

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 28196-28196A 9 PRINCE PLACE - ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I48071695 thru I48071722

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

September 24,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	7-4-12	14-6-0	22-6-0	29-7-4	37-0-0	I.			
	7-4-12	7-1-4	8-0-0	7-1-4	7-4-12	1			
Plate Offsets (X,Y)	[2:0-1-12,0-2-0], [5:0-3-0,0-2-	3], [7:0-3-0,0-2-3], [10:0-1-12]	2,0-2-0], [15:0-1-12,0-2-8], [16:0-	1-12,0-2-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IRC2015/TPI20	0-0 CSI. .15 TC 0.81 .15 BC 0.97 'ES WB 0.68 14 Matrix-MS	DEFL. in Vert(LL) -0.66 Vert(CT) -0.75 Horz(CT) 0.06 Attic -0.52	(loc) I/defl L/d 13-15 >662 240 13-15 >586 180 12 n/a n/a 15-16 192 360	PLATES MT20 Weight: 261 lb	GRIP 197/144 FT = 20%			
LUMBER- TOP CHORD 2x4 SF 5-7: 2x	P No.2 or 2x4 SPF No.2 *Exce	pt*	BRACING- TOP CHORD	Structural wood sheathing	directly applied or 1-7-8 c	oc purlins, x.): 5-7.			
BOT CHORD 2x4 SF 15-16: WEBS 2x4 SF 2-19,10	 No.2 or 2x4 SPF No.2 *Exce 2x6 SP No.2, 14-17: 2x4 SP I No.3 *Except* 0-12: 2x6 SP No.2 	pt* No.1	BOT CHORD WEBS JOINTS	BOT CHORDRigid ceiling directly applied or 2-2-0 oc bracing.WEBS1 Row at midptJOINTS1 Brace at Jt(s): 20, 21, 22					
REACTIONS. (siz Max H Max G	e) 19=0-3-8, 12=0-3-8 lorz 19=-228(LC 10) Grav 19=1802(LC 2), 12=1802	2(LC 2)							
FORCES. (lb) - Max. TOP CHORD 2-3=- 2-19:	Comp./Max. Ten All forces -2374/0, 3-5=-2119/0, 5-6=-16 =-1736/0, 10-12=-1736/0	250 (lb) or less except when s 41/7, 6-7=-1641/7, 7-9=-2119	shown. 9/0, 9-10=-2374/0,						
BOT CHORD 18-19 WEBS 3-16 2-18	9=-174/432, 16-18=0/2002, 15 =-439/223, 16-20=0/726, 5-20 =0/1644, 10-13=0/1644	5-16=0/1677, 13-15=0/1892, 1 =0/756, 15-21=0/726, 7-21=0	12-13=-44/302 0/756, 9-15=-439/223,						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-8-6, Interior(1) 2-8-6 to 14-6-0, Exterior(2) 14-6-0 to 19-8-13, Interior(1) 19-8-13 to 22-6-0, Exterior(2) 22-6-0 to 27-8-13, Interior(1) 27-8-13 to 38-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 200.0lb AC unit load placed on the bottom chord, 18-6-0 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Ceiling dead load (5.0 psf) on member(s). 20-22, 21-22
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 15-16
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili: 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

	1	7-4-12 14-6-0		1	22-6-0		29-7-4			37-0-0		
		7-4-12		7-1-4		8-0-0	1		7-1-4	I	7-4-12	1
Plate Offsets (X,	,Y) [2	2:0-2-0,0-1-12], [5:0-3-0	,0-2-3], [7:0-3	-0,0-2-3], [10:0	-2-0,0-1-12], [14	:0-1-12,0-2-8], [15:0-	1-12,0-	2-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix-	0.83 0.98 0.71 -MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Attic	in -0.66 -0.75 0.05 -0.52	(loc) 12-14 12-14 11 14-15	l/defl >660 >587 n/a 191	L/d 240 180 n/a 360	PLATES MT20 Weight: 259 lb	GRIP 197/144 FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SP N 5-7: 2x6	No.2 or 2x4 SPF No.2 * SP No.2	Except*			TOP CHOP	RD	Structu 2-0-0 c	ral wood	sheathing d 5-2-8 max.	lirectly applied, except e): 5-7.	end verticals, and
BOT CHORD	2x4 SP N 14-15: 2:	No.2 or 2x4 SPF No.2 * x6 SP No.2, 13-16: 2x4	Except* SP No.1			BOT CHOF WEBS	RD	Rigid c 1 Row	eiling dire at midpt	ctly applied	or 2-2-0 oc bracing. 3-15, 9-14	
WEBS	2x4 SP N 2-18,10-	No.3 *Except* 11: 2x6 SP No.2				JOINTS		1 Brac	e at Jt(s):	19, 20, 21		
REACTIONS.	(size) Max Hoi Max Gra	18=0-3-8, 11=0-3-8 rz 18=223(LC 9) av 18=1803(LC 2), 11=	1740(LC 2)									

