

	1-3/4 1-3/4 1-3/4	uct I"x 16 I"x 16 I"x 9-1 I"x 11 I"x 11	NA NA Products " LVL Kerto-S " LVL Kerto-S 1/4" LVL Kerto- -7/8" LVL Kerto cement Plan		16d/3-1/2" 10d/3" Net Qty 3 3 2 2	Regency Homes C	3 Williams Farm	Brinkley "A" / GR	DA	DR	J0921-5284 SJ
eo	USP					U	A	ž	DA	DRI	S
ec	Manuf	1		1	L		ā	0			
	ctor Info	<u>г г</u>	on Supported Member	Nail Info Header	ormation Truss	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
A OI	All Wa nside	alls	Shown Ar Load Bea	e Aring Hatch Pad Tray 2nd	Legend Ided HVAC y Ceiling Floor Walls p Beam	Harnett	Josey Williams Rd.	Roof	09/2/21	David Landry	. Bob Lewis
fa 2. fra 3.	All exterior ice of sheat All interior ame wall ur All exterior	r wall to thing un wall dir nless no r wall to	sion Notes wall dimensions are less noted otherwise mensions are to face bed otherwise truss dimensions are	of e to		11900 13600 15300					
							REK OF 27 	ck stubs	WGTRDER 004 900 31 / 100 4 0 0 0 0 0 0 0 0 0	0 0 EA END NOTITIVER (NE 340 680	0 1 0 2 0 3 0 4
						Signatur LO7	•	Davi	id Laı	ndry ndry ck stu	
						deemed requiren attached requiren size and reaction 15000#. retained reaction Tables. retained	to compl nents. The Tables (nents) to number s greater A register to design that exce A register to design s that exce	y with the e contract derived f determin of wood si than 300 red desig the sup red desig the sup red design the sup red design the sup red 1500	e prescrip tor shall r irom the p studs req 0# but not n profess port syste e specifie n profess port syste 00#.		e Code ndatior upport han I be ttached be
						TI	RO RUS eilly R Fayet Phon	OF & SES load In teville e: (91)	& FL & B		R AS

Considered Load Bearing							
		H	atch I	_egend			
of Area = 22 ge Line = 83		ą.ft.				Pad	ded HV
Line = 0 riz. OH = 18	ft.					Tray	Ceiling
ked OH = 23 cking = 76						2nd	Floor W
						Drop	Beam
C	Connect	tor Info	rmati	on	Na	il Info	ormation
n Produ	ıct I	Manuf	Qty	Supported Member	Head	der	Trus

	Conne	Inali IIIC	mation			
ym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS26	USP	19	NA	16d/3-1/2"	16d/3-1/2"
	THD26-2	USP	5	NA	16d/3-1/2"	10d/3"

Products								
PlotID	Length	Product	Plies	Net Qty				
BM1	22' 0"	1-3/4"x 16" LVL Kerto-S	3	3				
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	3	3				
BM3	7' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2				
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2				

- (1)	Truss Placement Plan
	Scale: 1/4"=1"

(Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards **Do NOT Erect Truss Backwards**

Trenco RE: J0921-5284 818 Soundside Rd Lot 3 Williams Farm Edenton, NC 27932 Site Information: Customer: Regency Homes Project Name: J0921-5284 Lot/Block: 3 Model: Brinkl Model: Brinkley Address: Josey Williams Rd. Subdivision: Williams Farm State: NC City: Erwin General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date 8/3/2021 E16001299 E16001319 M1GE A1 8/3/2021 21 1 2 E16001300 A1GE 8/3/2021 22 E16001320 M2 8/3/2021 3 E16001301 A2 8/3/2021 23 E16001321 M2A 8/3/2021 4 E16001302 A3 8/3/2021 24 E16001322 V1 8/3/2021 25 5 E16001303 АЗА 8/3/2021 E16001323 V2 8/3/2021 6 E16001304 8/3/2021 26 E16001324 V3 8/3/2021 Α4 7 E16001305 A4SG 8/3/2021 27 E16001325 V4 8/3/2021 8 E16001306 B1 8/3/2021 28 E16001326 V5 8/3/2021 29 V6 9 E16001307 B1A 8/3/2021 E16001327 8/3/2021 10 E16001308 B1GE 8/3/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

11

12

13

14

15

16

17

18

19

20

E16001309

E16001310

E16001311

E16001312

E16001313

E16001314

E16001315

E16001316

E16001317

E16001318

My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

C1-GR

C1SG

D1GE

G1GE

H1GE

J1GE

D1

G1

J1

M1

8/3/2021

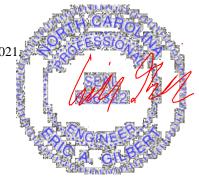
8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021


8/3/2021

8/3/2021

8/3/2021

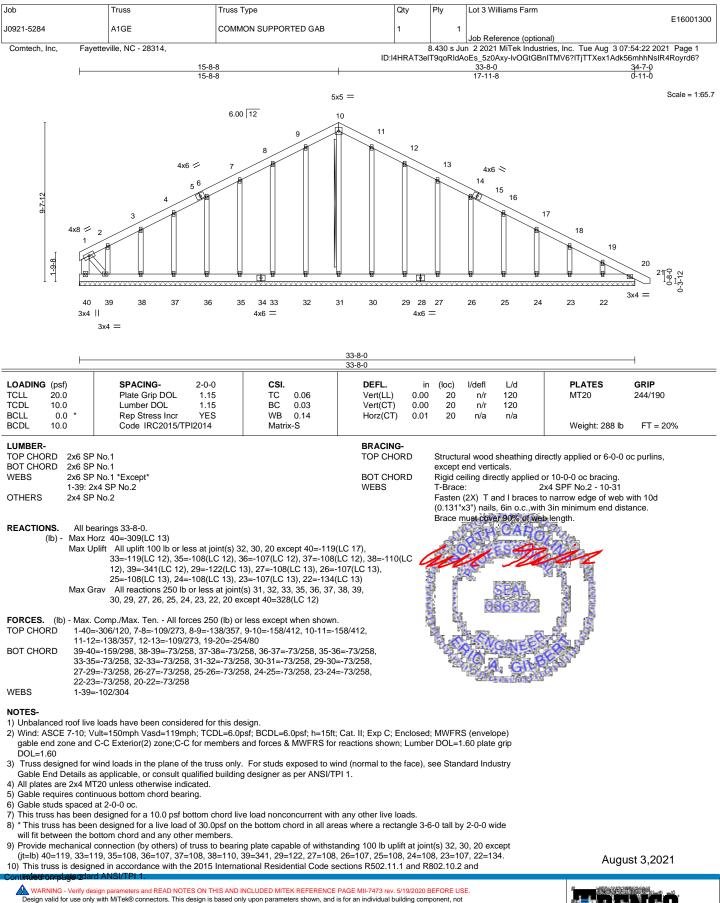
8/3/2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

August 03, 2021

Job	Truss	Truss	Туре	Qty	Ply	Lot 3 Williams Farm		
J0921-5284	A1	СОМ	MON	1	1			E16001299
Comtech, Inc,	Fayetteville, NC - 28314	I			8.430 s Ju	Job Reference (opti un 2 2021 MiTek Indu	onal) stries, Inc. Tue Aug 3.07	7:54:20 2021 Page 1
,		3			9qoRldAoE		Wmr6nthb4c3R2ZWyIUw	FIIhR4O_yzMvyrd61
	<u>6-8-8</u> 6-8-8		<u>15-8-8</u> 9-0-0	24-8-			<u>33-8-0</u> 8-11-8	<u>34-7-0</u> 0-11-0
								Scale: 3/16"=1
				5x8 =				
			00 12					
I		б	00 12	4				
			16		17			
		4x6 📁			\sim	2x4 // 4x6 ≈		
		4x6 =3	/ //		\sim	5		
9-7-12		2				6		
2-6	15	THE STREET						
3x4							18	
	1							
	e			Ň	$\backslash /$			7.
1-9-8				Г	ᡨ᠕			
1 1			12 11 19		10 9			
	14 ¹³		4x6 =		3x4 =			4x6 =
	6x6 =	5	8x4 =	4	x6 =			
	9-8-	8		21-8-8			3-8-0	
	9-8-	8		12-0-0			1-11-8	
Plate Offsets (X,Y	<u>′) [7:0-1-4,0-0-7], [13</u>	:0-1-8,0-4-0]						
OADING (psf)	SPACING-	2-0-0	CSI.		n (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip D Lumber DO		TC 0.36 BC 0.66	Vert(LL) -0.34 Vert(CT) -0.44		>999 360 >833 240	MT20	244/190
BCLL 0.0			WB 0.57	Horz(CT) 0.0	57	n/a n/a		
BCDL 10.0	Code IRC2	015/TPI2014	Matrix-S	Wind(LL) 0.0	7 7-9	>999 240	Weight: 230 lb	FT = 20%
UMBER-	-C CD N= 4			BRACING-	Chryster		in the second sector 4 O 40	
OP CHORD 2x 30T CHORD 2x	x6 SP No.1			TOP CHORD		end verticals.	lirectly applied or 4-9-10	o oc purins,
	4 SP No.2 *Except*			BOT CHORD			l or 9-9-4 oc bracing.	
1-	-13: 2x6 SP No.1			WEBS	1 Row a	at midpt	2-13	
REACTIONS.	(size) 13=Mechanica							
	1ax Horz 13=-193(LC 13 1ax Uplift 13=-222(LC 12							
N	Max Grav 13=1333(LC 1), 7=1379(LC 1)						
ORCES. (lb) -	Max. Comp./Max. Ten	All forces 250 (lb) of	or less except when showr	٦.				
	1-2=-300/179, 2-4=-184 12-13=-482/1658, 9-12=		71, 6-7=-2336/875, 1-13=-	254/214				
			70, 6-9=-522/454, 2-13=-1	806/660				
OTES-								
) Unbalanced ro	of live loads have been o							
			opsf; BCDL=6.0psf; h=15ft -8, Exterior(2) 15-8-8 to 20					
			er DOL=1.60 plate grip D		0 34-4-10	20110,0-0 101		
			ve load nonconcurrent wit		6-0 toll b	2-0-0 wide		
	s been designed for a liv the bottom chord and ar		the bottom chord in all ar vith BCDL = 10.0psf.	eas where a rectangle 3	-o-u tall by	r ∠-U-U wide		
Refer to girder((s) for truss to truss conr	ections.				-4 (4 11-)	AN CA	20
 Provide mecha 13=222, 7=263 		ers) of truss to bear	ng plate capable of withst	anding 100 ib uplift at joi	nt(s) exce	pt (Jt=ID)	O FEES	A A
		th the 2015 Internet	ional Residential Code se	otions BE02 11 1 and B	002 10 2 0	und /		

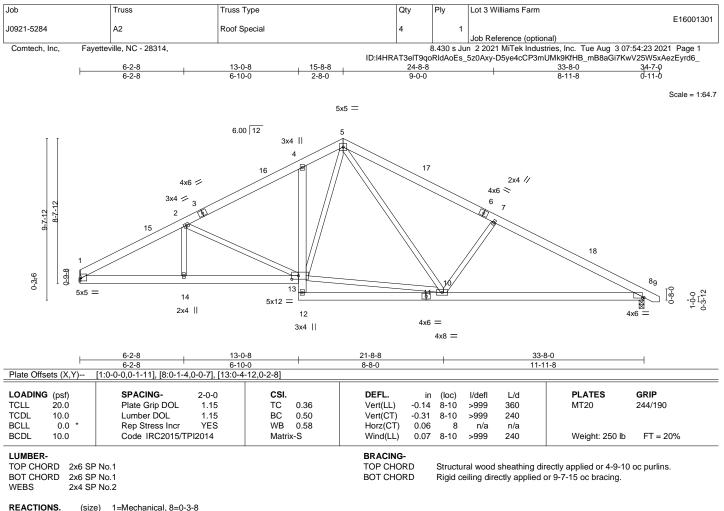

7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **AVSUTPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm		
J0921-5284	5284 A1GE COMMON SUPPORTED GAB		1	1	E16001300		
					Job Reference (optional)		
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:22 2021 Page 2		
ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-IvOGtGBnITMV6?ITjTTXex1Adk56mhhNsIF							

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 1=-180(LC 13) Max Uplift 1=-232(LC 12), 8=-271(LC 13) Max Grav 1=1338(LC 1), 8=1391(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-2401/917, 2-4=-1846/799, 4-5=-1715/885, 5-7=-1992/885, 7-8=-2282/897 1-14=-633/2050, 13-14=-633/2050, 4-13=-270/273, 10-12=-64/251, 8-10=-652/1953 BOT CHORD 2-14=0/303, 2-13=-561/329, 10-13=-188/1073, 5-13=-355/764, 5-10=-253/676, WEBS
 - 7-10=-522/457

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 34-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=232.8=271.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

August 3,2021

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply Lot 3 Williams Farm	
J0921-5284	A3	COMMON		6001302
			Job Reference (optional)	
Comtech, Inc, Fa	yetteville, NC - 28314,		8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:24 2021 Pa ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-hHW0HxD1q4cDLJurruV?kM6RTXatEVQgJbwBUgy	
\vdash	6-8-8 6-8-8	<u>15-8-8</u> 9-0-0	<u>24-8-8</u> <u>33-8-0</u> <u>34-7-0</u> 9-0-0 <u>8-11-8</u> 0-11-0	
			Scale	: 3/16"=1'
		5	=	
		6.00 12		
I				
		16	17	
	4x6 📁		2x4 //	
	4x6 📁 3		$4x6 \approx$ 5 = 6	
9-7-12	2	//		
di di	13			
3x4			18	
, I M				
-1- 	//			N
11 6	19	20 12 11 21		
14	13	4x6 =	3x6 = 3x6	
6x6	=	3x4 =	5x8 =	
F	9-8-8	21		
Plate Offsets (X,Y)	<u>9-8-8</u> [7:0-1-4,0-0-7], [13:0-1-8,0-4-4		0 ' 11-11-8 '	
LOADING (psf)	SPACING- 2-0	-0 CSI .	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1. Lumber DOL 1.		Vert(LL) -0.30 9-12 >999 360 MT20 244/190 Vert(CT) -0.42 9-12 >946 240 44/190	
BCLL 0.0 *	Rep Stress Incr YI	S WB 0.57	Horz(CT) 0.06 7 n/a n/a	
BCDL 10.0	Code IRC2015/TPI201	4 Matrix-S	Wind(LL) 0.07 7-9 >999 240 Weight: 230 lb FT = 20%	
LUMBER- TOP CHORD 2x6 S	P No.1		BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-3 oc purlins,	
BOT CHORD 2x6 S	P No.1		except end verticals.	
	P No.2 *Except* 2x6 SP No.1		BOT CHORDRigid ceiling directly applied or 9-9-4 oc bracing.WEBS1 Row at midpt2-13	
REACTIONS. (siz	e) 13=Mechanical, 7=0-3-8			
Max	Horz 13=-193(LC 13) Jplift 13=-222(LC 12), 7=-263(L	C 13)		
	Grav 13=1525(LC 2), 7=1551(L			
		50 (lb) or less except when shown.		
	-323/179, 2-4=-2090/805, 4-6= 3=-482/1866, 9-12=-230/1449,	2413/871, 6-7=-2646/875, 1-13=-2 7-9=-635/2287	/214	
		-273/1190, 6-9=-522/454, 2-13=-19	0/660	
NOTES-				
	e loads have been considered Vult=150mph Vasd=119mph; T		t. II; Exp C; Enclosed; MWFRS (envelope)	
		to 15-8-8, Exterior(2) 15-8-8 to 20- n; Lumber DOL=1.60 plate grip DO	5, Interior(1) 20-1-5 to 34-4-10 zone;C-C for	
3) This truss has been	designed for a 10.0 psf bottom	chord live load nonconcurrent with	y other live loads.	
	en designed for a live load of 30 bottom chord and any other me		where a rectangle 2-6-0 tall by 2-0-0 wide	
5) Refer to girder(s) for	r truss to truss connections.	•	ing 100 lb uplift at joint(s) except (jt=lb)	
13=222, 7=263.			ng roo to up int at joint(s) except (jt=ib)	2

