Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.


AST #: 29076 JOB: 21-5962-R01 JOB NAME: 49786-0214 WOODGROVE Wind Code: 37 Wind Speed: Vult= 115mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *13 Truss Design(s)*

Trusses: R01, R02, R03, R04, R05, R06, R07, R08, R09, VT01, VT02, VT03, VT04

Warning !--- Verify design parameters and read notes before use.

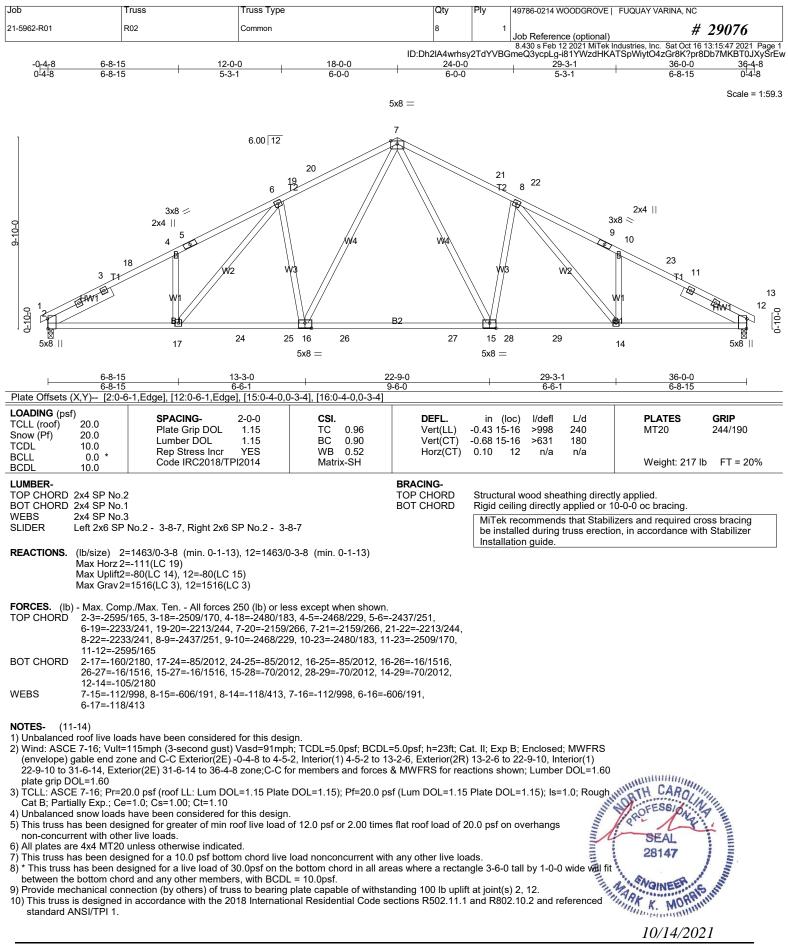
This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC
21-5962-R01	R01	GABLE	1	1	Job Reference (optional) # 29076
					8.430 s Feb 12 2021 MiTek Industries. Inc. Sat Oct 16 13:15:46 2021 Page

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-EyT9ldceZsLbBM7mJgZkjdcM7Pj4UDrD5XjTm5ySrEx

