

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0519-2535 Kent C

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E13111155 thru E13111178

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

May 31,2019

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Vert: 1-4=-60, 4-5=-60, 5-7=-60, 2-8=-20

Continued on page

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny water the building designer must verify the subject to based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

GI minum May 31,2019

Job	Truss	Truss Type	Qty	Ply	Kent C
					E1311115
B0519-2535	A01	HIP GIRDER	1	1	
					Job Reference (optional)
Comtech, Inc., Fayett	eville, NC 28309		8.1	30 s Mar	11 2018 MiTek Industries, Inc. Thu May 30 13:38:55 2019 Page 2
-		ID:LZV	QAWTEf0	Va58bvNJ	XqTOyYrsN-MqY6fmYY_jJgdmYCvwnq?3bKK3j92letkGi8bpzBIF_

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 4=-106(F) 5=-106(F) 11=-37(F) 12=-54(F) 10=-54(F) 13=-90(F) 14=-93(F) 15=-90(F) 16=-89(F) 17=-89(F) 18=-90(F) 19=-93(F) 20=-89(F) 21=-52(F) 22=-50(F) 23=-53(F) 24=-37(F) 25=-53(F) 26=-50(F) 27=-74(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-14 to 3-7-15, Interior(1) 3-7-15 to 6-8-11, Exterior(2) 6-8-11 to 11-1-8, Interior(1) 15-3-4 to 15-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 10 and 80 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply Kent C	
B0519-2535	A03	COMMON GIRDER	1	2	E13111157
Comtech, Inc., Fay	retteville, NC 28309			Job Reference (0 8.130 s Mar 11 2018 MiTek In	dustries, Inc. Thu May 30 13:38:57 2019 Page 1
	- <u>0-10-8</u> 5-11-0	11-1-8	ID:LZVQAWTEf	Va58bvNJXqTOyYrsN-ICgs3 18-3-8	SapWLaOt4ib0Lql4UgjPsOdW9y9CaBFehzBIEy
	0-10-8' 5-11-0	5-2-9	I.	7-2-0	' 2-4-8 '
			5x5 =		Scale: 1/4"=1'
			4		
Ī					
		/			
	7.	50 12 3x6			
		3			
2 -9-2					4x8
	/				5 5 5x8
					6
	¥1 ²				
Ĩ		11	10 9		8 7
	4x0 —	2x6	$_{6x8} = _{4x8} =$		10x10 =
					5X8 M18SHS
	<u>5-11-0</u> 5-11-0		<u>11₁5₁8</u> 0-4-0	<u>18-3-8</u> 6-10-0	<u>20-8-0</u> 2-4-8
Plate Offsets (X,Y)	[5:0-1-4,0-2-0], [8:0-4-4,0-6-4]				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15) CSI. 5 TC 0.24	DEFL. Vert(LL) -0.0	in (loc) l/defl L/d 04 8-9 >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	5 BC 0.51 WB 0.88	Vert(CT) -0.0 Horz(CT) 0.0	08 8-9 >999 240 02 7 n/a n/a	M18SHS 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.0	03 8-9 >999 240	Weight: 344 lb FT = 20%
	No 1		BRACING-	Structural wood sheathin	a directly applied or 6-0-0 oc purling
BOT CHORD 2x8 SP	No.1			except end verticals.	
5-8: 2x1	12 SP No.1, 6-7: 2x6 SP No.1, 6	5-8: 2x4 SP No.2	BOTCHORD	Rigid celling directly app	
REACTIONS. (Ib/size Max Ho	2=1558/0-5-8, 7=6614/0-5-8 prz 2=173(LC 24) pitt 2= 220(LC 8), 7= 1222(LC 4)	3			
