Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 28668 JOB: 21-5762-R01 JOB NAME: LOT 1111 ANDERSON CREEK Wind Code: 37 Wind Speed: Vult= 130mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *40 Truss Design(s)*

Trusses:

J01, J02, J06, M01, M02, M03, M04, M05, PB01, PB02, PB03, PB04, R01, R02, R02A, R03, R03A, R04, R05, R07, R08, R09, R10, R12, R13, R14, R15, R18, R19, R21, R22, R23, R24, R29, VT01, VT02, VT03, VT04, VT05, VT06

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

	F	4-3-12					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.15 BC 0.02 WB 0.00 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - -0.01 4	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 0%
LUMBER- TOP CHORD 2x10 SP No. BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3	2	! -	BRACING- TOP CHORD BOT CHORD	Structural wo end verticals Rigid ceiling	ood sheathing dired s. directly applied or	ctly applied or 6-0-0 oc 2-0-0 oc bracing.	purlins, except
				MiTek reco be installed	ommends that Stab d during truss erect	ilizers and required cro ion, in accordance with	ss bracing Stabilizer

Installation guide

ROFESSI

SEAL

28147

VOINE K. MORP

untitute. 9/28/2021

REACTIONS. (lb/size) 1=239/6-0-0 (min. 0-1-8), 4=229/6-0-0 (min. 0-1-8) Max Horz 1=151(LC 12) Max Uplift4=-96(LC 12) Max Grav 1=239(LC 1), 4=244(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-281/109, 3-4=-235/339

NOTES- (12-13)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- y of the the CARO 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty F	Ply LO	T 1111 ANDERSON CREEK	159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	J02	Jack-Closed	4	1 Joi	o Reference (optional)	# 28668
		ID:jRO	aQZCa7AXr4	8.4 yywaPFSiT	30 s Feb 12 2021 MiTek Indus yJIBf-vLOWMAbxcOCP2b	tries, Inc. Thu Sep 30 14:12:25 2021 Page 1 Db1QOpCwdkxMSe3Gh0fZS38SyYR?q
		4-3-12	6-	0-0		
		4-0-12	1-	-0- 1		
			3x6	3		Scale = 1:28.9
				\square	Ţ	
			/			
		0.00 [12]		П	2-12	
		3.00 12		W	Ň	
				я́н ГТМ		
		2	5×6 -	<u> </u>	I	
		F722	500 -	4		
				2x4		
					-3	
					e L	
		8-12				
					l	
		\boxtimes				
		4-3-12	6-	.0_0		
		4-3-12	1-	·8-4		
LOADING (psf)	SPACING-	2-0-0 CSI . D	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.15 V	/ert(LL) -0	0.01 1-2	>999 240	MT20 244/190
TCDL 10.0	Rep Stress Incr	YES WB 0.00	lorz(CT) (0.02 1-2 0.01 4	n/a n/a	
BCDL 0.0 *	Code IRC2018/T	PI2014 Matrix-SH	. ,			Weight: 35 lb FT = 0%

LUMBER-TOP CHORD 2x10 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 2-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=244/0-3-8 (min. 0-1-8), 4=234/Mechanical Max Horz 1=154(LC 12) Max Uplift4=-98(LC 12) Max Grav 1=244(LC 1), 4=249(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(9-10)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

NOTES-(10-11)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

Job	Truss	Truss Type		Qty	Ply	LOT	T 1111 ANDERSON CREE	EK 159 SCHOLAR DRIVE	SPRING LAKE, NC
21-5762-R01	M02	Monopitch		4		1		#	28668
						8.43	80 s Feb 12 2021 MiTek In	dustries, Inc. Thu Sep 30	14:12:27 2021 Page 1
			-0-10-8	ID:jROaQ2 6-3-8		4yywai	PFSilyJiBt-rkVHnrdB8	3?S7HVNZ8rQHHLIYLA	2?X/fJ6fX9DLyYR?o
			0-10-8	6-3-8	I				
				2x4					Scale: 1/4"=1'
		1			3 4				
			0.00 [1]	/	P				
			9.00 12						
				И					
			274 /						
		-2-1(3.4 1		W3				
		× I	1						
		0-6	W1						
		3-6		W2					
			0	в1					
		ļ	U X						
			7		6 ₅				
			284		3X4 —				
				0.0.0					
				6-3-8					
Plate Offsets (X,Y) [<u>2:0-1-12,0-1-8], [6:0-1-8,0-1-8</u>	<u>}]</u>		1					
LOADING (psf) TCLL (roof) 20.0	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl L/d	PLATES	GRIP
Snow (Pf) 20.0	Lumber DOL	1.15	TC 0.67 BC 0.44	Vert(LL) Vert(CT)	-0.07 -0.14	6-7 6-7	>992 240 >496 180	M120	244/190
BCLL 10.0	Rep Stress Incr	YES	WB 0.16	Horz(CT)	-0.00	6	n/a n/a	Maight: 49 lb	FT - 0%
BCDL 10.0		12014	Mault-F					Weight. 46 b	FT = 078
LUMBER-	No 2			BRACING-	Struct	uralw	ood sheathing direct	ly applied or 6-0-0 oc	nurlins excent
BOT CHORD 2x4 SP	No.2				end v	erticals	s.		
WEBS 2x4 SP	N0.3			BOT CHORD	Rigid	ceiling	directly applied or 9	-9-4 oc bracing.	ss bracing
					be in	nstalled	d during truss erectio	on, in accordance with	n Stabilizer
REACTIONS. (lb/size) 6=252/Mechanical, 7=301	/0-3-8 (min. 0-1	-8)		Insta	allation	i guide.		
Max Ho	orz 7=166(LC 9)		-,						
Max Op Max G	av 6=311(LC 20), 7=301(LC 2	2)							
	Comp /Max Ten - All forces	250 (lb) or less	excent when shown						
BOT CHORD 6-7=-	348/166	200 (10) 01 1033	except when shown.						
WEBS 2-6=-7	90/399								
NOTES- (9-10)	(a)(1, 400) and (0, a second second)	Marcal 400 march			0.4 11.7				
(envelope) gable er	d zone and C-C Exterior(2E)	zone; end vertic	al left exposed;C-C	for members and	forces &	=xpв; & MWF	RS for reactions		
shown; Lumber DO	L=1.60 plate grip DOL=1.60	I -1 15 Plata D	N −1 15). Df-20.0 pc		5 Diato I		15): lo=1 0: Pouch		
Cat B; Partially Exp	; Ce=1.0; Cs=1.00; Ct=1.10		JE-1.13), F1-20.0 ps			JOL-1	. 13), 13– 1.0, Rough		
 This truss has been non-concurrent with 	designed for greater of min r other live loads	oof live load of	12.0 psf or 2.00 times	s flat roof load of 2	20.0 psf	on ove	erhangs		
4) This truss has been	designed for a 10.0 psf botto	m chord live loa	d nonconcurrent with	n any other live lo	ads.				
5) ^ This truss has been between the bottom	chord and any other membe	30.0pst on the b 's.	ottom chord in all are	eas where a recta	ngle 3-b	5-0 tall	by 1-0-0 wide will fit		
6) Refer to girder(s) fo	r truss to truss connections.		4		a			WHATELE CAR	- 11
8) This truss is design	ed in accordance with the 20	8 International	Residential Code sec	ctions R502.11.1	and R80	1(s) ex 02.10.2	2 and referenced	IN TESSIA	1111
standard ANSI/TPI	1. na representation does not d	onict the cize to	ne or the orientation	of the brace on th	no woh	Symbo	ol only indicates that	ROFLO PAR	P IIII
the member must b	e braced.	epici ille size, ij	pe or the orientation		ie web.	Symbo		SEAL	
10) Bearing symbols a structural design of	re only graphical representati f the truss to support the load	ons of a possibl s indicated	e bearing condition.	Bearing symbols	are not	consid	lered in the	28147	11111
		e maioatoa.					1111	\	
LOAD CASE(S) Stand	ard						Innin	A NOINEER C	ALL STREET
							1	WIRK K. MORM	in.
								an terminanter.	
								9/28/2021	·
Warning !—Verify des	ign parameters and read notes l	before use. This de	esign is based only upon	parameters shown, a	and is for	an indi	vidual building compone	ent to be installed and lo	aded

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CRE	EK 159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	M03	HALF HIP	2	2	lah Deference (entional)	# 28668
					8.430 s Feb 12 2021 MiTek li	ndustries, Inc. Thu Sep 30 14:12:28 2021 Page 1
		-0-10-8 3-3-8	1D:JROaQ 3 ₇ 7 ₇ 4	6-3-8	ууwаРт5н улы-лүзн?во —	pvJa_v3y9iTyvvqZrElaPjGaSSEXhjinyTR?f
		'0-10-8' 3-3-8	0-3-12	2-8-4	I	
		2	2x4			Scale = 1:36.1
	۱		3			
		9.00 12	B			
		3x4 // 11				
		2				
	-10		VV4			
	5-1	2-1-	4x6 =			
		g W1 W3	4x10 =	2	2x4	
			4 5	T2	6	
		0				
				W6		
	t		9.8			
		$10_{4x4} =$	2x4	4x4	7 =	
			2x4			
		3-3-8	3-7-4	6-3-8		
Plata Offecto (X X) [2:0	1 12 0 1 9] [4:0 7 4 Edga	3-3-8	0-3-12	2-8-4		
LOADING (nsf)		<u>, [5.0-2-4,0-2-0], [7.0-1-12,0-2-0]</u>				
TCLL (roof) 40.0	Plate Grip DOL	2-0-0 CSI. 1.00 TC 0.25	Vert(LL)	in (lo	oc) I/defl L/d 9 >999 480	PLATES GRIP MT20 244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.00 BC 0.34	Vert(CT)	-0.02	9 >999 360 7 p/2 p/2	
BCLL 0.0 * BCDI 10.0	Code IRC2018/TP	I2014 Matrix-SH	Wind(LL)	0.00	9 >999 240	Weight: 117 lb FT = 0%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP No BOT CHORD 2x6 SP No	p.2		TOP CHORD	Structura end vert	al wood sheathing direc	tly applied or 6-0-0 oc purlins, except
WEBS 2x4 SP No	D.3 *Except*		BOT CHORD	Rigid ce	iling directly applied or <i>'</i>	10-0-0 oc bracing.
VV4. 2X0 S	SP NU.2, VV5. 2X0 SP NU.2					
REACTIONS. (Ib/size) Max Horz	7=1033/Mechanical, 10=68 10=251(LC 12)	88/0-3-8 (min. 0-1-8)				
Max Grav	7=1166(LC 24), 10=852(LC	2)				
FORCES. (lb) - Max. Co	mp./Max. Ten All forces	250 (lb) or less except when shown.				
BOT CHORD 4-9=0/4/ BOT CHORD 9-10=0/1	/1, 4-5=-1843/0, 6-7=-407/0 1589, 8-9=0/1862, 7-8=0/18	, 2-10=-319/44 62				
WEBS 2-4=-142	2/394, 4-10=-1507/0, 5-7=-1	778/0, 5-8=-534/0				
NOTES- (14-15)						
 2-ply truss to be connected 	ected together with 10d (0.1 I as follows: 2x4 - 1 row at 0	31"x3") nails as follows: -9-0 oc, 2x6 - 2 rows staggered at ()-9-0 oc.			
Bottom chords connect	ted as follows: 2x6 - 2 rows	staggered at 0-9-0 oc.	00			
2) All loads are considered	ed equally applied to all plie	s, except if noted as front (F) or bac	ck (B) face in the L	OAD CAS	E(S) section. Ply to ply	
connections have been3) Unbalanced roof live log	n provided to distribute only oads have been considered	loads noted as (F) or (B), unless of for this design.	therwise indicated.			
4) Wind: ASCE 7-16; Vul	It=130mph (3-second gust)	Vasd=103mph; TCDL=5.0psf; BCD ed: Lumber DOL=1.60 plate grip Di	L=5.0psf; h=23ft; (Cat. II; Exp	B; Enclosed; MWFRS	
5) C-C wind load user de	fined.					
6) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C	=40.0 psf (roof LL: Lum DOI Ce=1.0; Cs=1.00; Ct=1.10	_=1.00 Plate DOL=1.00); Pt=20.0 p	st (Lum DOL=1.15	Plate DO	L=1.15); Is=1.0; Rough	AND
 This truss has been de non-concurrent with ot 	esigned for greater of min ro ther live loads	oof live load of 12.0 psf or 2.00 time	s flat roof load of 2	20.0 psf or	overhangs	WINDRTH CARO
8) Provide adequate drai	nage to prevent water pond	ing.	h anu athan live las		Inn	ROFESSION ATTE
10) * This truss has been de	n designed for a live load of	30.0psf on the bottom chord in all a	reas where a recta	angle 3-6-	0 tall by 1-0-0 wide will	EAL THE
fit between the bottor 11) Refer to girder(s) for	m chord and any other merr truss to truss connections.	bers.				28147
12) This truss is designed	d in accordance with the 20	18 International Residential Code s	ections R502.11.1	and R802	2.10.2 and referenced	
13) Load case(s) 1, 2, 3,	4, 5, 6, 7, 8, 9, 10, 11, 12, [.]	13, 14, 15, 16, 17, 18, 19, 20, 21, 22	2, 23, 24, 25, 26, 2	7, 28, 29,	30, 31, 32, 33, 34 📆	12 NOINEER S
has/have been modif 14) Graphical web bracin	ned. Building designer musting representation does not o	review loads to verify that they are lepict the size, type or the orientation	correct for the inte on of the brace on t	nded use the web. S	ot this truss. Symbol only indicates	Will K. MORMUN
that the member mus	only graphical representativ	ons of a possible bearing condition	Rearing symbols	are not co	nsidered in the	0/20/2021
structural design of th	he truss to support the load	s indicated.	Bearing Symbols a			9/28/2021
vertically. Applicability of	n parameters and read notes b design parameters and proper ir	erore use. This design is based only upon corporation of component is responsibilit	I parameters shown, a y of building designer	nd is for an - not truss	designer or truss engineer.	Bracing shown is for lateral support
of individual web members	only. Additional temporary bra	cing to ensure stability during constructio	n is the responsibility	of the erec	tor. Additional permanent b	pracing of the overall structure is the
responsibility of the buildin Plate Connected Wood Tru	ng designer. For general guidance uss Construction and BCSI 1-03	e regarding fabrication, quality control, st Guide to Good Practice for Handling, In	orage, delivery, erect istalling & Bracing o	ion and bra f Metal Pla	cing, consult ANSI/TPI 1 N te Connected Wood Trusses	ational Design Standard for Metal s from Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	IOLAR DRIVE SPRING LAKE, NC
21-5762-R01	M03	HALF HIP	2	2	Job Reference (optional)	# 28668
					9 420 a Eab 12 2021 MiTak Industrias Inc.	Thu Son 20 14:12:20 2021 Dogo 2

8.430 s Feb 12 2021 Millek Industries, Inc. Thu Sep 30 14:12:29 2021 Page 2 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-n6d1CXeRgcirXCWMGGTIMmoPS_ly?1icaBQGHDyYR?m

LOAD CASE(S)	
Uniform Loads (plf)	
Vert: 1-2=-60, 2-3=-60, 4-5=-60, 5-6=-280, 7-10=-20 Concentrated Loads (lb)	
Vert: 5=-620	
 Dead + Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) 	
Vert: 1-2=-100, 2-3=-100, 4-5=-100, 5-6=-320, 7-10=-20	
Vert: 5=-620	
3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00	
Vert: 1-2=-80, 2-3=-80, 4-5=-80, 5-6=-300, 7-10=-20	
Concentrated Loads (lb)	
4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (pif) Vert: 1-2=-50, 2-3=-50, 4-5=-50, 5-6=-270, 7-10=-20	
Concentrated Loads (lb)	
5) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Uniform Loads (plf)	
Concentrated Loads (lb)	
Vert: 5=-620 6) Dead + 0 6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1 60. Plate Increase=1 60.	
Uniform Loads (plf)	
Vert: 1-2=57, 2-3=40, 4-5=40, 5-6=-180, 7-10=-10 Horz: 1-2=-67, 2-3=-50, 3-4=-47, 4-5=-50, 2-10=-36	
Concentrated Loads (lb)	
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1.2=.3, 2.3=.43, 4.5=.43, 5.6=.263, 7.10=.20	
Horz: 1-2=-17, 2-3=23, 3-4=28, 4-5=23, 2-10=33	
Concentrated Loads (lb) Vert: 5=-620	
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Vert: 1-2=-1, 2-3=-13, 4-5=10, 5-6=-210, 7-10=-10	
Horz: 1-2=-9, 2-3=3, 3-4=9, 4-5=-20, 2-10=15	
Vert: 5=-620	
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)	
Vert: 1-2=5, 2-3=10, 4-5=26, 5-6=-194, 7-10=-10	
Horz: 1-2=-15, 2-3=-20, 3-4=-24, 4-5=-36, 2-10=-19 Concentrated Loads (lb)	
Vert: 5=-620 (//	
Uniform Loads (plf)	
Vert: 1-2=-28, 2-3=-33, 4-5=-10, 5-6=-230, 7-10=-20 Horz: 1-2=8, 2-3=13, 3-4=30, 4-5=-10, 2-10=25	
Concentrated Loads (lb)	
Vert: 5=-620 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Horz: 1-2=-15, 2-3=-10, 3-4=-3, 4-5=-26, 2-10=-20	
Concentrated Loads (lb)	
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=21, 2-3=26, 4-5=10, 5-6=-210, 7-10=-10	
Horz: 1-2=-31, 2-3=-36, 3-4=-41, 4-5=-20, 2-10=12	WHENTH CAR
Vert: 5=-620	SIND SEESSIA
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	In the Ma
Vert: 1-2=5, 2-3=10, 4-5=26, 5-6=-194, 7-10=-10	SEAL
Horz: 1-2=-15, 2-3=-20, 3-4=-26, 4-5=-36, 2-10=-17 Concentrated Loads (lb)	28147
Vert: 5=-620 '	
Uniform Loads (plf)	A WOINEER
Vert: 1-2=21, 2-3=26, 4-5=10, 5-6=-210, 7-10=-10 Horz: 1-2=-31, 2-3=-36, 3-4=-41, 4-5=-20, 2-10=12	MARK K. MORT
	1.

