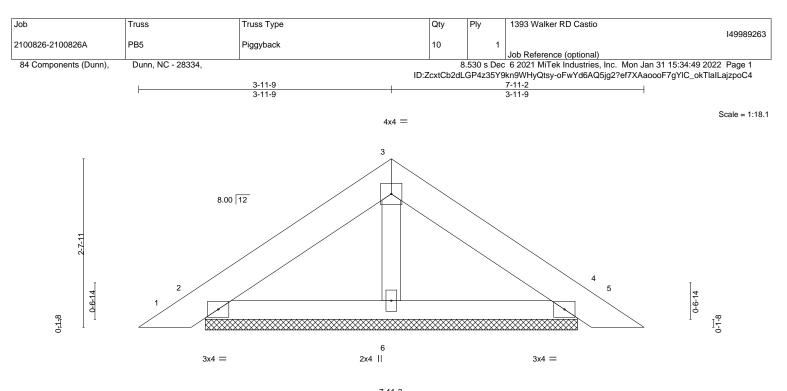
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) N/A


7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-11-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

7-11-2 7-11-2									
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.06 BC 0.09	DEFL. Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 5 5	l/defl n/r n/r	L/d 120 90	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.03 Matrix-P	Horz(CT)	0.00	4	n/a	n/a	Weight: 33 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 OTHERS
 2x4 SP No.3

REACTIONS. (size) 2=5-10-1, 4=5-10-1, 6=5-10-1 Max Horz 2=-59(LC 10) Max Uplift 2=-46(LC 12), 4=-55(LC 13) Max Grav 2=173(LC 1), 4=173(LC 1), 6=196(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

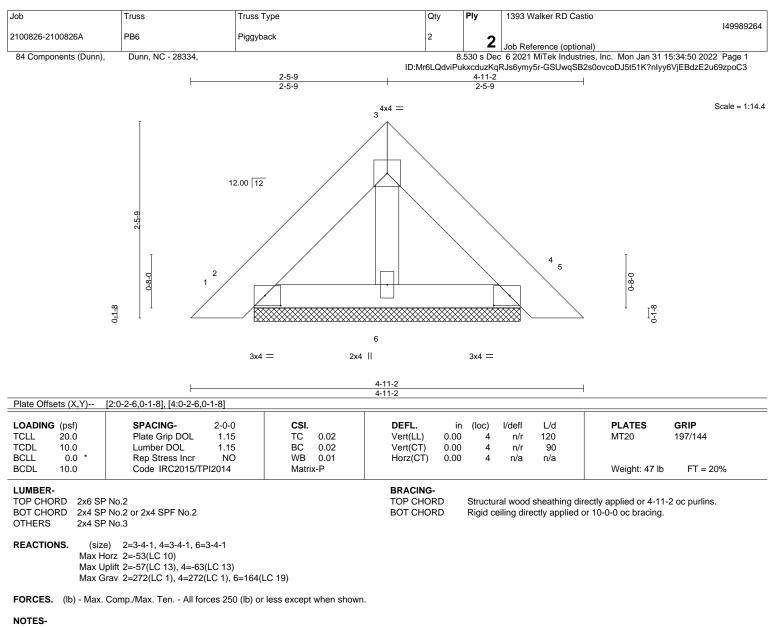
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) N/A


7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

SEAL 16673 A STRZ February 1,2022

Structural wood sheathing directly applied or 6-0-0 oc purlins.

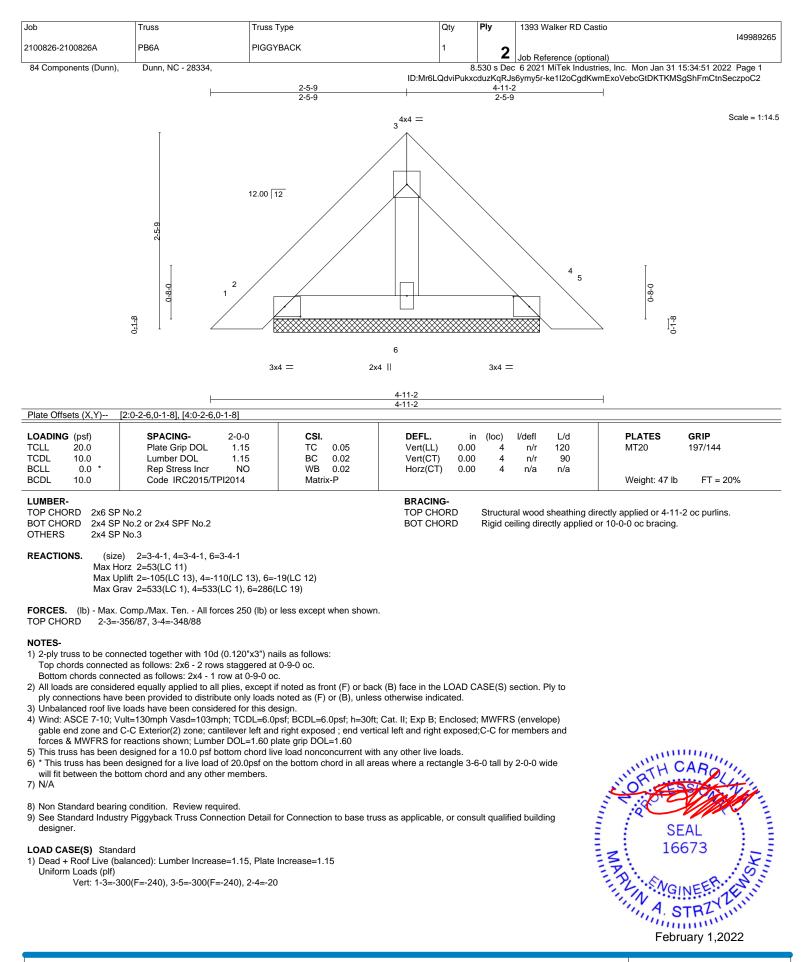
Rigid ceiling directly applied or 10-0-0 oc bracing.

- 1) 2-ply truss to be connected together with 10d (0.120"x3") nails as follows:
- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

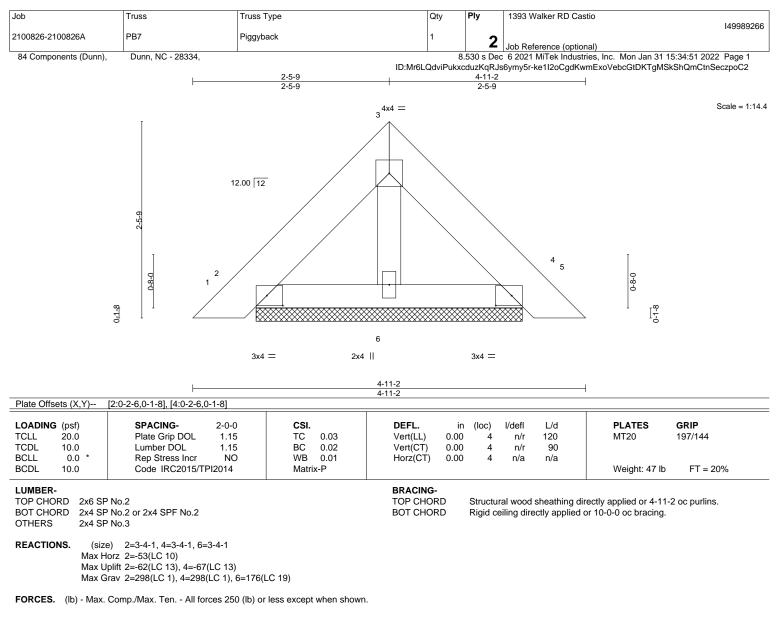
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) N/A


9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-150(F=-90), 3-5=-150(F=-90), 2-4=-20



Edenton, NC 27932

NOTES-

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5) Gable requires continuous bottom chord bearing.

