

RE: J0721-4251 Cates\Lot 702 Lexington Plantation Trenco 818 Soundside Rd Edenton, NC 27932

Truss Name

VA3

VA4

Date

7/6/2021

7/6/2021

Site Information:

Customer: Lot/Block:	Project Name:	J0721-4251
Address:		
City:		

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

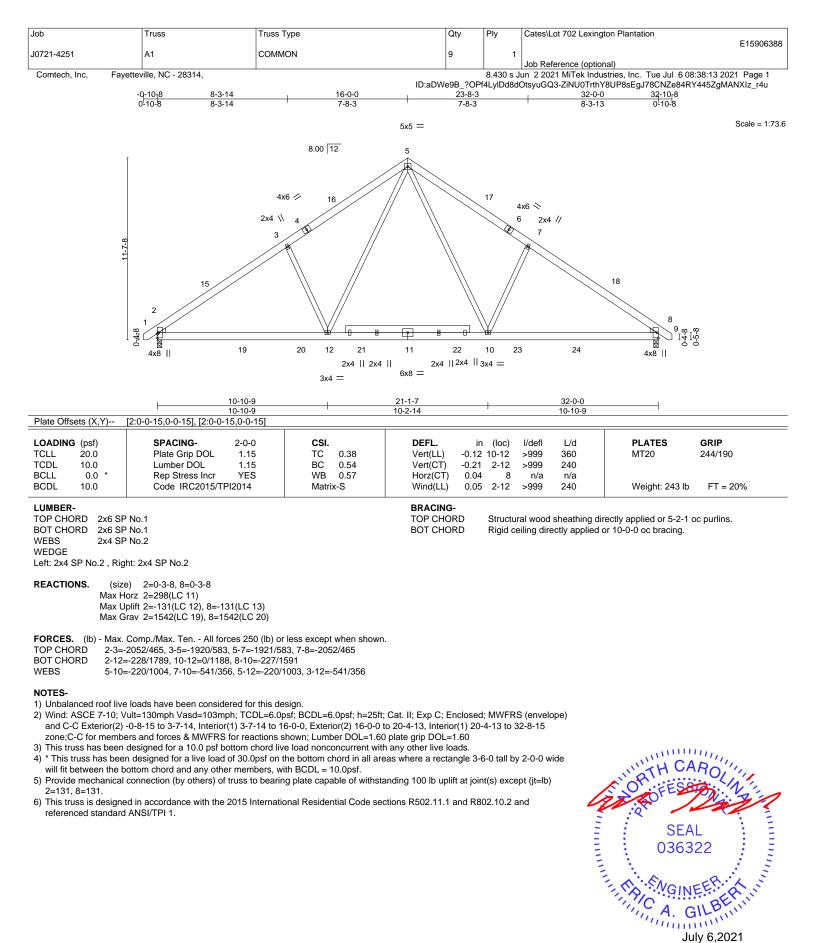
This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#
1	E15906388	A1	7/6/2021	21	E15906408
2	E15906389	A2	7/6/2021	22	E15906409
3	E15906390	A2A	7/6/2021		
4	E15906391	A3	7/6/2021		
5	E15906392	A4GDR	7/6/2021		
6	E15906393	B1	7/6/2021		
7	E15906394	B1GE	7/6/2021		
8	E15906395	B2	7/6/2021		
9	E15906396	J03	7/6/2021		
10	E15906397	J03A	7/6/2021		
11	E15906398	J07	7/6/2021		
12	E15906399	J07A	7/6/2021		
13	E15906400	J07B	7/6/2021		
14	E15906401	J07C	7/6/2021		
15	E15906402	M1	7/6/2021		
16	E15906403	M1GE	7/6/2021		
17	E15906404	P1	7/6/2021		
18	E15906405	P1GE	7/6/2021		
19	E15906406	VA1	7/6/2021		
20	E15906407	VA2	7/6/2021		

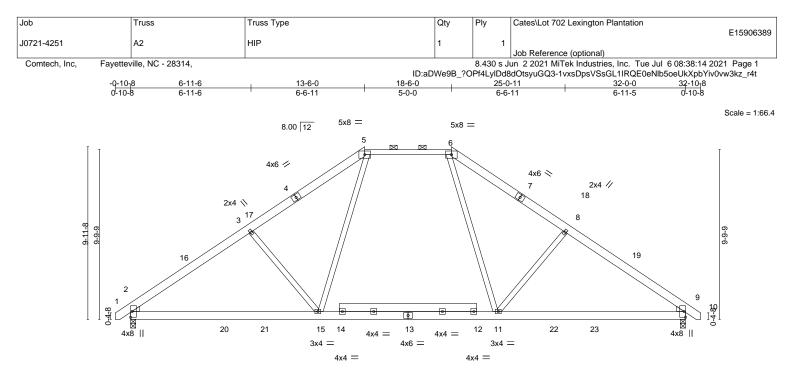
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

	10-9-9 10-9-9			21-2-7 10-4-14			<u>32-0-0</u> 10-9-9		ł
LOADING (psf) TCLL 20.0 TCDL 10.0	Plate Grip DOL 1	0-0 CSI . .15 TC .15 BC	0.39 0.68	Vert(LL) -0.2	in (loc) 23 9-11 31 9-11		L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0		ES WB	0.30	Horz(CT) 0.0		n/a	n/a 240	Weight: 230 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x6 SP No.1 *Except*
	5-6: 2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	12-14: 2x6 SP No.1

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.	(size)	2=0-3-8, 9=0-3-8
	Max Horz	2=-253(LC 10)
	Max Uplift	2=-120(LC 12), 9=-120(LC 13)
	Max Grav	2=1482(LC 19), 9=1482(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1975/543, 3-5=-1780/568, 5-6=-1212/509, 6-8=-1780/568, 8-9=-1975/543
- BOT CHORD 2-15=-328/1700, 11-15=-101/1260, 9-11=-317/1536
- WEBS 3-15=-443/318, 5-15=-106/749, 6-11=-106/750, 8-11=-443/318

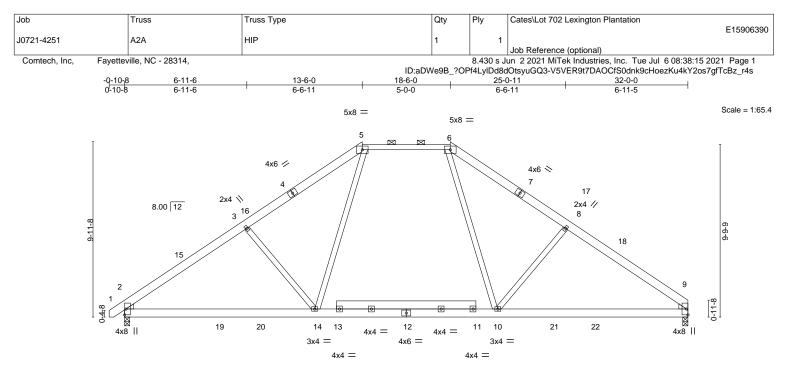
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 13-6-0, Exterior(2) 13-6-0 to 24-8-11, Interior(1) 24-8-11 to 32-8-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=120, 9=120.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied or 5-4-6 oc purlins, except

2-0-0 oc purlins (5-5-7 max.): 5-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-9-9 10-9-9		21-2-7 10-4-14	32-0-0 10-9-9	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.40 BC 0.68	DEFL. in (loc) Vert(LL) -0.24 9-10 Vert(CT) -0.32 9-10	>999 240	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.30 Matrix-S	Horz(CT) 0.04 9 Wind(LL) 0.23 2-14	n/a n/a >999 240 Weig	ght: 228 lb FT = 20%

WEDGE

TOP CHORD	2x6 SP No.1 *Except* 5-6: 2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	11-13: 2x6 SP No.1

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-4-2 oc purlins, except 2-0-0 oc purlins (5-5-6 max.): 5-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

