

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	A	Piggyback Base	5	1	Job Reference (optional)
84 Components, Dunn, NC 28334			1	1	8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:26:48 2020 Page 2

8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:26:48 2020 Page 2 ID:kQ1KS2Sn3IidzGzix5z8Izz3hVz-DIdl5u9iiumaAldIAEQPhFBPWAEvSrnaNzgeOdvasHr

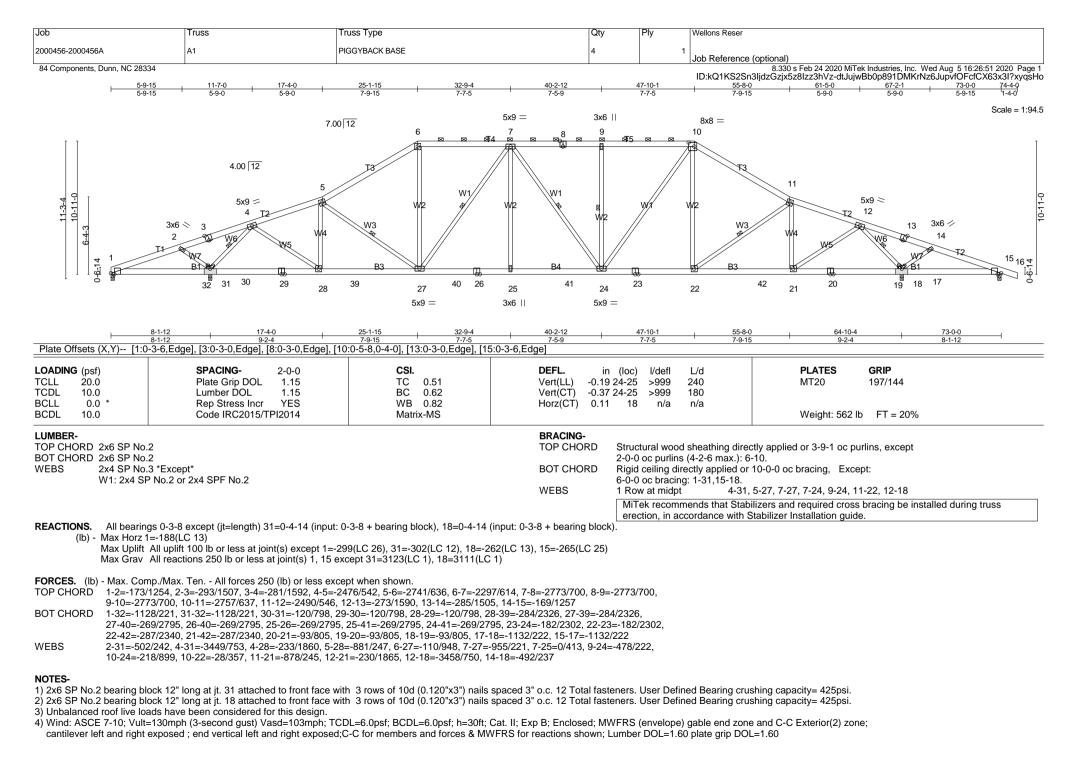
NOTES-

5) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

6) Provide adequate drainage to prevent water ponding.

7) All plates are 6x6 MT20 unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 16. This connection is for uplift only and does not consider lateral forces.

11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 32 and 19. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	A1	PIGGYBACK BASE	4	1	Job Reference (optional)
84 Components, Dunn, NC 28334		I			8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:26:51 2020 Page 2

8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:26:51 2020 Page 2 ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-dtJujwBb0p891DMKrNz6JupvfOFcfCX63x3I?xyqsHo

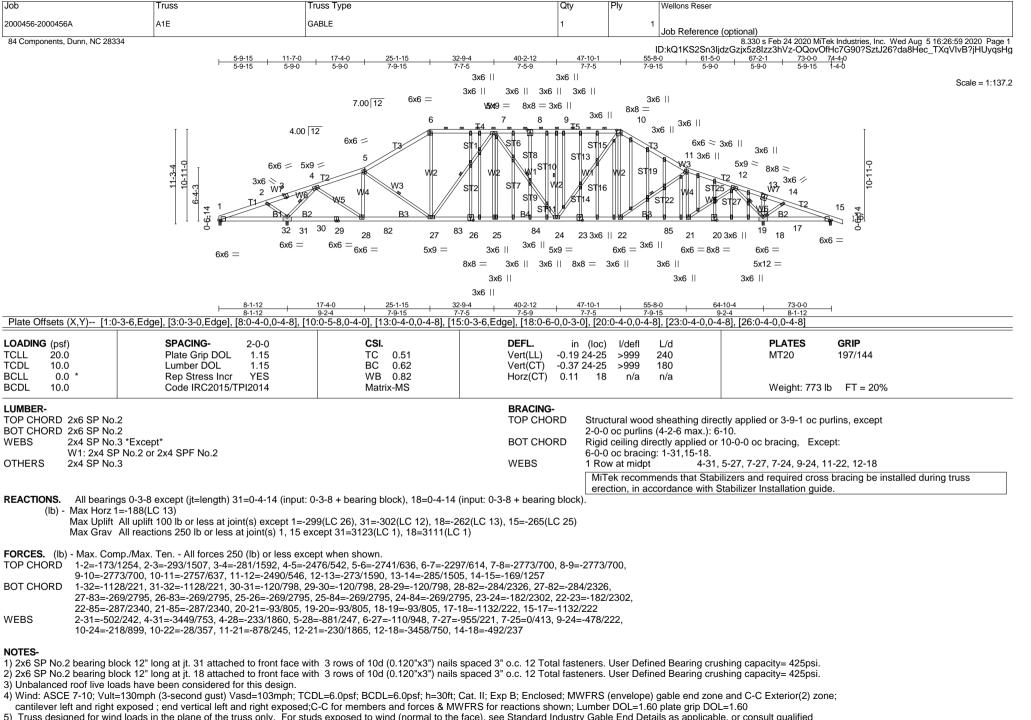
NOTES-

5) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

6) Provide adequate drainage to prevent water ponding.

7) All plates are 6x6 MT20 unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1 and 15. This connection is for uplift only and does not consider lateral forces.

11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 31 and 18. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	A1E	GABLE	1	1	Job Reference (optional)
84 Components, Dunn, NC 28334				I	8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:00 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-scMlc?IEuaHtcbY3tmdEAnhSN0KiGHIR7rkGqwyqsHf

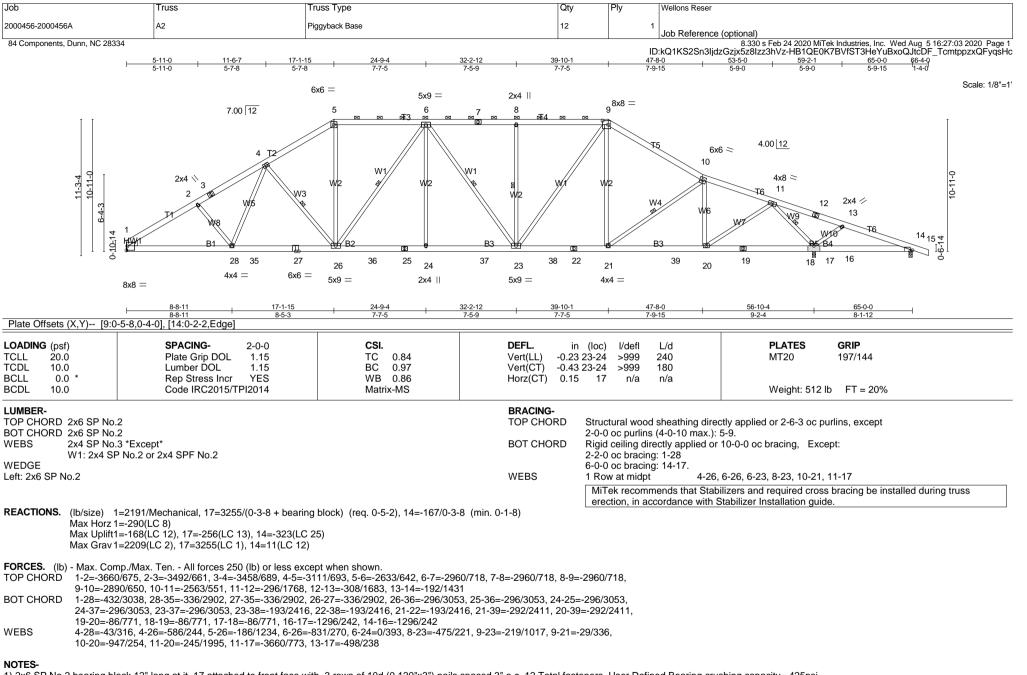
NOTES-

6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

7) Provide adequate drainage to prevent water ponding.8) All plates are 3x4 MT20 unless otherwise indicated.

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


1) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 15. This connection is for uplift only and does not consider lateral forces.

13) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 31 and 18. This connection is for uplift only and does not consider lateral forces.

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

1) 2x6 SP No.2 bearing block 12" long at jt. 17 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi.

2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	A2	Piggyback Base	12	1	Job Reference (optional)
84 Components, Dunn, NC 28334					8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:04 2020 Page 2 ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-INboSMLlypnJ5Dsq6biAKdr2MdbDC3012TiUzhyqsHb

NOTES-

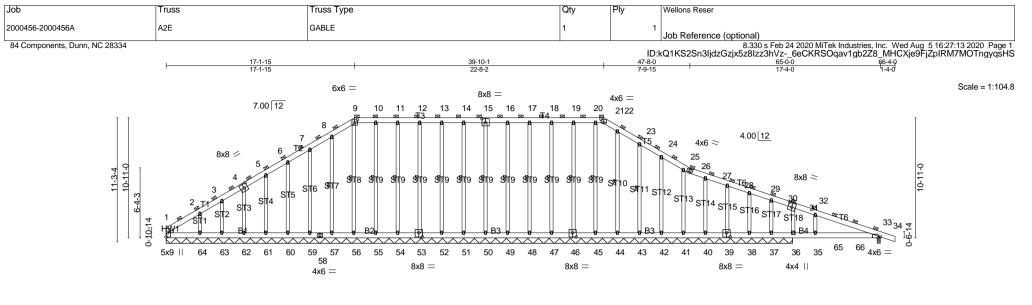
4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

5) Provide adequate drainage to prevent water ponding.

6) All plates are 4x6 MT20 unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to truss connections.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 168 lb uplift at joint 1.

11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 17. This connection is for uplift only and does not consider lateral forces.

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it/s) 14. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	 	<u>58-11-4</u> 58-11-4			<u>60-11-462-11-4</u> 65-0-0 2-0-0 2-0-12-0-12			
Plate Offsets (X,Y) [1:0-	-0-8,0-0-14], [1:0-1-0,0-5-11], [4:0-4-0,0-4-8],	9:0-3-0,0-3-4], [15:0-4-0,0-4-8], [2	21:0-3-0,0-3-12], [31:0-4-0,0-4	4-8], [33:0-2-6,Edge], [39	:0-4-0,0-4-8], [46:0-4-0,0-4-8], [53	3:0-4-0,0-4-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-2-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.82 WB 0.21 Matrix-S		(loc) l/defl L/d 33-35 >964 240 33-35 >494 180 33 n/a n/a	PLATES MT20 Weight: 629 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SP No.: BOT CHORD 2x6 SP No.: OTHERS 2x4 SP No.: WEDGE Left: 2x4 SP No.3	2 2	Maineo	BOT CHORD	2-0-0 oc purlins (6-0-0 m (Switched from sheeted: Rigid ceiling directly app 1 Row at midpt	nax.) Spacing > 2-0-0). lied or 10-0-0 oc bracing.	54, 10-55, 9-56, 8-57, 16-49, 17-48,		
(lb) - Max Horz 1 Max Uplift 3 Max Grav 3	gs 57-0-0 except (jt=length) 33=0-3-8. =-315(LC 8) All uplift 100 lb or less at joint(s) 1, 50, 51, 52 33=-184(LC 9), 64=-132(LC 35), 43=-160(LC 1 38=-179(LC 13), 37=-537(LC 24), 36=-541(LC All reactions 250 lb or less at joint(s) 1, 50, 57 37 except 33=710(LC 1), 64=305(LC 19), 44=-4 99=417(LC 24), 38=663(LC 1), 36=2132(LC 24)	3), 42=-151(LC 13), 41=-156(LC 13) , 52, 53, 54, 55, 56, 57, 59, 60, 6 (51(LC 24), 43=460(LC 1), 42=453	13), 40=-142(LC 9), 39=-120 1, 62, 63, 49, 48, 47, 46, 45,					
TOP CHORD 1-2=-287/2 14-15=-18	np./Max. Ten All forces 250 (lb) or less exce 275, 7-8=-154/260, 8-9=-196/307, 9-10=-182/ 32/289, 15-16=-182/289, 16-17=-182/289, 17- 94/297, 22-23=-176/285	288, 10-11=-182/289, 11-12=-182						

WEBS 30-37=-52/305, 31-36=-925/255, 32-35=-158/322

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	A2E	GABLE	1	1	Job Reference (optional)
84 Components, Dunn, NC 28334				ID:	8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:13 2020 Page 2 kQ1KS2Sn3IjdzGzjx5z8Izz3hVz6eCKRSOqav1gb2Z8_MHCXje9FjZpIRM7MOTngyqsHS

84 Components, Dunn, NC 28334

NOTES-

4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

5) Provide adequate drainage to prevent water ponding. 6) All plates are 2x4 MT20 unless otherwise indicated.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1, 33, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 49, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, and 36. This connection is for uplift only and does not consider lateral forces.

