

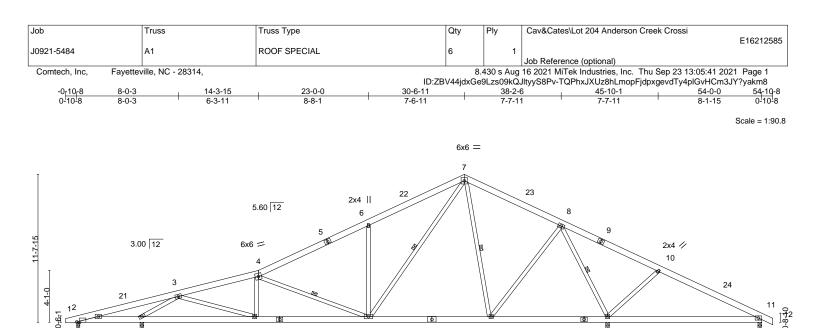
Trenco 818 Soundside Rd Edenton, NC 27932

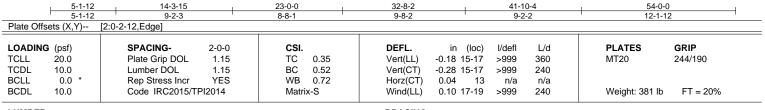
Re: J0921-5484 Cav&Cates\Lot 204 Anderson Creek Crossi

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E16212585 thru E16212601

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844



September 24,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

25

17

4x8 =

16

5x8 =

2615

4x4 =

27

14

13

4x4 =

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing	directly applied or 4-9-14 oc purlins.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applie	d or 6-0-0 oc bracing.
WEBS	2x4 SP No.2	WEBS	1 Row at midpt	4-17, 7-17, 7-15, 8-13

REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-3-0.

(lb) - Max Horz 2=-152(LC 11)

20

3x6 💋

Max Uplift All uplift 100 lb or less at joint(s) 11 except 2=-116(LC 17), 13=-259(LC 11), 20=-291(LC 10) Max Grav All reactions 250 lb or less at joint(s) 2 except 13=2653(LC 2), 11=308(LC 22), 20=1858(LC 1)

18

19

4x4 =

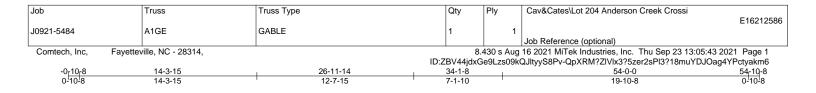
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

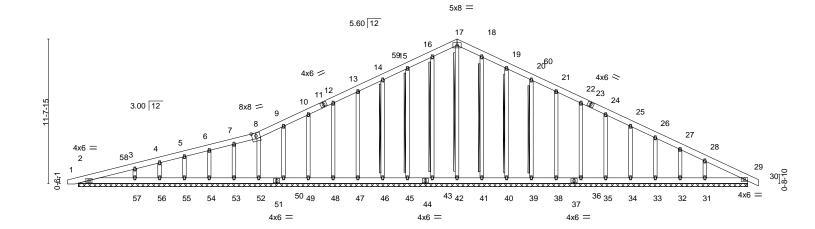
- TOP CHORD 2-3=-313/1084, 3-4=-2478/724, 4-6=-1891/598, 6-7=-1902/795, 7-8=-1019/453, 8-10=-160/889, 10-11=-98/598 BOT CHORD 2-20=-989/372, 19-20=-434/1485, 17-19=-536/2370, 15-17=0/921, 13-15=0/263.
- 2-20-96/072, 19-20-404/1465, 17-19-50/2576, 15-17-0/921, 15-15-0/253 11-13=-492/179
- WEBS 3-20=-2943/959, 3-19=-102/1022, 4-17=-932/303, 6-17=-563/375, 7-17=-485/1348, 7-15=-524/193, 8-15=-123/1045, 8-13=-2179/660, 10-13=-529/316

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-15 to 3-9-14, Interior(1) 3-9-14 to 26-1-14, Exterior(2) 26-1-14 to 34-11-8, Interior(1) 34-11-8 to 50-5-11, Exterior(2) 50-5-11 to 54-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 2=116, 13=259, 20=291.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			54-0-0 54-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.14 Matrix-S	DEFL. i Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	0 30 n/r 120	PLATES GRIP MT20 244/190 Weight: 459 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF OTHERS 2x4 SF	No.1		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applied T-Brace:	2x4 SPF No.2 - 14-46, 15-45, 16-43, 17-42 18-41, 19-40, 20-39 to narrow edge of web with 10d

Brace must cover 90% of web length.

REACTIONS. All bearings 54-0-0.