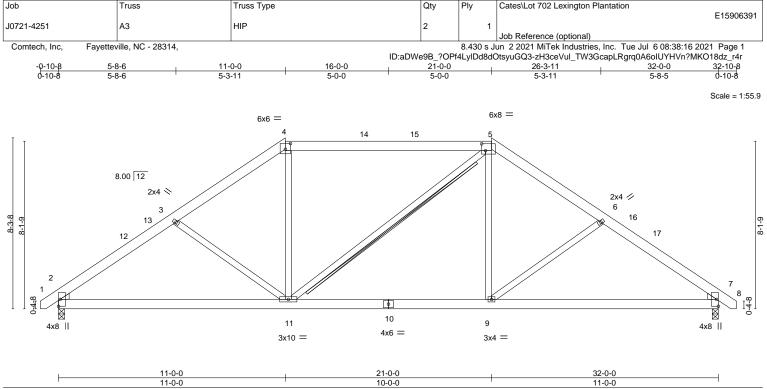
REACTIONS.	(size)	2=0-3-8, 9=0-3-8
	Max Horz	2=253(LC 9)
	Max Uplift	2=-120(LC 12), 9=-105(LC 13)
	Max Grav	2=1483(LC 19), 9=1431(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1977/543, 3-5=-1781/568, 5-6=-1214/512, 6-8=-1783/577, 8-9=-1978/552
- BOT CHORD 2-14=-328/1700, 10-14=-102/1260, 9-10=-321/1539
- WEBS 3-14=-443/317, 5-14=-107/749, 6-10=-114/753, 8-10=-443/322

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 13-6-0, Exterior(2) 13-6-0 to 24-8-11, Interior(1) 24-8-11 to 31-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

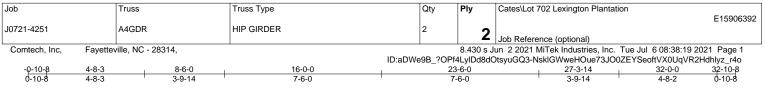
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=120, 9=105.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y)	[4:0-3-0,0-3-5], [5:0-2-4,0-4-0]	I	T					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.54	Vert(LL) -0.1	0 7-9	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.39	Vert(CT) -0.2	1 7-9	>999	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.26	Horz(CT) 0.0	4 7	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.0	3 11	>999	240	Weight: 226 lb	FT = 20%
UMBER-			BRACING-					
OP CHORD 2x6 SI	P No.1		TOP CHORD	Struct	ural wood	sheathing d	lirectly applied or 5-8-5 o	oc purlins, except
OT CHORD 2x6 SI	P No.1			2-0-0 (oc purlins	(5-7-10 max	k.): 4-5.	
VEBS 2x4 SI	P No.2		BOT CHORD	Rigid o	ceiling dire	ctly applied	or 10-0-0 oc bracing.	
VEDGE			WEBS	T-Brac	ce:		2x4 SPF No.2 - 5-11	
eft: 2x4 SP No.2 , Rid	aht: 2x4 SP No.2			Faster	п (2X) Та	nd I braces	to narrow edge of web	with 10d

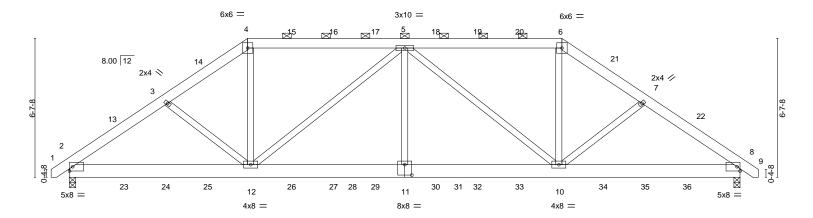
REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-207(LC 10) Max Uplift 2=-106(LC 12), 7=-106(LC 13) Max Grav 2=1322(LC 1), 7=1322(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 2-3=-1767/570, 3-4=-1541/537, 4-5=-1228/525, 5-6=-1540/537, 6-7=-1767/571 TOP CHORD
- BOT CHORD 2-11=-365/1362, 9-11=-173/1227, 7-9=-354/1352
- WEBS 3-11=-320/224, 4-11=0/455, 5-9=-5/481, 6-9=-320/224


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 11-0-0, Exterior(2) 11-0-0 to 17-2-11, Interior(1) 17-2-11 to 21-0-0, Exterior(2) 21-0-0 to 27-2-11, Interior(1) 27-2-11 to 32-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=106, 7=106.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.



(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

Scale = 1:55.0

	8-6-0	<u>16-0-0</u> 7-6-0		3-6-0 -6-0		<u>32-0-0</u> 8-6-0	
Plate Offsets (X,Y)	[11:0-4-0,0-6-0]	7-0-0	1	-0-0		0-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.34 WB 0.39 Matrix-S	DEFL. ir Vert(LL) -0.05 Vert(CT) -0.10 Horz(CT) 0.04 Wind(LL) 0.07	11 >999 11 >999 8 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 506 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x8 SI WEBS 2x4 SI			BRACING- TOP CHORD BOT CHORD	Structural wood s 2-0-0 oc purlins (6 Rigid ceiling direc	6-0-0 max.): 4-6.		c purlins, except
Max U	re) 2=0-3-8, 8=0-3-8 Horz 2=-165(LC 25) Jplift 2=-877(LC 8), 8=-877(LC 9) Grav 2=2678(LC 1), 8=2678(LC 1)				and a second	OR FESS	ROUT
TOP CHORD 2-3=	. Comp./Max. Ten All forces 250 (lb) c 3745/1364, 3-4=-3541/1344, 4-5=-296 3745/1364		=-3541/1344,		(c)	SEA	A company
WEBS 3-12	=-1159/2970, 11-12=-1545/3890, 10-11 =-149/269, 4-12=-293/1322, 5-12=-119 =-293/1323, 7-10=-149/269				THE REAL PROPERTY OF	0363	• -
Top chords connect Bottom chords conn Webs connected as 2) All loads are consid ply connections hav 3) Unbalanced roof liv	nnected together with 10d (0.131"x3") n ted as follows: 2x6 - 2 rows staggered a rected as follows: 2x8 - 2 rows staggered s follows: 2x4 - 1 row at 0-9-0 oc. lered equally applied to all plies, except ve been provided to distribute only loads e loads have been considered for this d	t 0-9-0 oc. d at 0-9-0 oc. if noted as front (F) or back (I noted as (F) or (B), unless o esign.	therwise indicated.		y to	A. G. A. G	

 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=877, 8=877.

- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

July 6,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY AMITEK AMITEK B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cates\Lot 702 Lexington Plantation	
					E15906392	
J0721-4251	A4GDR	HIP GIRDER	2	2		
				_	Job Reference (optional)	
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s J	un 2 2021 MiTek Industries, Inc. Tue Jul 6 08:38:19 2021 Page 2	
		ID:aDWe9B_?OPf4LyIDd8dOtsyuGQ3-NskIGWweHOue73JO0ZEYSeoftVX0UqVR2Hdhlyz_r4o				

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 116 lb down and 120 lb up at 2-6-12, 74 lb down and 73 lb up at 4-6-12, 31 lb down and 44 lb up at 6-6-12, 183 lb down and 196 lb up at 8-6-0, 188 lb down and 192 lb up at 10-6-12, 188 lb down and 192 lb up at 12-6-12, 188 lb down and 192 lb up at 14-6-12, 188 lb down and 192 lb up at 16-0-0, 188 lb down and 192 lb up at 17-5-4, 188 lb down and 192 lb up at 19-5-4, 188 lb down and 192 lb up at 21-5-4, 183 lb down and 196 lb up at 23-6-0, 31 lb down and 44 lb up at 25-5-4, and 74 lb down and 73 lb up at 27-5-4, and 116 lb down and 120 lb up at 29-5-4 on top chord, and 123 lb down at 2-6-12, 145 lb down and 42 lb up at 4-6-12, 193 lb down and 94 lb up at 6-6-12, 91 lb down at 8-6-12, 91 lb down at 10-6-12, 91 lb down at 12-6-12, 91 lb down at 14-6-12, 91 lb down at 16-0-0, 91 lb down at 17-5-4, 91 lb down at 19-5-4, 91 lb down at 21-5-4, 91 lb down at 23-5-4, 193 lb down and 94 lb up at 25-5-4, and 145 lb down and 42 lb up at 27-5-4, and 123 lb down at 29-5-4 on bottom chord. The design/selection of such connection device(s) is the