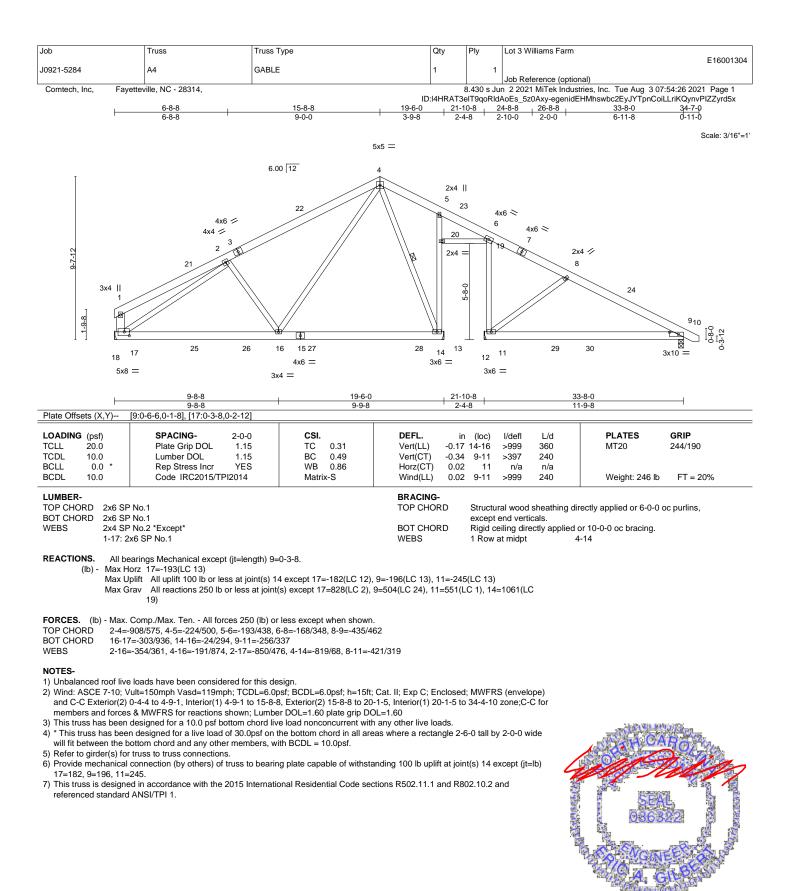
7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ob	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm		
0921-5284	A3A	COMMON	1	1			E1600130
Comtech, Inc, Fa	ayetteville, NC - 28314,			3.430 s Jur	Job Reference (optional 2 2021 MiTek Industr		07:54:25 2021 Page 1
	6-8-8	15-8-8		「9qoRIdAo			Z5xt?zvapYFfk06yrd5y 34-7-0
F	6-8-8	9-0-0	9-0-0			8-11-8	0-11-0
							Scale: 3/16"
			5x8				
		6.00 12	4				
		17	18	3			
	4x6 ==				3x4 ≈ 4x6 ≈		
	4x8 ==			\sim	5 6		
9-7-12	2 16	✓ \$/	×		E al		
ф.		、 //				_	
3x4 1						19	
							<
-1-0-				, 1	g		78
11 1	20	21 13 12 22	23 11 10	0 24		25	0-3-12
15	14	4x6 =	8x8 =		9 2x4		4x8 ≈
6x	8 =	3x4 =	6x6	6 =	2.4.1		
F	9-8-8	19-5-8		24-8-8		33-8-0	
te Offsets (X,Y)	<u>9-8-8</u> [7:0-1-0,0-1-13], [11:0-4-0,0-4-	<u>9-9-0</u> 12], [14:0-2-4,0-4-4]		5-3-0		8-11-8	
ADING (psf)	SPACING- 2-0	-0 CSI .	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
LL 20.0 DL 10.0		15 TC 0.56	Vert(LL) -0.19	11-13	>999 360 >999 240	MT20	244/190
LL 0.0 *	Rep Stress Incr N	IO WB 0.77	Horz(CT) 0.09	7	n/a n/a		
DL 10.0	Code IRC2015/TPI201	4 Matrix-S	Wind(LL) 0.21	9-11	>999 240	Weight: 237 I	b FT = 20%
MBER- P CHORD 2x6 S	P No 1		BRACING- TOP CHORD	Structure	al wood sheathing dire	ectly applied or 3-4-	9 oc purlins
OT CHORD 2x6 S	SP No.1			except e	nd verticals.		o oc punno,
	P No.2 *Except* 2x6 SP No.1		BOT CHORD WEBS	1 Row at	ling directly applied of t midpt 4-	13, 4-11, 2-14	
ACTIONS. (si	ze) 14=Mechanical, 7=0-3-8						
Max	Horz 14=-193(LC 13) Uplift 14=-373(LC 12), 7=-491(L	C 13)					
	Grav 14=2046(LC 19), 7=2357(,					
RCES. (Ib) - Ma	c. Comp./Max. Ten All forces 2	50 (lb) or less except when shown					
P CHORD 1-2	=-435/227, 2-4=-2926/1389, 4-6	=-3695/1822, 6-7=-4439/2001, 1-1 , 9-11=-1625/3860, 7-9=-1625/386	4=-315/241				
BS 2-1	3=-67/282, 4-13=-80/441, 4-11=	-1088/2378, 6-11=-890/520, 2-14=					
	=-78/489						
DTES- Unbalanced roof li	ve loads have been considered t	or this design.					
Wind: ASCE 7-10;	Vult=150mph Vasd=119mph; T	CDL=6.0psf; BCDL=6.0psf; h=15ft;					
members and forc	es & MWFRS for reactions show	to 15-8-8, Exterior(2) 15-8-8 to 20 m; Lumber DOL=1.60 plate grip DO	DL=1.60	34-4-10 2	cone;C-C for		
		.0psf on the bottom chord in all are		5-0 tall by	2-0-0 wide		
will fit between the	bottom chord and any other me or truss to truss connections.		Ũ	,		A ASH C	ARO
Provide mechanic		to bearing plate capable of withsta	anding 100 lb uplift at join	t(s) excep	ot (jt=lb)	O REES	479
14=373, 7=491. This truss is desig	ned in accordance with the 2015	International Residential Code se	ctions R502.11.1 and R80)2.10.2 ar	nd 🦉	007 -	
referenced standa Hanger(s) or other		ovided sufficient to support concer	ntrated load(s) 985 lb dow	n and 55	2 lb up at	SE	
19-7-12, and 575 I	b down and 322 lb up at 21-9-4	on bottom chord. The design/sele				036	322
		face of the truss are noted as fror	t (F) or back (B).				
					in the second se	No.	
	ndard						
In the LOAD CASE OAD CASE(S) Sta Dead + Roof Live	(balanced): Lumber Increase=1.	15, Plate Increase=1.15				24 10 74	A BELL
n the LOAD CASE AD CASE(S) Sta Dead + Roof Live Jniform Loads (plf	(balanced): Lumber Increase=1.	15, Plate Increase=1.15				A CA	GILESS
In the LOAD CASE AD CASE(S) Sta Dead + Roof Live Uniform Loads (plf	(balanced): Lumber Increase=1.)	15, Plate Increase=1.15				Aug	gust 3,2021

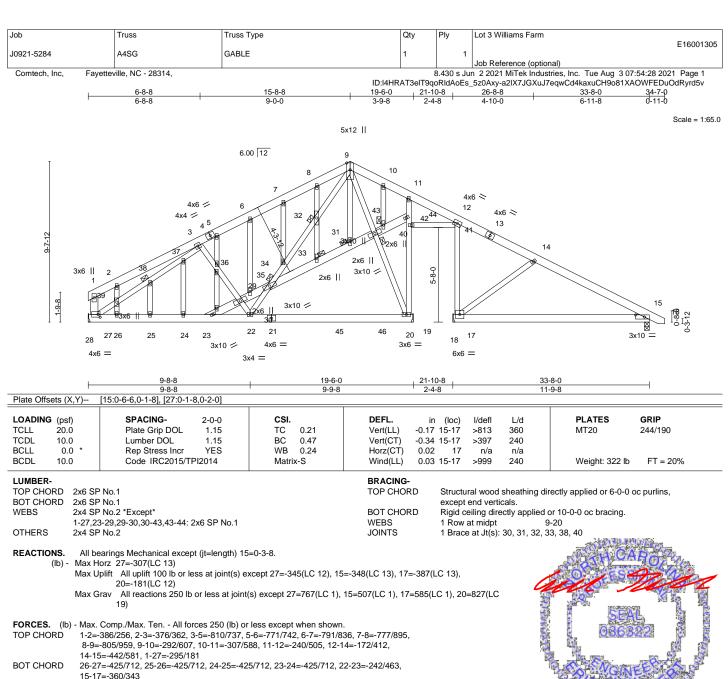
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent cuclapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm	
J0921-5284	A3A	COMMON	1	1	E16001303	
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314,				3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:25 2021 Page 2	
ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-AT4OVHDfbOk4zST2Oc1EGZf25xt?zvapYFfk0						

LOAD CASE(S) Standard

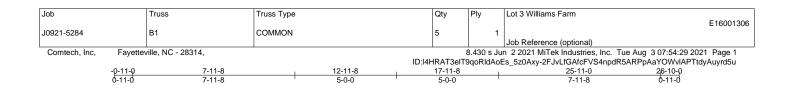
Concentrated Loads (lb) Vert: 11=-985(F) 24=-575(F)

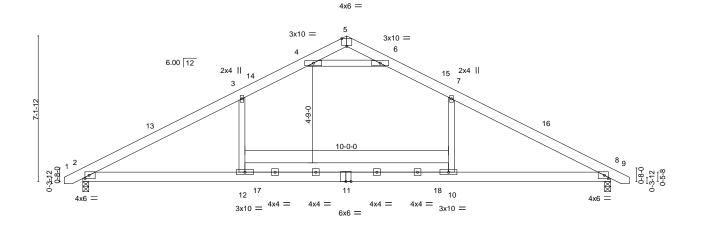
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


15-17=-360/343 WEBS 22-29=-154/289, 22-30=-127/467, 30-34=-414/598, 32-34=-501/656, 9-32=-534/709, 27-39=-521/364, 38-39=-519/353, 37-38=-524/364, 3-37=-604/418, 23-29=-205/333, 29-35=-184/323, 30-35=-263/392, 20-42=-278/170, 42-44=-278/170, 9-43=-528/190, 20-43=-510/147, 14-17=-421/452


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 345 lb uplift at joint 27, 348 lb uplift at joint 15, 387 lb uplift at joint 17 and 181 lb uplift at joint 20.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 August 3,2021

Plate Offse	ets (X,Y) [7-11-8 [2:0-2-6,0-2-0], [5:0-3-0,E		,0-2-0]		10-0-0				7-11-	•	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.28	1Ò-1Ź	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.46	10-12	>663	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-S	Wind(LL)	0.23	2-12	>999	240	Weight: 174 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHOP	RD 2x6 SP	No.1				TOP CHOR	D	Structu	ral wood	sheathing dire	ectly applied or 4-4-14	oc purlins.
BOT CHOP	RD 2x6 SP	No.1				BOT CHOR	D	Rigid c	eiling dire	ectly applied o	r 10-0-0 oc bracing.	

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=119(LC 11) Max Uplift 2=-203(LC 12), 8=-203(LC 13) Max Grav 2=1140(LC 2), 8=1140(LC 2)

2x4 SP No.2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1772/588, 3-4=-1401/651, 4-5=-286/978, 5-6=-286/978, 6-7=-1401/651,

7-8=-1772/588 BOT CHORD

2-12=-347/1438, 10-12=-350/1438, 8-10=-347/1438 WEBS 3-12=0/497, 7-10=0/497, 4-6=-2532/1014

NOTES-

WFBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 26-7-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

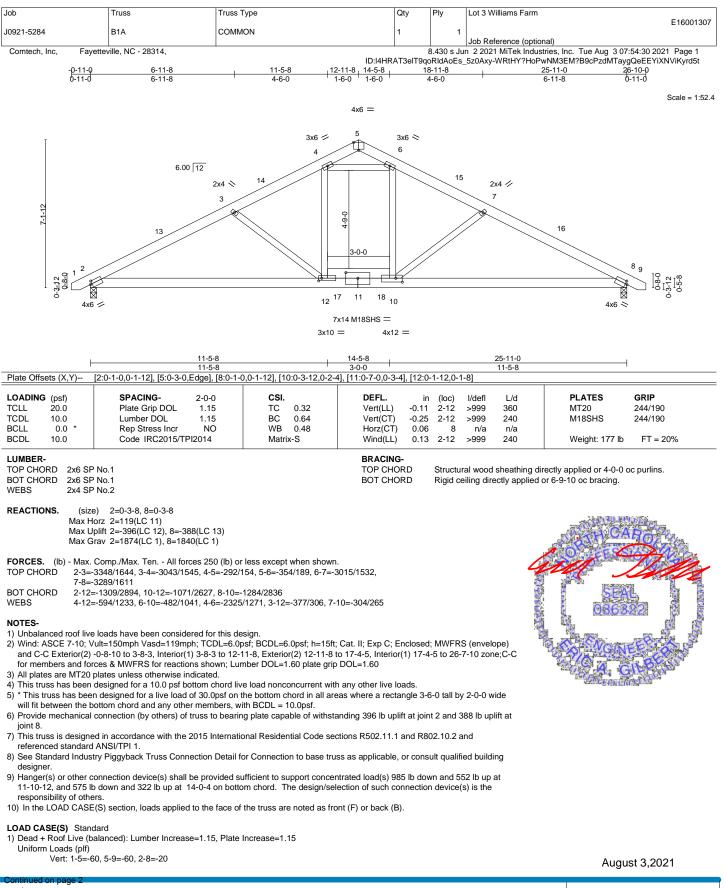
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 203 lb uplift at joint 2 and 203 lb uplift at joint 8.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

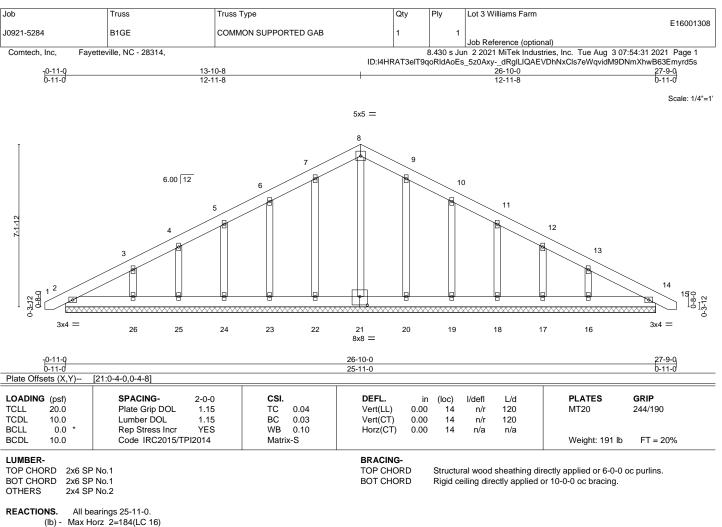


Scale = 1:53.3

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm	
J0921-5284	B1A	COMMON	1	1	E16001307	
					Job Reference (optional)	
Comtech, Inc, Fayettev	rille, NC - 28314,		. 8	3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:30 2021 Page 2	
ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-WRtHY?HoPwNM3EM?B9cPzdMTaygQeEEYiXNViKy						

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 17=-985(B) 18=-575(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

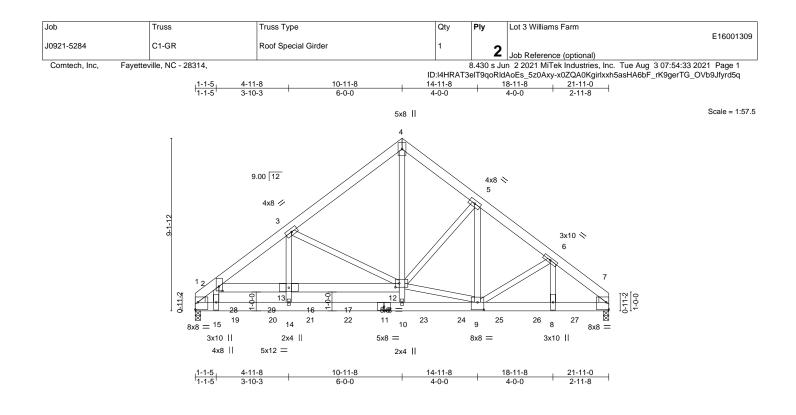
Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 25, 20, 17, 14 except 23=-115(LC 12), 24=-110(LC 12), 26=-171(LC 12), 19=-118(LC 13), 18=-109(LC 13), 16=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 7-8=-120/304, 8-9=-120/303

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 25, 20, 17, 14 except (jt=lb) 23=115, 24=110, 26=171, 19=118, 18=109, 16=167.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