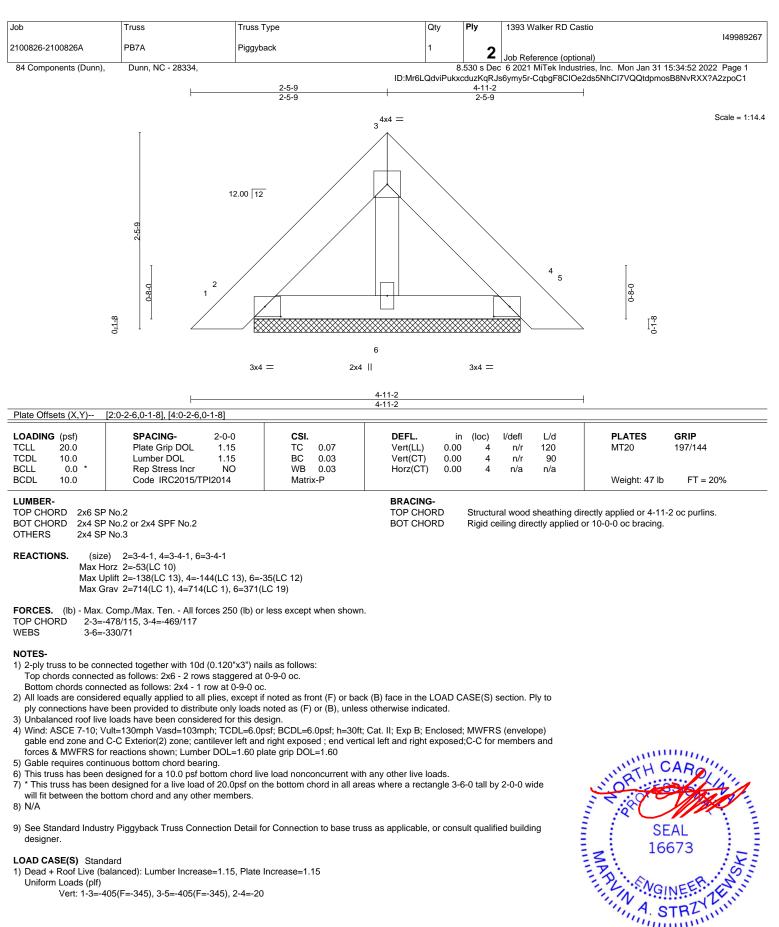
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

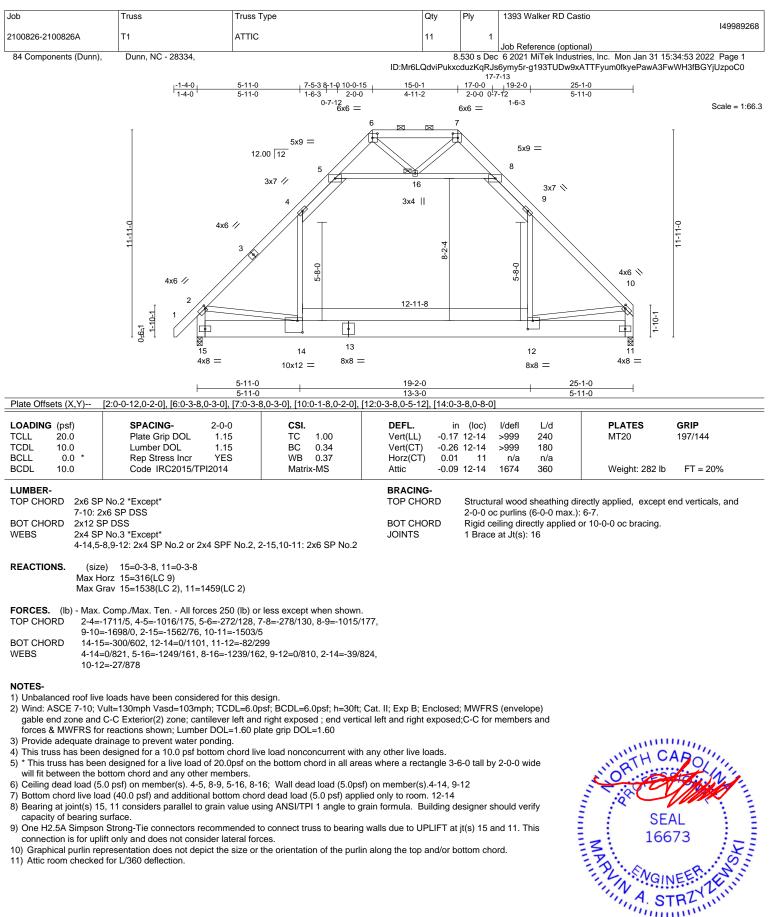
8) N/A

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

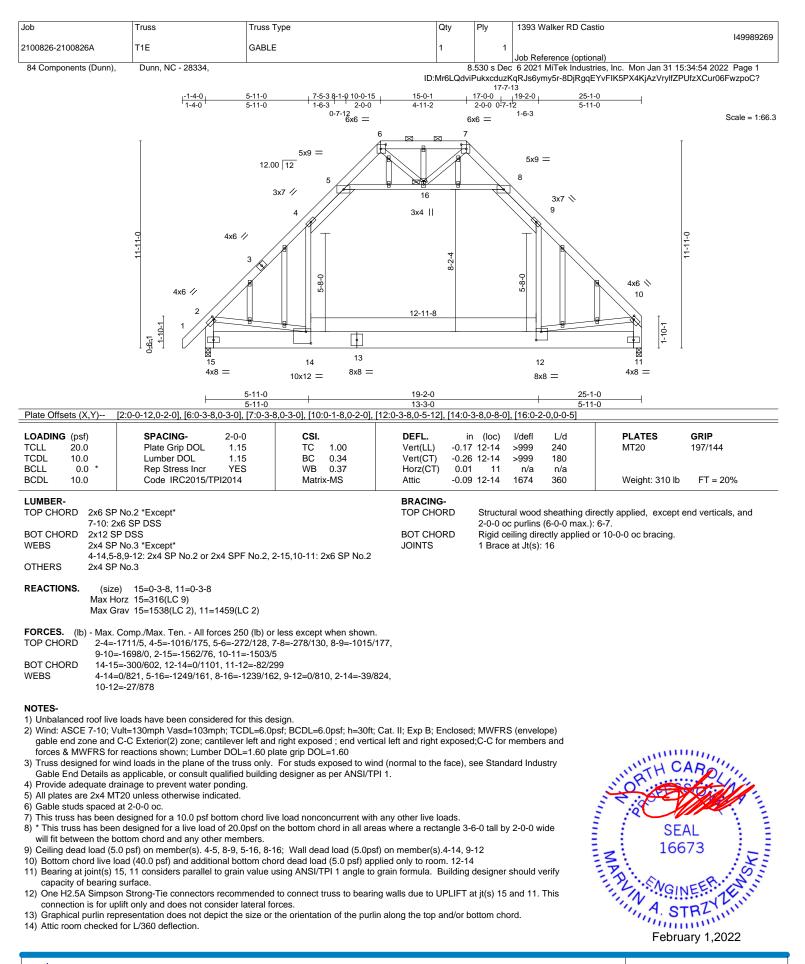

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-165(F=-105), 3-5=-165(F=-105), 2-4=-20



