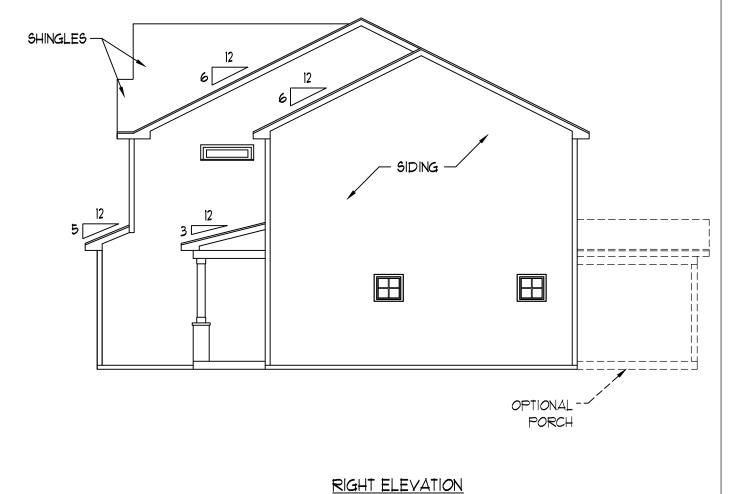

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.



FRONT ELEVATION-A

SCALE: 1/4" = 1'-0"

STEPS PER GRADE AS REQ.

HOMES

...

PRICES, Fr FLOOR P DIMENSIC SQUARE MAY VARY HOUSE O HOUSE O PLOT PLA

ECTION

 $(\mathbf{\Lambda})$

WESTAN HOME CAROLINA COL

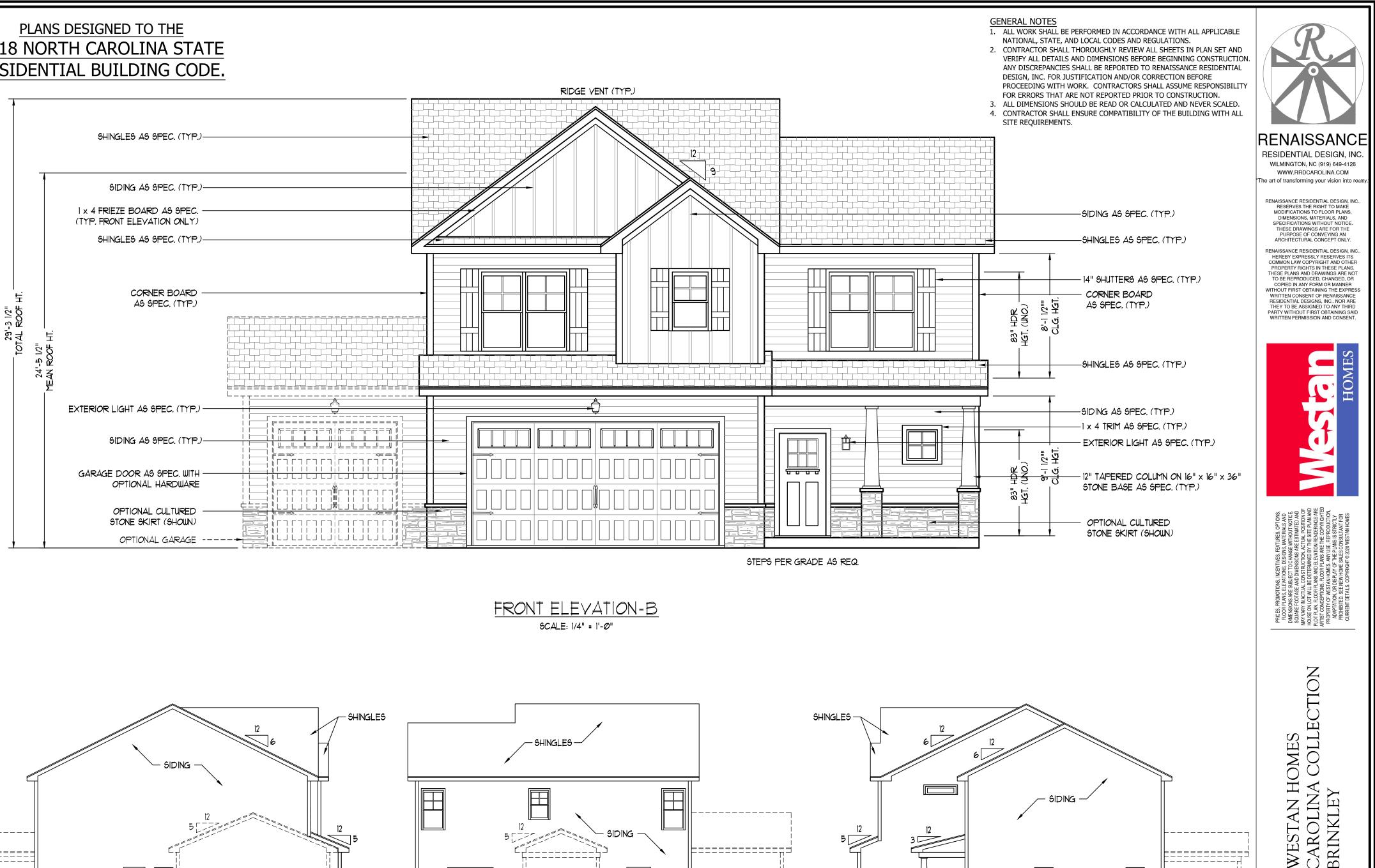
DATE: JUNE 22, 2021

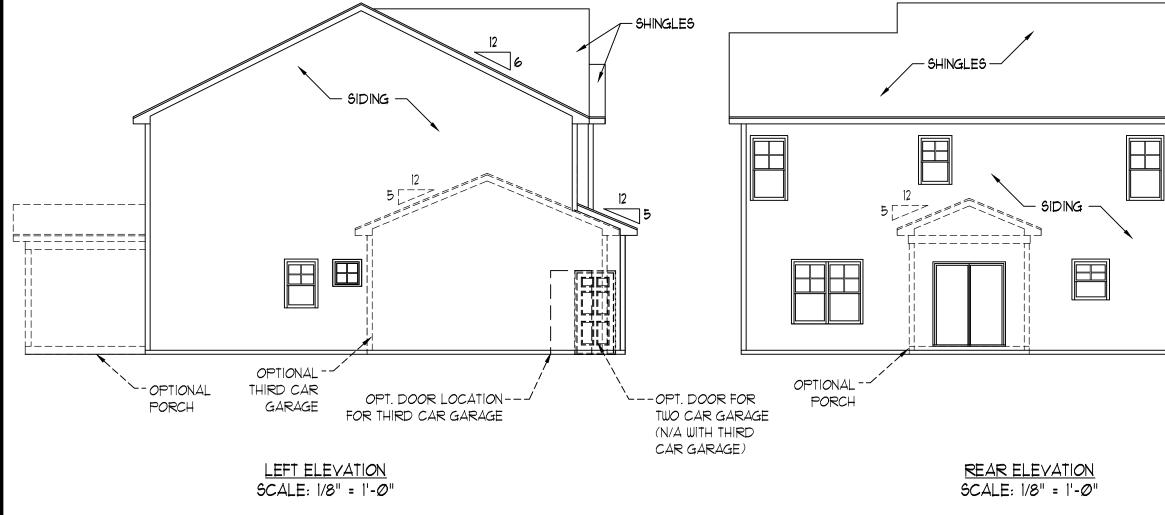
SCALE: AS NOTED DRAWN BY: WG

ENGINEERED BY:

A - ELEVATIONS

REVIEWED BY:


A-1


REV.:

CAROLINA BRINKLEY

SCALE: 1/8" = 1'-0"

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.

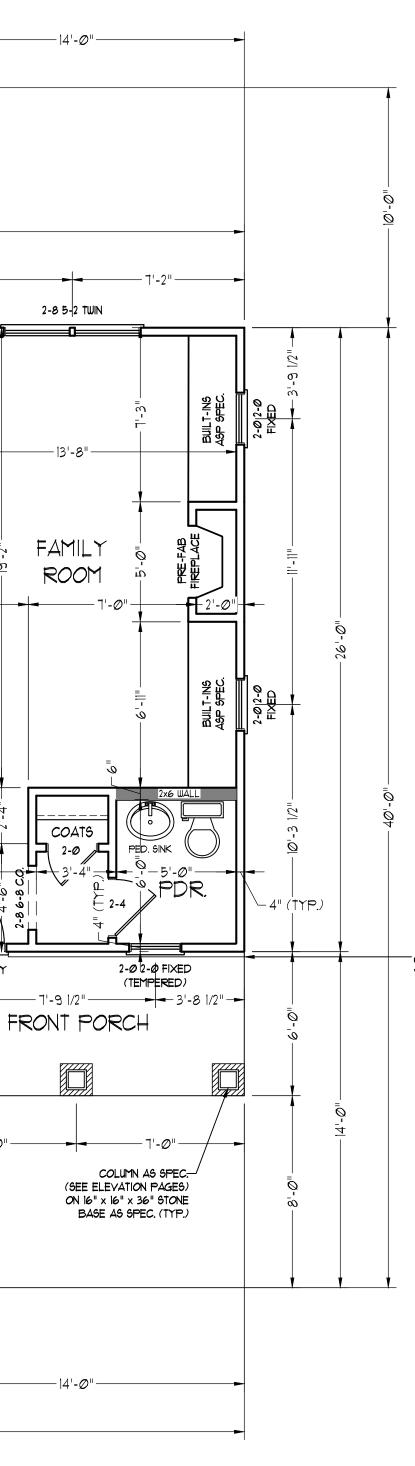
DATE: JUNE 22, 2021 REV.: SCALE: AS NOTED DRAWN BY: WG ENGINEERED BY: **REVIEWED BY: B - ELEVATIONS**


A-2

RIGHT ELEVATION SCALE: 1/8" = 1'-0"

OPTIONAL

PORCH


PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE RESIDENTIAL BUILDING CODE.

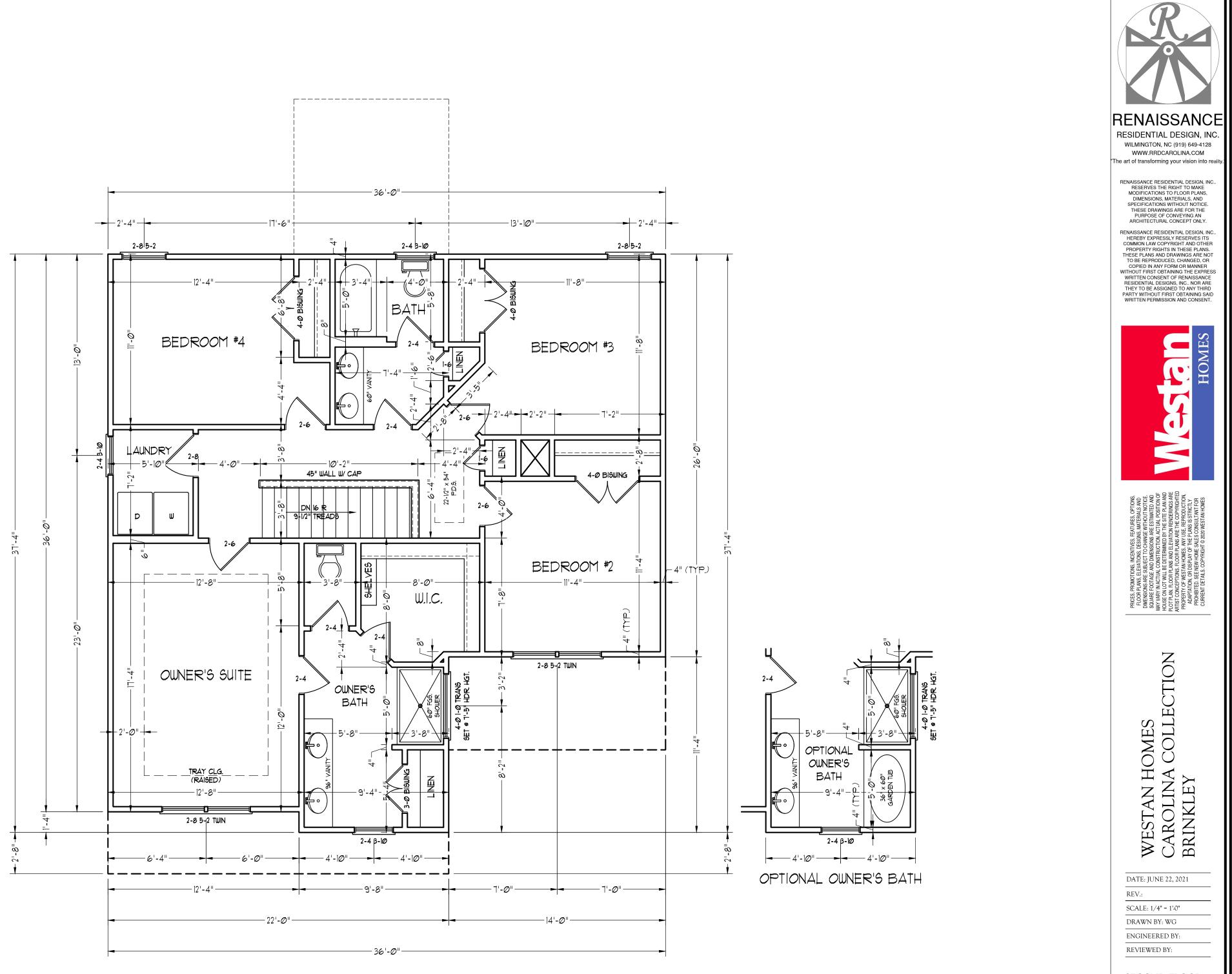
A-3

SCALE: 1/8" = 1'-0" SCALE: 1/8" = 1'-Ø"

- 12'**-**Ø" -· 10'-0" -6 x 6 TRTD. POST MIN. W/- -PVC SLEEVE, FOR OPT. PORCH STD. PATIO/ OPT. COVERED PORCH -36'-0"--6'-10 1/2"----1Ø'-1 1/2" '-IØ" 2-8 3-2 SET 46" A.F.F. 5-06-8 SLIDER 0 0 DW KITCHEN - 10'-8" --5'-Ø"· CASUAL 24" x 60" ISLAND W/ 12" FLUSH OVERHANG: 2 ŵ DINING 4 Ō $\bar{\varphi}$ Ō -8' - 4'-2" -+−5'-Ø"-3-0 BISWING PANTRY 45" WALL W/ CAP up igr BTØRAGE 9-1/12" TREADS 2-0 FIXED 2-4 3 -6'-11"-6'-6"-2-8 WH Ō FOTER --6" -17'-6" 3 22-1/2" × 32" ACCESS - <u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. ø 3-0 6-8 ENTRY 2 -2'-6"-+-OPTIONAL THIRD 2-CAR 2 GARAGE CAR GARAGE -4" (TYP.) -21'-8"-- 7'*-Ø*" ----! -- OPTIONAL 2-8 6-8 (N/A WITH THIRD CAR GARAGE) <u>9</u> 9 Ó 8-0 x 8-0 O.H. GARAGE DOOR ē N. OPTIONAL CULTURED STONE -VENEER (SEE ELEVATION PAGES 16-0 x 8-0 GARAGE DOOR FOR LOCATIONS AND CONDITIONS) - 11'-Ø" --11'-Ø" · _____6'-2"_____ -22'**-**Ø"--36'-Ø"-

<u>SQUARE FOOTAGE (1.F.S.)</u>

Ist FLOOR:	136 SQ. FT.
2nd FLOOR:	1120 SQ. FT.
TOTAL:	1856 SQ. FT.
GARAGE:	448 SQ. FT.
FRONT PORCH:	84 SQ. FT.
STD. REAR PATIO:	100 SQ. FT.
OPT. REAR PORCH:	100 SQ. FT.
OPT. THIRD CAR GARAGE:	224 SQ. FT.



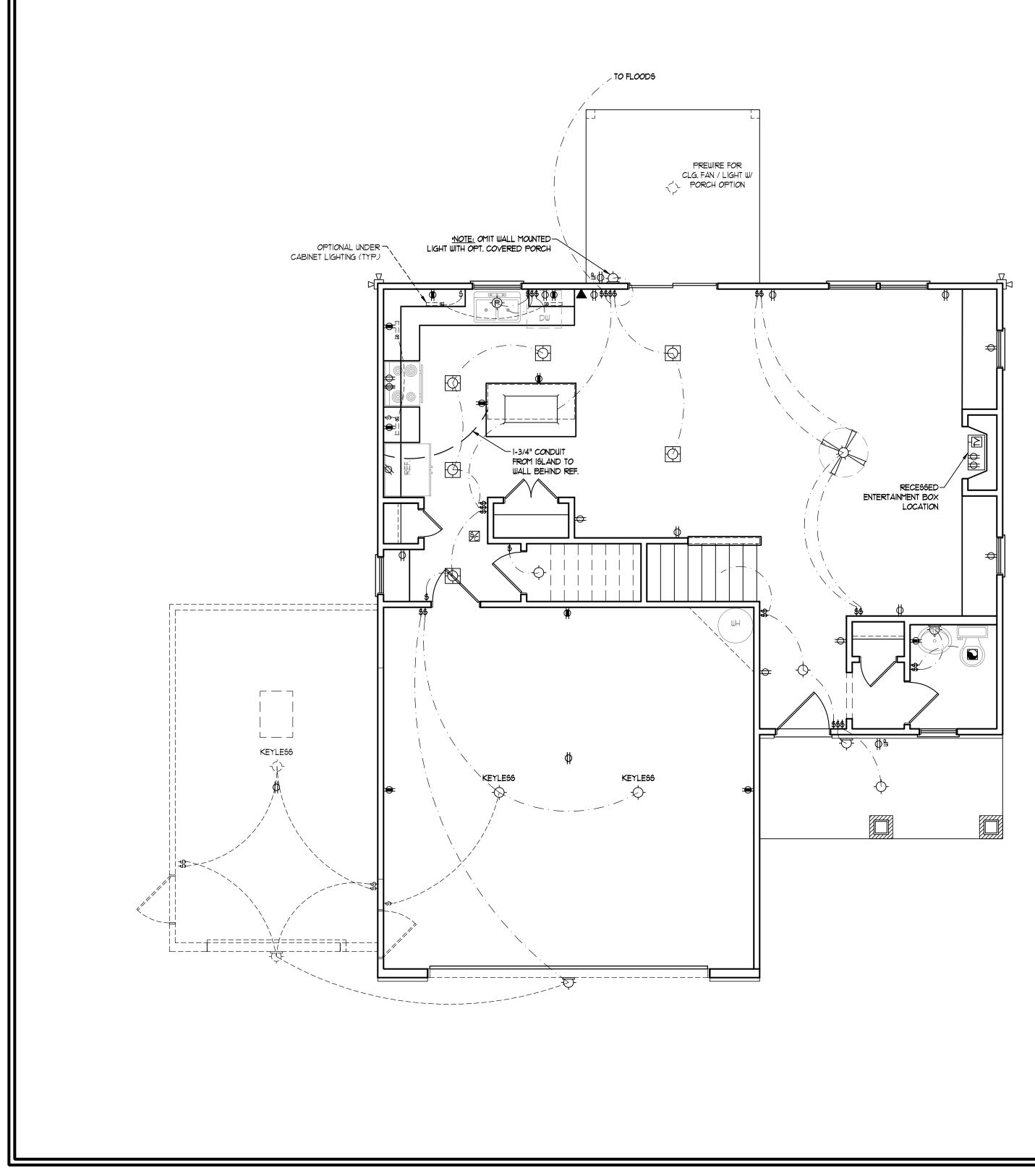
REV.:	
SCALE: 1/4" = 1'-0"	
DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	

FIRST FLOOR PLAN

A-4

- OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS)

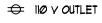
S WESTAN HOMES CAROLINA COLL BRINKLEY DATE: JUNE 22, 2021 SCALE: 1/4" = 1'-0" ENGINEERED BY:


HOMES

ADAF ADAF PROH CURRI

...

SECOND FLOOR PLAN


A-5

ELECTRICAL LAYOUT NOTES:

- 1.) BLOCK AND WIRE FOR ALL CELING FANS PER PLAN.
- 2.) VANITY LIGHTS TO BE SET @ 90" A.F.F. (TY.P.)
- 3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.
- 4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND



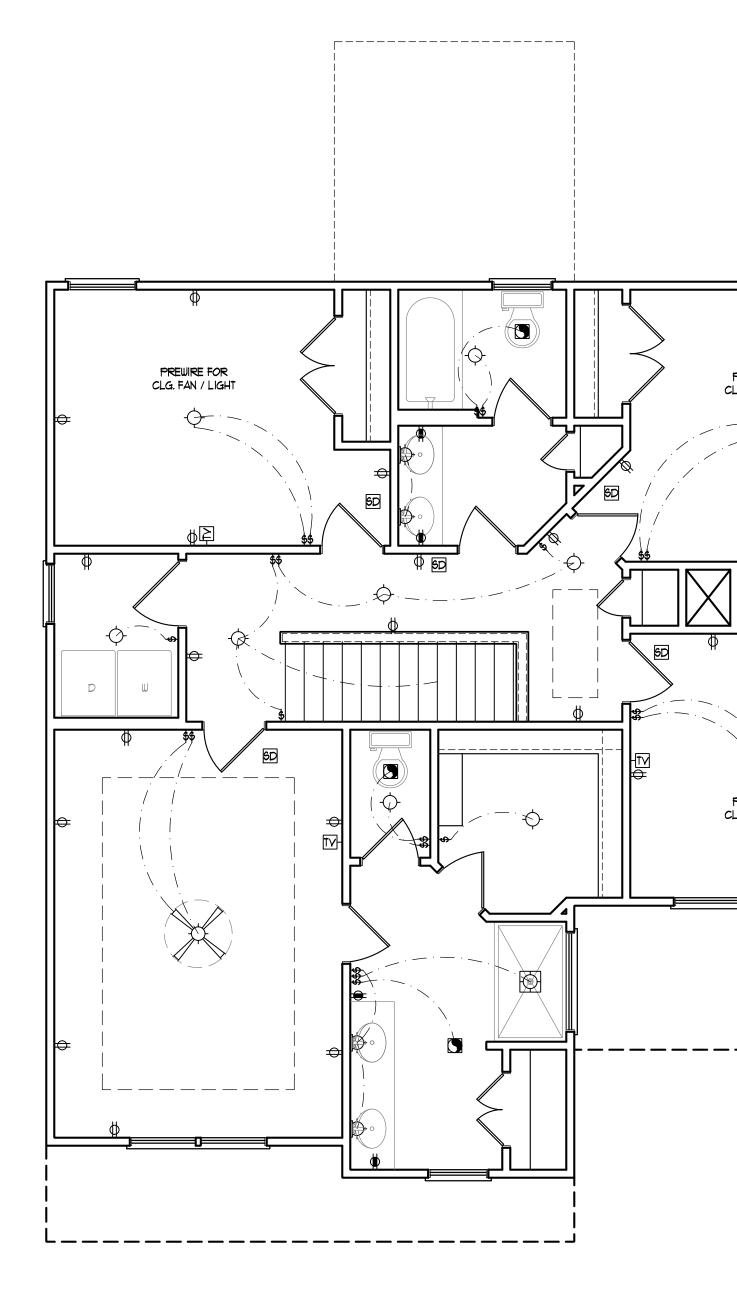
- 👄 110 V GFI OUTLET

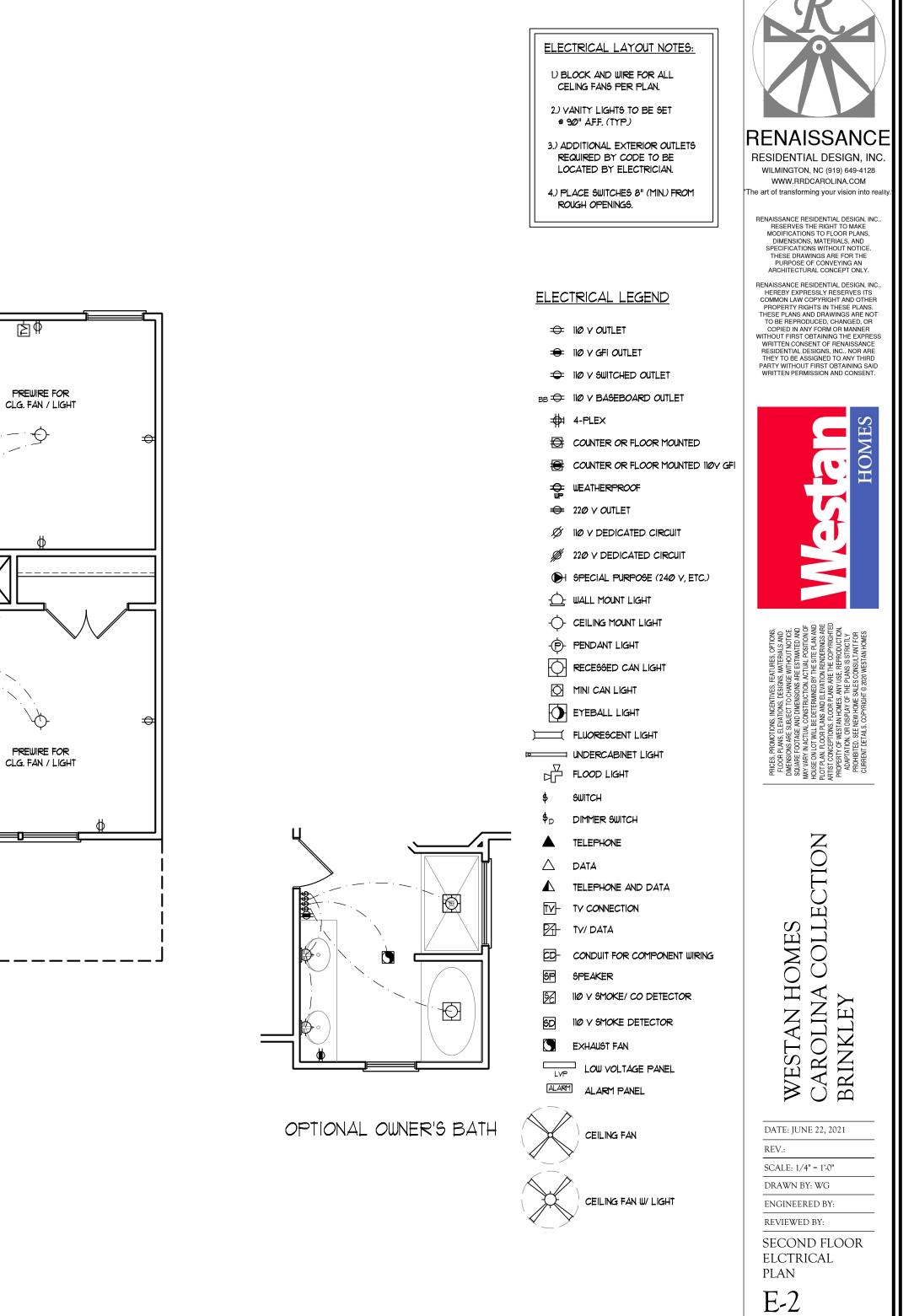
- + 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI

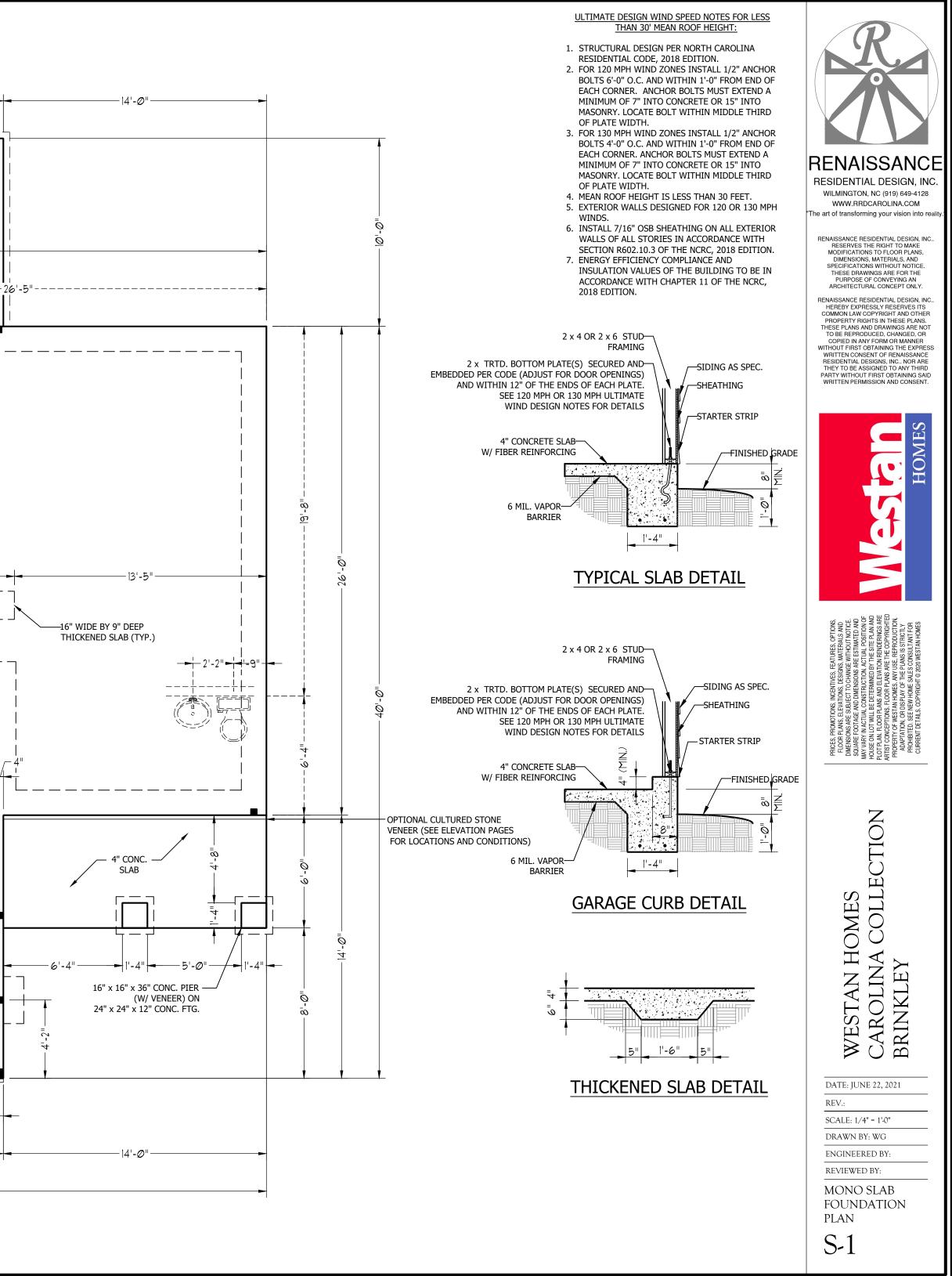
- Ø 10 V DEDICATED CIRCUIT
- # 220 V DEDICATED CIRCUIT
- SPECIAL PURPOSE (240 V, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- (P)- PENDANT LIGHT
- MINI CAN LIGHT
- FLUORESCENT LIGHT

- \$ SWITCH
- \$_D DIMMER SWITCH
- TELEPHONE
- \triangle data
- TELEPHONE AND DATA
- TV- TV CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- SP SPEAKER
- 110 V SMOKE/ CM DETECTOR
- 5D 110 V SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL

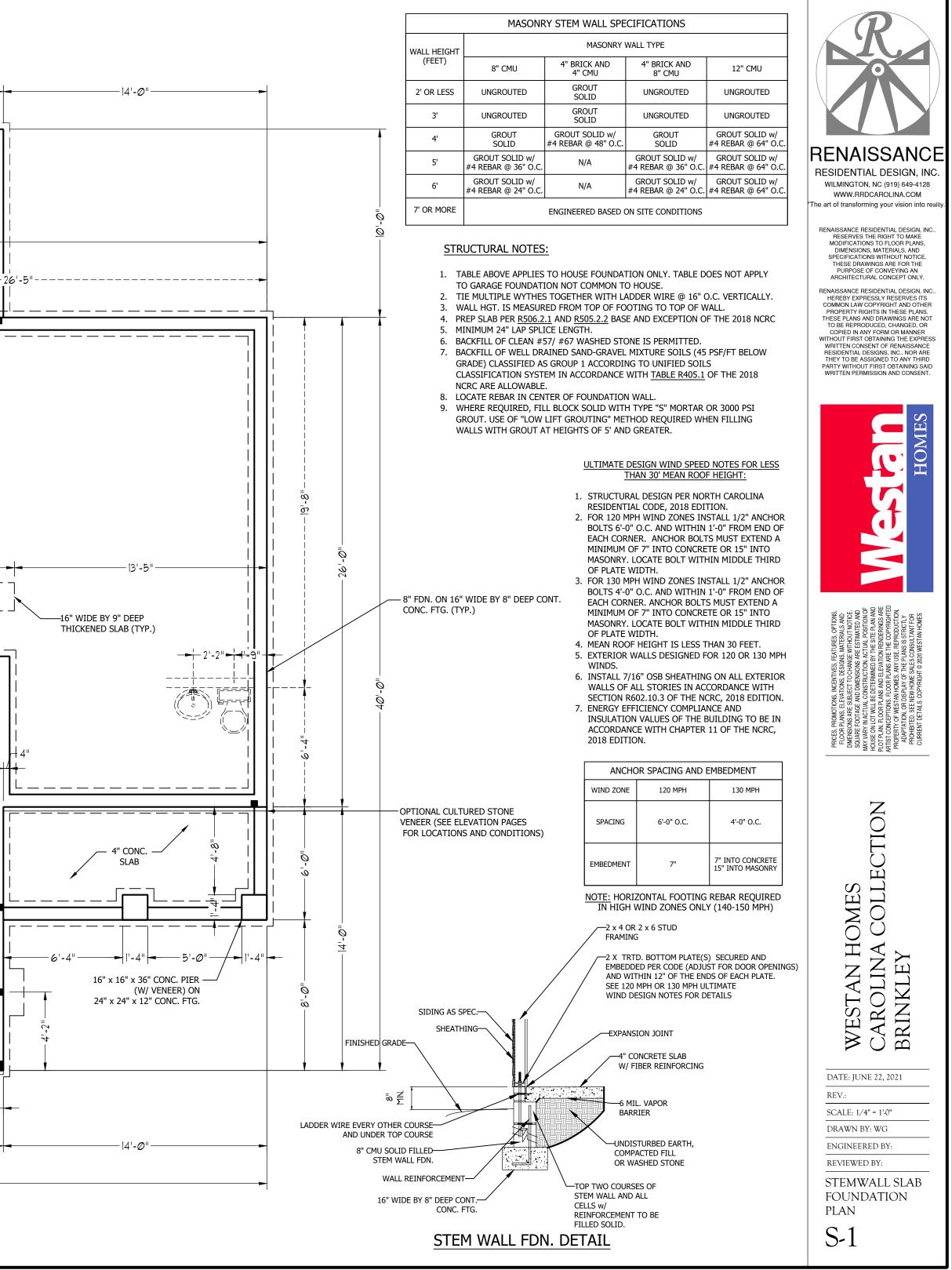
CEILING FAN W/ LIGHT

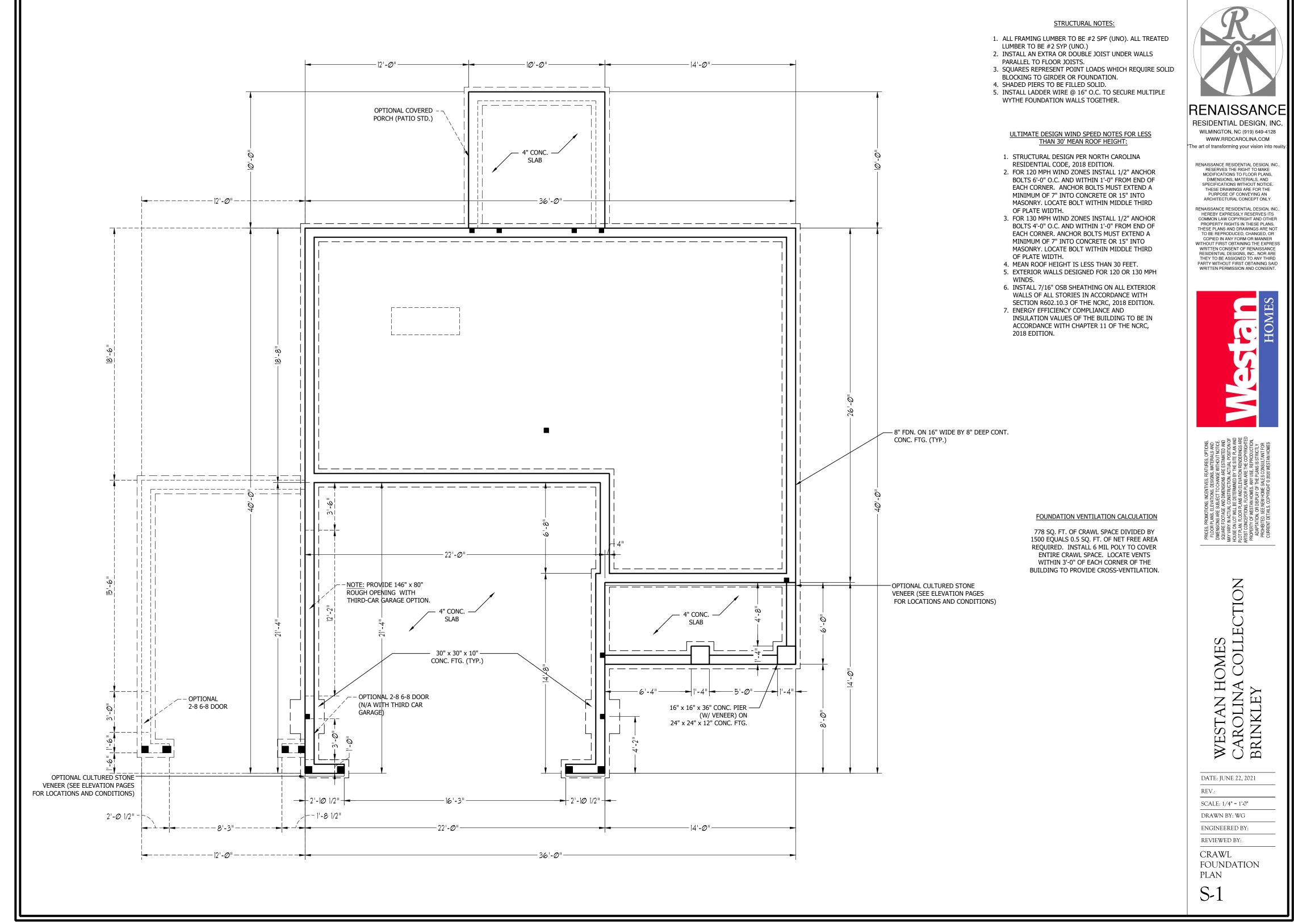


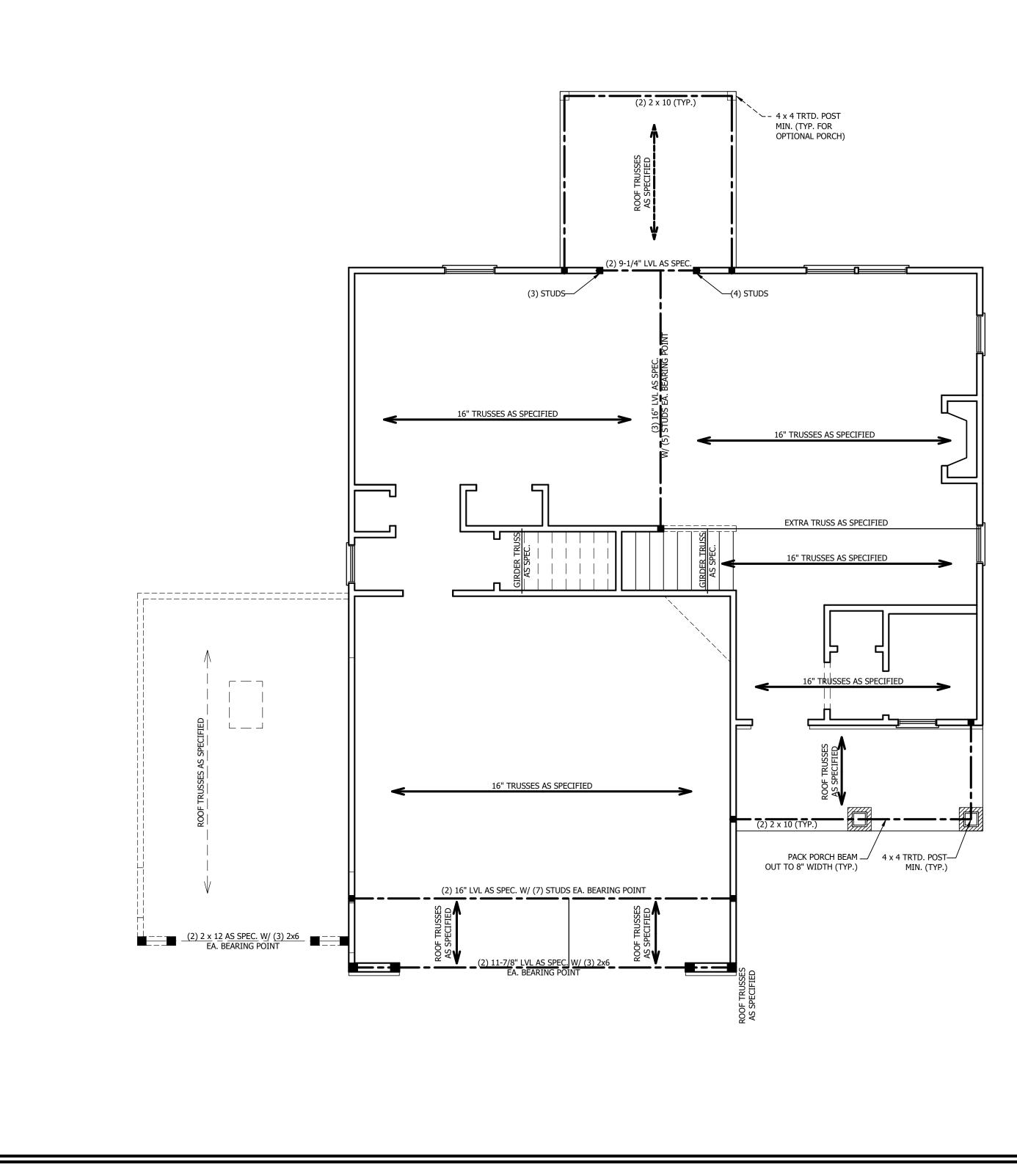




DATE: JUNE 22, 2021
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:
FIRST FLOOR ELECTRICAL
PLAN
E-1





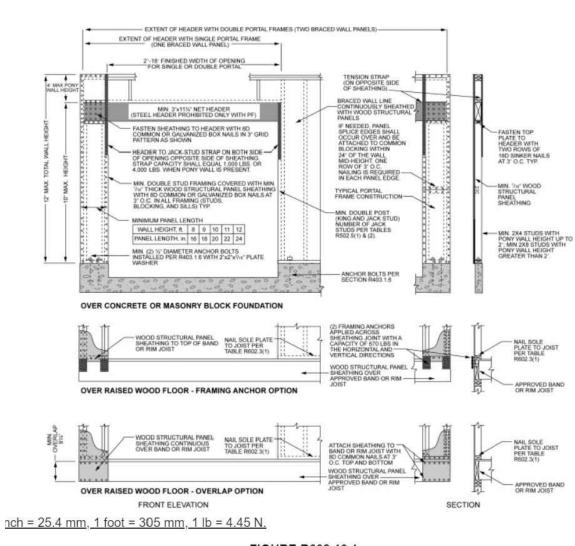

-12'**-**Ø" OPTIONAL COVERED -PORCH (PATIO STD.) 4" CONC. SLAB '<u></u>_____i2'*-*∅"_-36'-0 ----6'-1∅ 1/2"---2'-8 1/2" + _____ _____ 2 ŋ _____ 6 _ _ _ _ _ _ _ _ _ 4" CONC. SLAB 00 -1-3/4" CONDUIT FROM ISLAND TO WALL BEHIND REF. -13'-2 1/2" -9'-4 1/2 -16" WIDE BY 9" DEEP THICKENED SLAB (TYP.) _ __ __ __ . WΗ -21'-8" 5-0--<u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. SLAB 4" CONC. SLAB 30" x 30" x 10" -CONC. FTG. (TYP.) . – – - OPTIONAL 2-8 6-8 DOOR - OPTIONAL (N/A WITH THIRD CAR GARAGE) 2-8 6-8 DOOR Ò m OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS) ► 2'-1Ø 1/2" **-**─**─** 2'-1Ø 1/2" | - 16'-3" -- 1'-8 1/2" 2'-Ø 1/2" -22'-Ø"· -----8'-3"------- 36'-Ø"-

-12'**-**Ø" OPTIONAL COVERED PORCH (PATIO STD.) 4" CONC. SLAB 36'-0 ━−−−−6'-10 1/2"-−−**−−**+ 2'-8 1/2" +━ _____ _____ @ || @ || בקרבין DM 2 σ ØØ _ 4" CONC. SLAB 00 -1-3/4" CONDUIT ₩ FROM ISLAND TO WALL BEHIND REF. -9'-4 1/2 -13'-2 1/2" -16" WIDE BY 9" DEEP _ _ _ _ _ _ · _ _ _ **I**_ _ _ _ ____ -@-WΗ 0 -22'-Ø" -<u>NOTE:</u> PROVIDE 146" x 80" ROUGH OPENING WITH THIRD-CAR GARAGE OPTION. 4" CONC. SLAB 30" x 30" x 10" -CONC. FTG. (TYP.) 6'-4"----- OPTIONAL 2-8 6-8 DOOR - OPTIONAL (N/A WITH THIRD CAR 2-8 6-8 DOOR <u>9</u> |0 GARAGE) OPTIONAL CULTURED STONE VENEER (SEE ELEVATION PAGES FOR LOCATIONS AND CONDITIONS) ─**-**+ 2'-1Ø 1/2" | -16'-3"-►<u>+</u> 2'-1Ø 1/2" +--2'-Ø 1/2" - 1'-8 1/2" 22'**-**Ø" 36'-Ø"

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
 INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
 WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/ (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/ 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

BRACE WALL PANEL NOTES:


EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH. METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

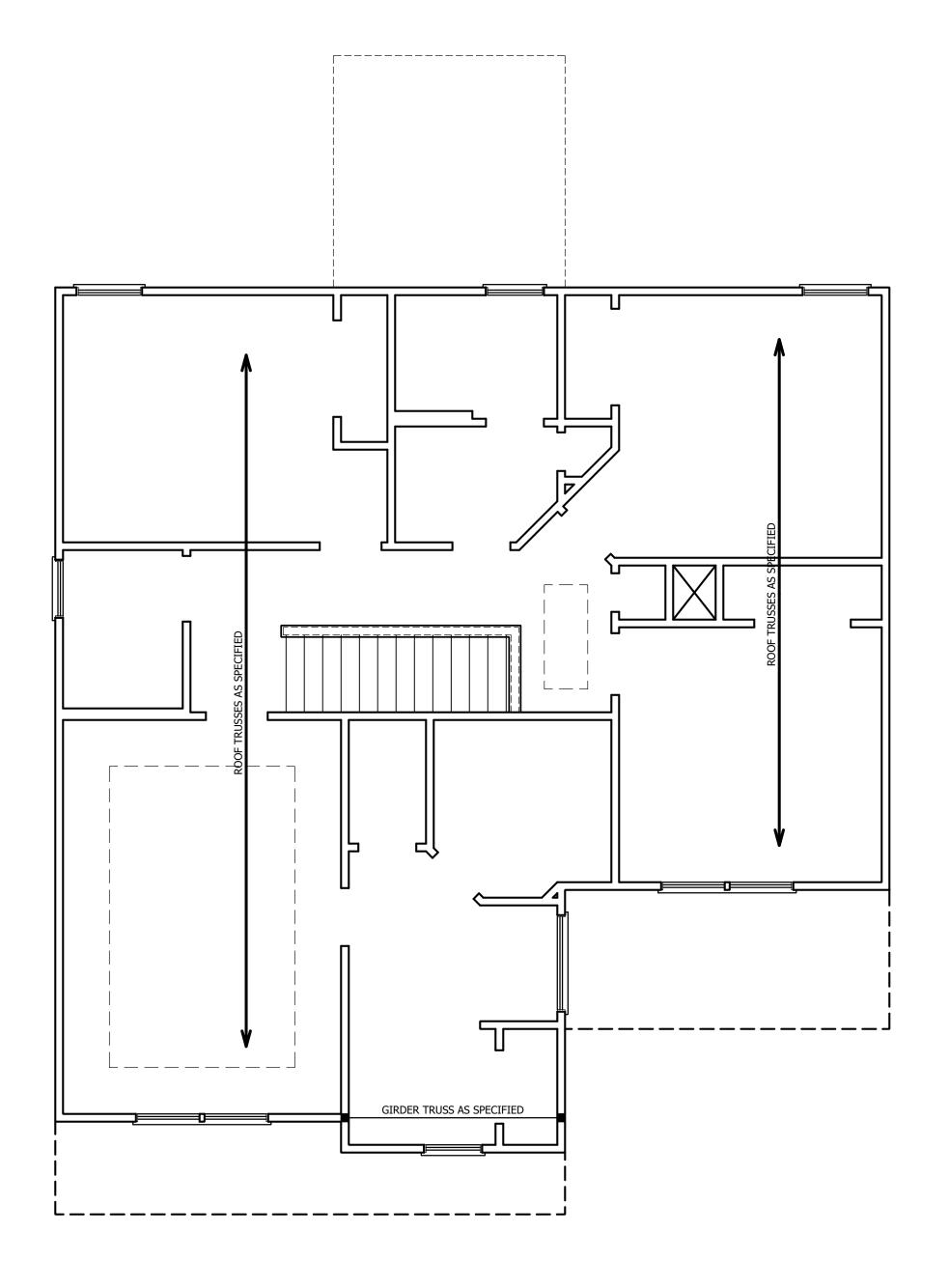
GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

