Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 28509 JOB: 21-5628-R01 JOB NAME: 49786-0226 WOODGROVE Wind Code: 37 Wind Speed: Vult= 115mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. 29 Truss Design(s)

Trusses:

PB01, PB02, PB03, PB04, PB05, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY V	ARINA, NC
21-5628-R01	PB01	GABLE	2	1	Job Reference (optional)	# 28509
					8.430 s Feb 12 2021 MiTek Industries, Inc.	Tue Sep 21 14:10:28 2021 Page 2

ID:8BSIWII7uOgu7p2zCnsgREydifw-hNBPckfM3p2O39zbwS8IL8RPpwkH9BbtveNA7cybOtf

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VA	ARINA, NC
21-5628-R01	PB02	GABLE	9	1	Job Reference (optional)	# 28509
					8,430 s Feb 12 2021 MiTek Industries, Inc.	Tue Sep 21 14:10:30 2021 Page :

ID:8BSIWII7uOgu7p2zCnsgREydifw-dIJ91QgcaQJ6IT6_1tAmRZXh4jLDd5UAMysHCVybOtd

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

10) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY V	ARINA, NC
21-5628-R01	PB03	GABLE	2	2	Job Reference (optional)	# 28509
					8 430 s Eeb 12 2021 MiTek Industries Inc.	Tue Sep 21 1/10:32 2021 Page

ID:8BSIWII7uOgu7p2zCnsgREydifw-a8RwS6it61ZqYnGN9ICEW_c46X4x50vTqGLOGNybOtb

16) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 17) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

19) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY V	ARINA, NC
21-5628-R01	PB04	GABLE	2	4	Job Reference (optional)	# 28509
					8 / 30 s Eeb 12 2021 MiTek Industries Inc.	Tue Sen 21 1/-10-3/ 2021 Page

ID:8BSIWII7uOgu7p2zCnsgREydifw-WWZgtok7efpYn4QlGjEibPhTZLojZwqmHaqVLGybOtZ

15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- designer.
 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not structural design of the truss to support the loads indicated.
 13) Web bracing shown is for lateral support of the loads indicated.

- Graphical bracing representation does not depict the size, type of the size that the member must be braced. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated. Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & SHET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED INTERCENTION POLICIPIE PO MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

MORPHS MORPHS 17/202 Vd and S LOADIDASE(S): By and by an and the second se vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

9/17/2021

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC
21-5628-R01	R01	GABLE	1	1	Job Reference (optional) # 28509
		ID:	8BSIWII7u	ıOqu7p2z(8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:10:41 2021 Page 2 CnsgREydifw-ptUJLBpW?ohY79S5BhtLNtUTo9zpisNouA1M4MybOtS

NOTES- (20-23)

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

8) Provide adequate drainage to prevent water ponding.

9) All plates are MT20 plates unless otherwise indicated.

10) All plates are 2x4 MT20 unless otherwise indicated.

11) Gable studs spaced at 2-0-0 oc.

12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 28-30, 29-30

15) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 22-24

- 16) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 17.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

19) Attic room checked for L/360 deflection.

- 20) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 21) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 22) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 23) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARIN	IA, NC
21-5628-R01	R02	ATTIC	3	1	Job Reference (optional)	# 28509
		ID:88	SIWII7uO	gu7p2zCn	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue sqREydifw-DS9SzCrOHj37 dBqspQ2?W6	Sep 21 14:10:44 2021 Page 2 Sz2N WvD7Ea7F0hhybOtP

NOTES- (17-20)