SEAL 28147 K. MO man mmm 9/28/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCHOLAR DRIVE	SPRING LAKE, NC
21-5762-R01	M03	HALF HIP	2	2	Job Reference (optional) #	28668

8.430 s Feb 12 2021 Mi Fek Industries, Inc. Thu Sep 30 14:12:29 2021 Page 3 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-n6d1CXeRgcirXCWMGGTIMmoPS_ly?1icaBQGHDyYR?m

LOAD CASE(S) Concentrated Loads (lb) Vert: 5=-620 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=10, 4-5=26, 5-6=-194, 7-10=-10 Horz: 1-2=-15, 2-3=-20, 3-4=-26, 4-5=-36, 2-10=-17 Concentrated Loads (lb) Vert: 5=-620 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=6, 4-5=-10, 5-6=-230, 7-10=-20 Horz: 1-2=-31, 2-3=-26, 3-4=-20, 4-5=-10, 2-10=23 Concentrated Loads (lb) Vert: 5=-620 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, 2-3=-10, 4-5=6, 5-6=-214, 7-10=-20 Horz: 1-2=-15, 2-3=-10, 3-4=-5, 4-5=-26, 2-10=-7 Concentrated Loads (lb) Vert: 5=-620 18) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-20, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 19) Dead: Lumber Increase=0.90. Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 20) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-56, 2-3=-60, 4-5=-42, 5-6=-262, 7-10=-20 Horz: 1-2=6, 2-3=10, 3-4=23, 4-5=-8, 2-10=19 Concentrated Loads (lb) Vert: 5=-620 21) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-5=-31, 5-6=-251, 7-10=-20 Horz: 1-2=-11, 2-3=-8, 3-4=-3, 4-5=-19, 2-10=-6 Concentrated Loads (lb) Vert: 5=-620 22) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-27, 2-3=-31, 4-5=-42, 5-6=-262, 7-10=-20 Horz: 1-2=-23, 2-3=-19, 3-4=-15, 4-5=-8, 2-10=17 Concentrated Loads (lb) Vert: 5=-620 23) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-39, 2-3=-42, 4-5=-31, 5-6=-251, 7-10=-20 Horz: 1-2=-11, 2-3=-8, 3-4=-4, 4-5=-19, 2-10=-5 Concentrated Loads (lb) Vert: 5=-620 24) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-86, 2-3=-90, 4-5=-72, 5-6=-292, 7-10=-20 Horz: 1-2=6, 2-3=10, 3-4=23, 4-5=-8, 2-10=19 Concentrated Loads (lb) Vert: 5=-620 25) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-69, 2-3=-72, 4-5=-61, 5-6=-281, 7-10=-20 SEAL 28147 Horz: 1-2=-11, 2-3=-8, 3-4=-3, 4-5=-19, 2-10=-6 Concentrated Loads (lb) Vert: 5=-620 26) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-57, 2-3=-61, 4-5=-72, 5-6=-292, 7-10=-20 Horz: 1-2=-23, 2-3=-19, 3-4=-15, 4-5=-8, 2-10=17 Concentrated Loads (lb) Vert: 5=-620 27) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-69, 2-3=-72, 4-5=-61, 5-6=-281, 7-10=-20 Horz: 1-2=-11, 2-3=-8, 3-4=-4, 4-5=-19, 2-10=-5 Concentrated Loads (lb) Vert: 5=-620 9/28/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	M03	HALF HIP	2	2	Job Reference (optional)	# 28668
					0.400 - Est 40.0004 MiTable studies las	Thu 0 00 44 40 00 0004 D

8.430 s Feb 12 2021 Millek Industries, Inc. Thu Sep 30 14:12:29 2021 Page 4 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-n6d1CXeRgcirXCWMGGTIMmoPS_ly?1icaBQGHDyYR?m

 28) Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-60, 5-6=-280, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-5=-26, 5-6=-246, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=16, 4-5=16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 	LOA	D CASE(S)
Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-60$, $5-6=-280$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=-26$, $4-5=-26$, $5-6=-246$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=16$, $4-5=16$, $2-10=16$ Concentrated Loads (lb) Vert: $5=-620$ 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=-6$, $4-5=6$, $5-6=-214$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=-16$, $4-5=-16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-100$, $2-3=-100$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $1-2=-80$, $2-3=-20$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	28) [Dead + Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15
Vert: $1-2=-20$, $2-3=-20$, $4-5=-60$, $5-6=-280$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=-26$, $4-5=-26$, $5-6=-246$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=16$, $4-5=16$, $2-10=16$ Concentrated Loads (lb) Vert: $5=-620$ 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=-6$, $4-5=6$, $5-6=-214$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=-16$, $4-5=-16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-100$, $2-3=-100$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $1-2=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$	ί	Uniform Loads (plf)
Concentrated Loads (lb) Vert: 5=-620 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-5=-26, 5-6=-246, 7-10=-10 Horz: 1-2=-16, 2-3=16, 3-4=16, 4-5=16, 2-10=16 Concentrated Loads (lb) Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620		Vert: 1-2=-20, 2-3=-20, 4-5=-60, 5-6=-280, 7-10=-20
Vert: 5=-620 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-5=-26, 5-6=-246, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=16, 4-5=16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620	(Concentrated Loads (lb)
 29) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-26, 4-5=-26, 5-6=-246, 7-10=-10 Horz: 1-2=-16, 2-3=16, 3-4=16, 4-5=16, 2-10=16 Concentrated Loads (lb) Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 		Vert: 5=-620
Uniform Loads (plf) Vert: $1-2=6$, $2-3=-26$, $4-5=-26$, $5-6=-246$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=16$, $4-5=16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=6$, $4-5=6$, $5-6=-214$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=-16$, $4-5=-16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-100$, $2-3=-100$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$	29)[Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60
Vert: $1-2=6$, $2-3=-26$, $4-5=-26$, $5-6=-246$, $7-10=-10$ Horz: $1-2=-16$, $2-3=16$, $3-4=16$, $4-5=16$, $2-10=16$ Concentrated Loads (lb) Vert: $5=-620$ 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=6$, $4-5=6$, $5-6=-214$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=-16$, $4-5=-16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-100$, $2-3=-100$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 4rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$	Ĺ	Uniform Loads (plf)
Horz: 1-2=-16, 2-3=16, 3-4=16, 4-5=16, 2-10=16 Concentrated Loads (lb) Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 4rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620		Vert: 1-Ӱ=6, 2-3=-26, 4-5=-26, 5-6=-246, 7-10=-10
Concentrated Loads (lb) Vert: $5=-620$ 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: $1-2=6$, $2-3=-6$, $4-5=6$, $5-6=-214$, $7-10=-10$ Horz: $1-2=-16$, $2-3=-16$, $3-4=-16$, $4-5=-16$, $2-10=-16$ Concentrated Loads (lb) Vert: $5=-620$ 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-100$, $2-3=-100$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-20$, $2-3=-20$, $4-5=-100$, $5-6=-320$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $1-2=-80$, $2-3=-80$, $4-5=-20$, $5-6=-240$, $7-10=-20$ Concentrated Loads (lb) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: $5=-620$ 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb) Vert: $5=-620$		Horz: 1-2=-16, 2-3=16, 3-4=16, 4-5=16, 2-10=16
Vert: 5=-620 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 4rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620	(Concentrated Loads (lb)
 30) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) 		Vert: 5=-620
Uniform Loads (plf) Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620	30) [Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10 Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620	ι	Uniform Loads (plf)
Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16 Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620		Vert: 1-2=6, 2-3=6, 4-5=6, 5-6=-214, 7-10=-10
Concentrated Loads (lb) Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb) Vert: 5=-620		Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-10=-16
Vert: 5=-620 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620	(Concentrated Loads (lb)
 31) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 		Vert: 5=-620
Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	31) ′	1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	ι	Uniform Loads (plf)
Concentrated Loads (lb) Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620		Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-6=-240, 7-10=-20
Vert: 5=-620 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	(Concentrated Loads (Ib)
 32) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 		Vert: 5=-620
Uniform Loads (plf) Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	32)2	2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)	l	Uniform Loads (plf)
Concentrated Loads (lb) Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)		Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-6=-320, 7-10=-20
Vert: 5=-620 33) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (vlf)	(Concentrated Loads (Ib)
 33) 37 Dead + 0.75 Roof Live (unbalanced): Lumber increase=1.00, Plate increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 		Vert: 5=-620
Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	33) 3	3rd Dead + 0.75 Root Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20 Concentrated Loads (lb) Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	,	
Vert: 5=-620 34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00		Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-6=-240, 7-10=-20
34) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00	,	Vorte E= 620
Liniform Loads (nif)	24)	VEIL 3020 (th Deed + 0.75 Deef Live (unbelanced): Lumber Increase=1.00, Diete Increase=1.00
	34) 4	Hin Deau + 0.75 Rooi Live (unbalanceu). Lumber micrease - 1.00, Flate micrease - 1.00
Vort 1 2 - 20 2 3 - 20 4 5 - 80 5 6 - 300 7 10 - 20	,	Vert: 1 2- 20, 2 3- 20, 4 5- 80, 5 6- 300, 7 10- 20
ven. 1-220, 2-320, 4-300, 3-0300, 7-1020 Concentrated Loads (lb)		ven. 1-220, 2-320, 4-300, 3-0300, 7-1020 Concentrated Loade (lb)
Vert: $5=.620$,	\/ert: 5=_620

Job	Truss	Truss Type	Qty	Ply	LOT	1111 AND	ERSON CREE	K 159 SCHOLAR DRIV	'E SPRING LAKE, NC
21-5762-R01	M04	Monopitch	6		1	. .	<i>(c b</i>	#	28668
					8.43	S Feb 12 2	e (optional) 2021 MiTek Ind	dustries, Inc. Thu Sep 30) 14:12:29 2021 Page 1
		₋ -0-10-8	ID:jROaQZCa7A> 3-3-8	r4yywa	PFSiTy	JIBf-n6d1	CXeRgcirXC	WMGGTIMmoQc_pu	?2_caBQGHDyYR?n
		0-10-8	3-3-8						
			2x4						Scale = 1:32.7
		Ι	3	4 1					
		9.00 12	A						
		3×4 //	71						
			wa						
		hu hu	$\langle \rangle$						
		ବ୍ W1							
		3	WV2						
				L;					
			<u> </u>	2					
			6	5					
		2x4	3x4 =						
		 	3-3-8						
Plate Offsets (X,Y) [2:0-	-1-12,0-1-8], [6:0-1-8,0-1-8]		3-3-6						
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.17	Vert(LL)	-0.00	6-7	>999	240	MT20	244/190
TCDL 10.0	Rep Stress Incr	YES WB 0.11	Horz(CT)	-0.01	6	n/a	n/a		
BCDL 10.0	Code IRC2018/TP	2014 Matrix-P						Weight: 31 lb	> FT = 0%
LUMBER-	0		BRACING-	Struct	turol we		hing directly	v applied or 2.2.9 a	o purling overat
BOT CHORD 2x4 SP No	.2			end v	erticals				c purmis, except
WEBS 2x4 SP No	.3		BOT CHORD	Rigid	ceiling	directly a	that Stabiliz	J-U-U oc bracing.	ross bracing
				be ir	nstalled	I during ti	uss erection	n, in accordance wi	th Stabilizer
REACTIONS. (lb/size)	6=127/Mechanical, 7=186/0)-3-8 (min. 0-1-8)		Insta	allation	guide.			
Max Horz Max Unlift	7=121(LC 9) 5=-152(LC 12)								
Max Grave	6=199(LC 20), 7=187(LC 2))							
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 2	50 (lb) or less except when shown.							
WEBS 2-6=-155	/366								
NOTES- (9-10)									
(envelope) gable end z	one and C-C Exterior(2E) z	cone; end vertical left exposed;C-C t	L=5.0pst; n=23ft; C for members and f	orces &	EXPB; & MWF	Enclosed RS for re	actions		
shown; Lumber DOL=1 2) TCLL · ASCE 7-16· Pr=	.60 plate grip DOL=1.60 20 0 psf (roof LL · Lum DOL	=1 15 Plate DOI =1 15). Pf=20.0 ps	sf (I um DOI =1 15	Plate [70I =1	15) [.] ls=1	0 [.] Rough		
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10			0.0			io, i tougii		
non-concurrent with oth	ner live loads.	of live load of 12.0 psi of 2.00 times		0.0 psi	on ove	ernangs			
 4) This truss has been de 5) * This truss has been de 	signed for a 10.0 psf bottor	n chord live load nonconcurrent with 0 Opsf on the bottom chord in all are	n any other live loa	ads. Iale 3-6	S-0 tall I	hv 1-0-0 v	wide will fit		
between the bottom ch	ord and any other members	S.		.g.o o o	, o taii .				
6) Refer to girder(s) for tru7) Provide mechanical col	nnection (by others) of trus	s to bearing plate capable of withsta	anding 100 lb uplifi	t at join	t(s) exc	cept (jt=lb) 6=152.	MUMINIAN	0
8) This truss is designed i	n accordance with the 201	3 International Residential Code see	ctions R502.11.1 a	and R80	02.10.2	and refe	renced	MATH CAROL	11111
9) Graphical web bracing	representation does not de	pict the size, type or the orientation	of the brace on th	e web.	Symbo	only ind	licates that	ROFESSION	Aller
10) Bearing symbols are of	aced. only graphical representation	ns of a possible bearing condition.	Bearing symbols a	are not	conside	ered in th	e	SEAL	
structural design of the	e truss to support the loads	indicated.	0.1					28147	1111
LOAD CASE(S) Standard							AIIII		
							inne	L NOINEER	D. Harris
							1	WINK K. MORM	ann.
								0/20/202	1
Warning !Verify design	narameters and read notes by	afore use. This design is based only upon	parameters shown a	nd is for	an indix	vidual build	ling compone	$\frac{9}{20}$	<u>I</u>

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

designer.
 Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
 LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(11-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R01	GABLE	1	1	Job Reference (optional)	# 28668
	·		ID:jROaQ	ZCa7AXr4	8.430 s Feb 12 2021 MiTek Industries, Inc. yywaPFSiTyJIBf-1rgR5cl5YNrZ6bi5Hf	Thu Sep 30 14:12:38 2021 Page 2 7sEggyqct7c6Twe46F6CyYR?c

NOTES- (16-17)

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

16) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 17) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159	SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	R02	Piggyback Base	2	1	Job Reference (optional)	# 28668
		ID:jR	OaQZCa	7AXr4yywa	8.430 s Feb 12 2021 MiTek Industries aPFSiTyJIBf-zEoBWInL4?5HLvsT	, Inc. Thu Sep 30 14:12:40 2021 Page 2 P49KJ5I9xPML4vwD6ObLA5yYR?b

NOTES- (12-13)

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R02A	PIGGYBACK BASE	3	1	Job Reference (optional)	# 28668
					8,430 s Feb 12 2021 MiTek Industries, Inc.	Thu Sep 30 14:12:41 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBf-RQMZjenzrID8z2RfzngZsIIKdpiapM0NK2K/XyYR?a

Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCHOL	AR DRIVE SPRING LAKE, NC
21-5762-R01	R03	PIGGYBACK BASE	5	1	Job Reference (optional)	# 28668

8.430 s Feb 12 2021 MITek Industries, Inc. Thu Sep 30 14:12:42 2021 Page 2 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-vcvxx_obccL?bC0sWVCoOWqW6D1tYqIWZi4SFzyYR?Z