LOAD CASE(S) Standard

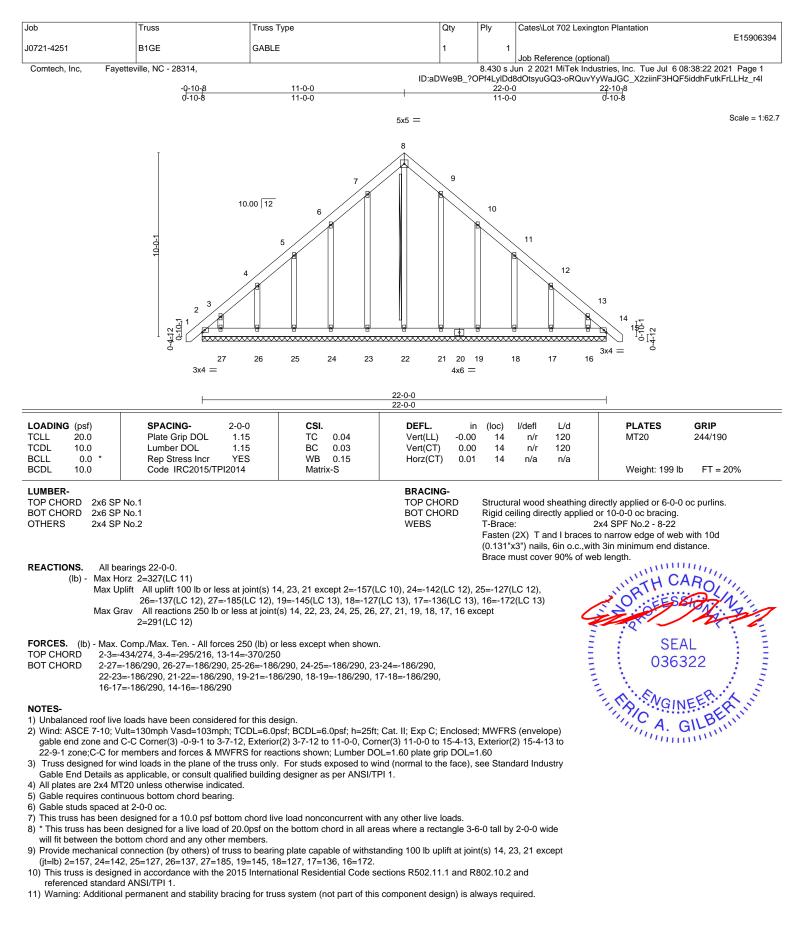
responsibility of others.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 6-9=-60, 2-8=-20

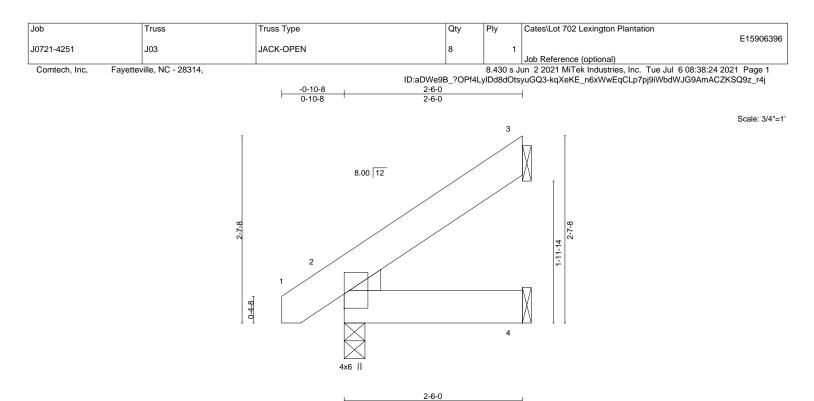
Concentrated Loads (lb)


Vert: 4=-133(F) 6=-133(F) 12=-45(F) 3=-34(F) 11=-45(F) 5=-133(F) 10=-45(F) 7=-34(F) 13=-76(F) 15=-133(F) 16=-133(F) 17=-133(F) 18=-133(F) 19=-133(F) 10=-133(F) 10=-1 20=-133(F) 22=-76(F) 22=-104(F) 24=-145(F) 25=-193(F) 26=-45(F) 27=-45(F) 29=-45(F) 30=-45(F) 32=-45(F) 33=-45(F) 34=-193(F) 35=-104(F) 36=-104(F) 36=-104