^{1) 2-}ply truss to be connected together with 10d (0.120"x3") nails as follows:

February 1,2022



February 1,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<pre>temperature (pine)</pre>	Job	Truss	Truss Type	Qty	/ Ply	1393 Walker RD C	astio	
at Components (Dur), Dur, NC - 2024. Image: Components (Dur), Dur, NC - 2024. Image: Components (Dur), Dur), Components (Dur), Compone				1				149989270
DMB Daff moduling large of a debry the ZOPR TREEMENT HOUSE TRANSPORT HOUSE TRA								5:34:56 2022 Page 1
Sub-2-24 Sub-2-	64 Components (Dunn)	, Duini, NC - 20334,	8.4.0	ID:Mr6LQdviF	PukxcduzKqRJs	6ymy5r-4crB5VFpRs2		
<pre>Pair and pair an</pre>		[1-4-0]	5-11-0 7-5-3 10-0-		17-0-0 1	9-2-0 25-1-0		
<figure><pre> find the second sec</pre></figure>		1-4-0			1			Scale = 1:74.8
<complex-block> Image: State in the state in the</complex-block>		I	12.00 3x6 1/	6	Ð		Ţ	
<figure> with the second sec</figure>				17) (the second se			
<complex-block> Image: Contract of the contrac</complex-block>			4	3x4	/	9		
<complex-block><pre> find the second sec</pre></complex-block>		11-0	4x6 1/				11-0	
<complex-block><pre> find find find find find find find f</pre></complex-block>		ŧ	3				1-	
<complex-block> Image: Control of the contr</complex-block>		4x6 1/						
10 <		2 /						
10 <							10-1	
bit bit bit bit bit bit bit bit bit bit<				*****				
Back Back Back Back 11 0 0 1 10 0 1 0 0 0 0 0 0			4.4		13			
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td>0.00</td><td>_ 0.0 _</td><td>=</td><td></td><td>6x0 —</td><td>0x0 —</td><td></td></thl<></thline<>		0.00	_ 0.0 _	=		6x0 —	0x0 —	
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thline<>								
Bits Chineset (XY) [26-11-12:02-0]. [E0-3-8.0-3:0]. [10:01-12:02-0]. [10:02-8:0-3:0]. CADIMG (ps) Practice (pp D0. 1.15 TC 0.44 Wart[L1] 0.05 1.55 982 2.04 Mark to the set of the set		F				<u>9-2-0 25-1-0</u> -5-4 5-11-0		
CLL 20.0 Plate Grip DOL 1.15 TC 0.48 Vert(L) 0.05 13-15 399 140 LCL 0.0 Code IRC2016TPI2014 Markov MS Micro D0.11 1.15 BC 0.05 11 n.34 n/42 LUL 0.0 Code IRC2016TPI2014 Markov MS Micro D0.5 1.15 278 360 Micro D0.5 1.15	Plate Offsets (X,Y)	[2:0-1-12,0-2-0], [6:0-3-8,0-3-0]						
CDL 10.0 Lumber DOL 1.15 BC 0.36 Vent(C1) 0.07 1.15 Weight: 564 lb FT = 20% UNDER- CODE 10.0 Rep Stress hor DOC DOC 11.15 Yein Yein Yein DOC Yein DOC Yein Yein Yein Yein DOC Yein Ye	LOADING (psf)							
LCDL 10.0 Code IRC2015/TPL2014 Matrix-MS Attic -0.05 13.15 2780 360 Weight: 564 lb FT = 20% LUBLER- OF CHORD 226 SP No.2 225 SP No.2 BR.ACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purilis, except fraid writesia, and 2-0-0 oc purilis, 6(-0-0 max); 6-7. LSD CHORD 226 SP No.2 200 CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. LSD CHORD X12 SP DSS 300 Weight: 564 lb FT = 20% UBLER- OF CHORD 226 SP No.2 BR CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. LSD CHORD 13-9-577(LC 3) Max Horz 16-338(3L 2) 15-568(LC 2), 11=-273(LC 9), 13-9-577(BC 22) LSD CHORD 13-9-577(LC 3) Max Horz 15-957(LC 3) 15-958(LC 12), 11=-223(LC 2), 15-958(LC 2), 11=-3233(LC 2), 15-953(SS 1), 10-12-152778 LSD CHORD 12-9-1633(J, 24-2513(J28), 42-2513(J28), 54-15-1580(J35), 10-11-2258(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12-120(J28), 10-12							M120	197/144
WHER- UP CHORD 2x6 SP No.2 STUCLURA Wood sheathing directly applied or 60-0 op purlins, except end verticals, and 2-0-0 ou purlins (6-0-0 max.): 6-7. Right ceeling directly applied or 10-0-0 oc bracing. 1 Brace at J(g): 17 REACTIONS. All bearings 17.8-12 except (juleingth) 11=0-3.4, 13=0-5-8. (jb) Max Horz 163416(LC3) Max Gruy All reactions 250 to rises at joint(s) except 16=-339(LC 8), 15=-589(LC 12), 11=-273(LC 9), Max Gruy All reactions 250 to rises at joint(s) except 16=-339(LC 22), 15=-5691(LC 20), 11=-3323(LC 20), 13=-5776(LC 22) FORCES. (b) - Max. Comp.AMx. Ten - All forces 250 (b) or less except when shown. CP CHORD 15=16=-3424653, 12-13=-193(355, 11-12=-132/262 VEBS 4-15=1924/443, 9:12=-1915/456, 2-15=-154/1040, 10:12=-132/262 VEBS 4-15=1924/443, 9:12=-1915/456, 2-15=-154/1040, 10:12=-132/262 VEBS 4-15=1924/443, 9:12=-1915/456, 2-15=154/1040, 10:12=-132/262 VEBS 4-15=1924/443, 9:12=1915/456, 2-15=154/1040, 10:12=-132/262 VEBS 4-15=1924/443, 9:12=1915/456, 2-15=154/1040, 10:12=-132/262 VEBS 4-15=1924/443, 9:12=1915/456, 2-10=154/1040, 10:12=132/262 VEBS 4-15=1924/443, 9:12=1915/456, 2-10=549(140, 10:12=-132/262 VEBS 4-16673) Pirk trass has been nonsidered for this design. (b) Has trass considered suglight at pallelet at all pilles, except in noted at for the second constant induction beind at forther transport at the second constant forther data forther transport at the second constant induction beind at forther transport at the second constant induction beind at forther transport at the second constant forther transport at the second constant forther transport at the second constant induction							Weight: 564 lb	FT = 20%
CPC CHORD 26 SE No.2 TO PCHORD 245 SP No.2 (2 SP DS) TO PCHORD 245 SP DS 244 SP No.3 * Except * 1 default and set at the set of the	LUMBER-			BRACING-			0	
VEBS 244 SP No.3 *Except ⁴ 4-15,9-12,5-8: 2x4 SP No.2, 2 x16,10-11: 2x6 SP No.2 BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. I Brace at J(s): 17 <td>TOP CHORD 2x6 SI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TOP CHORD 2x6 SI							
Calculation: The set of the				BOT CHORI				ax.): 6-7.
(b) - Max Horz Te-316(LC 9) - Max Horz Te-316(LC 9) - Max Horz Te-339(LC 8), 15=589(LC 12), 11=-273(LC 9), 13=-5677(LC 13) - Max Corp. Max X Ten All forces 250 (b) or less except when shown. (c) CHORD 1216730, 242519(28), 44-25-257738, L-681589258, 57-71-240/187, 7-81857/258, 24-9239738, 1, 9-102486/261, 2, 16=-2804/289, 10-11=-2258/229 - 2017(28), 11=-3258/259, 14-51-932(18), 55, 1-121123(18), 55, 1-12-113, 55, 1-13, 55, 1-13, 50, 100, 100, 12-15, 12-13, 10, 100, 100, 12-15, 12-13, 10, 100, 10	4-15,9	-12,5-8: 2x4 SP No.2 or 2x4 SP	F No.2, 2-16,10-11: 2x6 SP No.2	JOINTS	1 Brace	e at Jt(s): 17		
Max Uplit All uplit 100 bor less at joint(s) except 16=339(LC 8), 15=589(LC 12), 11=-273(LC 9), 13=-576(LC 13), Max Grav. All reactions 250 bor less at joint(s) except 16=3199(LC 22), 15=5681(LC 20), 11=3323(LC 20), 13=776(LC 22) CPRCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. OP CHORD 1.2=-163/30, 242510/289, 45=-2357/328, 55=-1882/253, 67-1240/187, 7-8=-1857/252, 89-2392/331, 9-10=-2436/281, 10.11=-2258/229 CPC HORD 1.2=-162/30, 242510/289, 45=-2357/328, 55=-1864/289, 10.11=-2258/229 State 10.112-112/258/253, 13-15=-1391/355, 11-12=-132/2626 VEBS 4-15=-192/4/43, 9-12=-1915/456, 2-15=-154/1040, 10-12=-152/779 State 3000000000000000000000000000000000000			h) 11=0-3-8, 13=0-5-8.					
Max Gar y All reactions 250 lb or less at joint(s) except 16=3199(LC 22), 15=5681(LC 20), 11=3323(LC 20), 13=576(LC 22) CORCES. ((b) - Max. Com, Max. Ten All forces 250 (b) or less except when shown. CP CHORD 12=-16(330, 2-4=-2519/289, 4-5=-2387(328, 5-6=-1858/253, 6-7=-1240/187, 7-8=-1857/1525, 9-8=-2392(235), 14=-2-391/1355, 12-13=-193/1355, 12-13=-132/2626 VEBS 4.15=-1924(443, 9-12=-1916/465, 2-16=-154/1040, 10-12=-152/773 CORCES. (b) - Max. Ten All forces 2-10 was staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected of live loads have been considered of rulis design. 1) Undail.aced rool live loads have been considered of rulis design. 1) Undail.aced rool live loads have been considered of rulis design. 1) Undail.aced rool live loads have been considered of rulis design. 1) Undail.aced rool live loads have been considered of rulis loads noted as (F) or (B), unless otherwise indicated. 1) Undail.aced rool live loads have been considered of rulis load on toron (F) or back (B) face in the LOAD CASE(S) section. Pit to pit connections shows: Lumber DOL=1.60 pits; h=-30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) radiabel end cons and C-C Externitiver IEE and right exposed; e-C for members and roores A MWFRS for reactions shows: Lumber DOL=1.60 pits gDLD=4.60 1) This truss has been designed for a 1 loo pat bottom chord live load nonconcurrent with any other live loads. 1) Nd 2) Nd 1) Eacting at join(s) 16, 11 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify 2) MRMNO- Vend Medge parametens and RCAD VICES		Jplift All uplift 100 lb or less at	oint(s) except 16=-339(LC 8), 15=	=-589(LC 12), 11=-2	273(LC 9),			
CORCES: (b) - Max. Comp. Max. Ten - All forces 250 (b) or less except when shown. COP CHORD: 1-2=-16/330, 2-4=-2519/289, 4-5=-2357/328, 5-6=-1858/253, 6-7=-1240/187, 7-8=-1857/252, 8-9=-2392/331, 9-10=-2430/281, 2-16=-2004/289, 10-11=-2258/229 NOT CHORD: 15-16=-3426/353, 13-15=-1939/355, 12-13=-1393/355, 12-13=-140, 19/14 393/355, 12-13=-160 Wind: ASCE T-10; Vult-130mh Vasd-130mh; TCDL=-60, 505; ESCL=-60, 505; ESCL=-60, 505; ESCL=-60, 505, ESCL=-60, 506, 10-10, 10-12=-15	Max 0	Grav All reactions 250 lb or les	s at joint(s) except 16=3199(LC 2	2), 15=5681(LC 20)	, 11=3323(LC	20),		
CP CHORD 12=16/330, 2-4=2519/289, 4-5=-2357/328, 5-6=-1858/253, 6-7=-1240/187, 7-8=-1857/258, 2-8=-2392/33931, 9-10=-24804/289, 10-11=-2258/229 SOT CHORD 15-16=-342/653, 13-15=-193/1355, 12-13=-193/1355, 11-12=-132/626 VEBS 4-15=-1924/443, 9-12=-1915/456, 2-15=-154/1040, 10-12=-152/779 OTTES) 2-Poly truss to be connected together with 10d (0,120°x3°) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 1 row at 0-9-0 oc. (Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. (Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. (Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. (Webs connected as follows: 2x6 - 2 row staggered at 0-9-0 oc. (D) Indive follow (D) cons shows: Lumber DOL - 1.60 opst; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and c - C Exterior(2) zone; cantilever left and right exposed (- 1 0, 0 prot methers). () Celling dead load (50 psf) on member(s), 4-5, 8-9, 5-17, 8-17, 117; Wall dead load (50 psf) on the bottom chord and any other members. () Dealing de		13=5776(LC 22)						