METHODS: PER TABLE R602.10.1

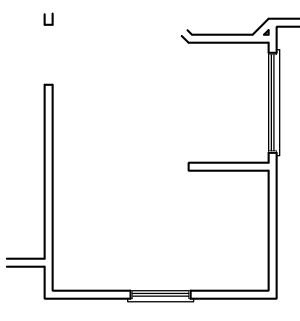
RENAISSANCE RESIDENTIAL DESIGN, INC. WILMINGTON, NC (919) 649-4128

WWW.RRDCAROLINA.COM The art of transforming your vision into rea



CALE: 1/4" = 1'-0" DRAWN BY: WG	DATE: JUNE 22, 2021
DRAWN BY: WG	REV.:
	SCALE: 1/4" = 1'-0"
NGINEERED BY:	DRAWN BY: WG
	ENGINEERED BY:
EVIEWED BY:	REVIEWED BY:
	SECOND FLOOR
ECOND FLOOR	FRAMING PLAN

S-2

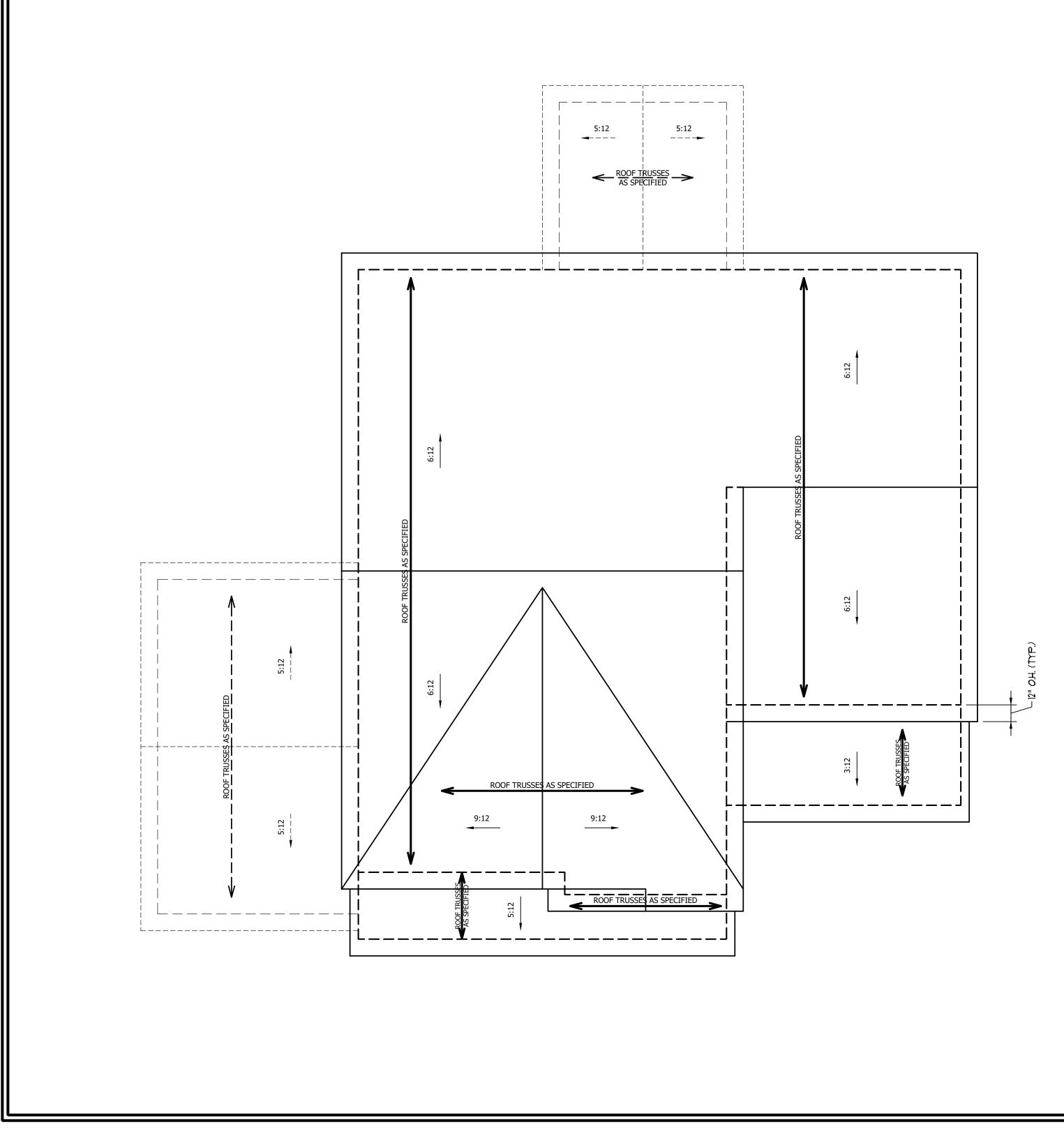

TABLE R602.7.5 MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEET)	MAXIMUM STUD SPACING (INCHES) (PER TABLE R602.3(5)			
()	16	24		
UP TO 3'	1	1		
4'	2	1		
8'	3	2		
12'	5	3		
16'	6	4		

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET

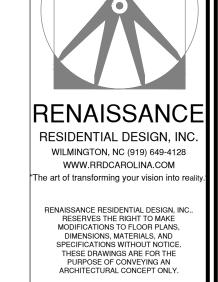

OPTIONAL OWNER'S BATH

RENAISSANCE RESIDENTIAL DESIGN, INC. WILMINGTON, NC (919) 649-4128 WWW.RRDCAROLINA.COM The art of transforming your vision into rea RENAISSANCE RESIDENTIAL DESIGN, INC.. RESERVES THE RIGHT TO MAKE MODIFICATIONS TO FLOOR PLANS, DIMENSIONS, MATERIALS, AND SPECIFICATIONS WITHOUT NOTICE. THESE DRAWINGS ARE FOR THE PURPOSE OF CONVEYING AN ARCHITECTURAL CONCEPT ONLY. RENAISSANCE RESIDENTIAL DESIGN, INC., HEREBY EXPRESSLY RESERVES ITS COMMON LAW COPYRIGHT AND OTHER PROPERTY RIGHTS IN THESE PLANS. THESE PLANS AND DRAWINGS ARE NOT TO BE REPRODUCED, CHANGED, OR COPIED IN ANY FORM OR MANNER WITHOUT FIRST OBTAINING THE EXPRESS WRITTEN CONSENT OF RENAISSANCE RESIDENTIAL DESIGNS, INC.. NOR ARE THEY TO BE ASSIGNED TO ANY THIRD PARTY WITHOUT FIRST OBTAINING SAID WRITTEN PERMISSION AND CONSENT. HOMES DTICE. DAND DAND ON OF AN AND GS ARE PRICES, PRICES, FLOOR F ELOOR PDIMENSIC SQUARE MAY VAR' HOUSE C HOUSE C PLOT PL' ARTIST C S WESTAN HOMES CAROLINA COLL BRINKLEY DATE: JUNE 22, 2021

REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

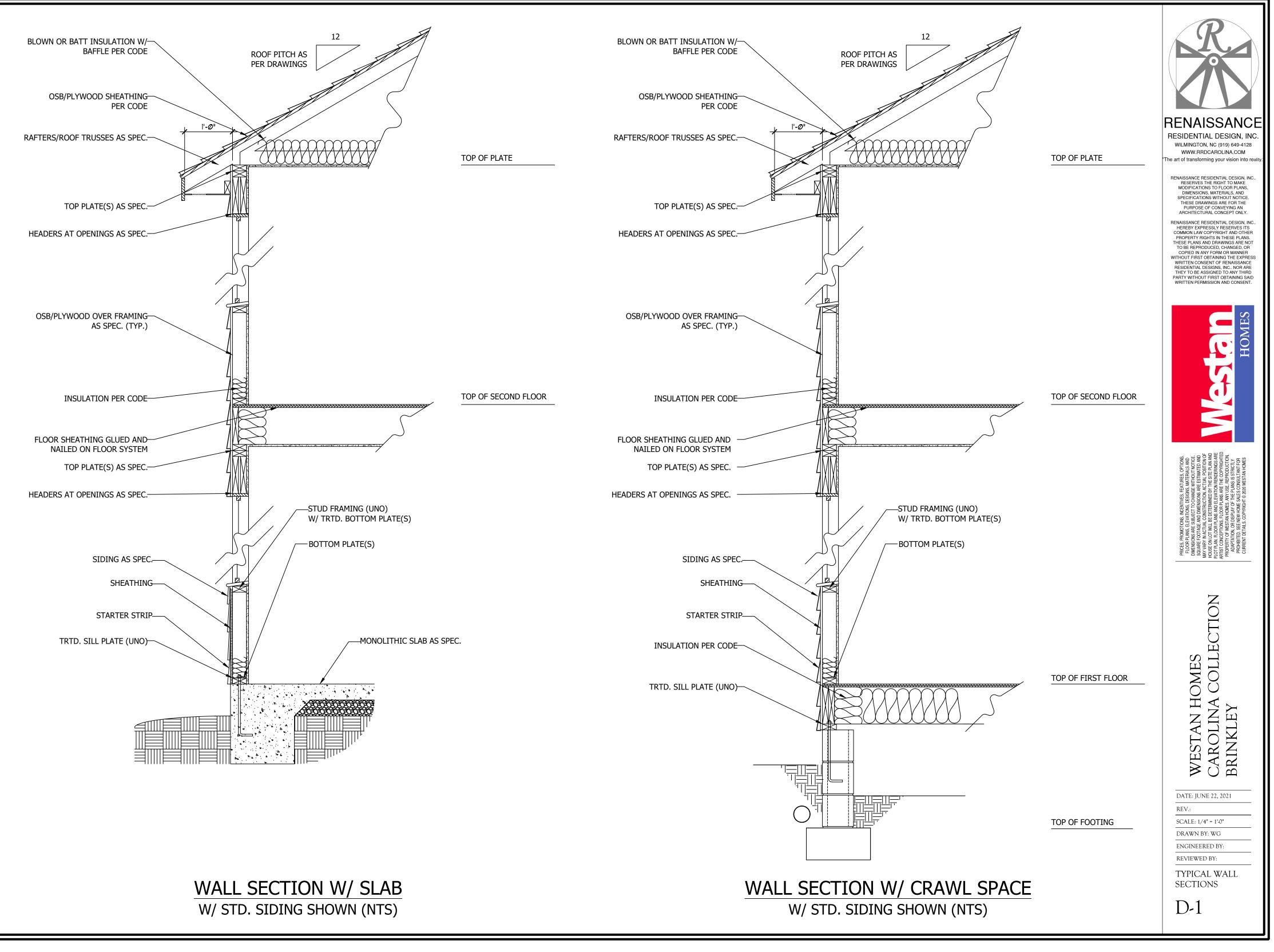


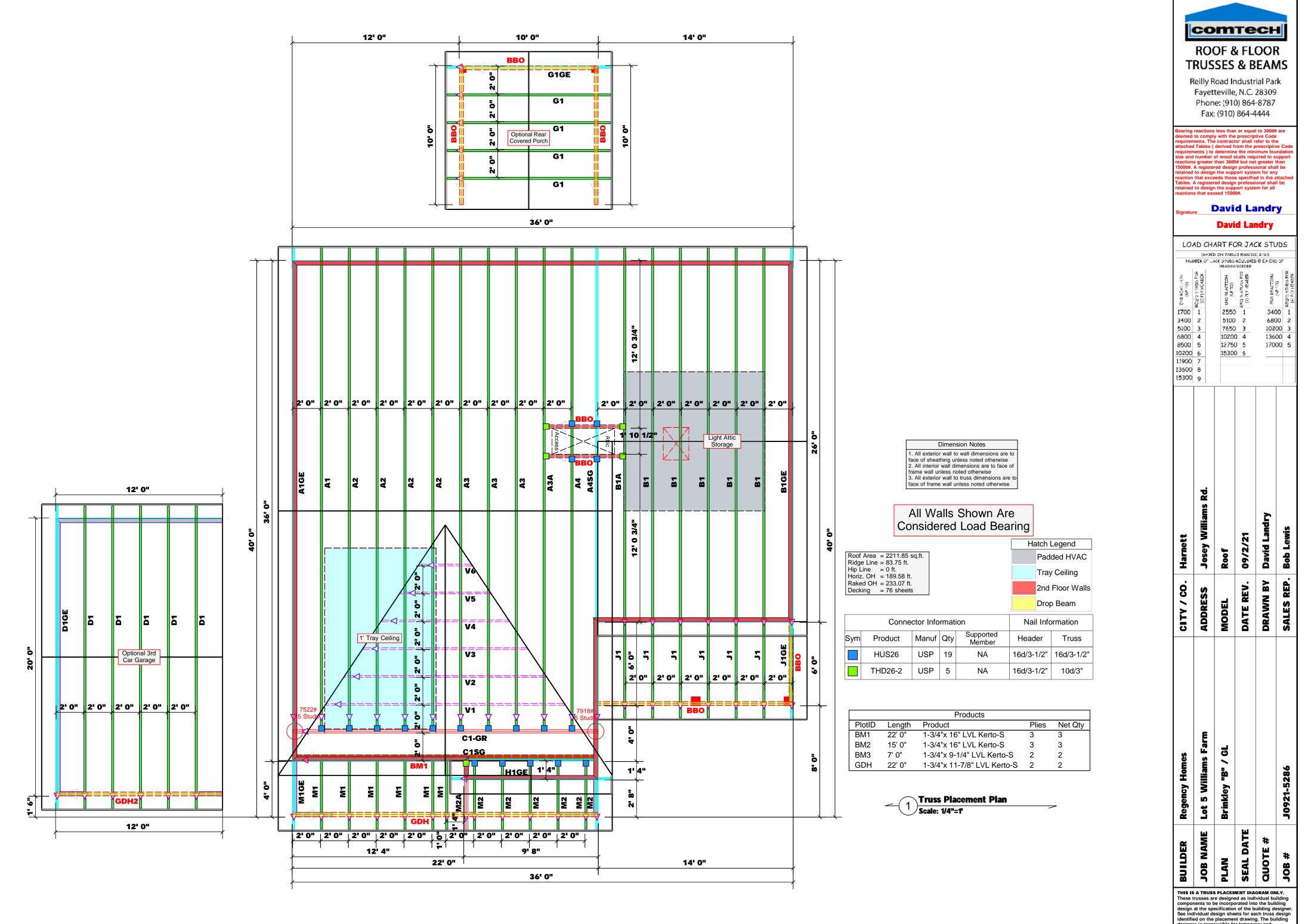


1484 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 9.9 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE #2 SPF (UNO).
 HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0". FASTEN MEMBERS WITH THREE ROWS OF 12d NAILS @ 16" O.C. (TYP.)
- 3. STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32" O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING. EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS.
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.





DATE: JUNE 22, 2021

REV.:	
SCALE: 1/4" = 1'-0"	
DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	

roof plan S-4

Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Trenco RE: J0921-5286 818 Soundside Rd Lot 5 Williams Farm Edenton, NC 27932 Site Information: Customer: Regency Homes Project Name: J0921-5286 Lot/Block: 5 Model: Brinkl Model: Brinkley Address: Josey Williams Rd. Subdivision: Williams Farm State: NC City: Erwin General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date 8/3/2021 E16001299 E16001319 M1GE A1 8/3/2021 21 1 2 E16001300 A1GE 8/3/2021 22 E16001320 M2 8/3/2021 3 E16001301 A2 8/3/2021 23 E16001321 M2A 8/3/2021 4 E16001302 A3 8/3/2021 24 E16001322 V1 8/3/2021 25 5 E16001303 АЗА 8/3/2021 E16001323 V2 8/3/2021 V3 6 E16001304 8/3/2021 26 E16001324 8/3/2021 Α4 7 E16001305 A4SG 8/3/2021 27 E16001325 V4 8/3/2021 8 E16001306 B1 8/3/2021 28 E16001326 V5 8/3/2021 29 V6 9 E16001307 B1A 8/3/2021 E16001327 8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

8/3/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

B1GE

C1-GR

C1SG

D1GE

G1GE

H1GE

J1GE

D1

G1

J1

M1

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

10

11

12

13

14

15

16

17

18

19

20

E16001308

E16001309

E16001310

E16001311

E16001312

E16001313

E16001314

E16001315

E16001316

E16001317 E16001318

My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

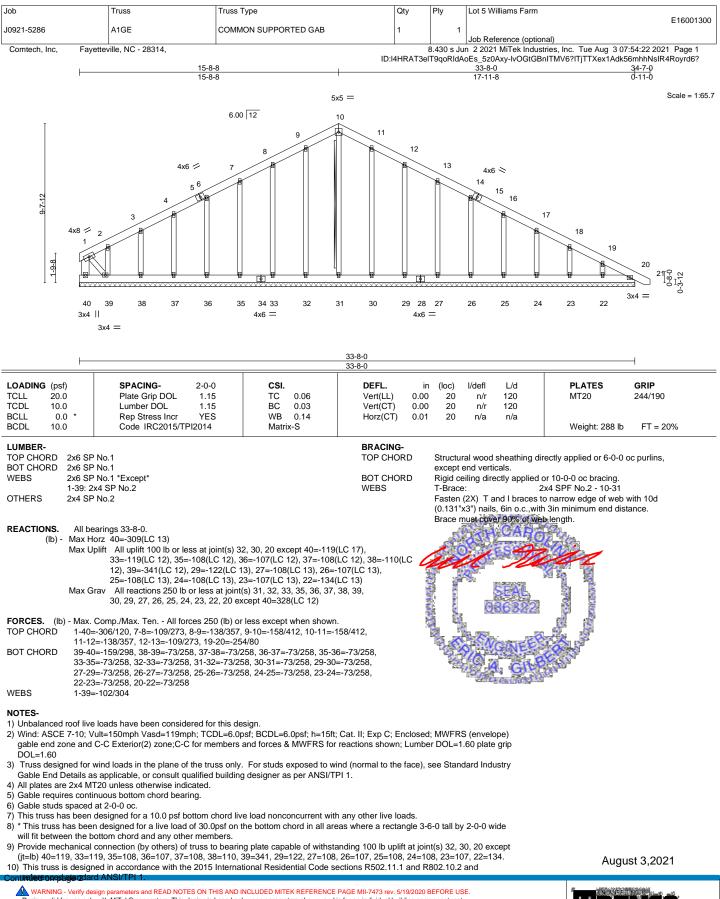
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

1 of 1

August 03, 2021

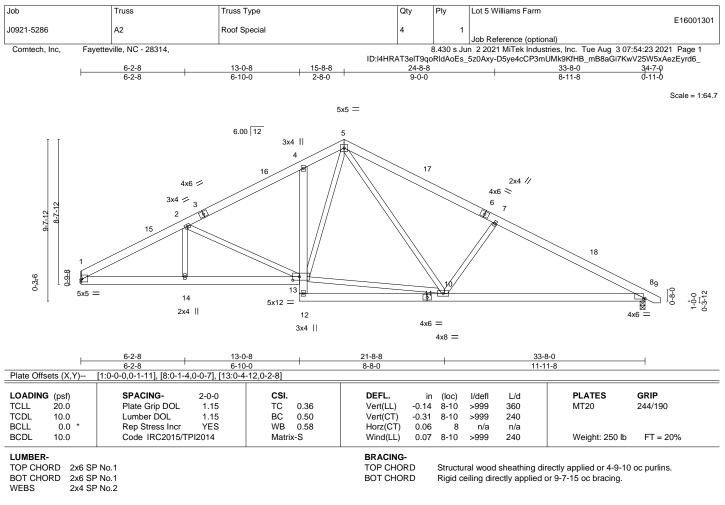
Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm		
J0921-5286	A1	COMMON	1	1			E16001299
Comtech, Inc,	Fayetteville, NC - 28314,			8 430 s.li	Job Reference (optio	onal) stries, Inc. Tue Aug 3 07	7:54:20 2021 Page 1
Conneon, mo,	•	45.0.0		qoRldAoE		Nmr6nthb4c3R2ZWylUw	FllhR4O_yzMvyrd61
ł	6-8-8 6-8-8	<u>15-8-8</u> 9-0-0	24-8- 9-0-0			<u>33-8-0</u> 8-11-8	<u>34-7-0</u> 0-11-0
							Scale: 3/16"=1'
			5x8 =				
		6.00 12	4				
I		. /					
				7			
	4x6 📁	16			2x4 //		
	4x6 📁			\sim	4x6 ≈		
2	2 3				5 6		
9-7-12	15				19		
3x4		\sim //					
3,4	1					18	
] ام	e			$\backslash //$			78
1-9-8-6-1							
	, 13	12 11 19	20	10 9			4x6 =
	4 ¹³ 6x6 =	4x6 =		3x4 =			
		3x4 =	4>	<6 =			
ł	<u>9-8-8</u> 9-8-8		21-8-8 12-0-0			3-8-0 -11-8	
Plate Offsets (X,Y)-			12-0-0		I	-11-0	
LOADING (psf)	SPACING- 2-	0-0 CSI .	DEFL. ir	n (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0		15 TC 0.36 15 BC 0.66	Vert(LL) -0.35 Vert(CT) -0.48		>999 360 >833 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr Y	ES WB 0.57	Horz(CT) 0.05	57	n/a n/a		
BCDL 10.0	Code IRC2015/TPI20	4 Matrix-S	Wind(LL) 0.07	7 7-9	>999 240	Weight: 230 lb	FT = 20%
LUMBER-			BRACING-	Ct		in the secline of a 4 0 40	
TOP CHORD 2x6 BOT CHORD 2x6			TOP CHORD		end verticals.	irectly applied or 4-9-10	oc puriins,
	SP No.2 *Except* 3: 2x6 SP No.1		BOT CHORD WEBS		eiling directly applied at midpt	or 9-9-4 oc bracing. 2-13	
			WEBO	110001	atmapt	2 10	
	(size) 13=Mechanical, 7=0-3-8 ax Horz 13=-193(LC 13)						
Ma	ux Uplift 13=-222(LC 12), 7=-263(ux Grav 13=1333(LC 1), 7=1379(
		,					
		250 (lb) or less except when showr -2084/871, 6-7=-2336/875, 1-13=-					
BOT CHORD 12	2-13=-482/1658, 9-12=-230/1276	7-9=-635/1990					
	-12242/311, 4-12=-140/393, 4-3	=-273/970, 6-9=-522/454, 2-13=-1	000/000				
NOTES- 1) Unbalanced roof	live loads have been considered	for this desian.					
2) Wind: ASCE 7-1	0; Vult=150mph Vasd=119mph; 7	CDL=6.0psf; BCDL=6.0psf; h=15ft					
		to 15-8-8, Exterior(2) 15-8-8 to 20 /n; Lumber DOL=1.60 plate grip D0		0 34-4-10	zone;C-C for		
3) This truss has be	een designed for a 10.0 psf bottor	chord live load nonconcurrent wit	h any other live loads.	6 O toll b	(200 wide		
	ne bottom chord and any other m	0.0psf on the bottom chord in all are mbers, with BCDL = 10.0psf.	eas where a rectangle 3-	o-o iali dy	/ ∠-0-0 wide		
) for truss to truss connections.	to bearing plate capable of withst	anding 100 lb unlift at ioi	nt(s) evce	ent (it=lb)	A STORES	201
13=222, 7=263.		International Residential Code se	• • •	. ,		2 OF SEE	


7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
J0921-5286	A1GE	COMMON SUPPORTED GAB	1	1	E16001300
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Jur	1 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:22 2021 Page 2
		ID:I4	4HRAT3el	T9qoRldAo	Es_5z0Axy-lvOGtGBnITMV6?ITjTTXex1Adk56mhhNsIR4Royrd6?