August 3,2021

🗥 WARNING - Verify design p eters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [1:Edge,0-4-10], [2:0-2-14,0-2-4], [7:1	dge,0-4-10], [9:0-4-0,0-4-1	2], [12:0-2-8,0-2-8]	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2015/TPI2014	CSI. TC 0.86 BC 0.73 WB 0.91 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 12-13 >999 36 Vert(CT) -0.31 12-13 >843 240 Horz(CT) 0.05 7 n/a n/a Wind(LL) 0.15 12-13 >999 240	0 MT20 244/190 0 -
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2, Right: 2x4 SP No.2			thing directly applied or 4-11-9 oc purlins. applied or 10-0-0 oc bracing.
REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-275(LC 25) Max Uplift 1=-1263(LC 8), 7=-1390(LC 9) Max Grav 1=7583(LC 1), 7=7705(LC 2)			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) TOP CHORD 1-2=-10129/1691, 2-3=-9954/1689, 3-4=-6 6-7=-10911/1947 BOT CHORD 12-13=-199/1348, 1-15=-1112/6124, 14-15 9-10=-1203/6789, 8-9=-1363/7919, 7-8=-1	372/1197, 4-5=-6163/1169, =-1112/6124, 10-14=-1192	5-6=-8950/1599,	
WEBS 13-14=-158/1269, 3-13=-496/3482, 3-12=- 4-12=-1276/7071, 9-12=-232/708, 5-12=-3 6-8=-446/2474			CAR CAR
 NOTES- 1) 2-ply truss to be connected together with 10d (0.131"x3") Top chords connected as follows: 2x6 - 2 rows staggered Bottom chords connected as follows: 2x6 - 2 rows stagge Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, excep ply connections have been provided to distribute only load 3) Unbalanced roof live loads have been considered for this 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6 Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord 6) * This truss has been designed for a live load of 30.0psf or will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bear 	at 0-9-0 oc. ed at 0-5-0 oc. t if noted as front (F) or bac is noted as (F) or (B), unles design. 0psf; BCDL=6.0psf; h=15ft live load nonconcurrent wit n the bottom chord in all ar	is otherwise indicated. ; Cat. II; Exp C; Enclosed; MWFRS (envelope); h any other live loads. eas where a rectangle 3-6-0 tall by 2-0-0 wide	August 3,2021
Contimute Cont pb3202 WARNING - Verify design parameters and READ NOTES ON THIS AN Design valid for use only with MiTek® connectors. This design is based a truss system. Before use, the building designer must verify the applica building design. Bracing indicated is to prevent buckling of individual tr is always required for stability and to prevent collapse with possible per rabrication, storage, delivery, erection and bracing of trusses and truss Safety Information available from Truss Plate Institute, 2670 Crain Hi	only upon parameters shown, and bility of design parameters and pro ss web and/or chord members onl onal injury and property damage. ystems, see ANS/TPI1	is for an individual building component, not operly incorporate this design into the overall y. Additional temporary and permanent bracing For general guidance regarding the <i>Quality Criteria</i> , DSB-89 and BCSI Building Component	818 Soundside Road Edenton, NC 27932

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
	10004 5004	01.00	Des (Or estal Obstan			E16001309
	J0921-5284	C1-GR	Roof Special Girder	1	2	Job Reference (optional)
ι						
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:33 2021 Page 2
	ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-x0ZQA0Kgirlxxh5asHA6bF_rK9gerTG_OVb9Jfyrd5q					AoEs_5z0Axy-x0ZQA0Kgirlxxh5asHA6bF_rK9gerTG_OVb9Jfyrd5q

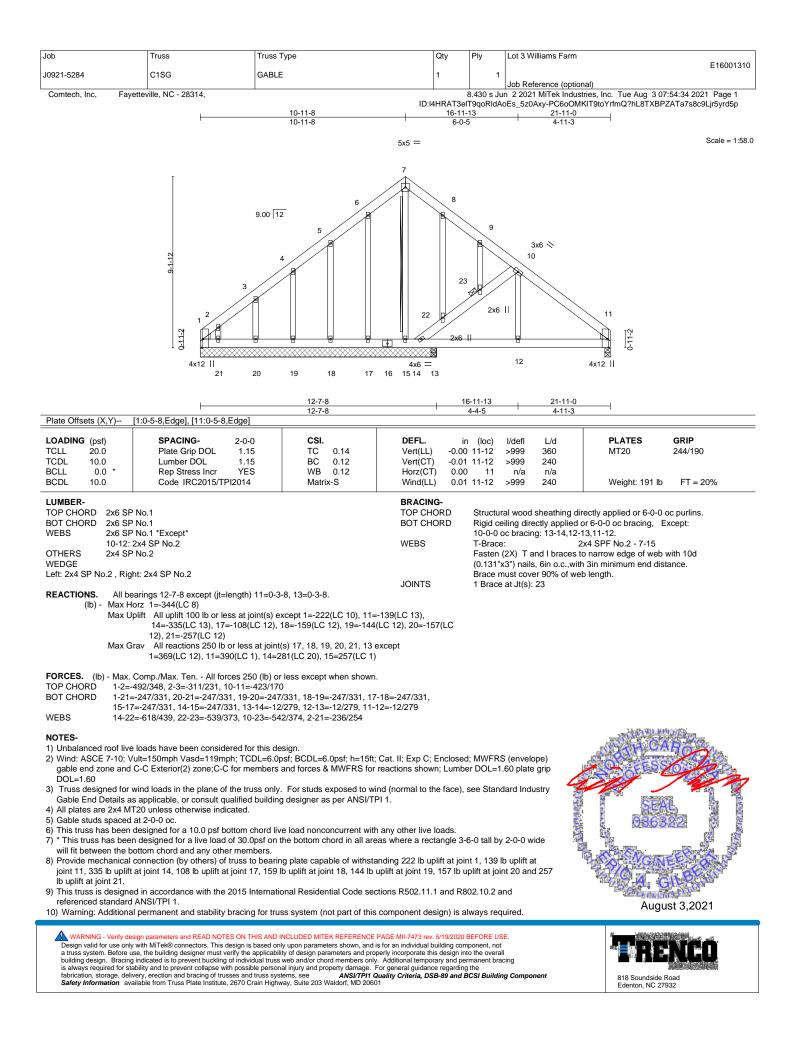
NOTES-

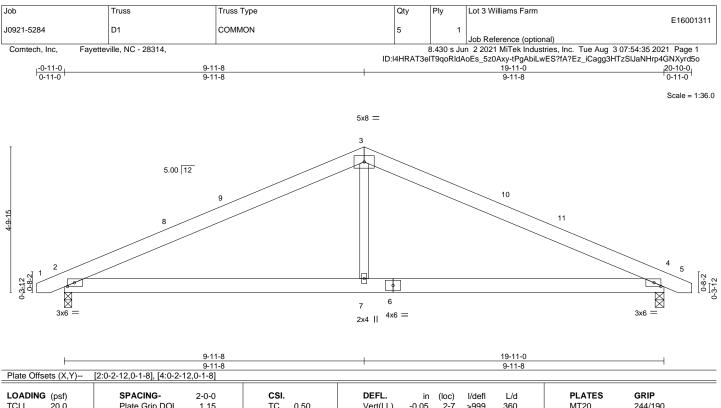
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1313 lb down and 242 lb up at 2-0-12, 1318 lb down and 252 lb up at

4-0-12, 1318 lb down and 252 lb up at 6-0-12, 1318 lb down and 252 lb up at 8-0-12, 1318 lb down and 252 lb up at 10-0-12, 1505 lb down and 242 lb up at 12-0-12, 1505 lb down and 242 lb up at 12-0-12, 1505 lb down and 242 lb up at 12-0-12, and 2003 lb down and 393 lb up at 18-0-12, and 808 lb down and 202 lb up at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 12-29=-20, 1-7=-20, 2-29=-20


Concentrated Loads (lb)

Vert: 16=-1318(B) 17=-1318(B) 18=-1318(B) 19=-1313(B) 20=-1318(B) 23=-1313(B) 24=-1313(B) 25=-1313(B) 26=-1934(B) 27=-739(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADIN	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	-0.05	2-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.13	2-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	014	Matri	k-S	Wind(LL)	0.05	2-7	>999	240	Weight: 108 lb	FT = 20%
LUMBER	<u>}-</u>	1		1		BRACING-					1	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No 2 WFBS

REACTIONS. (size) 4=0-3-8, 2=0-3-0 Max Horz 2=-71(LC 17) Max Uplift 4=-163(LC 13), 2=-162(LC 12) Max Grav 4=836(LC 1), 2=835(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1239/498, 3-4=-1240/498

BOT CHORD 2-7=-293/1030, 4-7=-293/1030

WEBS 3-7=0/477

NOTES-

1) Unbalanced roof live loads have been considered for this design.

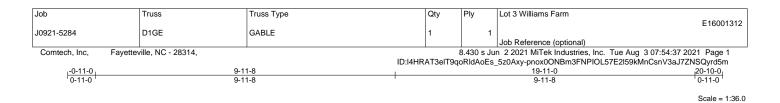
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-7-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

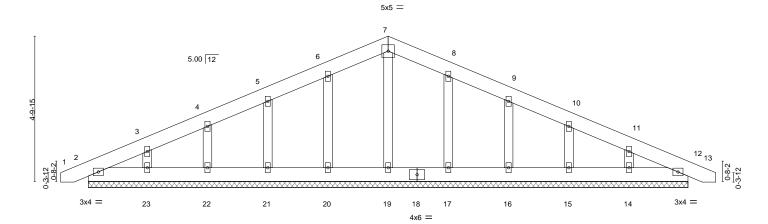
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 163 lb uplift at joint 4 and 162 lb uplift at joint 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 5-10-8 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		I	19-11-0				1	1
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) (0.00 12	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) (0.00 12	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) (0.00 12	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 130 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

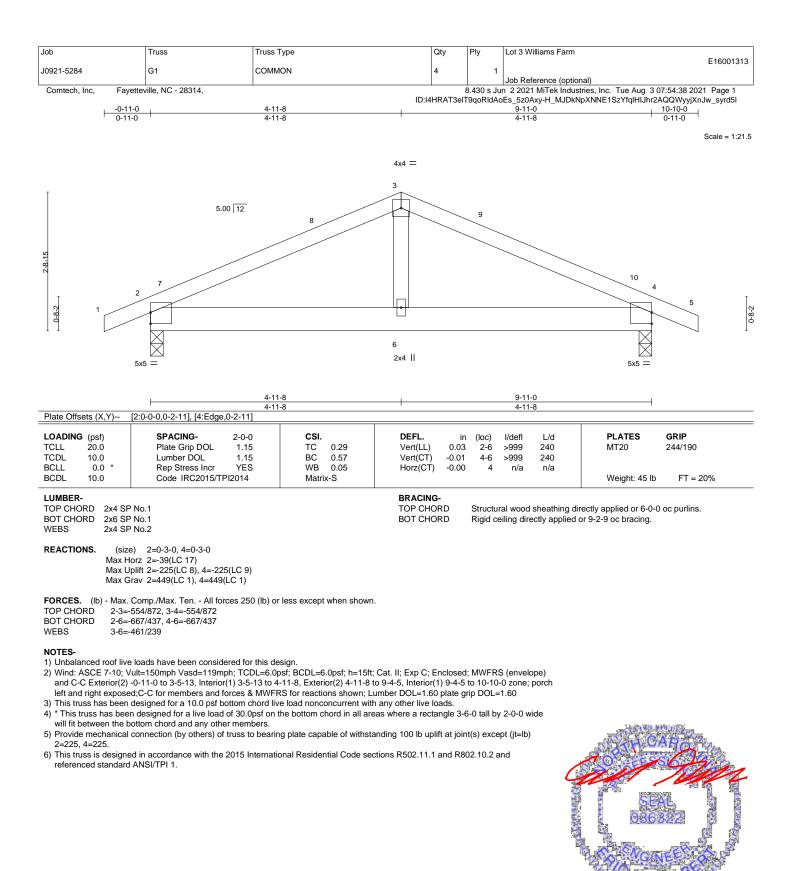
BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 2=-120(LC 13) (lb) -

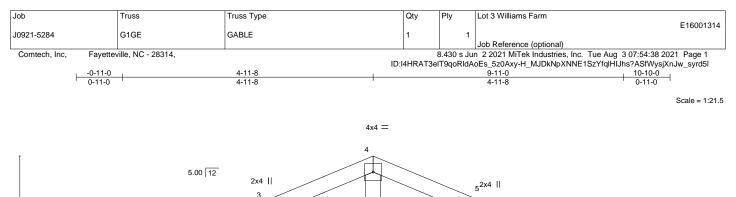
Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 22, 17, 15 except 21=-102(LC 12), 23=-116(LC 12), 16=-103(LC 13), 14=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 17, 16, 15, 14

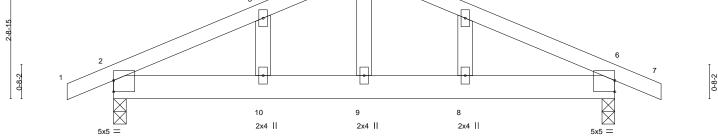
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 22, 17, 15 except (it=lb) 21=102, 23=116, 16=103, 14=112.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **AVSUTPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4-1		9-11-0
Plate Offsets (X,Y) [2:0-0-0,0-2-11], [6:Edge,0-2-11]	-	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 100	CSI. TC 0.23 BC 0.42 WB 0.06 Matrix-S	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 8 >999 360 MT20 244/190 Vert(CT) -0.02 8 >999 240 Horz(CT) -0.01 6 n/a n/a Wind(LL) 0.02 8 >999 240 Weight: 49 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 9-1-14 oc bracing.
REACTIONS. (size) 2=0-3-0, 6=0-3-0 Max Horz 2=-66(LC 13) Max Uplift 2=-297(LC 8), 6=-297(LC 9) Max Grav 2=449(LC 1), 6=449(LC 1)		

TOP CHORD 2-3=-541/873. 3-4=-494/920. 4-5=-494/920. 5-6=-541/873

- BOT CHORD
- 2-10=-688/437, 9-10=-688/437, 8-9=-688/437, 6-8=-688/437 WEBS 4-9=-534/232

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

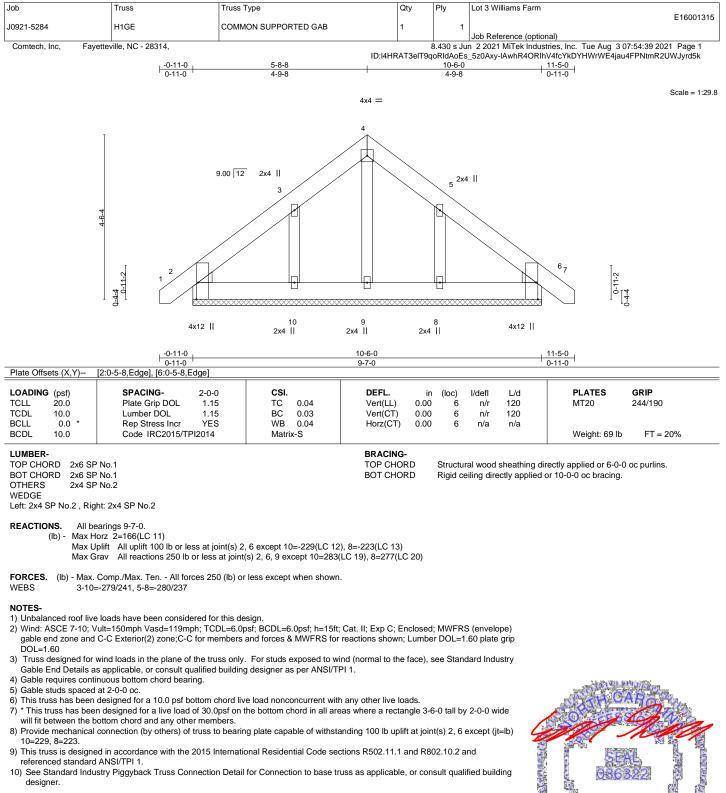
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

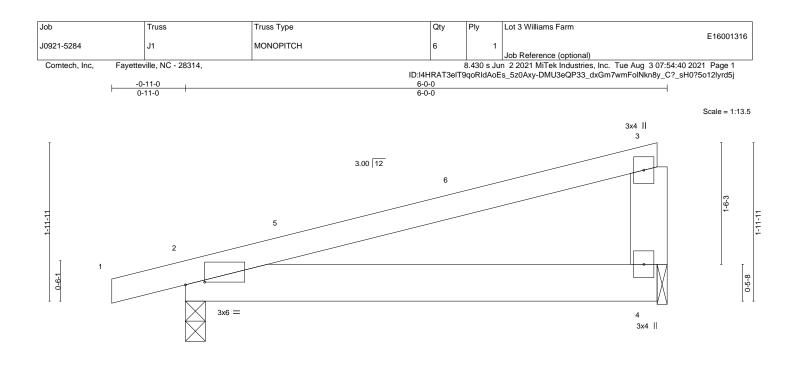
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=297, 6=297.