	olint 2=-220(LC 8), 7=-1233(LC s	9) 9 (11)			
FORCES. (ib) - Max. TOP CHORD 2-3=-2 BOT CHORD 2-11= WEBS 3-9=-4	Comp./Max. Ten All forces 25 2412/349, 3-4=-2130/392, 4-5=- -325/1944, 9-11=-325/1944, 8-9 436/226, 4-9=-299/1757, 5-9=-3	0 (lb) or less except when shown 2131/385, 5-6=-6343/1186, 6-7= 9=-991/5298, 7-8=-116/628 826/873, 5-8=-864/3487, 6-8=-99	n. -5958/1091 96/5282		
NOTES-					
 2-ply truss to be con Top chords connecte 	nected together with 10d (0.131 ed as follows: 2x6 - 2 rows stage	"x3") nails as follows: iered at 0-9-0 oc.			
Bottom chords conne Webs connected as t	ected as follows: 2x8 - 3 rows st	aggered at 0-2-0 oc.			
2) All loads are conside	ered equally applied to all plies, or	except if noted as front (F) or bac	k (B) face in the LOAD	CASE(S) section. Ply to	
3) Unbalanced roof live	loads have been considered fo	r this design.			
 Wind: ASCE 7-10; Vi MWFRS (envelope); 	ult=130mph (3-second gust) Va Lumber DOL=1.60 plate grip D	sd=103mph; TCDL=6.0psf; BCD OL=1.60	L=5.0psf; h=15ft; Cat. I	; Exp C; enclosed;	WH CARO
5) All plates are MT20 p6) This truss has been of	plates unless otherwise indicate designed for a 10.0 psf bottom of	d. hord live load nonconcurrent with	h any other live loads.		CR STORAGE
 This truss has been between the bottom 	n designed for a live load of 20.0 chord and any other members.	opsf on the bottom chord in all are	eas with a clearance gr	eater than 6-0-0	and have
 Provide mechanical of at joint 7 	connection (by others) of truss t	o bearing plate capable of withsta	anding 220 lb uplift at jo	int 2 and 1233 lb uplift	SEAL SEAL
9) Hanger(s) or other co 18-3-8 on bottom cho	onnection device(s) shall be pro ord. The design/selection of suc	vided sufficient to support concer ch connection device(s) is the res	ntrated load(s) 6497 lb sponsibility of others.	down and 1324 lb up at	036322
LOAD CASE(S) Stand	lard				The all S
 Dead + Roof Live (ba Uniform Loads (plf) 	alanced): Lumber Increase=1.15	o, Plate Increase=1.15			NGINEE
Vert: 1-4=-6 Concentrated Loads	0, 4-6=-60, 2-7=-20 (lb)				A. GILBE
Vert: 8=-649	97(B)				May 31 2019
	sign parameters and READ NOTES ON		CE PAGE MIL 7472 rov 40/02		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Millek Affil 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-0-15,0-1-8]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.56	Vert(LL) -0.10 2-8 >999 360 MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.20 2-8 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.30	Horz(CT) 0.01 7 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) -0.02 2-8 >999 240 Weight: 110 lb FT = 20	0%
LUMBER-	-		BRACING-	

