

RE: 21070157-B

Lot 97 Canterbury-Roof-62979DJJ

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: J&R Homes LLC. Project Name: 21070157-B Lot/Block: Model: 62979 Address: Subdivision: City: State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

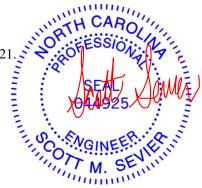
Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 49 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	146245802	A01	7/27/2021	21	146245822	C05	7/27/2021
2	146245803	A02	7/27/2021	22	l46245823	D01	7/27/2021
3	146245804	A03	7/27/2021	23	146245824	D02	7/27/2021
4	146245805	A04	7/27/2021	24	l46245825	E01	7/27/2021
5	146245806	A05	7/27/2021	25	l46245826	E02	7/27/2021
6	146245807	A06	7/27/2021	26	146245827	EJ01	7/27/2021
7	146245808	A07	7/27/2021	27	l46245828	G01	7/27/2021
8	146245809	A08	7/27/2021	28	l46245829	G02	7/27/2021
9	l46245810	A09	7/27/2021	29	I46245830	H01	7/27/2021
10	l46245811	A10	7/27/2021	30	l46245831	H02	7/27/2021
11	l46245812	B01	7/27/2021	31	l46245832	HJ01	7/27/2021
12	l46245813	B02	7/27/2021	32	146245833	HJ02	7/27/2021
13	146245814	B03	7/27/2021	33	146245834	J01	7/27/2021
14	l46245815	B04	7/27/2021	34	I46245835	J03	7/27/2021
15	l46245816	B05	7/27/2021	35	I46245836	J04	7/27/2021
16	l46245817	B06	7/27/2021	36	146245837	J05	7/27/2021
17	l46245818	C01	7/27/2021	37	I46245838	J06	7/27/2021
18	l46245819	C02	7/27/2021	38	I46245839	J07	7/27/2021
19	146245820	C03	7/27/2021	39	l46245840	J08	7/27/2021
20	I46245821	C04	7/27/2021	40	I46245841	J09	7/27/2021

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision


based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

RE: 21070157-B - Lot 97 Canterbury-Roof-62979DJJ

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: J&R Homes LLC. Project Name: 21070157-B Lot/Block: Subdivision: Address: City, County: State: NC

No.	Seal#	Truss Name	Date
41	146245842	PB01	7/27/2021
42	146245843	PB02	7/27/2021
43	146245844	PB03	7/27/2021
44	146245845	VL01	7/27/2021
45	146245846	VL02	7/27/2021
46	146245847	VL03	7/27/2021
47	146245848	VL04	7/27/2021
48	146245849	VL05	7/27/2021
49	146245850	VL06	7/27/2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A01	Roof Special Girder	1	1	Job Reference (optional)	146245802

9-8-6

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:29 ID:1SIsKyPGgJpmxX2zehiC8TzH2pb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

25-10-11 29-3-0 23-4-11 27-11-0 11 27-11-0 0-3-8 2-0-5 1-4-0 2-6-0 7-8-8 3-3-5 4-5-3 12-8-8 17-8-8 23-1-3 4-5-3 5-0-0 5-4-11 5-0-0 4x5 II 6 8¹² 2x4 II 28 29 2x4 II 3x5 🍫 27 26 9-5-11 5 7 -1-8 4 3x5 3 NAILED 30 6x8= $8 \times 10 =$ 14 " 0-2-5 8 31 9 0-0-35 20 18 36 🕀 11 12 X 24 33 21 19 34 16 2**3**2 15 14 13 8x10= 4x5= 4x8= 8x10= 8x10= 2x4= 3x8= 2x4 II NAILED 8x10= 2x4= 4x6= 5x8= 17-8-8 17-1-13 16-0-017-2-13 8-3-3 8-3-3 7-8-8 8-2-4 11-0-8 3-3-5 0-5-112-9-5 0-1-0 <u>26-0-7</u> 27-11-0 2-9-8 1-10-9 4-5-3 14-4-8 23-2-15 4-5-3 3-4-0 1-7-8 5-6-7 1-1-13

0-1-0

Scale = 1:75.8

Plate Offsets	(X, Y): [8:0-2-14,0-2-5] [9·0-2-12 0-0-12] [*	2.Eque (-3-12] [14.0-4	3-8 0-1-8] [25·Eda	e 0-6-12	0-5-1	1					
		1		, 5 12], [14.0-0		0,0-0-12							
Loading	(psf)	Spacing Plate Grip DOL	1-11-4		CSI TC	0.00	DEFL	in	(loc) 18-20	l/defl >999	L/d	PLATES MT20	GRIP 244/190
TCLL (roof) Snow (Pf)	20.0 20.0	Lumber DOL	1.15 1.15		BC	0.88 0.92	. ,	-0.17	18-20	>999 >827	240 180	MI 20	244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.92		0.03	10-20	>027 n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH	0.75	11012(01)	0.03	12	11/a	n/a		
BCDL	10.0	Code	11/0201	5/1712014	Wath - Wish							Weight: 219 lb	FT = 20%
					7.40.16.400	. k. (0					0.	, ,	
LUMBER TOP CHORD	2x4 SP No.2		2)		7-10; Vult=130mp ph; TCDL=6.0psf;					CASE(S)			Increase=1.15, Plate
BOT CHORD		ot* 22-17:2x4 SP No.2			B; Enclosed; MWF					crease=		alanceu). Lumbei	Increase=1.15, Flat
BOT CHORD	16-12:2x6 SP 2400F		,		ever left and right e					niform Lo		h/ft)	
WEBS	2x4 SP No.3	2.02			oosed; Lumber DC				0		,	,	, 8-9=-58, 9-10=-58,
BRACING				DOL=1.60								-25=-19, 17-22=-	
TOP CHORD	Structural wood she	athing directly applied	J 3)		E 7-10; Pr=20.0 ps				C	oncentra	ted Lo	ads (lb)	
		, and 2-0-0 oc purlins			late DOL=1.15); P					Vert: 9=	65 (F)	, 13=-1 (F), 33=-1	00, 34=-100
	(3-5-14 max.): 8-9.	,			=1.15 Plate DOL=	=1.15); C	ategory II; Ex	ар B;					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	4	Fully Exp.; C									
	bracing. Except:		4)	design.	snow loads have	been col	nsidered for th	nis					
	6-0-0 oc bracing: 17	-22	5)		as been designed	for areat	er of min roof	livo					
REACTIONS	(size) 12=0-3-8,	25=0-3-8	5)		psf or 1.00 times f								
	Max Horiz 25=251 (I	_C 11)			on-concurrent with								
	Max Uplift 12=-63 (L		6)		unit load placed or			-8-8					
	Max Grav 12=1399		; 22)		l, supported at two								
FORCES	(lb) - Maximum Corr	pression/Maximum	7)	Provide ade	quate drainage to	prevent	water ponding] .					
	Tension		8)		as been designed t								
TOP CHORD		, ,			ad nonconcurrent								
	,	256/24, 7-8=-2254/0,	9)		has been designed)psf					
	2-25=-1318/13, 10-1	273/31, 10-11=0/76,			m chord in all area		0						1111
BOT CHORD	,				by 2-00-00 wide w							WITH CA	Roille
BOT ONORD	,	1=0/1150, 15-19=0/1	150. 10		ny other members /IiTek connectors r						0	011:00	in the
		4=0/1194, 12-13=0/12			ring walls due to U						A.	0.00000	RAIN
	20-22=-11/19, 18-20)=-11/19, 17-18=-11/1	9		s for uplift only and					-4			Juner
WEBS	3-24=-405/0, 3-23=0)/308, 5-23=-347/196		forces.							÷ (:4	1.1.2
	22-23=-52/928, 6-22		11) This truss is	designed in accor	dance w	ith the 2015					SEA	L 1 E
	6-17=-31/1569, 15-1				Residential Code			nd		=			• •
	7-15=-431/271, 8-15		2		nd referenced star					=		0449	25 : 2
		=0/1143, 9-12=-1443/ 9=-127/0, 9-13=0/216			Irlin representation			size		-		N	1.5
	9-14=0/1802				ation of the purlin a	along the	e top and/or					1. 6.	aini
NOTES	0 17-0/1002			bottom chor		4011-20.00	") too noile				-10	CO NGIN	EENAN
NOTES	od roof live loade hove	boon considered for	13	NDS guidlin	dicates 2-12d (0.1-	48°X3.25) toe-nails pe	er			11	0	ev in
 Unbalanced roof live loads have been considered for this design. 										SEIN			
uns desigi			14		are noted as front			000				in the second se	nnn.
				01 110 11000								Mov	1 21 2021

818 Soundside Road Edenton, NC 27932

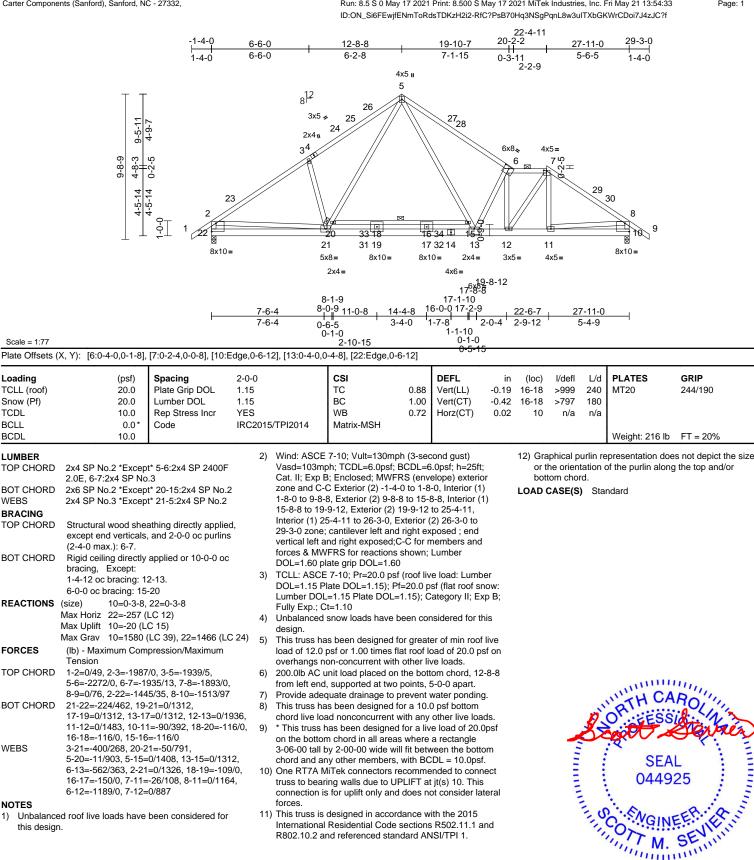
May 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A02	Roof Special	1	1	Job Reference (optional)	146245803