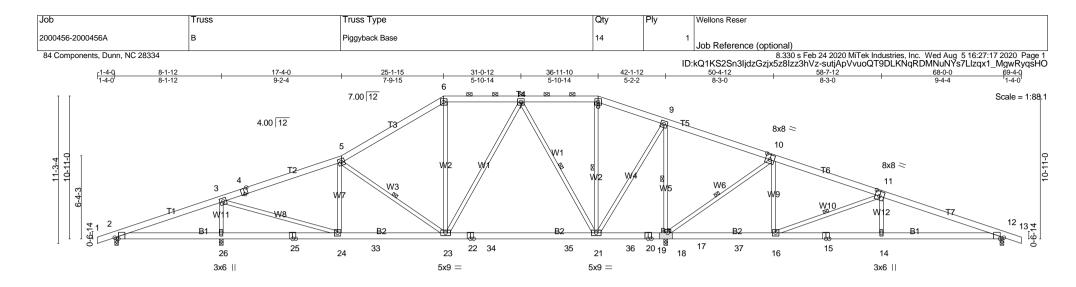
11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 37. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 286 lb down and 97 lb up at 40-11-4. 286 lb down and 97 lb up at 42-11-4. 286 lb down and 97 lb up at 46-11-4 286 lb down and 97 lb up at 48-11-4 286 lb down and 97 lb up at 50-11-4 286 lb down and 97 lb up at 52-11-4 286 lb down and 97 lb up at 56-11-4 286 lb down and 97 lb up at 50-11-4 286 lb down and 81 lb up at 58-11-4. and 286 lb down and 78 lb up at 60-11-4, and 290 lb down and 79 lb up at 62-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced); Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-9=-65, 9-21=-65, 21-26=-65, 26-34=-65, 1-33=-22

Concentrated Loads (lb)

Vert: 44=-286(B) 43=-286(B) 42=-286(B) 41=-286(B) 40=-286(B) 39=-286(B) 38=-286(B) 37=-286(B) 35=-286(B) 35=-286(B) 65=-286(B) 65=-290(B) 65=-286(B) 65=-2

Plate Offsets (X,Y) [2:0	8-1-12 8-1-12 -3-6,Edge], [4:0-3-0,Edge], [10:0-4-0,0-4-8],	25-1-15 7-9-15 [11:0-4-0.0-4-8]. [12:0-3-6.Edge]	36-11-10 11-9-11	42-1-12 5-2-2	50-4-12 58-7 8-3-0 8-3	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.49 BC 0.58 WB 0.83 Matrix-MS	Vert(LL) -0.1	9 21-23 >999 24 33 21-23 >999 18	30 /a	
LUMBER- TOP CHORD 2x6 SP No. BOT CHORD 2x6 SP No. WEBS 2x4 SP No.	2		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (6- Rigid ceiling directl 1 Row at midpt MiTek recommen	ly applied or 6-0-0 oc bracing. 5-23, 7-21, 8-21, 9-18,	10-18, 11-16 ed cross bracing be installed during truss

REACTIONS. All bearings 0-3-8 except (it=length) 18=0-4-9 (input: 0-3-8 + bearing block).

(lb) - Max Horz 2=-180(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-116(LC 8), 26=-267(LC 12), 18=-434(LC 9), 12=-197(LC 9) Max Gray All reactions 250 lb or less at joint(s) except 2=318(LC 23), 26=1640(LC 23), 18=2902(LC 1), 12=836(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-1410/286, 4-5=-1312/317, 5-6=-1109/312, 6-7=-872/329, 9-10=-74/972, 10-11=-299/147, 11-12=-1377/334

BOT CHORD 24-33=-151/1252, 23-33=-151/1252, 22-23=0/635, 22-34=0/635, 34-35=0/635, 21-35=0/635, 21-36=-851/391, 20-36-850, 20-36-850, 20-36-850, 20-36-850, 20-36-850, 20-36-850, 20-36-850, 20-36-850, 20-36-800, 20-36-800, 20-36-800, 20-36-800, 20-36 19-20=-851/391, 18-19=-851/391, 15-16=-217/1253, 14-15=-217/1253, 12-14=-214/1259

WEBS 3-26=-1406/416. 3-24=-137/1333. 5-24=-259/142. 5-23=-508/232. 7-23=-65/629. 7-21=-1013/248. 8-21=-284/79. 9-21=-206/1605. 9-18=-2028/465. 10-18=-1211/354. 10-16=-14/640. 11-16=-1130/342. 11-14=0/371

NOTES-

1) 2x6 SP No.2 bearing block 12" long at it. 18 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi.

2) Unbalanced roof live loads have been considered for this design.

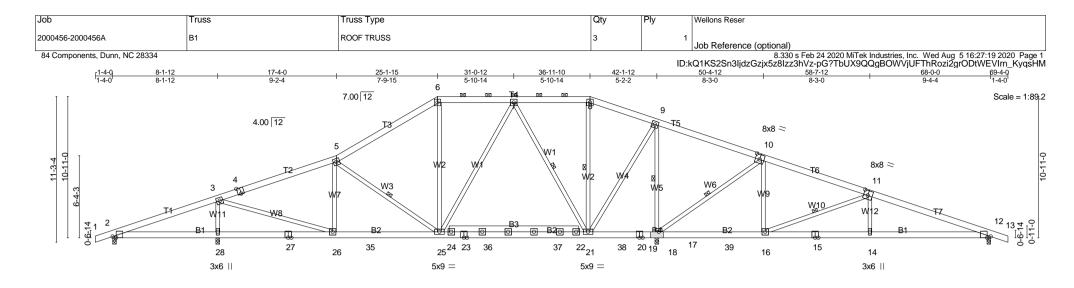
3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a gualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing,

5) Provide adequate drainage to prevent water ponding.

6) All plates are 6x6 MT20 unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2


Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	В	Piggyback Base	14	1	Job Reference (optional)
84 Components, Dunn, NC 28334		· · · ·			8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:17 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-sutjApVvuoQT9DLKNqRDMNuNYs7Llzqx1_MgwRyqsHO

NOTES-

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 26, and 12. This connection is for uplift only and does not consider lateral forces. 10) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces. 11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y) [2:0	8-1-12 8-1-12 -3-6,Edge], [4:0-3-0,Edge], [10:0-4-0,0-4-8]	25-1-15 7-9-15 , [11:0-4-0,0-4-8], [12:0-3-6,Edge]	36-11-10 11-9-11	42-1-12 5-2-2	50-4-12 58-7-12 8-3-0 8-3-0	68-0-0 9-4-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.48 WB 0.81 Matrix-MS	Vert(LL) -0.09	21-25 >999 24 21-25 >999 18	80 h/a	GRIP 244/190 530 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No. BOT CHORD 2x6 SP No. WEBS 2x4 SP No.	2		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (6- Rigid ceiling direct 1 Row at midpt MiTek recommer	tly applied or 6-0-0 oc bracing. 5-25, 7-21, 8-21, 9-18, 10	0-18, 11-16 cross bracing be installed during truss

REACTIONS. All bearings 0-3-8 except (it=length) 18=0-4-9 (input: 0-3-8 + bearing block).

(lb) - Max Horz 2=-180(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) except 2=-115(LC 8), 28=-268(LC 12), 18=-436(LC 9), 12=-196(LC 9) Max Gray All reactions 250 lb or less at joint(s) except 2=322(LC 24). 28=1639(LC 24). 18=2896(LC 1). 12=838(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-1423/281, 4-5=-1326/313, 5-6=-1100/313, 6-7=-857/330, 9-10=-79/958, 10-11=-304/139, 11-12=-1384/330

BOT CHORD 21-38=-838/396, 20-38=-838/396, 19-20=-838/396, 18-19=-838/396, 15-16=-213/1260, 14-15=-213/1260, 12-14=-211/1266

WEBS 3-28=-1409/415. 3-26=-136/1331. 5-25=-521/225. 7-25=-63/629. 7-21=-1015/247. 8-21=-285/78. 9-21=-218/1541. 9-18=-1997/477. 10-18=-1207/356. 10-16=-15/634. 11-16=-1131/341. 11-14=0/373

NOTES-

1) 2x6 SP No.2 bearing block 12" long at it. 18 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi. 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a gualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing,

5) Provide adequate drainage to prevent water ponding.

6) All plates are 6x6 MT20 unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	B1	ROOF TRUSS	3	1	Job Reference (optional)
84 Components, Dunn, NC 28334					8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:20 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-HSZsoqYnBjo20g4v2y_w_?Wto4BdyJmNkyaKXmyqsHL

NOTES-

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 28, and 12. This connection is for uplift only and does not consider lateral forces.
10) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces.
11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces.
11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

2000456-2000456A B2 ROOF TRUSS 3 1 Job Reference (optional)	
84 Components, Dunn, NC 28334 8.330 s Feb 24 2020 MiTek	Industries, Inc. Wed Aug 5 16:27:22 2020 Page 1
	65-0-0
1-4-0 8-1-12 9-2-4 7-9-15 5-10-14 5-10-14 5-2-2 8-3-0 7-1-14	7-5-6
6x6 = 6x6 =	Scale = 1:101.8
$6 \qquad 7 \qquad 8 \qquad 4x6 \approx$	
4.00 12	Ĩ
$4.00 12 \qquad 6x6 = 13 \qquad 4x6 = 15 \qquad 4x6 = 15 \qquad 4x6 = 15$	
5 10	
4x0 = 12	10-11-0
$\frac{12}{12}$	5x12 ≒
	13
20 23 24 20 10 10 13	14 6x6
4x6 = 3x4 4x6 - 5x9 - 5x9 - 6x6 - 6x6 =	
8-1-12 9-2-4 7-9-15 11-9-11 5-2-2 4-0-0 4-3-0 7-1-14	65-0-0 7-5-6
Plate Offsets (X,Y) [2:0-2-6,Edge], [14:Edge,0-5-8], [15:0-3-8,0-4-0], [22:0-4-0,0-3-0], [25:0-3-8,0-2-8]	
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES	GRIP
TCLL 20.0 Plate Grip DOL 1.15 TC 0.68 Vert(LL) -0.26 20-24 >999 240 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.79 Vert(CT) -0.54 16-18 >999 180	197/144
BCLL 0.0 * Rep Stress Incr YES WB 0.87 Horz(CT) 0.11 14 n/a n/a	FT 00%
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 523 lb	F1 = 20%
LUMBER- BRACING- TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-3-15 oc put	uting export and verticals and 2.0.0 as
BOT CHORD 2x6 SP No.2 purlins (4-1-6 max.): 6-8.	
WEBS2x4 SP No.3 *Except*BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.W8,W13: 2x4 SP No.2 or 2x4 SPF No.2, W14: 2x6 SP No.2WEBS1 Row at midpt3-25, 5-24, 7-24, 9-20, 10-18	
Mittek recommends that Stabilizers and required cross I	bracing be installed during truss
erection, in accordance with Stabilizer Installation guide.	
REACTIONS. (lb/size) 2=21/0-3-8 (min. 0-1-8), 28=3032/(0-3-8 + bearing block) (req. 0-4-12), 14=2209/0-3-8 (min. 0-3-7) Max Horz 2=190(LC 16)	
Max Uplift2=-152(LC 27), 28=-287(LC 12), 14=-356(LC 9) Max Grav2=114(LC 24), 28=3032(LC 1), 14=2209(LC 1)	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-219/958, 3-4=-2754/585, 4-5=-2660/617, 5-6=-2901/722, 6-7=-2435/687, 7-8=-2971/821, 8-9=-3172/843, 9-10=-3690/914,	
10-11=-4156/1004, 11-12=-4278/990, 12-13=-4178/940, 13-14=-2102/516	
BOT CHORD 2-29=-833/240, 28-29=-833/240, 27-28=-833/240, 26-27=-833/240, 25-26=-833/240, 25-33=-412/2545, 24-33=-412/2545, 23-24=-417/2785, 22-23=-417/2785, 22-34=-417/2785, 34-35=-417/2785, 21-35=-417/2785, 20-21=-417/2785, 19-20=-601/3436,	
19-36=-601/3436, 18-36=-601/3436, 18-37=-799/4001, 17-37=-799/4001, 16-17=-799/4001, 15-16=-836/3893, 14-15=-106/404	
WEBS 3-28=-2770/738, 3-25=-648/3516, 5-25=-918/306, 5-24=-283/187, 6-24=-175/1064, 7-24=-877/256, 7-20=-104/463, 8-20=-132/749, 9-20=-968/316, 9-18=-64/587, 10-18=-743/247, 10-16=0/294, 12-16=0/266, 12-15=-481/222, 13-15=-739/3535	
NOTES-	
1) 2x6 SP No.2 bearing block 12" long at jt. 28 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi.	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone 	
cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	
4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice f Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a	
qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek	
assumes no responsibility for truss manufacture, handling, erection, or bracing. 5) Provide adequate drainage to prevent water ponding.	
5) Provide adequate drainage to prevent water ponding. Continued on page 2	

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	B2	ROOF TRUSS	3		
					Job Reference (optional)
84 Components Dunn NC 28334					8 330 s Eeb 24 2020 MiTek Industries Inc. Wed Aug 5 16:27:22 2020 Page 2

84 Components, Dunn, NC 28334

0.330 S Feb 24 2020 Millek industries, Inc. Wed Aug 5 16:27:22 2020 Page 2 ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-DrhcDWZ1iL2mF_EHAN103QbAEtnEQCPgBG3RbevqsHJ

NOTES-

6) All plates are 4x4 MT20 unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 a) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.
 Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