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.3

REACTIONS. (lb/size) 2=775/0-5-8, 7=710/Mechanical Max Horz 2=174(LC 7) Max Uplift 2=-72(LC 10), 7=-47(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-931/272, 3-4=-633/220, 4-5=-647/200, 5-7=-662/211
- BOT CHORD 2-8=-244/739
- WEBS 3-8=-367/222, 4-8=-6/350, 5-8=-22/459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 6-8-11, Exterior(2) 6-8-11 to 11-1-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 2 and 47 lb uplift at joint 7.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Ouality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Kent C	
						E13111159
B0519-2535	A05	HIP GIRDER	1	1		
					Job Reference (optional)	1
Comtech, Inc., Fayette	ville, NC 28309		8.	130 s Mar	11 2018 MiTek Industries	, Inc. Thu May 30 13:38:59 2019 Page 2
-		ID:LZV0	QAWTEf0Va	58bvNJXc	TOyYrsN-EbodU8b31yq6	66Nsz8msm9vm00g5J_90SfugMjazBIEw

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 4=-106(B) 5=-106(B) 10=-37(B) 11=-54(B) 9=-54(B) 12=-90(B) 13=-93(B) 14=-90(B) 15=-89(B) 16=-89(B) 17=-90(B) 18=-94(B) 19=-52(B) 20=-50(B) 21=-53(B) 22=-37(B) 23=-53(B) 24=-52(B) 20=-50(B) 21=-53(B) 22=-37(B) 23=-53(B) 24=-52(B) 22=-53(B) 24=-52(B) 22=-52(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only using the manners and the broken to both the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

E RENLO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

L	6-0-8	11-1	11-4		1	17-11-12	1	20-0-0		
	6-0-8	5-10	0-12			6-0-8		2-0-4		
Plate Offsets (X,Y)	[5:0-3-8,0-2-0], [6:0-4-12,0-4-0], [7:0-1-1	1,Edge], [8:0-3-8,0-6-4],	[10:0-3-8,0-5-8], [12:E	Edge	e,0-3-12]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.63 BC 0.73 WB 0.96 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	in 1.17 1.34 1.06 1.16	(loc) l/defl 10-11 >999 10-11 >680 7 n/a 10 >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 298 lb	GRIP 244/190 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x8 SP WEBS 2x4 SP 3-12: 2: WEDGE Right: 2x6 SP No.2 REACTIONS. (lb/size Max H	No.1 2400F 2.0E No.2 *Except* x4 SP No.1) 12=6517/Mechanical, 7=5706/0-5-8 orz 12=-75(LC 9) orz 12=-75(LC 9)		BRACING- TOP CHORD BOT CHORD WEBS		Structural woo except end ver Rigid ceiling di T-Brace: Fasten (2X) T (0.131"x3") na Brace must co	d sheathing dii ticals. rectly applied o 2 and I braces t ils, 6in o.c.,with ver 90% of wel	rectly applied or 4-0-8 of or 10-0-0 oc bracing. x4 SPF No.2 - 5-8 x6 SPF No.2 - 3-12 o narrow edge of web v 0 3in minimum end dist b length.	oc purlins, with 10d ance.		
Max Uplift 12=-1304(LC 4), 7=-1304(LC 4) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-12=-264/75, 2-3=-346/72, 3-5=-13655/2887, 5-6=-5743/1387, 6-7=-8602/2042 BOT CHORD 11-12=-2477/12384, 10-11=-2477/12384, 8-10=-2864/13655, 7-8=-1255/5339 WEBS 3-12=-12952/2599, 3-11=-698/4009, 3-10=-428/1363, 5-10=-517/2784, 5-8=-8498/1624, 6-8=-1517/6414										
NOTES- 1) 2-ply truss to be connected together with 10d (0.131*X3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vull=130mph [3-second gust] Vad=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope): Lumber DOL=1.60 5) Provide adequate drainage to prevent water ponding. 6) All plates are MT20 plates unless otherwise indicated. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf bottom chord ni all areas with a clearance greater than 6-0-0 between the bottom chord and any other members. 9) Refer to girder(5) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=1304, 7=1304. Continued on page 2										
WARNING - Verify de	sign parameters and READ NOTES ON THIS AND	INCLUDED MITEK REFERENC	E PAGE MII-7473 rev. 10/0)3/201	15 BEFORE USE.		ENGINEER	ING BY		

NLL

RL.

818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Kent C
B0519-2535	C01	Roof Special Girder	1	2	E1311116 Job Reference (optional)
Comtech, Inc., Fay	etteville, NC 28309	·	ID:LZVQAWTE	8.130 s Mai 0Va58bvNJ	rr 11 2018 MiTek Industries, Inc. Thu May 30 13:39:04 2019 Page 2 XqTQyYrsN-bZbWYrfCsUSPC9kxxJSxszTqdhinfHRBpAN7OnzBIEr

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 561 lb down and 199 lb up at 1-9-12, 690 lb down and 67 lb up at 1-11-4, 561 lb down and 199 lb up at 3-9-12, 690 lb down and 67 lb up at 3-11-4, 1431 lb down and 503 lb up at 5-9-12, 690 lb down and 67 lb up at 5-11-4, 690 lb down and 67 lb up at 3-11-4, 690 lb down and 67 lb up at 1-11-4, 1407 lb down and 375 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, 1431 lb down and 503 lb up at 13-11-4, and 561 lb down and 501 lb up at 13-11-4, and 561 lb down and 501 lb up at 13-11-4, and 561 lb down and 501 lb up at 13-11-4, and 561 lb down and 561 lb down and 199 lb up at 17-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-20, 2-6=-60, 6-7=-60, 7-13=-20