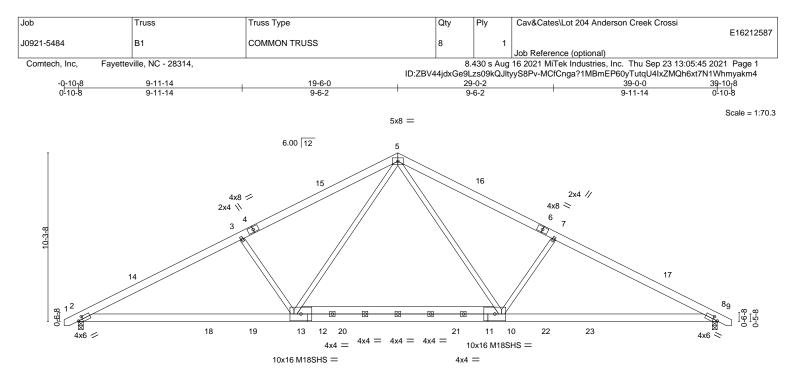
- (lb) Max Horz 2=-257(LC 11)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 56, 55, 54, 53, 52, 50, 49, 48, 47, 46, 45, 43, 41, 40, 39, 38, 36, 35, 34, 33, 32, 29 except 57=-155(LC 10), 31=-153(LC 11)
 - Max Grav All reactions 250 lb or less at joint(s) 2, 56, 55, 54, 53, 52, 50, 49, 48, 47, 46, 45, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 29 except 57=369(LC 21), 31=264(LC 22)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-300/104, 12-13=-88/263, 13-14=-109/315, 14-15=-130/377, 15-16=-153/466, 16-17=-164/533, 17-18=-164/533, 18-19=-153/466, 19-20=-130/377, 20-21=-109/315, 21-22=-88/257
- BOT CHORD 50-52=-65/252, 49-50=-65/252, 48-49=-65/252, 47-48=-65/252, 46-47=-65/252, 45-46=-65/252, 43-45=-65/252, 42-43=-65/252, 41-42=-65/252, 40-41=-65/252, 39-40=-65/252, 38-39=-65/252, 36-38=-65/252, 35-36=-65/252, 33-34=-65/252, 33-34=-65/252, 31-32=-65/252, 29-31=-65/252 WEBS 3-57=-261/296, 28-31=-187/279

NOTES-

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-6-15 to 3-9-14, Exterior(2) 3-9-14 to 26-1-14, Corner(3) 26-1-14 to 34-11-8, Exterior(2) 34-11-8 to 50-5-11, Corner(3) 50-5-11 to 54-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 56, 55, 54, 53, 52, 50, 49, 48, 47, 46, 45, 43, 41, 40, 39, 38, 36, 35, 34, 33, 32, 29 except (jt=lb) 57=155, 31=153.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and Continue Contin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:93.0


Job	Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 204 Anderson Creek Crossi
J0921-5484	A1GE	GABLE	1	1	E16212586
					Job Reference (optional)
Comtech, Inc, Fayetter	/ille, NC - 28314,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Sep 23 13:05:44 2021 Page 2
		ID:ZBV	44jdxGe9l	_zs09kQJI	tyyS8Pv-u?5qZKaNG33vdFYqOmNeIGXCuADnymdjvkIz8Kyakm5

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢	<u>13-1-15</u> 13-1-15		<u>25-10-1</u> 12-8-2		<u> </u>
Plate Offsets (X,Y	[2:0-3-4,0-2-0], [8:0-3-4,0-2-0]		-		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL) -0.20 10-1	3 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.86	Vert(CT) -0.44 8-1) >999 240	M18SHS 244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.59	Horz(CT) 0.09	8 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.09 2-1	3 >999 240	Weight: 277 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=147(LC 9) Max Uplift 2=-210(LC 10), 8=-210(LC 11) Max Grav 2=1768(LC 2), 8=1768(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3240/915, 3-5=-2953/893, 5-7=-2953/893, 7-8=-3240/915

BOT CHORD 2-13=-647/2887, 10-13=-267/1887, 8-10=-647/2830

WEBS 5-10=-247/1280, 7-10=-599/409, 5-13=-247/1282, 3-13=-599/409

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-1-3, Exterior(2) 15-1-3 to 23-10-13, Interior(1) 23-10-13 to 35-3-13, Exterior(2) 35-3-13 to 39-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

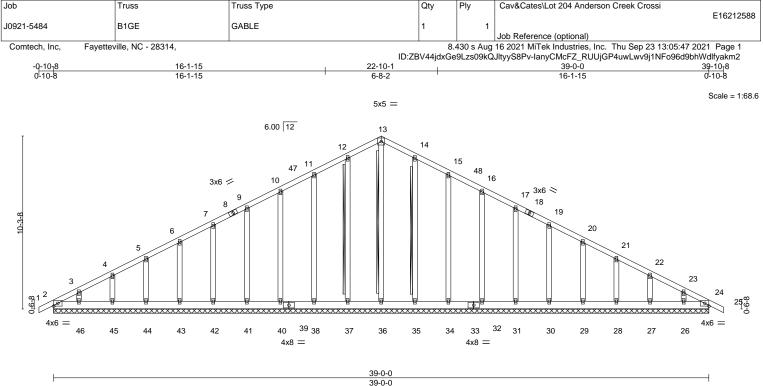
3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=210, 8=210.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-9-5 oc purlins.