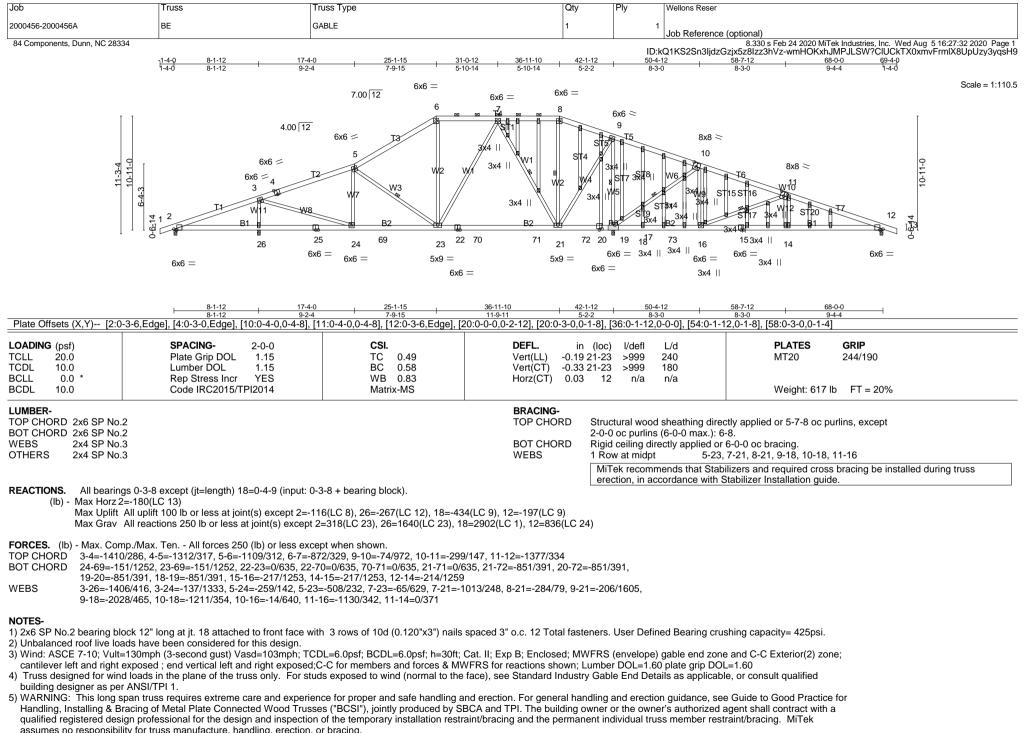
13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

Job	Truss	russ Type	Qty Ply Wellons Reser	
2000456-2000456A	B3	iggyback Base		
84 Components, Dunn, NC 283			Job Reference (optional) 8.330 s F	eb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:25 2020 Page 1
		25-1-15	ID:kQ1KS2Sn3ljdzGzjx5z8lzz 12 , 36-11-10 , 42-1-12 , 50-4-12 , 57-6-	BhVz-dQMIsYcw?GQK6RysrWa5h2DhI5npdZ27tEI5CzyqsHG
	1-4-0 8-1-12 17-4-0 1-4-0 8-1-12 9-2-4	7-9-15	14 5-10-14 5-2-2 8-3-0 7-1-1	4 7-5-6
		6x6 =	4x4 - 6x6 =	Scale = 1:101.0
		7.00 12 6	4x4 = 0x0 - 2x0	
II	_		9	I
	4.00 12	6x6 = J3	A 15	
		5	10 11	
11-3-4 10-11-0	Т	W2	1/ W1 W2 W4/	12 0-11-01
	8x8 = 4	W3	₩5 W6	
	W8	W7 👻	W9 W1	$5x12 \approx$
	₹1 ² B4 B2	B3	B3 F - B 3 - F	W13 94 1-
	27 26 25			Baffer to the second se
	27 26	²⁴ ₂₃ ³¹ ₂₂ ²	32 33 ₂₀ ¹⁹ ³⁴ 18 ³⁵ ¹⁷ 16	15 14
	3x4	5x9 = 5x9 =	5x9 = 4x4 = 4x4 = 6x6	8x8 = 6x6
			0x0 0x0	
	8-1-12 17-4-0 8-1-12 9-2-4	25-1-15 7-9-15	<u>36-11-10</u> <u>42-1-12</u> <u>50-4-12</u> <u>57-6-</u> <u>11-9-11</u> <u>5-2-2</u> <u>8-3-0</u> <u>7-1-1</u>	
Plate Offsets (X,Y) [2:0	-2-6,Edge], [14:Edge,0-5-8], [15:0-3-8,0-4-0],	[23:0-3-8,0-2-8]		
LOADING (psf)	SPACING- 2-0-0	CSI.		PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.69 BC 0.92	Vert(LL) -0.36 20-22 >999 240 I Vert(CT) -0.68 20-22 >999 180	AT20 197/144
BCLL 0.0 *	Rep Stress Incr YES	WB 0.87	Horz(CT) 0.12 14 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS		Veight: 500 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.	2		BRACING- TOP CHORD Structural wood sheathing directly applied of	or 3-4-0 oc purlins, except end verticals, and 2-0-0 oc
BOT CHORD 2x6 SP No.	2		purlins (4-0-15 max.): 6-8.	• • •
WEBS 2x4 SP No. W8 W13' 2	3 *Except* x4 SP No.2 or 2x4 SPF No.2, W14: 2x6 SP N	lo 2	BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bra WEBS 1 Row at midpt 3-23, 5-22, 7-22,	
110,1110.2		10.2		equired cross bracing be installed during truss
REACTIONS. (Ib/size) 2	2=-0/0-3-8 (min. 0-1-8), 26=3056/(0-3-8 + bea	pring block) (rog $0.4.13$) $14-2206$	erection, in accordance with Stabilizer Ins	tallation guide.
Max Horz 2	2=190(LC 16)	c <i>i i i</i>	5-6 (mm. 0-5-7)	
	2=-174(LC 26), 26=-286(LC 12), 14=-356(LC 2=97(LC 23), 26=3056(LC 1), 14=2206(LC 1)	9)		
	np./Max. Ten All forces 250 (lb) or less exc /1023, 3-4=-2726/584, 4-5=-2639/615, 5-6=-2		16. 8-9=-3199/837. 9-10=-3693/914.	
10-11=-4	155/1003, 11-12=-4272/988, 12-13=-4171/93	9, 13-14=-2099/516		
	5/247, 26-27=-895/247, 25-26=-895/247, 24-2 11/2805, 21-32=-411/2805, 32-33=-411/2805			
	98/3995, 17-35=-798/3995, 16-17=-798/3995 90/743, 3-23=-655/3560, 5-23=-937/301, 5-22		2/254 7-20-102/473 8-20-130/757	
	9/328, 9-18=-76/542, 10-18=-747/245, 10-16=			
NOTES-				
1) 2x6 SP No.2 bearing bl		th 3 rows of 10d (0.120"x3") nails	ced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacities	ty= 425psi.
3) Wind: ASCE 7-10; Vult			II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C E	xterior(2) zone;
cantilever left and right	exposed ; end vertical left and right exposed;	C-C for members and forces & MV	S for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 erection. For general handling and erection guidance, see Guide to G	
Handling, Installing & B	racing of Metal Plate Connected Wood Truss	es ("BCSI"), jointly produced by SE	and TPI. The building owner or the owner's authorized agent shall c	ontract with a
	ign professional for the design and inspection lity for truss manufacture, handling, erection,		/bracing and the permanent individual truss member restraint/bracing	. MiTek
	age to prevent water ponding.	or brading.		
Continued on page 2				

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	B3	Piggyback Base	1	1	Job Reference (optional)
84 Components, Dunn, NC 28334					8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:25 2020 Page 2

ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-dQMIsYcw?GQK6RysrWa5h2DhI5npdZ27tEI5CzyqsHG

NOTES-


6) All plates are 4x6 MT20 unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 a) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.
 Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 26. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

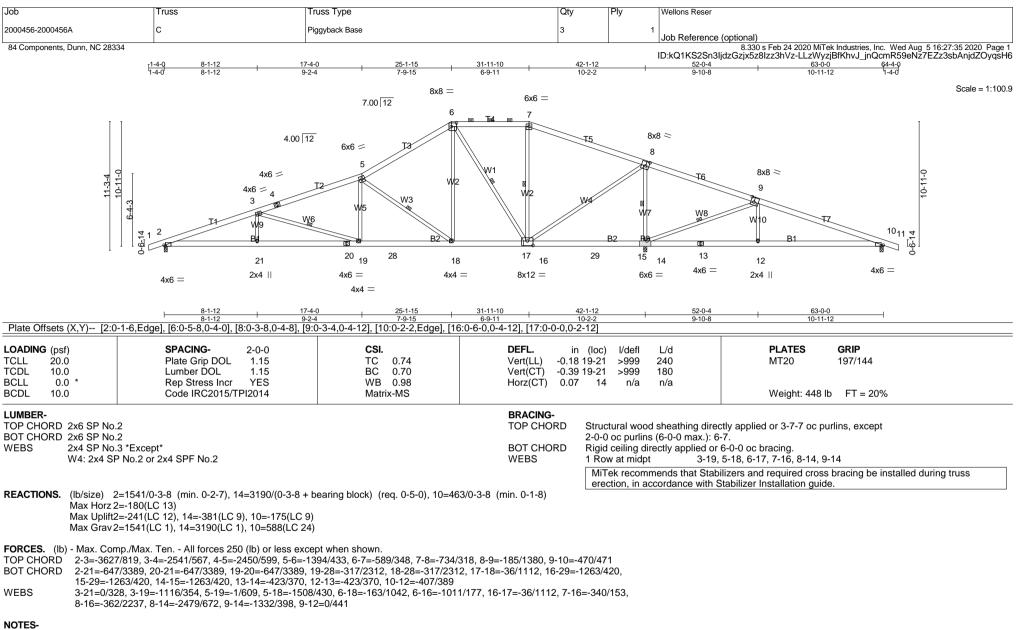
⁶⁾ Provide adequate drainage to prevent water ponding. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	BE	GABLE	1	1	lab Deference (onfine)
84 Components, Dunn, NC 28334					Job Reference (optional) 8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:32 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-wmHOKxhJMPJLSW?ClUCkTX0xmvFrmlX8UpUzy3yqsH9

NOTES-

7) All plates are 3x6 MT20 unless otherwise indicated.


8) Gable studs spaced at 2-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 26, and 12. This connection is for uplift only and does not consider lateral forces.
12) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

1) 2x6 SP No.2 bearing block 12" long at jt. 14 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi. 2) Unbalanced roof live loads have been considered for this design.

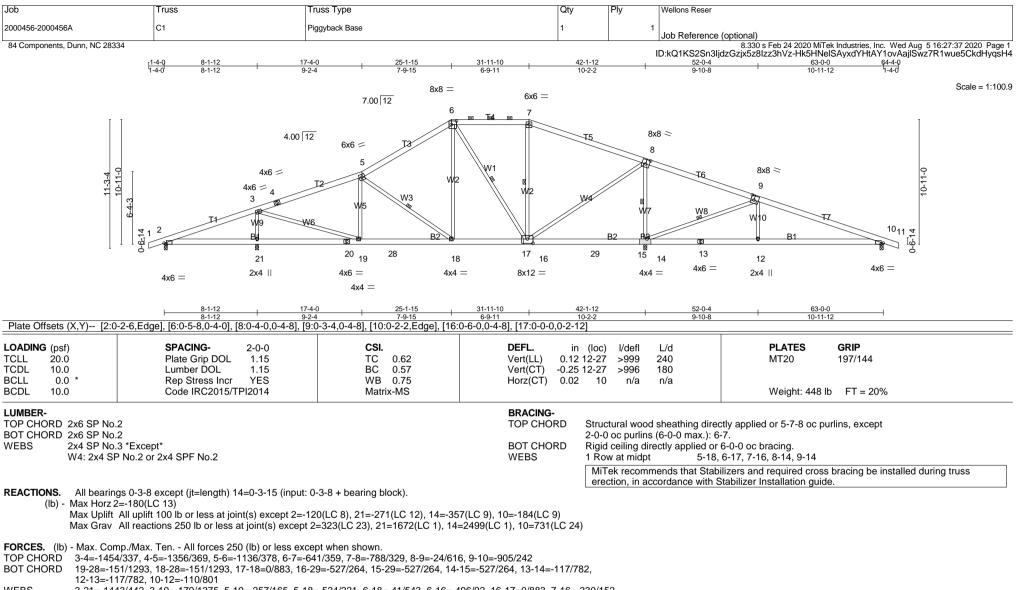
3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Continued on page 2


Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	с	Piggyback Base	3	1	Job Reference (optional)
84 Components, Dunn, NC 28334	4		· · · · · ·		8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:35 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-LLzWyzjBfKhvJ_jnQcmR59eNz7EZz3sbAnjdZOyqsH6

NOTES-

7)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 14, and 10. This connection is for uplift only and does not consider lateral forces.
 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WEBS 3-21=-1443/442, 3-19=-179/1375, 5-19=-257/165, 5-18=-524/221, 6-18=-41/543, 6-16=-496/92, 16-17=0/883, 7-16=-330/152, 8-16=-188/1413, 8-14=-1795/527, 9-14=-1312/394, 9-12=0/436

NOTES-

1) 2x6 SP No.2 bearing block 12" long at jt. 14 attached to front face with 3 rows of 10d (0.120"x3") nails spaced 3" o.c. 12 Total fasteners. User Defined Bearing crushing capacity= 425psi. 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;

cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	C1	Piggyback Base	1	1	Job Reference (optional)
84 Components, Dunn, NC 2833	34				8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:37 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-Hk5HNelSAyxdYHtAY1ovAajlSwz7R1wue5CkdHyqsH4