Concentrated Loads (lb)

Vert: 9=-561(F) 11=-2121(F=-1431, B=-690) 10=-690(B) 8=-561(F) 14=-1251(F=-561, B=-690) 15=-1251(F=-561, B=-690) 16=-690(B) 17=-690(B) 18=-2838(F=-1431, B=-1407)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=166/Mechanical, 2=293/0-5-8, 4=57/Mechanical Max Horz 2=216(LC 10) Max Uplift 3=-172(LC 10) Max Grav 3=208(LC 17), 2=293(LC 1), 4=114(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-257/225

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=172.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		/ - 3-1					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) -0.01	2-5	>999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) -0.03	2-5	>999	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.04	4	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.02	2-5	>999	240	Weight: 37 lb $FT = 20\%$
LUMBER-			BRACING-				

BOT CHORD

LUMBER

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x6 SP No.1

REACTIONS. (lb/size) 4=149/Mechanical, 2=293/0-5-8, 5=74/Mechanical Max Horz 2=175(LC 10) Max Uplift 4=-92(LC 10) Max Grav 4=149(LC 1), 2=293(LC 1), 5=110(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Off	sets (X,Y)	[2:0-0-15,0-0-15], [2:0-1-15,0-	5-9], [2:0-5-8,Edge]									
LOADIN	G (psf)	SPACING- 2-(D-0 CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL 1.	.15 TC	0.16	Vert(LL)	-0.01	2-5	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL 1.	.15 BC	0.13	Vert(CT)	-0.03	2-5	>999	240			
BCLL	0.0 *	Rep Stress Incr Y	ES WB	0.00	Horz(CT)	0.05	4	n/a	n/a			
BCDL	10.0	Code IRC2015/TPI201	4 Matr	ix-P	Wind(LL)	0.02	2-5	>999	240	Weight: 36 lb	FT = 20%	
LUMBER	र-				BRACING-							

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x6 SP No.1

REACTIONS. (lb/size) 4=150/Mechanical, 2=293/0-5-8, 5=73/Mechanical Max Horz 2=135(LC 10) Max Uplift 4=-62(LC 7) Max Grav 4=150(LC 1), 2=293(LC 1), 5=110(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offs	sets (X,Y)	[2:0-0-15,0-0-15], [2:0-1-	15,0-5-9], [2:0	-5-8,Edge]									
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	2-5	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	2-5	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.04	4	n/a	n/a			
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-P	Wind(LL)	0.01	2-5	>999	240	Weight: 35 lb	FT = 20%	
LUMBER	-					BRACING-							

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x6 SP No.1

REACTIONS. (lb/size) 4=153/Mechanical, 2=293/0-5-8, 5=70/Mechanical Max Horz 2=94(LC 10) Max Uplift 4=-54(LC 7), 2=-12(LC 10) Max Grav 4=153(LC 1), 2=293(LC 1), 5=109(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offset	ts (X,Y)	[2:0-0-15,0-0-15], [2:0-1-	15,0-5-9], [2:0)-5-8,Edge]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	-0.01	2-5	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	2-5	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.05	4	n/a	n/a			
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P	Wind(LL)	0.02	2-5	>999	240	Weight: 35 lb	FT = 20%	
LUMBER-						BRACING-							

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x6 SP No.1

REACTIONS. (lb/size) 4=151/Mechanical, 2=293/0-5-8, 5=72/Mechanical Max Horz 2=114(LC 10) Max Uplift 4=-57(LC 7), 2=-6(LC 10) Max Grav 4=151(LC 1), 2=293(LC 1), 5=109(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L1-0-0		6-0-0	
	1-0-0	1	5-0-0	1
Plate Offsets (X,Y)	[2:0-1-9,0-4-1], [2:Edge,0-0-9]	[3:0-0-2,Edge], [4:0-4-0,0-0-8]		
LOADING (psf)	SPACING- 2-0	-0 CSI .	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.	15 TC 0.17	Vert(LL) -0.01 2-6 >999 3	360 MT20 244/190
TCDL 10.0	Lumber DOL 1.	I5 BC 0.11	Vert(CT) -0.02 2-6 >999 2	240
BCII 00*	Rep Stress Incr N	0 WB 0.00	Horz(CT) 0.02 4 n/a	n/a