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

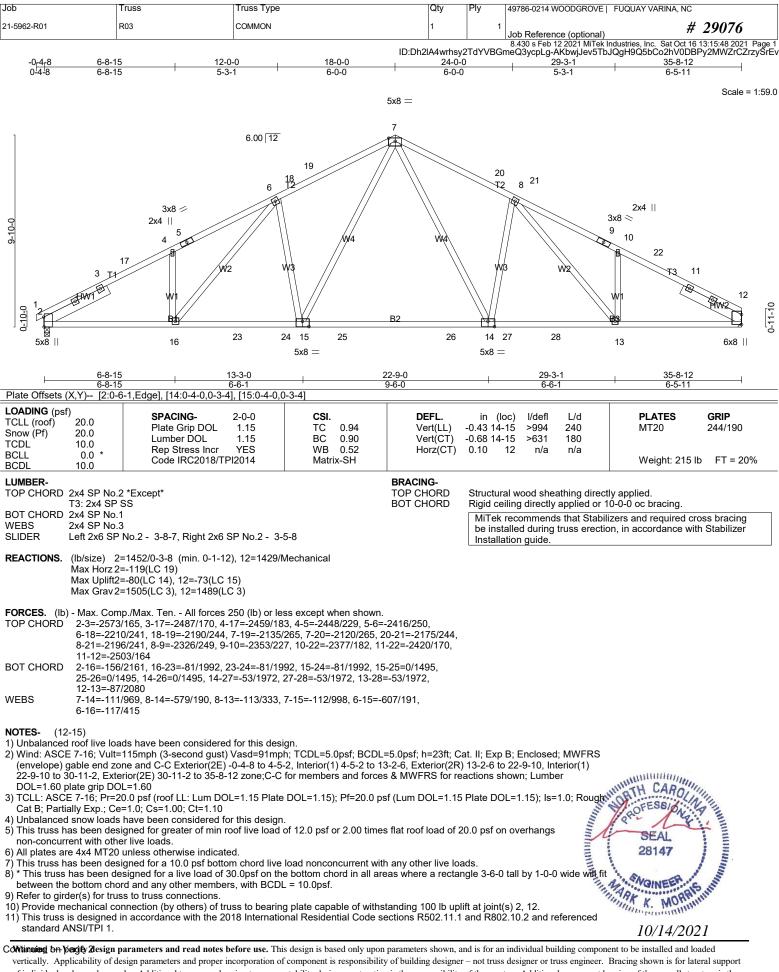
LOAD CASE(S) Standard

10/14/2021

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC	
21-5962-R01	R02	Common	8	1	Job Reference (optional) # 29076	
	8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:47 2021 Page 2					

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-i81YWzdHKATSpWiytO4zGr8K?pr8Db7MKBT0JXySrEw

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/14/2021

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC	
21-5962-R01	R03	COMMON	1	1	Job Reference (optional) # 29076	
	8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:48 2021 Page					