NOTES-

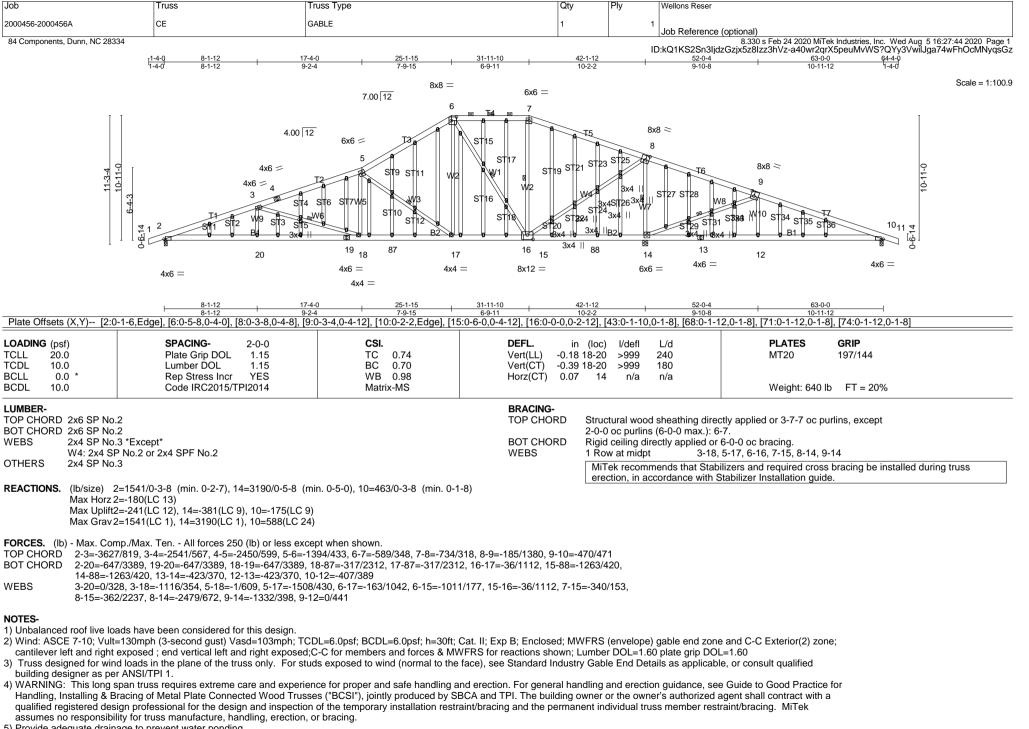
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 21, 14, and 10. This connection is for uplift only and does not consider lateral forces.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	C2	Piggyback Base	4		1 Job Reference (optional)
84 Components, Dunn, NC 28334					8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:39 2020 Page ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-D6C1oKmiiZBLob1ZfSqNF?o0akYpvs?A5Phri9yqsH
	1-4-0 8-1-12 1-4-0 8-1-12		-11-10 -9-11	42-1-12 10-2-2	52-04 63-00 64-4-0 9-10-8 10-11-12 1-4-0
		8x8 =			Scale = 1:100
		7.00 12 6	6x6 =		
ŢŢ	4.0	0 ¹² 6x6 = J3		15	8x8 ≈
	4x6 <i>≒</i>	5	、		8 ▼ Trc 8x8 ≈
11-3-4 10-11-0	8x8 = 4	12 W2	W1 W2	W4	9
2-4-3 2-4-3	3	W5 W3			W7 W8 UI I I I I I I I I I I I I I I I I I I
	₹1 ² B4 B2	W0		B3	W10 W10 1011 ±
		19 18 29 17	16 ₁₅	30	
	4x6 = 3x4	13 18 29 17 4x6 = 4x4 = 4x4 = 4x4	15 8x12 =		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	4x0 —	5x9 =			
	8-1-12 8-1-12	17-4-0 <u>25-1-15</u> 31- 9-2-4 7-9-15 6-	-11-10 -9-11	<u>42-1-12</u> 10-2-2	52-0-4 63-0-0 9-10-8 10-11-12
Plate Offsets (X,Y) [2:0-2-6		, [9:0-3-4,0-4-8], [15:0-6-0,0-4-12], [16:0-0-0			
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.96		n (loc) l/defl 2 14-15 >999	
TCDL 10.0	Lumber DOL 1.15	BC 1.00	Vert(CT) -0.6	3 14-15 >962	2 180
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.97 Matrix-MS	Horz(CT) 0.1	1 10 n/a	a n/a Weight: 448 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP DSS *E	xcept*		TOP CHORD		ood sheathing directly applied, except lins (4-4-10 max.): 6-7.
B3: 2x6 SP No. WEBS 2x4 SP No.3 *E			BOT CHORD WEBS		directly applied or 1-4-12 oc bracing.
	P No.2 or 2x4 SPF No.2		WEBO	2 Rows at 1/	/3 pts 8-15
					ommends that Stabilizers and required cross bracing be installed during truss a accordance with Stabilizer Installation guide.
REACTIONS. (Ib/size) 2=-10 Max Horz 2=-13		+ bearing block) (req. 0-4-14), 10=2196/0-	3-8 (min. 0-3-7)		
Max Uplift2=-2	51(LC 24), 21=-288(LC 12), 10=-396((LC 23), 21=3099(LC 1), 10=2196(LC				
TOP CHORD 2-3=-245/1309		=-2673/704, 6-7=-2609/777, 7-8=-2853/768			3
16-17=-210/22		3, 19-20=-1153/323, 18-19=-1153/323, 18-2 98, 13-14=-1031/4986, 12-13=-1031/4986,		=-313/2284,	
	39, 3-18=-656/3575, 5-18=-945/313, 6 -14=-1192/366. 9-12=0/406	-17=-19/366, 6-15=-214/871, 15-16=-210/2	208, 7-15=0/481, 8-1	5=-1559/450,	
IOTES-	····, · ···				
) 2x6 SP DSS bearing block	12" long at jt. 21 attached to front face have been considered for this design.	with 3 rows of 10d (0.120"x3") nails space	d 3" o.c. 12 Total fas	teners. User D	efined Bearing crushing capacity= 425psi.
3) Wind: ASCE 7-10; Vult=130)mph (3-second gust) Vasd=103mph;				ppe) gable end zone and C-C Exterior(2) zone;
		ed;C-C for members and forces & MWFRS rience for proper and safe handling and ere			1.60 plate grip DOL=1.60 ction guidance, see Guide to Good Practice for
		usses ("BCSI"), jointly produced by SBCA a tion of the temporary installation restraint/br			wner's authorized agent shall contract with a truss member restraint/bracing_MiTek
	or truss manufacture, handling, erection				

5) Provide adequate drainage to prevent water ponding.
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2


Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	C2	Piggyback Base	4	1	Job Reference (optional)
84 Components, Dunn, NC 28334					8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:39 2020 Page 2

ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-D6C1oKmiiZBLob1ZfSqNF?o0akYpvs?A5Phri9yqsH2

NOTES-

7)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 21, and 10. This connection is for uplift only and does not consider lateral forces.
 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

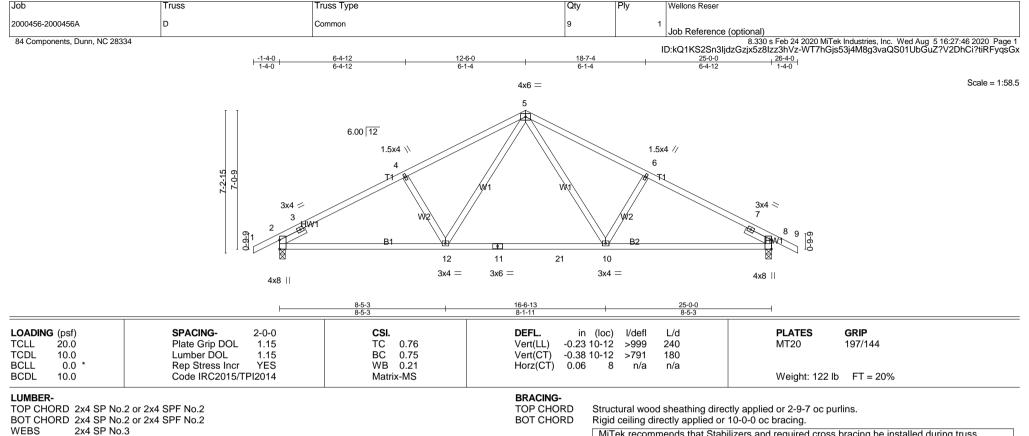
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

5) Provide adequate drainage to prevent water ponding.

6) All plates are 2x4 MT20 unless otherwise indicated. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	CE	GABLE	1	1	Lab Defense (anti-ant)
84 Components, Dunn, NC 28334					Job Reference (optional) 8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:45 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-2Gal2NrTIPxVWWUi0ixnVG25S9fvJaK3TL89upyqsGy


NOTES-

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 14, and 10. This connection is for uplift only and does not consider lateral forces.
 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- SLIDER Left 2x4 SP No.3 -ü 1-6-0, Right 2x4 SP No.3 -ü 1-6-0
- REACTIONS. (lb/size) 2=1080/0-3-8 (min. 0-1-11), 8=1080/0-3-8 (min. 0-1-11) Max Horz 2=115(LC 12) Max Uplift2=-144(LC 12), 8=-144(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-435/0, 3-4=-1546/405, 4-5=-1387/425, 5-6=-1387/425, 6-7=-1546/405, 7-8=-435/0

BOT CHORD 2-12=-245/1312, 11-12=-79/926, 11-21=-79/926, 10-21=-79/926, 8-10=-250/1312

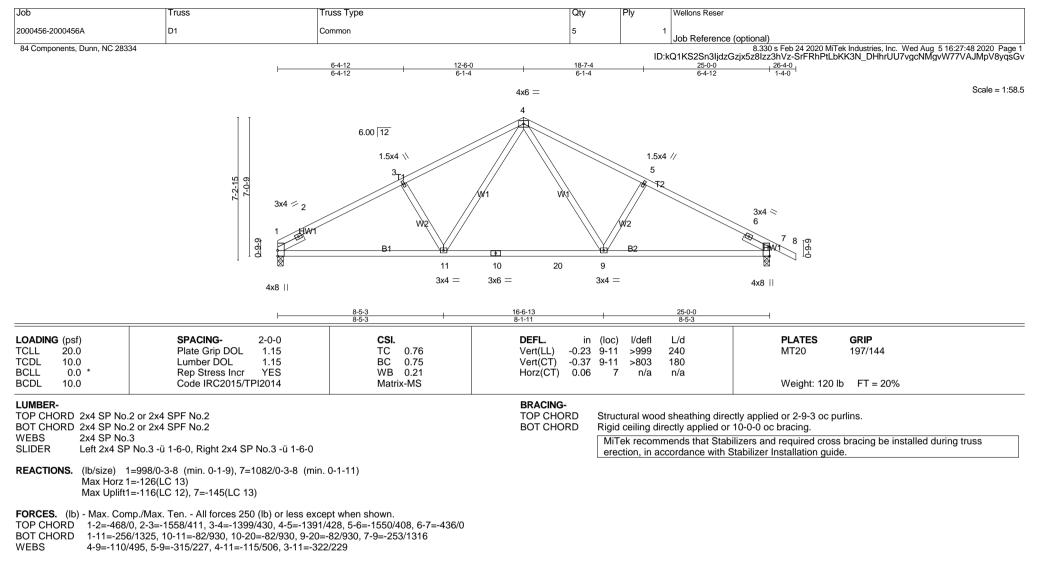
WEBS 5-10=-111/495, 6-10=-315/227, 5-12=-111/495, 4-12=-315/227

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

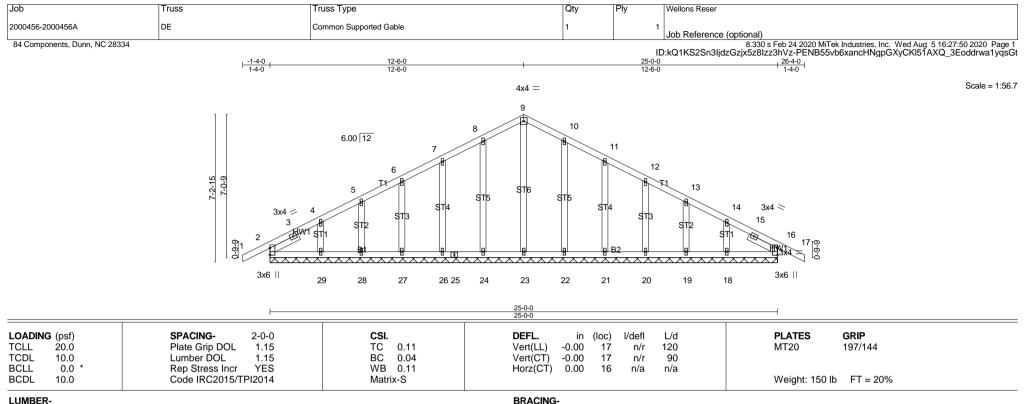
6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -ü 1-7-8, Right 2x4 SP No.3 -ü 1-7-8

REACTIONS. All bearings 25-0-0.