Rigid ceiling directly applied or 9-8-3 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				1		39-0-0						
OADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.00	24	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	25	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	24	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 296 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

OTHERS 2x6 SP No.1 0THERS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 13-36, 12-37, 14-35 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131*x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

Vinter Martin

OR FEEL

SEAL

036322

A. GIL

C

REACTIONS. All bearings 39-0-0.

(lb) - Max Horz 2=-229(LC 11)

- Max Uplift All uplift 100 lb or less at joint(s) 2, 37, 38, 40, 41, 42, 43, 44, 45, 35, 34, 32, 31, 30, 29, 28, 27, 24, 26 except 46=-100(LC 10)
- Max Grav All reactions 250 lb or less at joint(s) 2, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 35, 34, 32, 31, 30, 29, 28, 27, 24, 26
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-330/87, 3-4=-263/85, 10-11=-92/255, 11-12=-115/349, 12-13=-136/446, 13-14=-136/446, 14-15=-115/349, 15-16=-92/255, 23-24=-266/86
- BOT CHORD 2-46=-71/295, 45-46=-71/295, 44-45=-71/295, 43-44=-71/295, 42-43=-71/295, 41-42=-71/295, 40-41=-71/295, 38-40=-71/295, 37-38=-71/295, 36-37=-71/295, 35-36=-71/295, 34-35=-71/295, 32-34=-71/295, 31-32=-71/295, 30-31=-71/295, 29-30=-71/295, 28-29=-71/295, 27-28=-71/295, 26-27=-71/295, 24-26=-71/295, 29-30=-71/295, 28-29=-71/295, 27-28=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/295, 26-27=-71/295, 24-26=-71/29

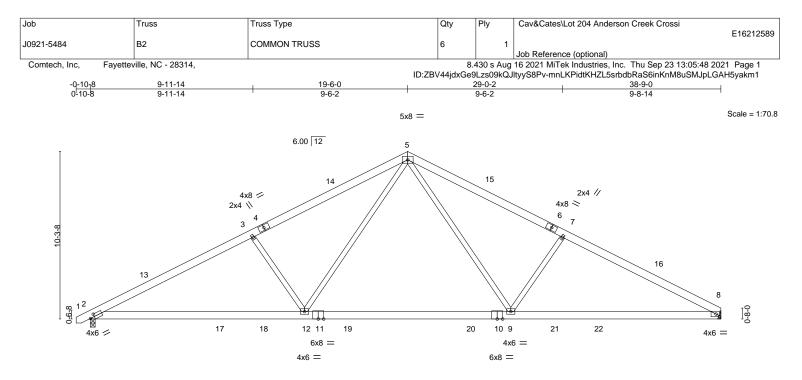
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 36-0, Exterior(2) 3-6-0 to 15-1-3, Corner(3) 15-1-3 to 23-10-13, Exterior(2) 23-10-13 to 35-5-11, Corner(3) 35-5-11 to 39-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 37, 38, 40, 41, 42, 43, 44, 45, 35, 34, 32, 31, 30, 29, 28, 27, 24, 26 except (jt=lb) 46=100.

- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 September 24,2021

L	13-1-15				25-10-1			1		38-9-0	
	13-1-15		1		12-8-2			1		12-10-15	1
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [8:0-2-6,0	-2-0]									
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.50	9-12	>923	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.63	9-12	>736	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB	0.61	Horz(CT)	0.09	8	n/a	n/a		
BCDL 10.0	Code IRC2015/TP	912014	Matri	k-S	Wind(LL)	0.09	2-12	>999	240	Weight: 245 lb	FT = 20%
LUMBER-	1				BRACING-					1	