a degree of period. The sense is	Job	Truss	uss Type	Qty	Ply	Cates\Lot 702 Lexin	gton Plantation	
<pre>unded.in:</pre>	J0721-4251							E15906393
$\begin{array}{c} \underbrace{1}{1} \underbrace{1}{1}$			-		8 430 s.			08:38:20 2021 Page 1
<text></text>	Connech, Inc, Tay					dOtsyuGQ3-r3I7UsxQ	2i0UIDuaaHIn_sLnMv	
<text></text>		-u-10-8 6-6-(0-10-8 6-6-(
<complex-block> With a standard standard</complex-block>				4x6 =				Scale = 1:58.7
<complex-block> All Image of the set of the se</complex-block>								
All and a set of the set of th		I		5				
<pre>value of the two of the two</pre>			2x4 =	2x4	=			
<complex-block>u difference of the second s</complex-block>			4	6				
Image: specific production of the specific p		10.00	12 2x4			2x4		
Image: space of the space			3					
Image: specific s		0-1			R			
<pre> figure 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =</pre>				4-		14		
<complex-block> Image: Contract of the contrac</complex-block>		13	φ	7-2				
Image: specific product of the specific product			5-2					
Image: Section 1 1 1 1 1 0		2		9-0-0			$\langle \rangle$	
Add E Add E Add E Add E 1							8 9 6	
Add E Add E Add E Add E 1								
Here 15-60 224-0 ate Offsets (XY)- [20-0-0-03] [50-3-064pc], [8 Edge-0-3] 65-0 DDND (grip) SPACING 22-00 65-0 DLI 000 115 BC 0.47 Vert(C1) 0.22 1012 2789 240 MT20 244/190 DLI 100 Code IRC2015/TP12014 Matrix-S WB 0.39 Horz(C1) 0.16 2.12 2999 240 Weight: 148.b FT = 20% IMBER- DP CHORD 26.65 No.1 TOP CHORD 26.65 No.1 TOP CHORD 26.67 Weight: 148.b FT = 20% IMBER- DP CHORD 26.58 No.1 TOP CHORD Structural wood sheathing directly applied or 6-0 oc putlins. DT CHORD 26.58 No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc putlins. BOT CHORD 26.19 No.2 Structural wood sheathing directly applied or 6-0-0 oc putlins. BOT CHORD 24.19 No.2 Structural wood sheathing directly applied or 6-0-0 oc putlins. BOT CHORD 24.2106/10.19 <td></td> <td>4x6 =</td> <td></td> <td></td> <td>=</td> <td></td> <td>4x6 =</td> <td></td>		4x6 =			=		4x6 =	
Bits (X,Y)- [2:0-0.0-0.3], [5:0-3-0.Edge], [8:Edge,0-0-3] DADIMG (pst) SPACING- 2-0-0 CSL DEFL 0:n (ico) Vide L/d JL 20:0 Dest (p) 1:15 BC 0.57 Vert(L) 0:20 1:2 29:0 20:0 1:15 BC 0.57 Vert(L) 0:16 2:12 2:99 2:00 Weight: 148 b FT = 20% MBER Code IRC2015/TPI2014 Matrix-S Wind(L) 0:16 2:12 >999 2:00 Weight: 148 b FT = 20% MBER Code IRC2015/TPI2014 Matrix-S Wind(L) 0:16 2:12 >999 2:00 Weight: 148 b FT = 20% MBER Code IRC2015/TPI2014 Matrix-S BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. FER 2:44 SP No.3 Rigid celling directly applied or 10-0-0 oc bracing. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. FER 2:2:4 SP No.3 Rigid celling directly applied or 10-0-0 oc bracing. S) ,		2x4	22-0-0		
DAIDING (psf) 2LL 20.0 2DL 10.0 2DL 10.0 2D	Plate Offsets (X,Y)			9-0-0		6-6-0	I	
LL 20.0 Plate Grip DOL 1.15 TC 0.57 Vert(LL) -0.02 Plate Grip DOL 1.15 TC 0.57 Vert(LL) -0.02 Plate Grip DOL 1.15 TC 0.57 Vert(LL) -0.03 10-12 >999 360 MT20 244/190 DL 1.00 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.16 2.12 .999 240 Weight: 148 lb FT = 20% IMBER. DP CHORD 2x4 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purins. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. EXECTONS (xiza) 2-2-34, 8-0-3-8 Max Horz, 2-2-270, C10 Max Grav 2-1057(LC 19), 8-1057(LC 20) RRCES. (b) Haz. Comp.Max. Tan All forces 250 (lb) or less except when shown. PC CHORD 2-3-134/255, 34-8-423/332, 4-6-107/366, 6-7-8-28/332, 7-7-8-28/332, 4-6-107/366, 6-7-8-28/332, 7-7-8-28/332, 4-6-107/366, 6-7-8-28/332, 7-7-8-28/322, 2-7-10.91 Not Structural wood sheathing directly applied or 10-0-0 oc bracing. Unbalanced for live loads have been considered for this design. Unbalanced for 10-10-20, 2-4-8-1305/539 STES Structural washea been designed for a live load of 3				DEEL ir) (loc)	l/defl l/d	PLATES	GRIP
21.L 0.0 Rep Stress Incr YES WB 0.39 Hor2(CT) 0.02 8 n/a n/a DBLE 0.0 Code IRC2015/TPI2014 Matrix-S Mind(LL) 0.16 2.12 >999 2.0 Weight: 148 lb FT = 20% DBLE PCHORD 2x6 SP No.1 Structural wood sheathing directly applied or 6-0-0 oc purlins. DF CHORD 2x6 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. EACTONS. (size) 2-0-38, 8e-0-36 Max Upilt 2-e85(LC 12). Structural wood sheathing directly applied or 10-0-0 oc bracing. Max Upilt 2-e85(LC 12). Bas Grav 2-1057(L 20). Max Grav 2-1057(L 20). Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2-3-1384/255. Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2-3-1384/255. Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2-2-130/322, r1-0-0/522, 4-6=-107/366, 5-6=-107/366, 5-6=-107/366, 5-7=-428/322. Tristreshashead fo	TCLL 20.0	Plate Grip DOL 1.15	TC 0.57	Vert(LL) -0.22	10-12	>999 360		
MBER. PP CHORD 2x6 SP No.1 BRACING. TOP CHORD 2x6 SP No.1 DT CHORD 2x6 SP No.1 Structural wood sheathing directly applied or 60-0 oc purlins. BOT CHORD 2x4 SP No.2 EDGE Ift 2x4 SP No.3, Right: 2x4 SP No.3 BOT CHORD 3x4 SP No.3 EACTIONS. Max Vpilt 2=-85(LC 12), 8=-65fLC 13) Max Grav 2=1057(LC 19), 8=1057(LC 20) Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2:3-1384/255, 34-829/332, 45=-107/366, 5-6=-107/366, 6-7=-828/332, 7-8-1384/255 Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2:3-1384/255, 34-829/332, 45=-107/366, 5-6=-107/366, 6-7=-828/332, 7-8-1384/255 Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2:12=-100916, 10-12=-10916, 8-10=-10916 Structural wood sheathing directly applied or 10-0-0 oc bracing. PCHORD 2:12=-10916, 10-12=-10916, 8-10=-10916, 8-10=-10916 Structural wood sheathing directly applied or 10-0-0 oc bracing. PTES- Unbalanced root live loads have been considered for this design. Wind: ASCE 7-10/ Vult=130m/85 to reactions shown: Lumber DOL-180 plate grip DOL=16.00 This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. This truss has been designed for a 10 wood of 30 op5 on the bottom chord in all areas where a cetangle 3-6-0 full by 2-0-0 wide will in between the bottom chord and any other members, with BCDL = 10.0 plate capable of withstanding 100 lb uplit at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								
PP CHORD 246 SP No.1 TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. EBS 244 SP No.2 BOT CHORD BOT CHORD Bid ceiling directly applied or 10-0-0 oc bracing. EBS 244 SP No.3 Rigid ceiling directly applied or 10-0-0 oc bracing. Bid ceiling directly applied or 10-0-0 oc bracing. EACTIONS. (size) 2=0-34, 8=0-3-8, Max Horz 2=262(LC 10) Max Grav 2=1057(LC 19), 8=1057(LC 20) Bot Structural wood sheathing directly applied or 10-0-0 oc bracing. PC CHORD 2-3=1384/255, 14=824/352, 34=824/352, 4-5=107/366, 5-6=-107/366, 6-7=828/332, 7-8=1384/255, 34=829/352, 4-5=-1305/538 For the structural wood sheathing directly applied or 10-0-0 oc bracing. DF CHORD 2-12=-10/916, 10-12=-10/916, 8-10==10/916 EBS 3-12=0/052, 7-10=0/522, 4-6=-1305/538 DFES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vull-130mph Vasd-103mph; TCDL-6, 0psf, BCDL=6, 0psf, h=25f; Cat, II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterio(72) 1-94-15, 7-12, Interior(1), 15-7-12, Interior(1), 05-7-12, Interior(1), 05-7-12, Interior(1), 1	BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.16	5 2-12	>999 240	Weight: 148	lb FT = 20%
DT CHORD 266 SP No.1 2X4 SP No.2 EDGE tit 2X4 SP No.3, Right 2X4 SP No.3 EACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-262(LC 10) Max Upilt 2=-86(LC 12), 8=-85(LC 13) Max Grav 2=1057(LC 19), 8=-1057(LC 20) DRCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. DP CHORD 2-32=-1384/255, 3-4=-829/332, 4-5=-107/366, 5-6=-107/366, 5-7=-828/332, 7-8=-1384/255 DT CHORD 2-12=-10/916, 10-12=-10/916 EBS 3-12=0/0522, 7-10=0/522, 4-6=-1305/539 DTES Unbalanced roof live loads have been considered for his design. Wind: ASCE 7-10; Vult=130mph; TODL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-3-1 to 37-12, Interior(1):37-12 to 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1):15-7-12 to 22-9-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 In this truss has been designed for a 10.0 gB tobrim chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will it between the bottom chord rule load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide Will the tween members; will be COL = 1 0.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilf at joint(s) 2, 8. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will the tween dasigned for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will the tween designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will the tween designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will the tween designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will the tween designed for a live load of 30.0psf on the bottom chord in bottom chord in bottom chord in bottom chord in all		No 1			Structur	al wood oboothing d	irectly applied or 6.0	0 oo purling