NOTES-

11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. 1=Mechanical, 8=0-3-8 (size) Max Horz 1=-180(LC 13) Max Uplift 1=-232(LC 12), 8=-271(LC 13) Max Grav 1=1338(LC 1), 8=1391(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2401/917, 2-4=-1846/799, 4-5=-1715/885, 5-7=-1992/885, 7-8=-2282/897 1-14=-633/2050, 13-14=-633/2050, 4-13=-270/273, 10-12=-64/251, 8-10=-652/1953 BOT CHORD 2-14=0/303, 2-13=-561/329, 10-13=-188/1073, 5-13=-355/764, 5-10=-253/676, WEBS 7-10=-522/457

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 34-4-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=232.8=271.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

August 3,2021

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply Lot 5 Williams Farm	
J0921-5286	A3	COMMON	3 1 E16001302	
		COMMON	Job Reference (optional)	
Comtech, Inc, Fa	vetteville, NC - 28314,		8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:24 2021 Page 1 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-hHW0HxD1q4cDLJurruV?kM6RTXatEVQgJbwBUgyrd5z	
H	<u>6-8-8</u> 6-8-8	<u>15-8-8</u> 9-0-0	<u>24-8-8</u> <u>33-8-0</u> <u>34-7-0</u> 9-0-0 <u>8-11-8</u> 0-11-0	
			Scale: 3/16"=	
		5	3 =	
		6.00 12		
I				
		16	17	
	4x6 📁		2x4 //	
	4x6 == 3			
9-7-12	2 15			
di .	13	. //		
3x4			18	
i I m				
	//			
1 I L	19	20 12 11 21		
14	13	4x6 =	3x6 = 4x6 = 10	
6×6	=	3x4 =	5x8 =	
⊢	9-8-8		-8 33-8-0	
Plate Offsets (X,Y)	<u>9-8-8</u> [7:0-1-4,0-0-7], [13:0-1-8,0-4-4		-0 ' 11-11-8 '	
LOADING (psf)	SPACING- 2-0	-0 CSI .	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL 20.0 TCDL 10.0		15 TC 0.36 15 BC 0.78	Vert(LL) -0.30 9-12 >999 360 MT20 244/190 Vert(CT) -0.42 9-12 >946 240	
BCLL 0.0 *	Rep Stress Incr Y	S WB 0.57	Horz(CT) 0.06 7 n/a n/a	
BCDL 10.0	Code IRC2015/TPI201	4 Matrix-S	Wind(LL) 0.07 7-9 >999 240 Weight: 230 lb FT = 20%	
LUMBER- TOP CHORD 2x6 S	P No.1		BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-3 oc purlins,	
BOT CHORD 2x6 S	^D No.1		except end verticals.	
	P No.2 *Except* 2x6 SP No.1		BOT CHORDRigid ceiling directly applied or 9-9-4 oc bracing.WEBS1 Row at midpt2-13	
REACTIONS. (siz	e) 13=Mechanical, 7=0-3-8			
Max I	lorz 13=-193(LC 13) Jplift 13=-222(LC 12), 7=-263(I	C 13)		
	Grav 13=1525(LC 2), 7=1551(L			
		50 (lb) or less except when shown.		
	-323/179, 2-4=-2090/805, 4-6= 3=-482/1866, 9-12=-230/1449,	-2413/871, 6-7=-2646/875, 1-13=-2 7-9=-635/2287	5/214	
		=-273/1190, 6-9=-522/454, 2-13=-1	40/660	
NOTES-				
	e loads have been considered /ult=150mph Vasd=119mph; T		at. II; Exp C; Enclosed; MWFRS (envelope)	
		to 15-8-8, Exterior(2) 15-8-8 to 20- rn; Lumber DOL=1.60 plate grip DO	-5, Interior(1) 20-1-5 to 34-4-10 zone;C-C for	
3) This truss has beer	designed for a 10.0 psf botton	chord live load nonconcurrent with	ny other live loads.	
	en designed for a live load of 30 bottom chord and any other me		where a rectangle 2-6-0 tall by 2-0-0 wide	
5) Refer to girder(s) for	r truss to truss connections.	•	ting 100 lb unlift at joint/s) except (it-lb)	
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=222, 7=263. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502 11 1 and R802 10 2 and				

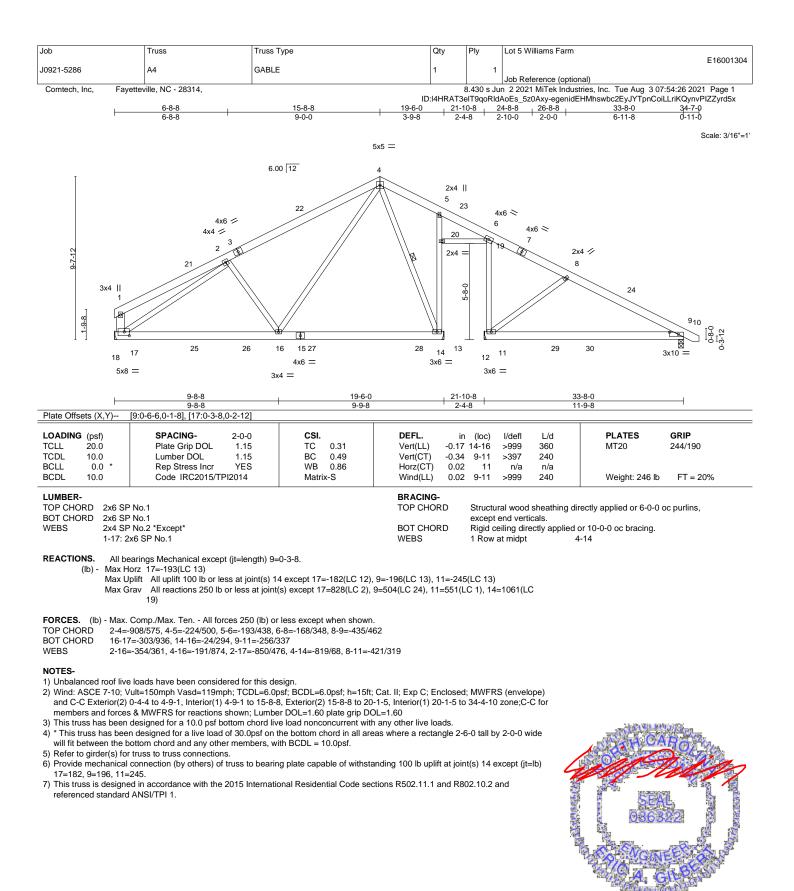
7) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design properly incorporet his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

b	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm		E 1000 100
921-5286	A3A	COMMON	1	1			E1600130
Comtech, Inc, Fay	retteville, NC - 28314,				Job Reference (option 2 2021 MiTek Industr		07:54:25 2021 Page 1
	6-8-8	15-8-8		「9qoRldAo			25xt?zvapYFfk06yrd5y 34-7-ρ
	6-8-8	9-0-0	9-0-0			8-11-8	0-11-0
							Scale: 3/16"=
			5x8				
Ţ		6.00 12	4				
		17	11	3			
	4x6 ≠ 4x8 ≠				3x4 ≈ 4x6 ≈		
	4x0			\sim	5 6		
9-7-12	16	\$	1		A Contraction of the second se		
6		. //		,			
3x4 1						19	
La La							<
	//						
	20 2	e1 13 12 22	23 11 1	ا 0 24	9	25	0-8-0
15	14	4x6 =	8x8 =		9 2x4		420 1
6x8	-	3x4 =	6x	6 =			
F	9-8-8	19-5-		24-8-8		33-8-0	———————————————————————————————————————
te Offsets (X,Y)	<u>9-8-8</u> [7:0-1-0,0-1-13], [11:0-4-0,0-4-	9-9- 12], [14:0-2-4,0-4-4]	<u> </u>	5-3-0		8-11-8	
ADING (psf)	SPACING- 2-0	-0 CSI .	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
LL 20.0 DL 10.0	Plate Grip DOL 1.' Lumber DOL 1.'				>999 360 >999 240	MT20	244/190
CLL 0.0 *	Rep Stress Incr N	O WB 0.77	Horz(CT) 0.09	7	n/a n/a		
CDL 10.0	Code IRC2015/TPI2014	4 Matrix-S	Wind(LL) 0.21	9-11	>999 240	Weight: 237 I	FT = 20%
JMBER- DP CHORD 2x6 SF	P No 1		BRACING- TOP CHORD	Structura	I wood sheathing dire	ectly applied or 3-4-9) oc purlins
OT CHORD 2x6 SF	P No.1			except er	nd verticals.		, co panno,
	P No.2 *Except* 2x6 SP No.1		BOT CHORD WEBS	1 Row at	ing directly applied o midpt 4-	13, 4-11, 2-14	
EACTIONS. (siz	e) 14=Mechanical, 7=0-3-8						
Max H	lorz 14=-193(LC 13) lplift 14=-373(LC 12), 7=-491(L	C 13)					
	Grav 14=2046(LC 19), 7=2357(
DRCES. (Ib) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shov	vn.				
		3695/1822, 6-7=-4439/2001, 1- , 9-11=-1625/3860, 7-9=-1625/3					
EBS 2-13	=-67/282, 4-13=-80/441, 4-11=-	1088/2378, 6-11=-890/520, 2-14					
	-78/489						
DTES- Unbalanced roof live	e loads have been considered f	or this design.					
Wind: ASCE 7-10; \	/ult=150mph Vasd=119mph; T0	CDL=6.0psf; BCDL=6.0psf; h=15 to 15-8-8, Exterior(2) 15-8-8 to 2					
members and force	s & MWFRS for reactions show	n; Lumber DOL=1.60 plate grip I	DOL=1.60	54-4-10 2			
		chord live load nonconcurrent w .0psf on the bottom chord in all a		6-0 tall by 2	2-0-0 wide		
	oottom chord and any other mer r truss to truss connections.	mbers, with BCDL = 10.0psf.				10311 <u>-</u>	ARO
Provide mechanical		to bearing plate capable of with	standing 100 lb uplift at joir	t(s) excep	t (jt=lb)	SEES	172 A
0		International Residential Code s	ections R502.11.1 and R8)2.10.2 an	d 🖌		
referenced standard Hanger(s) or other of		ovided sufficient to support conc	entrated load(s) 985 lb dow	vn and 552	2 lb up at 🏼	SE	
19-7-12, and 575 lb	down and 322 lb up at 21-9-4	on bottom chord. The design/se				036	322 🗿 🚦
responsibility of othe In the LOAD CASE		face of the truss are noted as fro	ont (F) or back (B).				
DAD CASE(S) Stan	dard				1	2 CA SNOR	TER SUP
Dead + Roof Live (b	alanced): Lumber Increase=1.1	5, Plate Increase=1.15				210 2	A BESS
Uniform Loads (plf) Vert: 1-4=-6	60, 4-8=-60, 7-15=-20						
						Aug	ust 3,2021

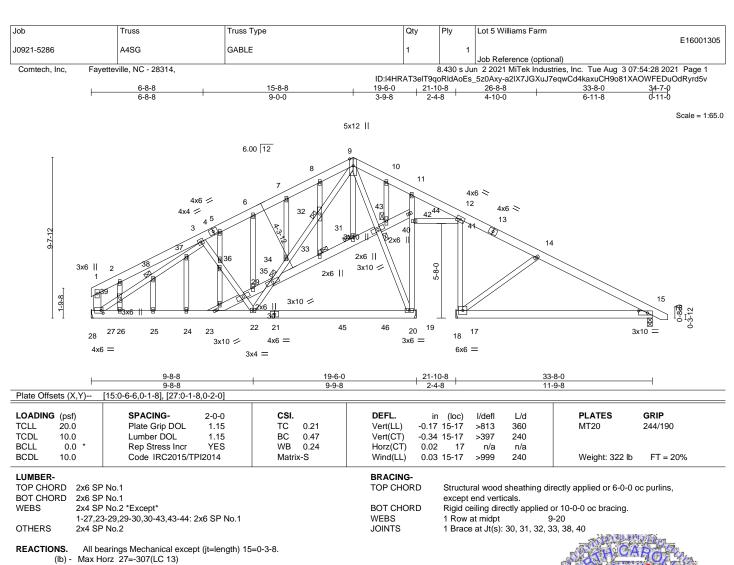
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
J0921-5286	A3A	COMMON	1	1	E16001303
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:25 2021 Page 2
		ID:14	HRAT3el	F9qoRldAc	Es_5z0Axy-AT4OVHDfbOk4zST2Oc1EGZfZ5xt?zvapYFfk06yrd5y

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 11=-985(F) 24=-575(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) except 27=-345(LC 12), 15=-348(LC 13), 17=-387(LC 13), 20=-181(LC 12)

Max Grav All reactions 250 lb or less at joint(s) except 27=767(LC 1), 15=507(LC 1), 17=585(LC 1), 20=827(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-386/256, 2-3=-376/362, 3-5=-810/737, 5-6=-771/742, 6-7=-791/836, 7-8=-777/895, 8-9=-805/959, 9-10=-292/607, 10-11=-307/588, 11-12=-240/505, 12-14=-172/412, 14-15=-442/581, 1-27=-295/181 BOT CHORD 26-27=-425/712, 24-25=-425/712, 23-24=-425/712, 22-23=-242/463,

 15-17=-360/343
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120-12/142
 120

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

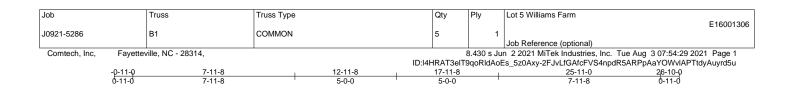
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

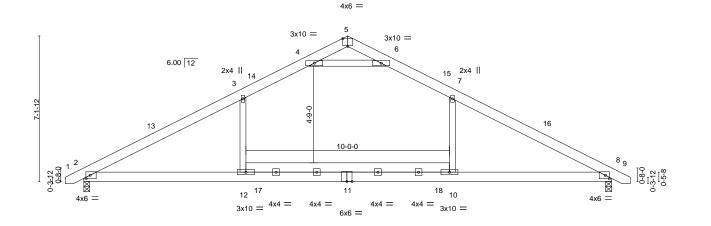
4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


8) Refer to girder(s) for truss to truss connections.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 345 lb uplift at joint 27, 348 lb uplift at joint 15, 387 lb uplift at joint 17 and 181 lb uplift at joint 20.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 August 3,2021

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.85	Vert(LL) -0.28 10-12	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.46 10-12	>663 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.60	Horz(CT) 0.04 8	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.23 2-12	>999 240	Weight: 174 lb FT = 20%

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=119(LC 11) Max Uplift 2=-203(LC 12), 8=-203(LC 13) Max Grav 2=1140(LC 2), 8=1140(LC 2)

2x4 SP No 2

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1772/588, 3-4=-1401/651, 4-5=-286/978, 5-6=-286/978, 6-7=-1401/651, 7-8=-1772/588
- BOT CHORD 2-12=-347/1438, 10-12=-350/1438, 8-10=-347/1438
- WEBS 3-12=0/497, 7-10=0/497, 4-6=-2532/1014

NOTES-

WEBS

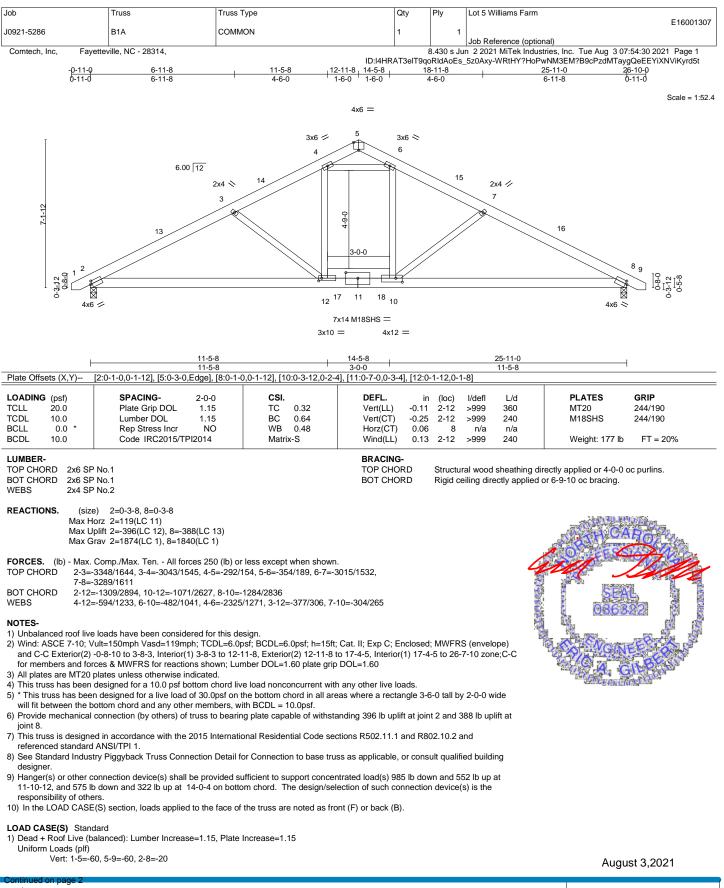
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 26-7-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 203 lb uplift at joint 2 and 203 lb uplift at joint 8.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

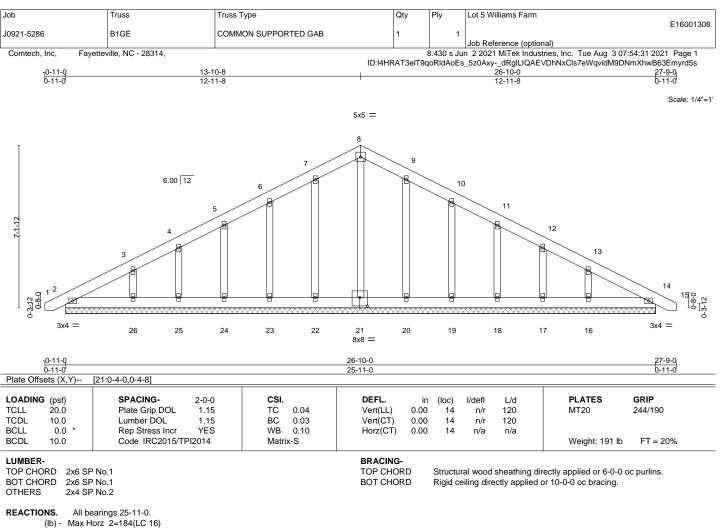
7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Scale = 1:53.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
J0921-5286	B1A	COMMON	1	1	E16001307
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		. 8	3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:30 2021 Page 2
		ID:I4HR/	AT3elT9qc	RIdAoEs_	5z0Axy-WRtHY?HoPwNM3EM?B9cPzdMTaygQeEEYiXNViKyrd5t

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 17=-985(B) 18=-575(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 25, 20, 17, 14 except 23=-115(LC 12), 24=-110(LC 12), 26=-171(LC 12), 19=-118(LC 13), 18=-109(LC 13), 16=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

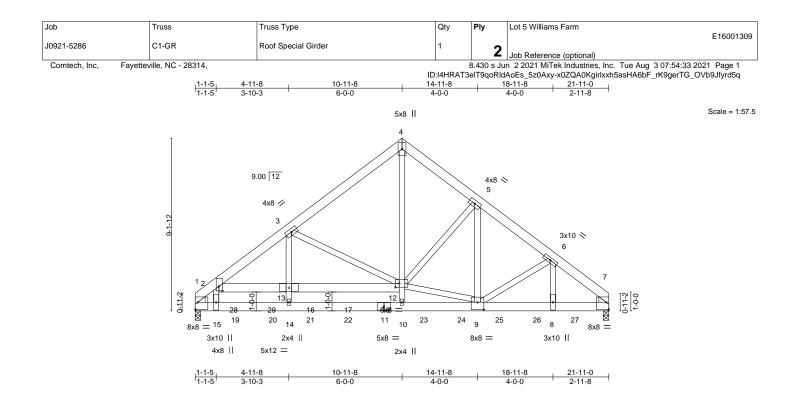
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 7-8=-120/304, 8-9=-120/303

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.


- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 25, 20, 17, 14 except (jt=lb) 23=115, 24=110, 26=171, 19=118, 18=109, 16=167.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

August 3,2021

🗥 WARNING - Verify design p eters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[1:Edge,0-4-10], [2:0-2-14,0-2-4], [7:Edg	ge,0-4-10], [9:0-4-0,0-4-12	2], [12:0-2-8,0-2-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.86 BC 0.73 WB 0.91 Matrix-S	DEFL. in (Vert(LL) -0.15 12 Vert(CT) -0.31 12 Horz(CT) 0.05 Wind(LL) 0.15 12	-13 >999 -13 >843 7 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 399 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.2 , Rig	2 2400F 2.0E 2 No.2					ectly applied or 4-11-9 10-0-0 oc bracing.	oc purlins.
Max H Max U	e) 1=0-3-8, 7=0-3-8 orz 1=-275(LC 25) plift 1=-1263(LC 8), 7=-1390(LC 9) rav 1=7583(LC 1), 7=7705(LC 2)						
TOP CHORD 1-2=- 6-7=-	Comp./Max. Ten All forces 250 (lb) or 10129/1691, 2-3=-9954/1689, 3-4=-637 10911/1947 3=-199/1348, 1-15=-1112/6124, 14-15=-	2/1197, 4-5=-6163/1169,	5-6=-8950/1599,				
9-10= WEBS 13-14 4-12=	1203/6789, 8-9=-1363/7919, 7-8=-136 4=-158/1269, 3-13=-496/3482, 3-12=-33 1276/7071, 9-12=-232/708, 5-12=-336 446/2474	3/7919, 2-13=-266/1793 57/714, 5-9=-681/4032, 1	0-12=-123/1345,			CALCA	FGC .
Top chords connect Bottom chords conn Webs connected as 2) All loads are conside ply connections hav 3) Unbalanced roof live 4) Wind: ASCE 7-10; V Lumber DOL=1.60 p 5) This truss has been 6) * This truss has been will fit between the b	nected together with 10d (0.131"x3") na ed as follows: 2x6 - 2 rows staggered at ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except i e been provided to distribute only loads e loads have been considered for this de fult=150mph Vasd=119mph; TCDL=6.0 plate grip DOL=1.60 designed for a 10.0 psf bottom chord liv n designed for a live load of 30.0psf on 1 ottom chord and any other members.	0-9-0 oc. d at 0-5-0 oc. f noted as front (F) or bac noted as (F) or (B), unless isign. ssf; BCDL=6.0psf; h=15ft; e load nonconcurrent with the bottom chord in all are	s otherwise indicated. Cat. II; Exp C; Enclosed; M n any other live loads. was where a rectangle 3-6-0	WFRS (envelop tall by 2-0-0 wid	e);	Augu	st 3,2021
WARNING - Verify de Design valid for use only a truss system. Before u building design. Bracing is always required for sta fabrication, storage, deli	sign parameters and READ NOTES ON THIS AND I with MITek® connectors. This design is based on se, the building designer must verify the applicabil indicated is to prevent buckling of individual truss ability and to prevent colleape with possible person very, erection and bracing of trusses and truss sys aliable from Truss Plate Institute, 2670 Crain High	ly upon parameters shown, and i ty of design parameters and proj web and/or chord members only al injury and property damage. I tems, see ANSI/TPI 1	is for an individual building compone perly incorporate this design into the . Additional temporary and perman For general guidance regarding the Quality Criteria, DSB-89 and BCSI	ent, not e overall ent bracing	nt	818 Soundside R Edenton, NC 279	

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
	10004 5000	01.00	Des (Or estal Obstan			E16001309
	J0921-5286	C1-GR	Roof Special Girder	1	2	Job Reference (optional)
L	<u> </u>			L		
	Comtech, Inc, Fayettev	ille, NC - 28314,				a 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:33 2021 Page 2
			ID	:I4HRAT3	elT9qoRld/	AoEs_5z0Axy-x0ZQA0Kgirlxxh5asHA6bF_rK9gerTG_OVb9Jfyrd5q