- 5) This trust has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are MT20 plates unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Ceiling dead load (5.0 psf) on member(s). 28-30, 29-30
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 22-24
- 13) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 17.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Attic room checked for L/360 deflection.
- 17) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 20) SEE BCSI-B3 SUMMARY SHEET- PERMANEŇŤ RESTRAING/BRĂCINĞ OF CHORĎS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE F	FUQUAY VARINA, NC
21-5628-R01	R03	ATTIC	2	1	lah Defense (antianal)	# 28509
					3.430 s Feb 12 2021 MiTek Indu	stries, Inc. Tue Sep 21 14:10:47 2021 Page 1
-0-6-8 7-2-12	8-2-12 15-2-0 . 20	-5-8 . 24-8-0.25-10-12	ID:8BSIV	VII7uOgu7 .42-6-8	p2zCnsgREydifw-d0rbcEuHa 48-3-8 53-1-12	eSir4vFXyzld8kUDa0d6aigH5Uhl0ybOtM 57-10-4 63-0-0 63-6-8
0-6-8 7-2-12	1-0-0 6-11-4 5-	3-8 4-2-8 1-2-12 7-1-8	7-1-8	2-4-12	5-9-0 4-10-4	4-8-8 5-1-12 0-6-8
						Scale = 1:107.6
		6x10 = 2x4	5 0 — 5 0 —	0.4.11		
	6.00 12	5x5 =	5x8 = 5x6 =	2X4 (6x10 =	
1			10 43 44 ¹ 11	T4	3x4 =	1
	2x4		W12		2x4	
5x6	4x6 ≠ 0T2	32 W9 5x5 =	33	₽34 €	₩16 14 W16 15	Eve >
12	7x8 = 338 40		284	6 x 8 = 3	36 45	16 2x4 ^N
-11-	3 W2 0			W102x4 =		
	19W3 QW4 W5		13-11-8	90	W18 8-0-0	
2					100	W21 76 15
o 1 B1	B3		<u>- B5</u> I I I I I I I I I I I I I I I I I I I			
6×9 - 10	12 MT2048 - 4	9 50 26			24 22	252 51
6x10 = 10x	12 MT20HS = 29 12 MT20HS = 40.40 MT20HS			25	23 23 10x12 M	21 6x8 ≈ T20HS=
2 00 12	10x12 M120HS	= 10x14 $=$ 6x8	=	10x10 =	7x8 = 10x12	
3.00 12		6x8 = 6x10 =		7x12 N	/120HS=	
		60.00				
0-3-8 7-2-12	8-2-12 15-2-0	24-2-8 25-10-12	40-1-12		48-3-8 57-10 8-1-12 9-6-1	
Plate Offsets (X,Y) [2:0	-0-12,Edge], [23:0-1-8,0-3-8	3], [25:0-3-12,0-2-12], [27:0-5-0,0-6-	-8], [29:0-3-0,0-4-1	12], [30:0-	6-0,0-6-4], [31:0-6-0,0-7-0]	, [35:0-4-0,0-2-8]
LOADING (psf)	SDACING	2.0.0	DEEL	in (l	aa) I/dafi I/d	
TCLL (roof) 20.0	Plate Grip DOL	1.15 TC 0.96	Vert(LL)	-0.97 23·	-25 >473 240	MT20 244/190
Snow (Pf) 20.0 TCDI 10.0	Lumber DOL	1.15 BC 1.00	Vert(CT)	-1.68 23	-25 >274 180	MT20HS 187/143
BCLL 0.0 *	Rep Stress Incr Code IRC2018/TP	YES WB 0.94 2014 Matrix-SH	Horz(CT)	0.39	19 n/a n/a -27 458 360	Weight: 662 lb $FT = 20\%$
BCDL 10.0			7 1110	0.07 20		
	0 *Eveent*		BRACING-	Ctructur	al wood choothing directly	applied or 1 F F as purling
T3,T1: 2x6	SP No.1		BOT CHORD	Rigid ce	eiling directly applied or 1-4	-12 oc bracing.
BOT CHORD 2x10 SP 2	400F 2.0E *Except*		WEBS	1 Row a	at midpt 10-32, 10	0-35
WEBS 2x4 SP No	/2x4-3/4 SP No.2, B1,B2: 2 3 *Excent*	x8 SP DSS, B3: 2x8 SP No.1		2 Rows	at 1/3 pts 4-29, 9-2 at .lt(s): 33 34 36	28
W10,W9:	2x4 SP No.1, W12,W4,W18	3,W3,W16: 2x4 SP No.2	001110	This true	ss requires both edges of the	he bottom chord be sheathed in the
				room ar	ea.	· · · · · · · · · · · · · · · · · · ·
				MITEK be inst	recommends that Stabilize	in accordance with Stabilizer
				Installa	ation guide.	, 2000. 20100 1111 012211201
REACTIONS. (lb/size)	2=2375/0-3-8 (min. 0-2-15)), 28=737/0-5-8 (min. 0-1-8), 19=26	62/0-3-8 (min. 0-	2-14)		
Max Uplif	28=-177(LC 11)					
Max Grav	2=3014(LC 46), 28=1190(L	C 53), 19=3476(LC 46)				
FORCES. (lb) - Max Co	mp /Max Ten - All forces 2	50 (lb) or less except when shown				
TOP CHORD 2-37=-10	205/0, 3-37=-10071/0, 3-38	3=-9196/0, 4-38=-9187/0, 4-39=-533	35/0, 5-39=-5321/0),		
5-40=-52	26/0, 6-40=-5220/0, 6-7=-5	338/65, 7-8=-4838/0, 8-9=-4838/0, 9 3- 5770/0 43 44- 5770/0 11 44-	9-41=-5323/0, 5770/0			
11-12=-5	5770/0, 12-13=-5706/0, 13-1	4=-4446/0, 14-15=-5566/0, 15-45=-	-5768/0,			
16-45=-5	917/0, 16-46=-6699/0, 46-4	7=-6721/0, 17-47=-6792/0, 17-48=-	-6802/0,			
BOT CHORD 29-49=0	806/0,18-19=-6994/0 /4276 49-50=0/4279 28-50	=0/4279 27-28=0/5125 26-27=0/5	129 25-26=0/513	6		
24-25=0	/5195, 23-24=0/5159, 23-51	=0/5686, 22-51=0/5686, 22-52=0/5	686, 21-52=0/568	6,		
19-21=0	/6084, 2-31=0/9143, 30-31= /1667_0_32=0/1808_25_34=	0/8749, 29-30=0/8456 0/1350, 34 35=0/1365, 12 35= 616	/152			
32-33=-1	66/1932, 33-35=-166/1932,	4-29=-4194/0, 7-29=-214/1087, 10	-32=-1870/225,			AND
10-35=-1	428/295, 15-23=0/525, 16-2	23=-914/154, 16-21=-126/737, 4-30	=0/3413,		- INI	BTH CAROLING
6-29=-68 14-36=-1	39/160, 3-30=-976/68, 3-31= 238/84_13-35=0/2136_35=	=0/1808, 7-28=0/1899, 8-28=-6/454, 36=-1340/95_13-36=-24/873	9-28=-3003/0,		WILL.	OFESSION
14 00-	200/04, 10 00-0/2100, 00 0	50-10-0/50, 10 00-2-/010			Inn	and the
NOTES- (18-21)	ada bawa baan aanaidanad	for this desire				SEAL
2) Wind: ASCE 7-16: Vul	t=115mph (3-second gust) \	/asd=91mph: TCDL=5.0psf: BCDL:	=5.0psf: h=23ft: C	at. II: Exp	B: Enclosed: MWFRS	28147
(envelope) gable end a	zone and C-C Exterior(2E) -	0-6-8 to 5-9-2, Interior(1) 5-9-2 to 1	1-6-9, Exterior(2R)) 11-6-9 to	o 29-4-7, Interior(1) 📒	
29-4-7 to 33-7-9, Exter forces & MWERS for r	ior(2R) 33-7-9 to 51-5-7, Int eactions shown: Lumber DC	erior(1) 51-5-7 to 57-2-14, Exterior() =1.60 plate grip DOI =1.60	2E) 57-2-14 to 63-	-6-8 zone	;C-C for members and	L'AVGINEER S
3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DOL	=1.15 Plate DOL=1.15); Pf=20.0 ps	sf (Lum DOL=1.15	Plate DC	0L=1.15); ls=1.0; Rough	K. MORMUN
Cat B; Partially Exp.; C	Ce=1.0; Cs=1.00; Ct=1.10	this design				and the transfiller
5) This truss has been de	signed for greater of min ro	of live load of 12.0 psf or 2.00 times	<u>s flat ro</u> of load of 2	2 <u>0.0</u> psf oi	n overhangs	<u>9/17/2</u> 021
Winningneulverifwildsigt	hpanlavaeloadand read notes bo	fore use. This design is based only upon	parameters shown, a	ind is for ar	n individual building component	t to be installed and loaded
Vertically. Applicability of	design parameters and proper in	corporation of component is responsibility	y of building designer	r – not truss	s designer or truss engineer. Br	racing shown is for lateral support
responsibility of the buildin	g designer. For general guidance	e regarding fabrication, quality control. st	orage, delivery, erect	ion and bra	consult ANSI/TPI 1 Natio	onal Design Standard for Metal