EDGE If: 2x4 SP No.3, Right: 2x4 SP No.3 EACTIONS. (size) 2-0-3-8, 8-0-3-8 Max Horz 2=-262(LC 10) Max Upilit 22=-85(LC 12), 8=-85(LC 12), 8=-85(LC 12) Max Grav 2=1057(LC 13), 8=-1057(LC 20) DRCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. DP CHORD 2-3-8-1364/255, 3-4-8-290/32, 4-5=-107/366, 6-7=-828/332, 7-8=-1364/255 DT CHORD 2-12=-10/916, 10-12=-10/916, 8-10=-10/916 ESS 3-12=0/522, 7-10=0/522, 4-6=-103/569 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE T-10', Vull=130mph: TCDL=6, 0.pef; h=25ft; Cat. II: Exp C; Enclosed: MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone;C-C for members and forces A MWFRS for reactions shown, Lumber DOL=-1.60 plate grip DOL=1.60 "This truss has been designed for a 10.0 ps blottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will it between the bottom chord and any other members, will bCDL = 1.00 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 2, 8. This truss has been designed for a live load to 30.0 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 2, 8. This truss has been designed for a live load to 30.0 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 2, 8. This truss ind signed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	BOT CHORD 2x6 SP	' No.1						
EACTIONS: (iv) 2=0-3-8, 8=0-3-8 Max Horz 2=-262(LC 10) Max Upilit 2=-85(LC 12), 8=-85(LC 13) Max Grav 2=1057(LC 19), 8=1057(LC 20) DRCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. DP CHORD 2-3a=1364/255, 3-4=629/332, 4-5=-107/366, 5-6=-107/366, 6-7=828/332, T-8=-1364/255 DT CHORD 2-12=-10/916, 10-12=-10/916 EES 3-12=0/522, 7-10=0/522, 4-6=-1305/539 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10: Vult=130mph Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Extendro(2) -0-9-110 -3-712, Interior(2) 11-0-0; to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a live load of 30.0psf on the bottom chore live load on nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chore live loads on theore are trangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilif at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. SEAL 036322 036322 036322	WEBS 2x4 SP WEDGE	No.2						
Max Hofit 2=-826(LC 10) Max Upilit 2=-85(LC 12), 8=-85(LC 13) Max Grav 2=1037(LC 19), 8=-1057(LC 20) DRCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. PP CHORD 2=-3a=-1364/255, 3=-4=-828/332, 4=5=-107/366, 6=7a=-828/332, -7a=-1364/255 DT CHORD 2=-12=-10/916, 10-12=-10/916, 8=-10=-10/916 EBS 3=-12=-0/522, 7=10=-0/522, 4===-1305/539 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7=10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C=C Exterior(2)=-0=1: 0=-37-12, Interior(1)=37-12 to 110-0; Exterior(2) 11-0=0 to 15=7-12, Interior(1)=15=7-12 to 22=9-1 zone; C=C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord in el lareas where a rectangle 3=6-0 tall by 2=-0-0 wide will ft between the bottom chord and any other mombers, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to beating plate capable of withstanding 100 lb upilif at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 036322	Left: 2x4 SP No.3 , Rig	ht: 2x4 SP No.3						
Max Upit 2=-65(LC 12), 8=-65(LC 13) Max Grav 2=1057(LC 19), 8=1057(LC 20) DRCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. PC CHOR D 2:-3=-1364/255 OT CHOR D 2:-12=-10/916, 10-12=-10/916, 8:10=-10/916 EBS 3:-12=0/522, 7:10=0/522, 4:6=-1305/539 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7:-10, Vul=1530mph Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II: Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2):-0:-9:1 to 3:7-12, Interior(1) 3:7-12 to 11:-0:0, Exterior(2) 11:-0:0 to 15:7-12, Interior(1) 15:7-12 to 22:9-1 zone;C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.00 plate grip DOL=1.00 will fit between the bottom chord and any other members, with BCDL = 1:0:0.psf. * This truss has been designed for a 10: load of 3:0.0psf on the bottom chord in all areas where a rectangle 3:-6:0 tall by 2:-0:0 wide will fit between the bottom chord and any other members, with BCDL = 1:0:0.psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss has been designed for a 10: Plate on able capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2:015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322								
DRCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. DP CHORD 2-3=-1364/255, 3-4=-829/332, 4-5=-107/366, 5-6=-107/366, 6-7=-828/332, 7-8=-1364/255 DT CHORD 2-12=-109/16, 10-12=-10/916, 8-10=-10/916 EBS 3-12=0/522, 7-10=0/522, 4-6=-1305/539 DTESE Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10: Vull=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 15-7-12 to 22-9-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 ON EFF. 036322								
DP CHORD 2-3=-1364/255, 3-4=-829/332, 4-5=-107/366, 5-6=-107/366, 6-7=-828/332, 7-8=-1364/255 T CHORD 2-12=-10/916, 10-12=-10/916, 8-10=-10/916 EBS 3-12=0/522, 7-10=0/522, 4-6=-1305/539 DTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Yasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2)-0-9-1 to 3-7-12, Interior(1) 3-7-12 to 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 0366322 WGINEF.ET.H.H.		i se se in a ins e sin a airea airea						
7-8-1364/255 DT CHORD 2:12=-10/916, 8-10=-10/916, 8-10=-10/916 3-12=0/522, 7-10=0/522, 7-10=0/522, 7-10=0/525 39 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-91 to 3-7-12, 10t 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with may other live loads. * This truss has been designed for a 100 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. SEAL 036322 <i>MGINEFER</i>	()							
EBS 3:12=0/522, 7:10=0/522, 4:6=:1305/539 OTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7:10; Vult=130mph Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2):0:0-9:1 to 3:7:12 to 11:0-0. Exterior(2):11:0-0 to 15:7:12, Interior(1):15:7:12 to 22:9:1 zone; C-C romembers and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. *his truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3:6-0 tall by 2:0-0 wide will fib telween the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s):2; 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 036322 036322	7-8=-	1364/255	, ,	/332,				
Diffes- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 11-0-0, Exterior(2) 11-0-10 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1.00 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. SEAL 036322 WISINE FER.H.H.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.			916					
Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 036322		0,022, 7, 70, 0,022, 7, 0, 1000,000						
and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 11-0-0, Exterior(2) 11-0-0 to 15-7-12, Interior(1) 15-7-12 to 22-9-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load non-concurrent with any other live loads. * This truss has been designed for a live load of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322		loads have been considered for thi	s design.					
for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 036322								
* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322	for members and for	ces & MWFRS for reactions shown;	Lumber DOL=1.60 plate grip	DOL=1.60		,	mm	uum.
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322	 * This truss has been 	n designed for a live load of 30.0psf	on the bottom chord in all are		6-0 tall by	2-0-0 wide	THO	ARO
referenced standard ANSI/TPI 1. SEAL 036322 A. GILBERT				anding 100 lb uplift at joir	nt(s) 2, 8.		ONFES	Son Vin
SEAL 036322	 This truss is designed 	ed in accordance with the 2015 Inter					with -	mart
						E	SE SE	AI E
							036	
							- A. ENG	FER. X S
							S. BIO	NEREP
							Min A.	GILD
July 6,2021								July 6.2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 6,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	s Type	Qty	Ply	Cates\Lot 702 Lexing	nton Plantation	
J0721-4251			4	1		gion namation	E15906395
		IMON	4		Job Reference (optic		
Comtech, Inc, Fay	etteville, NC - 28314,		ID:aDWe9B ?C				08:38:23 2021 Page 1 IT6stQdL1zvbuujz_r4k
	- <u>0-10-8</u> 6-6- 0-10-86-6-) 15-6-0		<u>22-0-0</u> 6-6-0		, –
	0100 00				000		Coole 4/50 Z
			4x6 =				Scale = 1:58.7
Plata Officity (Y.Y)	10.00	3 9 9 11 2x4 0 0	9-0-0 4 4 2 4	x4 = 6	2x4 7 13 <u>22-0-0</u> 6-6-0	8 50-0 3x6 =	
Plate Offsets (X,Y)	[2:0-0-0,0-0-3], [5:0-3-0,Edge], [8:0-6	0,0-0-5]					
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.58	DEFL. i Vert(LL) -0.2		l/defl L/d >999 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.48	Vert(CT) -0.3	3 9-11 >	>779 240	INT20	244/130
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.40 Matrix-S	Horz(CT) 0.0 Wind(LL) 0.1		n/a n/a >999 240	Weight: 145	lb FT = 20%
Max H Max U Max G FORCES. (Ib) - Max. TOP CHORD 2-3=- 7-8=- BOT CHORD 2-11=	No.1 No.2 ht: 2x4 SP No.3 a) 8=0-3-8, 2=0-3-8 orz 2=259(LC 11) plift 8=-69(LC 13), 2=-85(LC 12) rav 8=1005(LC 20), 2=1058(LC 19) Comp./Max. Ten All forces 250 (lb) 1368/257, 3-4=-829/332, 4-5=-115/37 1358/253 25/913, 9-11=-25/913, 8-9=-25/913		BRACING- TOP CHORD BOT CHORD			irectly applied or 5-10 or 10-0-0 oc bracing	
	=0/525, 7-9=0/512, 4-6=-1313/557						
 Wind: ASCE 7-10; V and C-C Exterior(2) zone;C-C for member This truss has been will fit between the b Provide mechanical 	e loads have been considered for this ult=130mph Vasd=103mph; TCDL=6 -0-9-1 to 3-7-12, Interior(1) 3-7-12 to ers and forces & MWFRS for reaction: designed for a 10.0 psf bottom chord n designed for a live load of 30.0psf o ottom chord and any other members, connection (by others) of truss to bea d in accordance with the 2015 Interna ANSI/TPI 1.	Opsf; BCDL=6.0psf; h=25ft; 11-0-0, Exterior(2) 11-0-0 to s shown; Lumber DOL=1.60 live load nonconcurrent with n the bottom chord in all area with BCDL = 10.0psf. ring plate capable of withstar	15-7-12, Interior(1) 15- plate grip DOL=1.60 any other live loads. as where a rectangle 3 nding 100 lb uplift at joi	7-12 to 21-1 -6-0 tall by 2 nt(s) 8, 2.	0-4 2-0-0 wide		AR AL 322 NEER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 6,2021