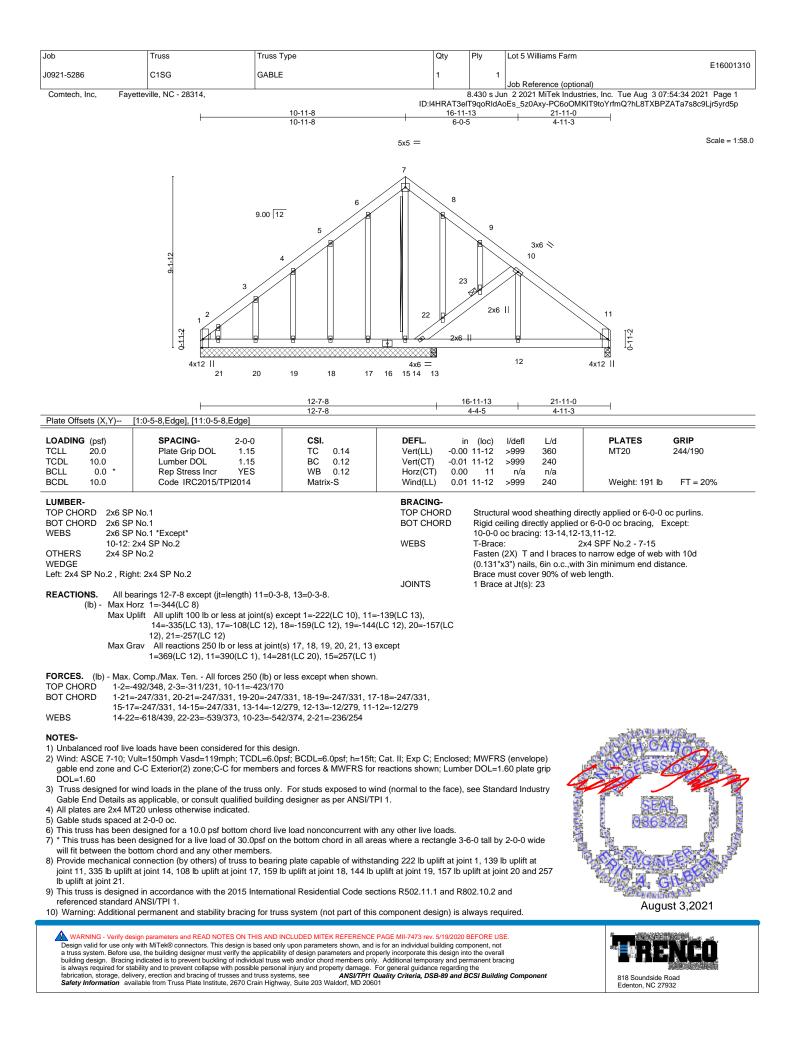
NOTES-

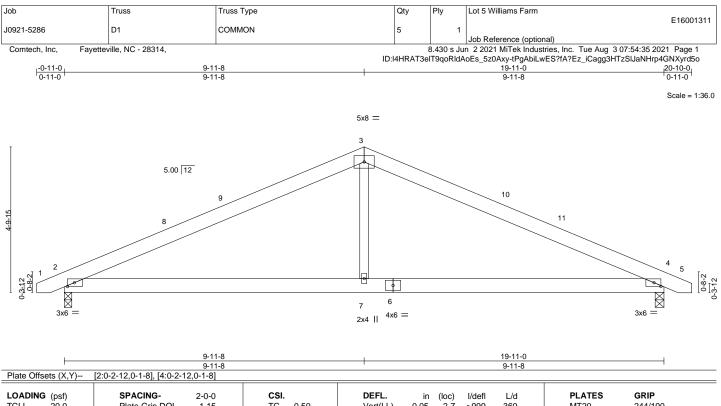
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1313 lb down and 242 lb up at 2-0-12, 1318 lb down and 252 lb up at

4-0-12, 1318 lb down and 252 lb up at 6-0-12, 1318 lb down and 252 lb up at 8-0-12, 1318 lb down and 252 lb up at 10-0-12, 1505 lb down and 242 lb up at 12-0-12, 1505 lb down and 242 lb up at 12-0-12, 1505 lb down and 242 lb up at 12-0-12, and 2003 lb down and 393 lb up at 18-0-12, and 808 lb down and 202 lb up at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 12-29=-20, 1-7=-20, 2-29=-20


Concentrated Loads (lb)

Vert: 16=-1318(B) 17=-1318(B) 18=-1318(B) 19=-1313(B) 20=-1318(B) 23=-1313(B) 24=-1313(B) 25=-1313(B) 26=-1934(B) 27=-739(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.37 WB 0.11	DEFL. ir Vert(LL) -0.05 Vert(CT) -0.13 Horz(CT) 0.02	2-7	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05	2-7	>999	240	Weight: 108 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No 2

REACTIONS. (size) 4=0-3-8, 2=0-3-0 Max Horz 2=-71(LC 17) Max Uplift 4=-163(LC 13), 2=-162(LC 12) Max Grav 4=836(LC 1), 2=835(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1239/498, 3-4=-1240/498

BOT CHORD 2-7=-293/1030, 4-7=-293/1030

WEBS 3-7=0/477

NOTES-

1) Unbalanced roof live loads have been considered for this design.

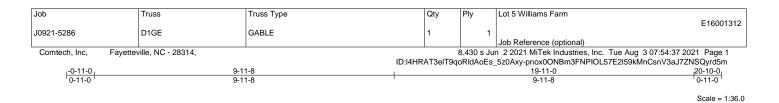
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-7-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

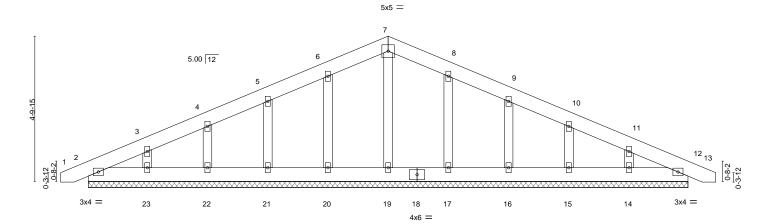
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 163 lb uplift at joint 4 and 162 lb uplift at joint 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 5-10-8 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		I	19-11-0				1	1
_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) (0.00 12	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) (0.00 12	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) (0.00 12	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 130 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

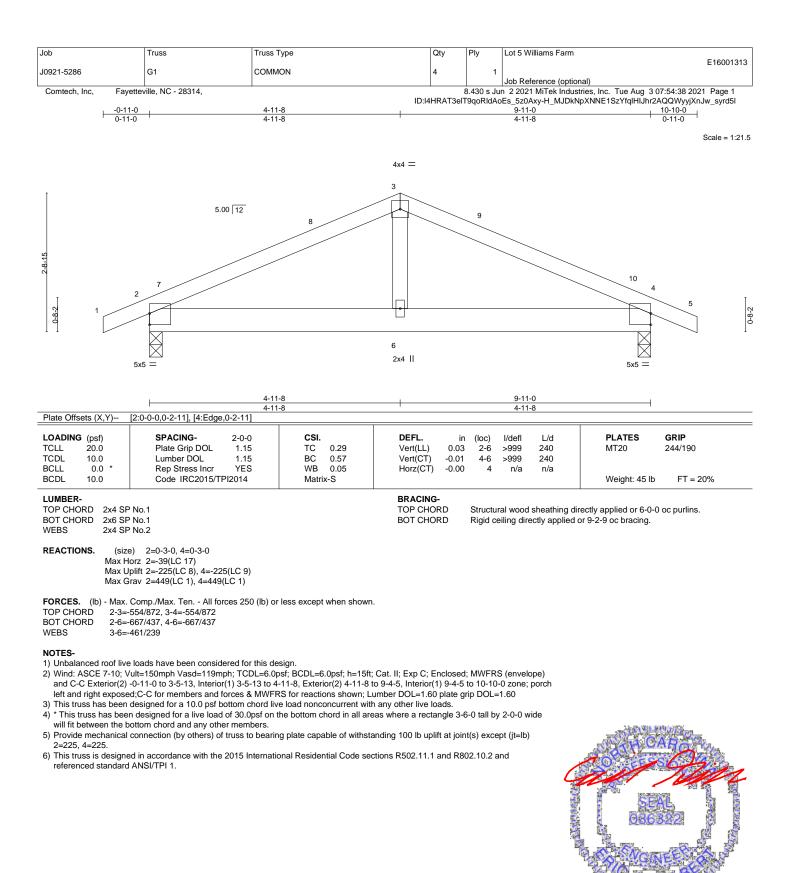
BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 2=-120(LC 13) (lb) -

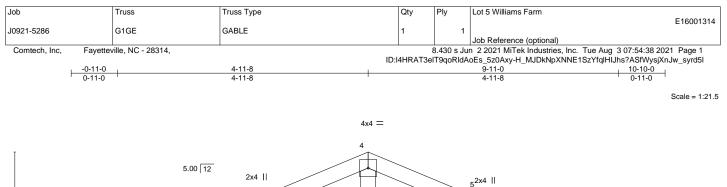
Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 22, 17, 15 except 21=-102(LC 12), 23=-116(LC 12), 16=-103(LC 13), 14=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 17, 16, 15, 14

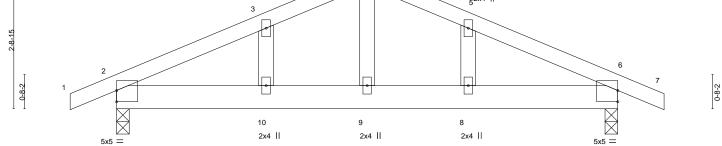
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 22, 17, 15 except (it=lb) 21=102, 23=116, 16=103, 14=112.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **AVSUFTH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

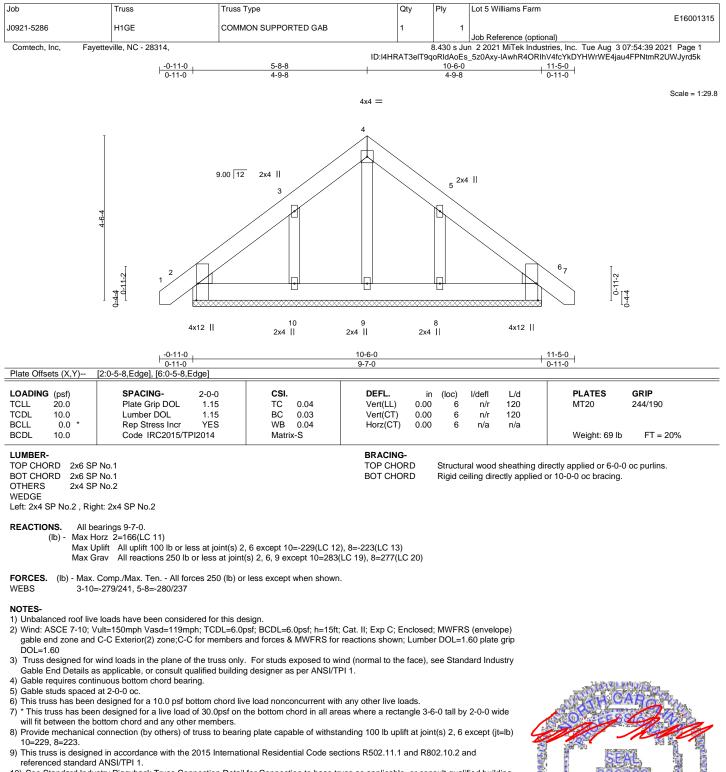




August 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

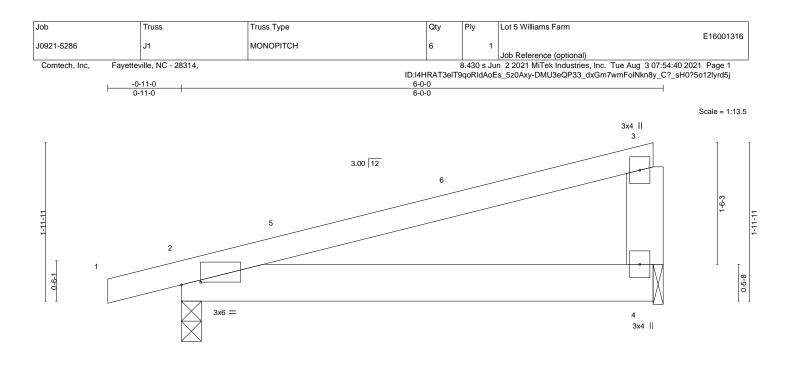
	<u> </u> 4-11 4-11			<u>9-11-0</u> 4-11-8		
Plate Offsets (X,Y)	[2:0-0-0,0-2-11], [6:Edge,0-2-11]	-8		4-11-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.42 WB 0.06 Matrix-S	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) -0.01 Wind(LL) 0.02	(loc) l/defl L/d 8 >999 360 8 >999 240 6 n/a n/a 8 >999 240		P /190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 30T CHORD 2x6 SP WEBS 2x4 SP DTHERS 2x4 SP	No.1 No.1 No.2		BRACING- TOP CHORD	Structural wood sheathing d Rigid ceiling directly applied	irectly applied or 6-0-0 oc pu	
Max U Max G	e) 2=0-3-0, 6=0-3-0 orz 2=-66(LC 13) plift 2=-297(LC 8), 6=-297(LC 9) rav 2=449(LC 1), 6=449(LC 1) Comp./Max. Ten All forces 250 (lb) ol					
TOP CHORD 2-3=- BOT CHORD 2-10=	541/873, 3-4=-494/920, 4-5=-494/920, 4 -688/437, 9-10=-688/437, 8-9=-688/43 534/232	5-6=-541/873				
 Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p Truss designed for Gable End Details a Gable studs spaced This truss has been * This truss has bee will fit between the b 	wind loads in the plane of the truss only sapplicable, or consult qualified building	psf; BCDL=6.0psf; h=15ft; tt exposed;C-C for memb . For studs exposed to wi g designer as per ANSI/TI e load nonconcurrent with the bottom chord in all are	ers and forces & MWFRS nd (normal to the face), se Pl 1. n any other live loads. as where a rectangle 3-6-1	for reactions shown; ee Standard Industry 0 tall by 2-0-0 wide	CAP Solo	D


2=297, 6=297. 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

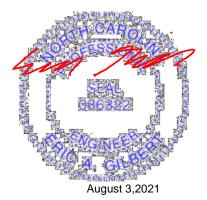
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expletens, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

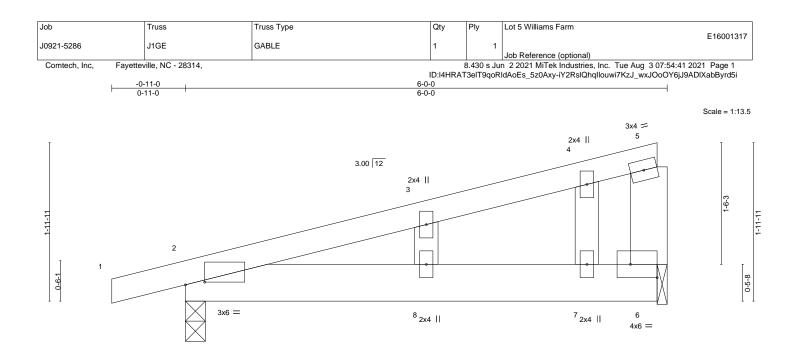
🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Plate Offsets (X,Y)	[2:0-2-14,0-0-6]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.18 WB 0.00 Matrix-P	DEFL.iVert(LL)0.0Vert(CT)-0.03Horz(CT)0.04	3 2-4 >999 240	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP 3OT CHORD 2x6 SP WEBS 2x6 SP	No.1	I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=75(LC 8) Max Uplift 2=-188(LC 8), 4=-143(LC 8) Max Grav 2=294(LC 1), 4=220(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=188, 4=143,
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:Edge,0-2-0]				1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) 0.04	4 8 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.02	2 8 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT) -0.00) 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	· · · ·		Weight: 29 lb FT = 20%
LUMBER-			BRACING-		-
TOP CHORD 2x4	SP No.1		TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins,
BOT CHORD 2x6	SP No.1			except end verticals.	
WEBS 2x6	SP No.1		BOT CHORD	Rigid ceiling directly applied	d or 10-0-0 oc bracing.
OTHERS 2x4	SP No.2				Ū.

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=106(LC 8) Max Uplift 2=-259(LC 8), 6=-199(LC 8) Max Grav 2=294(LC 1), 6=220(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-8=-275/133, 7-8=-275/133, 6-7=-275/133 BOT CHORD

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259. 6=199.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 3,2021

818 Soundside Road Edenton, NC 27932

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI. TC 0.21	DEFL.	in (loo	,	L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.21 BC 0.21		-0.00 2- -0.00 2-		360 240	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) Wind(LL)	0.00 0.00	n/a 2 ****	n/a 240	Weight: 20 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

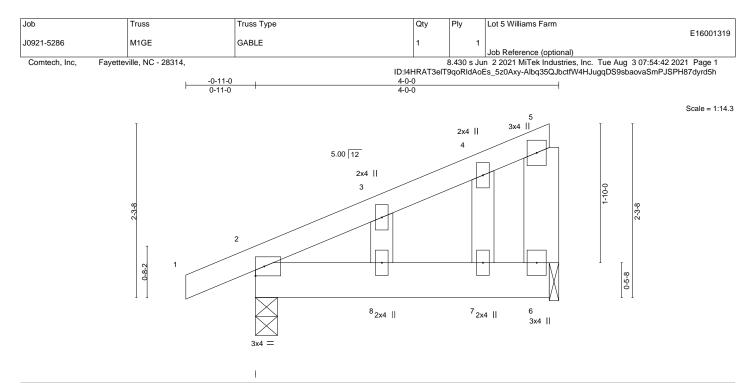
REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=84(LC 12)

Max Uplift 2=-48(LC 8), 4=-52(LC 12) Max Grav 2=218(LC 1), 4=136(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.10 WB 0.02 Matrix-S	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* WEBS 3-8: 2x4 SP No.2 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=121(LC 12) Max Uplift 2=-90(LC 12), 6=-93(LC 12)

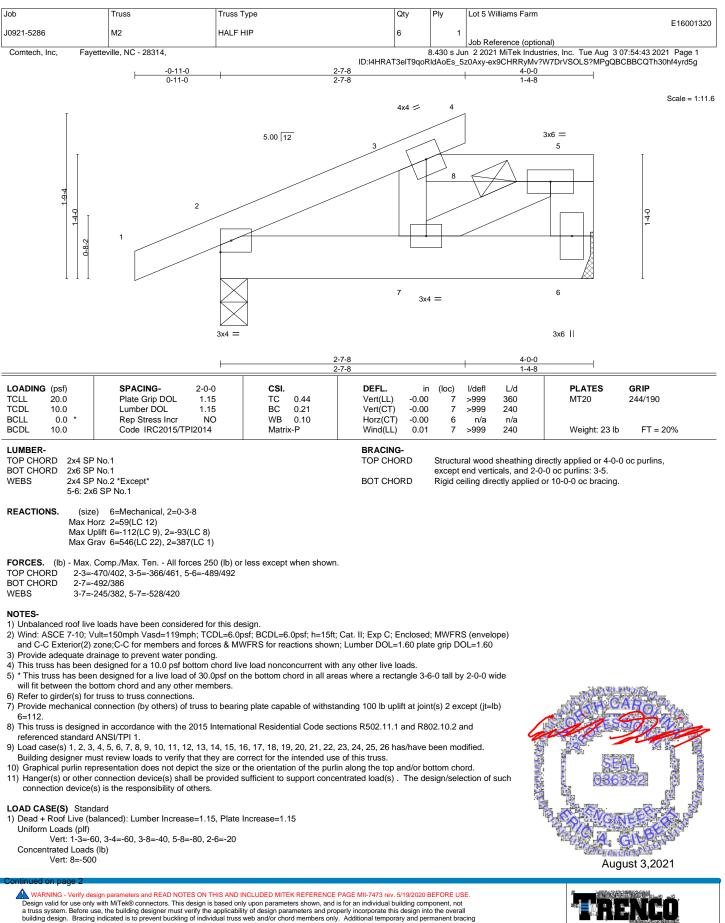
Max Grav 2=218(LC 1), 6=136(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

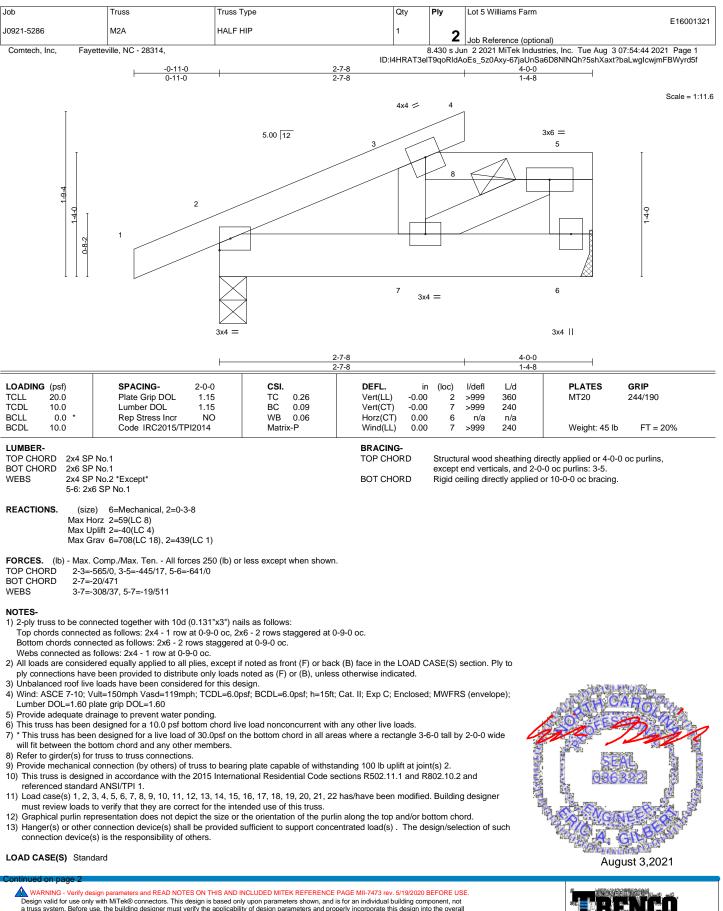
1	Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
						E16001320
	J0921-5286	M2	HALF HIP	6	1	
						Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,			3.430 s Jur	1 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 2

ID:I4HRAT3eIT9qoRldAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-40, 2-6=-40 Concentrated Loads (Ib) Vert: 8=-375 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=98, 2-3=82, 3-4=207, 3-5=67, 2-6=-12 Horz: 1-2=-110, 2-3=-94, 3-4=-219 Concentrated Loads (Ib) Vert: 8=467 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=73, 2-3=82, 3-4=73, 3-5=67, 2-6=-12 Horz: 1-2=-85, 2-3=-94, 3-4=-85 Concentrated Loads (lb) Vert: 8=467 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=5, 2-3=-54, 3-4=30, 3-5=-64, 2-6=-20 Horz: 1-2=-25, 2-3=34, 3-4=-50 Concentrated Loads (lb) Vert: 8=-462 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-45, 2-3=-54, 3-4=-45, 3-5=-64, 2-6=-20 Horz: 1-2=25, 2-3=34, 3-4=25 Concentrated Loads (lb) Vert: 8=-462 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=11, 2-6=-12 Horz: 1-2=-52, 2-3=-32, 3-4=-23 Concentrated Loads (lb) Vert: 8=121 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=11, 2-6=-12 Horz: 1-2=-23, 2-3=-32, 3-4=-53 Concentrated Loads (lb) Vert: 8=121 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-15, 2-6=-20 Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb) Vert: 8=-306 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-5, 2-6=-12 Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb) Vert: 8=121

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
J0921-5286	M2	HALF HIP	6	1	E16001320
30921-3200	IVIZ		0	'	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,	•		8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:43 2021 Page 3


ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-ex9CHRRyMv?W7DrVSOLS?MPgQBCBBCQTh30hf4yrd5g

LOAD CASE(S) Standard 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-5, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18 Concentrated Loads (lb) Vert: 8=21 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-31, 2-6=-20 Horz: 1-2=-34, 2-3=-25, 3-4=-34 Concentrated Loads (lb) Vert: 8=-306 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-31, 2-6=-20 Horz: 1-2=-18, 2-3=-9, 3-4=-18 Concentrated Loads (lb) Vert: 8=-306 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-5=-120, 2-6=-20 Concentrated Loads (lb) Vert: 8=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-10, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-81, 5-8=-111, 2-6=-20 Horz: 1-2=-17, 2-3=-11, 3-4=-17 Concentrated Loads (lb) Vert: 8=-480 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26 Concentrated Loads (lb) Vert: 8=-480 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-93, 5-8=-123, 2-6=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14 Concentrated Loads (lb) Vert: 8=-480 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-40, 5-8=-80, 2-6=-20 Concentrated Loads (lb) Vert: 8=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb) Vert: 8=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 3-8=-100, 5-8=-130, 2-6=-20 Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, deflivery, rerection and bracing of trusses systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Vert: 8=-438

Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

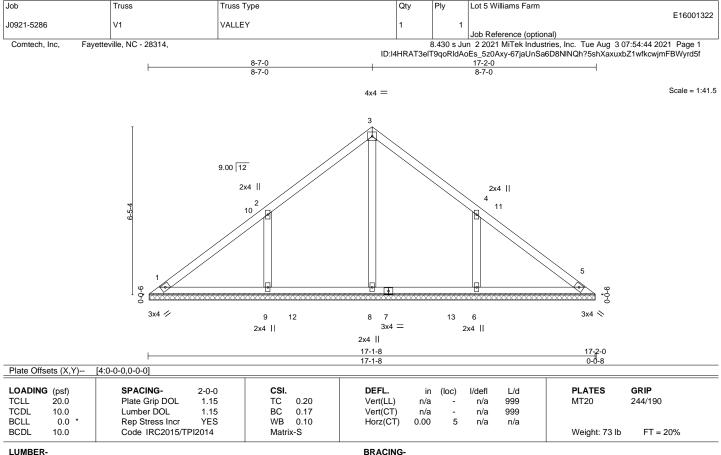
dof	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
					E16001321
J0921-5286	M2A	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2

8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 2 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwglcwjmFBWyrd5f

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
Concentrated Loads (Ib)
Vert: 8=-500
2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20 Concentrated Loads (lb)
Vert: 8=-438
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 3-5=-160, 2-6=-40
Concentrated Loads (lb) Vert: 8=-375
4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=40, 2-3=20, 3-4=11, 3-5=-109, 2-6=-12
Horz: 1-2=-52, 2-3=-32, 3-4=-23
Concentrated Loads (lb) Vert: 8=121
5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=11, 2-3=20, 3-4=41, 3-5=-109, 2-6=-12
Horz: 1-2=-23, 2-3=-32, 3-4=-53
Concentrated Loads (lb) Vert: 8=121
6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20
Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb)
Vert: 8=-306
7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=3, 2-3=-6, 3-4=3, 3-5=-135, 2-6=-20
Horz: 1-2=-23, 2-3=-14, 3-4=-23 Concentrated Loads (lb)
Vert: 8=-306
8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12
Horz: 1-2=-34, 2-3=-43, 3-4=-34 Concentrated Loads (lb)
Vert: 8=121
9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12 Horz: 1-2=-18, 2-3=-27, 3-4=-18
Concentrated Loads (lb)
Vert: 8=21
10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=22, 2-3=31, 3-4=22, 3-5=-125, 2-6=-12
Horz: 1-2=-34, 2-3=-43, 3-4=-34
Concentrated Loads (lb)
Vert: 8=121
11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=6, 3-5=-125, 2-6=-12
Horz: 1-2=-18, 2-3=-27, 3-4=-18
Concentrated Loads (lb)
Vert: 8=21
 Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=14, 2-3=5, 3-4=14, 3-5=-151, 2-6=-20
Horz: 1-2=-34, 2-3=-25, 3-4=-34
Concentrated Loads (lb)
Vert: 8=-306 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-11, 3-4=-2, 3-5=-151, 2-6=-20
Horz: 1-2=-18, 2-3=-9, 3-4=-18
Concentrated Loads (lb)
Vert: 8=-306

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
					E16001321
J0921-5286	M2A	HALF HIP	1	2	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:44 2021 Page 3

ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-67jaUnSa6D8NINQh?5shXaxt?baLwgIcwjmFBWyrd5f

LOAD CASE(S) St

L	LOAD CASE(S) Standard
1	14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-5=-240, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-250
1	15) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-40, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-10, 3-4=-17
	Concentrated Loads (lb)
	Vert: 8=-480
1	16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-33, 2-3=-39, 3-4=-33, 3-8=-201, 5-8=-231, 2-6=-20
	Horz: 1-2=-17, 2-3=-11, 3-4=-17
	Concentrated Loads (lb)
	Vert: 8=-480
1	17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-24, 2-3=-31, 3-4=-24, 3-8=-213, 5-8=-243, 2-6=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26
	Concentrated Loads (lb)
	Vert 8=-480
	18) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-36, 2-3=-43, 3-4=-36, 3-8=-213, 5-8=-243, 2-6=-20
	Vett. 1/2=50, 2/5=40, 5/4=50, 5/6=2/3, 2/6=2/40, 2/0=2/0 Horz: 1/2=14, 2/3=7, 3/4=14
	Concentrated Loads (lb)
	Vert: 8=-480
	19) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert. 1-3-60, 3-4=-60, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-500
2	20) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-8=-160, 5-8=-200, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-500
2	21) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 3-8=-220, 5-8=-250, 2-6=-20
	Concentrated Loads (Ib)
	Vert: 8=-438
2	22) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 3-8=-220, 5-8=-250, 2-6=-20
	Concentrated Loads (lb)
	Vert: 8=-438

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 17-1-0.

(lb) - Max Horz 1=195(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-218(LC 12), 6=-218(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=418(LC 19), 9=496(LC 19), 6=496(LC 20)

WEBS 2-9=-455/344, 4-6=-455/345

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-7-0, Interior(1) 4-7-0 to 8-7-0, Exterior(2) 8-7-0 to 12-11-13, Interior(1) 12-11-13 to 16-8-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

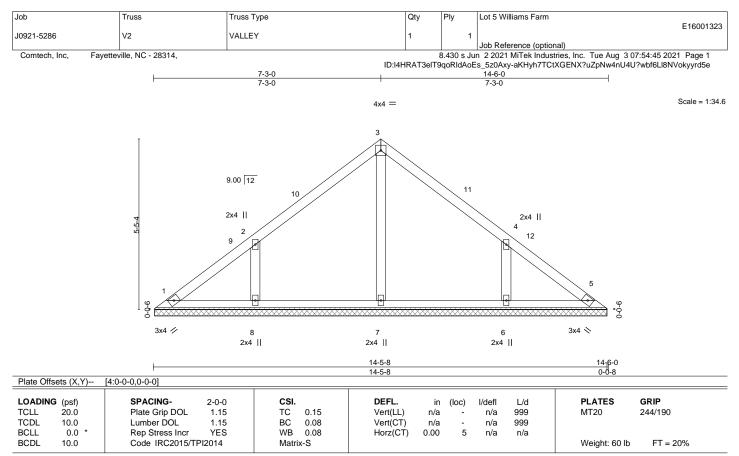
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=218, 6=218,

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 14-5-0.

(lb) - Max Horz 1=163(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-184(LC 12), 6=-184(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=375(LC 19), 6=375(LC 20)

WEBS 2-8=-388/310, 4-6=-388/310

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 14-0-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

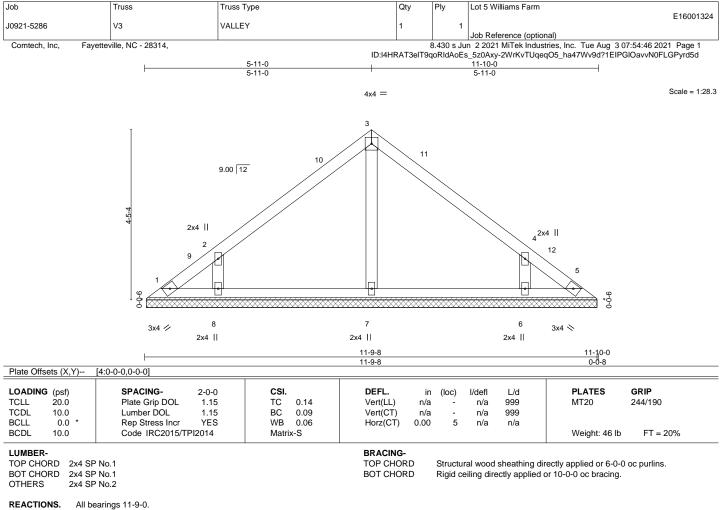
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=184, 6=184,

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

August 3,2021

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Venity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters show, and is for an individual building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design in the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, deliver, erection and bracing of trusses and fruss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

(lb) - Max Horz 1=-131(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-172(LC 12), 6=-171(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=343(LC 19), 6=342(LC 20)

WEBS 2-8=-372/316, 4-6=-372/316

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-4-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

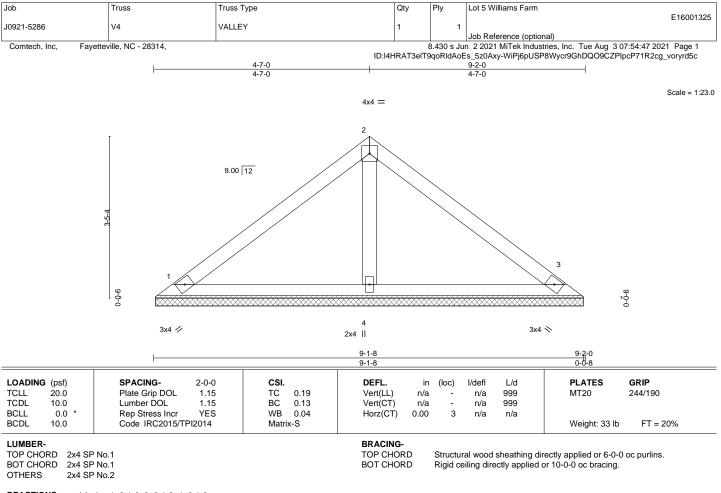
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=172.6=171.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



August 3,2021

🛕 WARNING - Verify design pa neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. (size) 1=9-1-0, 3=9-1-0, 4=9-1-0

Max Horz 1=99(LC 11)

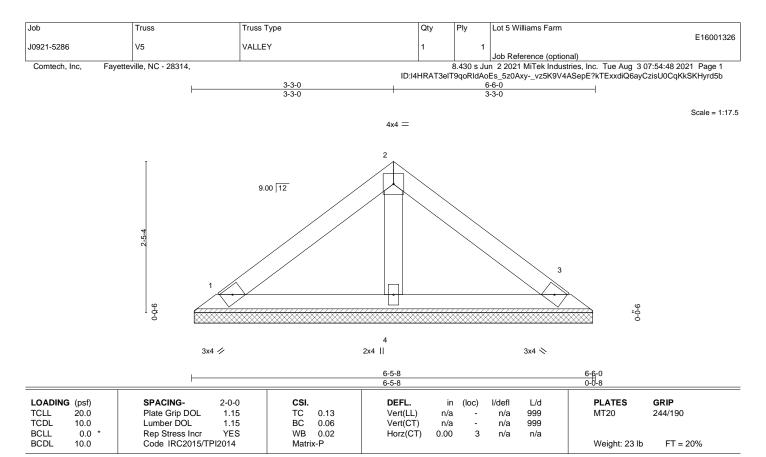
Max Uplift 1=-42(LC 12), 3=-52(LC 13), 4=-24(LC 12)

Max Grav 1=171(LC 1), 3=172(LC 20), 4=321(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=6-5-0, 3=6-5-0, 4=6-5-0

Max Horz 1=-67(LC 8)

Max Uplift 1=-37(LC 12), 3=-44(LC 13)

Max Grav 1=126(LC 1), 3=126(LC 1), 4=197(LC 1)

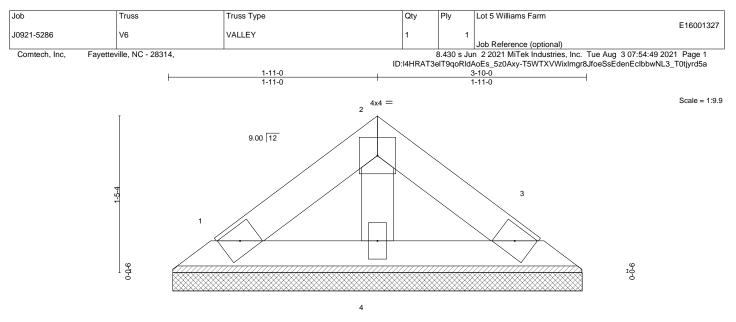
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

August 3,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange delivery design parameters and READ NOTES ON THIS AND INCLUDED INTERFERENCE PAGE MIT-1473 BIV 5192/2021 BEFORE DSE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see ANS/LTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

2x4 ||

3x4 📎

3-10-0

Structural wood sheathing directly applied or 3-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1		1	3-9-8		0-b ^l -8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.03 BC 0.02 WB 0.01	DEFL. in (loc) Vert(LL) n/a - Vert(CT) n/a - Horz(CT) 0.00 3	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	BRACING-	11/a 11/a	Weight: 12 lb FT = 20%

TOP CHORD

BOT CHORD

3-9-8

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-9-0, 3=3-9-0, 4=3-9-0

Max Horz 1=-35(LC 8)

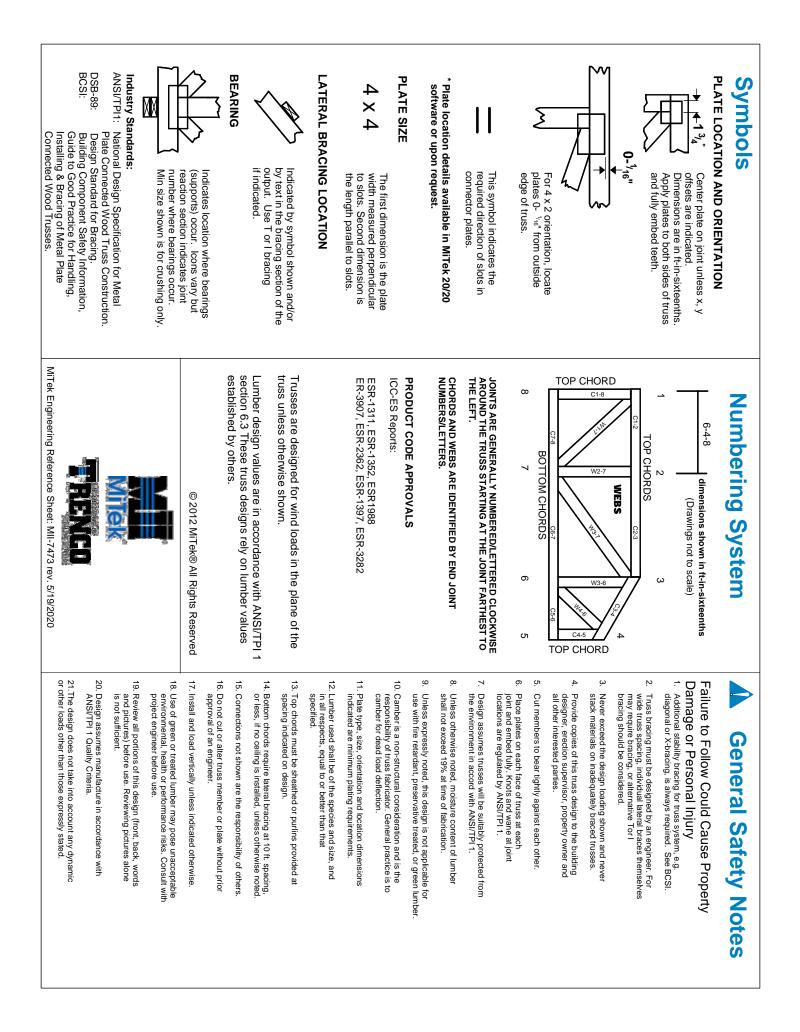
Max Uplift 1=-20(LC 12), 3=-23(LC 13)

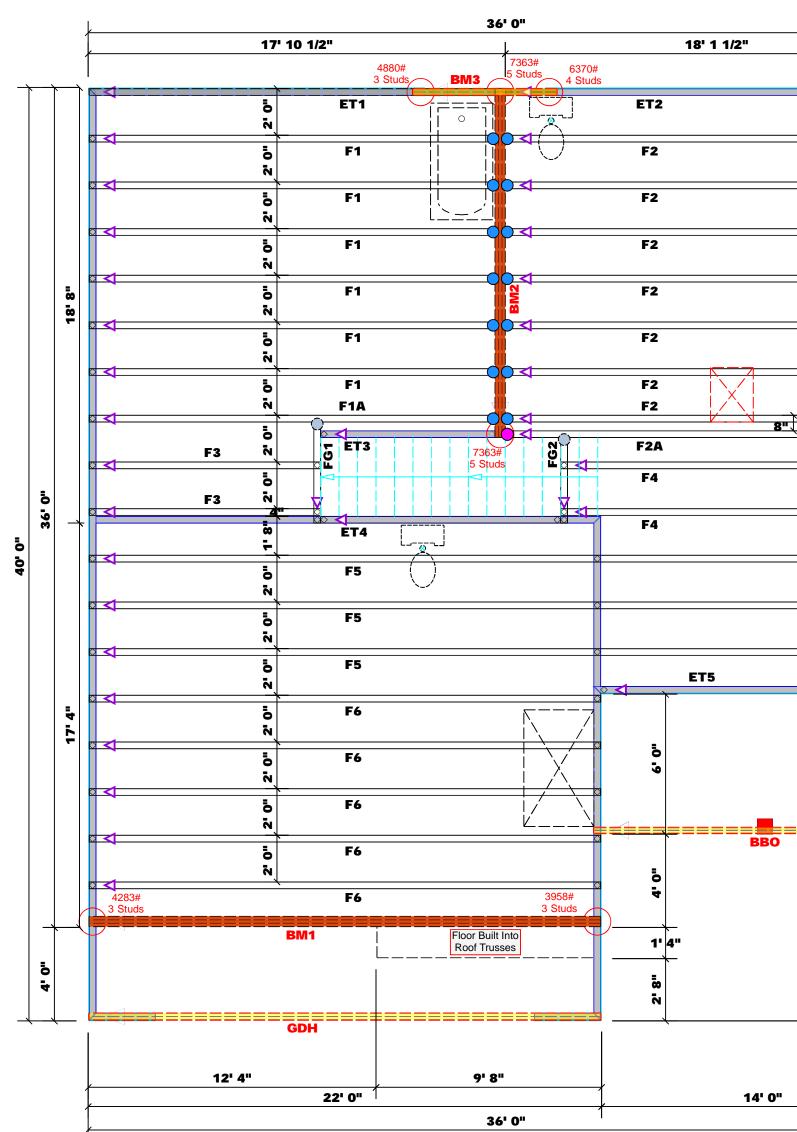
Max Grav 1=66(LC 1), 3=66(LC 1), 4=104(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

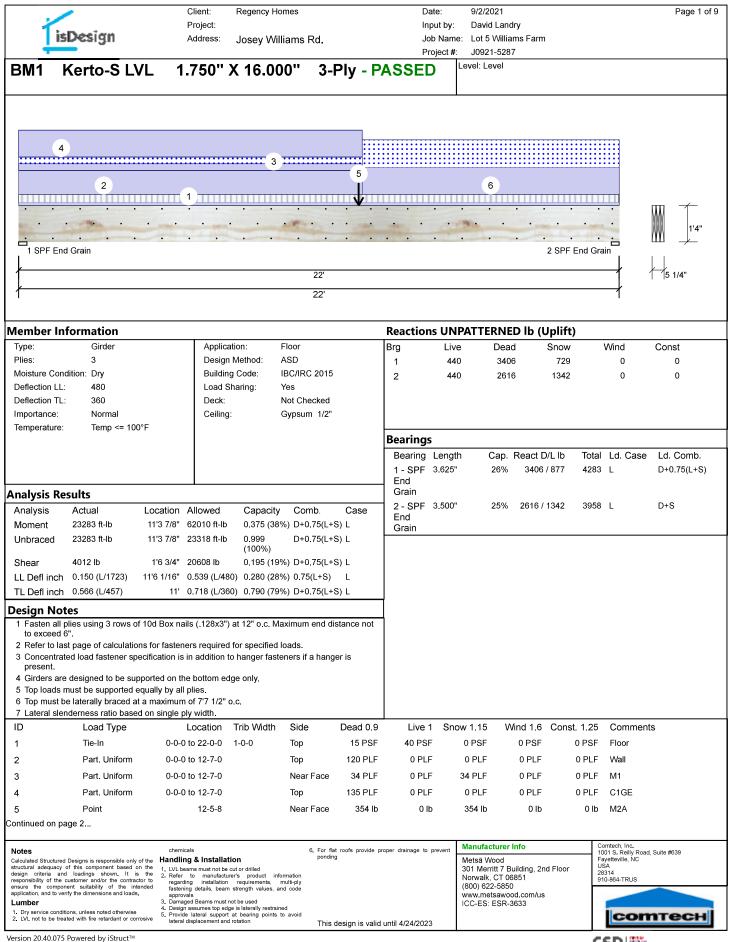
NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

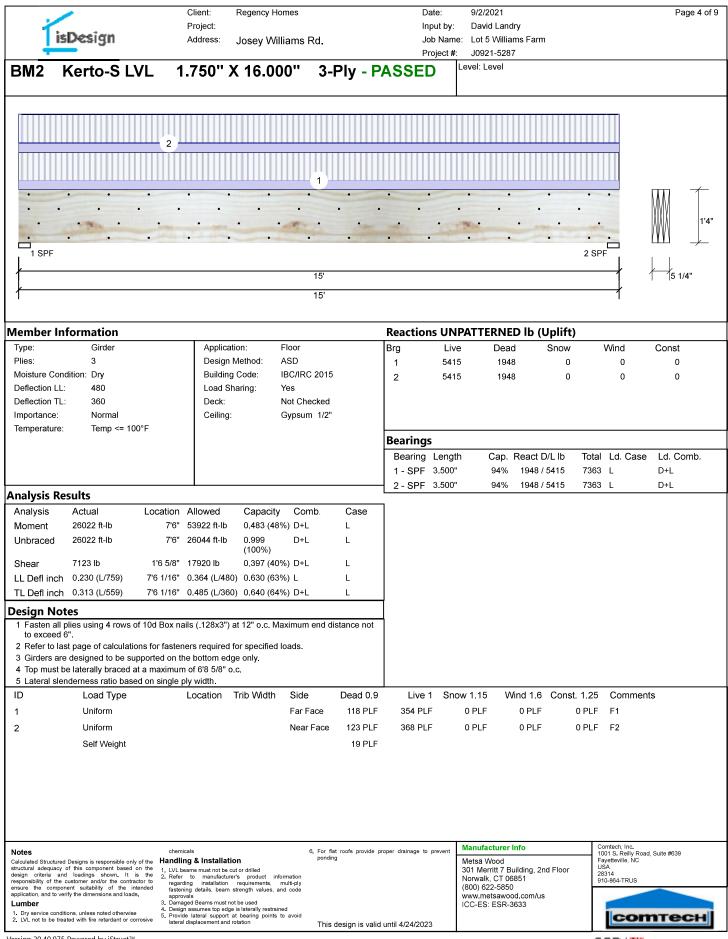
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Z: 0: Z:				Bearing deemed requirem size and reaction rstoot, retained reaction Signatu	Fax reactions to compl nents. Thi I Tables (nents) to i number s greater A register to design s that exce re AD CH. (anstel MELK OF 27 an 1 2 3	OF & SES coad In teville we: (910) (contraction of wood s than 3000 red design the support of wood s the s	A FL & FL & B ndustr (, N.C. 0) 864 864-4 nor equa prescrip to shall studs req # but no nor especific rom the p e studs req # but no nor especific rom the p e studs req # but no nor especific rom the p e studs req # but no nor especific mont syste d La DR JAA	CK STU	A AS AS AS A AS A AS A AS A AS A AS A
3:0: 3:0: 5:0: 5:0: 5:0: 5:0: 5:0: 5:0:	26' 0"	40' 0"	Dimension Notes 1. All exterior wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to tace of frame wall unless noted otherwise 3. All exterior wall of unsus dimensions are to face of frame wall unless noted otherwise 3. All exterior wall of unsus dimensions are to face of frame wall unless noted otherwise Description Description	6800 8500 11900 13600 15300	Villiams Rd.	10200 12750 15300	05		0 4 00 5 00 Fewis
	°. 0		SymProductManufQtySupported MemberHeaderTrussImage: HUS410USP14NA16d/3-1/2"16d/3-1/2"Image: HUS410USP14NA16d/3-1/2"10d/3"Image: HUS410USP2Varies10d/3"10d/3"Image: HUS410USP1NA16d/3-1/2"10d/3"	CITY / CO. Har	ADDRESS Josey	MODEL Floor	DATE REV. 09/	DRAWN BY Dav	SALES REP. Bob
	8' 0"		Products Plies Net Qty BM1 22'0" 1-3/4"x 16" LVL Kerto-S 3 3 BM2 15'0" 1-3/4"x 16" LVL Kerto-S 3 3 BM3 7'0" 1-3/4"x 9-1/4" LVL Kerto-S 2 2 GDH 22'0" 1-3/4"x 11-7/8" LVL Kerto-S 2 2	Regency Homes	IE Lot 5 Williams Farm	Brinkley "B" / GL	2		J0921-5287
				BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	# 90F