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021



10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

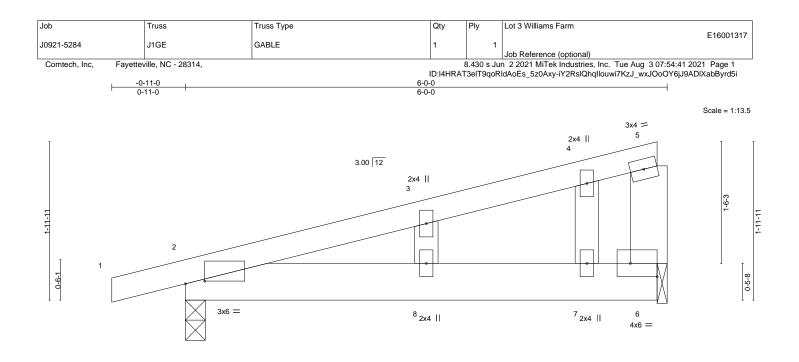
🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-2-14,0-0-6]				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL) 0.04	2-4 >999 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.03	8 2-4 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) n/a n/a	
SCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 27 lb FT = 20%
UMBER- OP CHORD 2x4 SF	? No.1		BRACING- TOP CHORD	Structural wood sheathing d	irectly applied or 6-0-0 oc purlins,
OT CHORD 2x6 SF VEBS 2x6 SF			BOT CHORD	except end verticals. Rigid ceiling directly applied	or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=75(LC 8) Max Uplift 2=-188(LC 8), 4=-143(LC 8) Max Grav 2=294(LC 1), 4=220(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=188, 4=143.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:Edge,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.18 WB 0.02 Matrix-S	DEFL.inVert(LL)0.04Vert(CT)-0.02Horz(CT)-0.00	(loc) l/defl L/d 8 >999 240 8 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x6 SF OTHERS 2x4 SF	P No.1 P No.1			Structural wood sheathing d except end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

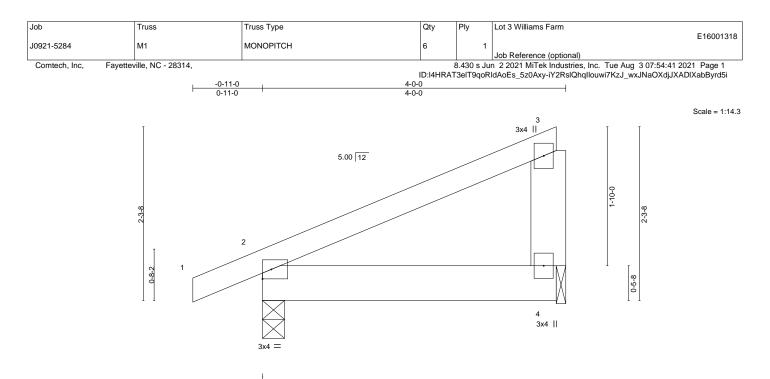
REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=106(LC 8) Max Uplift 2=-259(LC 8), 6=-199(LC 8) Max Grav 2=294(LC 1), 6=220(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-275/133, 7-8=-275/133, 6-7=-275/133 BOT CHORD

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259. 6=199.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLODED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI. TC 0.21	DEFL.	in (loo	,	L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.21 BC 0.21		-0.00 2- -0.00 2-		360 240	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) Wind(LL)	0.00 0.00	n/a 2 ****	n/a 240	Weight: 20 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=84(LC 12)

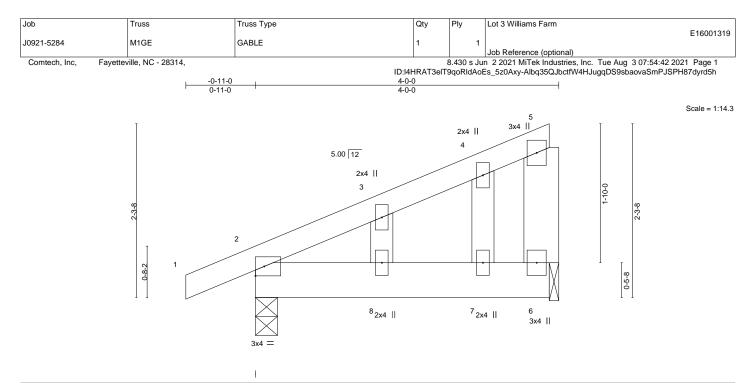
Max Uplift 2=-48(LC 8), 4=-52(LC 12) Max Grav 2=218(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.10 WB 0.02 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* WEBS 3-8: 2x4 SP No.2 OTHERS 2x4 SP No.2

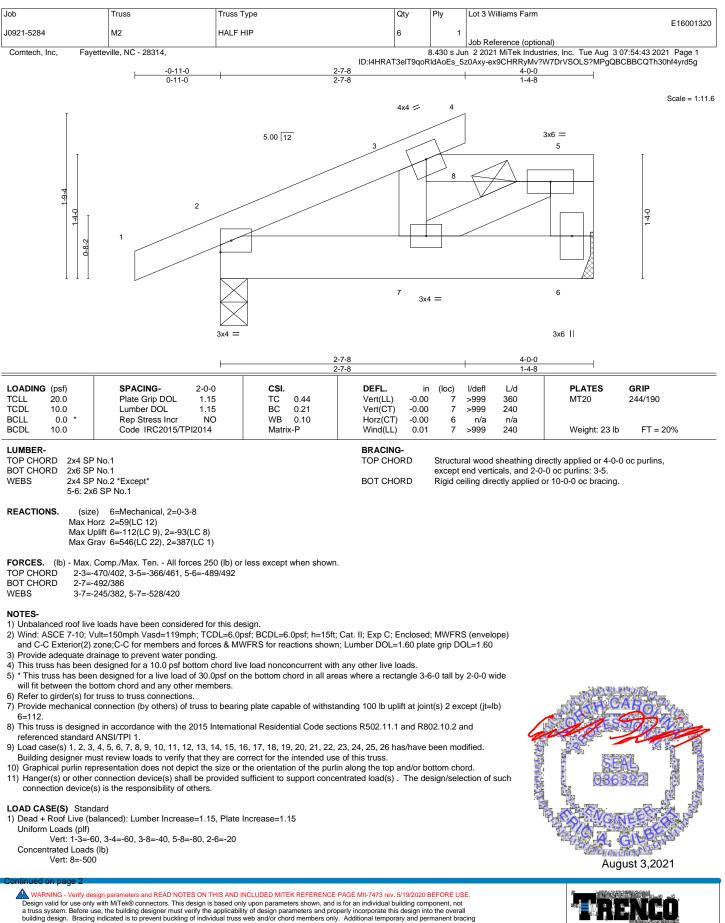
REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=121(LC 12) Max Uplift 2=-90(LC 12), 6=-93(LC 12) Max Grav 2=218(LC 1), 6=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

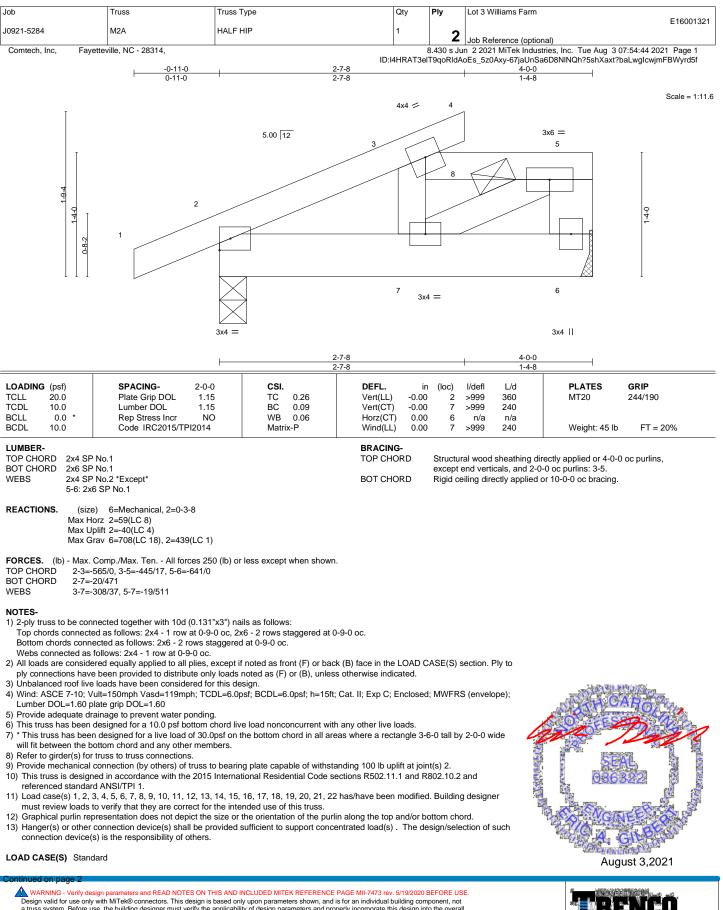
Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
					E16001320
J0921-5284	M2	HALF HIP	6	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jur	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 2

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

LOAD CASE(S) Standard
 Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20
Concentrated Loads (Ib)
Vert: 8=-438
 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 3-5=-40, 2-6=-40
Concentrated Loads (lb)
Vert: 8=-375 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=98, 2-3=82, 3-4=207, 3-5=67, 2-6=-12
Horz: 1-2=-110, 2-3=-94, 3-4=-219
Concentrated Loads (Ib)
Vert: 8=467
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=73, 2-3=82, 3-4=73, 3-5=67, 2-6=-12
Horz: 1-2=-85, 2-3=-94, 3-4=-85
Concentrated Loads (Ib)
Vert: 8=467
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=5, 2-3=-54, 3-4=30, 3-5=-64, 2-6=-20
Horz: 1-2=-25, 2-3=34, 3-4=-50 Concentrated Loads (lb)
Vert: 8=-462
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-45, 2-3=-54, 3-4=-45, 3-5=-64, 2-6=-20
Horz: 1-2=25, 2-3=34, 3-4=25
Concentrated Loads (lb) Vert: 8=-462
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=11, 2-6=-12
Horz: 1-2=-52, 2-3=-32, 3-4=-23
Concentrated Loads (Ib)
Vert: 8=121
 Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=11, 2-6=-12
Horz: 1-2=-23, 2-3=-32, 3-4=-53
Concentrated Loads (Ib)
Vert: 8=121
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23
Concentrated Loads (Ib)
Vert: 8=-306
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23
Concentrated Loads (lb)
Vert: 8=-306
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12
Horz: 1-2=-34, 2-3=-43, 3-4=-34
Concentrated Loads (lb) Vert: 8=121
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12
Horz: 1-2=-18, 2-3=-27, 3-4=-18
Concentrated Loads (lb)
Vert: 8=21 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12
Horz: 1-2=-34, 2-3=-43, 3-4=-34
Concentrated Loads (lb)
Vert: 8=121

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
J0921-5284	M2	HALF HIP	6	1	E16001320
30321-3204	IVIZ		ľ	· ·	Job Reference (optional)
Comtech, Inc, Fayet	eville, NC - 28314,	·		8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 3


ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

LOAD CASE(S) Standard 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-31, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-31, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-120, 2-6=-20 Concentrated Loads (lb) Vert: 8=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 8=-480 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 8=-480 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, deflivery, rerection and bracing of trusses systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Vert: 8=-438

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
					E16001321
J0921-5284	M2A	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,			8	8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2

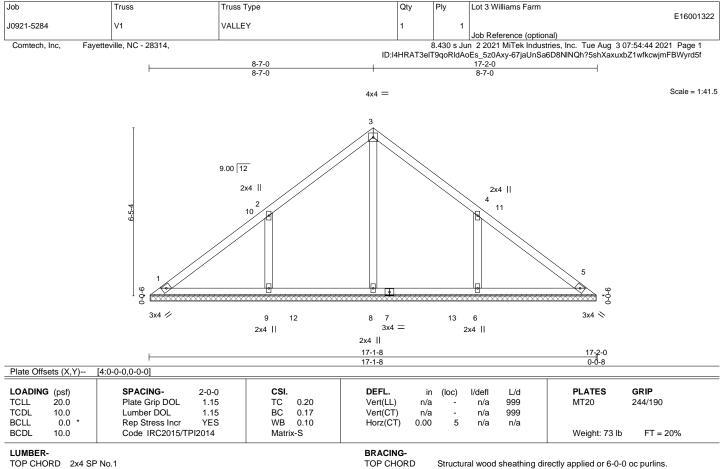
8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwglcwjmFBWyrd5f

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-500
2	P) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb)
	Vert: 8=-438
3	B) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-5=-160, 2-6=-40
	Concentrated Loads (lb) Vert: 8=-375
4	 Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
-	Uniform Loads (plf)
	Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=-109, 2-6=-12
	Horz: 1-2=-52, 2-3=-32, 3-4=-23
	Concentrated Loads (lb) Vert: 8=121
5	i) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=-109, 2-6=-12
	Horz: 1-2=-23, 2-3=-32, 3-4=-53
	Concentrated Loads (lb) Vert: 8=121
6	b) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20
	Horz: 1-2=-23, 2-3=-14, 3-4=-23
	Concentrated Loads (lb) Vert: 8=-306
7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20
	Horz: 1-2=-23, 2-3=-14, 3-4=-23
	Concentrated Loads (lb) Vert: 8=-306
8	b) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12
	Horz: 1-2=-34, 2-3=-43, 3-4=-34
	Concentrated Loads (lb) Vert: 8=121
g) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12
	Horz: 1-2=-18, 2-3=-27, 3-4=-18
	Concentrated Loads (lb) Vert: 8=21
1	0) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12
	Horz: 1-2=-34, 2-3=-43, 3-4=-34
	Concentrated Loads (lb) Vert: 8=121
1	1) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12
	Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb)
	Vert: 8=21
1	2) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-151, 2-6=-20
	Horz: 1-2=-34, 2-3=-25, 3-4=-34
	Concentrated Loads (lb) Vert: 8=-306
1	3) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-151, 2-6=-20
	Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb)
	Vert: 8=-306

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design prameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidat truss event and/or chord members only. Additional temporary and permanent bracing shares required for stability and to prevent oucliance with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
					E16001321
J0921-5284	M2A	HALF HIP	1	2	
				-	Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,				8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 3

0.430 S JULE 2 2221 MITEK INDUSTIES, INC. TUE AUG 3 07:54:44 2021 Page 3 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwglcwjmFBWyrd5f

LO	DAD CASE(S) Standard
14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-5=-240, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-250
15) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-10, 3-4=-17
	Concentrated Loads (Ib)
	Vert: 8=-480
16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-11, 3-4=-17
	Concentrated Loads (Ib)
	Vert: 8=-480
17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-224, 2-331, 3-424, 3-8213, 5-8243, 2-620
	Horz: 1-2=-26, 2-3=-19, 3-4=-26
	Concentrated Loads (lb)
4.0	Vert: 8=-480 Nord - 27 Decide (he) - 27 Avia Flace - 27 (20 NW/FD2 Wied (her, he) 2nd Decile) Lumber leaves - 4.22 Decide leaves - 4.22
10) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-213, 5-8=-243, 2-6=-20
	Veit. 1-2=-30, 2-3=-43, 3-4=-30, 3-6=-213, 3-6=-243, 2-0=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14
	Concentrated Loads (lb)
	Vert 8=-480
19) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (pif)
	Vert. 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-500
20) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-500
21) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-438
22) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-320, 3-420, 3-8220, 5-8250, 2-620
	Concentrated Loads (lb)
	Vert: 8=-438

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD

2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 17-1-0.

(lb) - Max Horz 1=195(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-218(LC 12), 6=-218(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=418(LC 19), 9=496(LC 19), 6=496(LC 20)

```
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.
```

WEBS 2-9=-455/344, 4-6=-455/345

NOTES-

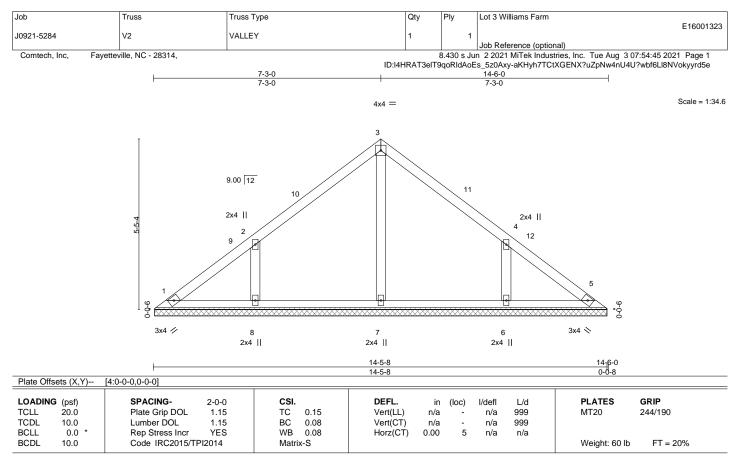
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-7-0, Interior(1) 4-7-0 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 16-8-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=218, 6=218,

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 August 3,2021

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 14-5-0.