ID:Dh2IA4wrhsy2TdYVBGmeQ3ycpLg-AKbwjJev5TbJQgH9Q5bCo2hV0DBPy2MWZrCZrzySrEv

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

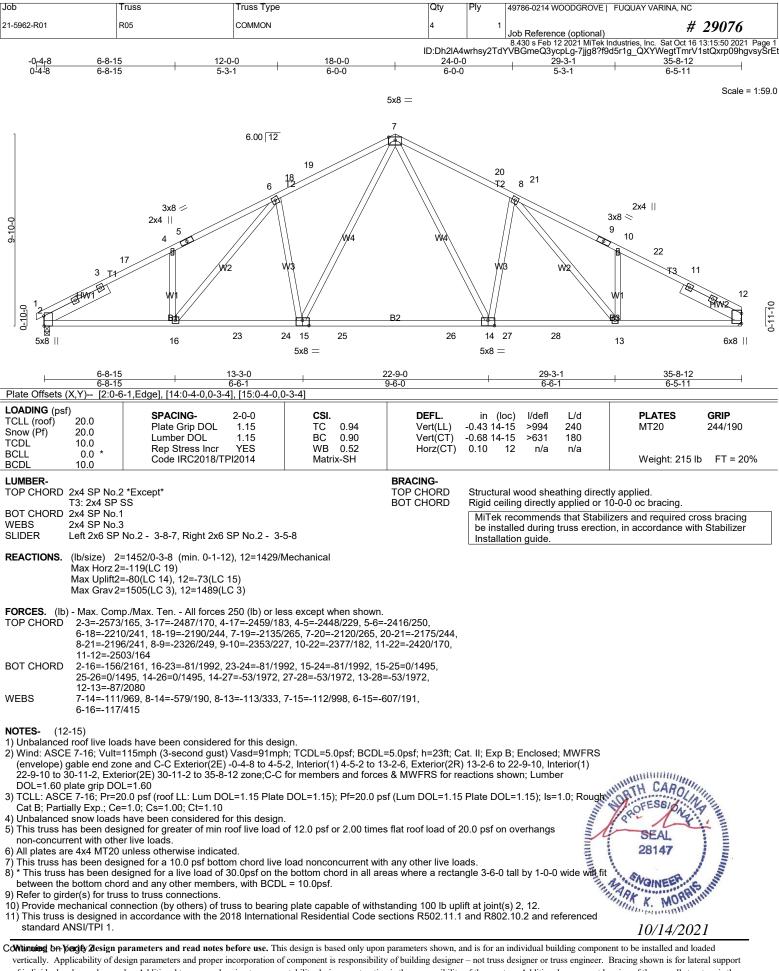
LOAD CASE(S) Standard

10/14/2021

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE	FUQUAY VARINA, NC
21-5962-R01	R04	COMMON	5	1	Job Reference (optional)	# 29076
					8.430 s Feb 12 2021 MiTek In	dustries, Inc. Sat Oct 16 13:15:49 2021 Page 1 A2qrL_p7RLGEhndXThSXfnVy7NQySrEu
-0 <u>-4-8</u> 0-4-8	6-8-15		8-0-0 24-	0-0	29-3-1	35-8-12
0-4-8	6-8-15	5-3-1 6	-0-0 6-0	0-0	5-3-1	6-5-11
			5x8 =			Scale: 3/16"=1'
			7			
[6.00 12				
		27			4x4 ≈	
		4x426 62		28 72	8 ²⁹	
	3x8 🚧	P		14		
0-1					3x8 ≈	
9-10-0	4 5		/v/4 vv4	. //	9 10 W2 7 10	
	4x4 = 25		// \	vv3		³⁰ 4x4 ≈
4x4	= 3 II	W2 W3	/			T3 11 4x4 ≥
	ETWIE W1		W5 B3		W1	12
0-10-0						0-1-10
5x8	24	31 32 23 22	37 21 19 15	34 38 14 1	6 35 36 13	
	4x4 =	5x12 MT20HS		5x12 MT20HS		
L	6-8-15	13-3-0 16-		2-9-0	29-3-1	35-8-12
Plate Offsets (X,Y)	6-8-15 [2:0-6-1,Edge], [14:0-6-	6-6-1 2-9 0,0-3-0], [23:0-6-0,0-3-0]	9-0 2-0-0 2-0-0 2	2-9-0	6-6-1	6-5-11
LOADING (psf)	SPACING-	2-0-0 CSI	. DEFL.	in (loc) l/defl L/d	PLATES GRIP
TCLL (roof) 20 Snow (Pf) 20	0 Plate Grip I	DOL 1.15 TC	0.88 Vert(L	L) -0.53 `	19 >804 240	MT20 244/190
TCDL 10 BCLL 0	∩ ∗ Rep Stress	Incr YES WB			19 >503 180 12 n/a n/a	MT20HS 187/143
BCDL 10		018/TPI2014 Mat	rix-SH			Weight: 229 lb FT = 20%
LUMBER- TOP CHORD 2x4	SD No 2 *Except*		BRACING- TOP CHOR		ral wood aboathing directly	applied or 2-2-0 oc purlins.
T1: 1	2x4 SP No.1, T3: 2x4 SP \$	SS	BOT CHOR	D Rigid ce	eiling directly applied or 10	
BOT CHORD 2x4 B3::	SP SS *Except* 2x4 SP No.1		WEBS		c bracing: 16-22 at midpt 8-13	
	SP No.3 2x6 SP No.2 - 3-8-7, Rigl	nt 2x6 SP No. 2 - 3-5-8				ers and required cross bracing
	2x0 01 10.2 - 3-0-7, Nigi	1220 01 10.2 - 0-0-0			ation guide.	n, in accordance with Stabilizer
	size) 2=1540/0-3-8 (min. (Horz 2=-119(LC 15)	0-2-0), 12=1519/Mechanical				
Max	(Uplift2=-36(LC 14), 12=-2					
Max	c Grav 2=1685(LC 3), 12=1	672(LC 3)				
		forces 250 (lb) or less except v 5, 4-25=-2799/99, 4-5=-2777/1				
6-2	26=-2600/146, 26-27=-258	0/148, 7-27=-2526/170, 7-28=	-2509/170, 28-29=-2565/1			
11	-12=-2831/84	171, 9-10=-2668/149, 10-30=-				
		5, 31-32=0/2335, 23-32=0/233), 15-34=0/1860, 14-34=0/186				
13	-36=0/2314, 12-13=-17/23	64		,		
	22=-64/1197, 6-23=-594/1	028, 8-14=-563/197, 8-13=-13 97, 6-24=-136/379	4/290, 22-2392/1039,			
NOTES- (13-16)						
1) Unbalanced roof	live loads have been con	sidered for this design. d gust) Vasd=91mph; TCDL=5	Onef: BCDI =5 Onef: h=23	ft: Cat II: Evr	B. Enclosed: MWERS	
(envelope) gable	end zone and C-C Exteri	or(2E) -0-4-8 to 4-5-2, Interior(1) 4-5-2 to 13-2-6, Exterior	r(2R) 13-2-6 t	o 22-9-10, Interior(1)	ANNUM CASHING