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No 1 2x4 SP No.2 WFBS

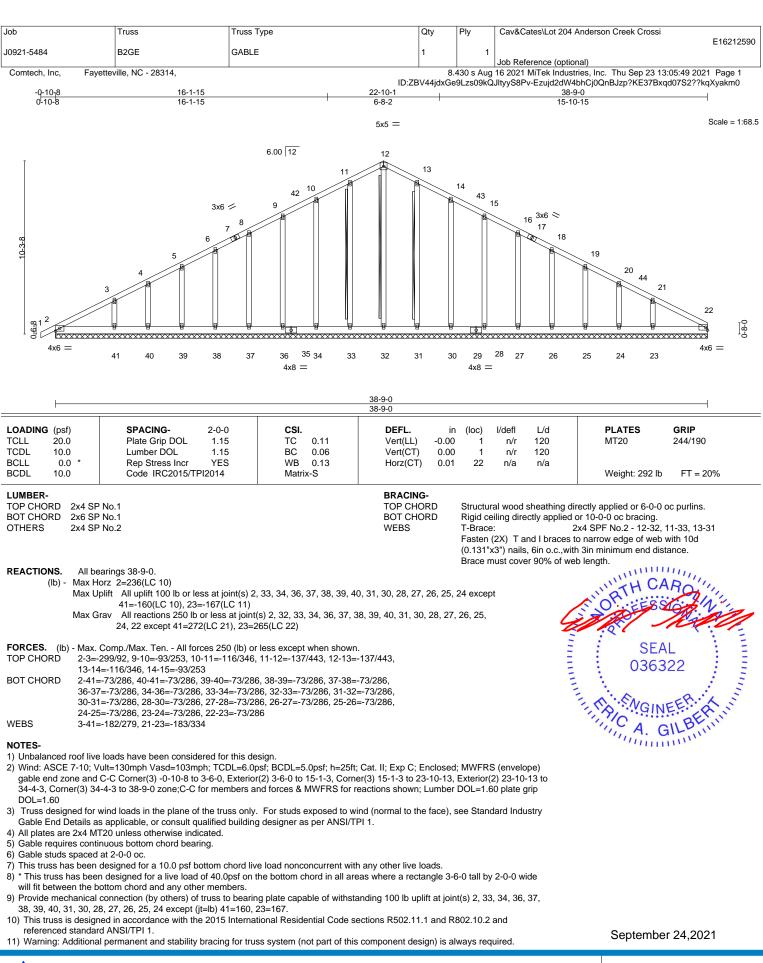
TOP CHORD

Structural wood sheathing directly applied or 3-9-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 9-8-3 oc bracing.

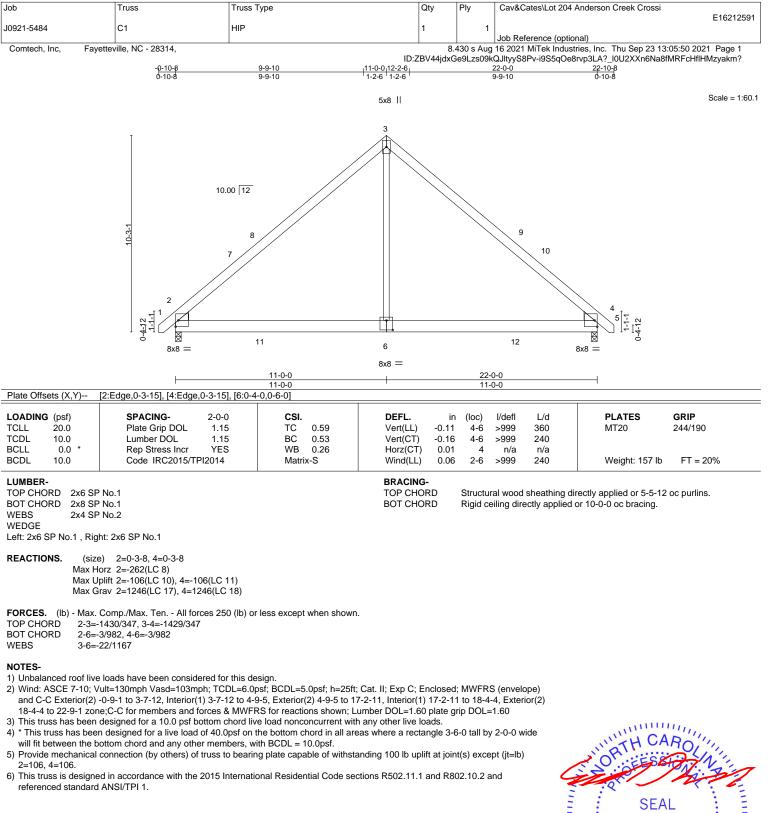
REACTIONS. (size) 2=0-3-8, 8=Mechanical Max Horz 2=148(LC 9) Max Uplift 2=-210(LC 10), 8=-193(LC 11) Max Grav 2=1778(LC 2), 8=1738(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