TCDL

BCLL


BCDL

WEBS

WEBS

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:33

Page: 1

May 21,2021

MULLIN III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A03	Roof Special	1	1	Job Reference (optional)	146245804

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:33 Page: 1 ID:t3UONWS06LIRQbBO_sZmVVzH2a1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 18-10-11 16-8-2 -1-4-0 |____| 1-4-0 29-3-0 16-3-15 27-11-0 6-6-0 12-8-8 23-3-1 3-7-7 0-4-3 2-2-9 -++ 6-6-0 6-2-8 4-7-15 1-4-0 4-4-7 4x6 II 5 27 8¹² 4x5💊 4x5= 3x5 🍫 26 28 7-0-3 6 -2° ⊒-2° 25 2x4 🛚 ÷ 3x5、 34 29 9-8-9 8 6-9-15 6-9-15 ³⁰31 24 9 34 19 17 35 🗉 10 $M_{\rm o}$ 123 Ø Ø 22 32 20 18 33 15 14 13 12 8x10= 8x10= 5x8= 8x10= 8x10= 2x4= 3x5= 4x5= 17-8-8 17-0-219-0-7 16-0-017-1-1 1-7-8 1-0 2x4= 8-1-9 8-0-9 <u>11-0-8</u> 7-6-3 14-4-8 23-3-1 27-11-0 4 7-6-3 3-4-0 4-2-11 4-7-15 0-6-5 0-1-0 1-0-2 0-0-15 2-10-15 Plate Offsets (X, Y): [7:0-2-4,0-0-8], [11:Edge,0-6-12], [14:0-5-0,0-4-8], [23:Edge,0-6-12]

	A, T). [7.0-2-4,0-0-6],	[11.Euge,0-0-12], [14	0-3-0,0-	4-0], [23.Euge,	0-0-12]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.79 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-19 17-19 11	l/defl >999 >853 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 *Excep 15-11:2x6 SP 2400F 2x4 SP No.3 *Excep 14-5:2x4 SP No.1 Structural wood she 3-4-13 oc purlins, e 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing. Except:	t* 21-16:2x4 SP No.1, 2.0E t* 22-5:2x4 SP No.2, athing directly applied xcept end verticals, an -7 max.): 6-7. applied or 10-0-0 oc	d	Vasd=103mp Cat. II; Exp E zone and C-1 1-8-0 to 9-8-1 15-8-8 to 16- (1) 21-10-11 zone; cantile and right exp MWFRS for grip DOL=1.6 TCLL: ASCE	7-10; Vult=130mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF C Exterior (2) -1-4- 3, Exterior (2) 9-8- 3-9, Exterior (2) 16 to 26-3-0, Exterior ver left and right ex osed;C-C for mem reactions shown; L 50 7-10; Pr=20.0 psf ate DOL=1.15); Pf	3CDL=6 RS (env 0 to 1-8 3 to 15- 5-3-9 to (2) 26- xposed ubers ar umber	.0psf; h=25ft; elope) exterio -0, Interior (1) 3-8, Interior (1 21-10-11, Intr 3-0 to 29-3-0 ; end vertical d forces & DOL=1.60 pla e load: Lumb	or) erior left te er	or tl	ne orien om choi	tation o rd.	of the purlin along	s not depict the size the top and/or
6-0-0 oc bracing: 16-21 WEBS 1 Row at midpt 6-14 REACTIONS (size) 11=0-3-8, 23=0-3-8 Max Horiz 23=-257 (LC 12) Max Uplift 11=-21 (LC 15) Max Grav 11=1499 (LC 39), 23=1465 (LC 24) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/49, 2-3=-1980/0, 3-5=-1932/24, 5-6=-2247/50, 6-7=-1564/0, 7-8=-1716/17, 8-9=-1854/0, 9-10=0/49, 2-23=-1440/45,			24) ⁵⁾ 6) 7)	 Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 200.0lb AC unit load placed on the bottom chord, 12-8-8 from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 						ROLING			
9-11=-1417/89 BOT CHORD 22-23=-221/469, 20-22=0/1251, 18-20=0/1251, 14-18=0/1251, 13-14=0/1414 12-13=0/1466, 11-12=-18/282, 19-21=-51/0, 17-19=-51/0, 16-17=-51/0				 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 							Setter		
WEBS 7-13=-510, 10 ⁻¹ -5170 9-12=0/1224, 21-22=-59/800, 5-21=-25/888, 3-22=-401/271, 5-16=-7/1595, 14-16=-40/1530, 6-14=-1348/91, 7-14=0/1054, 8-12=-166/38, 19-20=-107/0, 17-18=-142/0 NOTES 1) Unbalanced roof live loads have been considered for this design.				 chord and any other members, with BCDL = 10.0psf. O) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces. 1) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 						25 ERIELUU			

Scale = 1:77

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A04	Roof Special	1	1	Job Reference (optional)	146245805

Scale = 1:73.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

BOT CHORD

TCDL

BCLL

BCDL

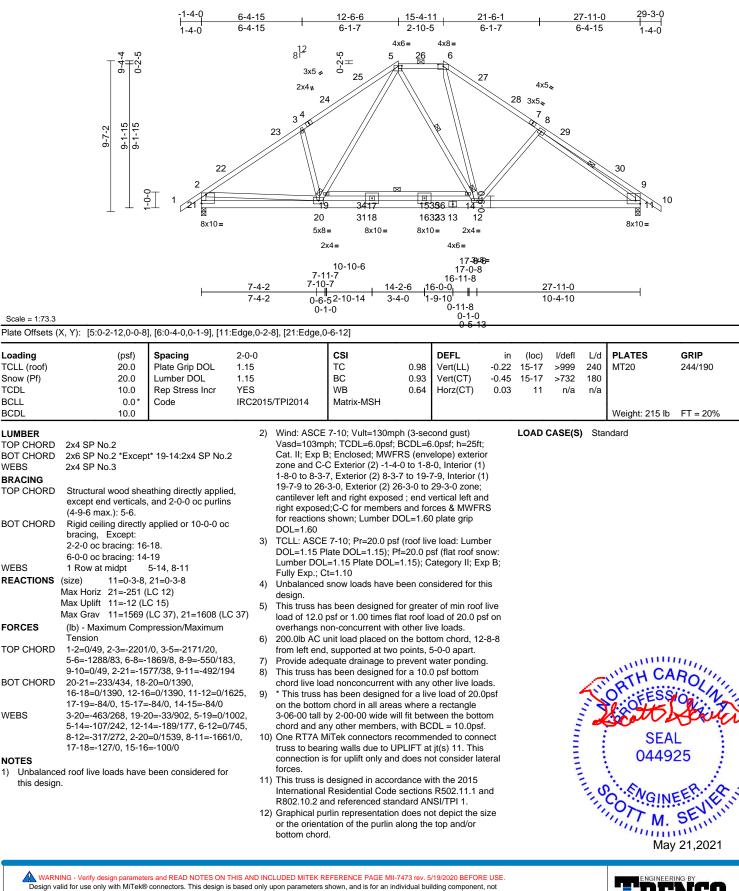
WEBS

WEBS

FORCES

WEBS

NOTES

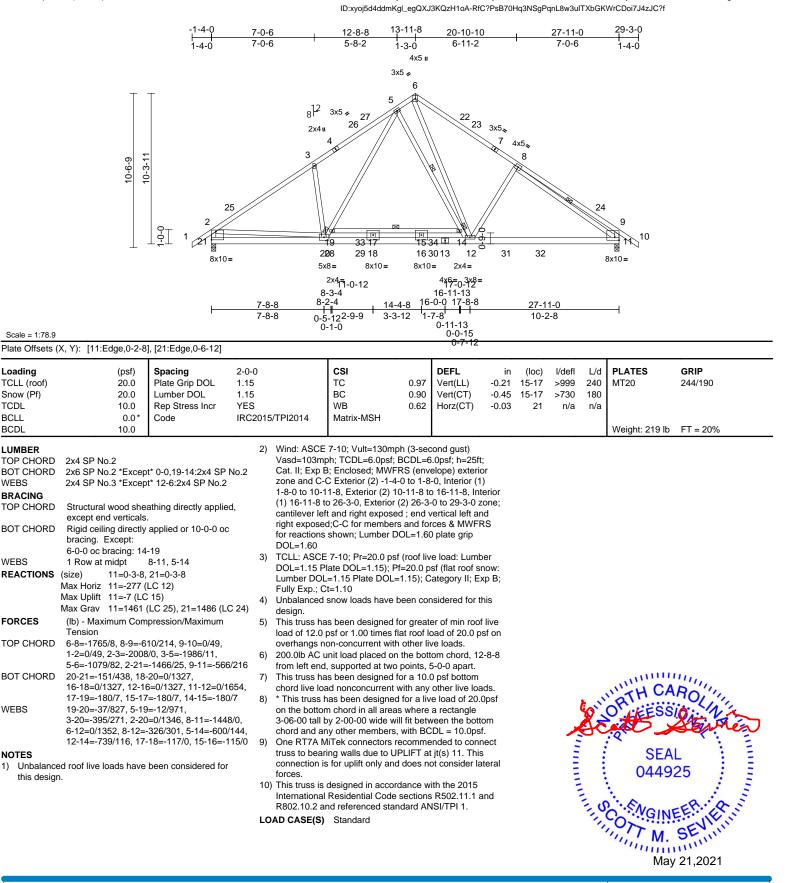

TOP CHORD

BRACING

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:34 ID:AqEu1kvvvv6S1vA4v49XHczH2T_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A05	Common	1	1	Job Reference (optional)	146245806