22-9-10 to 30-11 DOL=1.60 plate	-2, Exterior(2E) 30-11-2 to grip DOL=1.60	35-8-12 zone;C-C for membe	ers and forces & MWFRS f	or reactions s	shown; Lumber	ORTH CAHOLANI
3) TCLL: ASCE 7-1 Cat B: Partially F	6; Pr=20.0 psf (roof LL: L	um DOL=1.15	5); Pf=20.0 psf (Lum DOL=	1.15 Plate DO	DL=1.15); ls=1.0; Rough	POPLOS PARA
4) Unbalanced sno	w loads have been consid	ered for this design.		L . f 00 0 f .		SEAL
non-concurrent	with other live loads.	Thin tool live load of 12.0 psi	or 2.00 times hat root load	1 01 20.0 psi 0	in overnangs	28147
6) All plates are M 7) All plates are 2x	20 plates unless otherwis MT20 unless otherwise i	d gust) Vasd=91mph; TCDL=5 or(2E) -0-4-8 to 4-5-2, Interior(0 35-8-12 zone;C-C for member =1.10 ered for this design. f min roof live load of 12.0 psf e indicated. ndicated. if bottom chord live load nonco ad of 30.0psf on the bottom c members, with BCDL = 10.0psf tions.			1000 CONTRACTOR OF	SEAL 28147 BIA7 DO/TA/2021 The be installed and loaded fracing shown is for lateral support acing of the overall structure is the ional Design Standard for Metal from Truss Plate Institute, 583
8) This truss has be	een designed for a 10.0 ps	of bottom chord live load nonce	oncurrent with any other liv	e loads.) tall by 1.0.0 wide will fit	ARK GINES ORISING
between the bot	com chord and any other n	nembers, with BCDL = 10.0psf	noru in all areas where a f :	eolanyie 3-0-l	o tali by 1-0-0 wide will fit 4	Man K. MURAN
10) Refer to girder(11) Provide mecha	s) for truss to truss conne nical connection (by other	ctions. s) of truss to bearing plate car	able of withstanding 100 I	o uplift at ioint	t(s) 2. 12.	10/14/2021
Convinuized on Vercify	Zesign parameters and read	notes before use. This design is b	ased only upon parameters sho	wn, and is for a	n individual building componen	nt to be installed and loaded
vertically. Applicab	ility of design parameters and	proper incorporation of component	is responsibility of building des	signer – not trus	s designer or truss engineer. B	racing shown is for lateral support
of individual web me	embers only. Additional tempo building designer For general	prary bracing to ensure stability dur	ing construction is the responsi ality control storage delivery	bility of the erection and br	ctor. Additional permanent bra acing consult ANSI/TPI 1 Mat	cing of the overall structure is the ional Design Standard for Metal
Plate Connected Wo	od Truss Construction and B	CSI 1-03 Guide to Good Practice fe	or Handling, Installing & Brac	ing of Metal Pla	ate Connected Wood Trusses	from Truss Plate Institute, 583
D'Onofrio Drive, M	adison, WI 53719.					