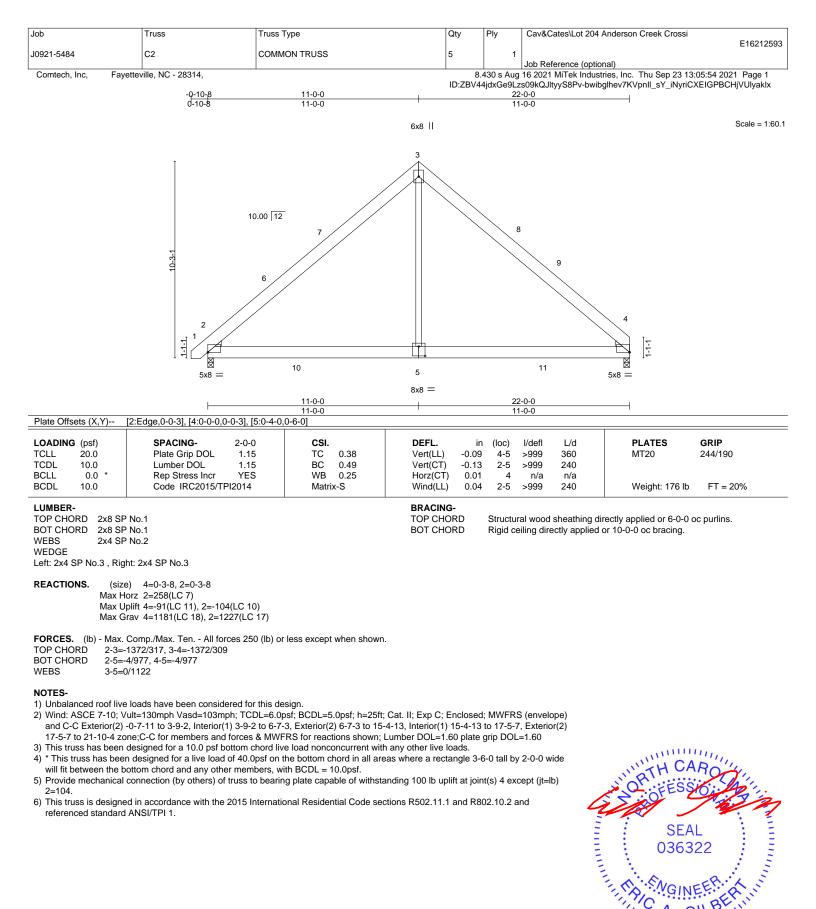
- TOP CHORD 2-3=-3182/891. 3-5=-2928/896. 5-7=-2907/900. 7-8=-3154/894
- BOT CHORD 2-12=-644/2823, 9-12=-284/1843, 8-9=-650/2735
- WFBS 5-9=-256/1255, 7-9=-571/412, 5-12=-251/1290, 3-12=-594/405


NOTES-

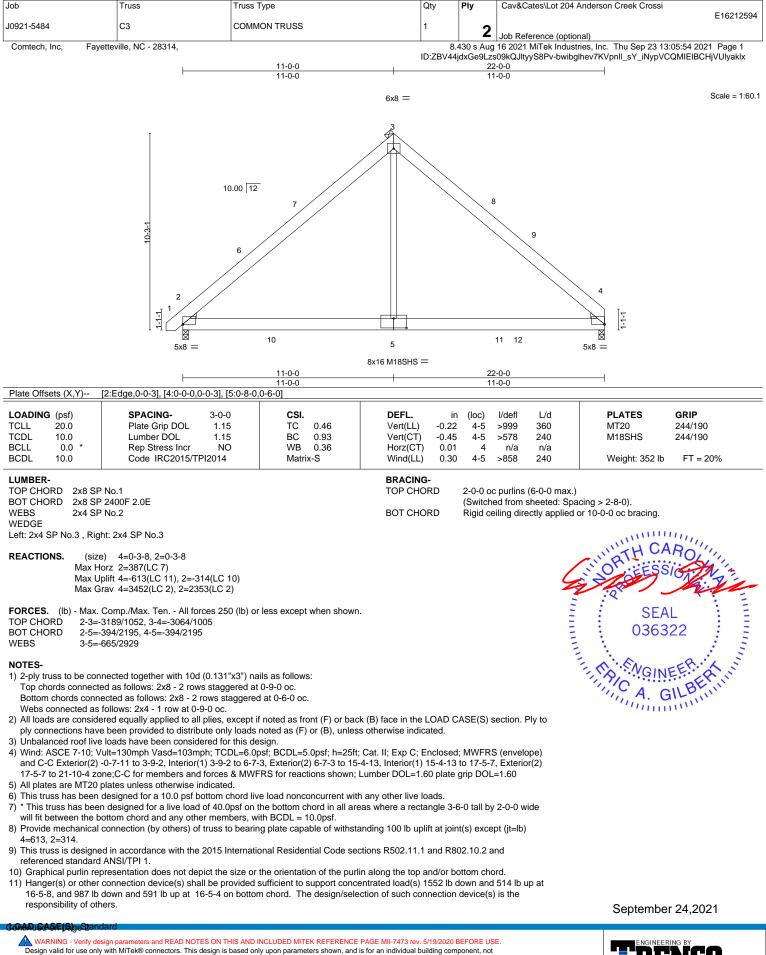
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-1-3, Exterior(2) 15-1-3 to 23-10-13, Interior(1) 23-10-13 to 34-2-15, Exterior(2) 34-2-15 to 38-7-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=210. 8=193.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