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.01

2-6

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Weight: 35 lb

FT = 20%

LUMBER-

BCDL

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x6 SP No.1

10.0

REACTIONS. (lb/size) 2=285/0-5-8, 4=150/Mechanical, 6=71/Mechanical Max Horz 2=58(LC 8) Max Uplift 2=-34(LC 8), 4=-57(LC 5) Max Grav 2=285(LC 1), 4=150(LC 20), 6=115(LC 3)

Code IRC2015/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed;

Matrix-P

MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 61 lb down and 34 lb up at 2-0-12, and 61 lb down and 34 lb up at 4-0-12 on top chord, and 9 lb down at 2-0-12, and 9 lb down at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0-3		6-0-0					
Plate Offsets (X,Y)	[2:0-5-8,Edge], [2:0-1-15,0-5-9], [2:0-0-1	5,0-0-15], [3:0-2-4,Edge],	[4:0-3-0,0-0-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.27 BC 0.15 WB 0.00 Matrix-P	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0. Wind(LL) 0.	in (loc) 01 2-6 03 2-6 04 4 02 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 3-4: 2x	PNo.1 *Except* 4 SP No.1		BRACING- TOP CHORD BOT CHORD	Structu Rigid c	iral wood sl eiling direc	neathing directly a tly applied or 10-0-	pplied or 6-0-0 -0 oc bracing.	oc purlins.

 TOP CHORD
 2x6 SP No.1 *Exc

 3-4: 2x4 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x6 SP No.1

Len. 2x0 SP NO. I

REACTIONS. (lb/size) 2=284/0-5-3, 4=131/Mechanical, 6=90/Mechanical Max Horz 2=56(LC 10) Max Uplift 2=-23(LC 7), 4=-44(LC 7) Max Grav 2=284(LC 1), 4=131(LC 22), 6=126(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-2-0										
LOADING TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 2 2 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 11 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (Ib/size) 3=38/Mechanical, 2=162/0-5-8, 4=19/Mechanical Max Horz 2=59(LC 10) Max Uplift 3=-34(LC 10), 2=-11(LC 10)

Max Grav 3=47(LC 17), 2=162(LC 1), 4=38(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 2-2-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:12.7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 15-11-6, Corner(3) 15-11-6 to 20-4-3 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 171 lb uplift at joint 10, 234 lb uplift at joint 2, 360 lb uplift at joint 13, 205 lb uplift at joint 11 and 334 lb uplift at joint 9.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 11=581/Mechanical, 2=40/0-3-8, 14=1305/0-5-8 Max Horz 2=392(LC 10) Max Uplift 11=-179(LC 10), 2=-214(LC 8), 14=-165(LC 10) Max Grav 11=627(LC 17), 2=84(LC 10), 14=1305(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-376/984, 3-4=-587/1252, 4-5=-2135/456, 5-7=-1780/347, 7-8=-760/154, 8-11=-648/231 BOT CHORD 2-14=-664/0, 13-14=-733/123, 12-13=-814/2076
- BOT CHORD 2-14=-664/0, 13-14=-733/123, 12-13=-814/2076 WEBS 3-14=-437/286, 4-14=-717/179, 4-13=-839/2738, 5-13=-370/211, 7-13=-117/255, 7-12=-1138/498, 8-12=-262/1023