T-8=1857/252, 8-9=2392/331, 9-10=-2436/261, 2-16=-2804/289, 10-11=-2258/229 DOT CHORD 15-16=-342/653, 13-15=-193/1355, 12-13=-193/1355, 11-12=-132/626 VEBS 2-15=-342/653, 13-15=-193/1456, 2-15=-154/1040, 10-12=-152/779 NOTES 2-9 Pty truss to be connected together with 10d (0.120'x3') nails as follows: Top chords connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x12 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x14 - 1 row at 0-9-0 oc. 10 India stare considered for this design. 10 Unclain core on the C Exterior(2) zone: cantilever left and stagets: 10 Webs conne and C-C Exterior(2) zone: cantilever left and right exposed; -cc for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 10 This truss has been designed for a 10 top B bottom chord role al one chore (b totom chord and any top ther members. 10 Celling dead load (50, pst) on member(s), 4-5, 8-9, 5-17, 8-17; Wall dead load (50, pst) on member(s), 4-5, 8-12 10 Editing dead load (50, pst) on member(s), 4-5, 8-9, 5-17, 8-17; Wall dead load (50, pst) on member(s), 4-5, 8-12 10 Editing dead load (50, pst) on member(s), 4-5, 8-9, 5-17, 8-17; Wall dead load (50, pst) on member(s), 4-15, 12-13 10 Bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10 N/W 10 N/W 10 N/W 1								
 4-15=-1924/443, 9-12=-1915/456, 2-15=-154/1040, 10-12=-152/779 btrss 2-Piy truss to be connected together with 10d (0.120°x3°) nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row to 0-9-0 oc. Webs connected as follows: 2x4 - 1 row to 0-9-0 oc. Webs connected as follows: 2x4 - 1 row to 0-9-0 oc. Webs connected as follows: 2x4 - 1 row to 0-9-0 oc. Webs connected as follows: 2x4 - 1 row to 0-9-0 oc. Unbalanced for onlive load shave been considered for this design. Wich as CoE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=00ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 100 psf bottom chord live load nonconcurrent with any other live load. Provide adequate drainage to prevent water ponding. Ceiling dead load (6.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17, Wall dead load (6.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17, Wall dead load (6.0 psf) on pipelied only toron. Bottom chord live load 4(0.0 psf) and additional bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide with the bottom chord inde all do (6.0 psf) on pipelied only toron. Bottom chord live load (4.0 psf) and additional bottom chord ide (6.0 psf) applied only toron. Bottom chord live load (4.0 psf) and additional bottom chord ide (6.0 psf) applied only toron. Bottom chord live load (4.0 psf) and additional bottom chord ide load (6.0 psf) applied onl	7-8=	-1857/252, 8-9=-2392/331, 9-10	=-2436/261, 2-16=-2804/289, 10-	11=-2258/229				
 2-ply truss to be connected together with 10d (0.120*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 + 1 row at 0-9-0 cc. Webs connected as follows: 2x4 + 1 row at 0-9-0 cc. Webs connected as follows: 2x4 + 1 row at 0-9-0 cc. 0-All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 0-Unbalanced roof live loads have been considered for this design. 0-Wird: ASCE 7-10; Vult=130mph Yasaf-103mph; TCaDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 10 Provide adequate drainage to prevent water ponding. 10 This truss has been designed for a 10.0 psf bottom chord live load on concorcurrent with any other live loads. 10 This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10 Ceiling dead load (5.0 psf) on member(s).4-15, 9-12 10 Bottom chord and any other members. 10 Ceiling dead load (5.0 psf) on member(s).4-15, 12, 13 10 Bearing at joint(5) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify 21 N/A 21 N/A 21 N/A 21 N/A 22 N/A Control do use only Wind MEde connectors. This design is based only upon parameters shown, and is for an individual building component, ort at say system. Bectore use, the building designer may wrify the applicability of design parameters and propring incomponent, not at say system. Bectore use, the building designer may wrift the applicability of design into the overall building design. Bracki				5				
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x1 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 1) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to phy connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 1) Uhudal. ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 1) Provide adequate drainage to prevent water ponding. 1) This truss has been designed for a 1.00 pdf bottom chord live load nonconcurrent with any other live loads. 1) This truss has been designed for a 1.00 pdf bottom chord live load nonconcurrent with any other live loads. 1) This truss has been designed for a 1.00 pdf bottom chord dive load (5.0 psf) on member(s).4-15, 9-12 1) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 13-15, 12-13 0) Bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 1) N/A 2) N/A 3) Description (b) 14 N/TB/S 2) CONTES ON THIS ADD NCLUCED MITEK REFERENCE PGE MI-773 rev. 5/19/2002 BEFORE USE. 2) Description (b) for use only with MTB/B/S CONTES ON THIS ADD NCLUCED MITEK REFERENCE PGE MI-773 rev. 5/19/2002 BEFORE USE.	NOTES-							
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to by connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 5) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Ceiling dead load (5.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17; Wall dead load (5.0 psf) on member(s). 4-15, 9-12 1) Bottom chord live load of 20.0psf on the bottom chord deal load (5.0 psf) applied only to room. 13-15, 12-13 0) Bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 1) N/A 2) N/A Ontinued on page 2 WARNING - Venify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design value Min The devenotors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design runset web and/or chord members only. Additional property incorporate tild design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional the overall building design. Bracing indicated is to preventors. This design parameters and property incorporate t								
 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load 02.0.psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Ceiling dead load (5.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17; Wall dead load (5.0 psf) applied only to room. 13-15, 12-13 Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 13-15, 12-13 Bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A N/A WNRING - Verify design parameters and READ NOTES ON THIS ADD INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design vidif or use only with MTre&@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design russ verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing i								una
 Unbalanced roof live loads have been considered for this design. Winci ASCE 7-10; Yult=130mph Yasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end 2cone and C-C Exterior(2) zone; cancillever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Ceiling dead load (5.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17; Wall dead load (5.0 psf) on member(s).4-15, 9-12 Bottom chord live load (40.0 psf) and additional bottom chord deal load (5.0 psf) applied only to room. 13-15, 12-13 Bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7479 rev. 5/19/2020 EEFORE USE. Design uith full tekigo connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design	2) All loads are consid	ered equally applied to all plies,	except if noted as front (F) or bac			section. Ply to	INTH C	ARO
gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Servide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Bottom chord live load (40.0 psf) on member(s). 4-5, 8-9, 5-17, 8-17; Wall dead load (5.0psf) on member(s).4-15, 9-12 Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 13-15, 12-13 Dearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek@ connectors. This design is based only upon parameters shown, and is for an individual building component, nd a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the verall building design. Brack to the prover buckling of individual truss wee and/or chord members only. Additional temporary and perameters and property incorporate this design into the verall building design. Brack to the prover buckling of individual truss.	3) Unbalanced roof liv	e loads have been considered fo	or this design.			.	NOP.	and with
 bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPL1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. 						S (envelope) members and	1 7 10	
 bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPL1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. 							E E CE	
 bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPL1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. 						v 2-0-0 wide	16	573
 bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPL1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. 	will fit between the l	bottom chord and any other mer	nbers.			, 2 0 0 11100	IN.	
 bearing at joint(s) 16, 11 considers parallel to grain value using ANSI/TPL1 angle to grain formula. Building designer should verify capacity of bearing surface. N/A N/A N/A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. 	9) Bottom chord live lo	ad (40.0 psf) and additional bot	om chord dead load (5.0 psf) app	lied only to room. 1	3-15, 12-13		T.PL SNOI	NEER
2) N/A ontinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Brace use the building designer must verify the applicability of designer and termory and permanent brace use the overall termory and t	, ,		n value using ANSI/TPL1 angle to	grain formula. Bui	lding designer	should verify	IN A	TDTY
ontinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	11) N/A						in States	The ministration of the second
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing	12) N/A						Febr	uary 1,2022
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Each to building designer must verify the applicability of chord members only. Additional temporary and permanent bracing					40/0000 55	1105		
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	Design valid for use of	only with MiTek® connectors. This design	is based only upon parameters shown, ar	nd is for an individual buil	lding component, r	not		
ra amage required of stating and to pretent compare with possible personal multiproperty gamage. To general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSR-99 and BCSI Building Component 919 Coundaide Dood	building design. Brac is always required for	cing indicated is to prevent buckling of ine stability and to prevent collapse with po	lividual truss web and/or chord members of ssible personal injury and property damage	only. Additional temporar e. For general guidance	y and permanent I regarding the	oracing		A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