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC			
21-5962-R01	R04	COMMON	5	1	Job Reference (optional) # 29076			
	8.430 s Feb 12 2021 MITek Industries, Inc. Sat Oct 16 13:15:49 2021 Page 2 ID:Dh2IA4wrhsy2TdYVBGmeQ3ycpLg-fX9IwfeXsnjA2grL p7RLGEhndXThSXfnVy7NQySrEu							


NOTES- (13-16)

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENCINEER FOR ADDITIONAL DEACING CONCEPTENTIONS. ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

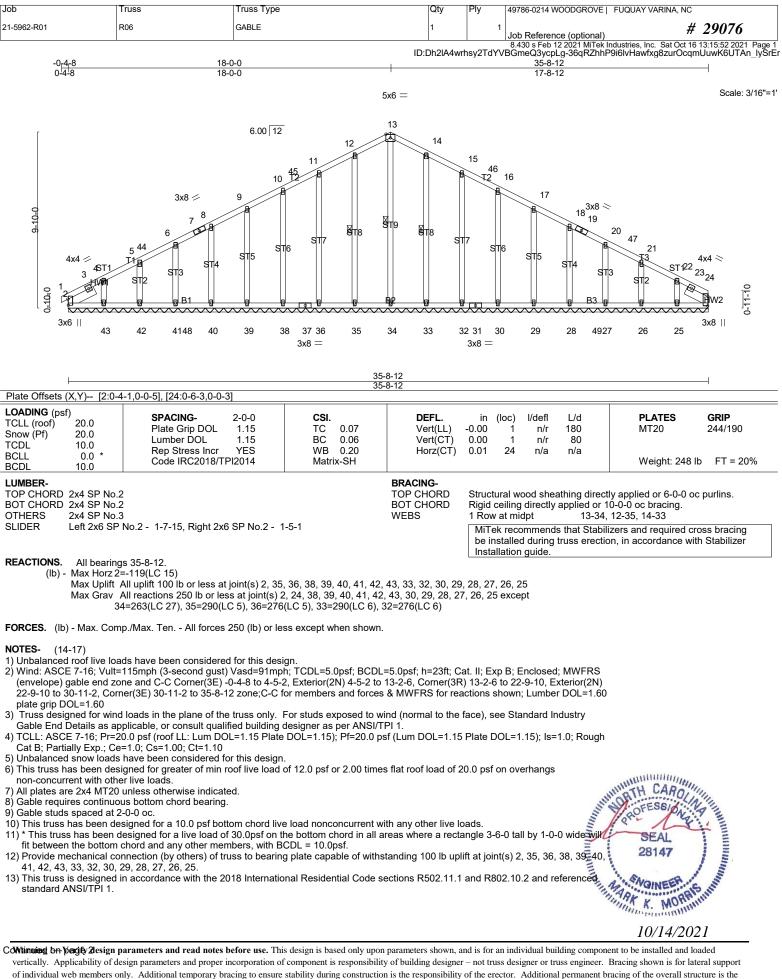
10/14/2021

of individual web meeters only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC
21-5962-R01	R05	COMMON	4	1	Job Reference (optional) # 29076
					8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:50 2021 Page

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-7jjg8?f9d5r1g_QXYWegtTmrV1stQxrp09hgvsySrEt

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

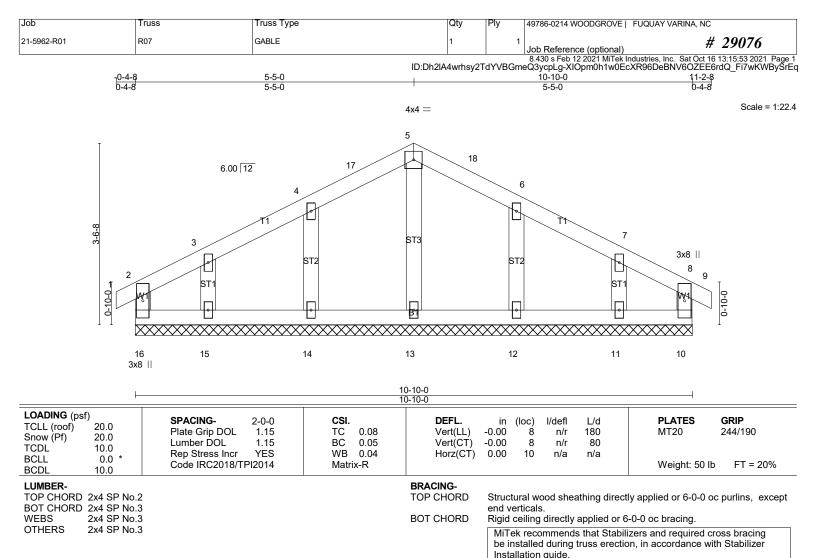
Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/14/2021

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC
21-5962-R01	R06	GABLE	1	1	Job Reference (optional) # 29076
					8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:52 2021 Page


ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-36qRZhhP9i6lvHawfxg8zurOcqmUuwK6UTAn_lySrEr

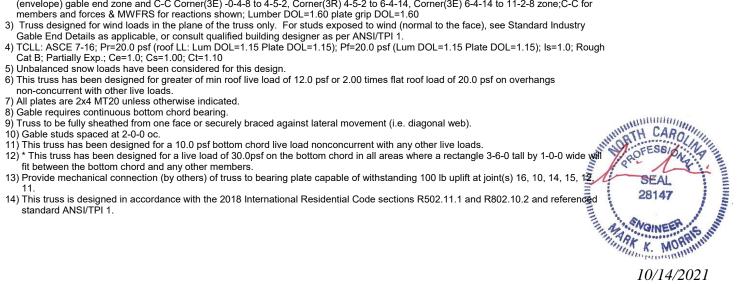
- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/14/2021

REACTIONS. All bearings 10-10-0.

(lb) - Max Horz 16=35(LC 14)


Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(15-18)

1) Unbalanced roof live loads have been considered for this design.