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 19-2-3, Exterior(2) 19-2-3 to 23-7-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are MT20 plates unless otherwise indicated.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 179 lb uplift at joint 11, 214 lb uplift at joint 2 and 165 lb uplift at joint 14.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kent C		
			_		E13111175		
B0519-2535	M03	COMMON	2	1			
					Job Reference (optional)		
Comtech, Inc.,	Fayetteville, NC 28309		8	.130 s Mar	11 2018 MiTek Industries, Inc. Thu May 30 13:39:12 2019 Page 2		
	•		ID:LZVQAWTEf0Va58bvNJXqTOyYrsN-M54XDalD_xTGANLTP?bpBfo8UvR6XvKNfPJYgKzBIF				

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-4=-150, 4-9=-150, 9-10=-50, 2-17=-50, 13-17=-50, 11-13=-50

Concentrated Loads (lb) Vert: 16=-1200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	-				
LUMBER-			BRACING-		
TOP CHORD	2x4 SP	No.1	TOP CHORD	Structural wood sheathing dir	ectly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP	No.1		except end verticals.	
WEBS	2x4 SP	No.3	BOT CHORD	Rigid ceiling directly applied c	or 6-0-0 oc bracing.

REACTIONS. (lb/size) 2=248/0-3-8, 8=585/0-5-8 Max Horz 2=115(LC 10)

Max Uplift 2=-152(LC 6), 8=-113(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-8=-378/220

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 7-8-0, Exterior(2) 7-8-0 to 10-0-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb uplift at joint 2 and 113 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

E RENLU A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

	6-0-0					12-0-0		
	6-0-0		I			6-0-0		
Plate Offsets (X,Y)	[2:0-0-9,Edge], [4:0-0-9,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.30 WB 0.11 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) 0.03 4-6 0.07 4-6 0.01 4 0.04 4-6	l/defl >999 : >999 : n/a >999 :	L/d 360 240 n/a 240	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 3 BOT CHORD 2x4 3 WEBS 2x4 3 OTHERS 2x4 3 REACTIONS. (lb/s Max Max	SP No.1 SP No.1 SP No.3 SP No.3 ize) 2=500/0-3-8, 4=500/0-3-8 Horz 2=-43(LC 15) Uplift 2=-148(LC 6), 4=-148(LC 7)		BRACING- TOP CHORD BOT CHORD	Struct Rigid	ural wood sh ceiling directl	eathing dire	ectly applied or 5-11- r 8-4-7 oc bracing.	3 oc purlins.
FORCES. (Ib) - Ma TOP CHORD 2-3 BOT CHORD 2-6 WEBS 3-6	x. Comp./Max. Ten All forces 250 (lb) o =-863/678, 3-4=-863/678 =-533/761, 4-6=-533/761 =0/282	r less except when shown.						
NOTES- 1) Unbalanced roof I 2) Wind: ASCE 7-10 MWFRS (envelop DOL=1.60 plate g 3) Truss designed fo Gable End Details 4) Gable studs space	ive loads have been considered for this d Vult=130mph (3-second gust) Vasd=100 e) gable end zone and C-C Corner(3) zor rip DOL=1.60 r wind loads in the plane of the truss only as applicable, or consult qualified buildin ad at 2-0-0 oc.	esign. imph; TCDL=6.0psf; BCDL ie;C-C for members and fo . For studs exposed to win g designer as per ANSI/TF	L=5.0psf; h=15ft; Cat prces & MWFRS for i nd (normal to the fac PI 1.	t. II; Exp C; reactions sh æ), see Star	enclosed; Iown; Lumbe Indard Industr	r Y		

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 2 and 148 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>6-0-0</u> 6-0-0			<u> </u>			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.38 BC 0.30 WB 0.11 Matrix-S	DEFL. Vert(LL) - Vert(CT) - Horz(CT) Wind(LL)	in (loc) -0.03 4-6 -0.07 4-6 0.01 4 0.03 4-6	l/defi L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 41 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=500/0-3-8, 4=500/0-3-8 Max Horz 2=25(LC 14) Max Uplift 2=-68(LC 6), 4=-68(LC 7)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-863/364, 3-4=-863/364

 BOT CHORD
 2-6=-269/761, 4-6=-269/761

 WEBS
 3-6=0/282

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 2 and 68 lb uplift at joint 4.

Structural wood sheathing directly applied or 5-11-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

SEAL 036322 May 31,2019