(lb) - Max Horz 2=115(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 24, 26, 27, 28, 29, 22, 21, 20, 19, 18, 16 Max Grav All reactions 250 lb or less at joint(s) 2, 23, 24, 26, 27, 28, 29, 22, 21, 20, 19, 18, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

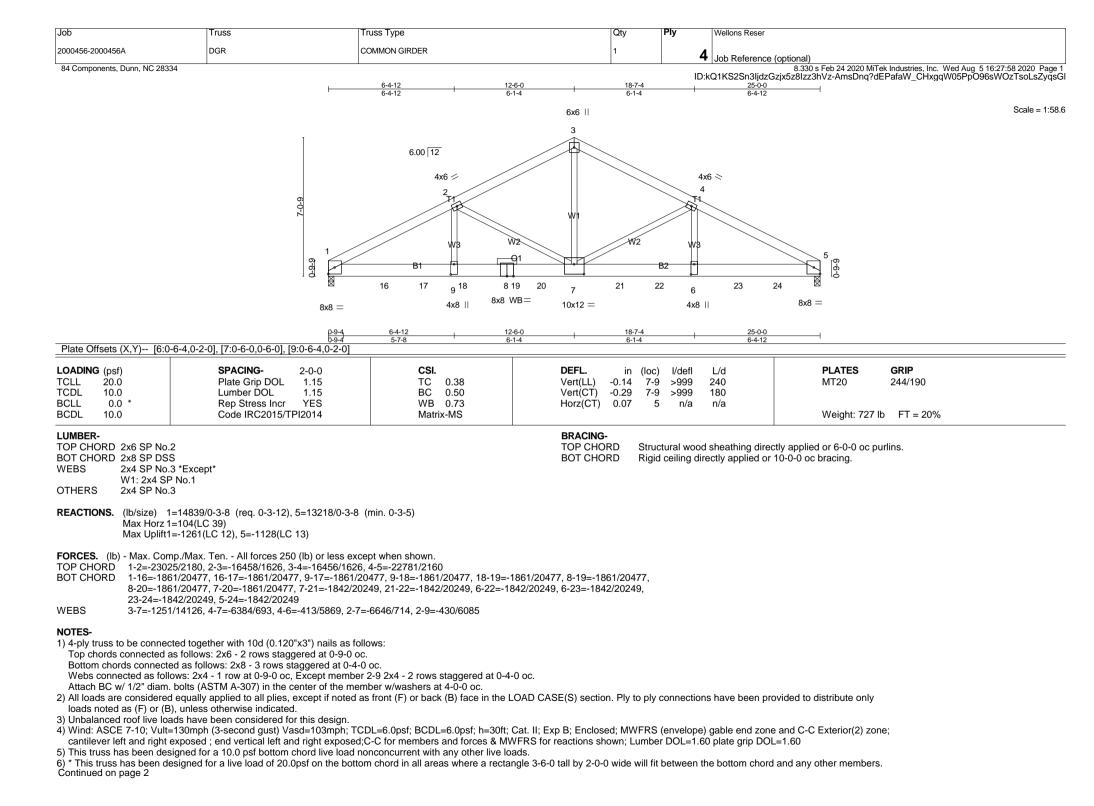
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2, 24, 26, 27, 28, 29, 22, 21, 20, 19, 18, and 16. This connection is for uplift only and does not consider lateral forces.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	DGR	COMMON GIRDER	1	4	Job Reference (optional)
84 Components, Dunn, NC 28334	- I		1	1	8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:27:58 2020 Page 2

ID:kQ1KS2Sn3ljdzGzjx5z8lzz3hVz-AmsDnq?dEPafaW_CHxgqW05PpO96sWOzTsoLsZyqsGl

NOTES-

7) WARNING: Required bearing size at joint(s) 1 greater than input bearing size.

8) One HTS20 Simpson Strong Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

9) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2191 lb down and 185 lb up at 0-9-4, 2189 lb down and 188 lb up at 2-9-4, 2189 lb down and 188 lb up at 12-9-4, 2189 lb down and 188 lb up at 12-9-4, 2189 lb down and 188 lb up at 14-9-4, 2189 lb down and 188 lb up at 12-9-4, 2189 lb down and 188 lb up at 14-9-4, 2189 lb down and 188 lb up at 12-9-4, 2189 lb down and 188 lb up at 18-9-4, and 2189 lb down and 188 lb up at 12-9-4, and 2189 lb down and 188 lb up at 22-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 6=-2171(F) 7=-2171(F) 12=-2174(F) 16=-2171(F) 17=-2171(F) 18=-2171(F) 19=-2171(F) 20=-2171(F) 21=-2171(F) 22=-2171(F) 23=-2171(F) 24=-2171(F) 21=-2171(F) 21=-217(F) 21

Job	Truss	Truss Type	Qty	Ply	Wellons Reser	
2000456-2000456A	E	Common	2	1	Job Reference (optional)	
84 Components, Dunn, NC 28334					8.330 s Feb 24 2 kQ1KS2Sn3lidzGzix5z8lzz3h\/z-ez(020 MiTek Industries, Inc. Wed Aug_5 16:27:59 2020 Page 1 Qb_A0F?iiWBgZPqfB33DdSUoWvb7O7iWXuO?yqsGk
		-1-4-0 7-0-0 1-4-0 7-0-0		14-0-0 7-0-0	15-4-0 1-4-0	
			4x6 =			Scale = 1:43.5
			3			
	5-2-6 	7.00 12 2 2 2 8 5x9	7 1.5x4	H	4 5 6 5x9	
Plate Offsets (X,Y) [2:0-1-(0,0-1-12], [4:0-1-0,0-1-12], [6:0-0-0,0-1	-12], [8:0-0-0,0-1-12]		14-0-0 7-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.83 BC 0.40 WB 0.11	DEFL. in (loc Vert(LL) -0.05 6- Vert(CT) -0.10 6- Horz(CT) 0.01	7 >999 2 7 >999 -	L/d PLATE 240 MT20 180 n/a	197/144
BCDL 10.0 LUMBER- TOP CHORD TOP CHORD 2x4 SP No.2 o BOT CHORD 2x4 SP No.3 REACTIONS. (Ib/size) 8=63: Max Horz 8=-13	r 2x4 SPF No.2 37/0-3-8 (min. 0-1-8), 6=637/0-3-8 (n	in. 0-1-8)	BOT CHORD Rig	d ceiling dire Tek recomme	ctly applied or 10-0-0 oc bracing.	0 oc purlins, except end verticals.
Max Uplift8=-9 FORCES. (Ib) - Max. Comp./	2(LC 12), 6=-92(LC 13) Max. Ten All forces 250 (lb) or less ;, 3-4=-612/126, 2-8=-570/208, 4-6=-5	except when shown. 70/208				

WEBS 3-7=0/291

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral

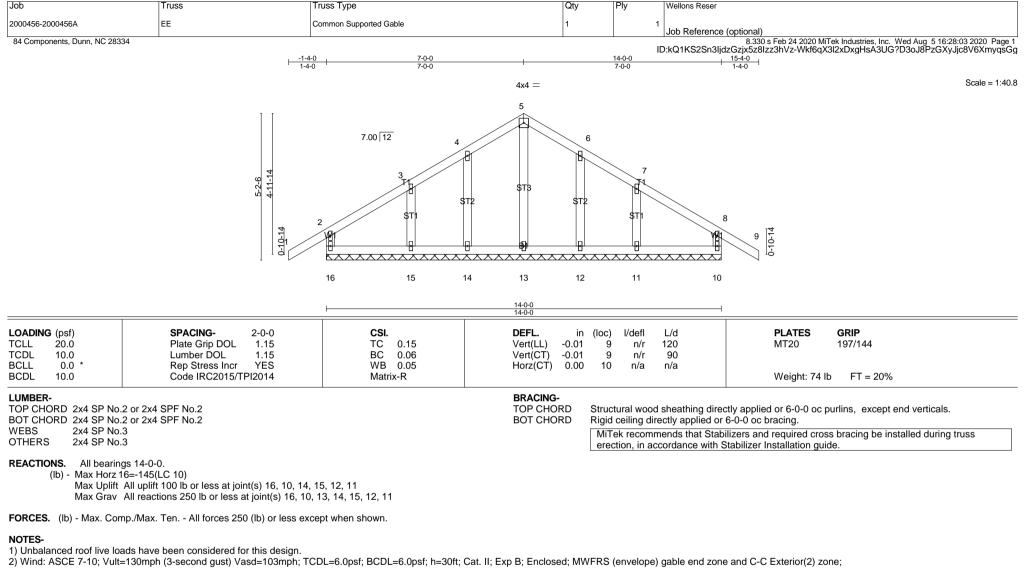
forces.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser	
2000456-2000456A	E1	Common	4		1 Job Reference (optional)	
84 Components, Dunn, NC 28334		-1-4-0 7-0-0 1-4-0 7-0-0	I	14-0-0 7-0-0		ab 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:01 2020 Page 1 hVz-aLXMPs1VXKyDRzjny3DX8ejp3cBb31wQ9q0?SuyqsGi
			4x6 =			Scale = 1:43.5
	5.26	7.00 12 7.00 12 7 7 7 5x9	3 W1 6 1.5x4	F2	4 5 5 5 5 5 5 5 5 5 5 5 5 5	
Plate Offsets (X Y) [2:0-1-	0,0-1-12], [4:0-1-0,0-1-12], [5:0-0-0,0-	7-0-0 7-0-0 1-12] [7:0-0-0 0-1-12]		14-0-0 7-0-0		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/dofi	L/d F	LATES GRIP
TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.83 BC 0.39 WB 0.11	DEFL. in (loc) Vert(LL) -0.05 6-7 Vert(CT) -0.11 6-7 Horz(CT) 0.01 5	′ >999 ′ >999	240 N 180 n/a	1720 197/144
BCDL10.0LUMBER- TOP CHORD2x4 SP No.2 cBOT CHORD2x4 SP No.2 cWEBS2x4 SP No.3		Matrix-MR	BOT CHORD Rigio	d ceiling di Fek recom	d sheathing directly applied or rectly applied or 10-0-0 oc br	quired cross bracing be installed during truss
Max Horz 7=1	42/0-3-8 (min. 0-1-8), 5=544/0-3-8 (i 38(LC 9) 92(LC 12), 5=-59(LC 13)	nin. 0-1-8)				
	/Max. Ten All forces 250 (lb) or less 9, 3-4=-612/127, 2-7=-572/208, 4-5=-/ , 5-6=-34/435					

WEBS 3-6=0/285

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.

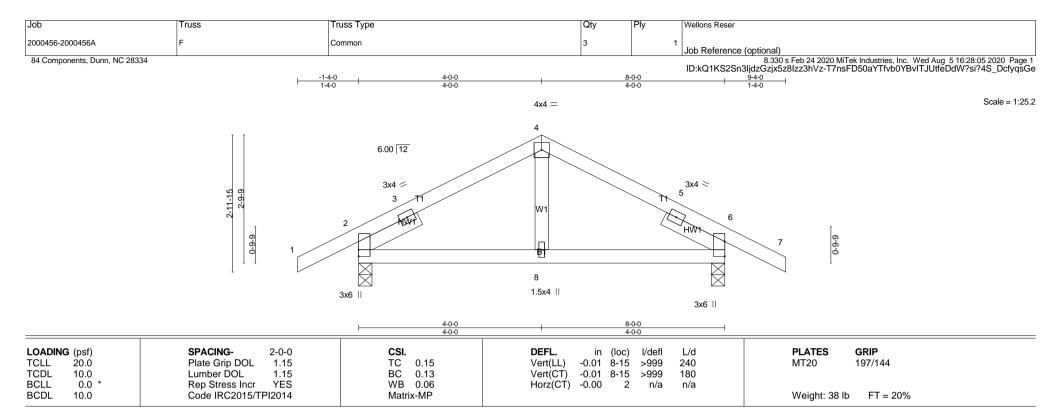
6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16, 10, 14, 15, 12, and 11. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

 TOP CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 BOT CHORD
 2x4 SP No.2 or 2x4 SPF No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x4 SP No.3 -ü 1-6-0, Right 2x4 SP No.3 -ü 1-6-0

REACTIONS. (lb/size) 2=400/0-3-8 (min. 0-1-8), 6=400/0-3-8 (min. 0-1-8) Max Horz 2=-45(LC 13) Max Uplift2=-65(LC 12), 6=-65(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-277/128, 4-5=-277/128

NOTES-

1) Unbalanced roof live loads have been considered for this design.

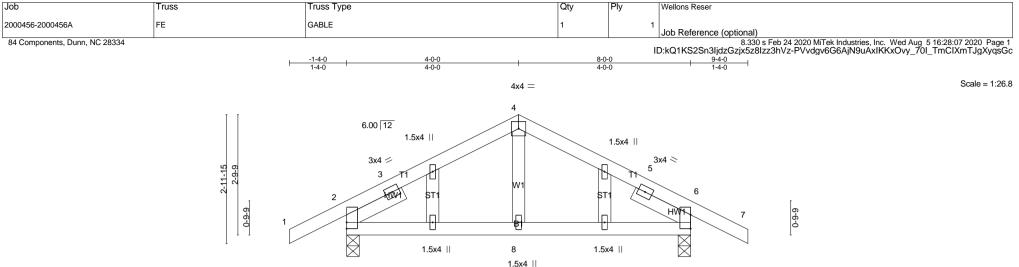
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 6. This connection is for uplift only and does not consider lateral

forces.