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSU IPT 1 National Design Standard for Met Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC
21-5628-R01	R03	ATTIC	2	1	Job Reference (optional) # 28509
			ID:8BSIW	/ll7uOqu7p	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:10:47 2021 Page 02zCnsgREydifw-d0rbcEuHaeSir4vFXyzId8kUDa0d6aigH5UhI0ybO

NOTES- (18-21)

6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 7) Provide adequate drainage to prevent water ponding.

8) All plates are MT20 plates unless otherwise indicated.

9) All plates are 6x6 MT20 unless otherwise indicated.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 11)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 14-15, 32-33, 33-35, 34-36, 14-36
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 25-27, 23-25
- 14) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 28=177.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Attic room checked for L/360 deflection.
- 18) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 19) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 20) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 21) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Ty	De	Qty	Ply	49786-0226 W	OODGROVE	FUQUAY VA	RINA, NC	
21-5628-R01	R04	ATTIC		1	2	Job Reference	ce (optional)		#	28509
-0 <u>-6-8 7-2-12</u> 0-6-8 7-2-12	<u>8₇2-12 15-2-</u> 1-0-0 6-11-	-0 <u>20-5-8</u> -4 5-3-8	24-8-025 ₁ 1012 33-0-4 4-2-8 1-2-12 7-1-8	ID:8BSIWII7u0 40-1-12 7-1-8	Dgu7p2zCr 42-6-8 2-4-12	8.430 s Feb 12 nsgREydifw	2021 MiTek lı eUfxyQPB4 53-1-12 4-10-4	dustries, Inc. _xroDKVZwł 57-10-4 4-8-8	Tue Sep 21 14 (CROKbjLn 63-0-0 5-1-12	i:10:52 2021 Page 1 DPQNBRzDybOtH <u>63-</u> 6-8 0-6-8
										Scale = 1:108.6
5x5	6.0 ;	0 12 2x4 6 T2 7	$2x4 $ $5x5 =$ $8 9 40^{W11}$ $31 $	$5x8 = 4x6 =$ $41 \qquad 10 \qquad 42 \ 11$ $70 \qquad 32 \ W11$ $742 \ 2x4 \ $	2x4 43 12 214 22 4 4 4 4 4 4 4 4 34 4 4 34 8 33	6x10 = 13	14 14	₄ 5x5 ≫		

8-2-4

कि

25

6x8 =

13-11-8

5x5 🗢 44

> ि 2151 50

8x8 =

35

8-0-0

23

7x8 =

W18

B材ば

22

_

5x8/#02x

GR6 6 55

24

¹⁵ 45 46

2x4 ||

6x8 =

MORR

9/17/2021

4x6 📚

20

17 47

16

0-11-12

3.00 12		5x8 =					
0-3-8 7-2-12 0-3-8 6-11-4	8-2-12 15-2-0 24-2-8 1-0-0 6-11-4 9-0-8 0-12 Edge 129:0 11 12 0 5 41 120 0	25-10-12 1-8-4 2-0-0-5-01 (20-0-6-0-0-4	40-1-12 14-3-0	48-3-8 8-1-12	<u> </u>	-4 63-0-0 2 5-1-12	
Plate Olisets (A, f) [2.0-	0-12,Eugej, [26.0-11-12,0-5-4], [29.0-	5-0,0-5-0], [30.0-6-0,0-2	4-4 <u>]</u>				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-3-8 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.74 BC 0.97 WB 0.80 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT) Attic	in (loc) l/defl -0.62 22-24 >737 -1.08 22-24 >427 0.25 18 n/a -0.23 24-26 749	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 1283 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x6 SP No. BOT CHORD 2x10 SP 24 B5: 1-1/2x4	2 00F 2.0E *Except* -3/4 SP No 2_B1: 2x8 SP No 1_B2: 2	x6 SP No 1	BRACING- TOP CHORD	2-0-0 oc purlins (3-1 (Switched from shee Rigid ceiling directly	0-7 max.) eted: Spacing > applied or 10-0	2-0-0).	

1 Row at midpt B3: 2x6 SP No 2 WEBS 4-28 9-27 WEBS 2x4 SP No.3 *Except* JOINTS 1 Brace at Jt(s): 7, 31, 32, 33, 13, 34, 35 W10,W12,W18,W16: 2x4 SP No.2 This truss requires both edges of the bottom chord be sheathed in the room area. REACTIONS. (lb/size) 2=2739/0-3-8 (min. 0-1-15), 27=817/0-5-8 (min. 0-1-8), 18=3061/0-3-8 (min. 0-1-10) Max Horz 2=146(LC 14) Max Uplift27=-204(LC 11)

49

27 26

6x8 =

48 28

12x14 ≈

Max Grav 2=3473(LC 46), 27=1330(LC 53), 18=3995(LC 46)

5x8 🖉

30 29

7x6 =

8x12 MT20HS=

3

36

10-11-12

0-0-0

6x8

2

6x8 *≍*

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-36=-11641/0, 3-36=-11488/0, 3-37=-10404/0, 4-37=-10394/0, 4-38=-6111/0, 5-38=-6083/0, 5-39=-5990/0, 6-39=-5979/0, 6-7=-6121/79, 7-8=-5613/0, 8-9=-5613/0, 9-40=-6104/0, 40-41=-6104/0, 10-41=-6104/0, 10-42=-6475/0, 42-43=-6475/0, 11-43=-6475/0, 11-12=-6475/0, 12-13=-6437/0, 13-14=-5249/0, 14-44=-6669/0, 15-44=-6840/0, 15-45=-7669/0, 45-46=-7695/0, 16-46=-7775/0, 16-47=-7788/0, 17-47=-7791/0, 17-18=-8008/0 BOT CHORD 28-48=0/4941, 48-49=0/4948, 27-49=0/4948, 26-27=0/5916, 25-26=0/5922, 24-25=0/5922,