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:35

Page: 1

818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Truss Type Qty		Ply	Lot 97 Canterbury-Roof-62979DJJ		
21070157-B	A06	Common	1	1	Job Reference (optional)	146245807	

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:36 ID:onJyMF_rcjjtDVdNkt2RrLzH1dy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.6

Plate Offsets (X, Y): [2:0-2-8,0-1-12]

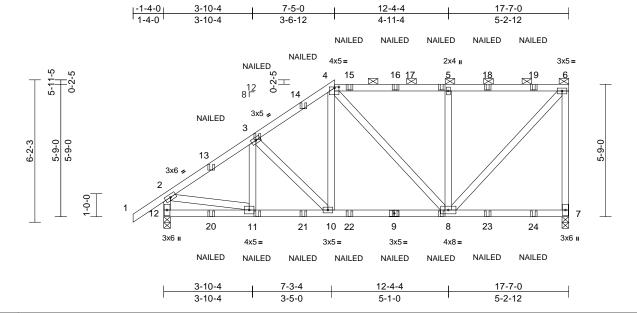
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.76 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.31 0.01	(loc) 7-9 9-10 7	l/defl >999 >667 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 10=350 (L Max Uplift 7=-122 (L Max Grav 7=797 (LC (lb) - Maximum Com Tension 1-2=0/48, 2-3=-486// 5-6=-205/218, 2-10=	applied or 10-0-0 oc 3-10, 6-7, 5-7 0=0-3-8 .C 11) C 14), 10=-97 (LC 14 C 24), 10=778 (LC 28) pression/Maximum 202, 3-5=-687/217, -482/209, 6-7=-186/1	l or 6) 7) 8)) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottoo 3-06-00 tall h chord and an One RT7A M truss to bear This connec lateral forces This truss is International	designed in accord Residential Code s nd referenced stand	or great at roof l other li or a 10. rith any for a liv where fit betw with BC comme LIFT a and do ance w sections	er of min rood pad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps ended to conr i jt(s) 10 and ies not consid ith the 2015 s R502.11.1 a	f live sf on ads. Opsf om f. nect 7. der					
BOT CHORD WEBS NOTES 1) Unbalance this design	5-9=-163/741, 3-9=- 5-7=-688/127 ed roof live loads have								10	NITH CA	ROLIN		

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 10-11-8, Exterior (2) 10-11-8 to 17-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL


044925

anninninn,

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A07	Half Hip Girder	1	1	Job Reference (optional)	146245808

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:36 ID:fLDmzZAu70Jojg4t?YFZsIzH1YY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-2-4,0-0-8]