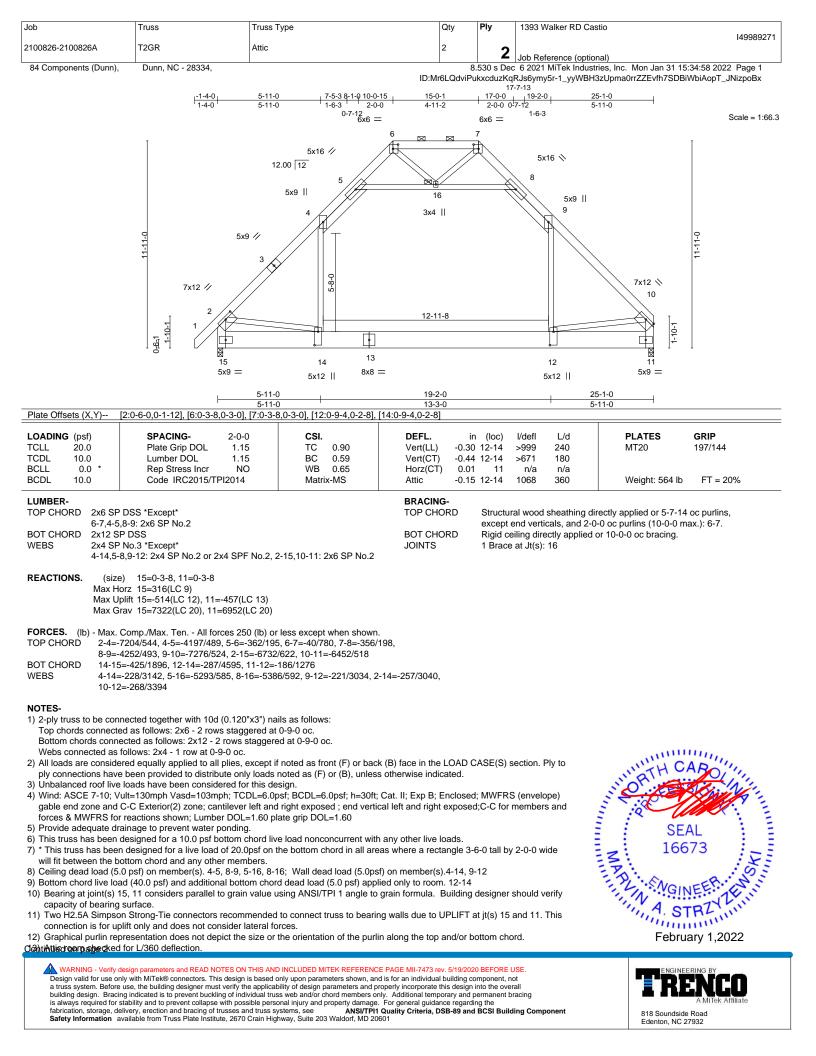
Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio
					149989270
2100826-2100826A	T1GR	Attic Structural Gable	1	2	International
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.530 s Dec	6 2021 MiTek Industries, Inc. Mon Jan 31 15:34:56 2022 Page 2
		ID:Mr6L	QdviPukxco	duzKqRJs6	iymy5r-4crB5VFpRsZ2KjhTR8CRaG1DMN4Z7wHVM9VDJpzpoBz
NOTES				•	