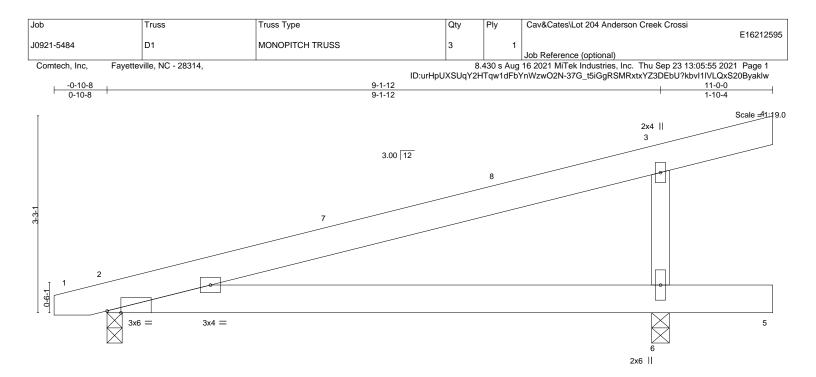


Edenton, NC 27932

September 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ſ	Job	Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 204 Anderson Creek Crossi
	J0921-5484	C3	COMMON TRUSS	1	•	E16212594
	00021 0101	00			2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Sep 23 13:05:55 2021 Page 2
			ID:ZB'	V44jdxGe	Lzs09kQ	IltyyS8Pv-37G_t5iGgRSMRxtxYZ3DEbU_Fbmb1h?LQxS20Byaklw


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 2-4=-30

Vert: 1-3=-90, 3-4=-90, 2-4=-30 Concentrated Loads (lb) Vert: 11=-1510(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
ICLL 20.0	Plate Grip DOL 1.15	TC 0.43	Vert(LL) 0.20 2-6 >534 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.37	Vert(CT) -0.14 2-6 >755 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 57 lb FT = 20%

REACTIONS. (size) 2=0-3-0, 6=0-3-8 Max Horz 2=103(LC 6) Max Uplift 2=-191(LC 6), 6=-204(LC 6) Max Grav 2=389(LC 1), 6=523(LC 1)

2x4 SP No.2

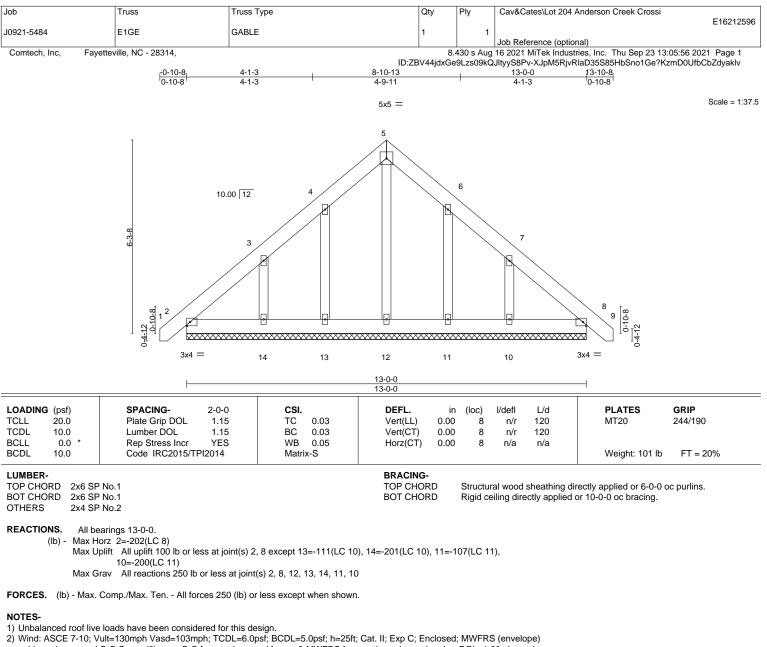
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-6=-377/404

NOTES-

WEBS

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-15 to 3-9-14, Interior(1) 3-9-14 to 6-7-3, Exterior(2) 6-7-3 to 11-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