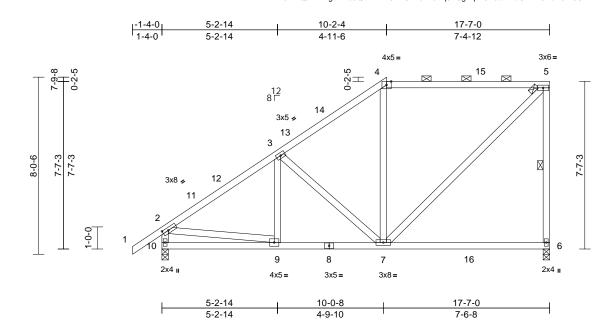
Scale = 1:50

CLL (mod) 20.0 Plate Grip DOL 1.15 TC 0.75 Vert(LL) 0.05 8-10 >999 240 DL 10.0 Rep Stress Incr NO Vert(CT) -0.06 8-10 >999 240 MEER 0.0* Code IRC2015/TPI2014 Matrix-MSH Vert(CT) -0.01 7 n/a N/a MBER 0.0* 2x4 SP No.2 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15; Pf=20.0 psf (flat roof snow: Dotend roof roof psf (flat roof snow: Psr (flat roo			-											
 Jow (PP) JDL JDL<	Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
DL 10.0 Reg Stress Incr NO WB 0.81 Horz(CT) -0.01 7 n/a weight: 118 lb FT = 20% MBER 0.01 0.01 DCL 1.00 ND Code IRC2015/TP12014 WB 0.81 Horz(CT) -0.01 7 n/a weight: 118 lb FT = 20% MBER DP CHORD 2x4 SP No.2 TCLL: ASCE 7-10; Pr=20.0 pdf (roof Itwo load: Lumber DCL=1.15); Pl=20.0 pdf (roof Itwo load: 12.0 pdf (roof Itwo load	TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	0.05	8-10	>999	240	MT20	244/190
Cl.L 0.0 ⁺ Code IRC2015/TP12014 Matrix-MSH Weight: 118 lb FT = 20% MBER PC HORD 2x4 SP No.2 Structural wood sheathing directly applied or 4-9-10 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-12=216(D, 2-3-1349/617, 3-4-1104/64, 4-5=-83/356, 5-6=-860/554, 6-7=-1064/735, 2-12=-1165/5008 3-11-42-24/23, 10-11-433/102, 2-11-4-35/919 3-12-000 3-12-00000000000000000000000000000000000	Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.06	8-10	>999	180		
 10.0 MBER PC CHORD 2x4 SP No.2 TCLL: ASCE 7-10; Pr=20.0 ps (rool live load: Lumber DOL=1.15 Plate DOL=1.15); Plate	TCDL	10.0	Rep Stress Incr	NO		WB	0.81	Horz(CT)	-0.01	7	n/a	n/a		
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15) Pis20.0 psf (roof live load: Lumber DOL=1.15) Pis20.0 psf (lat roof snow: Lumber DOL=1.15) Pis20.0 psf (lat roof live load: Lumber Inditates 3.10d (0.1487x37) or 3.12d (0.1487x37) or 3.1	BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
 Di Choro Di 2x4 SP No.2 DT Choro Di 2x4 SP No.2 DT Choro Di 2x4 SP No.3 ACCINOS Structural wood sheathing directly applied or 4-9-10 oc purlins, except end verticals, and 2-9-0 oc purlins (5-9-11 max); 4-6. DT CHORD Structural wood sheathing directly applied or 7-5-7 oc bracing. DT CHORD Kigid ceiling directly applied or 7-5-7 oc bracing. DT CHORD Max Horiz 12-220 (LC 50) Max Horiz 12-220 (LC 50) Max Grav 7 =1147 (LC 35), 12=1227 (LC 22) DRCES (b). Maximum Compression/Maximum Tension PC CHORD 1-2-204g, 2.3-1349/617, 3-4-1104/646, 4-5-863/556, 5-6-860/554, 6-7=-1064/755, 2-110- Max Grav 7 =1147 (LC 35), 12=1227 (LC 22), 2-11=-35/919 DT CHORD 11-12-248/233, 10-11=-635/1092, 8-1112-724 (LC 23), 2-11=-35/919 DT CHORD 11-12-248/233, 10-11=-635/1092, 8-1112-724 (LC 23), 2-12127 (LC 23), 2-11=-35/919 DT CHORD 11-12-248/233, 10-11=-635/1092, 8-110-601/912, 7-8=62/654, 6-8=-783/1192, 2-11=-35/919 DT CHORD 11-12-248/233, 10-11=-635/1092, 8-1112-724 (LC 23), 2-1227 (LC 23) Dr B Structural vool show been considered for this truss is designed in accordance with the 2015 Internation of the purlin along the top and/or bottom chord. Di Charlon C for live loads have been considered for this truss is designed in accordance with the 2015 Internation of the purlin along the top and/or bottom chord. Di NallED T indicates 3-100 (0.148*33) or 3-12d (0.148*	BCDL	10.0											Weight: 118 lb	FT = 20%
 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.3 MaxIbig PCHORD Structural wood sheathing directly applied or 4-9-10 oc purlins, except end verticals, and 2-9-00 cc purlins, except end verticals, and the totage in the tot		0.4 OD No. 0		3)						U		· ·	,	7 40 00
 EBS 2x4 SP No.3 EBS 2x4 SP No.3 Fully Exp: Cle1.10 <li< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>,</td><td>,</td><td>), 7-12=-20</td></li<>										0		,	,), 7-12=-20
 Ar Cine Carlos De Neurona Considerador de la structural wood sheathing directly applied or 4.9-10 oc purdins, except end verticals, and 2.9-0 oc purdins (5-9-11 max). 2-4.6 DT CHORD Rigid ceiling directly applied or 7-5-7 oc bracing. SACTIONS (size) 7-0-3-8, 12=0-3-8 Max Horiz 12=220 (LC 50) Max Uplift 7=-750 (LC 9), 12=-507 (LC 12) Max Grav 7=1147 (LC 35), 12=1227 (LC 32) SRCES (b) - Maximum Compression/Maximum Tension PP CHORD 1:2=0/49, 2:3=-1349/617, 3:4=-1104/66, 4:5=-863/556, 5-6=-860/554, 6-7=-10647/35, 2:12=-1165/508 CHORD 1:12=-248/233, 10-11=-635/1092, 2:11=-765/1092, 2:11=-765/101, 3:10-10=-635/1092, 2:11=-765/101, 3:10-300/96, 4:10=-87/3/34, 4:8=-177/44, 2:5-8=623/634, 6:8=-783/316, 2:12=-23/(B), 12=-23/(B), 12=							.=1.10), C		лр Β,					24 (P) 5- 47 (P)
 CHORD Structural wood sheathing directly applied of P CHORD Structural wood sheathing directly applied or 7-5-7 oc bracing. CHORD Rigid ceiling directly applied or 7-5-7 oc bracing. CACTIONS (size) 7 =0-3-8, 12=0-3-8 Max Horiz 12=220 (LC 50) Max Grav 7 =1147 (LC 35), 12=1227 (LC 32) Max Grav 7 =1147 (LC 35), 12=127 (LC 32) Max Grav 7 =1147 (LC 35), 12=127 (LC 32) Max Grav 7 =1147 (LC 35), 12=127 (LC 32) Max Grav 7 =1147 (LC 35), 12=127 (LC 32) Max Grav 7 =1147 (LC 35), 12=127 (LC 32) Max Grav 7 =1147 (LC 35), 12=128 (B), 12=128 (B), 12=128 (B), 12=128 (B), 12=128 (B), 12=128 (B), 12=1		2X4 3F NU.3		4)			been co	nsidered for t	his					
 5) Tc HORD B diffuence and verticals, and 2-0-0 oc purlins, except particular word vertical word is a specific particular word vertical word is a specific particular word vertical word is a specific particular word word word is a specific particular word word word is a specific particular word word word word is a specific particular word word word is a specific particular word word word is a specific particular word word word word word is a specific particular word word word word word word word wor			المحمد بالتحجيل حجال	,							· ·	<i>, , , , , , , , , ,</i>	(),	(), (),
 2-0-0 oc purlins (5-9-11 max): 4-6. Viet add of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in latera where a rectangle 30-00 time bottom chord in all areas where a rectangle 30-00 time bottom chord and any other members. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 30-00 time bottom chord in all areas where a rectangle 30-00 total with the bottom chord and any other members. One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplit only and does not consider lateral forces. One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITPI 1. Cath lic xp Bis Enclosed. HWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical l					This truss ha	s been designed	for great	er of min roo	f live					
 DT CHORD Rigid ceiling directly applied or 7-5-7 oc bracing. DT CHORD Rigid ceiling directly applied or 7-5-7 oc bracing. StaCTIONS (size) 7-0-3-8, 12=0-3-8 Max Uplift 7=-750 (LC 9), 12=-207 (LC 12) Max Grav 7-1147 (LC 35), 12=1227 (LC 23) DRCES (b) - Maximum Compression/Maximum Tension PP CHORD 1-2-0/49, 2-3=-1349/617, 3-4=-1104/646, 4-5=-880/556, 5-6=-800/554, 6-7=-1064/735, 2-12=-1165/508 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/65 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 DT ES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbala				anu	load of 12.0	psf or 1.00 times	flat roof I	oad of 20.0 p	osf on			()/	- ()/	
 bracing. conserved and any other new twater ponding. conserved and any other new twater ponding. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. consection is for uplito only and obsen to consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not consider lateral forces. connection is for uplit only and does not depict the size or the orientation of the purin along the top and/or bottom chord. SEAL SEAL Conserved prevences the orientation of the purin along the top and/or bottom chord. NAILED^I indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.2") toc-nails per NDS guidlines. the toe LOAD CASE(S) section, loads applied to the face of the truss are noted as from (F) or back (B). 					overhangs n	on-concurrent wit	th other li	ve loads.						
 FACTIONS (size) 7=0-3-8, 12=0-3-8 Max Horiz 12=220 (LC 50) Max Uplift 7=-750 (LC 9), 12=-507 (LC 12) Max Grav 7=1147 (LC 35), 12=1227 (LC 32) ORCES (lb) - Maximum Compression/Maximum Tension PC CHOR 1-2=0/49, 2-3=-1349/617, 3-4=-1104/646, 4-5=-863/556, 5-6=-860/554, 6-7=-1064/735, 2-12=-1165/508 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 DT CHORD 11-12=-248/233, 10-11=-635/1092, 2-11=-435/919 DT ES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25fit; and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord inal areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord in all areas where a rectangle software the bottom chord. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle software the bottom chord. One RT1A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces. One RT3A MiTek connectors R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical purin representation does not depict the size or the orientation of the purin along the top and/or bottom chord. NAILED[*] indicates 3-10d (0.148*x3") or 3-12d (0.148*x3.25") toe-nails per NDS guidlines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 				6)					g.					
 Max Horiz 12=220 (LC 50) Max Upift 7=-750 (LC 9), 12=-507 (LC 12) Max Grav 7=1147 (LC 35), 12=1227 (LC 32) Max Grav 7=1147 (LC 35), 12=1227 (LC 32) One RTT6A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for upilit only and does not consider lateral forces. One RTT6A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for upilit only and does not consider lateral forces. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for upilit only and does not consider lateral forces. This design. This truss is designed in accordance with the 2015 International Residential Code sections R502.10.2 and referenced standard ANSI/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") to e-nails per NDS guidlines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 	REACTIONS	0	12=0-3-8	7)										
 Max Uplift 7=-750 (LC 9), 12=-507 (LC 12) Max Grav 7=1147 (LC 35), 12=1227 (LC 32) ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2=-0/49, 2-3=-1349/617, 3-4=-1104/646, 4-5=-863/556, 56-860/554, 6-7=-1064/735, 2-12=-1165/508 OT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 OT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 On e RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces. On e RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces. On e RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. SEAL 044925 NAILED" indicates 3-10d (0.148"x3.") or 3-12d (0.148"x3.25") toe-nails per NDS guidines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 		· · · ·												
 Max Grav 7=1147 (LC 35), 12=1227 (LC 32) On R T16 MITek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 12. This connection is for uplift only and does not consider lateral forces. On R RTA MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 12. This connection is for uplift only and does not consider lateral forces. One RTA MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 12. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purili representation does not depict the size or the orientation of the purilin along the top and/or bottom chord. NALED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3") or 3-12d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. In the LOAD CASE(S) section, Loads applied to the face of the truss are noted as front (F) or back (B). <!--</td--><td></td><td></td><td></td><td>(2) ⁸⁾</td><td></td><td></td><td></td><td></td><td>0psf</td><td></td><td></td><td></td><td></td><td></td>				(2) ⁸⁾					0psf					
 Socool and any other members. 9) Cherry and any other														
 Tension P CHORD 1.2=0/49, 2.3=-1349/617, 3.4=1104/646, 4.5=-863/556, 5-6=-860/554, 6-7=-1064/735, 2-12=-1165/508 O CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 O One RTTA MITek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. O One RTTA MITek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. O One RTTA MITek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplit only and does not consider lateral forces. O TES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; H=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 	FORCES	,		,				veen the bott	Om					
 DP CHORD 1-2=0/49, 2-3=-1349/617, 3-4=-1104/646, 4-5=-863/556, 5-6=-860/554, 6-7=-1064/735, 2-12=-1165/508 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 EBS 3-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cate. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 CHORD 11-2=-00/972, 7-8=-62/66 TUSS 3-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-783/1192, 2-11=-435/919 TOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cate. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 DOL=1.60 TUS TUS<!--</td--><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ended to co</td><td>nnect</td><td></td><td></td><td></td><td></td><td></td>	•							ended to co	nnect					
 4-5=-863/556, 5-6=-860/554, 6-7=-1064/735, 2-12=-1165/508 DT CHORD 11-12=-248/233, 10-11=-635/1092, 8-10=-87/354, 4-8=-761/01, 3-10=-300/96, 4-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cate. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cand vertical left and right exposed; cand vertical left and right exposed; Lumber DOL=1.60 A-5=-863/556, 5-6=-860/554, 6-7=-106/7435, 2-116-0 Connection is for uplift only and does not consider lateral forces. On CR T7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 12. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cate. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; unber DOL=1.60 plate grip DOL=1.60 Mine LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 	FOP CHORD	1-2=0/49, 2-3=-1349	9/617, 3-4=-1104/64											
 2-12=-1165/508 DT CHORD 11-12=-248/223, 10-11=-635/1092, 8-10=-601/912, 7-8=-62/66 EBS 3-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Hermanical Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 		4-5=-863/556, 5-6=-	860/554, 6-7=-1064	/735,					ateral					
 8-10=-601/912, 7-8=-62/66 BS 3-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 Truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 		2-12=-1165/508												
 EBS 3-11=-76/101, 3-10=-300/96, 4-10=-87/354, 4-8=-783/1192, 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.60 EBS 3-11=-76/101, 3-10=-87/354, 4-8=-783/1192, 2-11=-435/919 Connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 Interational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Caraphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. TNAILED^m indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 	BOT CHORD	11-12=-248/233, 10	-11=-635/1092,	10)) One RT7A N	ITek connectors	recomme	ended to coni	nect					
 4-8=-177/42, 5-8=-625/534, 6-8=-783/1192, 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.60 forces. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 		,											min	1111
 2-11=-435/919 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.60 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 10) CINEER.	WEBS					s for uplift only an	id does n	ot consider la	ateral				WAH CA	Rollin
 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 			25/534, 6-8=-783/1 ⁻	,								1.8	A	U.S.
Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).		2-11=-435/919		11								0.	O'. FESS	10:1.1.4
 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 	NOTES								and			3X2	with ~	1 billon
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 DOL=1.60	,		been considered fo	r ac					cizo		-	er.		- chieve
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; bottom chord. Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 30 "NAILED" indicates 3-10d (0.148"x3") or 3-12d zone; cantilever left and right exposed; end vertical left 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d nd right exposed; Lumber DOL=1.60 plate grip 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).			(a	12					5128				CEA	1 1 3
Vasa IOSINPIT, TCDL=0.0pts, TECDL=0.0pts,							along the	= top anu/01			=			• •
 Calification (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2							148"x3")	or 3-12d			=	:	0449	25 : =
											-			- 1 4
				14					face				S	- 1 - S
			- 1.00 piato grip	-								- 0	S.S.No.	-FR. RS
	202			L			. /	. ,				11	CONGIN	5.5. 14.5
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate							umber Inc	rease=1.15.	Plate			1	TTM	GENIN