LOAD CASE(S) Standard

9/28/2021

Job		Truss		Truss Type		Qty	Ply	LOT 1111 ANDERSON CRE	EK 159 SCHOLAR DRIVE	SPRING LAKE, NC
21-5762-R01		R03A		Piggyback Base		3	1		#	28668
						10:00-070-	7.4 1/2 4/2 4/2	300 Reference (optional) 8.430 s Feb 12 2021 MiTek Ir	ndustries, Inc. Thu Sep 30 1	4:12:43 2021 Page 1
		1	5-2-5	10-1-1	15-6-1	ID:jROaQ2Ca 21-6-6	/AXr4yywa	27-6-11	31-3-12	HJRIOMP?nPyYR?Y
		I	5-2-5	4-10-13	5-5-0	6-0-5	I	6-0-5	3-9-1 '	
				4x6 =		6x10 =				Scale = 1:65.1
				:	3	4				
]				1	т <u>г</u>]
			9.00 12							
			4x4 🥢			13				
			2 _{T1}					10x10 📎		
0-0			<u>A</u>		W5/			5 12		0-
10-01				\ I	v4 ⁴ / v	v4				10-0
	3x4	1	/W2//			We				
	ſ	-	7/	W3		A A A A A A A A A A A A A A A A A A A				
	v 13	V1 //	/				WZ	T4 14	6	
	5			B1			B2 8			
ſ	L		15	16	11 17 10	 0	8	5x8		~ ⁴
	2	4x6 =		4	x8 = 3x8 MT20HS	s=	2x4	II	2, /	1-
					4	4x4 =			0.8]	
					45.0.4	01.0.0		07.0.44		
			<u> </u>		15-6-1 5-5-0	+ <u>21-6-6</u> 6-0-5		<u> </u>	31-3-12	
Plate Offsets (X	(,Y) [3:0-	4-0,0-2	-0], [4:0-8-0,0-2-0],	[5:0-5-0,0-6-0]						
LOADING (psf) TCLL (roof)	20.0		SPACING-	2-0-0	CSI .	DEFL.	in (lo	oc) I/defl L/d	PLATES	GRIP
Snow (Pf)	20.0		Lumber DOL	1.15	BC 0.91	Vert(LL) Vert(CT)	-0.39 11-	12 >956 240 12 >545 180	MT20HS	244/190 187/143
BCLL	0.0 *		Rep Stress Incr Code IRC2018/TPI	YES 2014	WB 0.43 Matrix-SH	Horz(CT)	0.37	7 n/a n/a	Weight: 227 lb	FT = 0%
BCDL	10.0			2014					Weight 227 ib	11-070
TOP CHORD 2	2x4 SP No	.2 *Exce	ept*			BRACING- TOP CHORD	Structura	al wood sheathing direc	tly applied or 5-0-10 o	c purlins, except
BOT CHORD 2	73: 2x8 SP	No.2, 7	4: 2x10 SP 2400F	2.0E			end verti Rigid cei	cals.	10-0-0 oc bracing	
E	31: 2x4 SP	No.1	γpι			WEBS	1 Row at	t midpt 4-11, t	5-9, 2-12	
WEBS 2	2x4 SP No	.3					MiTek i	recommends that Stabil	lizers and required cro	ss bracing Stabilizer
	/n / · · · ·				0.4.0		Installa	tion guide.		Olubilizer
REACTIONS. ((ib/size) Max Horz 1	12=1242	(LC 13)	54/0-3-8 (min	. 0-1-8)					
1	Max Uplift [.] Max Grav [.]	12=-112 12=129((LC 12), 7=-159(LC)(LC 3) 7=1254(LC	: 13) 1)						
	May Car		. Tan All famore O	· /						
TOP CHORD	- Max. Cor 2-3=-124	np./iviax 4/283, 3	2. Ten All forces 2 -4=-939/272, 4-5=-	50 (ID) or less 1432/301, 5-1	except when shown. 3=-1821/288, 13-14=-	1992/285,				
	6-14=-20	38/255, 19/999	6-7=-672/131	1-16=-119/999	11-17=0/1030 10-1	7=0/1030				
	9-10=0/10	030, 8-9	=-129/1883, 6-8=-1	33/1870	,	0.40.405.4007				
WEBS	3-11=-61/	498, 4-	11=-325/114, 4-9=-	127/773, 5-9=	-1101/289, 5-8=0/298	, 2-12=-1254/207				
NOTES- (12-	13) roof live lo	ads hav	e been considered	for this design						
2) Wind: ASCE	7-16; Vult	=130mp	oh (3-second gust)	/asd=103mph	; TCDL=5.0psf; BCDL	_=5.0psf; h=23ft; 0	Cat. II; Exp	B; Enclosed; MWFRS		
(envelope) ga 26-4-6 to 31-	able end z 2-0 zone;0	one and C-C for r	I C-C Exterior(2E) 0 members and forces	-1-12 to 5-1-2 s & MWFRS fo	, Exterior(2R) 5-1-2 to or reactions shown; Lu	22-3-9, Interior(1 umber DOL=1.60) 22-3-9 to plate grip l	DOL=1.60		
3) TCLL: ASCE	7-16; Pr=:	20.0 pst ∝=1 0· 0	f (roof LL: Lum DOL	=1.15 Plate D	OL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DO	L=1.15); ls=1.0; Rough		
4) Provide adeq	uate drain	age to p	prevent water pondi	ng.					ANNUMBER CASHING	
5) All plates are6) This truss has	s been de	tes unle signed f	ess otherwise indication a 10.0 psf botton	ted. 1 chord live loa	ad nonconcurrent with	n any other live loa	ads.		MURTH CAHOLA	lun,
7) * This truss h	as been d	esigned	for a live load of 30	0.0psf on the b	oottom chord in all are	eas where a rectar	ngle 3-6-0	tall by 1-0-0 wide with fit	ROFESSPAR	
8) Refer to girde	er(s) for tru	iss to tri	uss connections.	, with DODE -	то.оры.	_		- Internet	SEAL	
 Bearing at joi bearing surfa 	int(s) 7 cor ice.	nsiders	parallel to grain valu	ue using ANSI	/TPI 1 angle to grain f	formula. Building	designer s	should verify capacity of	28147	
10) Provide med	chanical co	onnectio	on (by others) of true	ss to bearing p	plate capable of withst	tanding 100 lb upl	ift at joint(s) except (jt=lb) 12		Inn
, 7=159. 11) This truss is	designed	in acco	ordance with the 20 ²	8 Internationa	I Residential Code se	ections R502.11.1	and R802	2.10.2 and referenced	A WOINEER S	in the second second
standard AN 12) Graphical w	NSI/TPI 1. web bracing	1 repres	entation does not d	enict the size	type or the orientation	n of the brace on t	he web S	wmbol only indicates	WINK K. MORINI	<i>n</i> .
that the mer	mber must	be brac	ced.						0/20/2021	
13) Bearing syn	nbols are o esign of the	only gra e truss t	onical representatio o support the loads	ns ot a possib	le bearing condition. I	Bearing symbols a	are not cor	nsidered in the	9/28/2021	1.1
vertically. Appl	icability of c	paramet lesign na	ters and read notes be rameters and proper in	etore use. This d	esign is based only upon omponent is responsibility	parameters shown, a of building designer	nd is for an	individual building compon designer or truss engineer	ent to be installed and loa Bracing shown is for late	ded ral support
of individual we	b members of	only. Ad	ditional temporary brac	ing to ensure sta	bility during construction	is the responsibility	of the erect	or. Additional permanent b	pracing of the overall struc	ture is the
responsibility of Plate Connected	the building Wood Trus	designer	r. For general guidance uction and BCSI 1-03	e regarding fabrie Guide to Good I	cation, quality control, sto Practice for Handling. In	brage, delivery, erections and stalling & Bracing of the stalling of the stall	ion and brac f Metal Plat	cing, consult ANSI/TPI 1 N te Connected Wood Trusses	ational Design Standard j from Truss Plate Institut	<i>for Metal</i> e, 583

D'Onofrio Drive, Madison, WI 53719.

	Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-3/02-R01 RUSA Piggyback base 3 1 Job Reference (optional) # 286	21-5762-R01	R03A	Piggyback Base	3	1	Job Reference (optional)	# 28668

8.430 s Feb 12 2021 Millek Industries, Inc. Thu Sep 30 14:12:43 2021 Page 2 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-NpTK8JpDNwTsCMb24Cj1xjNfLdNKHJRfoMp?nPyYR?Y

LOAD CASE(S) Standard

Jop	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	IOLAR DRIVE	SPRING LAK
21-5762-R01	R03A	Piggyback Base	3	1	Job Reference (optional)	# 2	28668
					0 400 - Est 40 0004 MiTstyle lasteries has	Thu: 0 00 4	4.40.40.0004

9/28/2021

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R04	GABLE COMMON	1	1	Job Reference (optional)	# 28668
					8.430 s Feb 12 2021 MiTek Industries. Inc.	Thu Sep 30 14:12:45 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBfJBb4Z?qUuXjaSglRCdlV08S0lQ4blDlyFgl6rlyYR?W

14) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R07	GABLE	1	1	Job Reference (optional)	# 28668
					8 430 s Feb 12 2021 MiTek Industries Inc.	Thu Sep 30 14:12:47 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBf-Gajq_hskQ8zlhzupJ2nz5ZYSYEw5DArFj_nDwByYR?U

15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCHOLAR DF	RIVE SPRING LAKE, NC
21-5762-R01	R08	Monopitch Supported Gable	1	1	Job Reference (optional)	# 28668
		ID:jR0	DaQZCa7	AXr4yywal	8.430 s Feb 12 2021 MiTek Industries, Inc. Thu Sep PFSiTyJIBf-kmHDB1tMBS58J7T0tIJCen4d0eF	30 14:12:48 2021 Page 1 WyeMPxeXmSdyYR?1
		2-4-4			-	
		Z-+-+				
		2x4	 3			Scale = 1:21.7
		9.00 12				
		2x4				
		2 11				
		2x4				
		p 1				
		8	W2			
		Q W1				
		5				
		6 5	4			
		2x4 2x4 2	x4			
		I				
Plate Offsets (X,Y) [6:0-	-2-0,0-1-4]					

1 1410 0110010 (7.9.1)										
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 CSI. 1.15 TC 1.15 BC YES WB PI2014 Matr	0.29 0.27 0.07 ix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 0%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP	lo.2 lo.3 lo.3 lo.3			BRACING- TOP CHORD BOT CHORD	Struct end v Rigid MiTe be ir	tural wo erticals ceiling ek reco nstalleo	ood shea directly mmende	athing direct applied or 1 s that Stabil truss erectio	ly applied or 2-4-4 oc 0-0-0 oc bracing. izers and required cru	purlins, except oss bracing h Stabilizer

Installation guide.

NANANANANA BURN

28147

VOINE

K. MORY

9/28/2021

REACTIONS. (lb/size) 6=35/2-4-4 (min. 0-1-8), 4=35/2-4-4 (min. 0-1-8), 5=95/2-4-4 (min. 0-1-8) Max Horz 6=55(LC 12) Max Uplift6=-19(LC 10), 4=-29(LC 12), 5=-112(LC 12) Max Grav 6=108(LC 12), 4=41(LC 23), 5=120(LC 23)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11-12)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- and the provide standard ANSI/TPI 1.
 CAROUND ANSI/TPI 1.
 Graphical web bracing representation does not depict the size, type or the orientation of the brace.

- 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREE	K 159 SCHOLAR DRIVE SPRING LAKE, NC		
21-5762-R01	R09	Common Girder	1	2	Job Reference (optional)	# 28668		
		1-10-2	ID:jROaQZCa7AX	4yywaP ⊣	FSiTyJIBf-CzqbPNu_ymD?v	austries, inc. Thu Sep 30 14:12:49 2021 Page 1 wH2CRTqRA_dmv2RahwaYAIGK_3yYR?S		
		5x6 =	3-7-14 3-9-0			Scale = 1:82.8		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2x4 \\ 2 \\ 2 \\ 3 \\ 3x \\ 3x \\ 3x \\ 3x \\ 3x \\ $	4 √ <u>9</u> 0 <u>1</u> -7 <u>v6</u> 5 ×4 □				
		HTU26	HTU26 HTU26					
Plate Offsets (X,Y) [2	0-3-0,0-1-8], [4:0-1-0,0-1-8],	<u> 5-0-</u> 5-6- [6:0-4-12,0-4-12]	-0 9-3-0 -0 3-9-0	-1				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 CSI. 1.15 TC 0.41 1.15 BC 0.92 NO WB 0.77 I2014 Matrix-SH	DEFL. Vert(LL) · Vert(CT) · Horz(CT)	in (l 0.09 0.16 0.00	oc) I/defl L/d 6-7 >999 240 6-7 >664 180 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 227 lb FT = 0%		
BCDL 10.0 Code in C2010 (11 ± 014) Intervent LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 WEBS BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. WEBS 2x4 SP No.3 BOT CHORD 7=3114/0-3-8 (min. 0-1-15), 5=3172/0-3-8 (min. 0-1-15) Max Horz 7=-272(LC 11) Max Uplift7=-529(LC 11), 5=-259(LC 7) Max Grav 7=3284(LC 3), 5=3309(LC 3) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. Imatrixed in the shown.								
BOT CHORD 2-3=-22 BOT CHORD 7-8=-20 WEBS 2-6=-72 NOTES- (12-13) 1) 2-ply truss to be conr	13/3472, 3-4=-2360/212, 4-5 12/347, 8-9=-202/347, 9-10= 11/3728, 3-6=-336/390, 2-7= nected together with 10d (0.1	2709/227 -202/347, 10-11=-202/347, 6-11=-20 -1865/410, 4-6=-195/1569 31"x3") nails as follows:)2/347					
 Bottom chords connected as f 2) All loads are conside connections have bee 3) Unbalanced roof live 4) Wind: ASCE 7-16; Vi (envelope) gable end 5) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.; 6) This truss has been 7) * This truss has been of 8) Provide mechanical of 5=259. 9) This truss is designed standard ANSI/TPI 1. 10) Use Simpson Strong at 1-8-12 from the le 11) Fill all nail holes whi 12) Graphical web braci that the member mu 13) Bearing symbols are structural design of 	cted as follows: 2x4 - 1 row at 0-9-0 (red equally applied to all plie en provided to distribute only loads have been considered uit=130mph (3-second gust) zone; end vertical right expr =20.0 psf (roof LL: Lum DO Ce=1.0; Cs=1.00; Ct=1.10 lesigned for a 10.0 psf botto designed for a live load of 3 shord and any other member connection (by others) of trus d in accordance with the 201 g-Tie HTU26 (20-10d Girder eff end to 7-8-12 to connect to ere hanger is in contact with ng representation does not of st be braced.	staggered at 0-6-0 oc. bc. s, except if noted as front (F) or back loads noted as (F) or (B), unless of for this design. Vasd=103mph; TCDL=5.0psf; BCDI bsed; Lumber DOL=1.60 plate grip D _=1.15 Plate DOL=1.15); Pf=20.0 ps m chord live load nonconcurrent with 0.0psf on the bottom chord in all are s, with BCDL = 10.0psf. s to bearing plate capable of withsta 8 International Residential Code sec 11-10dx1 1/2 Truss, Single Ply Girc russ(es) R03 (1 ply 2x4 SP) to back lumber. lepict the size, type or the orientation ons of a possible bearing condition. Is s indicated.	k (B) face in the LC herwise indicated. L=5.0psf; h=23ft; C DOL=1.60 of (Lum DOL=1.15 I an any other live load anding 100 Ib uplift ctions R502.11.1 ar der) or equivalent s face of bottom cho n of the brace on th Bearing symbols ar	AD CAS at. II; Ex Plate DC Is. Jle 3-6-C at joint(s nd R802 paced a rd. e web. : e not co	SE(S) section. Ply to ply p B; Enclosed; MWFRS DL=1.15); Is=1.0; Rough 0 tall by 1-0-0 wide will fit s) except (jt=lb) 7=529 .10.2 and referenced t 2-0-0 oc max. starting Symbol only indicates	SEAL 28147 9/28/2021		

JOD HUSS	Truss Type	Qty	y Piy	у	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01 R09	Common Girder	1		2	Job Reference (optional)	# 28668

ID:jROaQZCa7AXr4yywaPFSiTyJIBf-g9Ozcjucj3LsYRdO_ALgjC9xfRmpQNqhPy0tXVyYR?R

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 6=-1392(B) 9=-1392(B) 10=-1392(B) 12=-1392(B)