		2-6-0										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	2	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	ĸ-P	Wind(LL)	0.00	2	****	240	Weight: 16 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=77(LC 12) Max Uplift 3=-59(LC 12) Max Grav 3=73(LC 19), 2=155(LC 1), 4=46(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

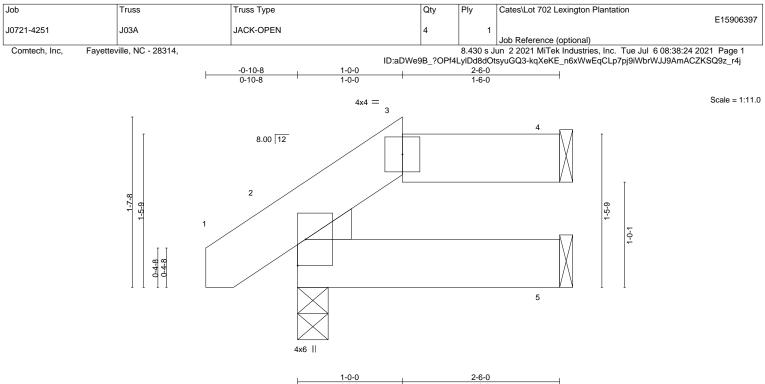
NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

				I	1-0-	0		1-6-0		1		
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	-0.00	2	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	-0.00	2	>999	240	Weight: 16 lb	FT = 20%

LUMBER	-
--------	---

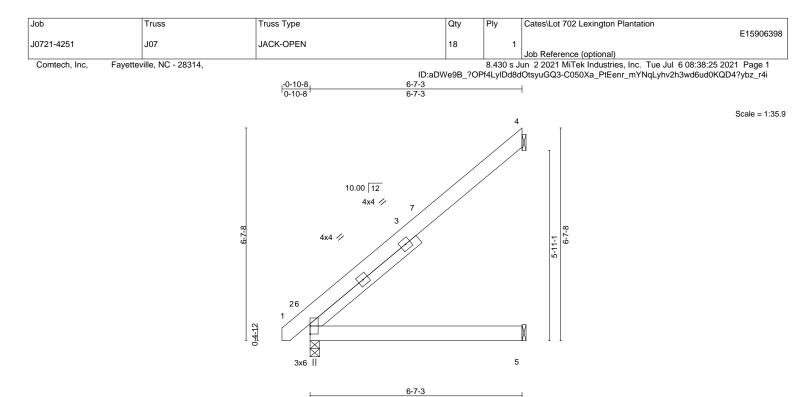
TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-6-0 oc purlins, except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=38(LC 12)

Max Uplift 4=-25(LC 9), 2=-18(LC 12) Max Grav 4=58(LC 1), 2=155(LC 1), 5=42(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.02	2-5	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.05	2-5	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 45 lb	FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1SLIDERLeft 2x4 SP No

2x6 SP No.1 Left 2x4 SP No.2 4-4-1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

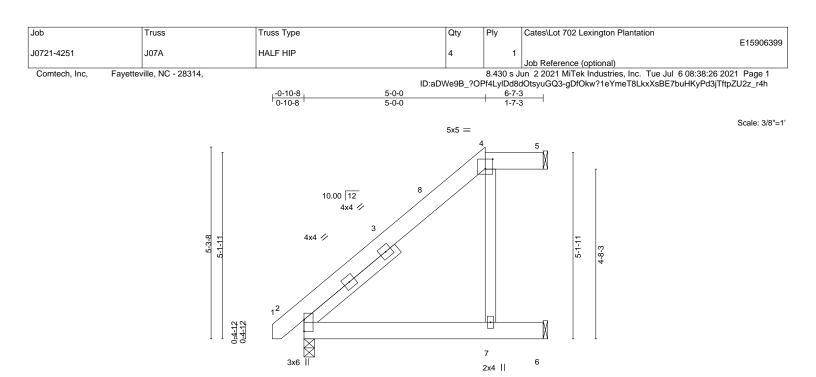
Max Horz 2=220(LC 12)

Max Uplift 4=-180(LC 12)

Max Grav 4=235(LC 19), 2=309(LC 1), 5=131(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 6-6-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=180.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.02	2-7	>999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.06	2-7	>999	240		
SCLL 0.0 *	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.05	5	n/a	n/a		
SCDL 10.0	Code IRC2015/T	PI2014	Matrix	κ-P	Wind(LL)	0.04	2-7	>999	240	Weight: 49 lb	FT = 20%
UMBER-					BRACING-						
OP CHORD 2x6 S	P No.1				TOP CHOP	RD	Structu	ral wood	sheathing dir	ectly applied or 6-0-0	oc purlins, except
OT CHORD 2x6 S	P No.1						2-0-0 o	c purlins:	4-5.		
VEBS 2x4 S	P No.2				BOT CHOP	RD	Rigid co	eiling dire	ctly applied o	or 10-0-0 oc bracing.	
SLIDER Left 2	x4 SP No.2 3-3-9						Ũ	Ū	, ,,	0	

5-0-0

6-7-3

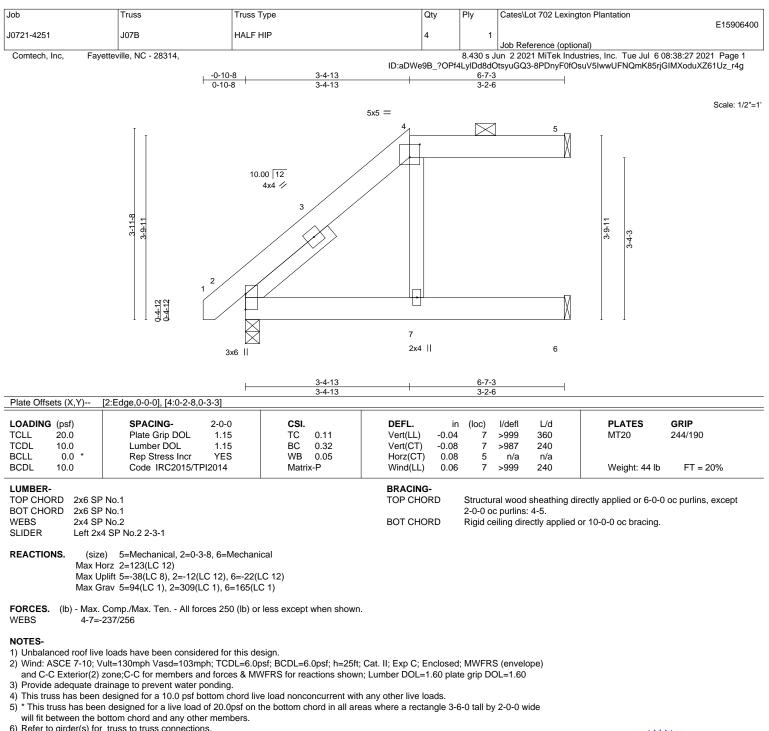
 REACTIONS.
 (size)
 5=Mechanical, 2=0-3-8, 6=Mechanical

 Max Horz
 2=171(LC 12)
 Max Uplift 5=-19(LC 8), 6=-74(LC 12)

 Max Orgune
 Craw F. dol(0.012, 0.000) (0.012, 0.000) (0.012, 0.000)

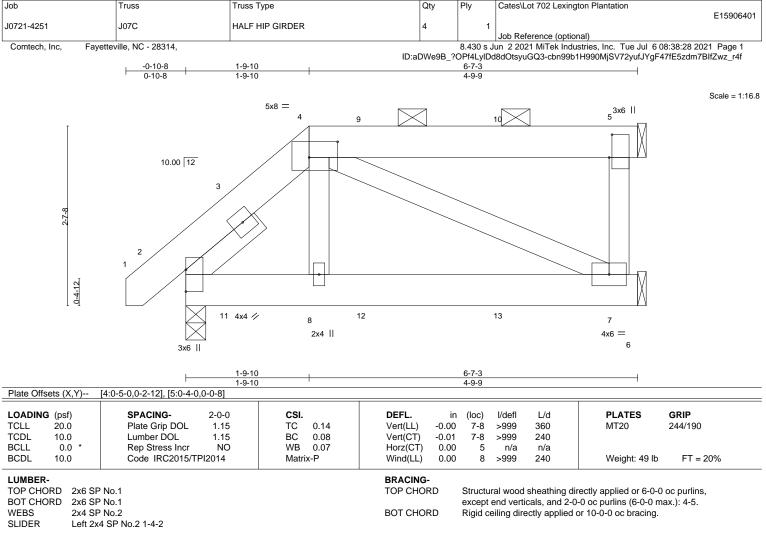
Max Grav 5=46(LC 1), 2=309(LC 1), 6=223(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-7=-282/274


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 5-0-0, Exterior(2) 5-0-0 to 6-6-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