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2375/0, 3-5=-2122/0, 5-6=-1642/9, 6-7=-1642/9, 7-9=-2125/0, 9-10=-2376/0, 2-18=-1737/0, 10-11=-1668/0

 BOT CHORD
 17-18=-180/424, 15-17=0/1995, 14-15=0/1679, 12-14=0/1901

 WEBS
 3-15=-438/223, 15-19=0/769, 5-19=0/779, 14-20=0/775, 7-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/775, 7-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-20=0/785, 9-14=-451/225, 14-15=0/1679, 14-15=0/167

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2-17=0/1646, 10-12=0/1719

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 1-0-0 to 2-8-6, Interior(1) 2-8-6 to 14-6-0, Exterior(2) 14-6-0 to 19-8-13, Interior(1) 19-8-13 to 22-6-0, Exterior(2) 22-6-0 to 27-8-13, Interior(1) 27-8-13 to 36-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 200.0lb AC unit load placed on the bottom chord, 18-6-0 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 14-15
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

ORT Common and the WWWWWWWW SEAL 044925 mm September 24,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

		7-4-12	-12 14-6-0 22-6		2-6-0	2-6-0			29 ₁ 7-4	1		
		7-4-12	7-1-4	1 8	8-0-0	1		6-11-8	0-1 [!] 12	7-1-4		
Plate Offse	ets (X,Y)	[2:0-2-0,0-2-0], [5:0-3-0,0-2-3], [7:0-3-0,0-2-3], [10:Ec	dge,0-1-12], [11:E	dge,0-1-8], [1	4:0-1-	12,0-2-8], [15:0-1	-8,0-2-8]			
	(pof)		0.0		DEEL	in	(100)	l/dofl	L /d		CBIR	
LUADING		Dista Cris DOI 4		0.04		0.05	(100)		240	FLATES		
TOLL	20.0	Plate Grip DOL 1	.15 10	0.84	Vert(LL)	-0.65	12-14	>008	240	IVI I 20	197/144	
TCDL	10.0	Lumber DOL 1	.15 BC	0.76	Vert(CT)	-0.71	12-14	>614	180			
BCLL	0.0 *	Rep Stress Incr Y	YES WB	0.74	Horz(CT)	0.05	11	n/a	n/a			
BCDL	10.0	Code IRC2015/TPI20	14 Matrix	-MS	Attic	-0.48	14-15	207	360	Weight: 258 lb	FT = 20%	
LUMBER-					BRACING-				I			
TOP CHORD 2x4 SP No 2 or 2x4 SPE No 2 *Except*					TOP CHOR	D	Structural wood sheathing directly applied, except end verticals, and					
	5-7.2	x6 SP No 2					2-0-0 0	c purlins	(5-1-12 max)	5-7		
	2v4 S	P No 1 *Except*			BOT CHOR	BOT CHORD Bigid ceiling directly applied or 10-0-0 oc bracing						
	12 16	2 2 4 9 D 9 14 15 2 4 9 0	No 2		WERS	M/EPS 1 Bow et midet 2 15 0 14						
WEDO	224 6	. 284 SF DSS, 14-15. 280 SF 1 D No 2 *Eveent*	NU.2		VEBS I Row at midpl 3-15, 9-14							
WEB5	2x4 5				JOINTS		I Brace	a al JI(S):	19, 20, 21			
	2-18:	2x6 SP No.2										
REACTION	NS. (siz	re) 18=0-3-8 11=Mechanica	ı									
	Max	Horz $18=224(I C 11)$	-									
	Max	$2r_{2}$ (18-1821/LC 2) 11-1773	R(I C 2)									
	IVIDA V	5100 10 - 1021(10 2), 11 = 1773										
FORCES	(lb) - Max	Comp /Max Ten - All forces	250 (lb) or less except y	when shown								
		- 2206/0 2 5- 2162/0 5 6- 16	230(10) 01 1000 00000000000000000000000000		272/0							
I OF CHUI	τυ 2-3=	-2390/0, 3-3=-2162/0, 5-6=-16	0///9, 0-/=-10///9, 7-9=	-2171/0, 9-10=-2	312/0,							
	2-18	=-1750/0, 10-11=-1710/0										