Job	Truss	Truss Type	Q	ty F	Ply	LOT 1111 ANDERSON CREEP	K 159 SCHOLAR DRIVE	SPRING LAKE, NC
21-5762-R01	R10	Flat Girder	1		2	lob Reference (ontional)	# .	28668
				0=070=	74.144	8.430 s Feb 12 2021 MiTek Ind	ustries, Inc. Thu Sep 30 1	4:12:53 2021 Page 1
2-2-6	4-1-3 6-0-1	7-10-15 9-7-4 11-3-	וD:jRi אן: 12-11-13	14-8-1	7 AXr4yy 16	-8-13 18-7-13	20-6-12 22-7-8	ais85wEX7qyYR?O
2-2-6	1-10-14 1-10-14	I-10-14 ¹ 1-8-5 ¹ 1-8-5	5 1-8-5	1-8-5	2-	0-12 1-11-0	1-11-0 2-0-12	I
								Scale = 1:37.5
	2x4	$4x4 \equiv$						
5x8 = 2x4	4x12 = 4x12	1T20HS= 4x4 =	2x4 4x4 =	_	4x4 =	2x4 4x12 =	= 2x4	5x8 =
1 2	3 4 <u>≀</u>	5 6 7	8 9		10 T2	11 12	13	14
		╘┙╱┇┫╴──╱Ҩ┫╲──						F I
F. W1 W2 W3	W4 W3 W4 W3	XV4 W3 XV5 W5	W3 W5	W5	W3 (W6 W3 W7 W3	W7 W3 W7	2-12
		B1		\rightarrow	₩			
25 24	23 22	21 26	²⁰ 27	28 ¹	19	29 ¹⁸ 30 ¹⁷	31 ¹⁶ 32	
3x4 = 8x12 MT20H	HS= 3x8 5x10 =	7x6 = LUS26	4x8 =	10x12 I	MT20HS:	= 5x10 = 3x6	8x12 MT20HS=	4x6
HTU26	LUS26 LUS26	LUS26	LUS26	LUS26	6	LUS26 HTU26	HTU28 HTU28	
LUS24	LUS24					LUS24	LUS24	
2-2-6	<u>4-1-3 6-0-1</u> 1-10-14 1-10-14	7-10-15 <u>11-3-8</u> I-10-14 3-4-9	14-8-7	1	- <u> 16</u> 2-	<u>-8-13 18-7-13 </u> 0-12 1-11-0	<u>20-6-12</u> <u>22-7-8</u> 1-11-0 2-0-12	
Plate Offsets (X,Y) [1:E	Edge,0-2-4], [3:0-3-4,0-1-12], [6:0-1-12,0-2-0], [12:0-6-0,0)-1-8], [14:Edge,0-2	2-0], [16:	:0-3-4,0-	-4-0], [17:0-4-4,0-1-8], [18	3:0-2-12,0-2-8], [19:0-	-6-0,Edge],
	.0-3-0,0-3-0], [22.0-3-0,0-2-	0], [23.0-3-0,0-1-0], [24.0-4-12	2,0-4-0					
TCLL (roof) 20.0	SPACING- Plate Grin DOI	2-0-0 CSI. 1 15 TC 0.96	S DEFI	L. LL) _C	in (lo วาวา	oc) I/defl L/d	PLATES MT20	GRIP 244/190
Snow (Pf) 20.0	Lumber DOL	1.15 BC 0.96	S Vert	CT) -0).71	20 >376 180	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr Code IRC2018/TF	NO WB 0.94 VI2014 Matrix-SH	Horz	(CT) C	0.12	15 n/a n/a	Weight: 354 lb	FT = 0%
BCDL 10.0								
TOP CHORD 2x6 SP No	o.2 *Except*		TOP CHO	RD S	Structura	al wood sheathing directly	y applied or 1-5-14 oc	purlins, except
	P DSS				end verti	icals.		
WEBS 2x4 SP No	p.3 *Except*		BOTICITO		Ngiù cei	ining directly applied of 10	-0-0 oc bracing.	
W1: 2x4 S	SP No.2, W2,W4,W6,W7: 2	x4 SP No.1						
REACTIONS. (lb/size)	25=7514/0-3-8 (min. 0-1-9), 15=8695/0-3-8 (min. 0-1-1	3)					
Max Grav	25=7826(LC 3), 15=8962(I	.03)						
FORCES. (lb) - Max. Co	mp./Max. Ten All forces	250 (lb) or less except when s	hown.	0				
6-7=-254	409/0, 7-8=-28241/0, 8-9=-2	28241/0, 9-10=-26100/0, 10-1	1=-21712/0,	Ο,				
80T CHORD 23-24=0	21712/0, 12-13=-8809/0, 13 /15920_22-23=0/15920_21	-14=-8809/0, 14-15=-7863/0 -22=0/25409 21-26=0/27025	20-26=0/27025					
20-27=0	/27342, 27-28=0/27342, 19	-28=0/27342, 19-29=0/25892	, 18-29=0/25892,					
18-30=0/ WEBS 1-24=0/1	/16350, 17-30=0/16350, 17 10803, 3-24=-9849/0, 3-23=	-31=0/16350, 16-31=0/16350 -134/1612, 3-22=0/6951, 6-22	, 16-32=0/271, 15- 2=-5759/0, 6-21=0	32=0/27 /3054.	1			
7-21=-22	290/0, 7-20=0/1724, 8-20=-	535/0, 9-20=0/1274, 9-19=-18	336/0, 10-19=0/271	7,				
10-100	5415/0, 12-16-0/7165, 12-1	7107/1740, 12-1010077/0	0, 14-10-0/11406					
NOTES- (18-19)	acted together with 10d (0.1	31"x3") nails as follows:						
Top chords connected	as follows: 2x4 - 1 row at ()-9-0 oc, 2x6 - 2 rows staggere	ed at 0-7-0 oc.					
Bottom chords connec Webs connected as fo	cted as follows: 2x8 - 2 rows blows: 2x4 - 1 row at 0-9-0	s staggered at 0-7-0 oc.						
2) All loads are considered	ed equally applied to all plie	s, except if noted as front (F)	or back (B) face in	the LOA	AD CAS	E(S) section. Ply to ply	MALINI MILLING	
3) Wind: ASCE 7-16; Vul	n provided to distribute only (t=130mph (3-second qust)	Vioads noted as (F) or (B), un Vasd=103mph; TCDL=5.0psf	; BCDL=5.0psf; h=	cated. 23ft: Ca	it. II; Exp	B; Enclosed; MWFR	RTH LAROL	11,
(envelope) gable end z	zone; Lumber DOL=1.60 pl	ate grip DOL=1.60					POFESSION	in the second second
4) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C	=20.0 psf (roof LL: Lum DO Ce=1.0; Cs=1.00; Ct=1.10	L=1.15 Plate DOL=1.15); Pt=2	20.0 pst (Lum DOL	=1.15 P	late DO	L=1.15); IS=1.0; Rough		~
5) Provide adequate drai	nage to prevent water pond	ling.					SEAL 28147	
 7) This truss has been de 	ates unless otherwise indic esigned for a 10.0 psf botto	ત્રાહ્ય. m chord live load nonconcurre	ent with any other I	ive loads	s.	11111	2014/	
8) * This truss has been of	designed for a live load of 3	0.0psf on the bottom chord in	all areas where a	rectangl	le 3-6-0	tall by 1-0-0 wide with fit	NOWER .	Inn
9) Bearing at joint(s) 25,	15 considers parallel to gra	ه. in value using ANSI/TPI 1 ano	gle to grain formula	. Buildii	ng desig	gner should verify	AAK	IL.
capacity of bearing sui	rface.	18 International Residential C	ade sections REA	2 11 1 0	nd R800	2 10 2 and referenced	Thursday Month	
standard ANSI/TPI 1.				i i . i di			9/28/2021	
Athing the Marile Olaria	a nonomotons and nood t 1	ofono noo. This design is here 4	1xx xxm on monomot1			individual building agence		

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	IOLAR DRIVE SPRING LAKE, NC
21-5762-R01	R10	Flat Girder	1	2	Job Reference (optional)	# 28668
					8 430 s Feb 12 2021 MiTek Industries Inc.	Thu Sep 30 14:12:53 2021 Page 2

```
ID:jROaQZCa7AXr4yywaPFSiTyJIBf-4k46EkxV0_kRPuMzgluNLqnKJfnydis85wEX7qyYR?O
```

NOTES- (18-19)

11) Load case (s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 2-0-12 from the left end to connect truss(es) R05 (1 ply 2x4 SP) to

front face of bottom chord, skewed 0.0 deg. to the right, sloping 0.0 deg. down.
13) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 4-0-12 from the left end to 16-0-12 to connect truss(es) R05 (1 ply 2x4 SP) to front face of bottom chord.

14) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 18-0-12 from the left end to connect truss(es) R03A (1 ply 2x4 SP) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.

15) Use Simpson Strong-Tie HTU28 (26-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 19-6-4 from the left end to 21-6-4 to connect truss(es) R03A (1 ply 2x4 SP) to front face of bottom chord.

16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 14-3-0 oc max. starting at 2-0-12 from the left end to 20-3-12 to connect truss(es) J02 (1 ply 2x4 SP) to back face of bottom chord.

17) Fill all nail holes where hanger is in contact with lumber.

18) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced. 19) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

LOAD CASE(S)

loads indicated.

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-14=-60, 15-25=-20 Concentrated Loads (lb) Vert: 24=-1182(F=-968, B=-214) 23=-1182(F=-968, B=-214) 22=-968(F) 6=-720 21=-968(F) 8=-720 10=-720 16=-214(B) 26=-968(F) 27=-968(F) 28=-968(F) 29=-968(F) 29=-968(F) 20=-968(F) 30=-1436(F=-1222, B=-214) 31=-1222(F) 32=-1222(F) 2) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf) Vert: 1-14=-60, 15-25=-20 Concentrated Loads (lb) Vert: 24=-1182(F=-968, B=-214) 23=-1182(F=-968, B=-214) 22=-968(F) 6=-720 21=-968(F) 8=-720 10=-720 16=-214(B) 26=-968(F) 27=-968(F) 28=-968(F) 29=-968(F) 29=-968(F) 29=-968(F) 20=-968(F) 30=-1436(F=-1222, B=-214) 31=-1222(F) 32=-1222(F) 3) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-14=-50, 15-25=-20 Concentrated Loads (lb) Vert: 24=-1250(F=-1064, B=-186) 23=-1250(F=-1064, B=-186) 22=-1064(F) 6=-720 21=-1064(F) 8=-720 10=-720 16=-186(B) 26=-1064(F) 27=-1064(F) 28=-1064(F) 29=-1064(F) 30=-1456(F=-1270, B=-186) 31=-1270(F) 32=-1271(F) 4) Dead + 0.75 Snow (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-14=-50, 15-25=-20 Concentrated Loads (lb) Vert: 24=-1250(F=-1064, B=-186) 23=-1250(F=-1064, B=-186) 22=-1064(F) 6=-720 21=-1064(F) 8=-720 10=-720 16=-186(B) 26=-1064(F) 27=-1064(F) 28=-1064(F) 29=-1064(F) 30=-1456(F=-1270, B=-186) 31=-1270(F) 32=-1271(F) 5) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-14=-20, 15-25=-40 Concentrated Loads (lb) Vert: 24=-809(F=-701, B=-108) 23=-809(F=-701, B=-108) 22=-701(F) 6=-720 21=-701(F) 8=-720 10=-720 16=-108(B) 26=-701(F) 27=-701(F) 28=-701(F) 29=-701(F) 30=-995(F=-887, B=-108) 31=-887(F) 32=-888(F) 6) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-14=26, 15-25=-10 Concentrated Loads (lb) Vert: 24=216(F=108, B=108) 23=216(F=108, B=108) 22=108(F) 6=-720 21=108(F) 8=-720 10=-720 16=108(B) 26=108(F) 27=108(F) 28=108(F) 29=108(F) 30=229(F=122, B=108) 31=122(F) 32=122(F) 7) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-14=26, 15-25=-10 Concentrated Loads (lb) Vert: 24=216(F=108, B=108) 23=216(F=108, B=108) 22=108(F) 6=-720 21=108(F) 8=-720 10=-720 16=108(B) 26=108(F) 27=108(F) 28=108(F) 29=108(F) 30=229(F=122, B=108) 31=122(F) 32=122(F) 8) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-14=6, 15-25=-20 Concentrated Loads (lb) SEAL 28147 Vert: 24=236(F=118, B=118) 23=236(F=118, B=118) 22=118(F) 6=-720 21=118(F) 8=-720 10=-720 16=118(B) 26=118(F) 27=118(F) 28=118(F) 29=118(F) 30=249(F=132, B=118) 31=132(F) 32=131(F) 9) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-14=6, 15-25=-20 Concentrated Loads (lb) Vert: 24=236(F=118, B=118) 23=236(F=118, B=118) 22=118(F) 6=-720 21=118(F) 8=-720 10=-720 16=118(B) 26=118(F) 27=118(F) 28=118(F) 29=118(F) 32=249(F=132, B=118) 31=132(F) 32=131(F) 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-14=26, 15-25=-10 Concentrated Loads (lb) Vert: 24=216(F=108, B=108) 23=216(F=108, B=108) 22=108(F) 6=-720 21=108(F) 8=-720 10=-720 16=108(B) 26=108(F) 27=108(F) 28=108(F) 29=108(F) 30=229(F=122, B=108) 31=122(F) 32=122(F) 9/28/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159	SCHOLAR DRIVE SPRING LAKE, NC
1-5762-R01	R10	Flat Girder	1	2	lob Deference (anti1)	# 28668
					8.430 s Feb 12 2021 MiTek Industries	, Inc. Thu Sep 30 14:12:54 2021 Page 3
			ID:jROaQZCa	a/AXr4yyw	/aPFSiTyJIBf-ZweUS4x7nlsI12x9	D0Pct2KV337BM96HKa_5gHyYR?
OAD CASE(S)	ERS Wind (Pos Internal	2nd Parallel: Lumber Increase=1.60 Pi	ate Increase=1.60			
Uniform Loads	plf)					
Vert: 1- Concentrated L	14=26, 15-25=-10 bads (lb)					
Vert: 24	=216(F=108, B=108) 23=	=216(F=108, B=108) 22=108(F) 6=-720 2	21=108(F) 8=-720 10	=-720 16=	=108(B) 26=108(F) 27=108(F) 2	28=108(F) 29=108(F)
2) Dead + 0.6 MW	FRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Pl	ate Increase=1.60			
Uniform Loads	plf) 14=26 15-25=-10					
Concentrated L	pads (lb)			700.40		
30=229	(F=122, B=108) 31=122(F) 32=122(F)	21=108(F) 8=-720 10	=-720 16=	=108(B) 20=108(F) 27=108(F) 2	28=108(F) 29=108(F)
3) Dead + 0.6 MW	FRS Wind (Pos. Internal	4th Parallel: Lumber Increase=1.60, Pla	ate Increase=1.60			
Vert: 1-	14=26, 15-25=-10					
Concentrated Lo Vert: 24	oads (lb) =216(F=108. B=108) 23=	216(F=108, B=108) 22=108(F) 6=-720	21=108(F) 8=-720 10-	=-720 16=	=108(B) 26=108(F) 27=108(F) 2	28=108(F) 29=108(F)
30=229	(F=122, B=108) 31=122(F) 32=122(F)				
4) Dead + 0.6 MW Uniform Loads (PRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Pla	ate Increase=1.60			
Vert: 1-	14=6, 15-25=-20 pads (lb)					
Vert: 24	=236(F=118, B=118) 23=	236(F=118, B=118) 22=118(F) 6=-720	21=118(F) 8=-720 10	=-720 16=	=118(B) 26=118(F) 27=118(F) 2	28=118(F) 29=118(F)
30=249 5) Dead + 0.6 MW	(F=132, B=118) 31=132(FRS Wind (Neg. Internal	F) 32=131(F)) 2nd Parallel: Lumber Increase=1.60. P	late Increase=1.60			
Uniform Loads	plf)	,				
Concentrated L	14=6, 15-25=-20 bads (lb)					
Vert: 24	=236(F=118, B=118) 23= /E=132_B=118) 31=132/	236(F=118, B=118) 22=118(F) 6=-720 2	21=118(F) 8=-720 10	=-720 16=	=118(B) 26=118(F) 27=118(F) 2	28=118(F) 29=118(F)
6) Dead + Uninhal	bitable Attic Storage: Lun	ber Increase=0.90, Plate Increase=0.90	Plt. metal=0.90			
Uniform Loads	plf) 14=-20_15-25=-20					
Concentrated L	pads (lb)			~ ~ ~ ~		
Vert: 24 30=-974	=-868(F=-767, B=-101)2 (F=-873, B=-101)31=-8	3=-868(F=-767, B=-101) 22=-767(F) 6=· 73(F) 32=-873(F)	-/20 21=-/6/(F) 8=-/	20 10=-72	20 16=-101(B) 26=-767(F) 27=-	-/6/(F) 28=-/6/(F) 29=-/6/(F)
7) Dead + 0.75 Sn	ow (bal.) + 0.75(0.6 MWI	RS Wind (Neg. Int) Left): Lumber Increa	ase=1.60, Plate Increa	ase=1.60		
Vert: 1-	pii) 14=-31, 15-25=-20					
Concentrated Lo	oads (lb) =110(E=32_B=78) 23=1 [.]	0(F=32 B=78) 22=32(F) 6=-720 21=32	(F) 8=-720 10=-720 1	6=78(B) 2	26=32(F) 27=32(F) 28=32(F) 20	9=32(F) 30=104(F=26 B=78)
31=26(F	F) 32=26(F)		(1)0-12010-1201	0-10(B)2	-	5-02(1)00-104(1-20, B-70)
 Dead + 0.75 Sn Uniform Loads (ow (bal.) + 0.75(0.6 MWI ˈɒlf)	FRS Wind (Neg. Int) Right): Lumber Incr	ease=1.60, Plate Incr	ease=1.6	0	
Vert: 1-	14=-31, 15-25=-20					
Vert: 24	=110(F=32, B=78) 23=1 ⁻	0(F=32, B=78) 22=32(F) 6=-720 21=32	(F) 8=-720 10=-720 1	6=78(B) 2	26=32(F) 27=32(F) 28=32(F) 29	9=32(F) 30=104(F=26, B=78)
31=26(F 9) Dead + 0 75 Sn	⁻) 32=26(F) ow (bal.) + 0.75(0.6 MWI	RS Wind (Neg. Int) 1st Parallel): Lumbe	er Increase=1.60. Plat	e Increas	e=1 60	
Uniform Loads	plf)	tto wind (neg. int) ist i aranci). Europe	1100,110	e mereas	6-1.00	
Vert: 1- Concentrated L	14=-31, 15-25=-20 bads (lb)					
Vert: 24	=110(F=32, B=78) 23=1	0(F=32, B=78) 22=32(F) 6=-720 21=32	(F) 8=-720 10=-720 1	6=78(B) 2	26=32(F) 27=32(F)	
20–32(r 20) Dead + 0.75 Sn	ow (bal.) + 0.75(0.6 MWI	FRS Wind (Neg. Int) 2nd Parallel): Lumb	er Increase=1.60, Pla	ite Increas	se=1.60	
Uniform Loads	plf) 14=-31_15-25=-20					
Concentrated L	pads (lb)					
Vert: 24 28=32(F	=110(F=32, B=78) 23=1 [.] -) 29=32(F) 30=104(F=26	0(F=32, B=78) 22=32(F) 6=-720 21=32 B=78) 31=26(F) 32=26(F)	(F) 8=-720 10=-720 1	6=78(B) 2	26=32(F) 27=32(F)	
21) Dead + 0.75 Ro	of Live (bal.) + 0.75(0.6 I	/WFRS Wind (Neg. Int) Left): Lumber In	crease=1.60, Plate Ir	crease=1	.60	
Uniform Loads	pit) 14=-31, 15-25=-20					
Concentrated Lo	bads (lb)	D/E-22 P-78) 22-22/E) 6- 720 21-22	(E) 9- 720 10- 720 1	6-79(D) 0	06-22(E) 27-22(E)	MINIMUM
28=32(F	F) 29=32(F) 30=104(F=26	6, B=78) 31=26(F) 32=26(F)	(F) 8720 10720 1	0-76(В) 2	0-32(F) 21-32(F)	H CARO
2) Dead + 0.75 Ro Uniform Loads	of Live (bal.) + 0.75(0.6 l plf)	/WFRS Wind (Neg. Int) Right): Lumber	Increase=1.60, Plate	Increase=	=1.60	OFESSION VI III
Vert: 1-	14=-31, 15-25=-20				in a	1 Ali
Concentrated Lo Vert: 24	bads (Ib) =110(F=32, B=78) 23=1 [.]	0(F=32, B=78) 22=32(F) 6=-720 21=32	(F) 8=-720 10=-720 1	6=78(B) 2	26=32(F) 27=32(F)	SEAL
28=32(F	$(12)^{-1}$ (F) $(12)^{-1}$ (6, B=78) 31=26(F) 32=26(F)	mber Increase=1.60	Plata Inc.	rease=1.60	2014/
Uniform Loads	or Live (bal.) + 0.75(0.6 ľ [plf)	ווע (Neg. Int) ISt Parallel): Lu	mper increase=1.60,	riale Inci	ease-1.00	NOINEER .
Vert: 1-	14=-31, 15-25=-20				ARK ARK	ACARININ
					nini,	A. Mount