NOTES-13) N/A

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

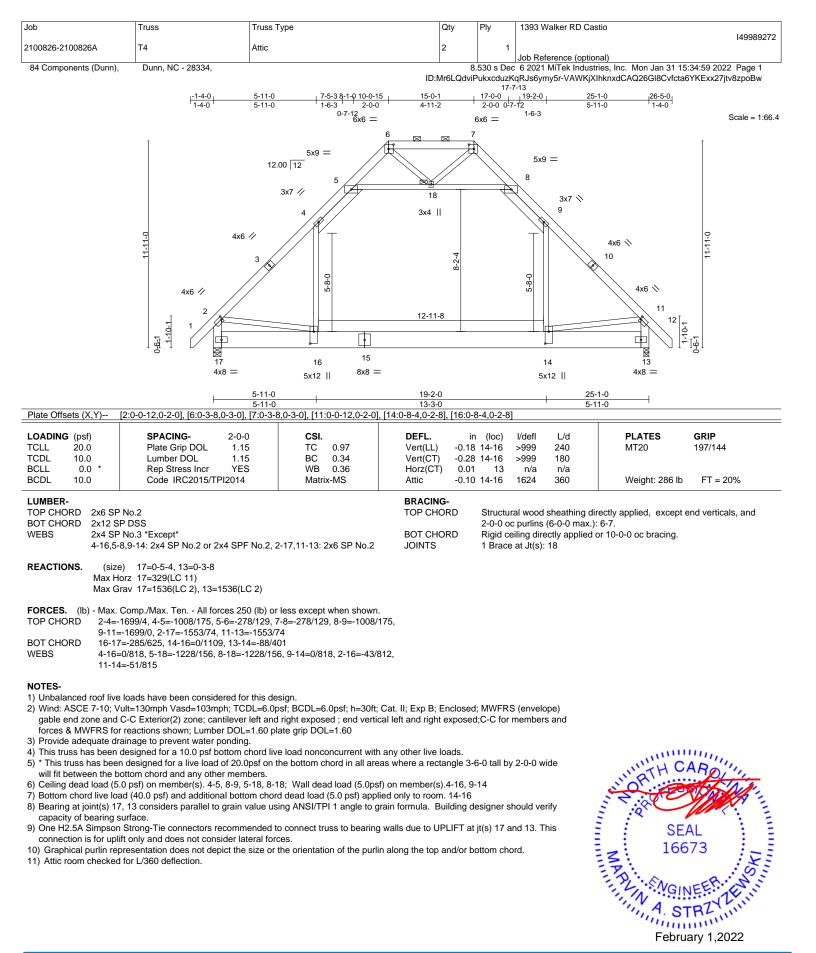

Uniform Loads (plf)

Vert: 1-2=-200(F=-140), 2-4=-200(F=-140), 4-5=-210(F=-140), 5-6=-200(F=-140), 6-7=-200(F=-140), 7-8=-200(F=-140), 8-9=-210(F=-140), 9-10=-200(F=-140), 15-16=-195(F=-175), 12-15=-205(F=-175), 11-12=-195(F=-175), 5-8=-10