23-24=0/5957, 22-23=0/5957, 22-50=0/6561, 21-50=0/6561, 21-51=0/6561, 20-51=0/6561, 18-20=0/6967, 2-30=0/10417, 29-30=0/9951, 28-29=0/9565 26-31=0/1729, 9-31=0/1879, 24-33=0/1517, 33-34=0/1522, 12-34=-685/174, 17-20=-15/251, 31-32=-215/2216, 32-34=-215/2216, 4-28=-4680/0, 7-28=-255/1207, 10-31=-2176/278, WEBS 10-34=-1737/330, 14-22=0/653, 15-22=-1044/174, 15-20=-144/777, 4-29=0/3858 6-28=-804/184, 3-29=-1357/70, 3-30=0/2306, 7-27=0/2257, 8-27=-9/487, 9-27=-3162/0, 14-35=-1322/86, 13-34=0/2229, 34-35=-1544/108, 13-35=-36/1174

NOTES-(21-24)

PROFESS 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc, 1-1/2x4-3/4 - 2 rows staggered at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. 28147 Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to by Automation is a second connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. VOINE 3) Unbalanced roof live loads have been considered for this design. K.

4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-6-8 to 5-9-2, Interior(1) 5-9-2 to 11-6-9, Exterior(2R) 11-6-9 to 29-4-7, Interior(1) 29-4-7 to 33-7-9, Exterior(2R) 33-7-9 to 51-5-7, Interior(1) 51-5-7 to 57-2-14, Exterior(2E) 57-2-14 to 63-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQ	QUAY VARINA, NC
21-5628-R01	R04	ATTIC	1	2	Job Reference (optional)	# 28509
		ID:8E	SIWII7uO	qu7p2zCr	8.430 s Feb 12 2021 MiTek Industrie sgREydifw- eUfxyQPB4 xroD	es, Inc. Tue Sep 21 14:10:52 2021 Page 2 DKVZwKCROKbjLntDPQNBRzDybOtH

NOTES-(21-24)

- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 9) Provide adequate drainage to prevent water ponding.
- 10) All plates are MT20 plates unless otherwise indicated.
- 11) All plates are 6x6 MT20 unless otherwise indicated.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 31-32, 32-34, 33-35, 14-35
- 15) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 24-26, 22-24
- 16) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 27=204.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10.2 and referenced standard ANSI/TPI 1.
- 19) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) Attic room checked for L/360 deflection.
- 21) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

22) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

- 23) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate 24) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE F	FUQUAY VARINA, NC	
21-5628-R01	R05	ATTIC	1	2	Job Reference (optional)	#	28509
			ID:8BSIW	ll7uOgu7p	8.430 s Feb 12 2021 MiTek Indu 22CnsgREydifw-LyRNif?YDji	ustries, Inc. Tue Sep 21 iH2dgA72951F8JecS	14:10:57 2021 Page 1 DS9Q8afvCfRybOtC
-0 <u>-6-8 7-2-12</u> 0-6-8 7-2-12	8-2-12 15-2-0 20 1-0-0 6-11-4 5	<u>-5-8 24-8-025-10-12 33-0-4</u> -3-8 4-2-8 1-2-12 7-1-8	40-1-12 7-1-8	42-6-8	<u>48-3-8</u> <u>53-1-12</u> 5-9-0 <u>4-10-4</u>	<u>57-10-4</u> 63-0- 4-8-8 5-1-1	0 2
							Scale = 1:107.3
		6x10 = 2x4					
	6.00 12	5x5 =	6x8 = 4x6 =	2x4 42 12	6x10 =		
]	2×4						1
	4×6 - 6 12	30	VWd2 31	33 W14	se 14		
5x5 :	5x6 = - 26 38	5x5 =	2x4	₩32	₩16 4 3	5x5 ≈	
-11-	3 V 2 0	We W2 W8W10 4	5×	:80 ⁴⁴ 02x4 =		44 45 4x6 =	-11-
₹ 35 m	W3 W4 WD		13-11-8	ာx၃၂။ ၂၂-မိ	8-0-0 W18	W20 17	1
01 B1	B3		<u>B5</u>			W21 46	
	29 28 8x8 =		<u>e e ese e</u>			<u>] 1288</u> 2049 48	
/xo >	7x6 = 27	26 25 $24S = 7x8 - 10x10$) —	23 7x8 7	22 21 21 28 = 6x8	8 = 19	6x8 =
3.00 12	10/12 11/2011		. —				
0- <u>3-8 7-2-12</u> 0-3-8 6-11-4	8-2-12 15-2-0	<u>24-8-0 25-10-12</u>	40-1-12 14-3-0		<u>48-3-8</u> 57-1 8-1-12 9-6-	0-4 63-0-	$\frac{0}{2}$
Plate Offsets (X,Y) [2:0)-3-7,0-3-7], [26:0-4-0,0-4-1	2], [27:0-6-0,0-4-3], [28:0-3-0,0-4-8]	, [29:0-4-0,0-5-0],	[33:0-4-0	,0-2-0]		
LOADING (psf) TCLL (roof) 20.0	SPACING-	2-3-8 CSI .	DEFL.	in (l	oc) I/defl L/d	PLATES	GRIP
Snow (Pf) 20.0 TCDI 10.0	Lumber DOL	1.15 BC 0.86	Vert(CT)	-0.54	-27 >536 180	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr Code IRC2018/TF	NO WB 0.67 PI2014 Matrix-SH	Horz(CT) Attic	0.21 -0.27 23	18 n/a n/a -25 641 360	Weight: 1280	lb FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP No BOT CHORD 2x10 SP 2	0.2 2400F 2 0F *Except*		TOP CHORD	2-0-0 o (Switch	c purlins (4-5-2 max.)	> 2-0-0)	
B5: 1-1/2x	4-3/4 SP No.2, B1: 2x8 SP	No.2, B2: 2x6 SP No.1	BOT CHORD	Rigid ce	eiling directly applied or 10-	-0-0 oc bracing.	
WEBS 2x4 SP No	5.3 *Except*		JOINTS	1 Brace	at Jt(s): 7, 30, 31, 32, 13,	33, 34	
VV10,VV12	,W18,W16: 2X4 SP No.2			room ar	ea.	the bottom chord be	e sneathed in the
REACTIONS. (Ib/size) Max Horz	23=1820/0-3-8 (min. 0-1-8 2=149(LC 14)	3), 18=2170/0-3-8 (min. 0-1-8), 2=25	579/0-3-8 (min. 0-	1-11)			
Max Uplift Max Grav	t2=-29(LC 14) 23=2841(LC 38), 18=2534	(LC 45), 2=2973(LC 36)					
FORCES (lb) - Max Co	mn /Max Ten - All forces	250 (lb) or less excent when shown					
TOP CHORD 2-35=-98	342/65, 3-35=-9689/85, 3-3	6=-8722/106, 4-36=-8712/110, 4-37	=-5130/64,				
8-9=-466	50/79, 9-39=-4467/33, 39-4	0=-4467/33, 10-40=-4467/33, 10-41	=-344/2469,				
41-42=-3 14-43=-4	344/2469, 11-42=-344/2469 1983/36, 15-43=-5046/14, 1), 11-12=-344/2469, 12-13=-330/236 5-44=-4524/63, 44-45=-4557/52, 16	8, 13-14=-2579/1 -45=-4564/50,	19,			
16-17=-4 BOT CHORD 27-46=0/	4612/41, 17-18=-4706/0 /4181, 46-47=0/4186, 26-4 ⁻	7=0/4187, 25-26=0/4579, 24-25=0/4	577, 23-24=0/457	7,			
22-23=0/ 18-19=0/	/4553, 21-22=0/4553, 21-4	8=0/4393, 20-48=0/4393, 20-49=0/4	393, 19-49=0/439	3,			
WEBS 25-30=-1	1309/227, 9-30=-1140/241,	23-32=-1024/181, 32-33=-1019/180	, 12-33=-1019/13	1,			
10-33=-4	1929/213, 14-21=0/789, 15-	-21=-768/425, 15-19=-712/736, 4-28	=-85/3252,	,			
6-27=-77 9-26=-10	/9/188, 3-28=-1316/138, 3-)9/1090, 14-34=-2352/55, 1	29=-22/2058, 7-26=-38/1337, 8-26= 3-33=-3574/166, 33-34=-3423/64, 1	-331/0, 3-34=-5/2492			AND ALL MANDER AND	
NOTES- (21-24)					. Inthe	WIRTH LAROL	Aller.
1) 2-ply truss to be connected	ected together with 10d (0.1 as follows: 2x6 - 2 rows st	31"x3") nails as follows: aggered at 0-9-0 oc			Innu	PROFESS PAR	S. Internet
Bottom chords connec	ted as follows: 2x10 - 2 rov	vs staggered at 0-9-0 oc, 1-1/2x4-3/4	1 - 2 rows stagger	ed at 0-9-	0 oc, 2x8 - 2 rows	SEAL	
Webs connected as fo	llows: 2x4 - 1 row at 0-9-0	0C.				28147	
 All loads are considered connections have been 	eu equally applied to all plie n provided to distribute only	is, except if noted as front (F) or bac / loads noted as (F) or (B), unless of	herwise indicated	UAD CAS	SE(S) Section. Ply to ply	A ANDINE A	and the second sec
3) Unbalanced roof live lo4) Wind: ASCE 7-16; Vul	bads have been considered t=115mph (3-second gust)	l tor this design. Vasd=91mph; TCDL=5.0psf; BCDL:	=5.0psf; h=23ft; C	at. II; Exp	B; Enclosed; MWFRS	ARK & MORR	ALINE .
(envelope) gable end z 29-4-7 to 33-7-9. Exter	zone and C-C Exterior(2E) rior(2R) 33-7-9 to 51-5-7 In	-0-6-8 to 5-9-2, Interior(1) 5-9-2 to 1 terior(1) 51-5-7 to 56-6-10. Exterior(1-6-9, Exterior(2R 2E) 56-6-10 to 62) 11-6-9 t -10-4 zon	o 29-4-7, Interior(1) e;C-C for members and	White the main and the	
forces & MWFRS for re	eactions shown; Lumber D	OL=1.60 plate grip DOL=1.60	.,		,	9/17/202	1
Warning !—Verify design Continued on page 2 vertically. Applicability of	n parameters and read notes h design parameters and proper in	petore use. This design is based only upon accorporation of component is responsibility	parameters shown, a y of building designer	ind is for a r – not trus	n individual building componen s designer or truss engineer. Bi	nt to be installed and lo racing shown is for late	aded eral support
of individual web members	only. Additional temporary bra	icing to ensure stability during construction	n is the responsibility	of the erec	ctor. Additional permanent brac	cing of the overall stru	cture is the
Plate Connected Wood Tru	ass Construction and BCSI 1-02	B Guide to <i>Good Practice for Handling, In</i>	estalling & Bracing of	f Metal Pla	ite Connected Wood Trusses fi	From Truss Plate Institu	te, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC	
21-5628-R01	R05	ATTIC	1	2	Job Reference (optional)	28509
			D:8BSIWI	7uOqu7p2	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14: 2zCnsgREydifw-LyRNif?YDjiH2dgA72951F8JecSDS	10:57 2021 Page 2 39Q8afvCfRybOtC

NOTES-(21-24)

- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 9) Provide adequate drainage to prevent water ponding.
- 10) All plates are MT20 plates unless otherwise indicated.
- 11) All plates are 6x6 MT20 unless otherwise indicated.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 30-31, 31-33, 32-34, 14-34
- 15) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 23-25, 21-23
- 16) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 19) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) Attic room checked for L/360 deflection.
- 21) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

22) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

- 23) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate 24) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC
21-5628-R01	R06	ATTIC	2	1	Job Reference (optional) # 28509
			D:8BSIWII	7uOqu7p2	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:11:00 2021 Page 2 2zCnsgREydifw-IX7VKh2RWe4sv4PloAioeumjIpVZfRdbGd7tFmybOt9

NOTES- (17-20)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a gualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are MT20 plates unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Ceiling dead load (5.0 psf) on member(s). 28-29, 29-31, 30-32, 13-32
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 22-24, 20-22
- 13) Bearing at joint(s) 27 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Attic room checked for L/360 deflection.
- 17) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 19) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 20) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Scale = 1:104.2

L	7-8-8	15-2-0	25-10-12	2		40-1-12		48-3-8		57-10-4	63-0-0
Plata Offecte	<u>/-8-8</u>	<u>8-5-7</u>	10-8-12	6 01 [22:0	4 12 0 7 01	14-3-0	126.0 2 0 0 2	8-1-12		9-6-12	5-1-12
Fiale Olisels	(^, 1) [0.0-4	+-0,0-3-0 <u>], [11.0-8-0,0-4-6</u>	oj, [22.0-2-4,0	-0-0], [23.0-	4-12,0- <i>1-</i> 0 <u>]</u> ,	[25.0-2-6,0-5-0],	[20.0-2-0,0-2-	•0]			
LOADING (ps TCLL (roof) Snow (Pf) TCDL	f) 20.0 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.55 0.71 0.91	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.40 22-23 -0.59 22-23 0.05 17	l/defl >959 >655 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDI	0.0 "	Code IRC2018/TF	PI2014	Matrix	x-SH	Attic`	-0.20 20-22	850	360	Weight: 260	3 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x10 SP 2400F 2.0E *Except* B4: 1-1/2x4-3/4 SP No.2 WEBS 2x4 SP No.3 *Except* W9,W2,W4,W5: 2x4 SP No.2, W11: 2x4 SP SS, W7: 2x6 SP No.2 W13: 2x4 SP No.1 REACTIONS. (lb/size) 17=6886/0-3-8 (min 0-2-2) 20=-1555/0-3-8 (min 0-1-8) 24					No.2	BRACING- TOP CHORD BOT CHORD JOINTS	Structural w Rigid ceiling 6-0-0 oc bra 1 Brace at J This truss ro room area.	ood she directly acing: 2-2 t(s): 27 equires b	athing direct applied or 1 24,23-24. poth edges c	tly applied or 6-0-0 o 10-0-0 oc bracing, of the bottom chord	bc purlins. Except: be sheathed in the
REACTIONS. (lb/size) 17=6886/0-3-8 (min. 0-2-2), 20=-1555/0-3-8 (min. 0-1-8), 24=8284/0-3-8 (min. 0-2-2) Max Horz 24=129(LC 14) Max Uplift17=-429(LC 15), 20=-3065(LC 53), 24=-581(LC 14) Max Grav 17=10313(LC 46), 20=368(LC 11), 24=12343(LC 54)											
FORCES. (Ib TOP CHORD	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-28=-423/384, 3-28=-390/578, 3-29=-12211/593, 4-29=-12198/594, 4-30=-12185/606, 5-30=-12134/622, 5-6=-12149/679, 6-7=-19560/958, 7-31=-19819/968, 31-32=-19819/968, 8-32=-19819/968, 8-33=-8041/428, 33-34=-8041/428, 9-34=-8041/428, 9-10=-8041/428, 10-11=-8334/444, 11-12=-13325/652, 12-35=-13317/624, 13-35=-13338/605, 13-36=-1021/101, 36-37=-1029/94, 14-37=-1062/92, 14-15=-1076/82, 15-16=-996/54										
BOT CHORD	2-38=-412 22-40=-64 20-42=-67 18-44=-36	/418, 24-38=-412/418, 23 5/13723, 21-22=-876/188 1/14990, 42-43=-671/149 2/8989, 44-45=-362/8989	3-24=-412/412 322, 21-41=-8 989, 19-43=-6 9 17-45=-362	2, 23-39=-64 76/18826, 2 72/14981, 1 /8989_16-1	45/13723, 3 20-41=-877/ 18-19=-670/ 7=-17/910	9-40=-645/13723 18909, 14940,	,				
WEBS	15-17=-48 6-23=-590 13-18=-19 7-25=-456 6-25=-15/1	2/136, 25-27=-2648/164, 3/315, 8-25=-195/4025, 8 8/4435, 13-17=-11859/52 /425, 11-20=-867/16293, 1048	26-27=-2648 3-26=-8863/5 29, 20-26=-65 11-26=-1144	/164, 3-24= 32, 12-18=-6 81/423, 10- 3/575, 5-23	-12098/732 618/146, 11 26=-704/11 =-649/162,	, 3-23=-610/1258 -18=-5911/349, 7, 22-25=-263/12 6-22=-526/11192	2, 74,				111,
NOTES- (2' 1) 4-ply truss t Top chords Bottom cho Webs conn Attach BC v 2) All loads ar connection: 3) Unbalancer 4) Wind: ASC (envelope) 29-4-7 to 3: exposed; C	 7-25=-456/425, 11-20=-867/16293, 11-26=-11443/575, 5-23=-649/162, 6-22=-526/11192, 6-25=-15/1048 OTES- (21-24)) 4-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 3 rows staggered at 0-5-0 oc, 1-1/2x4-3/4 - 2 rows staggered at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 3 rows staggered at 0-5-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to Fourier to the second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-6-8 to 5-9-2, Interior(1) 5-9-2 to 11-6-9, Exterior(2R) 11-6-9 to 29-4-7, Interior(1) 29-4-7 to 33-7-9, Exterior(2R) 33-7-9 to 51-5-7, Interior(1) 51-5-7 to 56-8-6, Exterior(2E) 56-8-6 to 63-0-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Warning IVerify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded 										
Continued on Vertically. Ap of individual v	Varing !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded network of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the										