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15


mm May 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A08	Half Hip	1	1	Job Reference (optional)	146245809

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:37 ID:IrM0nEiQJ2PKYgbNDs3Qn4zH1Z9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.3	
----------------	--

Plate Offsets (X, Y): [2:0-3-3,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.46 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2.0E 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-0 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-3-8, 1 Max Horiz 10=280 (L Max Uplift 6=-131 (L Max Grav 6=771 (LC (lb) - Maximum Com	athing directly applied xcept end verticals, a -0 max.): 4-5. applied or 10-0-0 oc 5-6 10=0-3-8 .C 11) C 11), 10=-100 (LC 1 C 33), 10=866 (LC 34	nd 6) 7) 8) 4)	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar One RT7A M truss to bear	snow loads have be as been designed for psf or 1.00 times fla on-concurrent with quate drainage to p us been designed for ad nonconcurrent w has been designed in n chord in all areas by 2-00-00 wide will by other members, n iTek connectors re ing walls due to UP	=20.0 p =20.0 p =20	sf (flat roof si ategory II; E2 hsidered for the er of min roof bad of 20.0 p ve loads. water ponding 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott CDL = 10.0psi inded to conr ; jt(s) 6 and 1	now: xp B; his f live sf on g. dds. 0psf om f. nect 0.					
TOP CHORD BOT CHORD WEBS	4-5=-440/185, 5-6=- 9-10=-270/258, 7-9=	704/163, 2-10=-814/1 -174/731, 6-7=-98/11 168/135, 5-7=-110/60	6)4,	lateral forces) This truss is International R802.10.2 a	tion is for uplift only a designed in accord Residential Code s nd referenced stand Irlin representation	ance w ections dard AN	ith the 2015 8 R502.11.1 a NSI/TPI 1.	and		Г		TH CA	Rojin

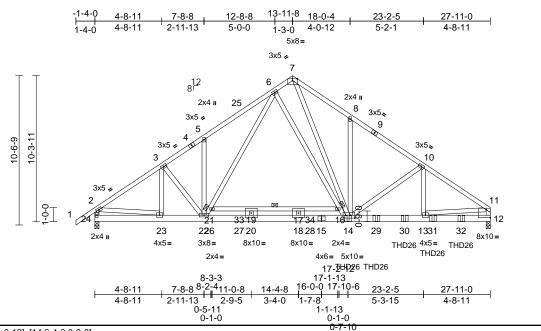
NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 5-11-6, Exterior (2) 5-11-6 to 17-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A09	Common Girder	1	2	Job Reference (optional)	l46245810

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:38 ID:iw6byBY8BfGY_SBYuSQ3flzH1h6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.3

Plate Offsets (X, Y):	[12:Edge,0-6-12], [14:0-4-0,0-2-8]
-----------------------	------------------------------------

	, , , , , <u>, , , , , , , , , , , , , , </u>	_],[::::::::::::::::::::::::::::::::::::											
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.58 0.65 0.55	Vert(CT)	in -0.10 -0.23 0.02	(loc) 17-19 17-19 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC20 ⁷	15/TPI2014	Matrix-MSH							Weight: 470 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 16	It* 14-6,7-14:2x4 SP athing directly applie cept end verticals. applied or 10-0-0 oc -21 24=0-3-8 _C 9) LC 13), 24=-48 (LC (LC 1), 24=1906 (LC upression/Maximum 3/30, 3-5=-2592/0, -1806/207, 0=-3025/126, -24=-1794/90, -23=-92/2115, 0=0/1882, 14-18=0/12 -13=-64/497, 9=-75/15, 16-17=-75/ 16=-630/193, 122=-296/180, 3-22=0 0/1646, 11-13=-142/2 =-46/943, -20=-123/0,	2 No.2 ed or 2 12) 3 22) 4 5 1882, 6 (15 7 /357, 2676, 8 9	 (0.131"x3") r Top chords of oc. Bottom chorn staggered at Web connect All loads are except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103mj Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end This truss ha chord live load * This truss ha chord live load 	be connected tog nails as follows: connected as follows: connected as follows: connected as follows: ds connected as follows: ds connected as follows: ds connected as follows: ds connected as follows: ds follow	ws: 2x4 billows: 2 row at 0- 4 - 1 row y applie pack (B) nnection is noted re been bh (3-sec BCDL=6 RS (env exposed bL=1.60 f (roof liv f=20.0 p e1.15); C been con for great lat roof liv the bott points, f for a 10./ with any d for a liv s where	- 1 row at 0-9 x6 - 2 rows 9-0 oc. at 0-9-0 oc. d to all plies, face in the LC sond gust) considered for considered for cond gust) copsf; h=25ft elope) exteric plate grip re load: Lumb sf (flat roof si category II; E: hsidered for the er of min roof boad of 20.0 p ve loads. com chord, 12 5-0-0 apart. D sp bottom other live load a rectangle	DAD or ; or left per now: xp B; his f live sf on 2-8-8 ads. 0psf	trus Thi late 12) Thi Inte R8 13) Use 12- 2-0 2-5 cho 14) Fill LOAD 1) D In U	ss to beasis connecting and force is truss is ernational doc. 10.2 is ernational doc. 10.2 is e MiTek -10d x 1-)-0 oc maint -10-8 to ord. all nail h CASE(S ead + Sr corease= niform Lucrease=	Iring w. Iring w. Is. s desigg al Resident and ref THD26 1/2 nail connec I/2 nail Connec I/	connectors recor alls due to UPLIF for uplift only an ned in accordand dential Code sec erenced standars (With 18-16d na ils into Truss) or ting at 17-10-8 fr thruss(es) to bac here hanger is ir ndard alanced): Lumber b/ft) 2-7=-60, 7-11=-6 ads (Ib) TH CA SEA 0449	mmended to connect FT at jt(s) 24 and 12. Id does not consider ce with the 2015 tions R502.11.1 and d ANSI/TPI 1. alis into Girder & equivalent spaced at rom the left end to ck face of bottom in contact with lumber. r Increase=1.15, Plate 60, 12-24=-20,
				chord and ar	ny other members	, with BC	DL = 10.0ps	f.				Minini,	v 21 2021

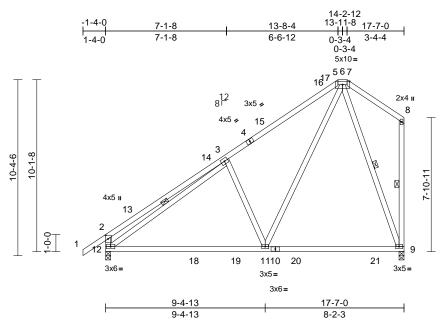
May 21,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A09	Common Girder	1	2	Job Reference (optional)	l46245810
Carter Components (Sanford),	Sanford, NC - 27332,	Run: 8.5 S 0 May 1	7 2021 Print: 8	.500 S May	17 2021 MiTek Industries, Inc. Fri May 21 13:54:38	Page: 2

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:38 ID:iw6byBY8BfGY_SBYuSQ3flzH1h6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 14=-428 (B), 27=-100, 28=-100, 29=-428 (B), 30=-428 (B), 31=-428 (B), 32=-428 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	A10	Нір	1	1	Job Reference (optional)	146245811

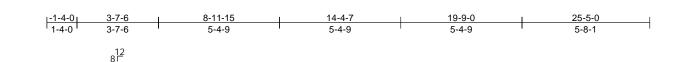
Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:38 ID:gp4umRE0fANvEjkPSowMBmzH1dd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

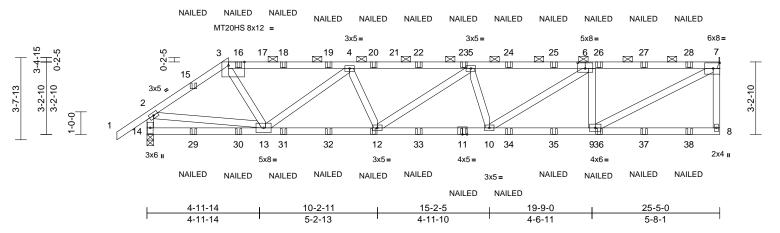
Page: 1

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [5:0-5-0,0-2-5]

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.81 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.32 0.01	(loc) 9-11 11-12 9	l/defl >999 >645 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 4-6-4 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly a bracing, 1 Row at midpt	thing directly applied ept end verticals, and 0 max.): 5-7. applied or 10-0-0 oc 3-12, 8-9, 6-9 2=0-3-8 C 11) C 14), 12=-102 (LC 14	4) or 5) 6) 7) 8)	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Provide adeo This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	7-10; Pr=20.0 psf i late DOL=1.15; Pf= =1.15 Plate DOL=1 t=1.10 snow loads have be so been designed for on-concurrent with uate drainage to p uate	=20.0 p =20.0 p; =20.0 p	sf (flat roof si ategory II; E: ansidered for t er of min rool bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott	now: xp B; his f live sf on g. ds. 0psf om					
FORCES	(lb) - Maximum Comp Tension 1-2=0/49, 2-3=-510/2 7-8=-217/222, 2-12=-	212, 3-5=-847/227,	9)	truss to bear	liTek connectors re ing walls due to UP ion is for uplift only	LIFT a	t jt(s) 12 and	9.					
BOT CHORD WEBS NOTES 1) Unbalance this design	5-6=-596/242, 6-7=-1 11-12=-167/858, 9-1 6-11=-165/839, 3-11= 3-12=-679/35, 6-9=-8 ed roof live loads have b	92/211 1=-104/314 =-463/289, 332/143	10) This truss is International R802.10.2 at) Graphical pu	designed in accord Residential Code s nd referenced stand rlin representation o ation of the purlin al	ections dard AN does no	R502.11.1 a SI/TPI 1. ot depict the s				and a	OR FESS	ROLINI