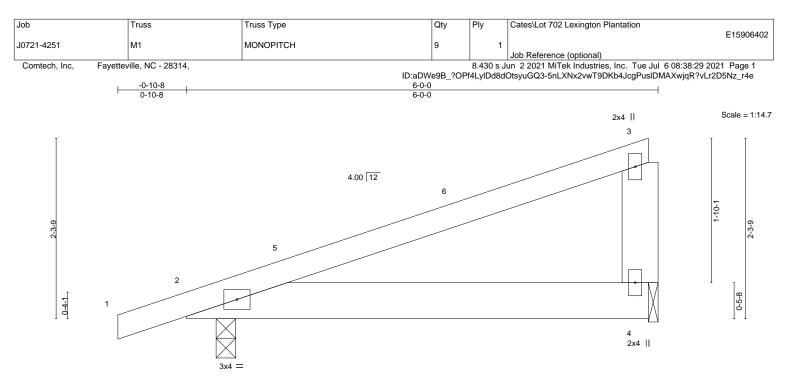


- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

REACTIONS. (size) 5=Mechanical, 7=Mechanical, 2=0-3-8 Max Horz 2=79(LC 8) Max Uplift 5=-84(LC 4), 2=-55(LC 8) Max Grav 5=136(LC 1), 7=163(LC 3), 2=312(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-299/51

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 24 lb down and 52 lb up at 0-7-15, and 80 lb down and 63 lb up at 2-7-15, and 81 lb down and 63 lb up at 4-7-15 on top chord, and 14 lb down at 0-7-15, and 11 lb down at 2-7-15, and 11 lb down at 4-7-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 2-6=-20 Concentrated Loads (lb) Vert: 3=-1(F) 11=-8(F) 12=-3(F) 13=-3(F)

ENGINEERING BY TREENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

0-4-8

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.44 BC 0.45 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00 Wind(LL) 0.03	2-4 2-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	-	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WEBS

REACTIONS. (size) 4=0-1-8, 2=0-3-0

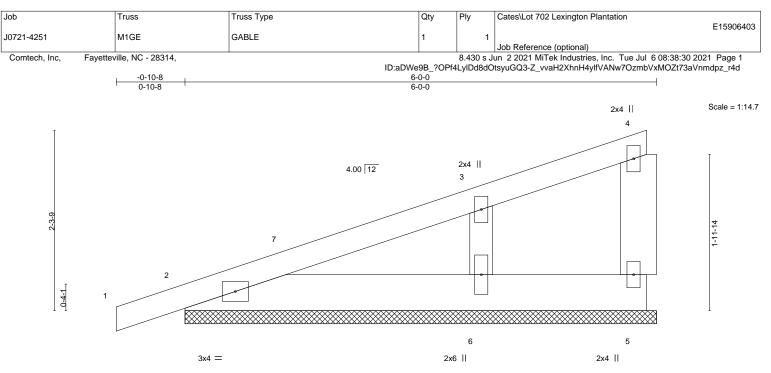
Max Horz 2=86(LC 8) Max Uplift 4=-112(LC 8), 2=-139(LC 8)

Max Grav 4=221(LC 1), 2=291(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=112, 2=139.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.15 BC 0.04 WB 0.07 Matrix-P	DEFL. i Vert(LL) -0.0 Vert(CT) 0.0 Horz(CT) 0.0	0 1 n/r 120	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x6 SP OTHERS 2x4 SP	No.1 No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	,	oc purlins,

REACTIONS. (size) 5=6-0-0, 2=6-0-0, 6=6-0-0 Max Horz 2=121(LC 8)

Max Uplift 5=-16(LC 8), 2=-79(LC 8), 6=-123(LC 12) Max Grav 5=31(LC 1), 2=183(LC 1), 6=300(LC 1)

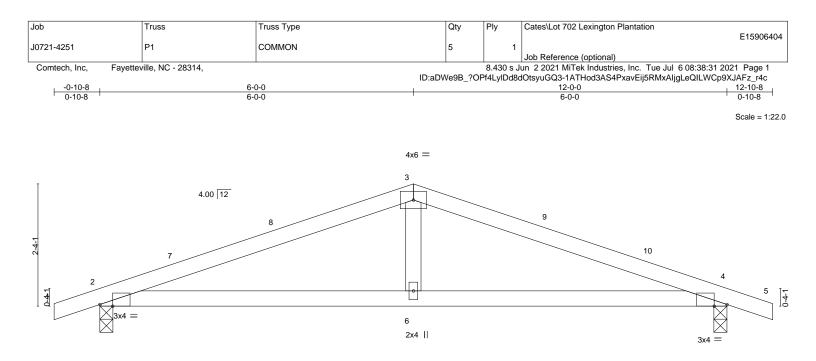
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-6=-222/411

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-9-4, Exterior(2) 3-9-4 to 5-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

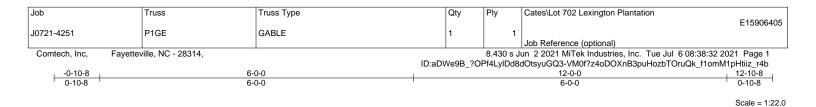
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2 except (jt=lb) 6=123.

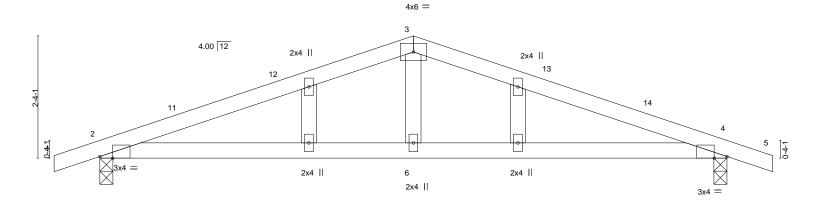
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

F	<u> </u>				<u>12-0-0</u> 6-0-0		
Plate Offsets (X,Y)	[2:0-2-15,Edge], [4:0-2-15,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.37 BC 0.30 WB 0.06 Matrix-S	DEFL. in Vert(LL) 0.10 Vert(CT) -0.07 Horz(CT) -0.01	4-6 > 2-6 >	/defl L/d 999 240 999 240 n/a n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
Max H Max L	P No.1		BRACING- TOP CHORD BOT CHORD			rectly applied or 6-0-0 or 6-2-6 oc bracing.	oc purlins.
TOP CHORD 2-3= BOT CHORD 2-6=	Comp./Max. Ten All forces 250 (lb) c -866/1072, 3-4=-866/1072 -927/765, 4-6=-927/765 -409/282	r less except when shown.					
NOTES- 1) Unbalanced roof live	e loads have been considered for this d	esign.					

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 6-0-0, Exterior(2) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 12-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=246, 4=246.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

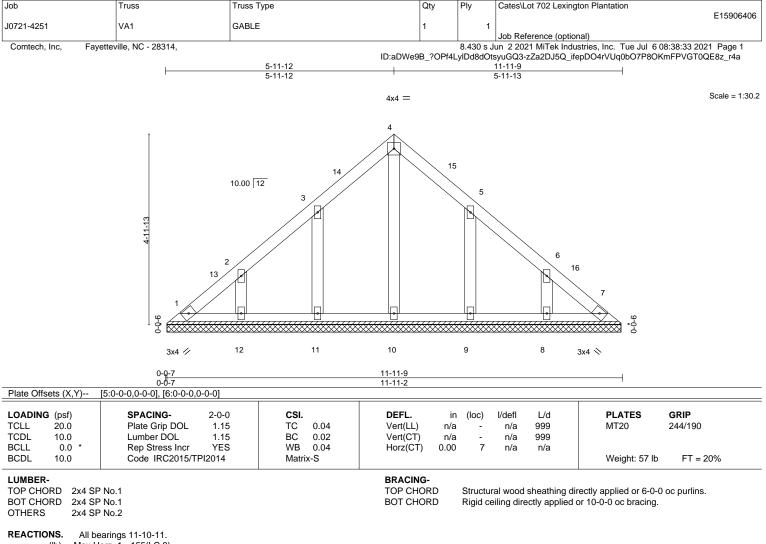
F	<u> </u>			<u>12-0-0</u> 6-0-0		
Plate Offsets (X,Y)	[2:0-2-15,Edge], [4:0-2-15,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.30 WB 0.06 Matrix-S	DEFL. in Vert(LL) 0.10 Vert(CT) -0.07 Horz(CT) -0.01	(loc) l/defl L/d 4-6 >999 240 2-6 >999 240 4 n/a n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S REACTIONS. (si Max Max	P No.1 P No.1 P No.2 P No.2 ze) 2=0-3-0, 4=0-3-0 Horz 2=52(LC 12) Uplift 2=-343(LC 8), 4=-343(LC 9) Grav 2=530(LC 1), 4=530(LC 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied o		
TOP CHORD 2-3: BOT CHORD 2-6: WEBS 3-6: NOTES- 1) Unbalanced roof lin	 Comp./Max. Ten All forces 250 (lb) o 866/1072, 3-4=-866/1072 927/765, 4-6=-927/765 409/282 ve loads have been considered for this de Vult=130mph Vasd=103mph; TCDL=6.0 	ssign.	at. II; Exp C; Enclosed	; MWFRS (envelope)	SE 036	• –

gable end zone and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 6-0-0, Exterior(2) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 12-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=343, 4=343.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 6,2021