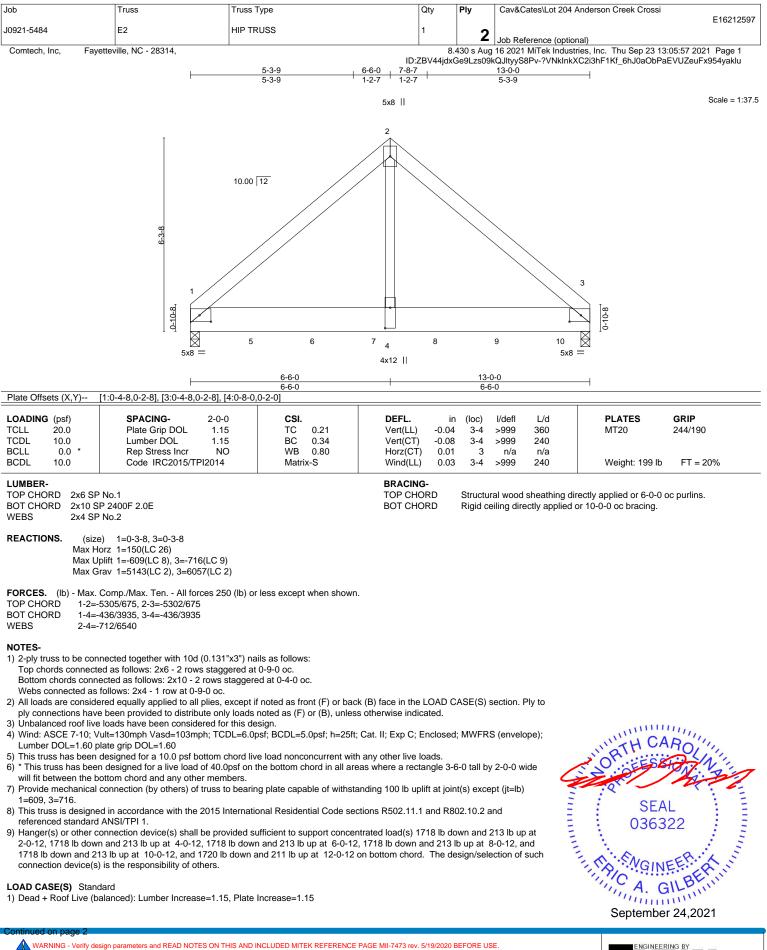
3) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=191, 6=204.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932



- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8 except (jt=lb) 13=111, 14=201, 11=107, 10=200.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

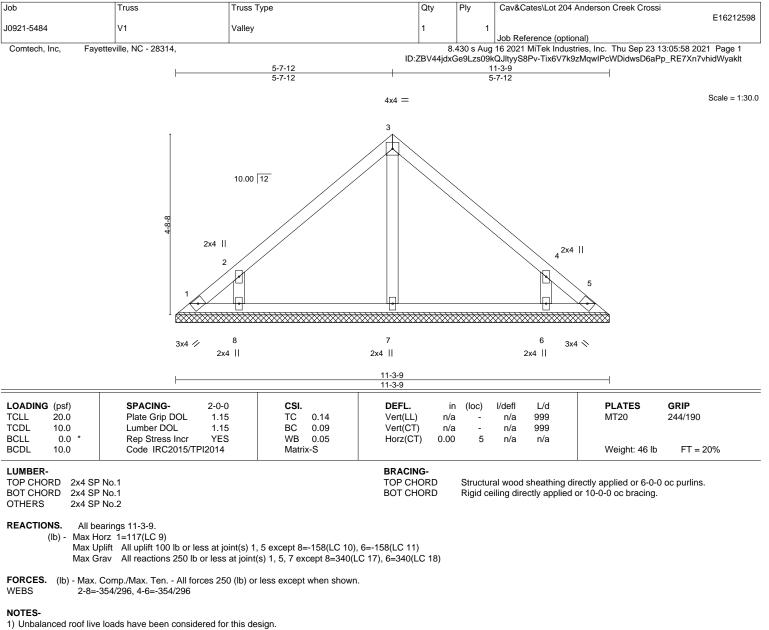
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 204 Anderson Creek Crossi
				E16212597
E2	HIP TRUSS	1	່ງ	
			2	Job Reference (optional)
ayetteville, NC - 28314,		8.4	430 s Aug	16 2021 MiTek Industries, Inc. Thu Sep 23 13:05:57 2021 Page 2
	E2	E2 HIP TRUSS	E2 HIP TRUSS 1	E2 HIP TRUSS 1 2

ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-?VNkInkXC2i3hF1Kf_6hJ0aObPaEVUZeuFx954yaklu

LOAD CASE(S) Standard


Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Concentrated Loads (lb)

Vert: 5=-1519(F) 6=-1519(F) 7=-1519(F) 8=-1519(F) 9=-1519(F) 10=-1522(F)