BOT CHORD 17-18=-183/440, 15-17=0/2012, 14-15=0/1715, 12-14=0/1902 WEBS 3-15=-443/223, 15-19=0/783, 5-19=0/794, 14-20=0/816, 7-20=0/826, 9-14=-409/228, 10-12=0/1783, 2-17=0/1648

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-8-1, Interior(1) 2-8-1 to 14-6-0, Exterior(2) 14-6-0 to 19-8-5, Interior(1) 19-8-5 to 22-6-0, Exterior(2) 22-6-0 to 27-8-5, Interior(1) 27-8-5 to 36-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 200.0lb AC unit load placed on the bottom chord, 18-6-0 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 14-15
- 8) Refer to girder(s) for truss to truss connections

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

 \mathbf{c} Contraction of the WWWWWWWWW SEAL 044925 mm September 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.14 BC 0.08 WB 0.07 Matrix-R	DEFL. in Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) 0.00	(loc) l/defl L/d 11 n/r 120 11 n/r 120 12 n/a n/a	PLATES GRIP MT20 197/144 Weight: 84 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0 oc purlins,

 F No.2
 FOT CHORD
 Structural wood sheating directly applied of 0000 cc pair

 F No.2
 except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-00 cc bracing.

REACTIONS. All bearings 13-0-0.

(lb) - Max Horz 19=-153(LC 10)

2x4 SP No.3

2x4 SP No.3

Max Upift All upift 100 lb or less at joint(s) 19, 12, 17, 14 except 18=-125(LC 12), 13=-122(LC 13) Max Grav All reactions 250 lb or less at joint(s) 19, 12, 16, 17, 18, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 6-6-0, Corner(3) 6-6-0 to 9-7-12, Exterior(2) 9-7-12 to 14-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 12, 17, 14 except (jt=lb) 18=125, 13=122.

ERGINEERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	9 PRINCE PLACE - ROOF	
						148071705
28196-28196A	C3G	FAN	1	2		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.520 s Au	g 27 2021 MiTek Industries, Inc. Fri Sep 24 09:46:49 2021	Page 2

27 2021 MiTek Industries, Inc. Fri Sep 24 09:46:49 ID:6ghGmW2wjVRjEest?1fGYTyw97h-4r3f8VlffRtCmwjP8EqypR9eSSrEjlnJ5W2qEjyaSaa

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 11=-1436(F) 9=-1574(F) 15=-1436(F) 16=-1436(F) 17=-1436(F) 18=-1436(F) 19=-1436(F) 20=-1436(F) 21=-1574(F)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 6-6-0, Corner(3) 6-6-0 to 9-3-8, Exterior(2) 9-3-8 to 14-6-0, Corner(3) 14-6-0 to 17-8-8, Exterior(2) 17-8-8 to 22-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 27, 22, 19 except (jt=lb) 29=349, 17=344, 28=348, 18=344.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-6-0, Exterior(2) 6-6-0 to 10-8-15, Interior(1) 10-8-15 to 14-6-0, Exterior(2) 14-6-0 to 18-8-15, Interior(1) 18-8-15 to 22-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 7

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-6-0, Exterior(2) 6-6-0 to 10-8-15, Interior(1) 10-8-15 to 14-6-0, Exterior(2) 14-6-0 to 18-8-15, Interior(1) 18-8-15 to 20-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 9-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD

- REACTIONS. All bearings 7-9-8.
 - Max Horz 2=70(LC 9) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8

Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=309(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.

7) Non Standard bearing condition. Review required.

	<mark>0-6-0</mark> 0-6-0								
Plate Offsets (X,Y)	[2:0-0-0,0-0-11], [2:0-1-9,1-	1-9]							
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL	. in	(loc)	l/defl l	_/d P	LATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 1.15 BC	0.49 Vert(L 0.59 Vert(C	L) -0.14 CT) -0.30	5-10 5-10	>820 2 >399 1	40 N 80	IT20	197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/TPI2	YES WB 2014 Matri	0.16 Horz(ix-MS	CT) 0.01	2	n/a r	n/a V	/eight: 42 lb	FT = 20%
LUMBER-	1		BRAC	CING-					
TOP CHORD 2x4 SI BOT CHORD 2x4 SI	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2		TOP (CHORD	Structur except e	al wood she nd verticals	athing directly app	blied or 6-0-0	oc purlins,

BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2		except end verticals
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly
WEDGE			

WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-0, 5=Mechanical

Max Horz 2=80(LC 11) Max Uplift 2=-60(LC 8), 5=-32(LC 12) Max Grav 2=488(LC 1), 5=360(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD	2-3=-526/74
	2 E 102/40E

BOT CHORD 2-5=-103/495 WEBS 3-5=-512/105

......