PLAN JOB THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

▲ = Indicates Left End of Truss (Reference Engineered Truss Drawing) **Do NOT Erect Truss Backwards**



CSD 🚟

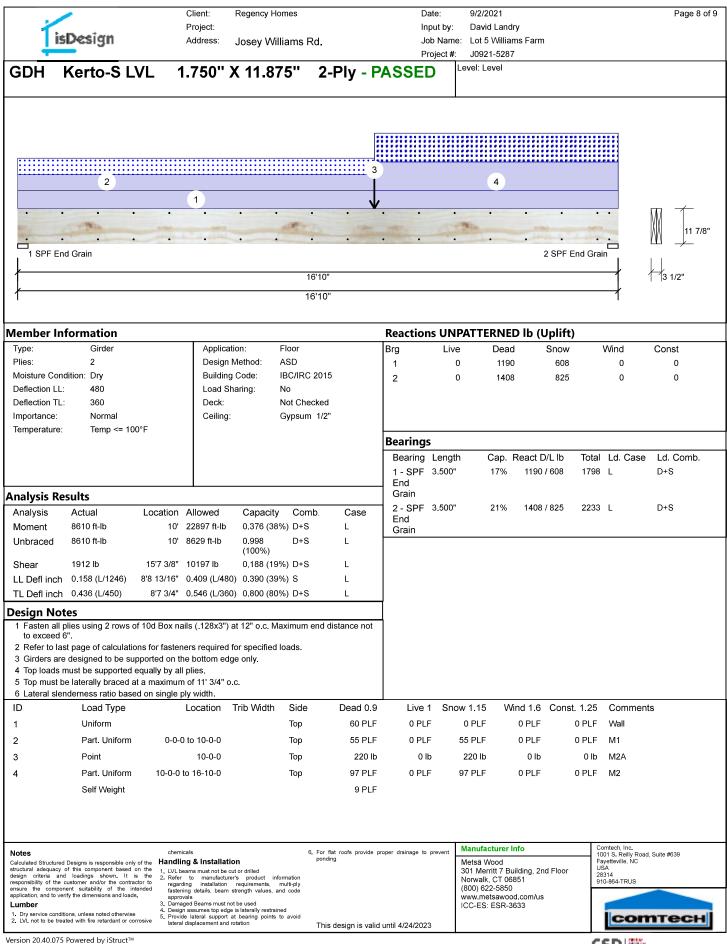
	/	Client: Regency Homes	Date:	9/2/2021	Page 2 of 9
1 1	han the	Project:	Input	by: David Landry	
	isDesign	Address: Josey Williams		lame: Lot 5 Williams Farm	
			Proje		
BM1	Kerto-S LVL	1.750" X 16.000"	3-Ply - PASSED	Level: Level	
	4				
		3	5		
	2		5 	6	
		1			, , , , , , , , , , , , , , , , , , ,
	• • • •	• • • • • •		• • • • •	· · · · · · · · · · · · · · · · · · ·
	Course .				1'4"
	End Grain			2 SPF End	
	Enu Grain			2 SPF EIIU	
			22'		1 1 /4"
/			22'		/
'					,
Continued	from page 1				
ID	Load Type	Location Trib Width Side	e Dead 0.9 Live 1	Snow 1.15 Wind 1.6 Const. 1.2	25 Comments
6	Part. Uniform		r Face 137 PLF 0 PLF	137 PLF 0 PLF 0 PL	
0		12-7-0 t0 22-0-0 Nea			
	Self Weight		19 PLF		
Notes		chemicals	6. For flat roofs provide proper drainage to prev	ent Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struc	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation	ponding	Metsä Wood	Fayetteville, NC USA
design criteria	and loadings shown. It is the the customer and/or the contractor to	 LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply 		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 910-864-TRUS
ensure the co	omponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber	conditions, unless noted otherwise	 Damaged Beams must not be used Design assumes top edge is laterally restrained 		ICC-ES: ESR-3633	
2. LVL not to b	conditions, unless noted otherwise be treated with fire retardant or corrosive	 Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 4/24/2023		соттесн
Version 20.40	.075 Powered by iStruct™				CSDI

CSD

Client: Regency Homes	Date: 9/2/2021 Page 3 of 9
Project:	Input by: David Landry
Address: Josey Williams Rd.	Job Name: Lot 5 Williams Farm
	Project #: J0921-5287
BM1 Kerto-S LVL 1.750" X 16.000" 3-Ply - PAS	SED Level: Level
	· · · · · · · · · · · · · · · · · · ·
1	
│	
<u></u>	
1 SPF End Grain	2 SPF End Grain
	/
22'	1 15 1/4"
22'	1
Multi-Ply Analysis	
Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c except for regi	ons covered by concentrated load fastening.
Nail from both sides. Maximum end distance not to exceed 6"	
Capacity 64.7 %	
Load 182.7 PLF Yield Limit per Foot 282.4 PLF	
Yield Limit per Fastener 94.1 lb.	
Yield Mode IV	
Edge Distance 1 1/2"	
Min. End Distance 3"	
Load Combination D+S Duration Factor 1.15	
Concentrated Load	
Fasten at concentrated side load at 12-5-8 with a	
minimum of (6) – 10d Box nails (.128x3") in the	
pattern shown. Repeat fasteners on both sides. Min/Max fastener di	stances for Concentrated Side Loads
Capacity 83.6 %	+ + Min. 1 1/4"
Load 472.0lb.	
Total Yield Limit 564.7 lb. Cg 0.9998 1 1/2"	
Yield Limit per Fastener 94.1 lb.	
Yield Mode IV Min	. 1 1/4" 0 // 0
Load Combination D+S Min. 3"	
	o 5" ⊨ o ∧ o
M	n.5"
*	• • • •
	Min. 3"
	Max. 12" Max. 12"
Notes chemicals 6. For flat roofs provide proper dr	ainage to prevent Manufacturer Info Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the Handling & Installation ponding	Metsä Wood Fayetteville, NC
structural adequacy of this component based on the 1. LVL beams must not be cut or drilled design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to regarding installation requirements, multi-ply	Norwalk, CT 06851 28314 910-864-TRUS
espiration of the customer anomine contraction to regarding installation requirements, multi-ply ensure the component suitability of the intended application, and to verify the dimensions and loads, approvals	(800) 622-5850 www.metsawood.com/us
Lumber 3. Damaged Beams must not be used	ICC-ES: ESR-3633
2 IVI not to be treated with fire related other wise 5 Provide lateral support at bearing points to avoid	Соттесн
	24/2023
Version 20.40.075 Powered by iStruct™	CSD 🗱

Version 20.40.075 Powered by iStruct™

CSD 🚟


Client: Regency Homes Project:		Date: 9/2/2021 Input by: David Landry	Page 5 of 9
Address: Josey William	s Rd.	Input by: David Landry Job Name: Lot 5 Williams Farm Project #: J0921-5287	
BM2 Kerto-S LVL 1.750'' X 16.000''	3-Ply - PASSI		
· · · · · · ·	• • •	• • • • •	
	· · · ·		. 1/2"
	• • •		
	171	2	
/	15' 15'		
			·
Multi-Ply Analysis			
Fasten all plies using 4 rows of 10d Box nails (.128x3") at 12 6"	" o.c Nail from both sid	des. Maximum end distance not to	exceed
Capacity 100.0 % Load 327.3 PLF			
Yield Limit per Foot 327.4 PLF			
Yield Limit per Fastener 81.9 lb. Yield Mode IV			
Edge Distance 1 1/2" Min. End Distance 3"			
Load Combination D+L			
Duration Factor 1.00			
Notes chemicals	6. For flat roofs provide proper drainag	e to prevent Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the 1. LVL beams must not be cut or drilled	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314
design onteria and loadings shown. It is the 2. Refer to manufacturer's product informatio responsibility of the customer and/or the contractor to application, and to wrify the dimensions and loads.	/	Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	910-864-TRUS
Lumber 1. Dry service conditions, unless noted otherwise 1. Dry service conditions, unless noted otherwise 1. Dry service and the service serv	1	ICC-ES: ESR-3633	соттесн
2. LVL not to be treated with fire retardant or corrosive lateral displacement and rotation	This design is valid until 4/24/	2023	Connech

CSD 🗱

Version 20.40.075 Powered by iStruct™

1	Phone? must	F	Client: Project:	Regency H			In	ate: put by:	9/2/2021 David Lan	-			Page 6 of 9
	Design	1	Address:	Josey W	illiams Rd.			b Name	: Lot 5 Willia J0921-528				
BM3	Kerto-S L\	/L 1	1.750''	' X 9.2	250''	2-Ply -		<u> </u>	evel: Level				
	1				4.								
					\mathcal{A}								
				Ň	XIX								
		2			/ \ \	3							$\neg \uparrow$
•	·	•		•		•	• •						MM L.
	- The -		1.12		ATT			3					9 1/
	End Grain					2 SPI	End Grain						
<u> </u>			5'1	0"									3 1/2"
1			5'1	0"				-1					
lember In	formation						Reaction	ns UNF	PATTERNE	D lb (Un	lift)		
Туре:	Girder		Applicat		Floor		Brg	Live		-	ow	Wind	Const
Plies: Moisture Cond	2 dition: Dry		Design Building		ASD IBC/IRC 20	15	1	2153 3496			210 210	0 0	0 0
Deflection LL:	480		Load St		No		2	0100	201	0 11		Ū	Ū
Deflection TL: Importance:	360 Normal		Deck: Ceiling:		Not Checke Gypsum 1/								
Temperature:	Temp <= 100°F	=	Coming.		Gypsull 1/	£							
							Bearing						
							Bearing 1 - SPF	-	Cap. 46%	React D/L 2357 / 252			Ld. Comb. D+0.75(L+S)
							End	3.500	4078	23317232	-2 4000) L	D+0.73(L+3)
nalysis Re							Grain 2 - SPF	3 500"	60%	2840 / 353	30 6370)	D+0.75(L+S)
Analysis Moment	Actual I 11308 ft-lb	ocation A-	Allowed 12542 ft-lb	Capacit 0.902 (90		Case L	End					-	()
Unbraced	11308 ft-lb		11327 ft-lb	0.998	D+L	L	Grain						
Shear	5739 lb	4'10" 6	6907 lb	(100%) 0.831 (8:	3%) D+I	L							
	0.084 (L/764)		0.134 (L/480			L							
TL Defl inch	0.143 (L/451)	3'3 5/8" (0.179 (L/360	0) 0.800 (80	0%) D+L	L							
esign Not							l						
1 Fasten all p to exceed 6	blies using 2 rows of 1 5".	0d Box nail	ls (.128x3")	at 12" o.c. N	laximum end	distance not							
	st page of calculations designed to be supp		•		l loads.								
4 Top loads r	nust be supported equ	ually by all p	olies.	jo onij.									
•	e laterally braced at a nderness ratio based o												
ID	Load Type		,	Trib Width	Side	Dead 0.9	Live	1 Snov	w 1.15 V	Vind 1.6 C	onst. 1.25	Commen	ts
1	Tie-In	0-0-0 1	to 5-10-0	1-0-0	Тор	15 PSF	40 PSI	=	0 PSF	0 PSF	0 PSF	Floor	
2	Uniform				Тор	120 PLF	0 PLI		0 PLF	0 PLF	0 PLF		
3	Uniform		0 - 0		Тор	415 PLF	0 PLI		15 PLF	0 PLF	0 PLF		
4	Point Self Weight		3-7-0		Тор	1948 lb 7 PLF	5415 li	U	0 lb	0 lb	dl 0	BM2 Brg 2	1
	Sen Weight												
Notes	Designs is responsible only of t	chemica		on.		r flat roofs provide p nding	roper drainage to	prevent	Manufacturer Metsä Wood	Info	1	Comtech, Inc. 1001 S. Reilly Road ayetteville, NC	d, Suite #639
tructural adequacy lesign criteria and	of this component based on t I loadings shown. It is t	he 1.LVLbea he 2.Refer	ims must not be c to manufacture	utordrilled er's product in	formation				301 Merritt 7 E Norwalk, CT 0		oor	28314 200-864-TRUS	
insure the compon	customer and/or the contractor tent suitability of the intend ify the dimensions and loads.	to regardin ed fastenin approva	ng installation g details, beam Ils	requirements, strength values,	multi-ply				(800) 622-585 www.metsawo	C		SUN1-4004-1KUS	
_umber	ions, unless noted otherwise	 Damage Design a Provide 	ed Beams must no assumes top edge lateral support :	e is laterally restra	ined to avoid				ICC-ES: ESR-			Icon	птесн
	ted with fire retardant or corrosi			rotation							1		

· /		ency Homes	Date:	9/2/2021	Page 7 of 9
lisDesign	Project: Address: Jos	ey Williams Rd.		e: Lot 5 Williams Farm	
BM3 Kerto-S L	.VL 1.750" X	9 250" 2 P	Project #	: J0921-5287 Level: Level	
DINIS Kerto-S L	VL 1.750 A	9.230 2- F	ly - FASSED		
		MMM			
• •	٠	• •	• •	5	
				<1 1/2"	9 1/4
•••	•	• •	••+	—¥	
1 SPF End Grain	5'10"		2 SPF End Grain		3 1/2"
 	5'10"				
Multi Dhe Analysia					
Multi-Ply Analysis Fasten all plies using 2 row	s of 10d Box nails (.128	3x3") at 12" o.c Max	imum end distance n	ot to exceed 6"	
Capacity Load	0.0 % 0.0 PLF	-			
Yield Limit per Foot Yield Limit per Fastener	163.7 PLF 81.9 lb.				
Yield Mode	IV				
Edge Distance Min. End Distance	1 1/2" 3"				
Load Combination Duration Factor	1.00				
Notes Calculated Structured Designs is responsible only	chemicals of the Handling & Installation	6. For flat roofs ponding	s provide proper drainage to prevent	Manufacturer Info Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based o design criteria and loadings shown. It is responsibility of the customer and/or the contrac	n the 1. LVL beams must not be cut or dr the 2. Refer to manufacturer's p tor to renarding installation requi	roduct information		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	UŚA 28314 910-864-TRUS
ensure the component suitability of the inte application, and to verify the dimensions and loads. Lumber	anded fastening details beam strengt	n values, and code		(800) 622-5850 www.metsawood.com/us	
Lumber Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corr	 Design assumes top edge is late Browide lateral support at basis 	rally restrained ing points to avoid	n is valid until 4/24/2023	ICC-ES: ESR-3633	соттесн
Version 20.40.075 Powered by iStruct™				1	CSD 🗱

CSD 🚟

	/		Client:	Regency Homes			Date:	9/2/2021	Page 9 of 9
Í	isDesign		Project: Address:	Josey Williams	Rd.		nput by: lob Name:	David Landry Lot 5 Williams Farm	
÷							Project #:	J0921-5287 evel: Level	
GDH	Kerto-S	LVL	1.750"	X 11.875"	2-Ply -	- PASSE	D	evel. Level	
									=
•	•••	•	• •	• •	• •	• •	•	• • •	
	• •	•	•••	• •	• •	•••	•	• • •	<u>····</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	End Grain				401401			2 SPF End	
					16'10" 16'10"				3 1/2"
					10 10				
Multi-Ply	Analysis								
	plies using 2 i			(.128x3") at 12"	o.c Maxim	um end dista	ance no	t to exceed 6"	
Capacity Load		0.0 % 0.0 PL	.F						
Yield Limit pe Yield Limit pe		163.7 81.9 ll							
Yield Mode Edge Distanc	e	IV 1 1/2"							
Min. End Dist	ance	3"							
Load Combin Duration Fact		1.00							
Notes			chemicals		6. For flat roofs prov	vide proper drainage t	o prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structu structural adequa design criteria	red Designs is responsible cy of this component ba and loadings shown.	e only of the Ha used on the 1. It is the 2.	ndling & Installa LVL beams must not be Refer to manufacti	cut or drilled urer's product information	ponding			Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	Touri S, Keilly Koad, Suite #639 Fayetteville, NC USA 28314 910-854-TRUS
ensure the com	he customer and/or the c ponent suitability of th verify the dimensions and	e intended loads.	regarding installatior fastening details, bear approvals Damaged Beams must	n requirements, multi-ply n strength values, and code not be used				(800) 622-5850 www.metsawood.com/us	
1. Dry service co	nditions, unless noted othe treated with fire retardant	erwise 5.	Design assumes top eo	Ige is laterally restrained t at bearing points to avoid	This design is	valid until 4/24/20		ICC-ES: ESR-3633	соттесн
1/									

CSD 🗱

Version 20.40.075 Powered by iStruct™

RE: J0921-5287 Lot 5 Williams Farm **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Regency Homes	Project Name: J0921-5287
Lot/Block: 5	Model: Brinkley
Address: Josey Williams Rd City: Erwin	Subdivision: Williams Farm State: NC

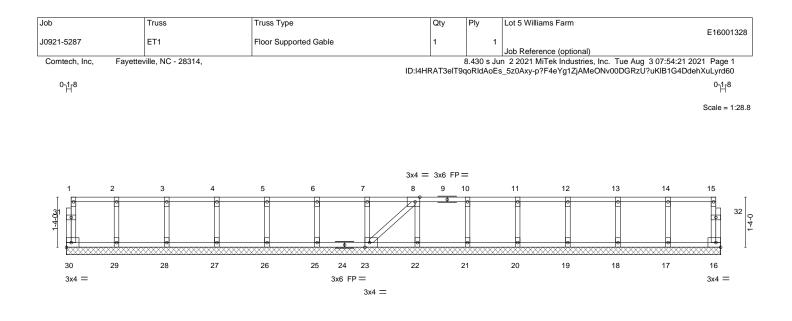
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E16001328	ET1	8/3/2021
2	E16001329	ET2	8/3/2021
3	E16001330	ET3	8/3/2021
4	E16001331	ET4	8/3/2021
5	E16001332	ET5	8/3/2021
6	E16001333	F1	8/3/2021
7	E16001334	F1A	8/3/2021
8	E16001335	F2	8/3/2021
9	E16001336	F2A	8/3/2021
10	E16001337	F3	8/3/2021
11	E16001338	F4	8/3/2021
12	E16001339	F5	8/3/2021
13	E16001340	F6	8/3/2021
14	E16001341	FG1	8/3/2021
15	E16001342	FG2	8/3/2021


The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			17-4-12			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [23:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999 a - n/a 999	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o	,	oc purlins,	

17-4-12

REACTIONS. All bearings 17-4-12.

(Ib) - Max Grav All reactions 250 Ib or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

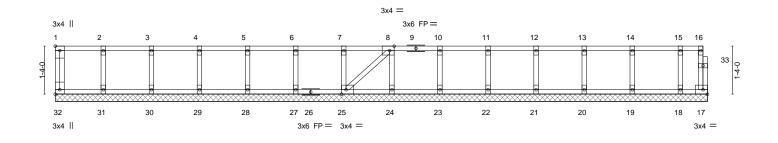
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



	Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm			
	J0921-5287	ET2	Floor Supported Gable	1	1	E16001329			
						Job Reference (optional)			
Comtech, Inc, Fayetteville, NC - 28314,					8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:22 2021 Page 1				
ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-HCpSsi						s_5z0Axy-HCpSsuhgK1IDGYy5ajkWzB1Adk5RmjKNsIR4Royrd6?			

0-1-8

Scale = 1:30.1

L				18-1-0						
Plate Offse	oto (X X)	[1:Edge,0-1-8], [8:0-1-8,Edge], [25:0-1-8	2 Edgo] [22:Edgo 0 1 9]	18-1-0						1
	ets (A, I)	[1.Euge,0-1-6], [6.0-1-6,Euge], [25.0-1-6	5,Eugej, [52.Euge,0-1-6]							
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHOF BOT CHOF WEBS OTHERS	RD 2x4 SP RD 2x4 SP 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)		BRACING- TOP CHORI BOT CHORI	_	except	end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,

REACTIONS.

All bearings 18-1-0.
 (lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

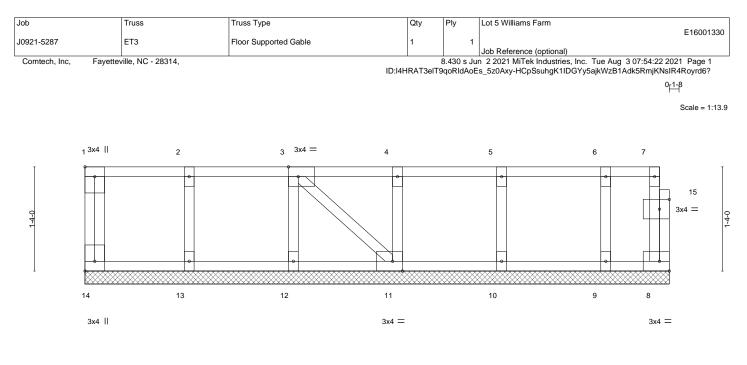
1) All plates are 1.5x3 MT20 unless otherwise indicated.2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

L			7-5-12					
1			7-5-12					
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [11:0-1-4	3,Edge], [14:Edge,0-1-8], [[15:0-1-8,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL.inVert(LL)n/aVert(CT)n/aHorz(CT)0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	BRACING- TOP CHORD BOT CHORD	except	end verti	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.			

REACTIONS.

DNS. All bearings 7-5-12. (lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

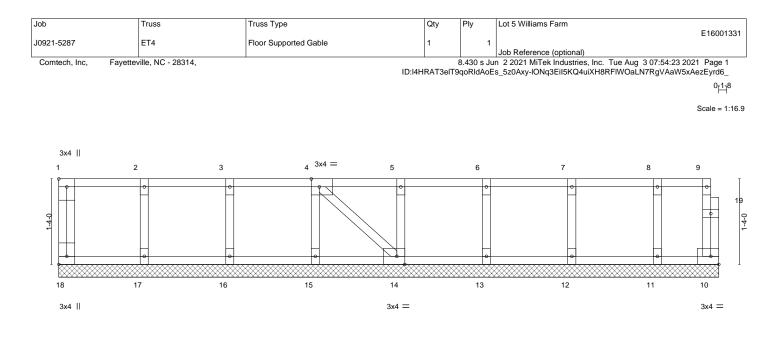
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

				10-3-8 10-3-8					
Plate Offsets (X	.,Y) [1:Edge,0-1-8], [4:0-1-8,	Edge], [14:0-1-8	,Edge], [18:Edge,0-1-8]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	 Plate Grip DOL Lumber DOL Rep Stress Incr 	2-0-0 1.00 1.00 YES PI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo n/a n/a 0.00	c) l/defl - n/a - n/a 10 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD WEBS	2x4 SP No.1(fiat) 2x4 SP No.1(fiat) 2x4 SP No.3(fiat) 2x4 SP No.3(fiat)			BRACING- TOP CHOR BOT CHOR	exc	ept end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS.