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 9-5-6, Exterior (2) 9-5-6 to 17-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B01	Half Hip Girder	1	1	Job Reference (optional)	146245812

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:40 ID:LwDyumJj_B?5PsM2AF0dYIzH125-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.1

Plate Offsets (X, Y): [3:0-8-9,Edge], [6:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.74 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.21 -0.26 -0.01	(loc) 10-12 10-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20HS MT20 Weight: 139 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		cept end verticals, a	ed or	 DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 	snow loads have as been designed psf or 1.00 times	Pf=20.0 p =1.15); C been cor for great flat roof le	sf (flat roof s ategory II; E nsidered for t er of min roo bad of 20.0 p	now: xp B; this f live	1) De In Ui	crease= niform Lo Vert: 1- oncentra Vert: 11 30=-1 (l	now (ba 1.15 oads (l 2=-60, ated Lo l=-1 (F F), 31=	alanced): Lumber b/ft) 2-3=-60, 3-7=-60 pads (lb)), 12=-1 (F), 15=- -1 (F), 32=-1 (F),	15 (F), 29=-5 (F), 33=-1 (F), 34=-1 (F),	
BOT CHORD	Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 14=124 (I Max Uplift 7=-667 (L Max Grav 7=1275 (I	applied or 4-10-7 or anical, 14=0-3-8 LC 9) LC 9), 14=-552 (LC 9 LC 31), 14=1217 (LC	6 7 8 9)	 overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									38=-1 (F)	
FORCES TOP CHORD BOT CHORD	CES (Ib) - Maximum Compression/Maximum Tension CHORD 1-2=0/76, 2-3=-1622/821, 3-4=-1641/865, 4-5=-2559/1370, 5-7=-2532/1381, 7-8=-13/104, 2-14=-1161/564			 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Refer to girder(s) for truss to truss connections. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 667 lb uplift at joint 7. 										
WEBS	10-12=-1476/2583, 8-9=-49/60 3-13=-336/685, 4-13 4-12=-88/237, 5-12= 6-10=-385/649, 6-9= 7-9=-1134/2076, 2-1	9-10=-1103/1980, 3=-1076/629, 98/95, 5-10=-270/2 871/514,	204,	 2) One RT7A M truss to bear connection is forces. 3) This truss is International 	fiTek connectors i ing walls due to U s for uplift only and designed in accol Residential Code	IPLIFT at d does no rdance w e sections	i jt(s) 14. This ot consider la ith the 2015 s R502.11.1 a	s ateral		Ĺ	S	OR FESS	ROLINA	
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left 			י 1 ו ר	4) Graphical pu or the orienta bottom chore5) Gap between diagonal or v	nd referenced sta Irlin representation ation of the purlin d. n inside of top cho vertical web shall i dicates 3-10d (0.1	n does no along the ord bearin	ot depict the top and/or ng and first ed 0.500in.	size				SEA 0449	25	

- zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 - (0.148"x3.25") toe-nails per NDS guidlines. 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

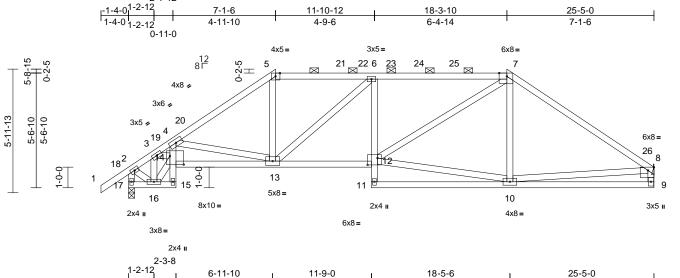
Ma

May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B02	Нір	1	1	Job Reference (optional)	146245813

11-10-12

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:41 ID:0XQnvXDWNeJriVJzIZDq7IzH1Qk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-6

18-3-10 25-5-0 6-4-14 7-1-6 6x8= 24 25 7

6-11-10

Page: 1

4-9-6

Scale = 1:55.7

Plate Offsets (X, Y): [7:0-4-9,Edge], [8:0-3-8,Edge], [12:0-5-12,0-4-0], [14:0-8-0,0-5-0]

1-2-12

1-0-12

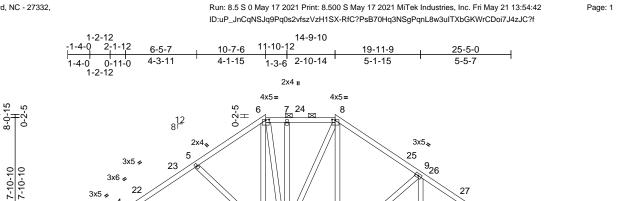
2-1-12

7-1-6

4-8-2

							· · · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.96	Vert(LL)	-0.10	12-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.18	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.14	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0			0,								Weight: 161 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she except end verticals (2-2-0 max.): 5-7. Rigid ceiling directly bracing, Except: 8-8-7 oc bracing: 13	t* 15-4,6-11:2x4 SP athing directly applie , and 2-0-0 oc purlins applied or 10-0-0 oc -14. unical, 17=0-3-8 _C 11) C 15), 17=-155 (LC -	d, 5 3) 14) 4)	Vasd=103m Cat. II; Exp B zone and C- 1-8-0 to 2-10 11-4-5 to 14 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C	7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) -1-4 -7, Exterior (2) 2 0-12, Exterior (2) ft and right expose d;C-C for member shown; Lumber D E 7-10; Pr=20.0 ps late DOL=1.15); P =1.15 Plate DOL= t=1.10 snow loads have	BCDL=6 RS (env -0 to 1-8 10-7 to 1 14-0-12 d ; end v s and fo OL=1.60 f (roof liv f=20.0 p =1.15); C	6.0psf; h=25ft; elope) exteric -0, Interior (1 1-4-5, Interior (1 to 25-3-4 zon vertical left an rcces & MWFF) plate grip re load: Lumb sf (flat roof sr iategory II; Ex	or) r (1) he; hd SS er how: cp B;	or t bot 14) Gaj diag	he orien tom cho o betwee	tation o rd. en insio vertica	epresentation doe of the purlin along de of top chord be al web shall not es	s not depict the size I the top and/or earing and first
FORCES	(lb) - Maximum Com		5)	5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on									
TOP CHORD	$\begin{array}{llllllllllllllllllllllllllllllllllll$			overhangs n Provide ade This truss ha	on-concurrent with quate drainage to as been designed	n other lin prevent for a 10.0	ve loads. water ponding 0 psf bottom	g.					11.
BOT CHORD				 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 						OR FESS	ROLIN		
WEBS				 Provide mec bearing plate joint 8. One RT7A N truss to bear 	er(s) for truss to tr hanical connection e capable of withst liTek connectors r ing walls due to U s for uplift only and	n (by oth anding 1 ecomme PLIFT at	ers) of truss t 23 lb uplift at ended to conn ; jt(s) 17. This	iect		20111112		SEA 0449	• •

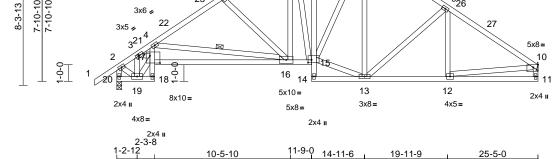
NOTES


- 1) Unbalanced roof live loads have been considered for this design.
- forces. 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

M May 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B03	Нір	1	1	Job Reference (optional)	146245814



3-2-6

1-3-6

5-0-3

5-5-7

8-2-2

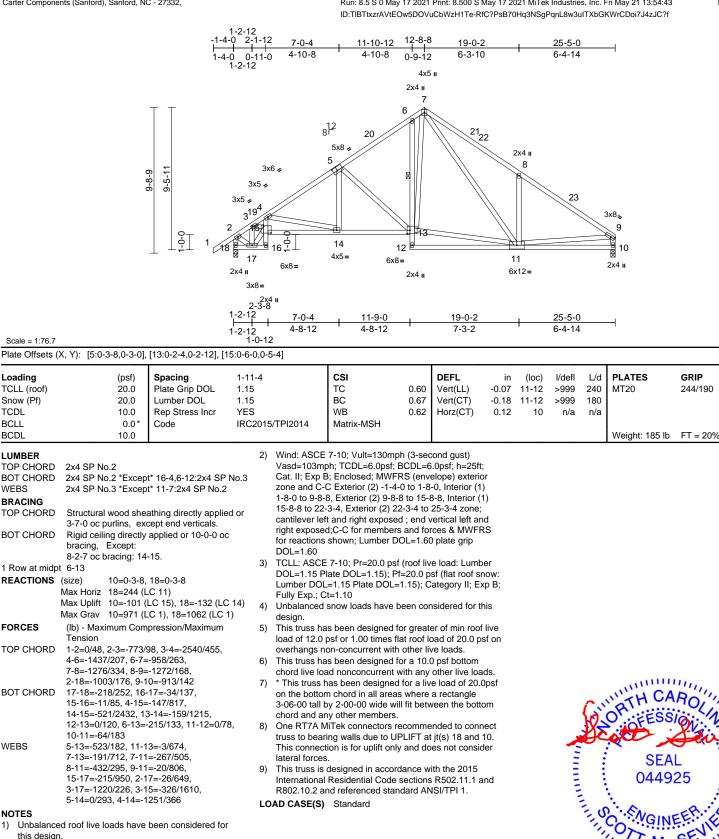
Scale = 1:69.5

Plate Offsets (X, Y): [6:0-2-8,0-0-8], [8:0-2-4,0-0-8], [10:0-3-8,Edge], [15:0-2-8,0-2-0], [17:0-7-4,0-5-4]