(lb) - Max Horz 1=163(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-184(LC 12), 6=-184(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=375(LC 19), 6=375(LC 20)

WEBS 2-8=-388/310, 4-6=-388/310

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; b=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 14-0-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

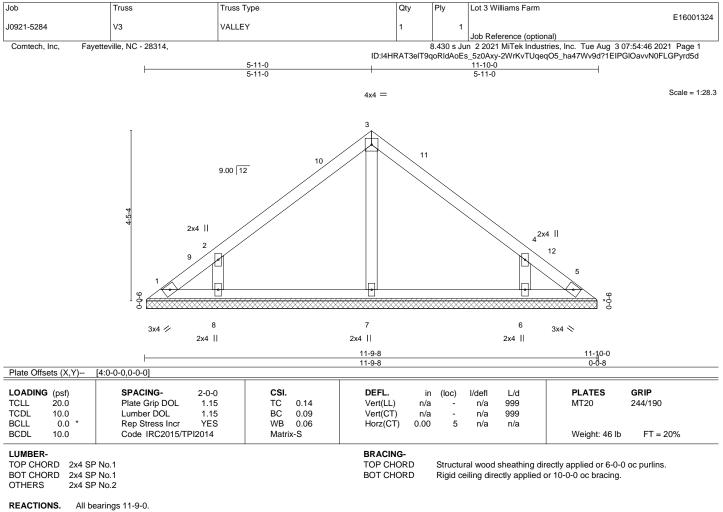
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=184, 6=184,

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Venity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters show, and is for an individual building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, deliver, erection and bracing of trusses and fruss systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

(lb) - Max Horz 1=-131(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-172(LC 12), 6=-171(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=343(LC 19), 6=342(LC 20)

NOTES-

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-4-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

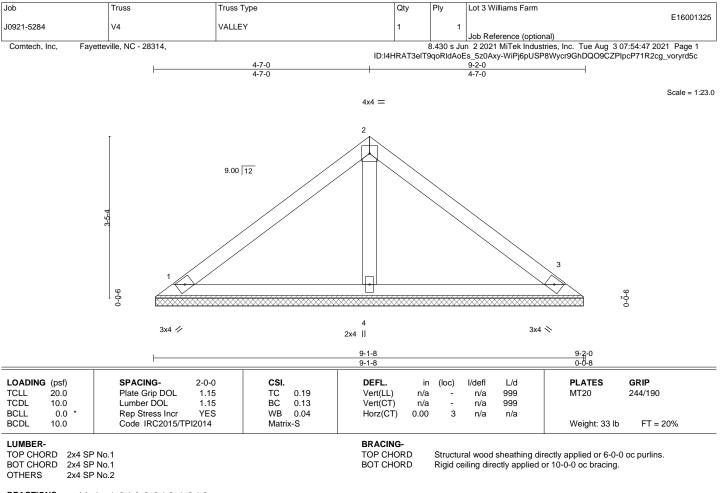
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=172, 6=171.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 August 3,2021

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 2-8=-372/316, 4-6=-372/316

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 1=9-1-0, 3=9-1-0, 4=9-1-0

Max Horz 1=99(LC 11)

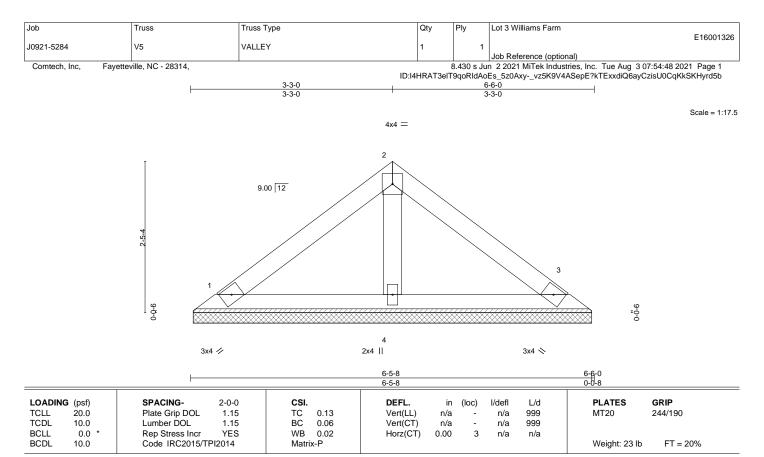
Max Uplift 1=-42(LC 12), 3=-52(LC 13), 4=-24(LC 12)

Max Grav 1=171(LC 1), 3=172(LC 20), 4=321(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=6-5-0, 3=6-5-0, 4=6-5-0

Max Horz 1=-67(LC 8)

Max Uplift 1=-37(LC 12), 3=-44(LC 13)

Max Grav 1=126(LC 1), 3=126(LC 1), 4=197(LC 1)

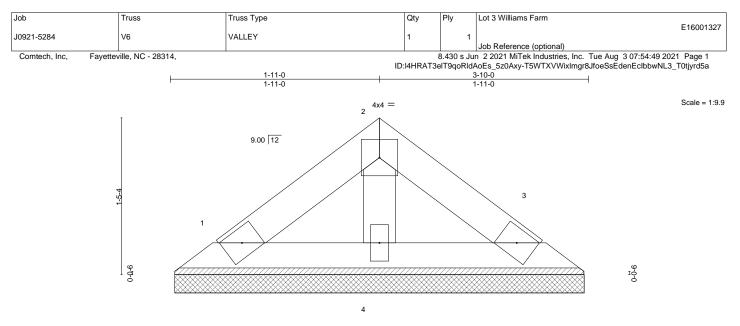
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

2x4 ||

BRACING-

TOP CHORD

BOT CHORD

3x4 📎

Structural wood sheathing directly applied or 3-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		398				0-0-8					
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-P						Weight: 12 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-0, 3=3-9-0, 4=3-9-0

Max Horz 1=-35(LC 8)

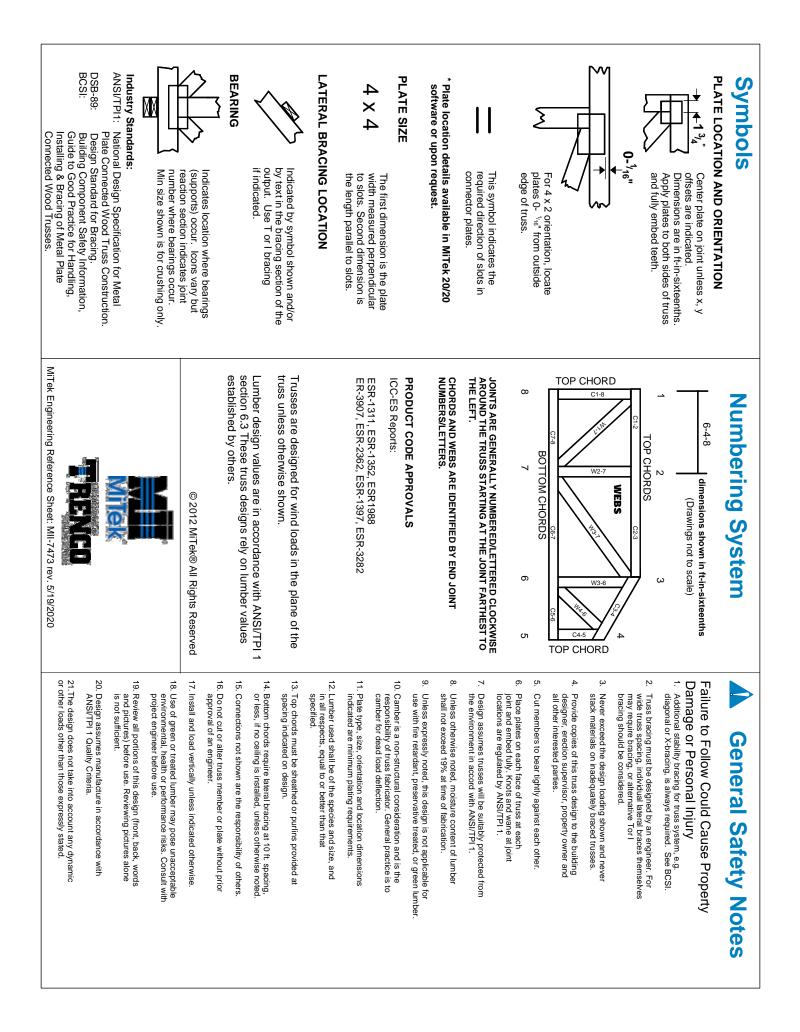
Max Uplift 1=-20(LC 12), 3=-23(LC 13)

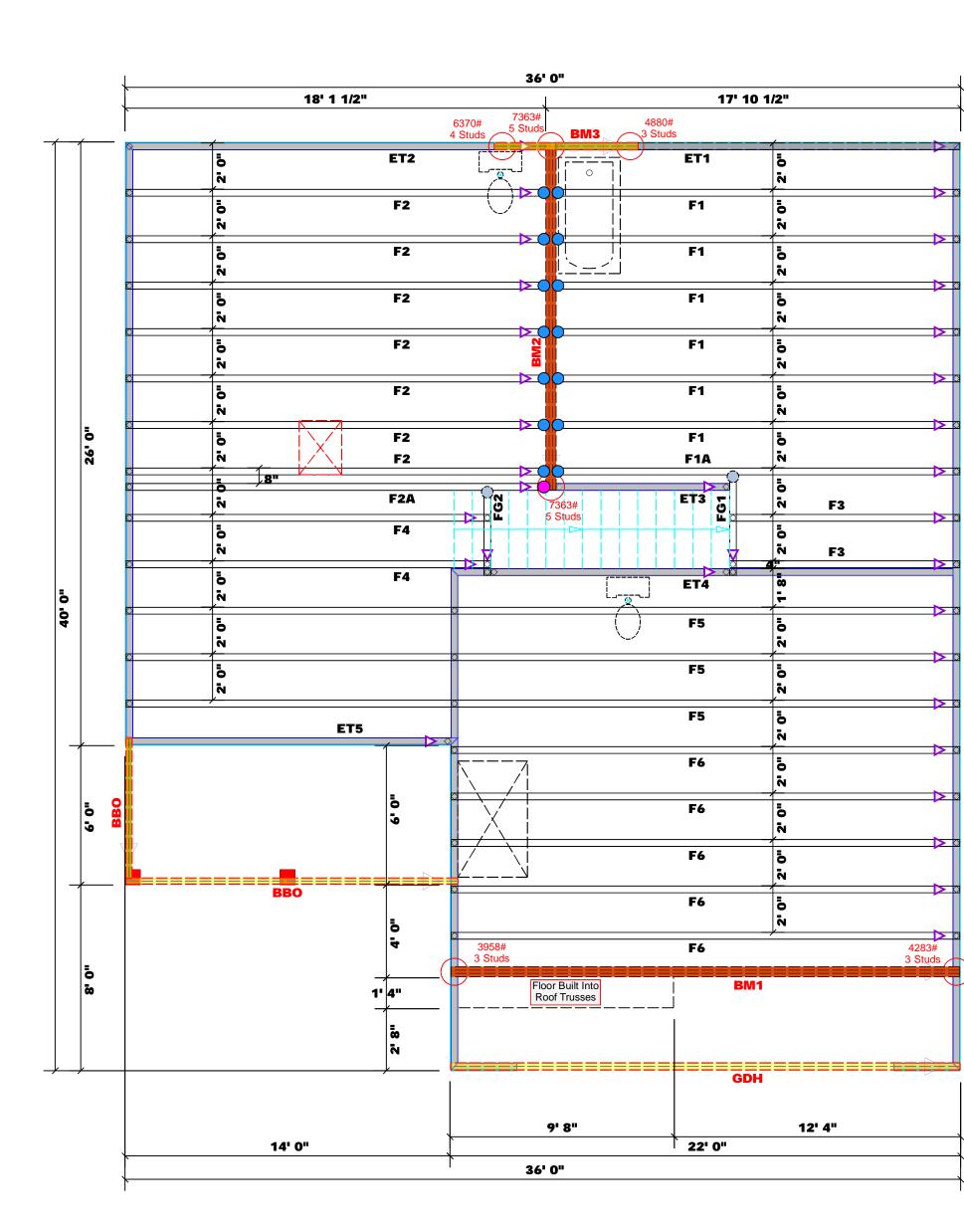
Max Grav 1=66(LC 1), 3=66(LC 1), 4=104(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

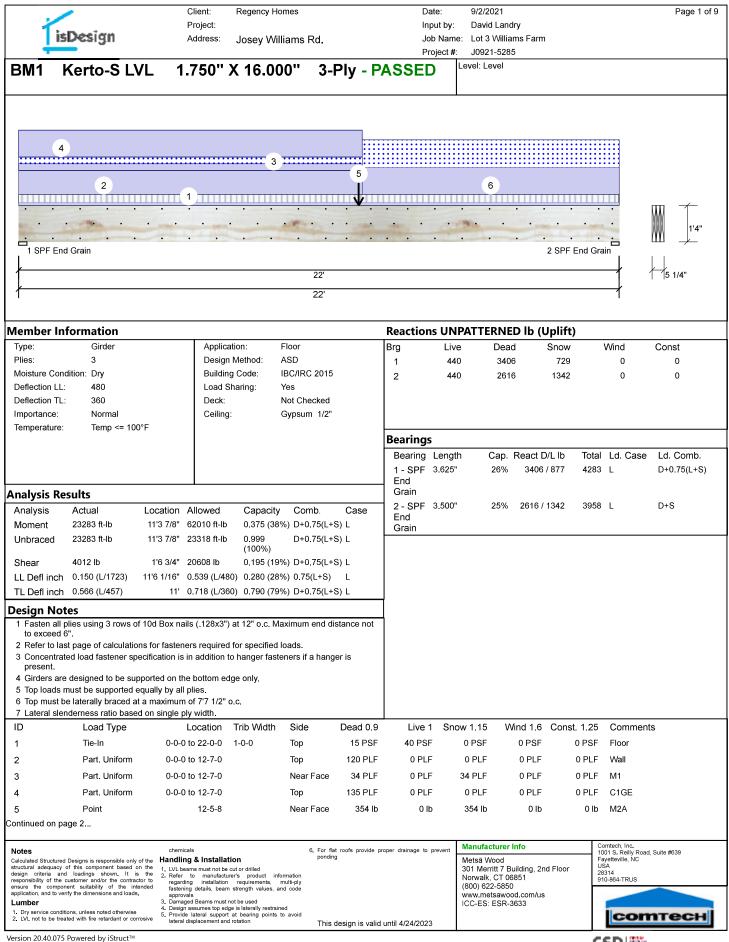
18¹ 8

36' 0'

4

.

4

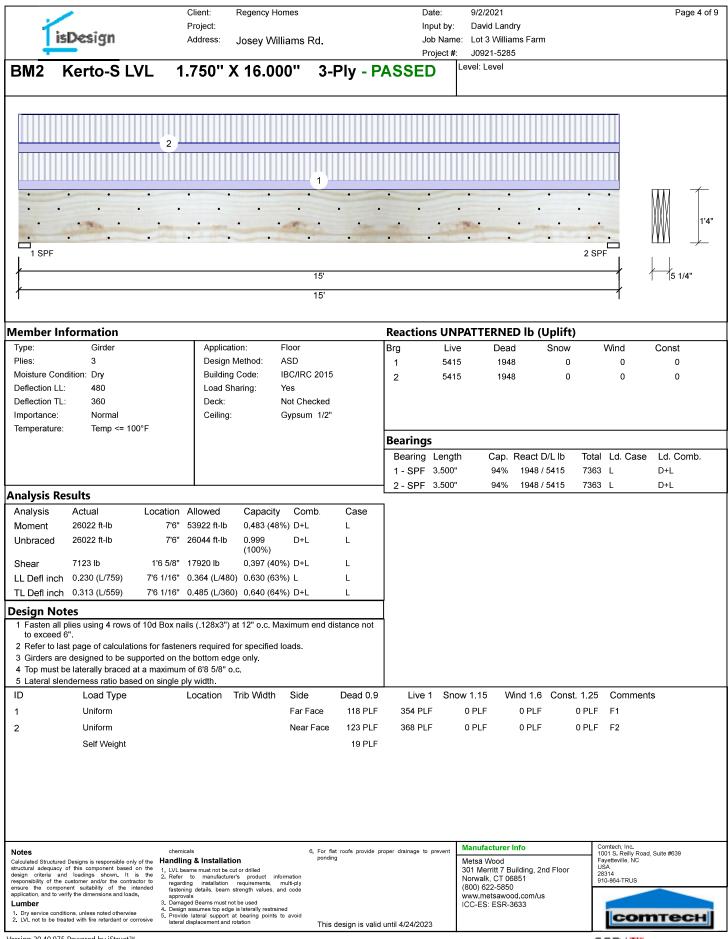

0

40

Dimension Notes Dimension Notes Dimension set to Dimension set to <th>1700 1 2550 1 3400 1 3400 2 5100 2 6800 3 10220 3 5100 3 7655 3 10220 4 13600 4 8500 5 12750 5 17000 5 12000 4 13600 4 1900 7 13300 9 -</th> <th>face of shea 2. All interior frame wall u 3. All exterior face of fram All Wa Conside</th> <th>athing unless noted otherwise r wall dimensions are to face unless noted otherwise or wall to truss dimensions are the wall unless noted otherwise alls Shown Ar ered Load Bea Plumbing Drop Notes up locations shown are NC</th> <th>e to e aring</th> <th></th> <th>CITY / CO. Harnett</th> <th>ADDRESS Josey Williams Rd.</th> <th>Floor</th> <th>REV. 09/2/21</th> <th>DRAWN BY David Landry</th> <th>REP. Bob Lewis</th>	1700 1 2550 1 3400 1 3400 2 5100 2 6800 3 10220 3 5100 3 7655 3 10220 4 13600 4 8500 5 12750 5 17000 5 12000 4 13600 4 1900 7 13300 9 -	face of shea 2. All interior frame wall u 3. All exterior face of fram All Wa Conside	athing unless noted otherwise r wall dimensions are to face unless noted otherwise or wall to truss dimensions are the wall unless noted otherwise alls Shown Ar ered Load Bea Plumbing Drop Notes up locations shown are NC	e to e aring		CITY / CO. Harnett	ADDRESS Josey Williams Rd.	Floor	REV. 09/2/21	DRAWN BY David Landry	REP. Bob Lewis
1700 1 2550 1 3400 1 3400 2 5100 2 6800 2 5100 3 7650 3 10200 3 6800 4 10200 4 13600 4 8500 5 12750 5 17000 5 10200 6 15300 6	(sASED ON TARLES REDECIU (2 (b)) NUMBER OF LACK STUDS REDECIUSE © EA END OF HEADERSTROPE NUMBER OF LACK STUDS REDECIUSE NUMBER OF LACK STUDS REDECIUSE	1. All exterio face of shea	or wall to wall dimensions are athing unless noted otherwise								
NUMBER OF JACK STUDS REQUIRED & EA END OF HEADER/STRIDER						2000 2000 3400 5100 6800 8500 10200 11900 13600	BEER OF A BODYCH A14(2) 1 CONCH A14(2) 1	кк эторы нехова хород 2550 5100 7650 10200 12750	REQUIRED /set Rock and supervised (c) active and supervised (c) active active active (c) active active acti	e EA END No117732 012 340 680 1020 1360	830¥311/31/37 804 \$3014\$3,052 0 1 0 2 3 00 4