6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING-TOP CHORD

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

		4-0-0 4-0-0	<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.13 WB 0.06 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 8-19 >999 240 Vert(CT) -0.01 8-19 >999 180 Horz(CT) -0.00 2 n/a n/a	PLATES GRIP MT20 197/144 Weight: 41 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -ü 1-6-0, Right 2x4 SP No.3 -ü 1-6-0

REACTIONS. (lb/size) 2=400/0-3-8 (min. 0-1-8), 6=400/0-3-8 (min. 0-1-8) Max Horz 2=-45(LC 13) Max Uplift2=-65(LC 12), 6=-65(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-277/128, 4-5=-277/128

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10: Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=30ft: Cat. II: Exp B: Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

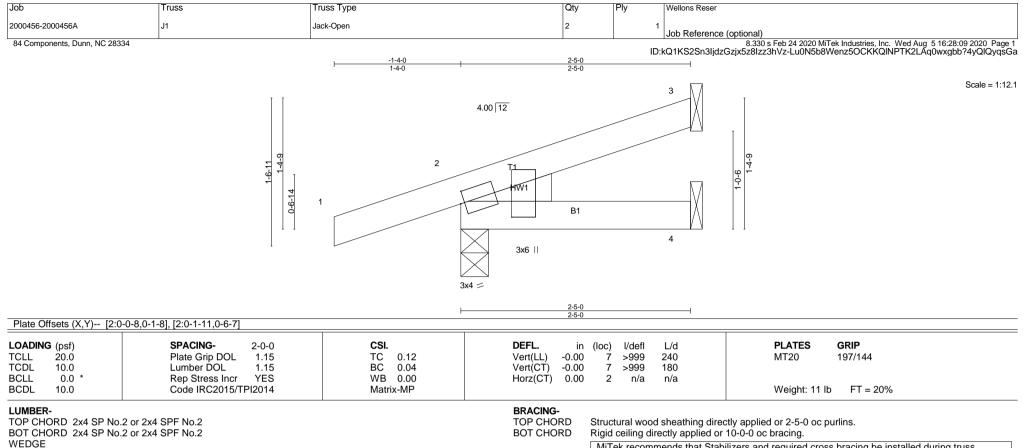
4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

3x6 ||

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=47/Mechanical, 2=197/0-3-8 (min. 0-1-8), 4=25/Mechanical Max Horz 2=53(LC 8) Max Uplift3=-21(LC 12), 2=-76(LC 8) Max Grav 3=47(LC 1), 2=197(LC 1), 4=37(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

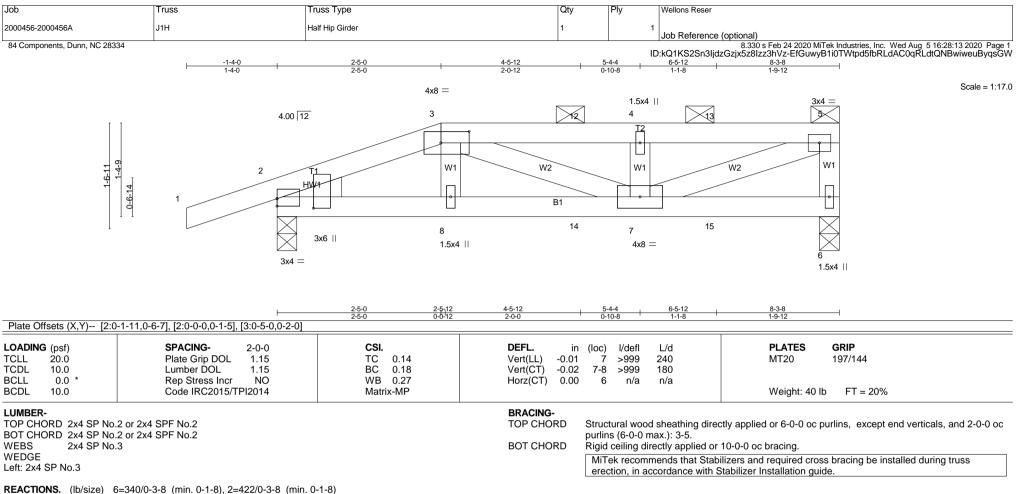
NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Max Uplift6=-66(LC 9), 2=-118(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-540/181, 3-12=-607/238, 4-12=-607/238, 4-13=-607/238, 5-13=-607/238, 5-6=-307/137

BOT CHORD 2-8=-205/492, 8-14=-201/496, 7-14=-201/496

WEBS 5-7=-252/651

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

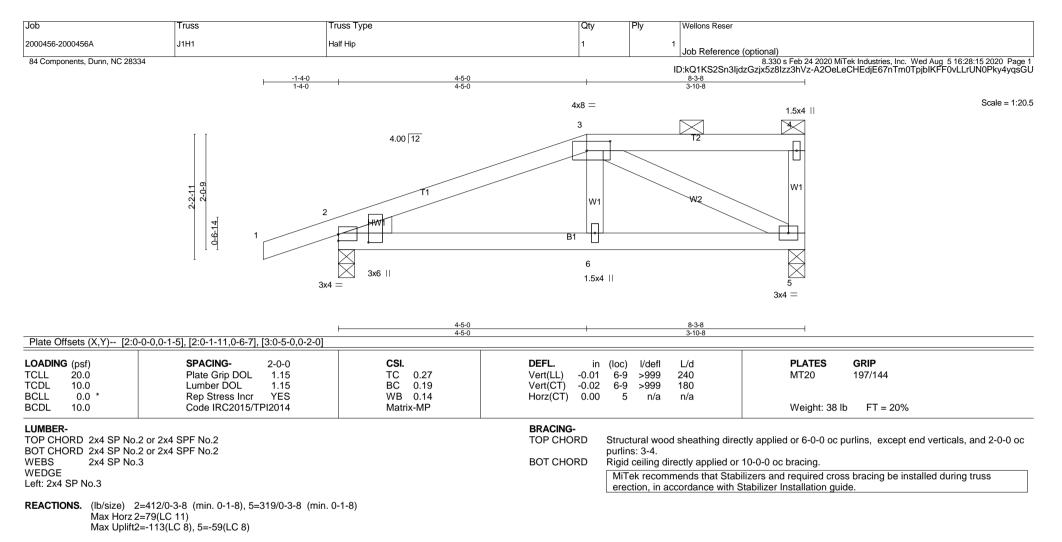
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 19 lb down and 49 lb up at 2-5-0, and 19 lb down and 46 lb up at 4-5-12, and 22 lb down and 52 lb up at 6-5-12 on top chord, and 8 lb down and 0 lb up at 2-5-12, and 8 lb down and 0 lb up at 4-5-12, and 17 lb down and 16 lb up at 6-5-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B) Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	J1H	Half Hip Girder	1	1	Job Reference (optional)
84 Components, Dunn, NC 28334				1	8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:13 2020 Page 2

8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:13 2020 Page 2 ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-EfGuwyB1i0TWtpd5fbRLdAC0qRLdtQNBwiweuByqsGW

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-9=-20 Concentrated Loads (lb) Vert: 8=-5(B) 13=-3(B) 14=-5(B) 15=-17(B)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-436/144

 BOT CHORD
 2-6=-177/379, 5-6=-174/388

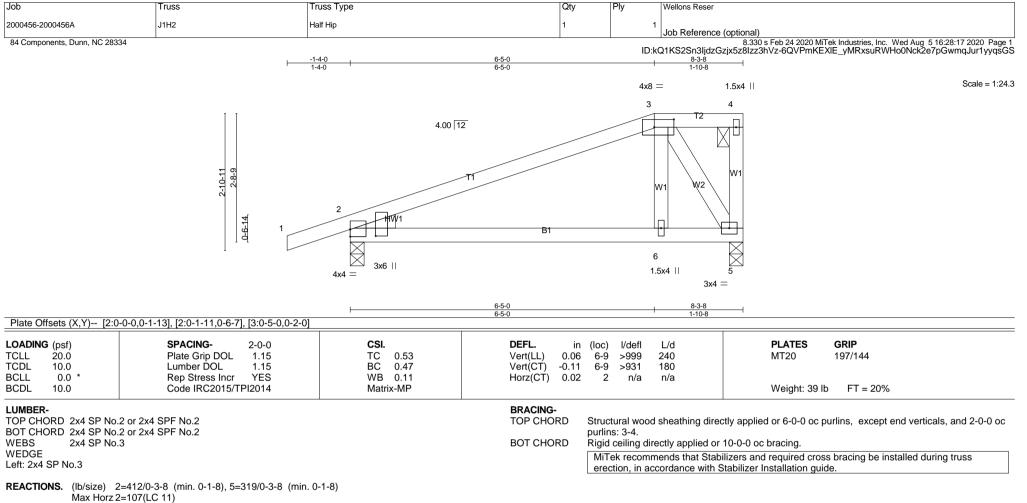
 WEBS
 3-5=-429/170

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Max Uplift2=-110(LC 8), 5=-62(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-299/92

WEBS 3-6=-11/276, 3-5=-420/168

NOTES-

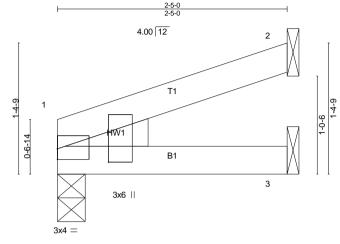
1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

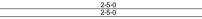
2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral


forces. 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	J2	Jack-Open	1	1	lab Deference (optional)
84 Components, Dunn, NC 28334					Job Reference (optional) 8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:19 2020 Page 1

ID:kQ1KS2Sn3lidzGzix5z8lzz3hVz-2pd9B?FoHsEdbk5F?rYltRS4asQmHB33ldNv5rvqsGQ

Scale = 1:12.1

Plate Offsets (X,Y)-- [1:0-0-0,0-1-5], [1:0-1-11,0-6-7]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) -0.00 6 >999 240	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00 6 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 1 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=57/Mechanical, 3=37/Mechanical, 1=94/0-3-8 (min. 0-1-8) Max Horz 1=30(LC 8) Max Uplift2=-24(LC 8), 3=-1(LC 8), 1=-9(LC 8) Max Grav 2=57(LC 1), 3=41(LC 3), 1=94(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

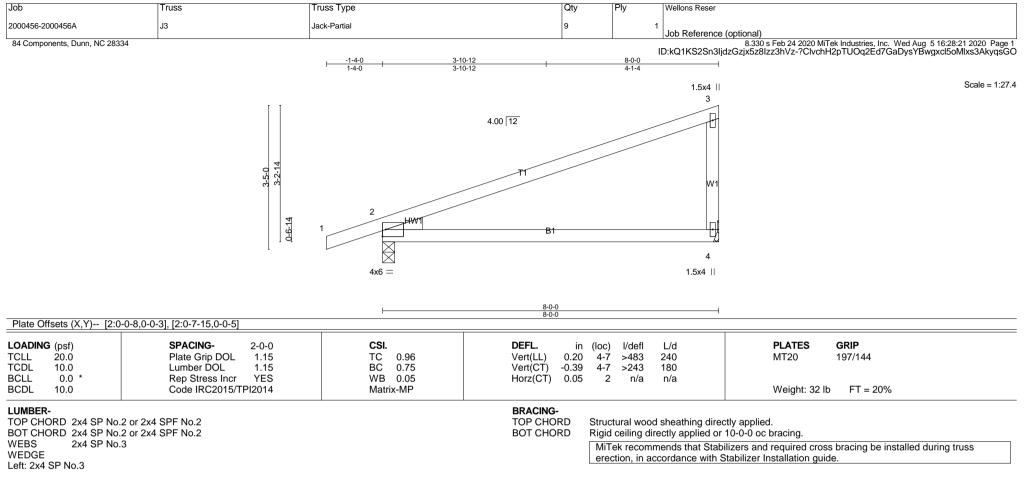
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-5-0 oc purlins. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

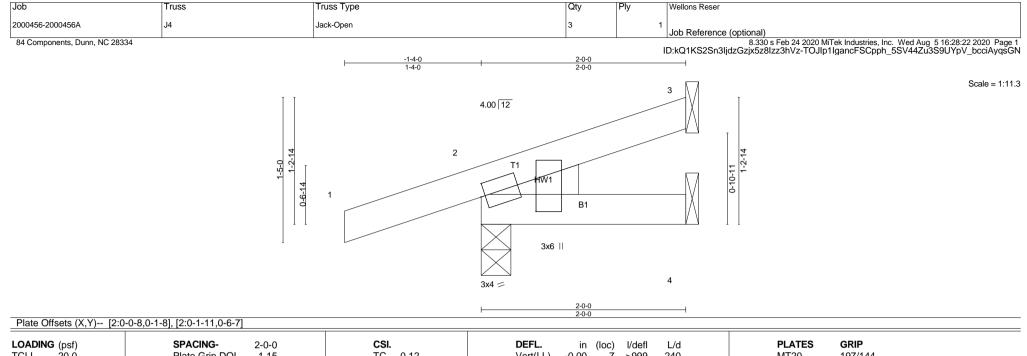
REACTIONS. (lb/size) 2=401/0-3-8 (min. 0-1-8), 4=307/Mechanical Max Horz 2=124(LC 8) Max Uplift2=-94(LC 8), 4=-76(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.00 7 >999 240	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 2 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 10 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD

ORD Structural wood sheathing directly applied or 2-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

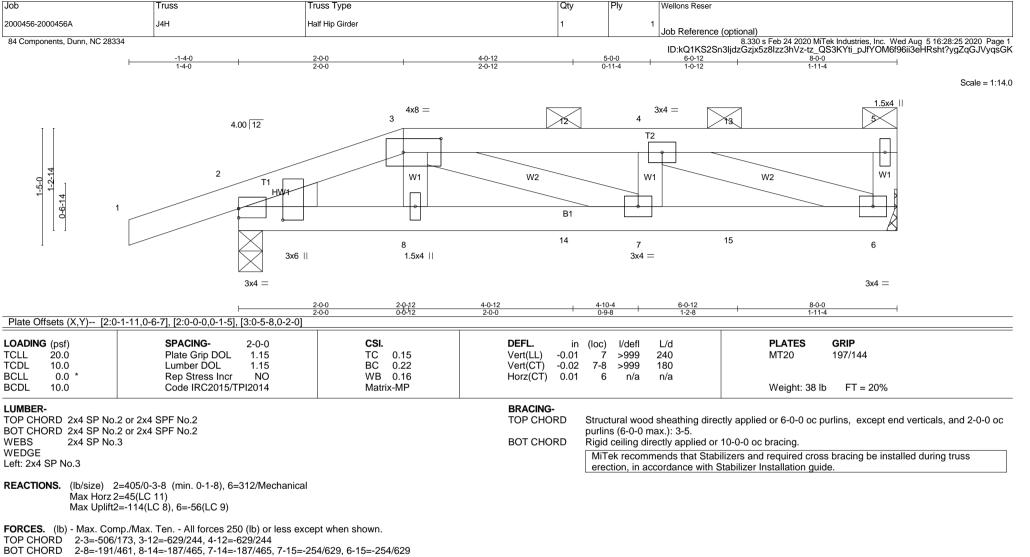
REACTIONS. (Ib/size) 3=34/Mechanical, 2=186/0-3-8 (min. 0-1-8), 4=18/Mechanical Max Horz 2=48(LC 8) Max Uplift3=-15(LC 12), 2=-76(LC 8) Max Grav 3=34(LC 1), 2=186(LC 1), 4=30(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed : end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WEBS 4-6=-663/256