1-2-12 1-0-12

·					·	-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.15		>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.34		>895	180	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.18	10	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH		()						
BCDL	10.0			o, 11 1201 1								Weight: 194 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-1-1 oc purlins, ex 2-0-0 oc purlins (5-5 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 19 2-2-0 oc bracing: 16 1 Row at midpt (size) 10= Mech Max Horiz 20=214 (I Max Uplift 10=-113 (athing directly applie cept end verticals, ar -14 max.): 6-8. applied or 10-0-0 oc -20 -17. 4-16 anical, 20=0-3-8 _C 11) LC 15), 20=-145 (LC	ad or nd ; 3) ; 14) 4)	this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 1-8-0 to 6-4- 19-0-9 to 22- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C	roof live loads hav roof live loads hav roof live loads hav root live loads hav root live loads have t	h (3-sec BCDL=6 RS (env 0 to 1-8 2 to 19-1 2-3-4 to d ; end v s and fo OL=1.60 ((roof liv f=20.0 p 1.15); C	cond gust) .0psf; h=25ft; elope) exterio 0, Interior (1) 0-9, Interior (1) 25-3-4 zone; rertical left an- ces & MWFR 0 plate grip e load: Lumbh sf (flat roof sn ategory II; Ex	or) d 2S er now: p B;	Inte R8 13) Gra or t bot 14) Ga dia	ernationa 02.10.2 a aphical p he orien tom choi p betwee	al Resid and ref ourlin re tation o rd. en insid vertica	ned in accordance dential Code sect erenced standare presentation doe of the purlin along de of top chord be il web shall not e	e with the 2015 ions R502.11.1 and d ANSI/TPI 1. ss not depict the size g the top and/or earing and first
FORCES	Max Grav 10=1188 (lb) - Maximum Com Tension		,	design.5) This truss has been designed for greater of min roof live									
TOP CHORD	1-2=0/49, 2-3=-954/ 4-5=-1729/251, 5-6= 6-7=-1087/255, 7-8= 8-9=-1282/255, 9-10	1468/251, 1086/256,)=-1574/211,	6) 7)	 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 							ROLIN		
BOT CHORD	8-9=-1282/255, 9-10=-1574/211, 2-20=-1208/206, 10-11=0/98 19-20=-194/217, 18-19=-37/138, 17-18=-12/96, 4-17=-95/885, 16-17=-431/2696, 15-16=-30/1091, 14-15=0/46, 7-15=-264/69, 13-14=0/65, 12-13=-79/1242, 11-12=-49/158			 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Refer to girder(s) for truss to truss connections. 						O'OFESS SEA	L L		
WEBS	12-13=-79/1242, 11 4-16=-1347/272, 5-1 6-16=-43/568, 6-15= 8-15=-111/389, 8-13 9-13=-407/162, 9-12 10-12=-55/1096, 17 2-19=-39/810, 3-19= 3-17=-288/1822	6=-401/179, 161/156, 13-15=-6/ 3=-69/174, 2=-57/125, -19=-189/1075,	936,	bearing plate 10.) One RT7A M truss to bear	chanical connection e capable of withsta MiTek connectors re- ring walls due to UI s for uplift only and	anding 1 ecomme PLIFT at	13 lb uplift at ended to conn jt(s) 20. This	joint ect		110 C		0449	SEVIE IN

May 21,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B04	Roof Special	1	1	Job Reference (optional)	l46245815

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:43 ID:TIBTtxzrAVtEOw5DOVuCbWzH1Te-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

R802.10.2 and referenced standard ANSI/TPI 1.

NOTES

WEBS

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

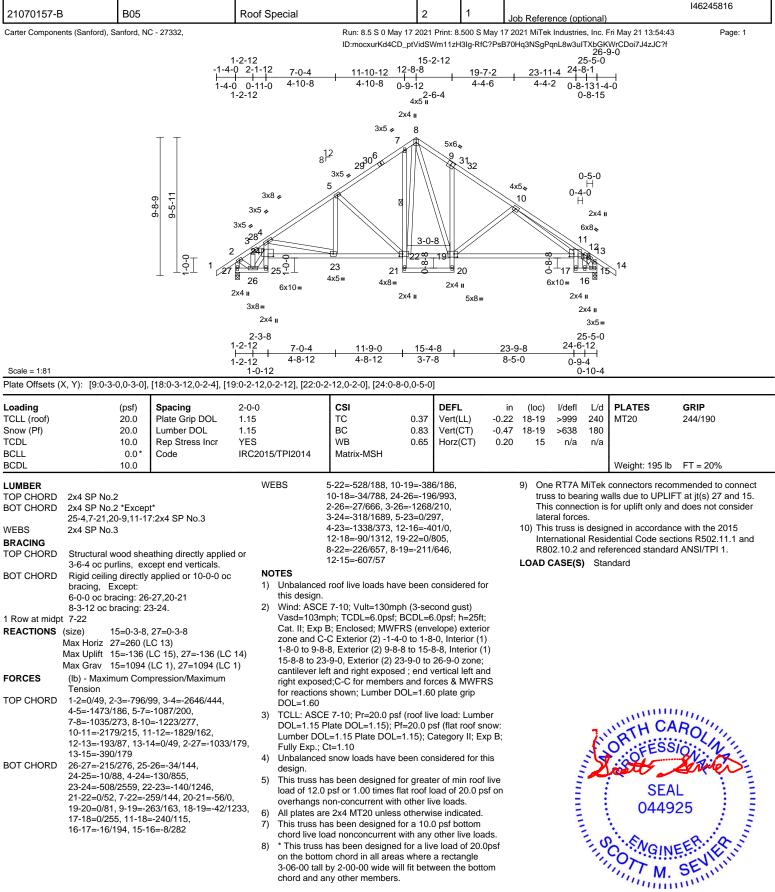
BRACING

FORCES

Unbalanced roof live loads have been considered for 1) this design.

3-17=-1220/226, 3-15=-326/1610,

5-14=0/293, 4-14=-1251/366

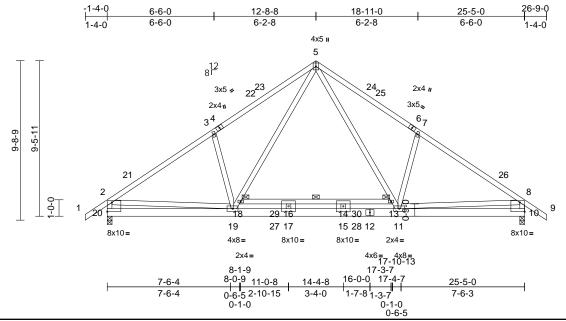


mm May 21,2021

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B05	Roof Special	2	1	Job Reference (optional)	146245816


May 21,2021

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	B06	Common	1	1	Job Reference (optional)	146245817

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:44 ID:fC2Yowf?Kzibit6guh0HYCzH2IO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:70.2

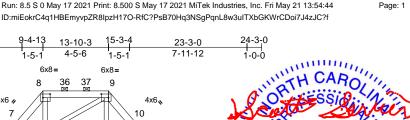
Plate Offsets (X, Y): [3:0-0-0,Edge], [6:0-0-0,0-0-0], [10:Edge,0-6-12], [20:Edge,0-6-12]

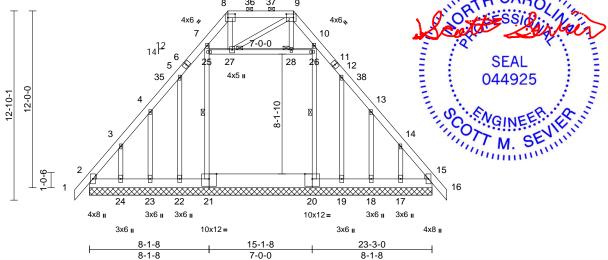
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)	-0.21	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.44	14-16	>688	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.50	Horz(CT)	0.01	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0		_									Weight: 191 lb	FT = 20%
LUMBER			2)	Wind ASCE	7-10; Vult=130mp	oh (3-seo	cond aust)						
TOP CHORD	2x4 SP No.2		_/		oh; TCDL=6.0psf;		0,	t:					
BOT CHORD		ot* 18-13:2x4 SP 2400)F	Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior									
Bor onone	2.0E	10 10.2X1 01 2100	,,	zone and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1)									
WEBS		ot* 11-5,19-5:2x4 SP I	No 1	1-8-0 to 9-8-8, Exterior (2) 9-8-8 to 15-8-8, Interior (1)									
BRACING	2/1 0/ 110/0 2/000			15-8-8 to 23-	-9-0, Exterior (2) 2	3-9-0 to	26-9-0 zone;						
TOP CHORD	Structural wood she	athing directly applied	tor	cantilever lef	t and right expose	d ; end ۱	ertical left ar	nd					
		2-2-0 oc purlins, except end verticals.			reaching directly applied of								
BOT CHORD	•	Rigid ceiling directly applied or 10-0-0 oc			shown; Lumber D	OL=1.6) plate grip						
Ber energy	bracing. Except:			DOL=1.60									
	6-0-0 oc bracing: 13	-18	3)		7-10; Pr=20.0 pst								
REACTIONS	(size) 10=0-3-8,				late DOL=1.15); P								
REACTIONS	Max Horiz 20=-257 (=1.15 Plate DOL=	=1.15); C	ategory II; E:	xp B;					
	Max Grav 10=1351	,	24)	Fully Exp.; C									
FORCES			, 24) 4)		snow loads have l	been coi	nsidered for t	nis					
FURGES	(lb) - Maximum Corr Tension	ipression/maximum	5)	design.				6 P					
TOP CHORD	1-2=0/49, 2-3=-1816	NO 2 E 1770/1	5)		is been designed f								
TOP CHORD	5-7=-1769/0, 7-8=-1	, ,			psf or 1.00 times f			ist on					
	2-20=-1338/27, 8-10		6)		on-concurrent with								
BOT CHORD	19-20=-230/430, 17		6)		init load placed on			2-8-8					
BOT CHOILD	15-17=0/1141, 11-1	,	7)		, supported at two as been designed f								
	10-11=-102/355, 16		()		ad nonconcurrent v			ade					L'III.
	14-16=-122/0, 13-14	,	8)		has been designed							IN TH UA	ROUL
WEBS		-42/839, 7-11=-390/2			n chord in all area			opsi			A	A	in the
-	,	3=0/971, 3-19=-390/2	,		ov 2-00-00 wide wi			om			Y2	C	DA:
	,	0/1246, 16-17=-103/0	,		ny other members,					-			Juni
	14-15=-103/0			9) This truss is designed in accordance with the 2015									
NOTES		0)		Residential Code			and			:	SEA	1 1 2	
 Unbalanced roof live loads have been considered for 								-		=	:		• •
,	this design			R802.10.2 and referenced standard ANSI/TPI 1.						= : 044925 : =			

this design.