9/28/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSO	ON CREEK 159 SCHOLAR DRIVE SPRING LAKE. NC
21-5762-R01	R10	Flat Girder	1	· •		# 78668
				2	Job Reference (op 8.430 s Feb 12 2021	π ΔΟυυο MiTek Industries, Inc. Thu Sep 30 14:12:54 2021 Page
			ID:jROaQZCa	7AXr4yyw	aPFSiTyJIBf-ZweL	IS4x7nlsI12x9D0Pct2KV337BM96HKa_5gHyYŘ?
LOAD CASE(S)	<i></i> .					
Concentrated Loads	(lb) (F=32, B=78) 23=110(F=32	B=78) 22=32(F) 6=-720 21=32(F) 8=-	-720 10=-720 16	=78(B) 2	6=32(F) 27=32(F) 28=32(F) 29=32(F) 30=104(F=26, B=78)
31=26(F) 32=	26(F)			- · · (2) 2) = 0 = (1) = 0 = (1) = 0 = (1) = (1) = (1)
24) Dead + 0.75 Roof Liv Uniform Loads (plf)	e (bal.) + 0.75(0.6 MWFRS	Wind (Neg. Int) 2nd Parallel): Lumber	Increase=1.60,	Plate Inc	rease=1.60	
Vert: 1-14=-3	1, 15-25=-20					
Vert: 24=110	(F=32, B=78) 23=110(F=32	, B=78) 22=32(F) 6=-720 21=32(F) 8=-	-720 10=-720 16	=78(B) 2	6=32(F) 27=32(F) 28=32(F) 29=32(F) 30=104(F=26, B=78)
31=26(F) 32= 25) Dead + Minimum Sno	26(F)	Plate Increase=1 15				
Uniform Loads (plf)						
Vert: 1-14=-6 Concentrated Loads	0, 15-25=-20 (lb)					
Vert: 24=-118	2(F=-968, B=-214) 23=-118	32(F=-968, B=-214) 22=-968(F) 6=-720	0 21=-968(F) 8=-	720 10=	-720 16=-214(B)	26=-968(F) 27=-968(F) 28=-968(F)
29=-968(F) 3 26) Dead + 0.6 MWFRS	U=-1436(F=-1222, B=-214) Wind Min. Left: Lumber Incr	31=-1222(F) 32=-1222(F) rease=0.90, Plate Increase=0.90 Plt. n	netal=0.90			
Uniform Loads (plf)	0 15 25- 10					
Concentrated Loads	(lb)					
Vert: 24=-595 30=-722(F=-6	6(F=-484, B=-111) 23=-595(11 B=-111) 31=-611(F) 32	F=-484, B=-111) 22=-484(F) 6=-720 2 =-611(F)	1=-484(F) 8=-72	20 10=-72	20 16=-111(B) 26	=-484(F) 27=-484(F) 28=-484(F) 29=-484(F)
27) Dead + 0.6 MWFRS	Wind Min. Right: Lumber In	crease=0.90, Plate Increase=0.90 Plt.	metal=0.90			
Uniform Loads (pif) Vert: 1-14=-1	0, 15-25=-10					
Concentrated Loads	(lb) (E- 484 B- 111) 23- 505(E- 484 B- 111) 22- 484/E) 6- 720 2	1- 484/E) 8- 72	0 10- 72	00 16- 111(B) 26	- 484(E) 27- 484(E) 28- 484(E) 20- 484(E)
30=-722(F=-6	511, B=-111) 31=-611(F) 32	=-611(F)	1+0+(1)072	.0 1072	10	
28) Reversal: Dead + 0.6 Uniform Loads (plf)	MWFRS Wind (Pos. Intern	al) Left: Lumber Increase=1.60, Plate	Increase=1.60			
Vert: 1-14=26	i, 15-25=-10					
Vert: 24=-650	(ID))(F=-482, B=-168) 23=-650(F=-482, B=-168) 22=-482(F) 6=-720 2	1=-482(F) 8=-72	20 10=-72	20 16=-168(B) 26	=-482(F) 27=-482(F) 28=-482(F) 29=-482(F)
30=-764(F=-5	96, B=-168) 31=-596(F) 32	=-596(F)	- Incrosco-1 60			
Uniform Loads (plf)	WWW INS WIND (FOS. Intern	al) Night. Lumber increase - 1.00, Flat	e increase-1.00			
Vert: 1-14=26 Concentrated Loads	6, 15-25=-10 (lb)					
Vert: 24=-650	(F=-482, B=-168) 23=-650(F=-482, B=-168) 22=-482(F) 6=-720 2	1=-482(F) 8=-72	20 10=-72	20 16=-168(B) 26	=-482(F) 27=-482(F) 28=-482(F) 29=-482(F)
30764(F3 30) Reversal: Dead + 0.6	MWFRS Wind (Neg. Intern	al) Left: Lumber Increase=1.60, Plate	Increase=1.60			
Uniform Loads (plf)	15-25=-20					
Concentrated Loads	(lb)					
Vert: 24=-630 30=-744(F=-5)(F=-472, B=-158) 23=-630(i86. B=-158) 31=-586(F) 32	F=-472, B=-158) 22=-472(F) 6=-720 2 =-586(F)	1=-472(F) 8=-72	20 10=-72	20 16=-158(B) 26	=-472(F) 27=-472(F) 28=-472(F) 29=-472(F)
31) Reversal: Dead + 0.6	MWFRS Wind (Neg. Intern	nal) Right: Lumber Increase=1.60, Plat	e Increase=1.60			
Vert: 1-14=6,	15-25=-20					
Concentrated Loads	(lb))(F=-472_B=-158) 23=-630(F=-472 B=-158) 22=-472(F) 6=-720 2	1=-472(F) 8=-72	0 10=-72	20 16=-158(B)	
26=-472(F) 2	7=-472(F) 28=-472(F) 29=-4	472(F) 30=-744(F=-586, B=-158) 31=-{	586(F) 32=-586(I	F)		
32) Reversal: Dead + 0.6 Uniform Loads (plf)	MWFRS Wind (Pos. Intern	al) 1st Parallel: Lumber Increase=1.60), Plate Increase	=1.60		
Vert: 1-14=26	6, 15-25=-10 (Ib)					
Vert: 24=-650)(F=-482, B=-168) 23=-650(F=-482, B=-168) 22=-482(F) 6=-720 2	1=-482(F) 8=-72	20 10=-72	20 16=-168(B)	
26=-482(F) 2 33) Reversal: Dead + 0.6	7=-482(F) 28=-482(F) 29=-4 MWFRS Wind (Pos. Intern	482(F) 30=-764(F=-596, B=-168) 31=-{ al) 2nd Parallel: Lumber Increase=1.6	596(F) 32=-596(I 0. Plate Increase	F) e=1.60		
Uniform Loads (plf)			0, 1 1010 11010000			
Vert: 1-14=26 Concentrated Loads	5, 15-25=-10 (lb)					
Vert: 24=-650) (F=-482, B=-168) 23=-650(7= 482(E) 28= 482(E) 20= 4	F=-482, B=-168) 22=-482(F) 6=-720 2	1=-482(F) 8=-72	20 10=-72	20 16=-168(B)	
34) Reversal: Dead + 0.6	MWFRS Wind (Pos. Intern	al) 3rd Parallel: Lumber Increase=1.60), Plate Increase	=1.60		
Uniform Loads (plf) Vert: 1-14=26	. 15-25=-10					WINNITH CARO
Concentrated Loads	(lb)		4 400/5) 0 70	0 40 70		SESSIG Notif
26=-482(F) 2	7=-482(F) 28=-482(F) 29=-4	182(F) 30=-764(F=-596, B=-168) 31=-5	1=-482(F) 8=-72 596(F) 32=-596(I	20 10=-72 F)	20 16=-168(B)	and a set of the set o
35) Reversal: Dead + 0.6	MWFRS Wind (Pos. Intern	al) 4th Parallel: Lumber Increase=1.60), Plate Increase	=1.60		SEAL
Vert: 1-14=26	, 15-25=-10					28147
Concentrated Loads Vert: 24=-650	(ID))(F=-482, B=-168) 23=-650/	F=-482, B=-168) 22=-482(F) 6=-720 2	1=-482(F) 8=-72	20 10=-72	20 16=-168(B)	The second second
26=-482(F) 2	7=-482(F) 28=-482(F) 29=-4	482(F) 30=-764(F=-596, B=-168) 31=-{	596(F) 32=-596(I	F) -1.60	(- /	AR AND ARS INT
Uniform Loads (plf)	www.rho wind (Neg. intern	iai) ist Fataliet. Luttibet Increase=1.60	, riate increase	- 1.00		Man K. MUMM
Vert: 1-14=6,	15-25=-20					9/28/2021

Job	Truss	Truss Type		Qty	Ply	LOT 1111 ANDERSON CRE	EK 159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	R12	Monopitch		6		1 Job Reference (optional)	# 28668
			- <u>0-10-8</u> 0-10-8	ID:jROaQZC 7-10-8 7-10-8	Ca7AXr4y	8.430 s Feb 12 2021 MiTek I ywaPFSiTyJIBf-ZweUS4x7i	ndustries, Inc. Thu Sep 30 14:12:54 2021 Page 1 nls112x9D0Pct2Kbd3BfMKdHKa_5gHyYR?N
				2	x4		Scale = 1:49.7
			9.00 12	и	3 4		
		8-8-0	3x4 //	*	⊠ ^{VV3}	8-6-14	
		2-8-0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W2B1	65 3x4 =	=	
				7-10-8			
Plate Offsets (X,Y) [2:0	-1-12,0-1-8], [6:0-1-8,0-1-8]	1	7-10-8	ļ		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES VI2014	CSI. TC 0.54 BC 0.74 WB 0.21 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 -0.00	(loc) l/defl L/d 6-7 >484 240 6-7 >242 180 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 0%
LUMBER- TOP CHORD 2x4 SP SS BOT CHORD 2x4 SP No WEBS 2x4 SP No	5 0.2 0.3			BRACING- TOP CHORD BOT CHORD WEBS	Structu end ve Rigid c 1 Row	ural wood sheathing direct orticals. ceiling directly applied or at midpt 3-6	tly applied or 6-0-0 oc purlins, except 9-1-8 oc bracing.
					MiTe be in:	k recommends that Stabi stalled during truss erecti	lizers and required cross bracing on, in accordance with Stabilizer
REACTIONS. (Ib/size) Max Horz Max Uplift Max Grav	6=324/Mechanical, 7=363/ 7=203(LC 12) 6=-216(LC 12) 6=370(LC 20), 7=363(LC 1	0-3-8 (min.	0-1-8)		Insta	llation guide.	
FORCES. (lb) - Max. Co TOP CHORD 3-6=-263 BOT CHORD 6-7=-379 WEBS 2-6=-178	mp./Max. Ten All forces : //272, 2-7=-289/0 //169 //399	250 (lb) or le	ss except when shown.				
 NOTES- (9-10) 1) Wind: ASCE 7-16; Vult (envelope) gable end z shown; Lumber DOL=² 2) TCLL: ASCE 7-16; Pr= Cat B; Partially Exp.; C 3) This truss has been de non-concurrent with ott 4) This truss has been de 5) * This truss has been de 5) * This truss has been de 5) * This truss has been de 6) Refer to girder(s) for the 7) Provide mechanical co 8) This truss is designed standard ANSI/TPI 1. 9) Graphical web bracing the member must be b 10) Bearing symbols are structural design of the LOAD CASE(S) Standard 	t=130mph (3-second gust) tone and C-C Exterior(2E) 1.60 plate grip DOL=1.60 20.0 psf (roof LL: Lum DO e=1.0; Cs=1.00; Ct=1.10 esigned for greater of min m her live loads. signed for a 10.0 psf botto designed for a live load of 3 ord and any other member uss to truss connections. innection (by others) of frus in accordance with the 201 representation does not de raced. only graphical representation the truss to support the load	Vasd=103m zone; end ve L=1.15 Plate toof live load m chord live 0.0psf on the s. s to bearing 8 Internation epict the size ons of a poss s indicated.	ph; TCDL=5.0psf; BCDI rtical left exposed;C-C 1 DOL=1.15); Pf=20.0 ps of 12.0 psf or 2.00 times load nonconcurrent with e bottom chord in all are plate capable of withsta al Residential Code sec , type or the orientation sible bearing condition.	=5.0psf; h=23ft; for members and af (Lum DOL=1.15 a flat roof load of 2 an any other live lo as where a rectar anding 100 lb uplif ctions R502.11.1 of the brace on th Bearing symbols	Cat. II; E forces & 5 Plate D 20.0 psf (ads. ngle 3-6- ft at joint and R80 ne web. \$ are not c	xp B; Enclosed; MWFRS MWFRS for reactions OL=1.15); Is=1.0; Rough on overhangs -0 tall by 1-0-0 wide will fi (s) except (jt=lb) 6=216 2.10.2 and referenced Symbol only indicates that considered in the	SEAL 28147
							9/28/2021

- BOT CHORD 3-11=-263/175, 11-14=-229/379, 14-15=-229/379, 10-15=-229/379
- 5-10=-405/297, 8-10=0/270, 7-10=-312/865, 2-11=-69/539, 5-11=-364/420, 11-13=-416/343 WEBS

NOTES-(10-11)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-10, Exterior(2E) 9-2-10 to 14-0-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 3x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All plates are 3x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will the second 6) between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to trust to trust to trust to bearing plate super8) Provide mechanical connection (by others) of truss to bearing plate super9) This truss is designed in accordance with the 2018 International Residential Code sections Rouz. 111 and 111 standard ANSI/TPI 1.
 10) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicated that the member must be braced.

LOAD CASE(S) Standard

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

MATH CARO

SEAL 28147

VOINE K. MORY mannan

9/28/2021

POFESS/

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 1 National Design Standard for Met Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R15	Monopitch Supported Gable	1	1	Job Reference (optional)	# 28668
					8.430 s Feb 12 2021 MiTek Industries. Inc.	Thu Sep 30 14:12:57 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBf-zVJc46_?4DEtuWfkv8zJVgyB4GLnZggj0XCIHbyYR?K

13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREE	K 159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	R18	GABLE	1	1	Job Reference (ontional)	# 28668
			ID:iROaQ7(L Ca7AXr4v	8.430 s Feb 12 2021 MiTek Inc wwaPESiTy.IIBf-Rit?IS?dgX	dustries, Inc. Thu Sep 30 14:12:58 2021 Page 1 /MkVgExSsUY2uVMbghXI7DtEBvlp2vYR?
		1-10-2	<u>9-3-0</u> 10-7	1-8 1-8	,	
		1-10-2	7-4-14 0-10	0-0		Scale = 1:79
		$4x4 \equiv$				Scale - 1.70.4
		16.00 12 2				
		1 71				
			3			
			\sim			
			X 2 4			
			Å¥ €			
			3x4 5	//		
			ST3	0		
			ST4 B	ັ7 [
				5-7-1		
				1		
		13 12 11	$5x5 = 3x6 \parallel$			
		, 9-	3-0			
Plate Offsets (X.Y) [5:0	-1-0.0-1-8]. [10:0-2-8.0-2-12	9-	3-0			
LOADING (psf)		200 CSI	DEEL	in (l	oc) l/defl l/d	
TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.22	Vert(LL)	-0.00	7 n/r 180	MT20 244/190
TCDL 10.0	Rep Stress Incr	1.15 BC 0.17 YES WB 0.30	Horz(CT)	-0.01 0.00	/ n/r 80 8 n/a n/a	
BCDL 10.0	Code IRC2018/TP	2014 Matrix-SH				Weight: 111 lb FT = 0%
LUMBER-	2		BRACING-	Structur	al wood sheathing directl	v applied or 6-0-0 oc purling except
BOT CHORD 2x4 SP No	.3			end ver	ticals.	
OTHERS 2x4 SP No	.3 .3		WEBS	Rigid ce 1 Row a	at midpt 1-13, 2	-0-0 oc bracing. -12, 3-11
				MiTek	recommends that Stabiliz	zers and required cross bracing
				Installa	ation guide.	
(lb) - Max Horz	igs 9-3-0. 13=-313(LC 13)					
Max Uplift Max Grav	All uplift 100 lb or less at j All reactions 250 lb or less	bint(s) 13, 8, 12 except 11=-176(LC at joint(s) 13, 8 except 12=268(LC	13), 10=-717(LC ⁻ 21), 11=317(LC 2	13), 9=-4 1), 10=52	17(LC 11) 21(LC 11),	
	9=738(LC 13)			,,		
FORCES. (lb) - Max. Con	mp./Max. Ten All forces 2	50 (lb) or less except when shown.				
BOT CHORD 12-13=-2	73/447, 11-12=-273/447, 10)-11=-273/447				
WEBS 5-9=-934	/484, 5-10=-498/796					
NOTES- (14-15) 1) Unbalanced roof live lo	ads have been considered	for this design				
2) Wind: ASCE 7-16; Vult	=130mph (3-second gust)	/asd=103mph; TCDL=5.0psf; BCDI	L=5.0psf; h=23ft; C	Cat. II; Ex	p B; Enclosed; MWFRS	
vertical right exposed;(C-C for members and forces	& MWFRS for reactions shown; Lu	umber DOL=1.60 p	plate grip	DOL=1.60	
 Truss designed for wir Gable End Details as a 	nd loads in the plane of the applicable, or consult qualifi	truss only. For studs exposed to wi ed building designer as per ANSI/TI	nd (normal to the l PI 1.	face), see	e Standard Industry	
4) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp · C	20.0 psf (roof LL: Lum DOL e=1 0. Cs=1 00. Ct=1 10	=1.15 Plate DOL=1.15); Pf=20.0 ps	sf (Lum DOL=1.15	Plate DC	DL=1.15); ls=1.0; Rough	AND THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE
5) This truss has been de	signed for greater of min ro	of live load of 12.0 psf or 2.00 times	s flat roof load of 2	0.0 psf oi	n overhangs	MARTH CAROLINI
6) All plates are 2x4 MT2	0 unless otherwise indicate	d.			Innu	OROFESO/DAY THE
8) Truss to be fully sheath	ous bottom chord bearing. ned from one face or secure	ly braced against lateral movement	t (i.e. diagonal web	o).	The second se	SEAL
 9) Gable studs spaced at 10) This truss has been d 	2-0-0 oc. esigned for a 10.0 psf botto	m chord live load nonconcurrent wi	th any other live lo	ads.		28147
11) * This truss has been	designed for a live load of	30.0psf on the bottom chord in all a	reas where a recta	ingle 3-6-	-0 tall by 1-0-0 wide will	
12) Provide mechanical c	onnection (by others) of tru	ss to bearing plate capable of withs	tanding 100 lb upli	ift at joint	(s) 13, 8, 12 except	A VOINEER S
(Jt=176, 10=71 13) This truss is designed	י, ש=4וי. I in accordance with the 20	8 International Residential Code se	ections R502.11.1	and R80	2.10.2 and referenced	Man K. Monum
standard ANSI/TPI 1.						9/28/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R18	GABLE	1	1	Job Reference (optional)	# 28668
					8 430 s Feb 12 2021 MiTek Industries Inc.	Thu Sep 30 14:12:58 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBFRit?IS?dqXMkVgExSsUY2uVMbghXI7DfFBylp2yYR?J

14) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job		Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK	159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	F	R19	Common	1		1	# 28668
						8.430 s Feb 12 2021 MiTek Indust	ries, Inc. Thu Sep 30 14:12:59 2021 Page 1
			1-10-2 5	-6-0 9-3-0	10-1-8		
			1-10-2 3	-7-14 3-9-0	0-10-8		
			4x6				Scale = 1:76.6
			16.00 12 2				
			274 11 1 1				
			3A4 11 1 11	<u>\</u>			
			wz \\	2x4			
			<u>م</u>	V3 1972			
					3x4 🛝		
				\\ w4	4		
					W6 5	ļ	
				B105		2-7	
			1 (<u>8</u> 9	10 ₇		1	
			4x4 =	3x8 =	2x4		
			5-6-0	9-3-0			
Plate Offsets (X,	Y) [2:0-2	2-4,0-1-8], [4:0-1-0,0-1-8],	[8:0-2-0,0-1-8]) '3-9-0			
LOADING (psf)		SPACING-	2-0-0 CSI	DEFL	in ((loc) l/defl l/d	PLATES GRIP
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL	1.15 TC 0.75	Vert(LL)	-0.07	7-8 >999 240	MT20 244/190
TCDL	10.0	Rep Stress Incr	1.15 BC 0.42 YES WB 0.42	Horz(CT)	-0.10	6 n/a n/a	
BCDL	10.0	Code IRC2018/TP	I2014 Matrix-SH				Weight: 109 lb FT = 0%
LUMBER-		5		BRACING-	Structu	iral wood choothing directly a	polied or 6.0.0 co purling except
BOT CHORD 2	x4 SP No.2 x4 SP No.2	2		TOP CHORD	end ve	rticals.	pplied of 6-0-0 oc putlitis, except
WEBS 22 W	x4 SP No.3 /1: 2x4 SP	3 *Except* No.2		BOT CHORD WEBS	Rigid c 1 Row	eiling directly applied or 6-0-(at midpt 2-7, 1-8, 2) oc bracing. I-8
					MiTel	k recommends that Stabilizer	s and required cross bracing
					Instal	stalled during truss erection, i llation guide.	n accordance with Stabilizer
REACTIONS. (I	b/size) 8 /ax Horz 8	=355/0-3-8 (min. 0-1-8), 6 =-414(LC 8)	6=423/0-3-8 (min. 0-1-8)				
N	Aax Uplift8	=-221(LC 8), 6=-87(LC 9)	0)				
IV	lax Glavo	-569(LC 21), 6-556(LC 2	0)				
FORCES. (lb) - TOP CHORD	Max. Com 1-2=-382/4	p./Max. Ten All forces 2 I07, 2-3=-568/443, 3-4=-4	250 (lb) or less except when shown. 21/144, 1-8=-359/366, 4-6=-560/10	7			
BOT CHORD	8-9=-219/2	288, 9-10=-219/288, 7-10=	-219/288				
	2-1421/0	170, 3-7439/330, 2-03	10/390, 4-7-102/300				
1) Unbalanced r) oof live loa	ds have been considered	for this design.				
2) Wind: ASCE 7	7-16; Vult= ble end zo	130mph (3-second gust)	Vasd=103mph; TCDL=5.0psf; BCD)-1-12 to 1-10-2 Exterior(2R) 1-10-7	L=5.0psf; h=23ft; (2 to 5-6-0 Exterior	Cat. II; E	xp B; Enclosed; MWFRS	
vertical left an	id right exp	osed;C-C for members ar	nd forces & MWFRS for reactions s	hown; Lumber DO	L=1.60 p	plate grip DOL= 1.60	
Cat B; Partiall	y Exp.; Ce	=1.0; Cs=1.00; Ct=1.10	-=1.15 Plate DOL=1.15); PI=20.0 p	si (Lum DOL=1.15	Plate D	OL=1.15; is=1.0; Rough	
 This truss has non-concurrer 	s been des nt with othe	igned for greater of min ro er live loads.	of live load of 12.0 psf or 2.00 time	s flat roof load of 2	20.0 psf o	on overhangs	
5) This truss has	been des	igned for a 10.0 psf bottor	n chord live load nonconcurrent wit	h any other live loa	ads.	0 toll by 1.0.0 wide will fit w	MUMINIANIANIA
between the b	ottom cho	rd and any other members	s, with BCDL = 10.0psf.	eas where a rectar	igie 3-0-	tail by 1-0-0 wide will him of	EFSOID N
 Provide mech This truss is d 	anical con lesigned in	nection (by others) of trus accordance with the 201	s to bearing plate capable of withst 8 International Residential Code se	anding 100 lb uplif ctions R502.11.1 a	t at joint(and R802	(s) 6 except (jt=lb) 8=221.	ROUNDER
standard ANS	SI/TPI 1.	anresentation does not de	nict the size, type or the orientation	of the brace on th	a wab	Symbol only indicates that	SEAL
the member n	nust be bra	iced.	pict the size, type of the offentation	of the brace of th	ie web. c		28147
10) Bearing sym structural de	bols are or sign of the	nly graphical representation truss to support the loads	ons of a possible bearing condition.	Bearing symbols a	are not c	considered in the	Shin A 1
	Standard					and the second se	AL ORAS INT
						****	An A. Mount
							9/28/2021