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY V	ARINA, NC
21-5628-R01	R07	ATTIC	1	4	Job Reference (optional)	# 28509
	•				8 430 c Eeb 12 2021 MiTek Industries Inc.	Tuo Son 21 14:11:08 2021 Page (

ID:8BSIWII7uOgu7p2zCnsgREydifw-W3cX0Q8Se55jsJ0IGssgzZ5AC2F3X4Rm6s3IXIybOt1

NOTES-(21-24)

- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 9) Provide adequate drainage to prevent water ponding.
- 10) All plates are 6x8 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Ceiling dead load (5.0 psf) on member(s). 25-27, 26-27
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 20-22
- 15) Bearing at joint(s) 24 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=429, 20=3065, 24=581.
 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 18) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 19) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10665 lb down and 639 lb up at 25-11-8, and 2932 lb down and 176 lb up at 36-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 20) Attic room checked for L/360 deflection.
- 21) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 22) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 23) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 24) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-6=-60, 6-11=-60, 11-16=-60, 2-22=-20, 25-26=-10, 20-22=-40, 16-20=-20 Concentrated Loads (lb)

Vert: 22=-6365(F) 41=-1750(F)

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY V	ARINA, NC
21-5628-R01	R08	PIGGYBACK BASE	5	1	Job Reference (optional)	# 28509
					8.430 s Feb 12 2021 MiTek Industries, Inc.	Tue Sep 21 14:11:09 2021 Page :

ID:8BSIWII7uOgu7p2zCnsgREydifw-_FAvDI94PPDaUTbUqZNvWneGeSZkGZEvKWpr4kybOt0

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC	
21-5628-R01	R09	PIGGYBACK BASE	2	1	Job Reference (optional) # 28509)
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:11:10 202	1 Page 1

ID:8BSIWII7uOgu7p2zCnsgREydifw-SSkHR59i9jLR6cAgNHu82_BRirvk?0N3ZAYOcAybOt?

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARIN	IA, NC
21-5628-R01	R10	ATTIC	1	4	Job Reference (optional)	# 28509
		ID:8I	BSIWII7uC) qu7p2zCi	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue nsgREydifw-LDzoGTDDDxrsaEURc7y4Dg	Sep 21 14:11:14 2021 Page 2 L6ZTF6xneeUoWckyybOs

NOTES- (19-22)

- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 9) Provide adequate drainage to prevent water ponding.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 25-27, 26-27
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 20-22
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=489, 20=1960, 16=342.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10665 lb down and 639 lb up at 25-10-12, and 922 lb down and 55 lb up at 36-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 18) Attic room checked for L/360 deflection.
- 19) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 20) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 22) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-6=-60, 6-11=-60, 11-16=-60, 2-22=-20, 20-22=-40, 16-20=-20, 25-26=-10 Concentrated Loads (lb)

Vert: 22=-6365(F) 40=-550(F)

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA,	NC
21-5628-R01	R11	ATTIC	2	1	Job Reference (optional)	# 28509
		ID:	8BSIWII7u	ıOqu7p2z	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Se CnsgREydifw-Hc5Yh9ETIZ5agXdgkX?YIFR0	ep 21 14:11:16 2021 Page 2 QRGwbPgPxx6?jpgybOs\

NOTES- (17-20)

6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 7) Provide adequate drainage to prevent water ponding.

8) All plates are MT20 plates unless otherwise indicated.

9) The Fabrication Tolerance at joint 20 = 16%

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 11)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 25-27, 26-27
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 20-22
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16) Attic room checked for L/360 deflection.

- 17) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 19) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 20) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY	ARINA, NC
21-5628-R01	R12	GABLE	1	1	Job Reference (optional)	# 28509
					9 420 a Eab 12 2021 MiTak Industrian Inc.	Tuo Son 21 14:11:21 2021 Dogo (

ID:8BSIWII7uOgu7p2zCnsgREydifw-eZuRksIca5ktwJWnX5ak?J8HAHdm4xeg5OjUU2ybOsg

NOTES- (20-23)

7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing. 8) Provide adequate drainage to prevent water ponding.

9) All plates are MT20 plates unless otherwise indicated.

10) All plates are 2x4 MT20 unless otherwise indicated.

11) The Fabrication Tolerance at joint 20 = 16%

12) Gable studs spaced at 2-0-0 oc.

13) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 14)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 15) Ceiling dead load (5.0 psf) on member(s). 25-27, 26-27
- 16) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 20-22
- 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

19) Attic room checked for L/360 deflection.

20) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

21) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

- 22) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 23) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE	FUQUAY VARINA, NC
21-5628-R01	R13	Common	7	1		# 28509
					Job Reference (optional) 8.430 s Feb 12 2021 MiTek Ir	ndustries, Inc. Tue Sep 21 14:11:22 2021 Page 1
		5-9-0	ID:8BSIWII7u	Ogu7p2zCr 14-6-8	nsgREydifw-6lSpyCJELPsl	<ys5_4o6zxwhv9h3wpbkqk2s10uybosp< td=""></ys5_4o6zxwhv9h3wpbkqk2s10uybosp<>
		5-9-0		8-9-8		
		4x6 =				Scale = 1:40.9
		-170				
	r	6.00 12 2				
		8				
		T		9		
	4x6 =			72	10	
	2 K				6x6 =	=
	17 /				3	
	4 w/1					[
	-4- -6-	W2		_		
				W4	W5	<u> </u>
						8
			B1			
	×	5			×	
	3x4	4x8 =			4 3x4	l
	1	5-9-0		14-6-8	1	
	Г 	5-9-0		8-9-8	1	
TCLL (roof) 20.0	SPACING-	2-0-0 CSI .	DEFL.	in (lo	bc) I/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Lumber DOL	1.15 BC 0.57	Vert(CT)	-0.14 2	4-5 >999 240 4-5 >600 180	WI120 244/190
BCLL 0.0 *	Rep Stress Incr	YES WB 0.18	Horz(CT)	0.00	4 n/a n/a	Weight: 88 lb ET - 20%
BCDL 10.0						
TOP CHORD 2x4 SP No	.2 *Except*		BRACING- TOP CHORD	Structura	al wood sheathing direct	ly applied or 4-9-13 oc purlins, except
T2: 2x4 SP	SS			end vert	icals.	
WEBS 2x4 SP No	.2 .3 *Except*		BOTCHORD	MiTek	recommends that Stabil	izers and required cross bracing
W5: 2x4 SI	P No.2			be inst	alled during truss erection	on, in accordance with Stabilizer
REACTIONS. (Ib/size)	6=570/0-3-8 (min. 0-1-8), 4	4=570/0-3-8 (min. 0-1-8)		IIIStalla	allon guide.	
Max Horz 6	6=-77(LC 15) 5=-25(LC 15))				
Max Grave	6=631(LC 20), 4=637(LC 2	1)				
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 2	250 (lb) or less except when showr	1.			
TOP CHORD 1-7=-452	/100, 7-8=-436/111, 2-8=-3	47/125, 2-9=-390/104, 9-10=-397/	85, 3-10=-538/81,			
WEBS 1-5=-65/4	133, 3-5=0/255					
NOTES- (9-12)						
1) Unbalanced roof live lo	ads have been considered	for this design.				
2) Wind: ASCE 7-16; Vult (envelope) gable end z	=115mph (3-second gust) one and C-C Exterior(2E) (Vasd=91mph; TCDL=5.0psf; BCD)-1-12 to 4-11-6. Exterior(2R) 4-11	L=5.0psf; h=23ft; C -6 to 9-7-2. Exterio	at. II; Exp r(2E) 9-7-2	B; Enclosed; MWFRS 2 to 14-4-12 zone:C-C	
for members and forces	s & MWFRS for reactions s	shown; Lumber DOL=1.60 plate gri	p DOL=1.60			
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10	_= 1.15 Plate DOL= 1.15); PI=20.0 p	DSI (LUM DOL=1.15	Plate DO	(L=1.15); IS=1.0; Rough	
4) Unbalanced snow load	s have been considered for	r this design. m chord live load nonconcurrent wi	th any other live lo	ade		
6) * This truss has been d	esigned for a live load of 3	0.0psf on the bottom chord in all a	reas where a rectai	ngle 3-6-0	tall by 1-0-0 wide will fit	
between the bottom cho 7) Provide mechanical co	ord and any other members nnection (by others) of trus	s. s to bearing plate capable of withs	tanding 100 lb uplif	ft at ioint(s) 6 4	ANNEL MITHING IN THE STATE
8) This truss is designed i	n accordance with the 2018	8 International Residential Code se	ections R502.11.1 a	and R802.	10.2 and referenced	WHITH CAROLINI
9) Graphical bracing repre	esentation does not depict t	the size, type or the orientation of t	he brace on the me	ember. Sy	mbol only indicates that	ROFESSION RITH
the member must be br	aced.	and of a nadaible bearing condition	Peering overhole	oro not oo	noidered in the	
structural design of the	e truss to support the loads	s indicated.	. Dearing symbols	are not co		28147
11) Web bracing shown is	s for lateral support of indivi	idual web members only. Refer to	BCSI - Guide to Go	od Practio	ce for Handling,	
12) SEE BCSI-B3 SUMM	ARY SHEET- PERMANEN	T RESTRAING/BRACING OF CH	ORDS & WEB MEN	MBERS F		1 SNOINEER &
MINIMUM BRACING	REQUIREMENTS OF TOP ES. ALWAYS CONSULT T	P CHORD, BOTTOM CHORD, AND THE PROJECT ARCHITECT OR E	D WEB PLANES. I NGINEER FOR AD	N ADDITIONAI	ON TO THESE 🤄 🔅	ARK K MORRAMIN
CONSIDERATIONS.						Man and a state and the state of the state o
LOAD CASE(S) Standard						9/17/2021
Warning !	parameters and read notes be	efore use. This design is based only upo	n parameters shown, a	and is for an $r = not trues$	individual building compon	ent to be installed and loaded
of individual web members	only. Additional temporary bra	cing to ensure stability during constructi	on is the responsibility	of the erec	tor. Additional permanent b	racing of the overall structure is the
responsibility of the building	designer. For general guidance	e regarding fabrication, quality control, s	storage, delivery, erect	tion and bra	cing, consult ANSI/TPI 1 No	ational Design Standard for Metal

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC
21-5628-R01	R14	Half Hip	7	1	Job Reference (optional) # 28509
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:11:23 2021 Pa

ID:8BSIWII7uOgu7p2zCnsgREydifw-ay0C9YKs6i_b9cgAeWdC4kDeB5QAYxizYiCaYwybOso

8) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

11) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

- Graphical bracing representation does not depict the size, type of the state that the member must be braced. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated. Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Difference Portione Portform CHORD, AND WEB PLANES. IN ADDITION TO THESE
- 13)
- MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOADIDASE(S): By and by an and the second se vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE ARK K. MORR

9/17/2021

Job	Truss	Truss Type	Qty	Ply	49786-0226 WOODGROVE FUQUAY VARINA, NC	
21-5628-R01	VT02	Valley	1	1	Job Reference (optional) # 28509	
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Sep 21 14:11:25 2021 F	Page

ID:8BSIWII7uOgu7p2zCnsgREydifw-WK8yaEL6dKEJPwpZmwfg99I9Nu700xmG00hhdpybOsm

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

White support of building designer – not truss designer or truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

9/17/2021

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=85/4-6-6 (min. 0-1-8), 3=85/4-6-6 (min. 0-1-8), 4=128/4-6-6 (min. 0-1-8) Max Horz 1=28(LC 9) Max Uplift1=-11(LC 13), 3=-14(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(9-12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph: TCDL=5.0psf: BCDL=5.0psf: h=23ft: Cat. II: Exp B: Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the

Web bracing shown is for lateral support the loads indicated. Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ADDITION 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED CONSIDERATIONS.

LOAD CASE(S) Standard