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 9-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

applied or 10-0-0 oc bracing.

ł

LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix-	0.17 0.11 0.04 ·S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.00	(loc) 1 1 7	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 22 BOT CHORD 22	4 SP No.2 or 2x4 SPF No.2 4 SP No.2 or 2x4 SPF No.2				BRACING- TOP CHOR	D	Structu	ral wood end verti	sheathing di cals.	rectly applied or 6-0-0	oc purlins,
WEBS 2x	4 SP No.3				BOT CHOR	D	Rigid ce	eiling dire	ectly applied	or 10-0-0 oc bracing.	

REACTIONS. All bearings 10-0-0.

Max Horz 2=79(LC 9) (lb) -

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10 Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=311(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 9-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9, 10.

FORCES. (ID) - Max. Comp./Max. Ten. - All forces 250 (ID) of less exce

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-11 to 3-3-11, Interior(1) 3-3-11 to 4-0-0, Exterior(2) 4-0-0 to 7-3-1, Interior(1) 7-3-1 to 7-8-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 1=173, 5=153, 2=112.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

(lb) - Max Horz 1=48(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 2, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-11 to 3-3-11, Interior(1) 3-3-11 to 4-0-0, Exterior(2) 4-0-0 to 7-3-1, Interior(1) 7-3-1 to 7-8-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 10, 8.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LUMBER-

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0. (lb) - Max Horz 1=-60(LC 8)

(ID) - IVIAX HUIZ I=-OU(LC 0)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-241(LC 19), 5=-211(LC 20), 2=-193(LC 12), 4=-174(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=421(LC 19), 4=400(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-3 to 3-3-3, Interior(1) 3-3-3 to 4-0-0, Exterior(2) 4-0-0 to 7-0-0, Interior(1) 7-0-0 to 7-8-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint 1, 211 lb uplift at joint 5, 193 lb uplift at joint 2 and 174 lb uplift at joint 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LUMBER-

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 1=60(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 2, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

 $\operatorname{Hax}\operatorname{Grav} \quad \operatorname{All}\operatorname{Teaclions} 250 \text{ ib of less al joint(s) } 1, 1, 2, 0, 9, 10, 0$

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-3-3 to 3-3-3, Interior(1) 3-3-3 to 4-0-0, Exterior(2) 4-0-0 to 7-0-0, Interior(1) 7-0-0 to 7-8-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 10, 8.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=3-6-15, 3=3-6-15 Max Horz 1=23(LC 11) Max Uplift 1=-1(LC 12), 3=-1(LC 13) Max Grav 1=113(LC 1), 3=113(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 3-7-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

September 24,2021

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-5-7, Exterior(2) 6-5-7 to 9-5-7, Interior(1) 9-5-7 to 12-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=110, 6=110.

REACTIONS. (size) 1=9-7-14, 3=9-7-14, 4=9-7-14 Max Horz 1=72(LC 9) Max Uplift 1=-13(LC 13), 3=-22(LC 13) Max Grav 1=186(LC 1), 3=186(LC 1), 4=339(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 4-10-4, Exterior(2) 4-10-4 to 7-10-4, Interior(1) 7-10-4 to 9-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.3 BOT CHORD

10.0

2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. 1=6-5-7, 3=6-5-7, 4=6-5-7 (size) Max Horz 1=-46(LC 8) Max Uplift 1=-14(LC 13), 3=-19(LC 13) Max Grav 1=130(LC 1), 3=130(LC 1), 4=197(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

BCDL

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

10.0

REACTIONS. (size) 1=3-3-1, 3=3-3-1 Max Horz 1=-20(LC 8)

Max Uplift 1=-1(LC 12), 3=-1(LC 13) Max Grav 1=100(LC 1), 3=100(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-P

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

FT = 20%

Weight: 10 lb

Structural wood sheathing directly applied or 3-3-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