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

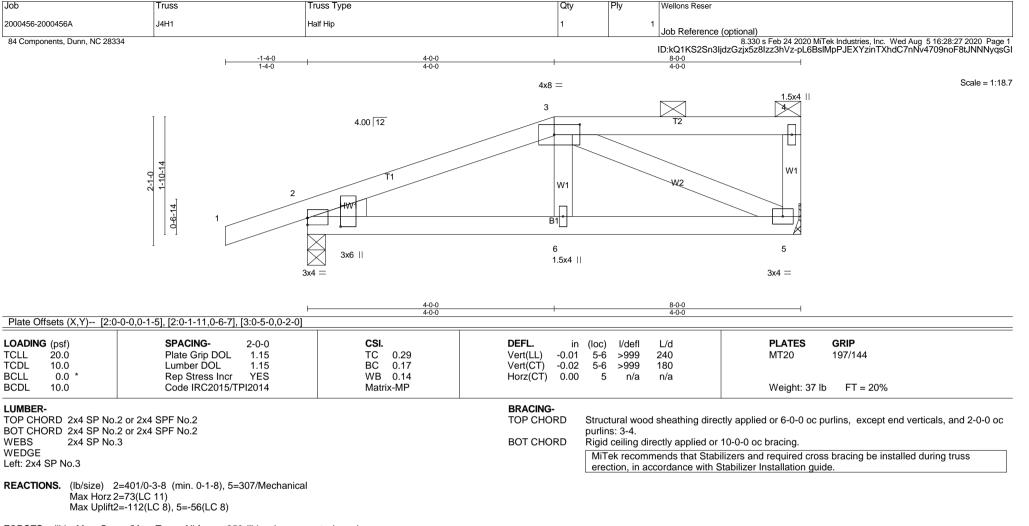
9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 13 lb down and 41 lb up at 2-0-0, and 13 lb down and 38 lb up at 4-0-12, and 5 lb down at 4-0-12, and 5 lb down at 6-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	J4H	Half Hip Girder	1	1	Job Reference (optional)
04.0 / D NO 00004					


84 Components, Dunn, NC 28334

NOTES-

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-9=-20 Concentrated Loads (lb) Vert: 8=-3(B) 14=-3(B) 15=-3(B)

8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:25 2020 Page 2 ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-tz_QS3KYti_pJfYOM6f96ii3eHRsht?ygZqGJVyqsGK

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-433/144

 BOT CHORD
 2-6=-176/379, 5-6=-173/388

 WEBS
 3-5=-421/167

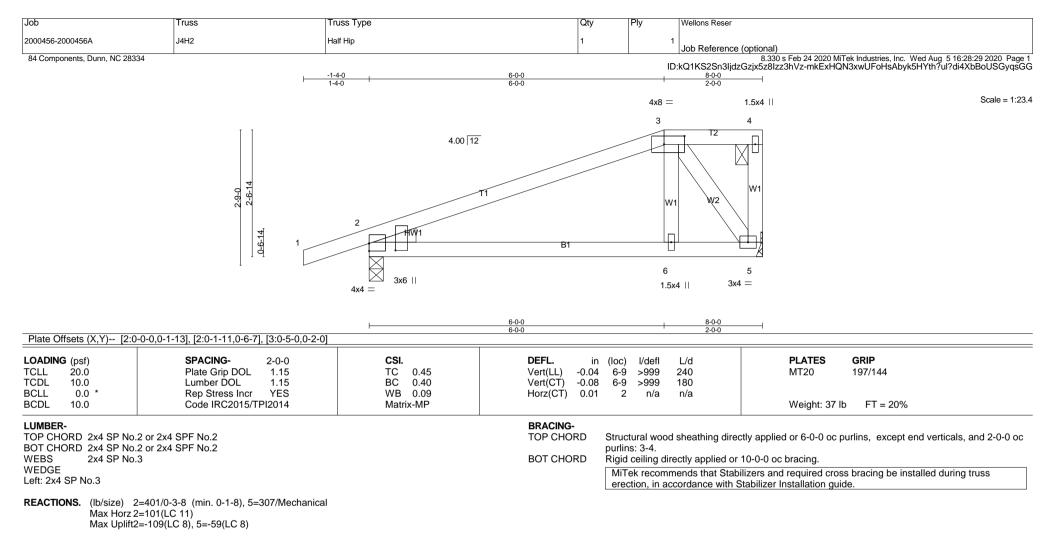
NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-299/95

WEBS 3-5=-392/161

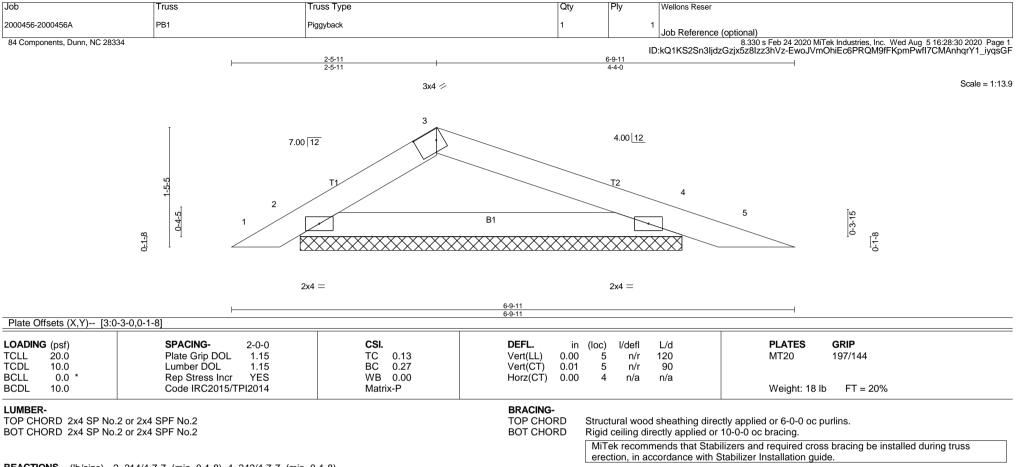
NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

REACTIONS. (Ib/size) 2=214/4-7-7 (min. 0-1-8), 4=242/4-7-7 (min. 0-1-8) Max Horz 2=-38(LC 10) Max Uplift2=-28(LC 12), 4=-66(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

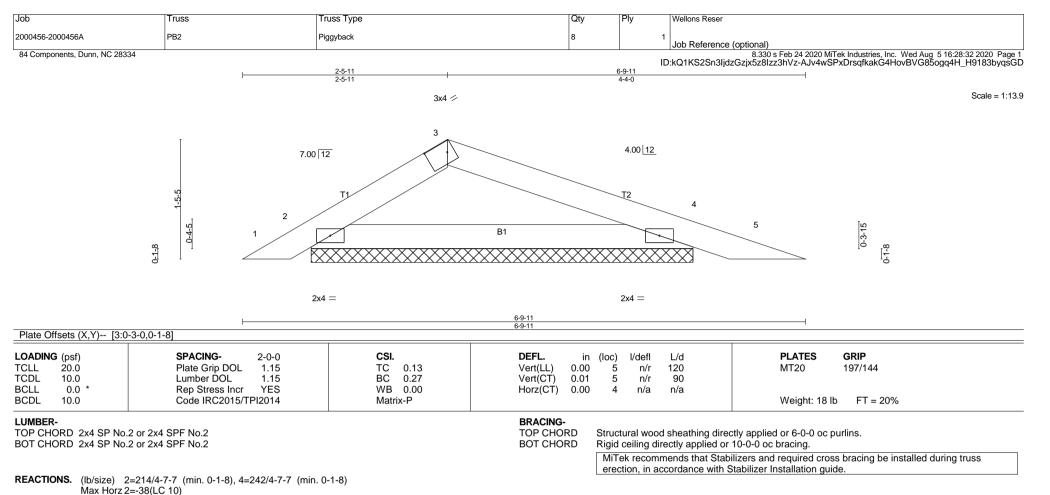
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 4. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Uplift2=-28(LC 12), 4=-66(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

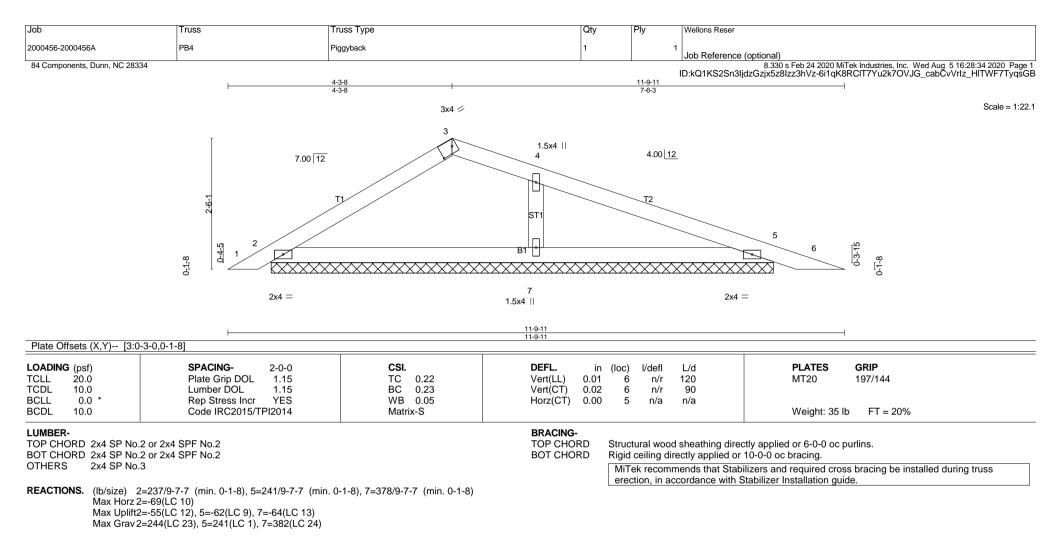
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-7=-255/173

NOTES-

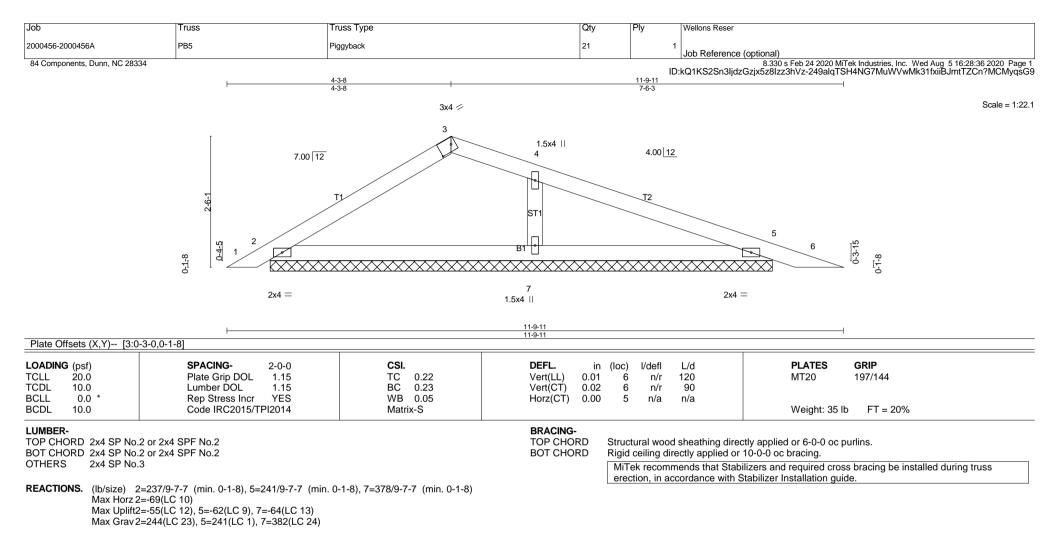
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral

forces.