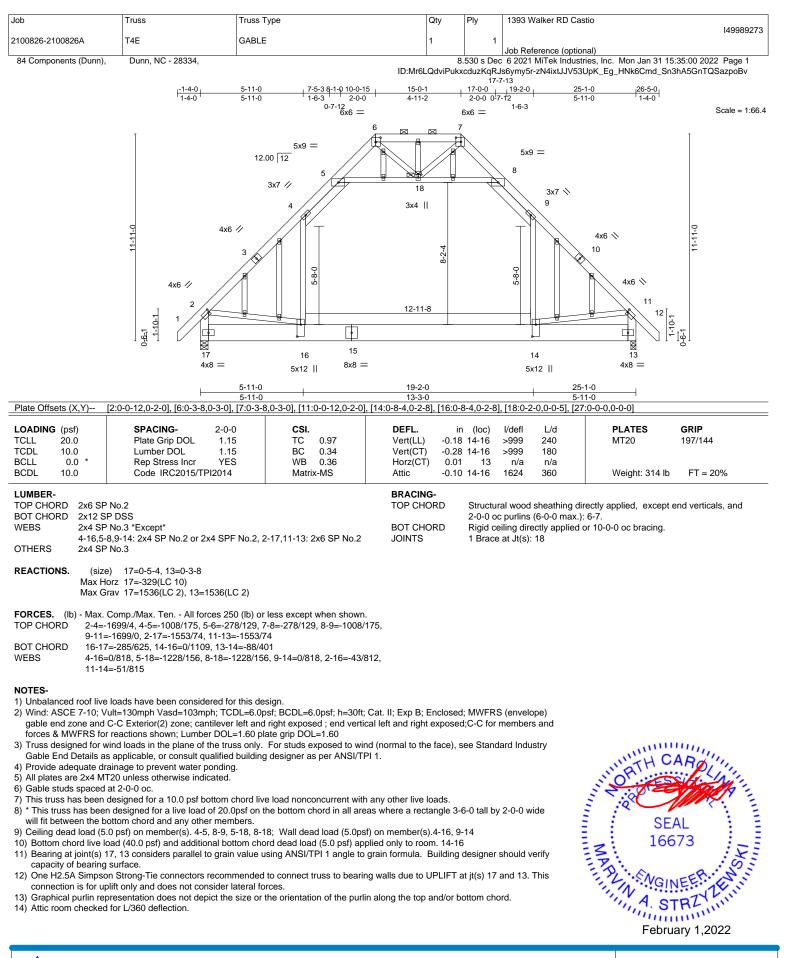
Drag: 4-15=-10, 9-12=-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

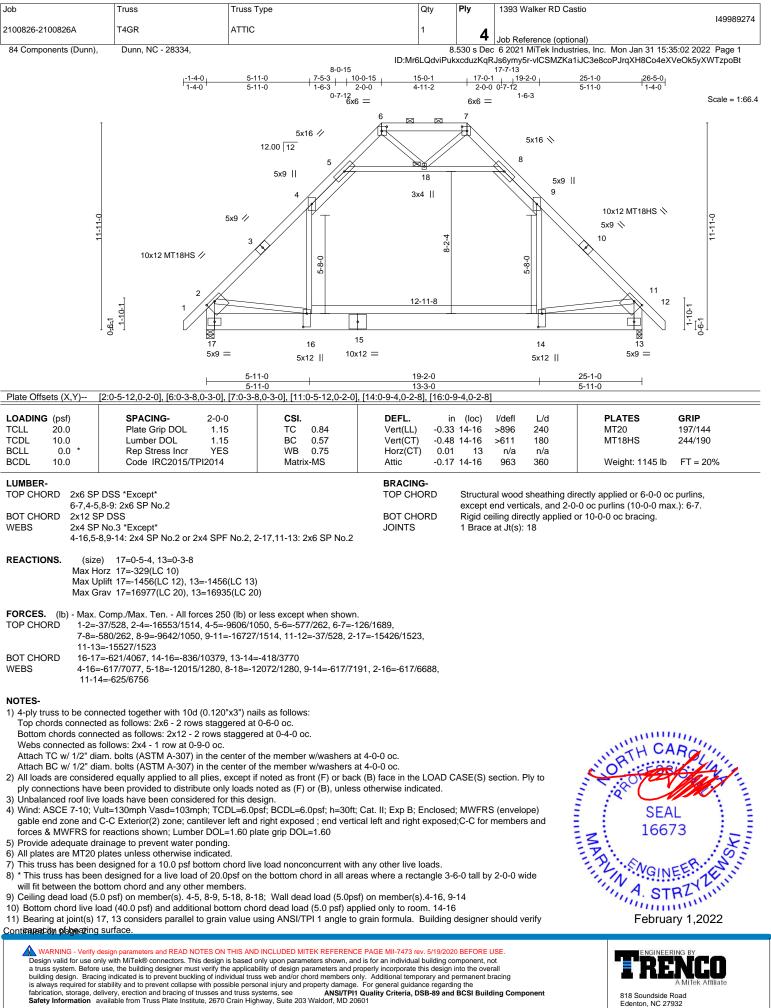
[Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio		
				_		I49989271		
	2100826-2100826A	T2GR	Attic	2	2			
					L	Job Reference (optional)		
	84 Components (Dunn),	Dunn, NC - 28334,	8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jan 31 15:34:58 2022 Page 2					
			ID:Mr6LQdviPukxcduzKqRJs6ymy5r-1_yyWBH3zUpma0rrZZEvfh7SDBiWbiAopT_JNizpoBx					


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-150(F=-90), 2-4=-150(F=-90), 4-5=-160(F=-90), 5-6=-150(F=-90), 6-7=-150(F=-90), 7-8=-150(F=-90), 8-9=-160(F=-90), 9-10=-150(F=-90), 14-15=-170(F=-150), 12-14=-180(F=-150), 11-12=-170(F=-150), 5-8=-10 Drag: 4-14=-10, 9-12=-10

Engineering By EREENCO AMITek Attiliate 818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio
					149989274
2100826-2100826A	T4GR	ATTIC	1	1	
				4	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.530 s Dec	6 2021 MiTek Industries, Inc. Mon Jan 31 15:35:02 2022 Page 2
		ID:Mr6LQdviPukxcduzKqRJs6ymy5r-vlCSMZKa1iJC3e8coPJrqXH8Co4eXVeOk5yXWTzpoBt			

NOTES-

12) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17 and 13. This connection is for uplift only and does not consider lateral forces.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) LGT4 Hurricane ties must have four studs in line below the truss.