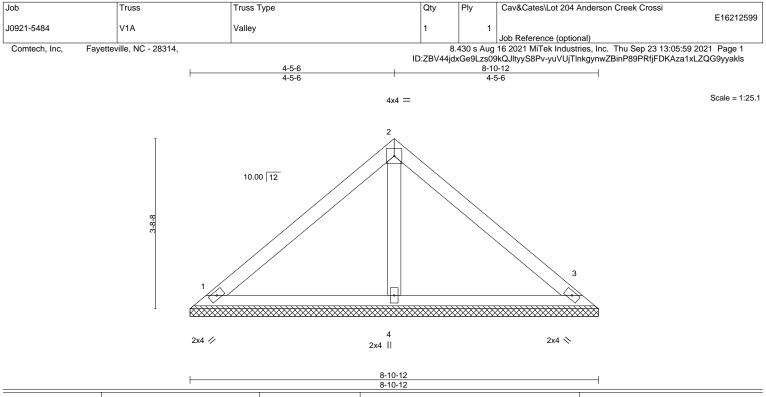
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
Cable requires continuous bottom short bear of the statement of th

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=158, 6=158.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		1	8-10-12				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) n	/a -	n/a	999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) n	/a -	n/a	999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.0	0 3	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 34 lb FT = 20%
							-
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=8-10-12, 3=8-10-12, 4=8-10-12

Max Horz 1=-90(LC 6)

Max Uplift 1=-40(LC 11), 3=-48(LC 11)

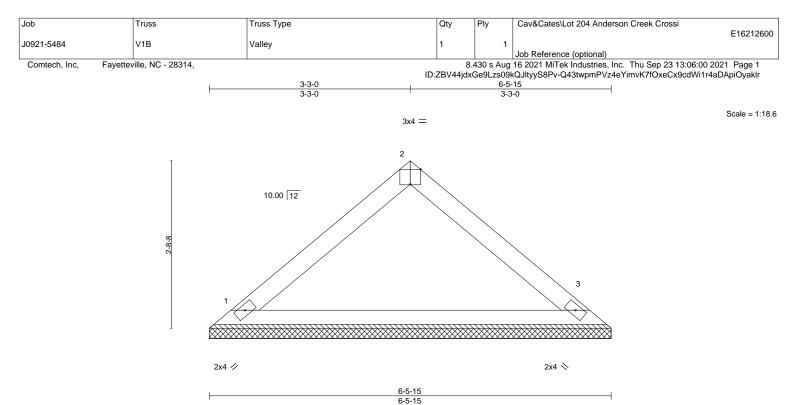
Max Grav 1=187(LC 1), 3=187(LC 1), 4=273(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)


- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-0,Edge]			
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) n/a - n/a 999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.31	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 21 lb FT = 20%
UMBER-		_	BRACING-	
OP CHORD 2x4 SF	P No.1			ectly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=6-5-15, 3=6-5-15

Max Horz 1=63(LC 9) Max Uplift 1=-25(LC 10), 3=-25(LC 11)

Max Grav 1=228(LC 1), 3=228(LC 1)

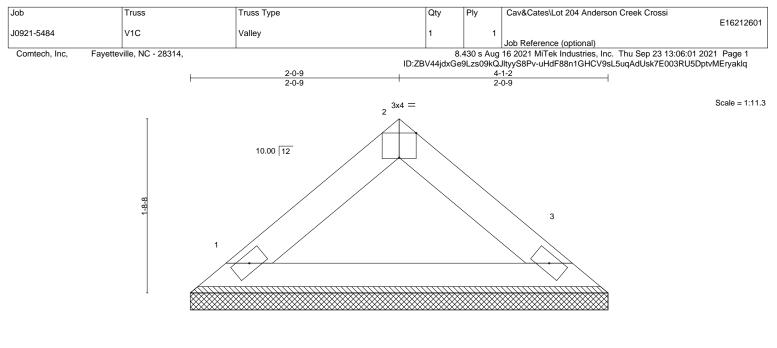
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

2x4 🥢

2x4 📎

3CDL 10.0 Code IRC2015/1PI2014 Matrix-P Weight: 13 Ib FT = 20%	Image: CLL 20.0 Plat ICDL 10.0 Lum SCLL 0.0 * Rep	CING- 2-0-0 e Grip DOL 1.15 ber DOL 1.15 Stress Incr YES e IRC2015/TPI2014	CSI. TC 0.04 BC 0.09 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 20%
--	---	--	--	---	---

1-1-2

REACTIONS. (size) 1=4-1-2, 3=4-1-2 Max Horz 1=37(LC 7) Max Uplift 1=-14(LC 10), 3=-14

Max Uplift 1=-14(LC 10), 3=-14(LC 11) Max Grav 1=132(LC 1), 3=132(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