DNS. All bearings 10-3-8. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

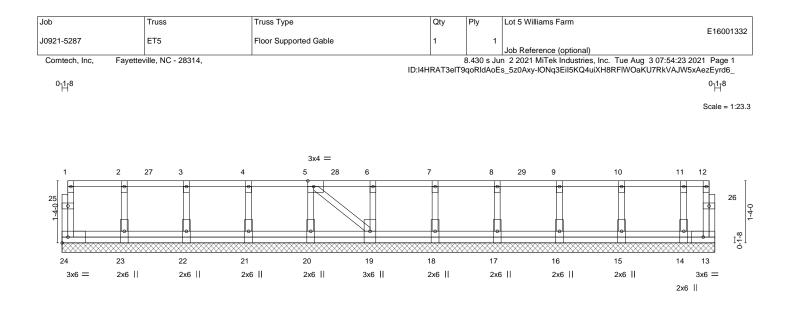
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

August 3,2021

			14-0-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.00 WB 0.05 Matrix-S	DEFL. ir Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD2x4 SIWEBS2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing din except end verticals. Rigid ceiling directly applied o	<i>y</i> 11) oc purlins,

14-0-0

REACTIONS. All bearings 14-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

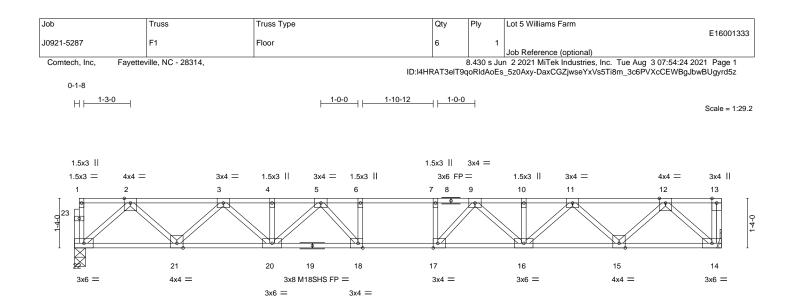
5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)


Vert: 13-24=-10, 1-12=-100

Concentrated Loads (lb) Vert: 4=-91 7=-91 10=-91 27=-91 28=-91 29=-91

August 3,2021

L			17-4-12				
			17-4-12				
Plate Offsets (X,Y)	- [17:0-1-8,Edge], [18:0-1-8,Edge]	1	1		1		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.48 BC 0.69 WB 0.46 Matrix-S	Vert(LL) -0.1	n (loc) l/defl 9 17-18 >999 6 17-18 >777 6 14 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 93 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4 REACTIONS.	SP No.1(flat) SP No.1(flat) SP No.3(flat) size) 22=0-3-8, 14=Mechanical x Grav 22=937(LC 1), 14=943(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vertic	als.	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
TOP CHORD 2 9 BOT CHORD 2 WEBS 2 1	ax. Comp./Max. Ten All forces 250 (lb) o 3=-1705/0, 3-4=-2823/0, 4-5=-2823/0, 5-6: 10=-2823/0, 10-11=-2823/0, 11-12=-1705/ I-22=0/1015, 20-21=0/2365, 18-20=0/3144 4-15=0/1016 22=-1349/0, 2-21=0/960, 3-21=-918/0, 3-2 2-15=0/959, 11-15=-918/0, 11-16=0/623, 9 18=-86/552. 6-18=-313/5	=-3312/0, 6-7=-3312/0, 7-9 0 9, 17-18=0/3312, 16-17=0/ 0=0/622, 5-20=-436/0, 12	9=-3312/0, /3144, 15-16=0/2365, -14=-1352/0,				

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

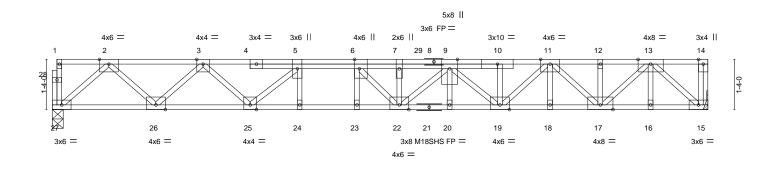
4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

August 3,2021

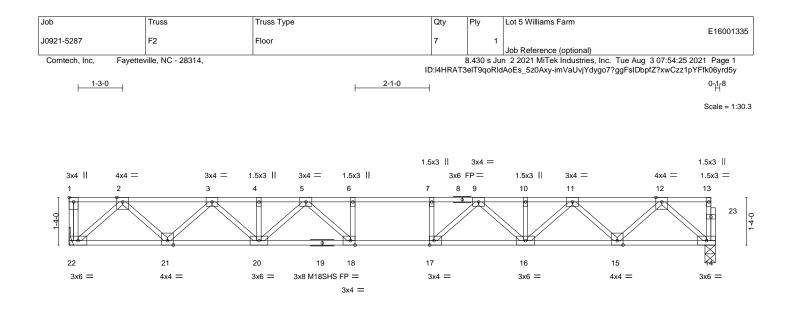


Job	Truss	Truss Type	Qty	Ply	Lot 5 Williams Farm
J0921-5287	F1A	Floor	1	1	E16001334
				-	Job Reference (optional)
Comtach Inc. Foundtou		•			2 2024 MiTely Industrian Inc. Two Aver 2 07/54/25 2024 Dans 4

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jun 2 2021 MiTek Industries, Inc. Tue Aug 3 07:54:25 2021 Page 1 ID:I4HRAT3eIT9qoRIdAoEs_5z0Axy-imVaUvjYdygo7?ggFsIDbpfbMxy0zwDpYFfk06yrd5y

Scale = 1:28.8



<u> </u>			17-4-12 17-4-12				
Plate Offsets (X,Y)	[6:0-3-0,Edge]		17-4-12				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.65 WB 0.66 Matrix-S	Vert(CT) -(in (loc) l/de 0.21 22-23 >98 0.29 22-23 >70 0.06 15 n/	5 480 7 360	PLATES MT20 M18SHS Weight: 108 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (size	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat) e) 27=0-3-8, 15=Mechanical ray 27=1112(LC 1), 15=1169(LC 1)		BRACING- TOP CHORD BOT CHORD	except end v	erticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
TOP CHORD 2-3=- 10-11 BOT CHORD 26-27 19-2 WEBS 2-27= 13-17	Comp./Max. Ten All forces 250 (lb) of 2077/0, 3-5=-3610/0, 5-6=-4426/0, 6-7= 1=-3899/0, 11-12=-2304/0, 12-13=-2304 7=0/1224, 25-26=0/2895, 24-25=0/4426 0=0/4648, 18-19=0/3179, 17-18=0/3175 2-1627/0, 2-26=0/1187, 3-26=-1138/0, 3 7=0/1391, 11-17=-1180/0, 11-19=0/972, =0/1041	4969/0, 7 ⁻ 9=-4969/0, 9- ⁻ //0 , 23-24=0/4426, 22-23=0/ 9, 16-17=0/1273, 15-16=0 /-25=0/989, 5-25=-1130/0	10=-3904/0, /4426, 20-22=0/4648, /1273 , 13-15=-1684/0,				
 2) All plates are MT20 3) All plates are 1.5x3 4) Plates checked for a 5) Refer to girder(s) for 6) Recommend 2x6 str Strongbacks to be a 7) CAUTION, Do not e 8) Hanger(s) or other c chord. The design/s 9) In the LOAD CASE(LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) 	connection device(s) shall be provided si selection of such connection device(s) is S) section, loads applied to the face of t dard palanced): Lumber Increase=1.00, Plate =-10, 1-14=-100 ; (lb)	ts center. oc and fastened to each tr strained by other means. ufficient to support concer the responsibility of othe he truss are noted as from	ntrated load(s) 481 lb		n top		St 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss systems, see fabrication, storage, delivery, rection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

l			<u>18-1-0</u> 18-1-0				
Plate Offsets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1	-8,Edge]				-	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.56 BC 0.77 WB 0.48 Matrix-S	Vert(LL) -0.22	n (loc) l/defl 2 17-18 >956 17-18 >695 5 14 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 96 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (siz	P No.1(flat) P No.1(flat) P No.3(flat) ze) 22=Mechanical, 14=0-3-8 Grav 22=981(LC 1), 14=975(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,
TOP CHORD 2-3= 9-10 BOT CHORD 21-2 14- WEBS 2-22 6-18	. Comp./Max. Ten All forces 250 (lb) o 1787/0, 3-4=-2985/0, 4-5=-2985/0, 5-6:)=-2985/0, 10-11=-2985/0, 11-12=-1787/ 12=0/1058, 20-21=0/2486, 18-20=0/3347 15=0/1058 :=-1409/0, 2-21=0/1013, 3-21=-972/0, 3- :=-316/0, 12-14=-1406/0, 12-15=0/1014, '=-55/627, 7-17=-316/0	=-3581/0, 6-7=-3581/0, 7-9 0 1, 17-18=0/3581, 16-17=0/ 20=0/678, 5-20=-492/0, 5	9=-3581/0, '3347, 15-16=0/2486, -18=-55/627,				

NOTES-

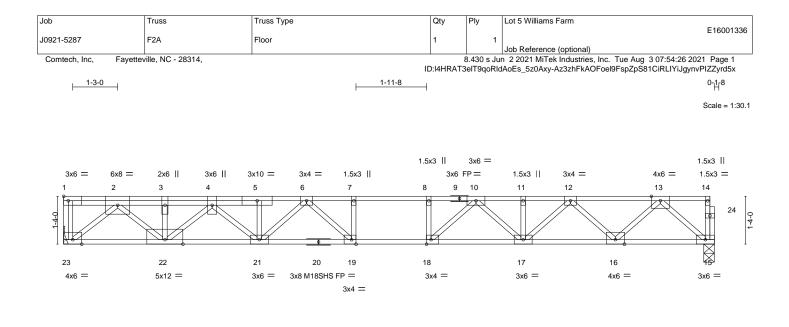
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

August 3,2021

			<u>18-1-0</u> 18-1-0				
Plate Offsets (X,Y)	[18:0-1-8,Edge], [19:0-1-8,Edge]					-	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.70 WB 0.91 Matrix-S	Vert(LL) -0.24	l (loc) l/defl 19-21 >893 19-21 >643 15 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 104 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. (size	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat) e) 23=Mechanical, 15=0-3-8 rav 23=1498(LC 1), 15=1066(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	rectly applied or 6-0-0 o	oc purlins,
TOP CHORD 2-3=- 8-10= BOT CHORD 22-23= 15-1 WEBS 2-23= 13-16 13-16	Comp./Max. Ten All forces 250 (lb) or -3133/0, 3-4=-3133/0, 4-5=-3993/0, 5-6= =-4253/0, 10-11=-3371/0, 11-12=-3371// 3=0/1699, 21-22=0/3727, 19-21=0/4221 6=0/1163 =-2212/0, 2-22=0/1902, 3-22=-712/0, 4-3 5=0/1146, 12-16=-1097/0, 12-17=0/810, =-318/0, 6-19=-321/322	3987/0, 6-7=-4253/0, 7-& 0, 12-13=-1987/0 , 18-19=0/4253, 17-18=0/ 22=-789/0, 4-21=0/346, 13	3=-4253/0, 3839, 16-17=0/2775, 3-15=-1545/0,				
 All plates are MT20 Plates checked for a Refer to girder(s) for Recommend 2x6 str Strongbacks to be a CAUTION, Do not e Hanger(s) or other c chord. The design/s In the LOAD CASE(LOAD CASE(S) Stand Dead + Floor Live (t Uniform Loads (plf) 	connection device(s) shall be provided si selection of such connection device(s) is S) section, loads applied to the face of t dard palanced): Lumber Increase=1.00, Plate =-10, 1-14=-100 s (lb)	ts center. ts cand fastened to each tr strained by other means. ufficient to support concer the responsibility of other he truss are noted as from	ntrated load(s) 689 lb dov		P		St 3,2021

August 3,2021

		<u>9-7-0</u> 9-7-0			9-11- 0-4-i	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [13:0-1-	8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.47 WB 0.31 Matrix-S	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	(loc) l/defl L/d 10 >999 480 10 >999 360 6 n/a n/a		RIP 14/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, II	purlins,
REACTIONS. (siz Max G	e) 12=0-3-8, 6=0-3-8 6rav 12=511(LC 1), 6=517(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-781/0, 3-4=-966/0, 4-5=-493/0, 5-6=-497/0

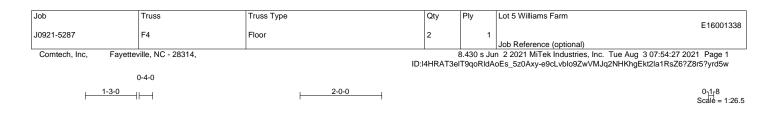
BOT CHORD 11-12=0/541, 10-11=0/966, 9-10=0/966, 8-9=0/966

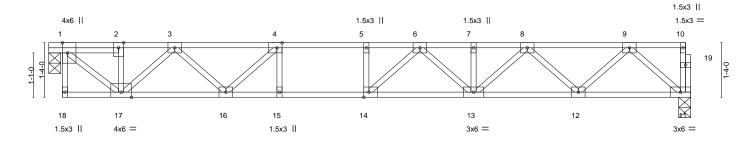
WEBS 6-8=0/642, 2-12=-718/0, 2-11=0/334, 3-11=-308/0, 4-8=-629/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.
2) Plates checked for a plus or minus 1 degree rotation about its center.
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.


5) CAUTION, Do not erect truss backwards.

August 3,2021

0-4-0 0-4-0 Plate Offsets (X,Y)	[1:0-3-0,Edge], [4:0-1-8,Edge], [14:0-1-	8,Edge]	15-8-8 15-4-8			I
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.94 WB 0.54 Matrix-S	Vert(LL) -0.2	n (loc) l/defl L/d 1 13-14 >855 480 9 13-14 >639 360 2 11 n/a n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz	^P No.1(flat) ⁹ No.1(flat) ⁹ No.3(flat) e) 11=0-3-8, 1=0-3-8 frav 11=829(LC 1), 1=835(LC 1)		BRACING- TOP CHORD BOT CHORD	except end verticals.	ing directly applied or 6-0-0 plied or 10-0-0 oc bracing, ;.	• •
TOP CHORD 1-2= 7-8= BOT CHORD 16-1 WEBS 1-17	Comp./Max. Ten All forces 250 (lb) or -881/0, 2-3=-878/0, 3-4=-1989/0, 4-5=-2 -2371/0, 8-9=-1469/0 7=0/1534, 15-16=0/2524, 14-15=0/2524 =0/1143, 3-17=-892/0, 3-16=0/633, 4-16 =-776/0, 8-13=0/468, 6-13=-279/0, 6-14	524/0, 5-6=-2524/0, 6-7=- , 13-14=0/2568, 12-13=0/ =-792/0, 9-11=-1184/0, 9-	2371/0, 2027, 11-12=0/891			

NOTES-

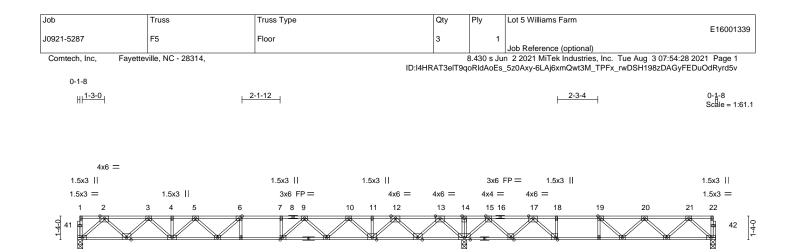
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

August 3,2021

32

4x6 =

31

4x6 =

30 29 28

4x8

3x6 FP =

27

4x4 =

4x4 =

26 25

35-11-0

1.5x3 ||

24

23

3x6 =

	21-9-4							4-1-12	
Plate Offsets (X,Y)								=	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.76 BC 0.75 WB 0.73 Matrix-S	()	in -0.31 -0.43 0.06	(loc) 36 36 23	l/defl >829 >610 n/a	L/d 480 360 n/a	PLATES MT20 M18SHS Weight: 184 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4	4 SP 2400F 2.0E(flat) 4 SP 2400F 2.0E(flat) 4 SP No.3(flat)		BRACING- TOP CHORI BOT CHORI		except	end vert	cals.	rectly applied or 6-0-0 or 6-0-0 or 6-0-0 or 6-0-0 oc bracing.	oc purlins,
Ma FORCES. (lb) - N	(size) 40=0-3-8, 30=0-3-8, 23=0-3-8 ax Grav 40=1057(LC 10), 30=2336(LC 1), 2 flax. Comp./Max. Ten All forces 250 (lb) or	less except when shown.							
9 1	-3=-1966/0, 3-4=-3327/0, 4-5=-3327/0, 5-6= -10=-3391/0, 10-11=-2151/0, 11-12=-2151// 4-15=0/2770, 15-17=-494/1577, 17-18=-164 0-21=-1153/65), 12-13=-239/263, 13-14=0,	/2770,						
:	9-40=0/1151, 38-39=0/2750, 37-38=0/3828 32-33=0/2910, 31-32=0/1292, 30-31=-1325/ 6-27=-684/1640, 25-26=-684/1640, 24-25=-	0, 28-30=-1902/0, 27-28=-1	- ,	9,					
WEBS 2 1	-40=-1529/0, 2-39=0/1134, 3-39=-1091/0, 3 2-31=-1508/0, 12-32=0/1210, 10-32=-1075/ -37=0/422, 6-37=-483/199, 9-35=0/824, 7-3	-38=0/783, 13-30=-1924/0, 0, 10-33=0/705, 9-33=-716/	0, 5-38=-681/0,						

NOTES-

40

3x6 =

39

4x6 =

38

3x6 =

37 36

1.5x3 ||

35

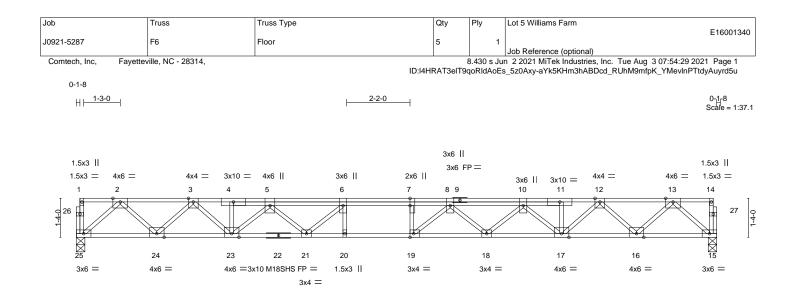
21-9-4

34 33

3x8 M18SHS FP =

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
 Strongbacks to be attached to walls at their outer ends or restrained by other means.

17-28=-1088/0, 17-27=0/1206, 21-23=-943/33, 21-24=-57/615, 20-24=-590/78,


20-25=-263/135, 19-25=0/556, 19-26=-365/0, 18-27=-522/0

6) CAUTION, Do not erect truss backwards.

August 3,2021

			21-11-0			
Plate Offsets (X,Y)	[7:0-3-0,0-0-0], [19:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.24 BC 0.55 WB 0.63 Matrix-S	DEFL. ir Vert(LL) -0.34 Vert(CT) -0.47 Horz(CT) 0.09	19 >763 480 19 >554 360	PLATES MT20 M18SHS Weight: 129 lb	GRIP 244/190 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	2400F 2.0E(flat) 2400F 2.0E(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	<i>y</i> 11	oc purlins,
REACTIONS. (size Max G	e) 25=0-3-8, 15=0-3-8 rav 25=1185(LC 1), 15=1185(LC 1)					
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) or 2243/0, 3-4=-3884/0, 4-5=-3890/0, 5-6=	-5113/0, 6-7=-5539/0, 7-8				

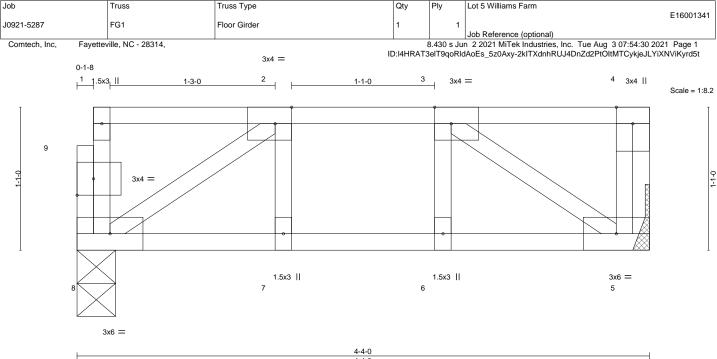
 8-10=-5100/0, 10-11=-3889/0, 11-12=-3882/0, 12-13=-2243/0

 BOT CHORD
 24-25=0/1296, 23-24=0/3160, 21-23=0/4694, 20-21=0/5539, 19-20=0/5539, 18-19=0/5456, 17-18=0/4709, 16-17=0/3160, 15-16=0/1296

 WEBS
 2-25=-1723/0, 2-24=0/3160, 3-24=-1276/0, 3-23=0/984, 13-15=-1723/0, 13-16=0/1317, 12-16=-1276/0, 12-17=0/982, 10-17=-1098/0, 10-18=0/530, 8-18=-483/0, 5-23=-1075/0, 5-21=0/745, 6-21=-802/0, 8-19=-358/654, 7-19=-367/203

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

F			4-4-0			1
Plate Offsets (X,Y)	[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,	0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.28 BC 0.36 WB 0.16	DEFL. i Vert(LL) -0.02 Vert(CT) -0.02 Horz(CT) 0.00	2 5-6 >999 360	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 24 lb	FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)	I	BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 4-4-0	oc purlins,
WEBS 2x4 SP	PNo.3(flat)		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	

REACTIONS. (size) 8=0-3-8, 5=Mechanical Max Grav 8=810(LC 1), 5=501(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-481/0, 2-3=-558/0

BOT CHORD 7-8=0/558, 6-7=0/558, 5-6=0/558 WEBS 3-5=-671/0, 2-8=-633/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

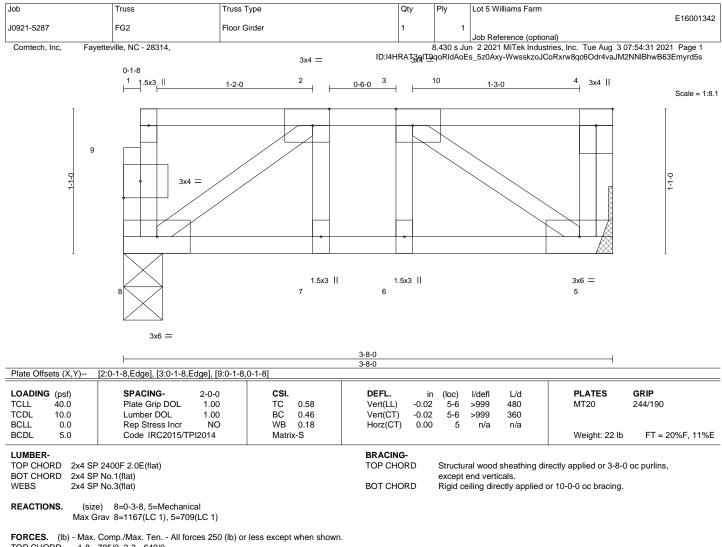
3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb) Vert: 1=-452 3=-417

August 2 2021

August 3,2021

TOP CHORD 1-8=-785/0, 2-3=-649/0 BOT CHORD

7-8=0/649, 6-7=0/649, 5-6=0/649 WEBS 3-5=-780/0, 2-8=-733/0, 2-7=0/274, 3-6=-254/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

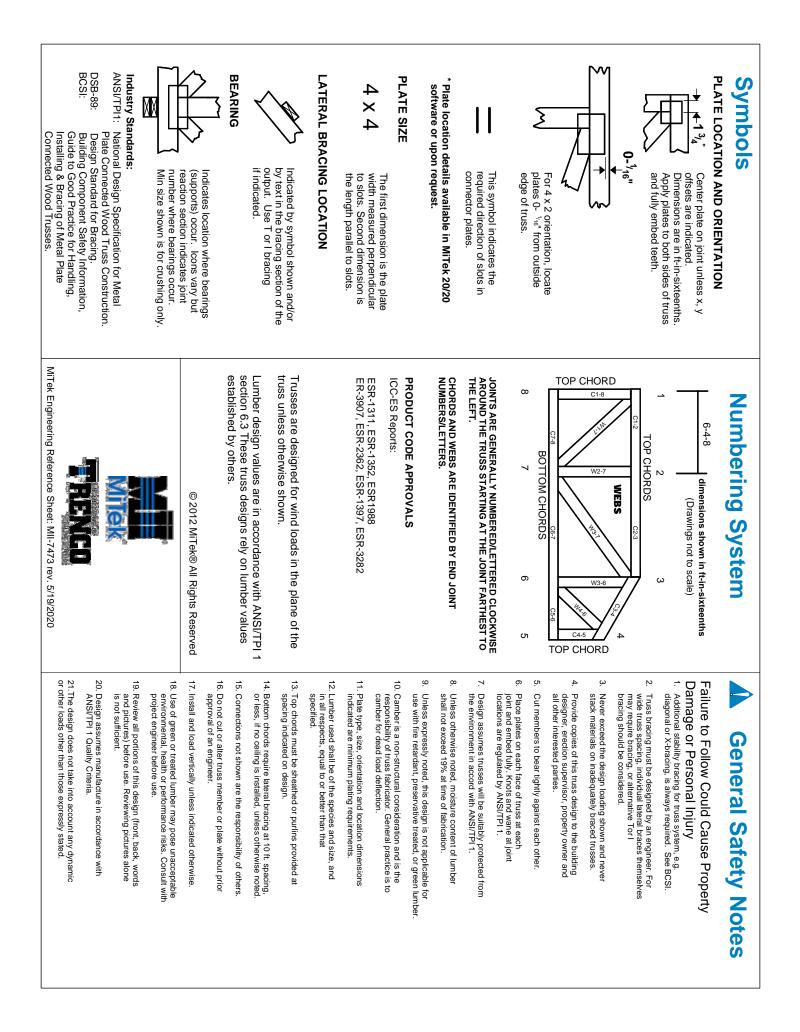
3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

- Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)
 - Vert: 1=-771 10=-735

August 3,2021