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the <u>truss delivery package or online @ sbcindustry.com</u>

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards



CSD 🚟

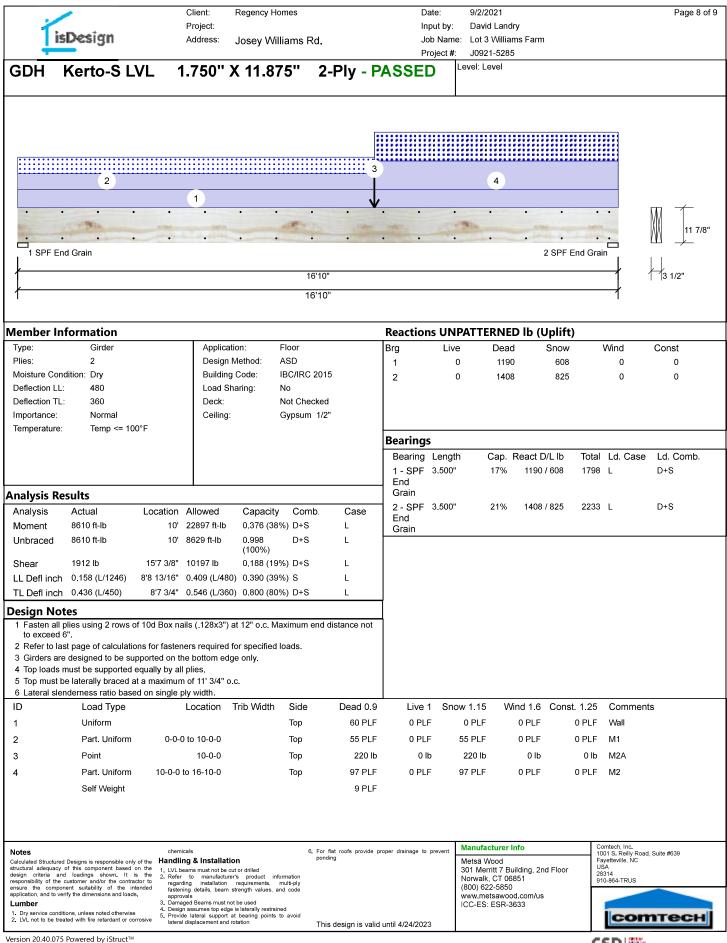
	/	Client: Regency Homes	Date:	9/2/2021	Page 2 of 9
- 1	h m t	Project:	Input	by: David Landry	
	isDesign	Address: Josey Williams		lame: Lot 3 Williams Farm	
			Proje		
BM1	Kerto-S LVL	1.750" X 16.000"	3-Ply - PASSED	Level: Level	
	4				
		3	5		
	2		5	6	
		1			,
	• • • •	• • • • • •		• • • • •	••• • 1
· ·	Contraction of the second			and the second s	1'4"
	End Grain			2 SPF End 0	
	End Grain			2 SPF Ellu C	
			22'		5 1/4"
/			22'		
'					
Continued	I from page 1				
ID	Load Type	Location Trib Width Side	e Dead 0.9 Live 1	Snow 1.15 Wind 1.6 Const. 1.2	5 Comments
6	Part. Uniform		r Face 137 PLF 0 PLF	137 PLF 0 PLF 0 PL	
0		12-7-0 to 22-0-0			1 1012
	Self Weight		19 PLF		
Notes		chemicals	6. For flat roofs provide proper drainage to prev	ent Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struc	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation	ponding	Metsä Wood	Fayetteville, NC USA
design criteria	and loadings shown. It is the for the customer and/or the contractor to	 LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply 		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 910-864-TRUS
ensure the co	omponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber	conditions, unless noted otherwise	 Damaged Beams must not be used Design assumes top edge is laterally restrained 		ICC-ES: ESR-3633	
2. LVL not to b	conditions, unless noted otherwise be treated with fire retardant or corrosive	 Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 4/24/2023		COMTECH
Version 20.40	.075 Powered by iStruct™				

CSD

	Client: Regency Homes)ate:	9/2/2021	Page 3 of 9
LaDatan	Project:		iput b y :	David Landry	
isDesign	Address: Josey Williams F	Rd. J	ob Name:	Lot 3 Williams Farm	
		P	roject #:	J0921-5285	
BM1 Kerto-S L	VL 1.750" X 16.000"	3-Ply - PASSE	DL	evel: Level	
		· · · · · · · · · · · · · · · · · · ·	_		
		1			
		I			
		↓ ↓			-
• • • • •	· · · · · ·		• •	• • • •	· · · · · · · · · · · · · · · · · · ·
			•	• • • • •	· · · · · · · · · · · · · · · · · · ·
<u> </u>	<u> </u>		• •	· · · · ·	<u>⋰</u> :¦‡ Ш ,∠
1 SPF End Grain				2 SPF End	d Grain 7
<u></u>		001			
		22'			1 15 1/4"
1		22'			<u> </u>
Multi-Ply Analysis					
Fasten all plies using 3 row	vs of 10d Box nails (.128x3") at 12" o	o.c except for regions o	overed	by concentrated load fa	stening.
	mum end distance not to exceed 6			,	5
Capacity	64.7 %				
_oad	182.7 PLF				
Yield Limit per Foot	282.4 PLF				
rield Limit per Fastener	94.1 lb.				
Yield Mode	IV				
Edge Distance	1 1/2"				
-	3"				
Min. End Distance					
Load Combination	D+S				
Duration Factor	1.15				
Concentrated Load					
Fasten at concentrated sid	e load at 12-5-8 with a				
minimum of (6) – 10d Box	nails (128x3") in the				
		n/Max fastener distan	ces for	Concentrated Side Load	ds
pattern shown. Repeat fas		in mux rusterier distan		Concentrated Slat Loa	
Capacity	83.6 %	Min. 3"	+-+-N	Min. 1 1/4"	
Load	472.0lb.		1.000		
Total Yield Limit	564.7 lb.	·			
Cg	0.9998	1/2"			0.935 20420
Yield Limit per Fastener	94.1 lb.	• • •	•		• •
Yield Mode	IV	Min. 1 1/	4"	0 \ / 0	
		+		o \/ o	
_oad Combination	D+S	. 3"	T	olo	
Duration Factor	1.15	100000000000000000000000000000000000000	L	οΛο	
		- Min. 5"		o / \ o	
				0 / \ 0	
		I I	-		- T
			_		
			-	Min. 3"	
		12	Max. 12	Max.	12"
			NIGA. 14	T T IVIDA.	12
				Manufacturer Info	Comtech, Inc.
Notes		For flat roofs provide proper drainage to ponding	prevent		1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only structural adequacy of this component based of	of the Handling & Installation on the 1. LVL beams must not be cut or drilled			Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria and loadings shown. It is responsibility of the customer and/or the contra-	s the 2 Refer to manufacturer's product information			Norwalk, CT 06851	28314 910-864-TRUS
ensure the component suitability of the int	tended fastening details, beam strength values, and code			(800) 622-5850	
application, and to verify the dimensions and loads	approvals 3. Damaged Beams must not be used			www.metsawood.com/us	
Lumber 1. Dry service conditions, unless noted otherwise	Design assumes top edge is laterally restrained		['	ICC-ES: ESR-3633	
 LVL not to be treated with fire retardant or co 		This design is valid until 4/24/202	23		соттесн
Arcion 20 40 075 Powarad by Struct					
Version 20.40.075 Powered by iStruct™					CSD 🚟

Version 20.40.075 Powered by iStruct™

CSD 🚟


Client: Regency Homes Date: 9/2/2021 Project: Input by: David Landry	Page 5 of 9
Project: Input by: David Landry Address: Josey Williams Rd. Job Name: Lot 3 Williams Farm Project #: J0921-5285	
BM2 Kerto-S LVL 1.750" X 16.000" 3-Ply - PASSED	
· · · · · · · · · · · · · · · · · · ·	···
	. 11/2"
1 SPF 2	
15'	5 1/4"
15'	
Multi-Ply Analysis Fasten all plies using 4 rows of 10d Box nails (.128x3") at 12" o.c Nail from both sides. Maximum end distance not to	exceed
6"	
Capacity 100.0 % Load 327.3 PLF	
Yield Limit per Foot 327.4 PLF Yield Limit per Fastener 81.9 lb.	
Yield Mode IV Edge Distance 1 1/2"	
Min. End Distance 3"	
Load Combination D+L Duration Factor 1.00	
Notes chemicals 6. For flat roofs provide proper drainage to prevent Manufacturer Info Calculated Structured Designs is responsible only of the Handling & Installation ponding Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the customerator to responsibility of the customer and/or the customerator to responsibility of the customerator to responsib	USA 28314 910-864-TRUS
ensure the component suitability of the intended application, and to verify the dimensions and loads. approvals approvals (800) 622-5850 www.metsawood.com/us approvals UICCES_ESP.3633	
1. Dry service conditions, unless noted otherwise 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points toe 1000 E.D. E.D. Concerned 2. LVL not be be treated with fire retardant or corrosive 5. Provide lateral support at bearing points toe 1000 E.D. E.D. Concerned	соттесн

CSD 🗱

Version 20.40.075 Powered by iStruct™

1	P t	F	Client: Project:	Regency H			In	ate: put by:	9/2/2021 David Land	-			Page 6 of 9
is	Design	A	Address:	Josey Wi	illiams Rd.			b Name: oject #:	Lot 3 Willia J0921-5285				
3 M 3	Kerto-S L\	/L 1	1.750''	' X 9.2	250''	2-Ply -		·	evel: Level				
	1				4.								
				Ň	XIXI	3							
		2			₩ 1			_					
													9 1
	C. Then		「四	•	1941202	•							
	End Grain					2 SPI	End Grain	 .					
			5'1										3 1/2"
1			5'1	0"				1					
lember In	formation						Reaction	s UNP	ATTERNE	D lb (Upli	ft)		
Type: Plies:	Girder 2		Applicat Design		Floor ASD		Brg	Live	Dead			Wind	Const
Moisture Cond			Building		IBC/IRC 20	15	1 2	2153 3496	235 2840			0 0	0 0
Deflection LL: Deflection TL:			Load St Deck:	naring:	No Not Checke	d							
Importance:	Normal		Ceiling:		Gypsum 1/2								
Temperature:	Temp <= 100°F	=	_										
							Bearing		0	Boact D/I II	T=4-1		
							Bearing 1 - SPF	-	Cap. 46%	React D/L lb 2357 / 2522			Ld. Comb. D+0.75(L+S)
							End Grain						,
nalysis Re Analysis		_ocation A		Capacit	y Comb.	Case	2 - SPF	3.500"	60%	2840 / 3530	6370	L	D+0.75(L+S)
Moment	11308 ft-lb		12542 ft-lb	0.902 (90		L	End Grain						
Unbraced	11308 ft-lb	3'7" 1	11327 ft-lb	0.998	D+L	L	Grain						
Shear	5739 lb	4'10" 6	6907 lb	(100%) 0.831 (83	3%) D+L	L							
LL Defl inch	0.084 (L/764)	3'4 7/8" 0	0.134 (L/480) 0.630 (63	3%) L	L							
TL Defl inch	0.143 (L/451)	3'3 5/8" 0	0.179 (L/360	0) 0.800 (80	0%) D+L	L							
esign Not			(100, 011)				1						
to exceed 6	blies using 2 rows of 1 5".	Ud Box nails	s (.128x3")	at 12" o.c. Iv	laximum end	distance not							
	t page of calculations designed to be supp		•	•	loads.								
4 Top loads n	nust be supported equ	ually by all p	olies.	, ,									
•	e laterally braced at a derness ratio based o												
ID	Load Type			Trib Width	Side	Dead 0.9	Live '			ind 1.6 Co		Comment	S
1	Tie-In	0-0-0 t	to 5-10-0	1-0-0	Тор	15 PSF	40 PSI) PSF	0 PSF	0 PSF	Floor	
2	Uniform				Тор	120 PLF	0 PLI			0 PLF	0 PLF	Wall	
3 4	Uniform Point		3-7-0		Тор Тор	415 PLF 1948 lb	0 PLF 5415 II		5 PLF 0 lb	0 PLF 0 lb	0 PLF 0 lb	A3 BM2 Brg 2	
4	Point Self Weight		3-1-0		юр	1948 ID 7 PLF	04 I 0 II		ui u	u u	מוט		
	-												
Notes		chemical				flat roofs provide p ding	roper drainage to	prevent	lanufacturer	nfo	1	Comtech, Inc. 001 S. Reilly Road	, Suite #639
structural adequacy o design criteria and	Designs is responsible only of t of this component based on t loadings shown. It is t	the 1_LVL bear the 2_Refer	ms must not be c to manufacture	ut or drilled		~		3	letsä Wood 01 Merritt 7 Bi lorwalk, CT 06	uilding, 2nd Flo	or 2	ayetteville, NC JSA 8314	
esponsibility of the consure the compon	customer and/or the contractor ent suitability of the intend ify the dimensions and loads.	to regarding led fastening	g installation g details, beam	requirements,	multi-ply			(8	800) 622-5850		9	10-864-TRUS	
and to ver	, annonoione anu ioaus.	approval 3 Damage	ls ed Beams must no	t be used					ww.metsawoo				
Lumber	ons, unless noted otherwise	Design a	assumes top edge lateral support :	is laterally restra	ined			I.	CC-ES: ESR-3	033			птесн

	/	Client:	Regency Homes		Date:	9/2/2021	Page 7 of 9
1	isDesign	Project: Address:	Josey Williams R	d.	Input by: Job Name	David Landry : Lot 3 Williams Farm	
•					Project #:	J0921-5285	
BM3	Kerto-S L	VL 1.750	" X 9.250"	2-Ply - PAS	SED	_evel: Level	
			IYIYIYI				
•	•	•	•	• •	•	-	
						≺1 1/2"	9 1/4
•	•	•	•	• •	•	<u> </u>	
	SPF End Grain			2 SPF End Gr	ain		
†		5'	10"				3 1/2"
1		5'	10"		1		
Maula: Di	h. Amahaia						
	ly Analysis Il plies using 2 rows	of 10d Box nails	(128x3") at 12" c	o.c Maximum end di	stance no	nt to exceed 6"	
Capacity	in plies using 2 rows	0.0 %			stance no		
Load Yield Limit	per Foot	0.0 PLF 163.7 PLF					
Yield Limit Yield Mode	per Fastener	81.9 lb. IV					
Edge Dista	nce	1 1/2"					
Min. End D Load Comb		3"					
Duration Fa		1.00					
Notes		chemicals		For flat roofs provide proper draina	ge to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural ader design criteri	uctured Designs is responsible only of quacy of this component based on a and loadings shown. It is	the 1. LVL beams must not be the 2 Refer to manufacture		ponding		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of ensure the of	of the customer and/or the contracto component suitability of the inten d to verify the dimensions and loads	r to regarding installation	requirements, multi-ply strength values, and code			Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	910-864-TRUS
Lumber 1. Dry service	conditions, unless noted otherwise	 Damaged Beams must i Design assumes top edge Brouide lateral support 	not be used ge is laterally restrained at bearing points to avoid			ICC-ES: ESR-3633	соттесн
	be treated with fire retardant or corro	sive lateral displacement and	I rotation	This design is valid until 4/24	/2023		
version 20.4	0.075 Powered by iStruct™						CSD 🗱