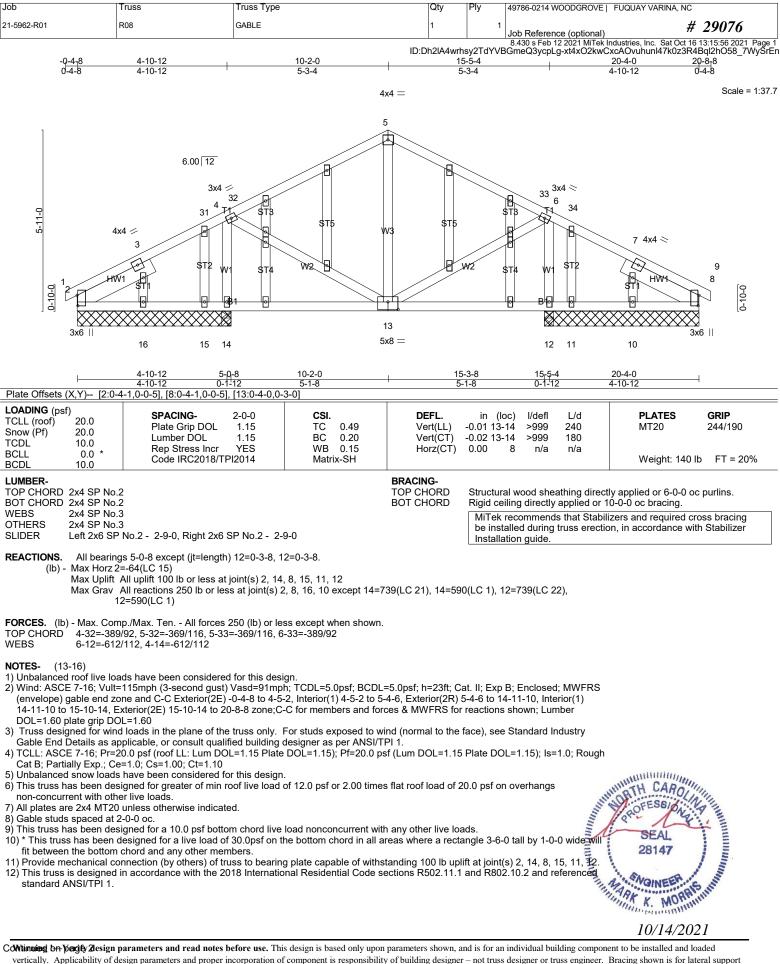
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-4-8 to 4-5-2, Corner(3R) 4-5-2 to 6-4-14, Corner(3E) 6-4-14 to 11-2-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

10/14/2021

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC	
21-5962-R01	R07	GABLE	1	1	Job Reference (optional) # 29070	5
					8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:53 20	21 Page 2

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-XIOpm0h1w0EcXR96DeBNV6OZEE6rdQ_Fi7wKWBySrEq

15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/14/2021

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA, NC
21-5962-R01	R08	GABLE	1	1	Job Reference (optional) # 29076
					8.430 s Feb 12 2021 MiTek Industries, Inc. Sat Oct 16 13:15:56 2021 Page 2

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-xt4xO2kwCxcAOvuhunl47k0z3R4Bql2hO58_7WySrEn

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

10/14/2021

Job	Truss	Truss Type	Qty	Ply	49786-0214 WOODGROVE FUQUAY VARINA,	NC
21-5962-R01	R09	Common Girder	1	2	Job Reference (optional)	# 29076
	8 430 s Feb 12 2021 MiTek Industries Inc. Sat Oct 16 13 16:01 2021 Page 2					

ID:Dh2lA4wrhsy2TdYVBGmeQ3ycpLg-lqtqSlo31TETUgmehKKFqnjpLSl3VtQQYNslojySrEi

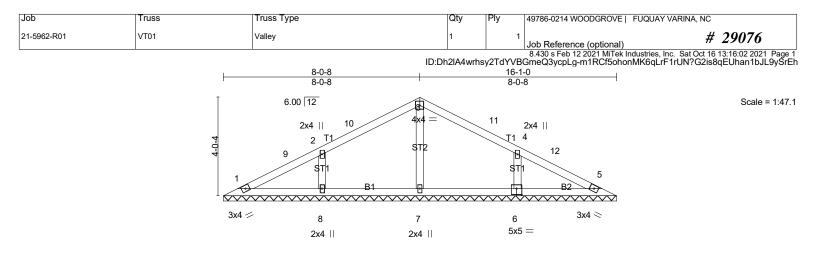
14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 6=-1409(B) 9=-1409(B) 10=-1499(B) 11=-1499(B) 12=-1499(B) 13=-1499(B) 14=-1499(B) 15=-1409(B) 16=-1409(B) 17=-1411(B)