(lb) - Max Horz 1=-155(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 11=-136(LC 12), 12=-127(LC 12), 9=-135(LC 13), 8=-128(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

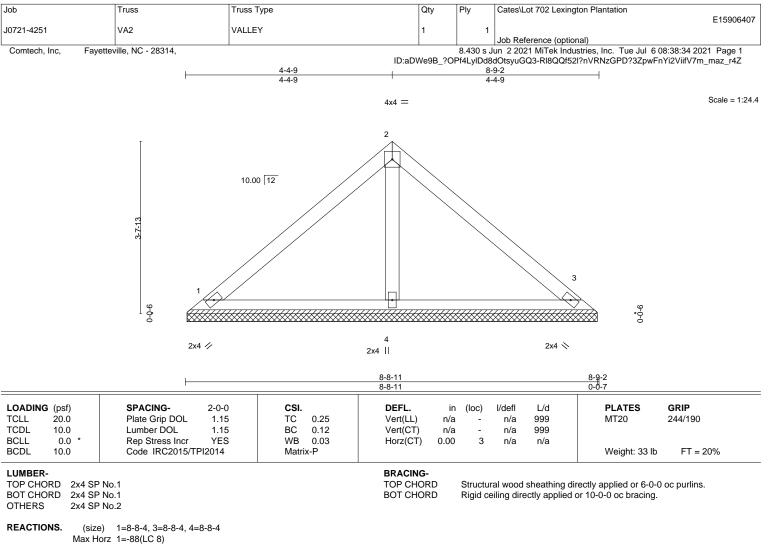
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 5-11-12, Exterior(2) 5-11-12 to 10-4-9, Interior(1) 10-4-9 to 11-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 11=136, 12=127, 9=135, 8=128.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

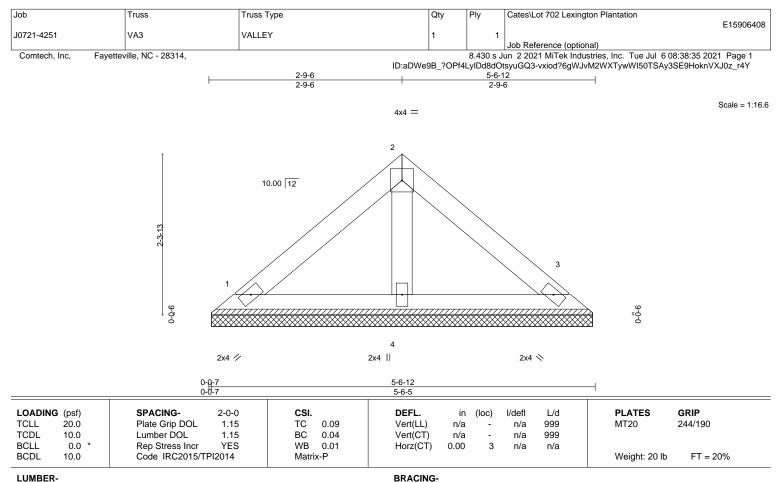
¹⁾ Unbalanced roof live loads have been considered for this design.

Max Horz 1=-88(LC 8) Max Uplift 1=-36(LC 13), 3=-45(LC 13)

Max Grav 1=184(LC 1), 3=184(LC 1), 4=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=5-5-13, 3=5-5-13, 4=5-5-13 Max Horz 1=53(LC 9)

Max Uplift 1=-22(LC 13), 3=-27(LC 13)

Max Grav 1=110(LC 1), 3=110(LC 1), 4=160(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

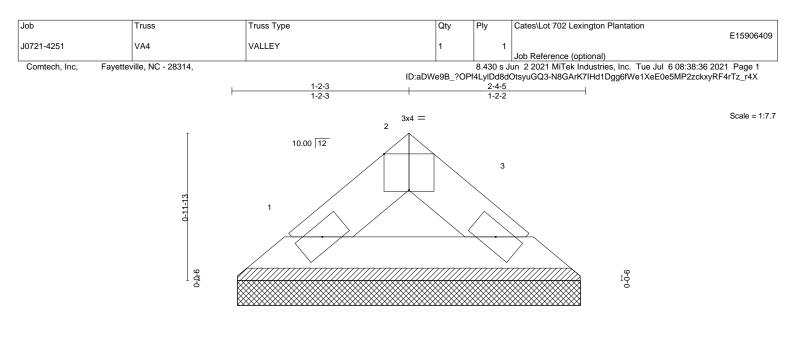
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-6-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 //

2x4 🚿

2-4r5
0-0-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

OADING (psf) CLL 20.0 CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.01 BC 0.02	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00 3 n/a n/a	Weight: 6 lb FT = 20%

BOT CHORD

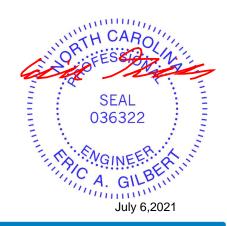
2-3-14 2-3-14

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

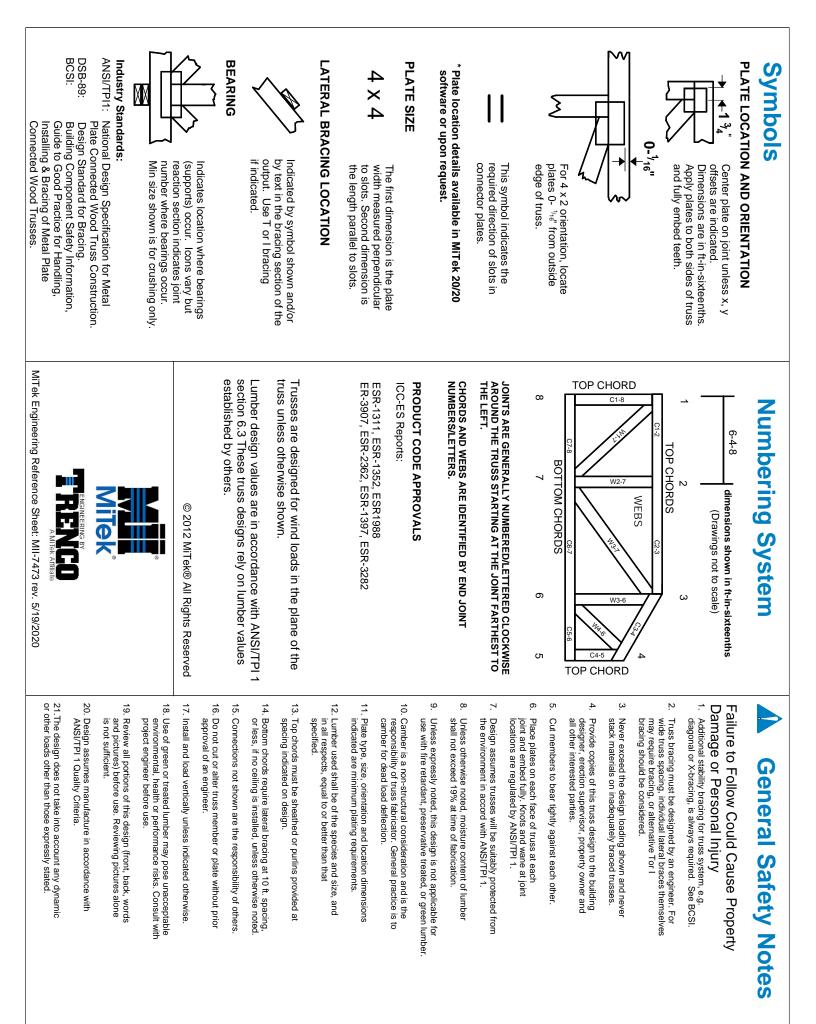
REACTIONS. (size) 1=2-3-7, 3=2-3-7

Max Horz 1=-17(LC 8) Max Uplift 1=-5(LC 12), 3=-5(LC 13)

Max Grav 1=62(LC 1), 3=62(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