CSD 🚟

LaDaaiam	Client: Project:	Regency Homes		Date: Input by:		Page 9 of 9
isDesign	Address:	Josey Williams I	Rd.	Job Nan Project #	ne: Lot 3 Williams Farm ≇: J0921-5285	
GDH Kerto-S LVL	1.750"	X 11.875"	2-Ply -	PASSED	Level: Level	
1 SPF End Grain	· ·		• • • • • • 16'10" 6'10"	· ·	• • • • • • • • • • 2 SPF End	Grain
Load 0. Yield Limit per Foot 16 Yield Limit per Fastener 81 Yield Mode IV Edge Distance 1 Min. End Distance 3" Load Combination 1	0 % 0 PLF 33.7 PLF 1.9 lb. 1/2"	(.128x3") at 12"	o.c Maximu	um end distance r	not to exceed 6"	
Notes Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	 LVL beams must not be Refer to manufacturegarding installation fastening details, bear approvals Damaged Beams must Design assumes top eci- provide lateral support 	tion cut or drilled rerear product information requirements, multi-ply n strength values, and code not be used ge is laterally restrained t at bearing points to avoid	ponding	ide proper drainage to prevent valid until 4/24/2023	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Comtech, Inc. 1001 S. Relly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

CSD 🗱

Version 20.40.075 Powered by iStruct™

RE: J0921-5285 Lot 3 Williams Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Regency Homes	Project Name: J0921-5285
Lot/Block: 3	Model: Brinkley
Address: Josey Williams Rd City: Erwin	Subdivision: Williams Farm State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

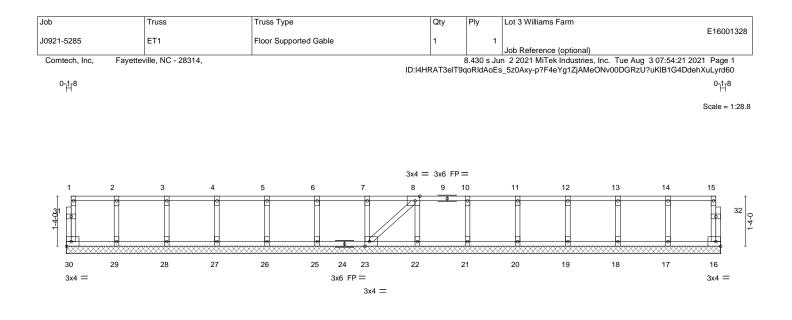
Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16001328	ET1	8/3/2021
2	E16001329	ET2	8/3/2021
3	E16001330	ET3	8/3/2021
4	E16001331	ET4	8/3/2021
5	E16001332	ET5	8/3/2021
6	E16001333	F1	8/3/2021
7	E16001334	F1A	8/3/2021
8	E16001335	F2	8/3/2021
9	E16001336	F2A	8/3/2021
10	E16001337	F3	8/3/2021
11	E16001338	F4	8/3/2021
12	E16001339	F5	8/3/2021
13	E16001340	F6	8/3/2021
14	E16001341	FG1	8/3/2021
15	E16001342	FG2	8/3/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

August 03, 2021

			17-4-12			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [23:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999 a - n/a 999	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat) P No.3(flat)	1	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o	,	oc purlins,

17-4-12

REACTIONS. All bearings 17-4-12.

(Ib) - Max Grav All reactions 250 Ib or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

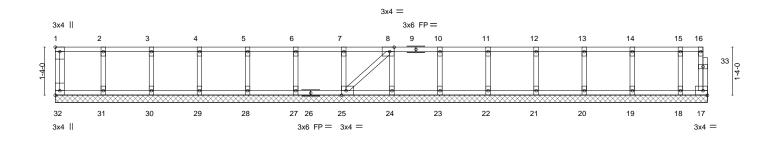
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



ſ	Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm		
	J0921-5285	ET2	Floor Supported Gable	1	1	E16001329		
						Job Reference (optional)		
	Comtech, Inc, Fayette	/ille, NC - 28314,		8	3.430 s Jur	1 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:22 2021 Page 1		
			ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-HCpSsuhgK1IDGYy5ajkWzB1Adk5RmjKNsIR4Royrd6?					

0-1-8

Scale = 1:30.1

L				18-1-0						
I				18-1-0						I
Plate Offsets	(X,Y) [1:Edge,0-1-8], [8:0-1-8,Edge], [25:0-	1-8,Edge], [32:Edge,0-1-8]							
TCDL 10 BCLL 0).0).0).0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 5	5.0	Code IRC2015/TPI2014	Matrix-S						Weight: 83 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP	No.1(fiat) No.1(fiat) No.3(fiat) No.3(fiat)		BRACING- TOP CHORI BOT CHORI		except	end verti	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,

REACTIONS.

All bearings 18-1-0.
 (lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

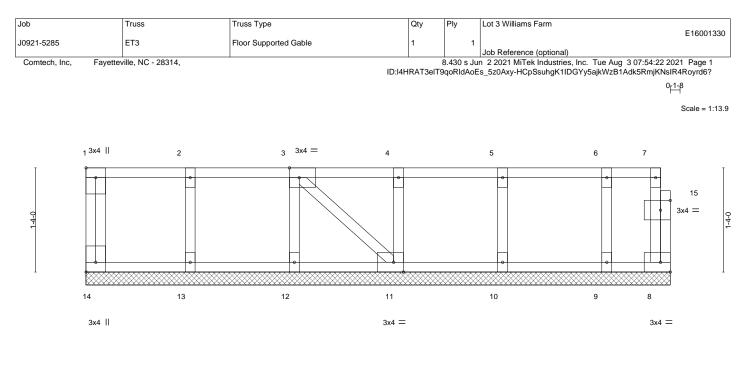
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

L			7-5-12					
1			7-5-12					
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [11:0-1-4	3,Edge], [14:Edge,0-1-8], [[15:0-1-8,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL.inVert(LL)n/aVert(CT)n/aHorz(CT)0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except	end verti	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	

REACTIONS.

DNS. All bearings 7-5-12. (lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

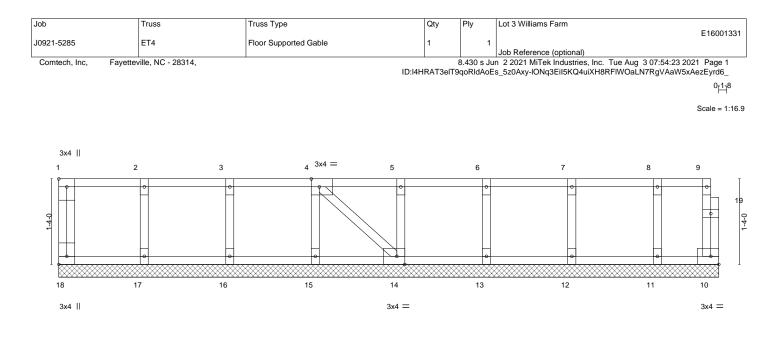
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

				10-3-8 10-3-8					
Plate Offsets (X	.,Y) [1:Edge,0-1-8], [4:0-1-8,	Edge], [14:0-1-8	,Edge], [18:Edge,0-1-8]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	 Plate Grip DOL Lumber DOL Rep Stress Incr 	2-0-0 1.00 1.00 YES PI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo n/a n/a 0.00	c) l/defl - n/a - n/a 10 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD WEBS	2x4 SP No.1(fiat) 2x4 SP No.1(fiat) 2x4 SP No.3(fiat) 2x4 SP No.3(fiat)			BRACING- TOP CHOR BOT CHOR	exc	ept end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS.

DNS. All bearings 10-3-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

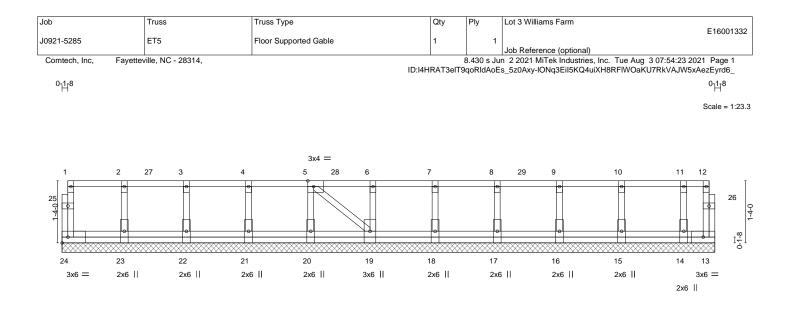
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

			14-0-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.00 WB 0.05 Matrix-S	DEFL. ir Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD2x4 SIWEBS2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing din except end verticals. Rigid ceiling directly applied o	<i>y</i> 11) oc purlins,

14-0-0

REACTIONS. All bearings 14-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

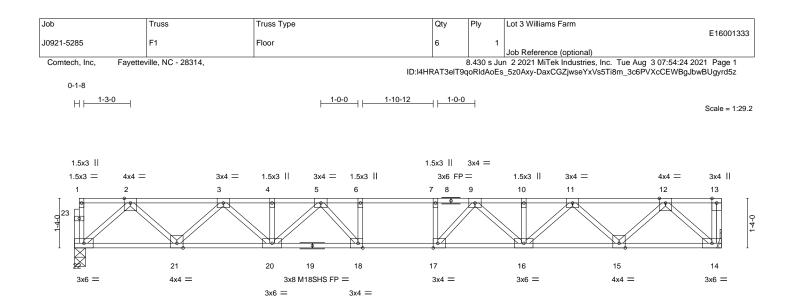
6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 13-24=-10, 1-12=-100


Concentrated Loads (lb)

Vert: 4=-91 7=-91 10=-91 27=-91 28=-91 29=-91

L			17-4-12				
Plate Offsets (X,Y) [17	10 1 9 Edge] [19:0 1 9 Edge]		17-4-12				I.
Plate Offsets (X,Y) [17	':0-1-8,Edge], [18:0-1-8,Edge]	1				1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.69 WB 0.46 Matrix-S	Vert(LL) -0.19	i (loc) l/d 17-18 >99 17-18 >7 17-18 >7 14 r	99 480	PLATES MT20 M18SHS Weight: 93 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No REACTIONS. (size)	0.1 (flat) 0.3 (flat) 22=0-3-8, 14=Mechanical		BRACING- TOP CHORD BOT CHORD	except end	verticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
	^r 22=937(LC 1), 14=943(LC 1) mp./Max. Ten All forces 250 (lb) o	r less except when shown					
TOP CHORD 2-3=-170	05/0, 3-4=-2823/0, 4-5=-2823/0, 5-6= 823/0, 10-11=-2823/0, 11-12=-1705/	-3312/0, 6-7=-3312/0, 7-9					
BOT CHORD 21-22=0. 14-15=0	/1015, 20-21=0/2365, 18-20=0/3144 0/1016	, 17-18=0/3312, 16-17=0/	3144, 15-16=0/2365,				
12-15=0	349/0, 2-21=0/960, 3-21=-918/0, 3-2 /959, 11-15=-918/0, 11-16=0/623, 9 6/552, 6-18=-313/5						

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

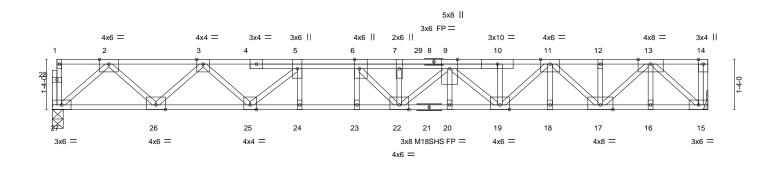
4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

August 3,2021

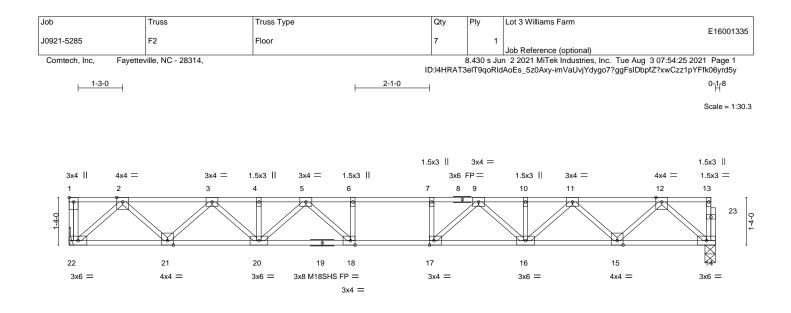


Job	Truss	Truss Type	Qty	Ply	Lot 3 Williams Farm
J0921-5285	F1A	Floor	1	1	E16001334
					Job Reference (optional)
Comtach Inc. Equation	lile NC 00044	•			2 2024 MiTak ladvetrice las Tue Ave 2 07554-25 2024 Dage 4

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:25 2021 Page 1 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-imVaUvjYdygo7?ggFsIDbpfbMxy0zwDpYFfk06yrd5y

Scale = 1:28.8



 			17-4-12 17-4-12					
Plate Offsets (X,Y)	[6:0-3-0,Edge]		17-4-12					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.65 WB 0.66 Matrix-S		in (loc) -0.21 22-23 -0.29 22-23 0.06 15	l/defl >985 >707 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 108 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (size	 2400F 2.0E(flat) 2400F 2.0E(flat) No.3(flat) e) 27=0-3-8, 15=Mechanical 3rav 27=1112(LC 1), 15=1169(LC 1) 		BRACING- TOP CHORE BOT CHORE	except	end vertica	als.	ectly applied or 6-0-0 o	oc purlins,
TOP CHORD 2-3=- 10-17 BOT CHORD 26-27 19-2 WEBS 2-27= 13-17	Comp./Max. Ten All forces 250 (lb) of -2077/0, 3-5=-3610/0, 5-6=-4426/0, 6-7= 1=-3899/0, 11-12=-2304/0, 12-13=-2304 7=0/1224, 25-26=0/2895, 24-25=0/4426 00=0/4648, 18-19=0/3179, 17-18=0/3175 =-1627/0, 2-26=0/1187, 3-26=-1138/0, 3 7=0/1391, 11-17=-1180/0, 11-19=0/972, =0/1041	-4969/0, 7-9=-4969/0, 9- /0 , 23-24=0/4426, 22-23=0/ 0, 16-17=0/1273, 15-16=0 -25=0/989, 5-25=-1130/0	10=-3904/0, 4426, 20-22=0/464 /1273 , 13-15=-1684/0,	8,				
 All plates are MT20 All plates are 1.5x3 Plates checked for a 5) Refer to girder(s) for Recommend 2x6 str Strongbacks to be a 7) CAUTION, Do not e Hanger(s) or other c chord. The design/s In the LOAD CASE(connection device(s) shall be provided si selection of such connection device(s) is (S) section, loads applied to the face of t dard	ts center. ts cand fastened to each tr strained by other means. ufficient to support concer the responsibility of othe he truss are noted as fror	ntrated load(s) 481 l					2
Uniform Loads (plf)		Increase=1.00						st 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss systems, see fabrication, storage, delivery, rection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

l			<u>18-1-0</u> 18-1-0				
Plate Offsets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1	-8,Edge]				-	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.56 BC 0.77 WB 0.48 Matrix-S	Vert(LL) -0.22	n (loc) l/defl 2 17-18 >956 17-18 >695 5 14 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 96 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (siz	P No.1(flat) P No.1(flat) P No.3(flat) ze) 22=Mechanical, 14=0-3-8 Grav 22=981(LC 1), 14=975(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,
TOP CHORD 2-3= 9-10 BOT CHORD 21-2 14- WEBS 2-22 6-18	. Comp./Max. Ten All forces 250 (lb) o 1787/0, 3-4=-2985/0, 4-5=-2985/0, 5-6:)=-2985/0, 10-11=-2985/0, 11-12=-1787/ 12=0/1058, 20-21=0/2486, 18-20=0/3347 15=0/1058 :=-1409/0, 2-21=0/1013, 3-21=-972/0, 3- :=-316/0, 12-14=-1406/0, 12-15=0/1014, '=-55/627, 7-17=-316/0	=-3581/0, 6-7=-3581/0, 7-9 0 1, 17-18=0/3581, 16-17=0/ 20=0/678, 5-20=-492/0, 5	9=-3581/0, '3347, 15-16=0/2486, -18=-55/627,				

NOTES-

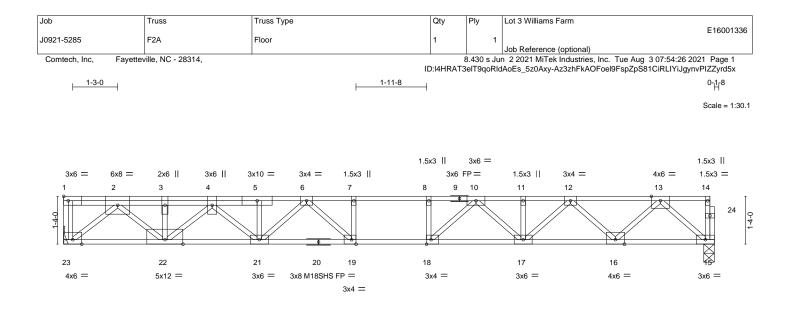
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