10/14/2021

Plate Offsets (X,Y) [6:0-2-	8 0-3-01		16-1-0 16-1-0		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 0.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.29 BC 0.18 WB 0.08 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 58 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD		

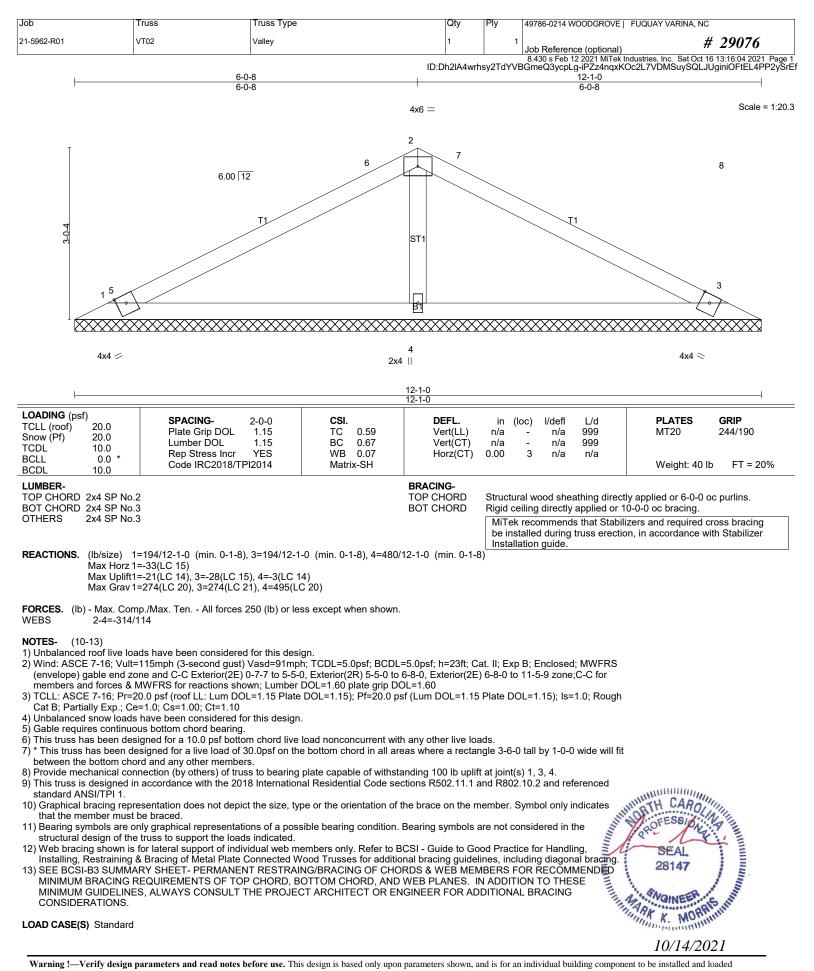
REACTIONS. All bearings 16-1-0.