Partner Partner <t< th=""><th>Job</th><th>Truss</th><th>Truss Type</th><th>Qty</th><th>Ply LOT 1111</th><th>ANDERSON CREE</th><th>EK 159 SCHOLAR DRIVE</th><th>SPRING LAKE, NC</th></t<>	Job	Truss	Truss Type	Qty	Ply LOT 1111	ANDERSON CREE	EK 159 SCHOLAR DRIVE	SPRING LAKE, NC		
In the process of the second second in the second in the second second in the second in the second in the second second in the second in	21-5762-R01	R21	Common Supported Gable	1	1		#	28668		
<pre></pre>					Job Refer	ence (optional)	π	4:13:00 2021 Page 1		
Links BAC Description DOURS 00:00 Pack 00:00 10 0:00 0:00 0:00 0:00 0:00 0:00 0:00			0.40.0	ID:jROaQZCa	a7AXr4yywaPFSiTyJII	Bf-N4?li80uM8c	SIzOJaGW07JabNTDPn	nzEAiVRPtwyYR?H		
<text><figure></figure></text>			-4 <u>-10-8 8-3-8</u> 0-10-8 6-3-8		-7-0 13-5-8 3-8 0-10-8					
BBC- BBC- Image: State of the state of				<u></u>				Scale = 1:74 5		
Image: space of the space				6x8 =				00010 - 1.74.0		
Improve the second set of the design. Improve the second set of the design. Determine the second set of t										
Image: Provide the second s				5						
Image: Second]	\mathbb{R}						
Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status Image: Status					<u>_</u>					
Image: Provide the standard of the standard			16.00 12 4		D					
$ \frac{1}{12^{2} - \frac{1}{12^{2} -$					\mathbf{X}					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \bigg \\ \\ \end{array} \\ \\ \bigg \bigg \bigg \\ \\ \end{array} \\ \bigg \bigg \\ \\ \end{array} \\ \\ \bigg \bigg \\ \\ \bigg \bigg \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \bigg \bigg \\ \\ \\ \bigg \bigg \\ \\ \\ \bigg \bigg \\ \\ \\ \\ \bigg \bigg \bigg \\ \\ \\ \\ \bigg \bigg \\ \\ \\ \bigg \bigg \bigg \\ \\ \\ \bigg \bigg \bigg $ \\ \\ \\ \bigg \bigg \bigg \bigg			3 11		71 7					
Image: Structural words with regime and regime			B	ST3	4x6					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$			- 4x6 2							
Top CHORD 2xt SP No.2 Top ChorD 2xt SP No.3 Top ChorD 2xt SP No.4 Top ChorD					ant N ⁸ d					
Image: Second and the second										
<pre></pre>										
Braching										
4.06 = 127.0 Totale Offsets (XY)- [2 Edge, 0-2-4], [8 Edge, 0-2-4], [10 Edge, 0-2-4] CSL 0.05 Vert(L) -0.00 8 nn 160 TOLL (rod) 20.0 Plate Gip DoL 1.15 TO 0.65 Vert(L) -0.00 8 nn 160 Show (rP) 20.0 Case IRC2018/TPI2014 Matios R Vert(C) -0.00 8 nn 160 BCLL 0.0 Case IRC2018/TPI2014 Matios R Vert(C) -0.00 8 nn 160 DCD ChORD 24 SP No.3 BCL BCL 0.0 16 nn 160 16 nn			16 15	14 13 12	11 10					
12:70 Total (cold) Colomos (pr) SACING 2:0-0 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" SACING 2:0-0 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <			4x6 =		4x6 =					
Plate Offsets (XY)- [2:2:9] LOADING (nst) SPACING- 2-0.0 CSL In (nc) (idef) L/d PLATES GRIP CLU (roof) 20.0 Plate Grp DoL 1.15 BC O.78 Vert(CT) 0.00 8 n/r 800 MT20 244/190 Stoot (P) 20.0 Plate Grp DoL 1.15 BC O.78 Vert(CT) 0.00 8 n/r 800 MT20 244/190 BCDL 10.0 Code IRC2018/TPi2014 Wel 0.52 Vert(CT) 0.00 8 n/r 800 Horizot 2.44 Weight: 148 lb FT = 0% UMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 Statutal wood sheathing directly applied or 6-0 oc braing. THERS 2x4 SP No.3 WEBS All bearings 12-70. Image SP Second 16:10 Mark value 2:00 Mark value 2:00 Mark value 2:00 Statutal wood sheathing directly applied or 6-0 oc braing. Image SP Second 16:2:00 <td< td=""><td></td><td></td><td>L</td><td>12-7-0</td><td>J</td><td></td><td></td><td></td></td<>			L	12-7-0	J					
LODING (pr) SPACING- Tool (pr) 20-0 Plate Grip Dot. SPACING- TC 0.06 Plate Grip Dot. 20-0 1.15 BCL CSL DEFL Vert(L) In (loc) Vide L/d PLATES GRIP MT20 DCDL 0.0 Rep Stress Incr YES WB 0.52 Horz(CT) 0.00 8 n/r 80 BCLL 0.0 Code IRC2016(TP)2014 WB 0.52 Horz(CT) 0.00 8 n/r 80 LUMBER TOP CHORD 2x6 SP No.2 BTACHOR TOP CHORD X45 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc bracing. 1 1 1 1 80 1.00 1 1.00 1 1.00 1 1.00 1.00 1 1.00 1.00 1 1.00	Plate Offsets (X Y) [2·F	dae 0-2-41 [8:Edae 0-2-4]	[10:Edge 0-2-0]	12-7-0	1					
TCLL (roo) SPACING: 24.0 CSL CSL OBS Vert(C1) OLO BATC MATES GR4P Show (P) 20.0 Lumber DOL 1.15 ED 0.65 Vert(C1) -0.00 8 n/r 80 TCDL 10.0 Lumber DOL 1.15 ED 0.78 Vert(C1) -0.00 8 n/r 80 BCDL 10.0 Code IRC2018/TPL2014 Matrix-R For CC1C, -0.00 10 n/r 80 BCDL 10.0 Code IRC2018/TPL2014 Matrix-R For CC1C, -0.00 10 n/r 80 BCDL 10.0 Code IRC2018/TPL2014 Matrix-R TOP CHORD Structural wood sheathing directly applied or 6-0.0 oc bracing. BCDL 10.0 Matrix for for 5-32 (L / 0.0 Rife recommends that Stabilizers and required cross bracing the installed during trues receiver. IRCW attrast for for 5-32 (L / 0.0 IRCW attrast for for 5-32	LOADING (psf)					/ .				
Show (P) 2U.U Lumber DOL 1.15 BC 0.78 Vert(CT) -0.00 8 or % 8 or BCDL 10.0 Rep Stress incr YES WB 0.52 Horz(CT) -0.00 8 or % 8 or LUMBER Code IRC2018/TPI2014 BRACING- BRACING- BRACING- University Weight: 148 lb FT = 0% UMBER DOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. except end wefticals OTHERS 2x4 SP No.3 BOT CHORD BOT CHORD BOT CHORD Bot and wefticals REACTIONS. All bearings 12-7-0. BOT CHORD Mass weight 160 to ress at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-439(LC 8) Installation guide. FRACTIONS. All bearings 12-7-0. Image: mass weight 100 to ress at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-439(LC 8) Image: mass weight 20, 10=-1439(LC 8) Image: mass weight 20, 10=-1439(LC 10, 11=-439(LC 8), 10=-4139(LC 9), 11=-439(LC 8), 11=-439	TCLL (roof) 20.0	Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.65	Vert(LL)	in (loc) I/def -0.00 8 n/	1 L/d r 180	PLATES MT20	GRIP 244/190		
BCLL 0.0 Code IRC2018/TH2014 Waturk R Product (1) 0.00 Total Weight 148 lb FT = 0% LUMBER. TOP CHORD 2x6 SP No.2 TOP CHORD 2x6 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x4 SP No.3 BOT CHORD Xet SP No.2 BOT CHORD Xet SP No.2 BOT CHORD Xet SP No.2 TOP CHORD Xet SP No.2 TOP CHORD Xet SP No.2 Total waturdate Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x4 SP No.3 BOT CHORD Xet SP No.2 BOT CHORD Xet SP No.2 Total waturdate Total waturdate Structural wood sheathing directly applied or 6-0-0 oc purlins, except CTHERS 2x4 SP No.3 BOT CHORD Xet SP No.2 Total waturdate Total waturdate Total waturdate Structural wood sheathing directly applied or 6-0-0 oc purlins, except REACTIONS All bearings 12-7-0. WEES Matt Not 216-311280 Total waturdate <	TCDL 10.0	Lumber DOL	1.15 BC 0.78	Vert(CT)	-0.00 8 n/	r 80				
DOLL 10.9 Image: Construction of the second se	BCLL 0.0 *	Code IRC2018/TP	12014 Matrix-R	Horz(CT)	-0.00 10 n/a	a n/a	Weight: 148 lb	FT = 0%		
TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0 oc purlins, except end witcals. BOT CHORD 2x6 SP No.3 BOT CHORD Structural wood sheathing directly applied or 6-0 oc purlins, except end witcals. WEBS 2x4 SP No.3 BOT CHORD Relations of the first end witcals. WEBS 2x4 SP No.3 BOT CHORD Relations of the first end witcals. WEBS 2x4 SP No.3 BOT CHORD MTek recommends that Stabilizers and required cross bracing being directly applied or 6-0 oc purlins, except installation guide. REACTIONS. All bearings 12-7-0. MTek recommends that Stabilizers and required cross bracing being directly applied or 6-0.0 (b) or less at joint(s) 14, 12 except 16=415(LC 8), 10=412(LC 9), 15=440(LC 9), 15=440(LC 9), 11=438(LC 8) Max Grav All reactions 250 lo or less at joint(s) 14, 12 except 16=481(LC 21), 10=478(LC 20), 13=472(LC 13), 15=603(LC 20), 11=601(LC 21) FORCES. ((b) - Max Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2.16=-311/28, 2.3=-314/318, 3.4=-288/478, -7=-350/550, 6.7=-288/478, -7=-350/550, 6.7=-288/478, -7=-351/510, 3-11=-314/280 NOTES. (14-15) 1) Unbalance and C-C Comerg/50, -0-112, Comerg/51, 5-11-2, Comerg/51, 5-114, 10-35-52 come; end vertical lett and right exposed; C-C for members and forces & WWFRS for reactions shown; Lumber DOL=1.160, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-100, 15-160, 15-1				BRACING-						
BOT CHORD 244 SP No.3 WEBS 244 SP No.2 OTHERS 244 SP No.3 WEBS BOT CHORD WEBS BOT CHORD WEBS BOT CHORD WEBS BOT CHORD WEBS TABLE Commendations and required cross bracing installated during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. All bearings 12-7-0. ((b) - Max Horz 16=-361(LC 10) Max Upit All upitif 100 lb or less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 8), Max Grav All reactions 250 lb or less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 8), Max Grav All reactions 250 (b) or less except when shown. TOP CHORD 2-16=-311/226, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/316, 5-10=-302/22 WEBS 5-13=-751/410, 3-15=-316/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wint: ASCE 7-16, 10-10-10-10-10-10-10-10-10-10-10-10-160, plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the trus sond. Lomber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the trus sond. Lomber DOL=1.15; Is=1.0; Rough 3) Truss designed for monor the truss control wing loads of 12.0 per or 2.00 times flat roof load of 2.0.0 per output the loads. 4) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord barring. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord barring. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Cable requires continuous bottom chord barring. 7) Provide mechanical control (by others) of truss to be flate spaced at 2.00 oc. 10) This truss has been designed for an load of 30.0 psr to merchange 3-6-0 tal by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0 psr. 11.1 and R802.10.2 and reference steadard ANS/TF11. 9/ Net the destion desting de plane accordance with the 2018 International Residential Code sections R502.11.1 and R80	TOP CHORD 2x6 SP No	.2		TOP CHORD	Structural wood sl	neathing directl	ly applied or 6-0-0 oc l	purlins, except		
OTHERS 2x4 SP No.3 WEBS 1 ñow at midgt 1 5.1, 4.14, 6.12 MITER 0.1 Max Low 216-361(LC 0) Mitter recommends that Stabilizers and required cross bracing be installed during turns erection, in accordance with Stabilizer Installed during turns erection, in accordance with Stabilizer REACTIONS. All bearings 12-7-0. If Now at midgt 11-3, 4-14, 6-12 (b) - Max Horz 16361(LC 0) Max Upit 100 to ress at joint(s) 14, 12 except 16=415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 20), 11=601(LC 21) FORCES. (b) - Max Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD TOP CHORD 2-16=-311/226, 2-3=-314/318, 5.4=-288/478, 4-5-355550, 5-6=-355/550, 6-7=-288/478, 7-8=-308/282 WEBS 5-13=-751410, 3-15=-315/281, 7-11=-314/280 NOTES. (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult130mh (3-second gust) Vasd=103mph; TODL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2; Corner(3R) 3-71-12; to 8-7-14; Corner(3E) 8-7-14; Corner(3	BOT CHORD 2x4 SP No WEBS 2x4 SP No	.3 .2		BOT CHORD	end verticals. Rigid ceiling direc	tlv applied or 6	-0-0 oc bracing.			
MTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. REACTIONS. All bearings 12-7-0. ((b) - Max Horz 16=-381(LC 10) Max Upift AU upift 100 bor less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 20), 11=-603(LC 20), 11=-601(LC 21) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 2-16=-311125, 2-3-314/3143, 3-4=-2884/78, 4-5=-355/550, 6-7=-288/478, 7-8=-311/316, 8-10=-308/282 WEBS 5-13=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=Tomphe's add forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.80 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designen as per ANS/TP1 1. 4) Tick truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable End Ot; Cs=-100,	OTHERS 2x4 SP No	.3		WEBS	1 Row at midpt	5-13, 4	I-14, 6-12			
REACTIONS. All bearings 12-7-0. (ib) - Max Horz 18=-361(LC 10) Max Upilt All upikt 100 lb or less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 8) Max Carev All reactions 250 lb or less at joint(s) 14, 12 except 16=481(LC 21), 10=478(LC 20), 13=472(LC 13), 15=603(LC 20), 11=601(LC 21) FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD 2.16=-311/285, 2-3=-314/316, 3-4=-288/478, 4-5=-355/550, 5-6=-355/550, 6-7=-288/478, -78=-311/316, 8-10=-308/282 WEBS 5-13=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Pr20, 000 and					MiTek recomme	nds that Stabili on truss erectio	izers and required cros	₃s bracing Stabilizer		
 REACTIONS: All bearings 12-70. (III): Max Horz 16E - 381(LC 10) Max Horz 16E - 381(LC 10) Max Grav All reactions 250 lb or less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 3), 11=-438(LC 3), 11=-601(LC 21), 11=-601(LC 21) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-16=-311/285, 2-3a-314/318, 3-4a288/478, 4-5=-355/550, 5-6=-355/550, 6-7a288/478, 7-8a-311/318, 8-10=-3002/822 WEBS 5-13=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5, 0psf; BCDL=5, 0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (revelope) gable end zoncorrer(3E) -0-0-81 03-11-2; zoner(3R) 3-11-2; to 8-7-14, Comer(3E) 3-7-14 to 13-5-8 zone; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; tumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studie exposed to wind (normal to the face), see Standard Industry cately as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 pt (root LL: Lum DOL=1.15); PI=20.0 psf (Lum DOL=1.15); Is=-1.0; Rough correct with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord into de load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with any other live loads. 1) This truss has been designed for a 10.0 psf bottom chord in all areas where a rescales 3-6-0 tall by 1-0-0 wide with for the store designed for a 10.0 psf other bottom chord in all areas where a rescales 3-6-0 tall by 1-0-0 wide with fibetween the bottom chord and any other remembers, with BCDL = 10.0psf. 2) Provide mechanical connection (by others) of truss		(a = a			Installation guide).		Clabilizor		
Max Uplift All uplift 100 ib or less at joint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9), 15=-440(LC 9), 11=-438(LC 8), Max Grav All reactions 250 ib or less at joint(s) 14, 12 except 16=481(LC 21), 10=478(LC 20), 13=472(LC 13), 15=603(LC 20), 11=601(LC 21) FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD 2:16=-311/285, 2:3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/316, 8-10=-308/282 WEBS 5:13=-751/410, 3:15=-315/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Winch ASCE 7-16; VIII=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS overloape) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2. Comer(3R) 3-11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; PT=20.0 psf (cort LL: Lum DOL=1.15) PT=20.0 psf (Lum DOL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (un OL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (un OL=1.15) Pt=20.0 psf (un OL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (un DOL=1.15) Pt=20.0 psf (unor LL: Lum DOL=1.15) Pt=20.0 psf (unor LL: Lum DOL=1.15) Pt=20.0 psf (unor LL: SP Pt=1.0); Ce=1.0, Ce=1.0, Ce=1.0, Ce=1.0, Ce=1.0, Ce=1.0; Ce=1.	(lb) - Max Horz	ngs 12-7-0. 16=-361(LC 10)								
 Max Grav All reactions 250 lb or less at joint(s) 14, 12 except 16=481(LC 21), 10=478(LC 20), 13=472(LC 13), 15=603(LC 20), 11=601(LC 21) FORCES. (lb) - Max Comp./Max Ten All forces 250 (lb) or less except when shown. TOP CHORD 2:16=311/326, 23=314/3(18, 34=-x88/478, 4:5=-355/550, 5:6=-355/550, 6:7=-288/478, 7:8=-311/316, 8:10=-308/282 WEBS 5:13=-751/410, 3:15=-315/281, 7:11=-314/280 NOTES- (14-15) 1) Uhbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3:second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0:10-8 to 3:11-2; corner(3R) -1:12 to 8:7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable end Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) CTL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15) Plate DOL=1.15); Is=1.0; Rough Cat. B; Partially Exp; C:e-0.10; Cs=1.100; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with one dise cor securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 2:0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3:6-0 tall by 1-0-0 wide with fibelewene the bottom chord and any other members, with BCCL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (It=lb) 1:6=415, 10=412, 15=440, 11=438. 21) This truss has been designed for a 10.0 psf bottom chord	Max Uplift	All uplift 100 lb or less at j	pint(s) 14, 12 except 16=-415(LC 8), 10=-412(LC 9),	15=-440(LC 9),					
 15=603(LC 20), 11=601(LC 21) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 2-16=:311/285, 2-3=:314/318, 3-4=:288/478, 4-5=:355/550, 5-6=:355/550, 6-7=:288/478, 7-8=:311/316, 8-10=:-308/282 WEBS 5-13=:751/410, 3-15=:-315/281, 7-11=:-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TODL=5.0psf, BCDL=5.0psf, h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2. Corner(3R) 3-11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable; or consult qualified building designer as par ANSI/TPI 1. 4) CLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); PI=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough CAT B; Partially Exp.; C=10. CS=-10. CS=-	Max Grav	All reactions 250 lb or less	s at joint(s) 14, 12 except 16=481(L	C 21), 10=478(LC	20), 13=472(LC 13),				
 FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-16=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-311/285, 2-3=-314/318, 3-4=-288/478, 4-5=-355/550, 6-7=-288/478, 7-8=-355/550, 6-7=-288/478, 7-8=-351/281, 7-11=-308/282 WEBS 5-13=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Comer(3E) 9-01-8 to 3-11-2; Comer(3R) 3-11-2; 0 8-714, Comer(3E) 8-714 to 13-58 azone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.00 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSUPP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (Con CL: L: Um DOL=1.15 Plate DOL=1.15); Is=1.0; Rough or Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for a fine roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-		15=603(LC 20), 11=601(LC	21)							
 TOP CHORD 2.16=-311/285, 2-3=-314/318, 3-4=-289/478, 4-5=-355/550, 5-6=-355/550, 6-7=-288/478, 7-8=-311/316, 8-10=-308/282 WEBS 5-13=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES (14-15) Uhabalanced roof live loads have been considered for this design. Winci: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Comer(3E) -0-10-8 to 3-11-2; coner(3R) 3-11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough (a trust be ned seigned for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Clable requires continuous bottom chord barring. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord nial areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except ([t=lb). 16=415, 10=412, 15=440, 11=438. This truss is designed in accordance with t	FORCES. (Ib) - Max. Cor	mp./Max. Ten All forces 2	50 (lb) or less except when shown.							
 WEBS 513=-751/410, 3-15=-315/281, 7-11=-314/280 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-10-8 to 3-11-2; Corner(3R) 3-11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough (Cat B; Partially Exp. Ce=1.0; Cs=1.0); Cs=1.0; Cs=1.	TOP CHORD 2-16=-31 7-8=-311	1/285, 2-3=-314/318, 3-4=- /316 8-10=-308/282	288/478, 4-5=-355/550, 5-6=-355/5	50, 6-7=-288/478,						
 NOTES- (14-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2; Corner(3R) 3-11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Pr=2010; psf(:ce=1.0; Ce=1.0; Cs=1.00; Ct=1.10) 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (it=10) 16=415, 10=412, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 9/28/2021 	WEBS 5-13=-75	1/410, 3-15=-315/281, 7-11	=-314/280							
 Unbalanced roóf live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-10-8 to 3+11-2; Corner(3R) 3+11-2 to 8-7-14, Corner(3E) 8-7-14 to 13-5-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; CS=1.00; Ct=1.10 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10-412, 15=440, 11=438. This truss is design	NOTES- (14-15)									
 2) Whith ASCE 7-16, Vulle 130mph (3-Second gust) Vasde 105mph, 1CDL9-0.0pst, n=23it, Cat. II; Exp. (a. II); Exp. (based, NWFRS (envelope) gable end zone and C-C Corner(3E) -0.10-8 to 3-11-2; Corner(3R) 3-11-2 to 8-57-14, Corner(3E) 8-7-14 to 13-58-zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to be aring plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 	1) Unbalanced roof live lo	ads have been considered	for this design.	L - C On of h - 0.26	Cat III Eve D. Engla					
 vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 9/28/2021 	(envelope) gable end z	one and C-C Corner(3E) -0	-10-8 to 3-11-2, Corner(3R) 3-11-2	to 8-7-14, Corner	(3E) 8-7-14 to 13-5-	8 zone; end				
 (a) Truss designed for a consult qualified building designer as per ANSI/TP1 1. (4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 (5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. (6) All plates are 2x4 MT20 unless otherwise indicated. (7) Gable requires continuous bottom chord bearing. (8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). (9) Gable studs spaced at 2-0-0 oc. (10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. (11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will be the bottom chord and any other members, with BCDL = 10.0psf. (12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. (13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 (9) Wild back is the fully back has been been been been been been been bee	vertical left and right ex	posed;C-C for members ar	nd forces & MWFRS for reactions s	hown; Lumber DC	L=1.60 plate grip D	OL=1.60				
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 	Gable End Details as a	pplicable, or consult qualifi	ed building designer as per ANSI/T	PI 1.	lace, see Otalidate	rindustry				
 b) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. c) All plates are 2x4 MT20 unless otherwise indicated. c) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). g) Gable studs spaced at 2-0-0 oc. (1) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. (1) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. (2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. (3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced 9/28/2021 	4) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp : C	20.0 psf (roof LL: Lum DOL e=1 0. Cs=1 00. Ct=1 10	.=1.15 Plate DOL=1.15); Pf=20.0 p	sf (Lum DOL=1.15	5 Plate DOL=1.15); I	s=1.0; Rough	WINNITH CARO	6		
 non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	5) This truss has been de	signed for greater of min ro	of live load of 12.0 psf or 2.00 time	s flat roof load of 2	20.0 psf on overhan	gs Ji	FESSIA N	1111		
 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	6) All plates are 2x4 MT2	non-concurrent with other live loads. 6) All plates are 2x4 MT20 unless otherwise indicated								
 a) Truss to be fully sheared if on one face of securely braced against fateral movement (i.e. diagonal web). b) Gable studs spaced at 2-0-0 oc. c) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. f) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. f) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) f) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	7) Gable requires continuous bottom chord bearing.									
 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	9) Gable studs spaced at	2-0-0 oc.	ay braced against lateral movemen	t (i.e. diagonal we	D).	IIIM	28147			
 11) This truss has been designed to a live load of 30.0ps of the bottom chord in all aleas where a rectangle 3-6-6 tail by 1-0-6 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.									
 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=415, 10=412, 15=440, 11=438. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 20 	fit between the bottom	fit between the bottom chord and any other members, with BCDL = 10.0psf.								
13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb)									
standard ANSI/TPI 1. 9/28/2021	13) This truss is designed	I in accordance with the 20	18 International Residential Code s	ections R502.11.1	and R802.10.2 and	l referenced	0/20/2021			
	standard ANSI/TPI 1.		e		1. 6		9/28/2021	1 1		

vertically. Applicability of design parameters and rotat news before act runs using its based only dopin parameters and not the intervention of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK 159 SCH	OLAR DRIVE SPRING LAKE, NC
21-5762-R01	R21	Common Supported Gable	1	1	Job Reference (optional)	# 28668
					8.430 s Feb 12 2021 MiTek Industries, Inc.	Thu Sep 30 14:13:00 2021 Page 2

ID:jROaQZCa7AXr4yywaPFSiTyJIBf-N4?li80uM8cSlzOJaGW07JabNTDPmzEAiVRPtwyYR?H

14) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1111 AND	ERSON CREEK 1	159 SCHOLAR DRIVE	SPRING LAKE, NC
21-5762-R01	R22	Common	2	1	1		#	28668
					Job Reference 8.430 s Feb 12 2	e (optional) 2021 MiTek Industr	ries. Inc. Thu Sep 30 1	4:13:01 2021 Page 1
		0 10 9 6 3 9	ID:jROaQZCa7	7AXr4yyw	vaPFSiTyJIBf-rG	Z7wT1W7SkIN7	7zV8_1FfW7q5tgbV	XdJx9AyQNyYR?G
		0-10-8 6-3-8	6-3	3-8	0-10-8			
			6x8 —					Scale = 1:73.1
			0x0 —					
			3					
			\mathbb{A}					
		16.00 12						
		×1/		VV.				
		0-0-	×		4x4 \\			
		₽ 4x4 //	wз		$\langle \rangle$			
				```	4			
		10 W1			wi √ Ę			
				2	4			
		8	7		6			
		3x4	3x8 =	7.0	3x4			
		<u> </u>	12-	3-8				
Plate Offsets (X,Y) [2:0	<u>-0-12,0-1-12], [4:0-0-12,0-1</u>	-12]	1					
LOADING (psf)	SPACING-	2-0-0 <b>CSI</b> .	DEFL.	in (	(loc) l/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.39	Vert(LL)	-0.03	7-8 >999	240	MT20	244/190
TCDL 10.0	Rep Stress Incr	YES WB 0.13	Horz(CT)	-0.00	6 n/a	n/a		
BCDL 10.0	Code IRC2018/TPI	2014 Matrix-SH					Weight: 123 lb	FT = 0%
LUMBER-			BRACING-					
TOP CHORD 2x6 SP No BOT CHORD 2x4 SP No	.2		TOP CHORD	Structu	iral wood sheat rticals	hing directly a	pplied or 6-0-0 oc	purlins, except
WEBS 2x4 SP No	.3		BOT CHORD	Rigid c	eiling directly a	pplied or 9-10-	-2 oc bracing.	
			WEBS	1 Row	at midpt	3-7		
				be ins	stalled during tr	uss erection, in	n accordance with	Stabilizer
	9-EE2/0.2.9 (min. 0.1.9) 6	= E E 2 / 0.2.8 (min 0.1.8)		Install	lation guide.			
Max Horz	8=-361(LC 10)	-555/0-5-6 (11111. 0-1-6)						
Max Uplift	8=-100(LC 13), 6=-100(LC	12)						
Wax Grave	6-571(LC 21), 6-571(LC 20)	5)						
FORCES. (lb) - Max. Cor	np./Max. Ten All forces 2	50 (lb) or less except when shown.						
BOT CHORD 7-8=-347	/342	10/120, 4-0310/120						
WEBS 2-7=-131	/259, 4-7=-132/260							
NOTES- (9-10)								
1) Unbalanced roof live lo	ads have been considered	for this design.	-5 Opef: h-23ft: (	`at II·E∖	vn B: Enclosed			
(envelope) gable end z	one and C-C Exterior(2E) -(	0-10-8 to 3-11-2, Exterior(2R) 3-11-2	2 to 8-7-14, Exterio	or(2E) 8-	-7-14 to 13-5-8	zone; end		
vertical left and right ex 3) TCLL · ASCE 7-16: Pr=	<pre>xposed;C-C for members an 20 0 psf (roof LL: Lum DOL)</pre>	nd forces & MWFRS for reactions sh =1 15 Plate DOI =1 15): Pf=20.0 ps	nown; Lumber DOI sf (Lum DOI =1 15	L=1.60 p Plate D(	olate grip DOL= ∩I =1 15)· Is=1	=1.60 0: Rough		
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10			i lato B	02 1110), 10 1	.o, nough		
<ol> <li>This truss has been de non-concurrent with oth</li> </ol>	signed for greater of min ro per live loads	of live load of 12.0 psf or 2.00 times	s flat roof load of 2	0.0 psf c	on overhangs			
5) This truss has been de	signed for a 10.0 psf botton	n chord live load nonconcurrent with	n any other live loa	ds.			multimititititi	
<li>6) * This truss has been d between the bottom ch</li>	lesigned for a live load of 30 ord and any other members	0.0psf on the bottom chord in all are	eas where a rectan	gle 3-6-	0 tall by 1-0-0 v	wide will fit	ATH LAHOLIA	111.
7) Provide mechanical co	nnection (by others) of truss	s to bearing plate capable of withsta	anding 100 lb uplift	at joint(	(s) 8, 6.	in the	ROFESSION	IIIII
<li>8) This truss is designed i standard ANSI/TPL1</li>	n accordance with the 2018	o international Residential Code sec	ctions R502.11.1 a	nd R802	2.10.2 and refe	renced	CEAL	
9) Graphical web bracing	representation does not de	pict the size, type or the orientation	of the brace on the	e web. S	Symbol only ind	licates that	28147	1111
10) Bearing symbols are of	aceo. only graphical representatio	ns of a possible bearing condition.	Bearing symbols a	ire not co	onsidered in th	e 🔋 🚺		LI HA
structural design of th	e truss to support the loads	indicated.	5 · j			THE AS	ANQINEER	un
LOAD CASE(S) Standard						anA.	94 K MORRIS	Inn
						11	All A. Mount	
							9/28/2021	
Wanning   Vanife Jester	nonomotons and read reads - to - b	Constant This desire is here down	nonomotono abor	nd in far -	n individual heiti	ling commons at the		de d