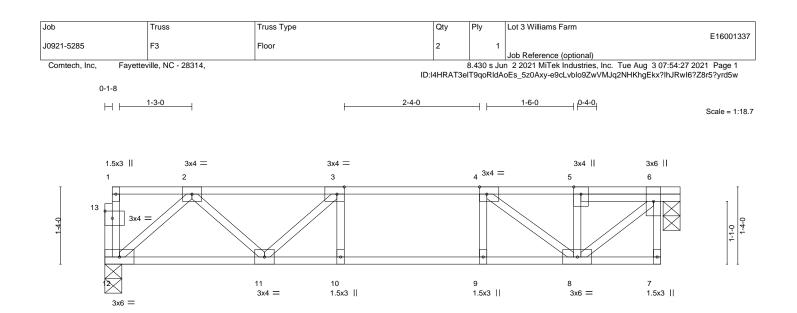
4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

August 3,2021



			<u>18-1-0</u> 18-1-0				
Plate Offsets (X,Y)	[18:0-1-8,Edge], [19:0-1-8,Edge]	-	1010				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.70 WB 0.91 Matrix-S	Vert(LL) -0.24	(loc) l/defl 19-21 >893 19-21 >643 15 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 104 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	e) 23=Mechanical, 15=0-3-8		BRACING- TOP CHORD BOT CHORD	except end vert	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
TOP CHORD 2-3=- 8-10: BOT CHORD 22-23: 15-1 WEBS 2-23: 13-10: 13-10:	Comp./Max. Ten All forces 250 (lb) or -3133/0, 3-4=-3133/0, 4-5=-3993/0, 5-6= =-4253/0, 10-11=-3371/0, 11-12=-3371/0 3=0/1699, 21-22=0/3727, 19-21=0/4221 6=0/1163 =-2212/0, 2-22=0/1902, 3-22=-712/0, 4-2 6=0/1146, 12-16=-1097/0, 12-17=0/810, =-318/0, 6-19=-321/322	3987/0, 6-7=-4253/0, 7-{ 0, 12-13=-1987/0 , 18-19=0/4253, 17-18=0/ 22=-789/0, 4-21=0/346, 13	3=-4253/0, 3839, 16-17=0/2775, 3-15=-1545/0,				
NOTES- 1) Unbalanced floor liv 2) All plates are MT20 3) Plates checked for a 4) Refer to girder(s) for 5) Recommend 2x6 stit Strongbacks to be a 6) CAUTION, Do not e 7) Hanger(s) or other c chord. The design/s 8) In the LOAD CASE(LOAD CASE(S) Stand 1) Dead + Floor Live (t Uniform Loads (plf)	e loads have been considered for this de plates unless otherwise indicated. a plus or minus 1 degree rotation about i r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 c ttached to walls at their outer ends or re rect truss backwards. connection device(s) shall be provided si selection of such connection device(s) is (S) section, loads applied to the face of t dard balanced): Lumber Increase=1.00, Plate =-10, 1-14=-100 s (lb)	ts center. ts cand fastened to each tr strained by other means. ufficient to support concer the responsibility of other he truss are noted as fron	ntrated load(s) 689 lb dov rs.				st 3.2021

August 3,2021

Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [13:0-1-	9-7- 9-7- 8.0-1-8]				<u>9-11-0</u> 0-4-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.47 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	10 >999 480 10 >999 360	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	· · · · ·	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	<i>y</i> 11	oc purlins,
REACTIONS. (size Max G	e) 12=0-3-8, 6=0-3-8 irav 12=511(LC 1), 6=517(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-781/0, 3-4=-966/0, 4-5=-493/0, 5-6=-497/0

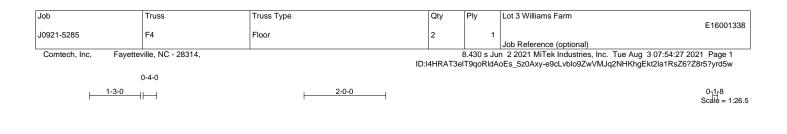
BOT CHORD 11-12=0/541, 10-11=0/966, 9-10=0/966, 8-9=0/966

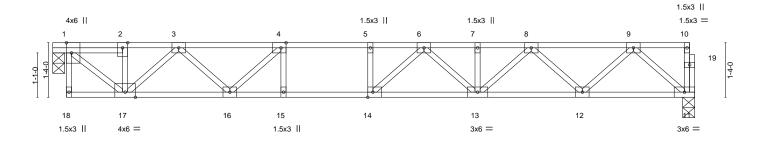
WEBS 6-8=0/642, 2-12=-718/0, 2-11=0/334, 3-11=-308/0, 4-8=-629/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.
2) Plates checked for a plus or minus 1 degree rotation about its center.
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.


5) CAUTION, Do not erect truss backwards.

August 3,2021

0-4-0 0-4-0			15-8-8 15-4-8			
Plate Offsets (X,Y)	[1:0-3-0,Edge], [4:0-1-8,Edge], [14:0-1-8	3,Edgej			1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.94 WB 0.54 Matrix-S	Vert(LL) -0.21	(loc) l/defl L/d 13-14 >855 480 13-14 >639 360 11 n/a n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.1(flat) No.3(flat) e) 11=0-3-8, 1=0-3-8		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied 2-2-0 oc bracing: 14-15.		•
Max G FORCES. (lb) - Max. TOP CHORD 1-2=- 7-8=- BOT CHORD 16-17 WEBS 1-17=	rav 11=829(LC 1), 1=835(LC 1) Comp./Max. Ten All forces 250 (lb) or 881/0, 2-3=-878/0, 3-4=-1989/0, 4-5=-2! 2371/0, 8-9=-1469/0 r=0/1534, 15-16=0/2524, 14-15=0/2524, =0/1143, 3-17=-892/0, 3-16=0/633, 4-16 =-776/0, 8-13=0/468, 6-13=-279/0, 6-14=	524/0, 5-6=-2524/0, 6-7=- 13-14=0/2568, 12-13=0/ =-792/0, 9-11=-1184/0, 9-	2371/0, 2027, 11-12=0/891			

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

August 3,2021

32

4x6 =

31

4x6 =

30 29 28

4x8

3x6 FP =

	21-9-4	-		1.	4-1-12	
Plate Offsets (X,Y)	[6:0-1-8,Edge], [19:0-1-8,Edge], [27:0-1	-8,Edge], [35:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.76 BC 0.75 WB 0.73 Matrix-S	DEFL. in Vert(LL) -0.31 Vert(CT) -0.43 Horz(CT) 0.06	36 >829 480 36 >610 360	PLATES MT20 M18SHS Weight: 184 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	SP 2400F 2.0E(flat) SP 2400F 2.0E(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o	2 11	c purlins,
(-	ize) 40=0-3-8, 30=0-3-8, 23=0-3-8 Grav 40=1057(LC 10), 30=2336(LC 1), 2	3=679(LC 4)				
TOP CHORD 2-3 9-1 14-	x. Comp./Max. Ten All forces 250 (lb) o =-1966/0, 3-4=-3327/0, 4-5=-3327/0, 5-6= 0=-3391/0, 10-11=-2151/0, 11-12=-2151// 15=0/2770, 15-17=-494/1577, 17-18=-16/ 21=-1153/65	-4044/0, 6-7=-4202/0, 7-9=- 0, 12-13=-239/263, 13-14=0/	/2770,			
BOT CHORD 39- 32	40=0/1151, 38-39=0/2750, 37-38=0/3828 -33=0/2910, 31-32=0/1292, 30-31=-1325/ 27=-684/1640, 25-26=-684/1640, 24-25=-	0, 28-30=-1902/0, 27-28=-11	- , ,			
WEBS 2-4 12-	21004/1040, 23-20004/1040, 24-23 0=-1529/0, 2-39=0/1134, 3-39=-1091/0, 3 31=-1508/0, 12-32=0/1210, 10-32=-1075/ 7=0/422, 6-37=-483/199, 9-35=0/824, 7-3	-38=0/783, 13-30=-1924/0, 1 0, 10-33=0/705, 9-33=-716/0	0, 5-38=-681/0,			

17-28=-1088/0, 17-27=0/1206, 21-23=-943/33, 21-24=-57/615, 20-24=-590/78,

20-25=-263/135, 19-25=0/556, 19-26=-365/0, 18-27=-522/0

NOTES-

40

3x6 =

39

4x6 =

38

3x6 =

37 36

1.5x3 ||

35

21-9-4

34 33

3x8 M18SHS FP =

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
 Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

25

24

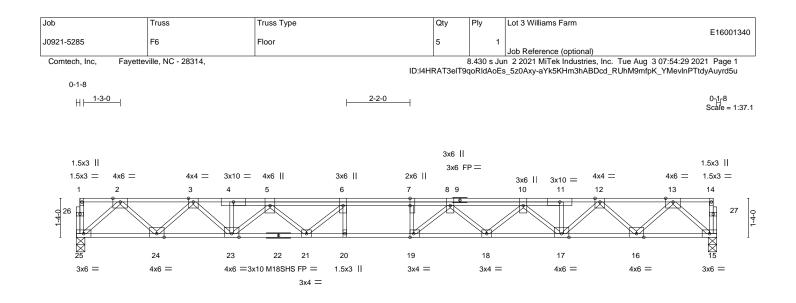
23

3x6 =

26

35-11-0

1.5x3 ||


27

4x4 =

4x4 =

August 3,2021

			<u>21-11-0</u> 21-11-0			I	
Plate Offsets (X,Y)	[7:0-3-0,0-0-0], [19:0-1-8,Edge]	1					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES	GRIP	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.24	Vert(LL) -0.34	19 >763 480	MT20	244/190	
TCDL 10.0	Lumber DOL 1.00	BC 0.55	Vert(CT) -0.47	19 >554 360	M18SHS	244/190	
BCLL 0.0	Rep Stress Incr YES	WB 0.63	Horz(CT) 0.09	15 n/a n/a			
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 129 lb	FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.			
REACTIONS. (size Max G	e) 25=0-3-8, 15=0-3-8 rav 25=1185(LC 1), 15=1185(LC 1)						
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) o 2243/0, 3-4=-3884/0, 4-5=-3890/0, 5-6=	-5113/0, 6-7=-5539/0, 7-8					

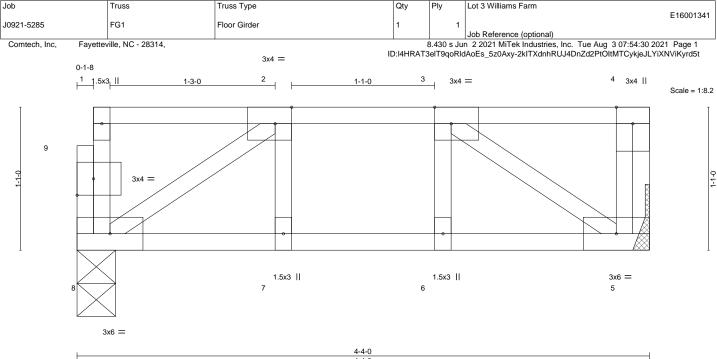
 8-10=-5100/0, 10-11=-3889/0, 11-12=-3882/0, 12-13=-2243/0

 BOT CHORD
 24-25=0/1296, 23-24=0/3160, 21-23=0/4694, 20-21=0/5539, 19-20=0/5539, 18-19=0/5456, 17-18=0/4709, 16-17=0/3160, 15-16=0/1296

 WEBS
 2-25=-1723/0, 2-24=0/3160, 3-24=-1276/0, 3-23=0/984, 13-15=-1723/0, 13-16=0/1317, 12-16=-1276/0, 12-17=0/982, 10-17=-1098/0, 10-18=0/530, 8-18=-483/0, 5-23=-1075/0, 5-21=0/745, 6-21=-802/0, 8-19=-358/654, 7-19=-367/203

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

F			4-4-0			1	
Plate Offsets (X,Y)	[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,	0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.28 BC 0.36 WB 0.16	DEFL. i Vert(LL) -0.02 Vert(CT) -0.02 Horz(CT) 0.00	2 5-6 >999 360	PLATES MT20	GRIP 244/190	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 24 lb	FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD				
WEBS 2x4 SP No.3(flat)		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.				

REACTIONS. (size) 8=0-3-8, 5=Mechanical Max Grav 8=810(LC 1), 5=501(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-481/0, 2-3=-558/0

BOT CHORD 7-8=0/558, 6-7=0/558, 5-6=0/558 WEBS 3-5=-671/0, 2-8=-633/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

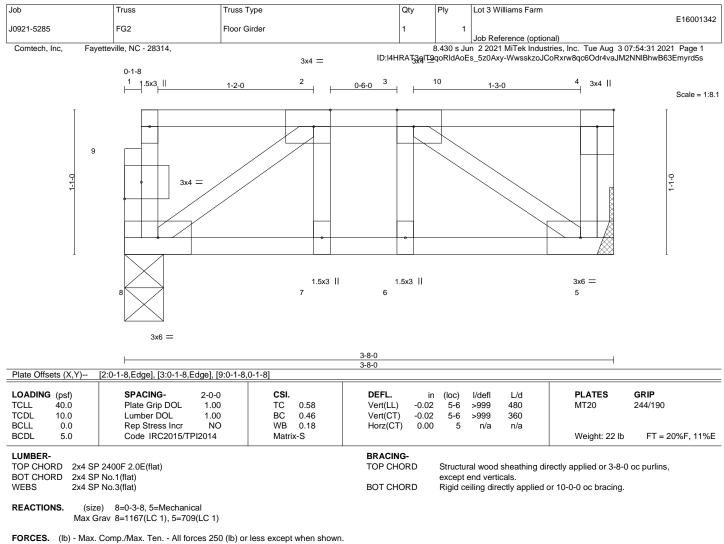
3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 1=-452 3=-417

TOP CHORD 1-8=-785/0, 2-3=-649/0

BOT CHORD 7-8=0/649, 6-7=0/649, 5-6=0/649

WEBS 3-5=-780/0, 2-8=-733/0, 2-7=0/274, 3-6=-254/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

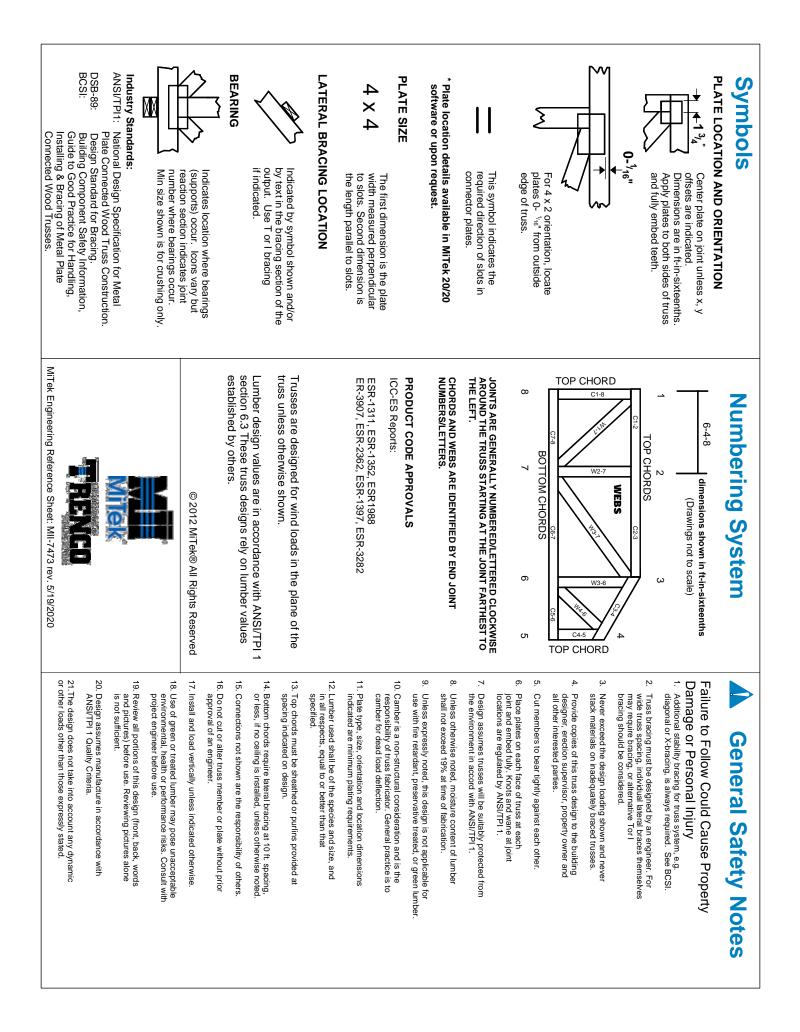
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 1=-771 10=-735

August 3,2021