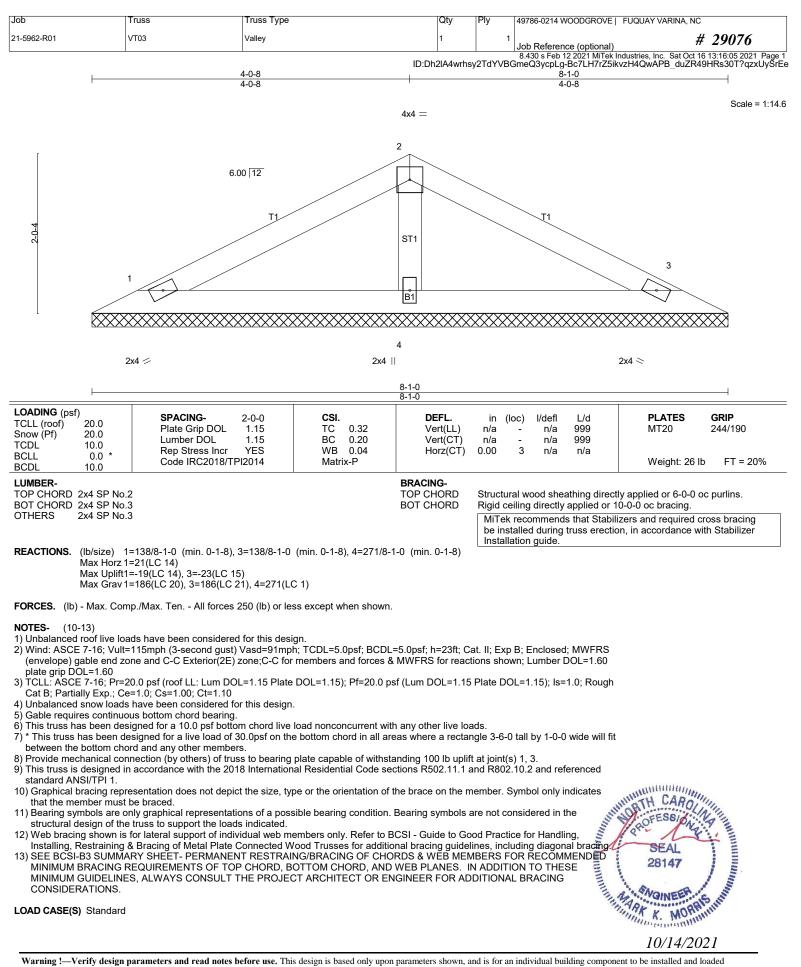
(lb) - Max Horz 1=45(LC 14)

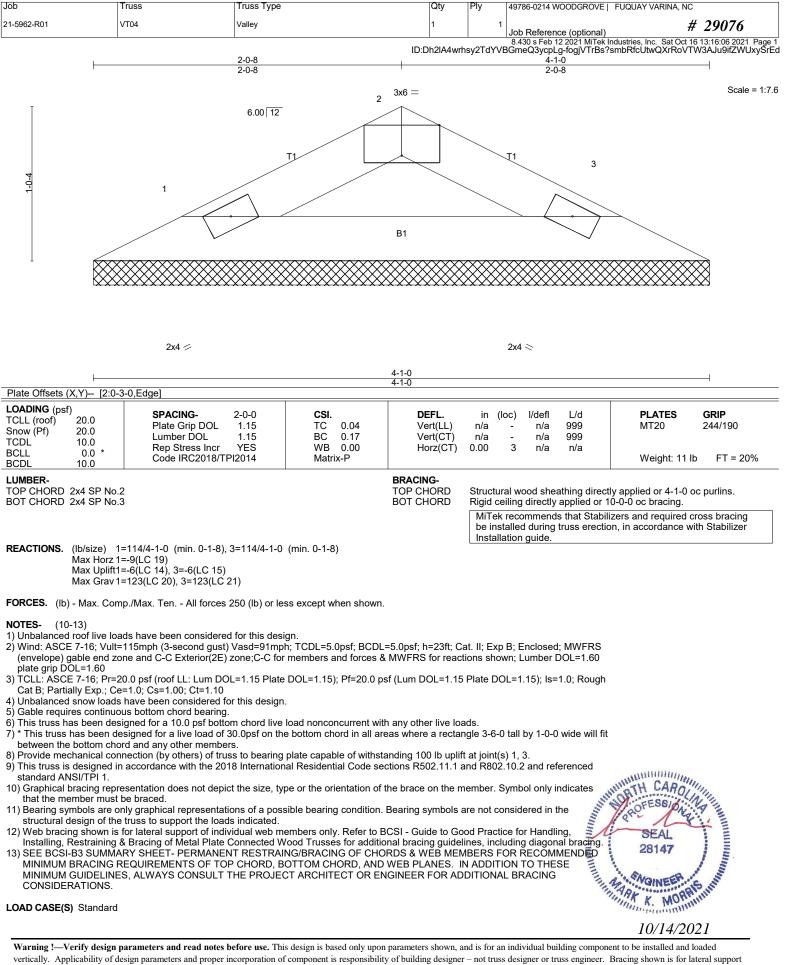
Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=285(LC 21), 8=466(LC 20), 6=461(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-8=-378/133, 4-6=-374/132 WFBS


(10-13) NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-7 to 5-5-0, Exterior(2R) 5-5-0 to 10-8-0, Exterior(2E) 10-8-0 to 15-5-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Bearing symbols are only graphic structural design of the truss to support the loads indicated.
 12) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Government of the trust of trust of the trust


rates THE CARO 1/202 28147 NOINE K. MORRIE

10/14/2021

LOAD CASE(S) Standard