7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-7=-255/173

NOTES-

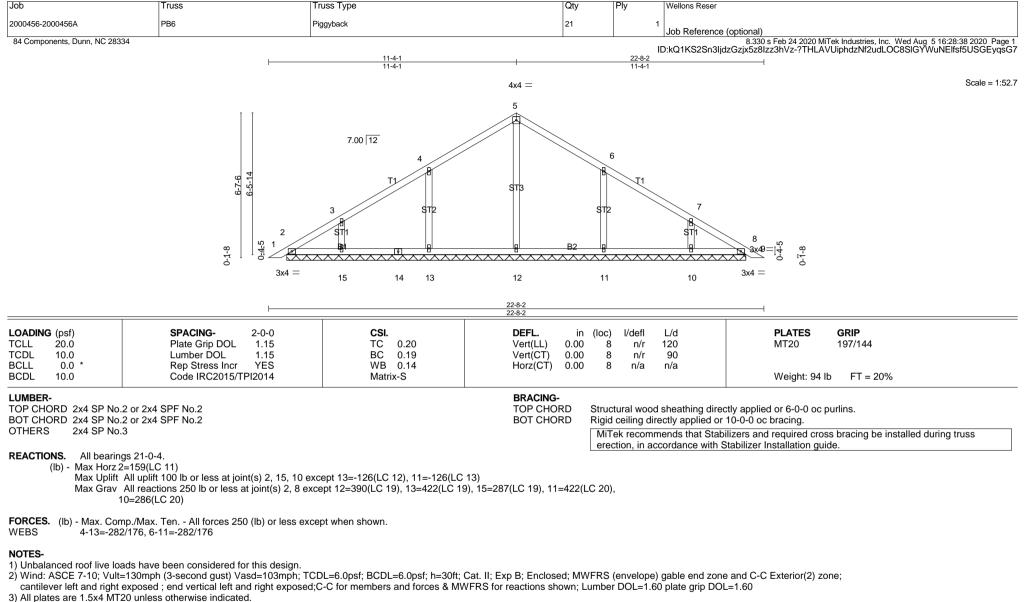
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral

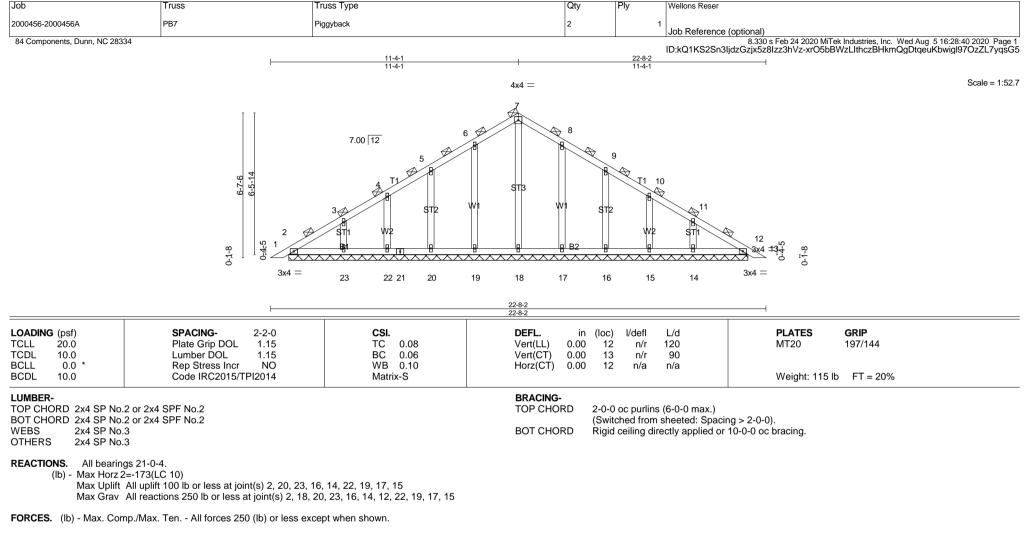
forces.

7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, 15, 11, and 10. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

NOTES-

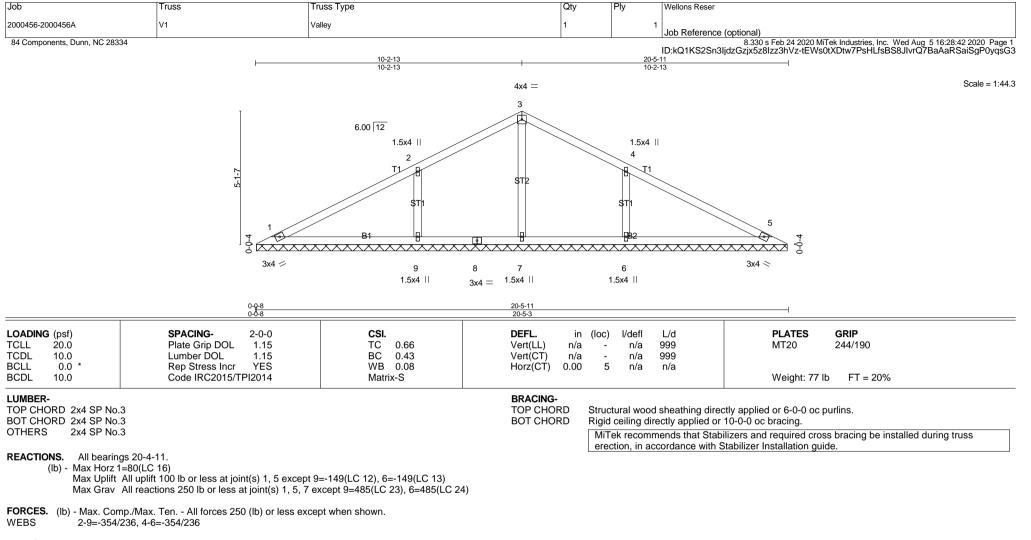
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) All plates are 1.5x4 MT20 unless otherwise indicated.

3) All plates are 1.5x4 M120 unless otherwise indicate

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 20, 23, 16, 14, 22, 19, 17, and 15. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

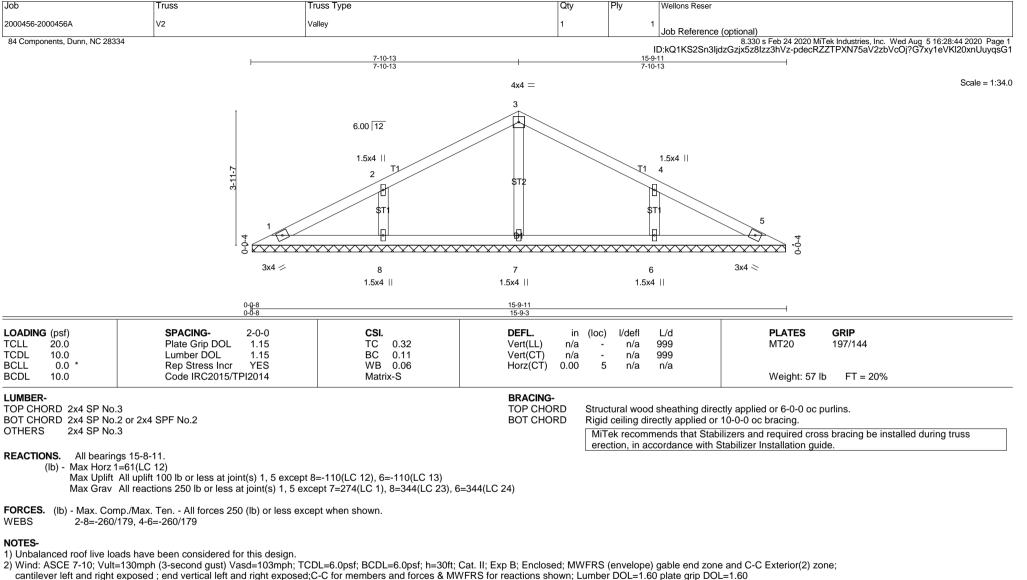
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

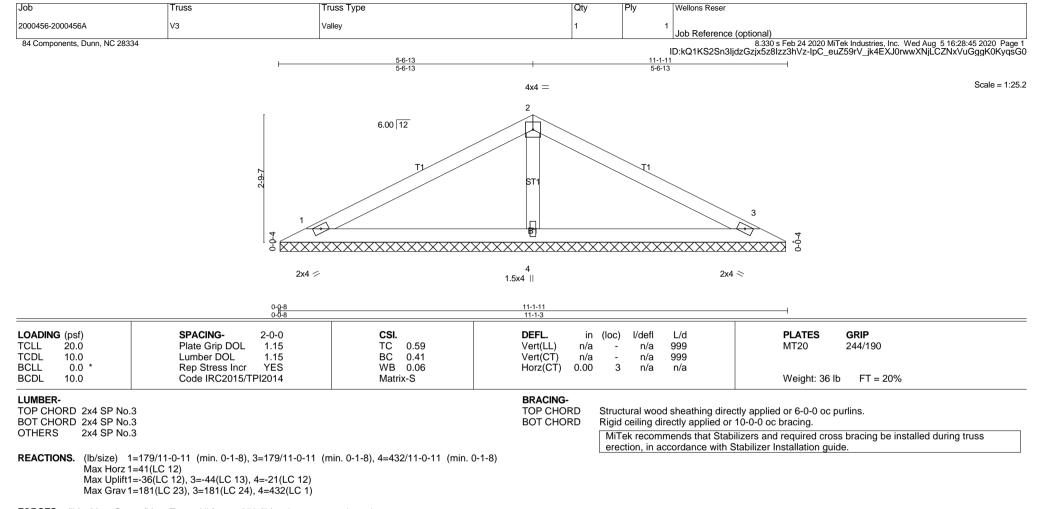
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 6. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-287/151

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Wellons Reser
2000456-2000456A	V4	Valley	1	1	1 Job Reference (optional)
84 Components, Dunn, NC 28334					100 Reference (optional) 8.330 s Feb 24 2020 MiTek Industries, Inc. Wed Aug 5 16:28:47 2020 Page ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-ECJI3abMhSliy2Edek2J0LcpC8r7rs?Bk_9R5Dygs
		3-2-13	1	6-5-11	ID:kQ1KS2Sn3IjdzGzjx5z8Izz3hVz-ECJI3abMhSliy2Edek2J0LcpC8r/rs?Bk_9R5Dyqs
		3-2-13	ļ	3-2-13	
			3x4 =		Scale = 1:1
	0-0-4	6.00 12 T1 1 2x4 =	2 B1		x4 %
		0- <u>0-8</u>	<u>6-5-11</u> 6-5-3		
Plate Offsets (X,Y) [2:0-2-		0-0-8	6-5-3		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.59 WB 0.00 Matrix-P	DEFL. in (loc Vert(LL) n/a - Vert(CT) n/a - Horz(CT) 0.00	n/a n/a	L/d PLATES GRIP 999 MT20 244/190 999 n/a Weight: 18 lb FT = 20%
	0000 IN 02013/11 12014	Math-F			Weight. 10 10 11 – 2076
LUMBER- TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3			BRACING- TOP CHORD Stru BOT CHORD Rigi	ctural wood I ceiling dire	od sheathing directly applied or 6-0-0 oc purlins. lirectly applied or 10-0-0 oc bracing.
					nmends that Stabilizers and required cross bracing be installed during truss accordance with Stabilizer Installation guide.

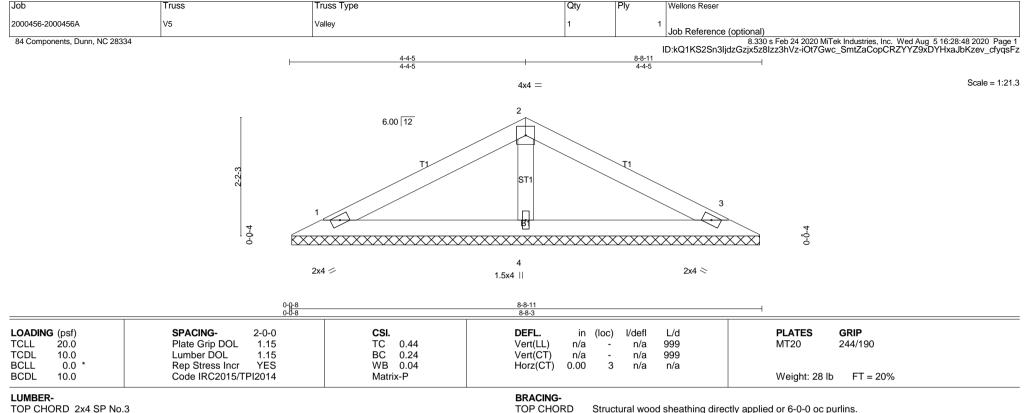
REACTIONS. (lb/size) 1=208/6-4-11 (min. 0-1-8), 3=208/6-4-11 (min. 0-1-8) Max Horz 1=-22(LC 13) Max Uplift1=-25(LC 12), 3=-25(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=151/8-7-11 (min. 0-1-8), 3=151/8-7-11 (min. 0-1-8), 4=296/8-7-11 (min. 0-1-8) Max Horz 1=31(LC 12) Max Uplift1=-35(LC 12), 3=-41(LC 13), 4=-1(LC 12)

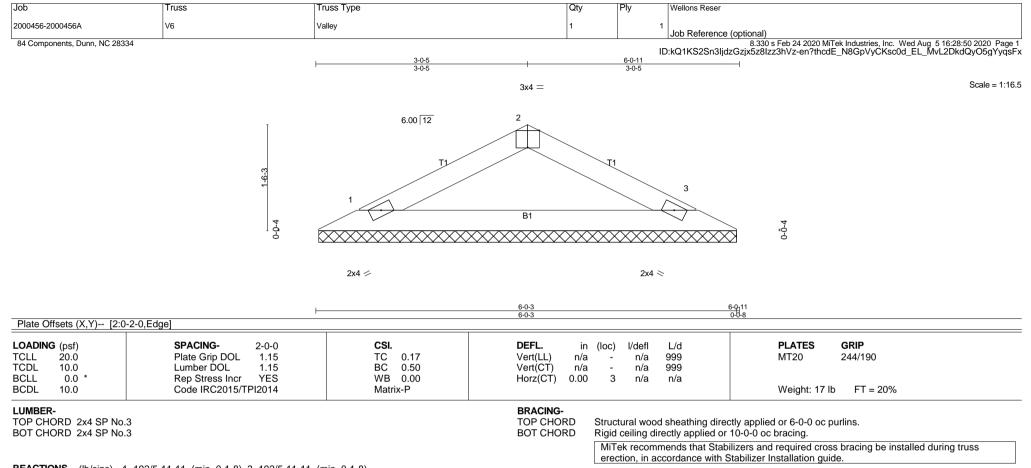
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (Ib/size) 1=192/5-11-11 (min. 0-1-8), 3=192/5-11-11 (min. 0-1-8) Max Horz 1=-20(LC 13) Max Uplift1=-23(LC 12), 3=-23(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.