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREE	K   159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	R23	Monopitch Structural Gable	1	1	Ich Poference (entional)	# 28668
					8.430 s Feb 12 2021 MiTek Inc PESiTy IIBf-rC77wT1W7Sk	Justries, Inc. Thu Sep 30 14:13:01 2021 Page 1
		-0 ₁ 0-8 6-1-0	12-2-0	A⊼i4yywa ⊣		
		0-10-8 6-1-0	6-1-0			
			3x4	4		Scale = 1:107.9
		16.00		- 1 2	1	
		10.00	)   12=A.1			
		2:	х4 II т <b>2 ^в I</b>			
		5x6 //		/6		
			2 0			
					33	
			SI ST2	8 ^{6x8}	0 0	
		V	2x4    W4			
		5x5 = 2		/5	φ 	
			vv3		10.	
			2x4			
				1		
		7	6 ¹³	5	1 1	
		3x4	3x4 = 5x	5 =		
		6-1-0	12-2-0	4		
Plate Offsets (X,Y) [2:0	-3-4,0-1-0], [3:0-3-0,0-3-0],	[5:0-2-0,0-2-12], [8:0-4-0,0-0-8]	0-1-0			
LOADING (psf)	SPACING-	2-0-0 <b>CSI</b> .	DEFL.	in (le	oc) l/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.63	Vert(LL)	-0.10	5-6 >999 240	MT20 244/190
TCDL 10.0 BCLL 0.0 *	Rep Stress Incr	YES WB 0.58	Horz(CT)	-0.01	5 n/a n/a	
BCDL 10.0	Code IRC2018/1P	12014 Matrix-SH				Weight: 178 lb FT = 0%
LUMBER- TOP CHORD 2x4 SP No	.2		BRACING- TOP CHORD	Structur	al wood sheathing directl	v applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SP No	 			end vert	icals.	10.14 on broging
WEBS 2x4 SF NC W6,W5: 2:	<pre>c6 SP No.2</pre>		WEBS	1 Row a	t midpt 3-5	TO-14 OC DIACING.
OTHERS 2x4 SP No	.3			2 Rows	at 1/3 pts 4-5	zers and required cross bracing
				be inst	alled during truss erection	n, in accordance with Stabilizer
REACTIONS. (lb/size)	7=536/0-3-8 (min. 0-1-8), 5	5=469/Mechanical		Installa	alion guide.	
Max Horz Max Uplift	7=557(LC 12) 5=-657(LC 12)					
Max Grav	7=684(LC 22), 5=787(LC 2	0)				
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	50 (lb) or less except when shown.				
TOP CHORD 2-3=-500 BOT CHORD 6-7=-656	/166, 2-7=-650/128 /555, 6-13=-233/303, 5-13=	233/303				
WEBS 3-6=-208	/296, 3-5=-672/518, 2-6=-3	00/511				
<b>NOTES-</b> (11-12)	400mm h (0			<b></b>		
(envelope) gable end z	cone and C-C Exterior(2E) -	0-10-8 to 3-11-2, Interior(1) 3-11-2 t	_=5.0pst; n=23ft; 0 o 7-1-10, Exterior(	(2E) 7-1-1	0 to 11-11-4 zone; end	
vertical left exposed;C- 2) Truss designed for wir	C for members and forces nd loads in the plane of the	& MWFRS for reactions shown; Lun truss only. For studs exposed to wi	nber DOL=1.60 pl nd (normal to the	ate grip D face), see	OL=1.60 Standard Industry	
Gable End Details as a	applicable, or consult qualifi	ed building designer as per ANSI/TI	PI 1. st (Lum DOL = 1.15		-1 15): le=1 0: Pough	
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10	-1.101 late DOL-1.10), 11-20.0 ps				
<ol> <li>I his truss has been de non-concurrent with ot</li> </ol>	signed for greater of min ro ner live loads.	of live load of 12.0 psf or 2.00 times	s flat roof load of 2	20.0 pst or	overhangs	WINNITH CARO
<ul><li>5) Gable studs spaced at</li><li>6) This truss has been de</li></ul>	2-0-0 oc. signed for a 10 0 psf bottor	n chord live load nonconcurrent with	any other live loa	ads	in the second second	OFESSION
7) * This truss has been of	lesigned for a live load of 3	0.0psf on the bottom chord in all are	eas where a rectar	ngle 3-6-0	tall by 1-0-0 wide will fit	and the internet
8) Refer to girder(s) for tr	uss to truss connections.	s, with BCDL - 10.0psi.				SEAL E
<ol> <li>9) Provide mechanical co</li> <li>10) This truss is designed</li> </ol>	nnection (by others) of trus I in accordance with the 20	s to bearing plate capable of withsta 18 International Residential Code se	anding 100 lb uplifi actions R502.11.1	t at joint(s and R802	) except (jt=lb) 5=657. 2.10.2 and referenced	2014/
standard ANSI/TPI 1.	n representation does not d	enict the size type or the orientation	n of the brace on t	he web C	Symbol only indicates	L'ANDINEER C
that the member must be braced.						
12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.						
I OAD CASE(S) Standard						9/28/2021
Warning !	parameters and read notes be	efore use. This design is based only upon	parameters shown, a	nd is for an	individual building compone	nt to be installed and loaded

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREE	EK   159 SCHOLAR DRIVE SPRING LAKE, NC	
21-5762-R01	R24	Monopitch	1	1		# 28668	
					3.430 s Feb 12 2021 MiTek In	idustries, Inc. Thu Sep 30 14:13:02 2021 Page 1	
		-0 ₁ 10-8 6-1-0	ID:JROaQZCa 12-2-0	AXr4yyw	aPFSiTyJIBt-KT/V/p28uls	9_HYihhZUCktyCH_mEsnS9pwWypyYR?F	
		0-10-8 6-1-0	6-1-0	1			
			3x4			Scale = 1:107.9	
		-	4	4			
		16.00	12	a			
			TZ/				
		5x6 //	// Y	/Þ			
		<u>.</u>	³				
		-3.1		8 ^{6x8}			
		ñ					
			W4 8				
		5x5 = 2	VV3 1 N	/6			
		4 002		+			
		7	6 ⁹	5			
		3x4	3x4 = 5x	5 =			
		6-1-0	12-2-0	1			
Plate Offsets (X Y) [2:0	-3-4 0-1-01 [3:0-3-0 0-3-0]	6-1-0 [5·0-2-0 0-2-12] [8·0-4-0 0-0-8]	6-1-0	1			
I DADING (psf)	<u></u>	[0.0-2-0,0-2-12], [0.0-4-0,0-0-0]					
TCLL (roof) 20.0	SPACING- Plate Grin DOI	2-0-0 <b>CSI.</b> 1 15 TC 0.63	DEFL.	in (le	oc) I/defl L/d 5-6 >999 240	PLATES GRIP	
Snow (Pf) 20.0	Lumber DOL	1.15 BC 0.47	Vert(CT)	-0.12	5-6 >999 180		
BCLL 0.0 *	Rep Stress Incr Code IRC2018/TPI	YES WB 0.58 2014 Matrix-SH	Horz(CT)	-0.01	5 n/a n/a	Weight: 149 lb FT = 0%	
BCDL 10.0							
LUMBER- TOP CHORD 2x4 SP No	.2		BRACING- TOP CHORD	Structur	al wood sheathing direct	ly applied or 6-0-0 oc purlins, except	
BOT CHORD 2x4 SP No	.2			end ver	icals.		
WEBS 2x4 SP No W6,W5: 2x	<pre>.3 "Except" (6 SP No.2</pre>		WEBS	1 Row a	it midpt 3-5	-3-4 oc bracing.	
				2 Rows	at 1/3 pts 4-5		
				MiTek be inst	recommends that Stabili alled during truss erection	izers and required cross bracing	
				Installa	ation guide.		
REACTIONS. (lb/size) Max Horz	5=469/Mechanical, 7=536/0 7=557(I C 12)	)-3-8 (min. 0-1-8)					
Max Uplift	5=-657(LC 12)						
Max Grav	5=787(LC 20), 7=684(LC 22	2)					
FORCES. (Ib) - Max. Col	mp./Max. Ten All forces 2	50 (lb) or less except when shown.					
TOP CHORD 2-3=-500 BOT CHORD 6-7=-656	/166, 2-7=-650/128 /555, 6-9=-233/303, 5-9=-2	33/303					
WEBS 3-6=-207	/296, 3-5=-672/518, 2-6=-3	00/511					
NOTES- (9-10)							
1) Wind: ASCE 7-16; Vult	=130mph (3-second gust)	/asd=103mph; TCDL=5.0psf; BCDI	L=5.0psf; h=23ft; (	Cat. II; Ex	p B; Enclosed; MWFRS		
vertical left exposed;C-	C for members and forces	& MWFRS for reactions shown; Lur	nber DOL=1.60 pl	ate grip D	OL=1.60		
2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough							
Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhands							
non-concurrent with other live loads.							
4) This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit with CAR							
between the bottom ch	ord and any other members	s, with BCDL = 10.0psf.			in the second se	OFESSID No"	
<ul> <li>b) Refer to girder(s) for truss to truss connections.</li> <li>7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 5=657.</li> </ul>							
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced SEAL							
9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that 28147							
the member must be b 10) Bearing symbols are	raced. only graphical representation	ns of a possible bearing condition	Bearing symbols :	are not co	nsidered in the	Non al I	
structural design of the truss to support the loads indicated.							
LOAD CASE(S) Standard							
						0/29/2021	
						9/28/2021	



vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREEK   159 SCHO	LAR DRIVE SPRING LAKE, NC
21-5762-R01	R29	Flat Girder	1	2	Job Reference (optional)	# 28668

8.430 s Feb 12 2021 MiTek Industries, Inc. Thu Sep 30 14:13:04 2021 Page 2 ID:jROaQZCa7AXr4yywaPFSiTyJIBf-GrEGYV3OQN6tEbi4p6byH9IPB5kQirEld7Pd0iyYR?D

#### LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=-140(F) 9=-140(F) 10=-140(F) 11=-140(F)







Job	Truss	Truss Type	Qty	Ply	LOT 1111 ANDERSON CREE	K   159 SCHOLAR DRIVE SPRING LAKE, NC
21-5762-R01	VT03	Valley	1	1		# 28668
					Job Reference (optional) 8.430 s Feb 12 2021 MiTek Ind	dustries, Inc. Thu Sep 30 14:13:08 2021_Page 1
		5-1-13	ID:jROaQ2	2Ca7AXr4y )-3-10	/ywaPFSiTyJIBf-8dUmOt6v	UbdJiC?s2yfvS?v3Xi4uehPLYlNq9TyYR?9
		5-1-13	5	-1-13		
			$4x4 \equiv$			Scale = 1:42.1
		_	3			
		16.00   12				
		TT TT		र्1		
		6-1	ST2			
		2x4				
					2x4	
				:	5	
			B			
			///////////////////////////////////////	~~~~		
		2x4 // 8 9	7 10		6 2x4 ∖\	
		2x4	2x4    10-3-10	2x	4	
Plate Offsets (X Y) [6:0	)-2-8 0-1-0] [8·0-2-8 0-1-0]		10-3-10			
LOADING (psf)		2.0.0 <b>CCI</b>	DEEL	in (l		
TCLL (roof) 20.0	Plate Grip DOL	2-0-0 <b>CSI.</b> 1.15 TC 0.25	Vert(LL)	n/a	oc) i/defi L/d - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 BC 0.29 YES WB 0.12	Vert(CT) Horz(CT)	n/a 0.00	- n/a 999 5 n/a n/a	
BCLL 0.0 * BCDL 10.0	Code IRC2018/TF	PI2014 Matrix-SH	(01)	0.00	0 1.74 1.74	Weight: 52 lb FT = 0%
LUMBER-			BRACING-	<b>.</b>		
BOT CHORD 2x4 SP No BOT CHORD 2x4 SP No	5.2 5.3		BOT CHORD	Structur Rigid ce	al wood sheathing directle eiling directly applied or 10	y applied or 6-0-0 oc purlins. )-0-0 oc bracing.
OTHERS 2x4 SP No	o.3			MiTek	recommends that Stabiliz	zers and required cross bracing
				Installa	ation guide.	n, in accordance with Stabilizer
(lb) - Max Horz	ngs 10-3-10. 1=161(LC 9)					
Max Uplifi Max Crav	t All uplift 100 lb or less at	joint(s) except 1=-205(LC 10), 5=-1	84(LC 11), 8=-344	(LC 12), 6	=-343(LC 13)	
IVIAX GIAV	6=452(LC 20)	s at joint(s) except 1-274(LC 12), 5	-200(LC 13), 7-3.	59(LC 19)	, 0-402(LC 19),	
FORCES. (lb) - Max. Co	mp./Max. Ten All forces	250 (lb) or less except when shown				
TOP CHORD 1-2=-332	2/240, 4-5=-315/240					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1) Unbalanced roof live lo	oads have been considered	d for this design.				
2) Wind: ASCE 7-16; Vul (envelope) gable end 2	t=130mph (3-second gust) zone and C-C Exterior(2E)	Vasd=103mph; TCDL=5.0psf; BCD zone:C-C for members and forces &	L=5.0psf; h=23ft; MWFRS for reac	Cat. II; Ex	p B; Enclosed; MWFRS	
plate grip DOL=1.60	-20.0 nof (roof LL : Lum DC	1 =1 15 Plata DOI =1 15); Pf=20.0 m	of (Lum DOI =1.15		N =1 15); lo=1 0; Dough	
Cat B; Partially Exp.; C	Ce=1.0; Cs=1.00; Ct=1.10		SI (LUIII DOL-1.15	Plate DC	DL-1.15), IS-1.0, Rough	
<ol> <li>Gable requires continu</li> <li>This truss has been de</li> </ol>	ious bottom chord bearing. esigned for a 10.0 psf botto	m chord live load nonconcurrent wit	h anv other live lo	ads.		
6) * This truss has been of	designed for a live load of	30.0psf on the bottom chord in all ar	eas where a rectai	ngle 3-6-0	) tall by 1-0-0 wide will fit	
7) Provide mechanical co	onnection (by others) of true	ss to bearing plate capable of withst	anding 205 lb uplif	t at joint 1	, 184 lb uplift at joint 5,	AND ALL AND
344 lb uplift at joint 8 a 8) This truss is designed	and 343 lb uplift at joint 6. in accordance with the 20	18 International Residential Code se	ctions R502.11.1 a	and R802.	.10.2 and referenced	ORTH CAROLINI
standard ANSI/TPI 1.	representation does not d	enict the size, type or the orientation	of the brace on th	woh S	umbol only indicates that	OROFESS ON A THE
the member must be b	praced.			ie web. 0		SEAL
10) Bearing symbols are structural design of th	only graphical representation truss to support the load	ons of a possible bearing condition. Is indicated.	Bearing symbols	are not co	insidered in the	28147
LOAD CASE(S) Standar	 H				(IIIII)	
	<u>~</u>				thinks.	A POINEE ORIS III
						Man K. MORINA
						9/28/2021



- 9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.











- NOTES- (9-10)
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1 and 20 lb uplift at joint 3.
   8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1.
- 9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