15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-300(F=-240), 2-4=-300(F=-240), 4-5=-310(F=-240), 5-6=-300(F=-240), 6-7=-300(F=-240), 7-8=-300(F=-240), 8-9=-310(F=-240), 9-11=-300(F=-240), 11-12=-300(F=-240), 12-12=-300(F=-240), 12-12=-300(F=-2

11-12=-300(F=-240), 16-17=-420(F=-400), 14-16=-430(F=-400)Drag: 4-16=-10, 9-14=-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Cas	tio	
2100826-2100826A	T5GR	ATTIC STRUCTURAL GAB	1	-			149989275
84 Components (Dunn),	Dunn, NC - 28334,			8 530 s De	Job Reference (option c 6 2021 MiTek Industr		15:35:04 2022 Page 1
er componente (Dumi),	Dunn, 110 20004,	8-0-15			RJs6ymy5r-r8KDmFMqZ		
	[1-4-0] [-4-0]	5-11-0 7-5-3 10-0-15 5-11-0 1-6-3 2-0-0	5 <u>15-0-1</u> 4-11-2		19-2-0 25-1-0	———————————————————————————————————————	
		⁰⁻⁷⁻¹² 6x6 =		6x6 =	1-6-3		Scale = 1:74.8
	I	4x8 =		7 •		I	
		12.00 12	\sim		4x8 =		
		3x6 1/ 5	18	\rightarrow	8 3x6 \\		
		4	3x4		9		
	-0-	6x6 1/				-1	
	11-0-11-0	3				11-11-0	
	5x12 1⁄2					5x12 📏	
						10	
						1-10-1	
	1-10-1						
		17 15	13		12	11	
	8	12 6x6 = 8x8 =			6x6 =	8x12	
	ł	4-11-12 5 _r 11-0 9-3-8 4-11-12 0-11-4 3-4-8	13-7-4 4-3-12	19-2-0 5-6-12	<u> </u>	———————————————————————————————————————	
Plate Offsets (X,Y)	[2:0-6-0,0-1-12], [3:0-3-0,Edge], [6:0-3-8,0-3-0], [7:0-3-8,0-3-0], [11:0					
LOADING (psf)	SPACING- 2-0			in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1. Lumber DOL 1.	I5 BC 0.61	()	0 11-12	>999 240 >688 180	MT20	197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YE Code IRC2015/TPI2014		Horz(CT) 0.0 Attic -0.1	1 11 3 12-13	n/a n/a 1053 360	Weight: 847	b FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP BOT CHORD 2x12 SI			TOP CHORD		ral wood sheathing dir end verticals, and 2-0		
WEBS 2x4 SP	No.3 *Except*	F No.2, 2-17,10-11: 2x6 SP No.2	BOT CHORD JOINTS	Rigid co	eiling directly applied of at Jt(s): 18		
				1 Diace			
(lb) - Max He	orz 17=317(LC 9)	13=0-6-6 (input: 0-3-8), 15=8-7-8, 17					
Max U	blift All uplift 100 lb or less at 16=-706(LC 13), 13=-1128	joint(s) except 15=-392(LC 11), 17=-1 (LC 13)	1058(LC 8), 11=-113	1(LC 13),			
Max G	rav All reactions 250 lb or les 16=5112(LC 20), 13=1216	s at joint(s) except 15=546(LC 20), 17 2(LC 20)	7=10882(LC 22), 11:	=12965(LC	C 20),		
FORCES. (lb) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shown.					
TOP CHORD 1-2=-	65/805, 2-4=-8786/902, 4-5=-7	149/835, 5-6=-4041/470, 6-7=-2106/2)=-8812/775, 2-17=-9147/951, 10-11=					
BOT CHORD 16-17	=-454/2094, 15-16=-454/2094	, 13-15=-488/5076, 12-13=-488/5076,					
WEBS 4-15=		-18=-2973/442, 8-18=-2869/417, 2-15	5=-392/3358,				
	=-278/2298						
NOTES- 1) 3-ply truss to be con	nected together with 10d (0.12	0"x3") nails as follows:					
	ed as follows: 2x6 - 2 rows stagected as follows: 2x12 - 2 rows					mini	
Webs connected as	follows: 2x4 - 1 row at 0-9-0 oc		B) face in the LOAD	CASE(S)	section Ply to	I'L'RTH	ARDLIN
ply connections have	been provided to distribute or	nly loads noted as (F) or (B), unless o		0/102(0)	-	Star for	THINA
4) Wind: ASCE 7-10; V		CDL=6.0psf; BCDL=6.0psf; h=30ft; Ca			S (envelope)	12	
	C-C Exterior(2) zone; cantileve reactions shown; Lumber DO	er left and right exposed ; end vertical _=1.60 plate grip DOL=1.60	left and right expose	ed;C-C for	members and	S	EAL
	ainage to prevent water pondir designed for a 10.0 psf bottom	ig. chord live load nonconcurrent with ar	ny other live loads.			S IC	673
7) * This truss has been		Opsf on the bottom chord in all areas		-6-0 tall by	y 2-0-0 wide	S MP THE SNG	a: S:
8) Ceiling dead load (5.	0 psf) on member(s). 4-5, 8-9,	5-18, 8-18; Wall dead load (5.0psf) of tom chord dead load (5.0 psf) applied				"IN NG	INEE
10) WARNING: Require	ed bearing size at joint(s) 13 g	eater than input bearing size.				in A.S	STRZ
11) Bearing at joint(s) 1 capacity of bearing		n value using ANSI/TPI 1 angle to gra	ain formula. Building	g designer	should verify	Feb	ruary 1,2022
Continued on page 2							
Design valid for use or	ly with MiTek® connectors. This desig	N THIS AND INCLUDED MITEK REFERENCE P n is based only upon parameters shown, and is	for an individual building	component, r	not	ENGI	
a truss system. Before building design. Braci	use, the building designer must verify ing indicated is to prevent buckling of in	the applicability of design parameters and prope dividual truss web and/or chord members only.	erly incorporate this design Additional temporary and	n into the ove I permanent b	erall		A Millek Affiliate
	stability and to prevent collapse with po livery, erection and bracing of trusses	ssible personal injury and property damage. Fo	or general guidance regar ality Criteria. DSB-89 an				A WITEK Annate

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1393 Walker RD Castio	
				-	14998	9275
2100826-2100826A	T5GR	ATTIC STRUCTURAL GAB	1	2		
				3	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.530 s Dec	c 6 2021 MiTek Industries, Inc. Mon Jan 31 15:35:05 2022 Page 2	2
		ID	:Mr6LQdviPuk	cduzKqRJ	s6ymy5r-KKub_aMSKdhnw5tBTXsYRAvfL?5mkxmqQ3AB7ozpoBc	1
NOTES-						
12) N/A						
)						
13) N/A						
13) N/A						
4 4) NI/A						
14) N/A						
15) N/A						
16) Graphical purlin repre	sentation does not depict the	e size or the orientation of the purlin along t	he top and/or l	oottom cho	ord.	
17) Attic room chocked fo						

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-440(F=-240, B=-140), 2-4=-440(F=-240, B=-140), 4-5=-450(F=-240, B=-140), 5-6=-440(F=-240, B=-140), 6-7=-440(F=-240, B=-140), 7-8=-440(F=-240, B=-140), 8-9=-450(F=-240, B=-140), 9-10=-440(F=-240, B=-140), 15-17=-420(F=-400), 13-15=-430(F=-400), 12-13=-505(F=-400, B=-75), 11-12=-495(F=-400, B=-140), 12-13=-505(F=-400, B=-75), 11-12=-495(F=-400, B=-75), 11-12=-495(F=-75), 11 B=-75), 5-8=-10

Drag: 4-15=-10, 9-12=-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