LOAD CASE(S) Standard

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C01	Attic Supported Gable	1	1	Job Reference (optional)	l46245818

7-11-12

7-11-12

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:44

Scale = 1:78.2	
Plate Offsets (X,	•

late Offsets (X_Y)	[8:0-5-14 0-3-0] [9:0-5-14 0-3-0]

Plate Offsets (X, Y): [8:0-	-5-14,0-3-0], [9:0-5-14,0-3-0]			-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.04 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x8 SP 2 2400F 2.0 2x4 SP N 2x4 SP N Left: 2x4 Right: 2x2 Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing, 1 Row at	DE Io.3 *Excep Io.3 SP No.3 4 SP No.3 I wood she purlins, exc purlins (6-0 ing directly midpt	-0 max.): 8-9. applied or 10-0-0 oc	2 SP 2 Ed or V		$\begin{array}{c} 1\ -2=0/46,\ 2\ -3=-517\\ 4\ -5=-366/147,\ 5\ -7=\\ 8\ -9=-218/125,\ 9\ -10\\ 10\ -12=-338/118,\ 11\\ 13\ -14=-432/172,\ 11\\ 5\ -16=0/46\\ 2\ -24=-245/373,\ 23\\ 22\ -23=-172/373,\ 12\\ 18\ -19=-169/371,\ 1^{-2}\\ 20\ -26=-181/81,\ 10\\ 25\ -27=-12/17,\ 27\ -2\\ 12\ -19=-216/166,\ 11\\ 14\ -17=-186/167,\ 5\\ 4\ -3=-190/160,\ 3-2\\ \end{array}$	-337/13 =-346/1 2-13=-3 1-15=-5 24=-17 2-22=-1 7-18=-1 5=-190 26=-18 8=-12/1 3-18=-1 22=-21	3, 7-8=-346/1 28, 59/134, 10/232, 2/373, 72/373, 38/371, 92, 7/83, 5, 26-28=-12/ 30/160, 3/164,	ʻ15,	de 6) Th loa ov 7) Pr 8) All 9) Ga 10) Ga 11) Th ch 12) * T on 3-(ch)	sign. is truss h ad of 12.0 erhangs ovide add plates a able requ able stude is truss h ord live lo This truss the bott D6-00 tall ord and a	has bee 0 psf or non-co equate re 2x4 ires col s space has bee bad not has be bad not has be bom cho l by 2-0 any oth	en designed for g 1.00 times flat r ncurrent with oth drainage to prev MT20 unless oth ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for a 0-00 wide will fit er members, with	vent water ponding. nerwise indicated.
	VEBS OINTS 1 Row at midpt 21-25, 20-26 OINTS 1 Brace at Jt(s): 27, 28 NOTES REACTIONS (size) 2=23-3-0, 15=23-3-0, 20=23-3-0, 21=23-3-0, 22=23-3-0, 24=23-3-0, 24=23-3-0 NOTES Max Horiz 2=-317 (LC 12) Notes Max Uplift 2=-125 (LC 12), 15=-113 (LC 11), 17=-231 (LC 15), 18=-107 (LC 15), 20=-8 (LC 15), 21=-18 (LC 14), 22=-169 (LC 14), 23=-106 (LC 14), 24=-233 (LC 14), 23=-106 (LC 14), 24=-233 (LC 14), 21=-463 (LC 48), 18=248 (LC 48), 21=-463 (LC 48), 21=-463 (LC 48), 22=201 (LC 38), 21=-463 (LC 46), 24=201 (LC 38), 23=247 (LC 46), 24=201 (LC 46) NOTES				 Unbalanced this design. Wind: ASC Vasd=103n Cat. II; Exp zone and C 2-1-3 to 6-4 (2) 16-10-3 zone; cantil and right ex MWFRS fo grip DOL=1 Truss desi only. For s see Standa 	ASCE 7-10; Vult=130mph (3-second gust) 103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Exp B; Enclosed; MWFRS (envelope) exterior and C-C Corner (3) -1-0-0 to 2-1-3, Exterior (2) to 6-4-13, Corner (3) 6-4-13 to 16-10-3, Exterior -10-3 to 21-1-13, Corner (3) 21-1-13 to 24-3-0 cantilever left and right exposed ; end vertical left th exposed;C-C for members and forces & RS for reactions shown; Lumber DOL=1.60 plate				26 20 14) Or tru 15	-28; Wa -26 ne RT7A iss to bea , 19, 18,	ll dead MiTek aring wa 17, 22,	load (5.0psf) on connectors reco alls due to UPLI	member(s).21-25, mmended to connect FT at jt(s) 2, 21, 20, s connection is for
FUKLES	ES (Ib) - Maximum Compression/Maximum Tension				 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Eulty Exp. (5t=110) 									

May 21,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fully Exp.; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C01	Attic Supported Gable	1	1	Job Reference (optional)	l46245818
Carter Components (Sanford), S	Run: 8.5 S 0 May 17 3	2021 Print: 8	.500 S May 1	7 2021 MiTek Industries, Inc. Fri May 21 13:54:44	Page: 2	

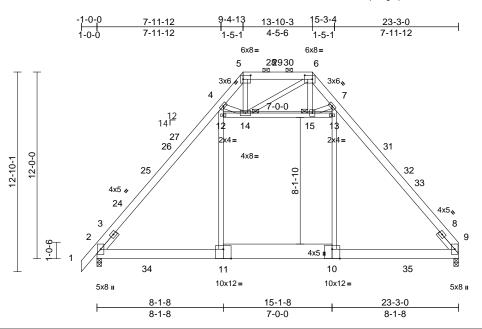
ID:miEokrC4q1HBEmyvpZR8lpzH17O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C02	Attic	2	1	Job Reference (optional)	I46245819

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:46 ID:vNk70o0Xko32cfrX2Mc4rEzH153-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

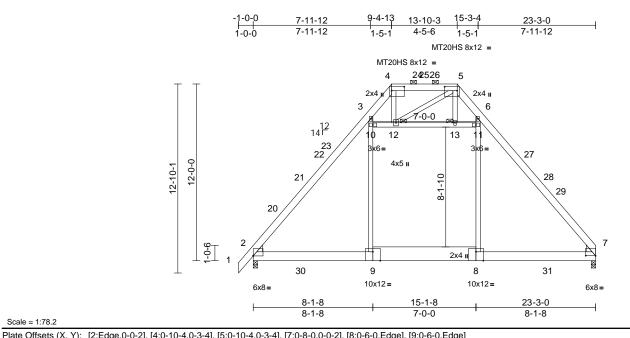
Page: 1

Scale = 1:74.1

Plate Offsets (X, Y): [5:0-5-14,0-3-0], [6:0-5-14,0-3-0], [10:0-6-0,Edge], [11:0-6-0,Edge]

		1											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	0.08	11-22	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.09	11-22	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.02	9	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI20	14 Matrix-MSH		Attic	-0.04	10-11	>999	360			
BCDL	10.0										Weight: 227 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	1-6-0 Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0	ot* 4-11,7-10:2x4 SP 2x4 SP No.2 1-6-0, Right 2x4 SP N athing directly applie pept I-0 max.): 5-6. applied or 10-0-0 oc	Vasd= SP Cat. II zone a 2-00 18-1-2 lo.3 cantile right e for rea DOL= dor 3) TCLL: DOL= Lumb Fully f	ASCE 7-10; Pr=20.0 p 1.15 Plate DOL=1.15); er DOL=1.15 Plate DOL Exp.; Ct=1.10 anced snow loads have	; BCDL=6 FRS (env 0-0 to 2-0 -1-14 to 1 20-1-4 to 1 20-1-4 to ers and fo DOL=1.6 sf (roof liv Pf=20.0 p _=1.15); C	6.0psf; h=25ft; elope) exteric -0, Interior (1 8-1-2, Interior (1 23-1-4 zone; vertical left an rcces & MWFF 0 plate grip re load: Lumb sf (flat roof sr ategory II; Ex	or) r (1) d &S er now: cp B;	LOAD	CASE(S) Sta	ndard		
	15		0	0									
REACTIONS	(size) 2=0-3-8, 9 Max Horiz 2=304 (L0 Max Grav 2=1514 (10	C 11)	load o overha	f 12.0 psf or 1.00 times angs non-concurrent wi le adequate drainage to	flat roof I th other li	oad of 20.0 p ve loads.	sf on						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		uss has been designed live load nonconcurrent			ds.					11 <i>1</i> .	
TOP CHORD		3/63, 4-5=-597/116, 0/118, 7-9=-1641/61	8) * This on the	truss has been designe bottom chord in all are	ed for a liv as where	e load of 20.0 a rectangle	Opsf			25	TH CA	ROL	
BOT CHORD	2-9=0/1019			0 tall by 2-00-00 wide v						1	0:4:4588	Oi Vin	
WEBS	7-13=0/698, 12-14= 13-15=-77/73, 5-14=	2=0/700, 10-13=-19/7 -79/73, 14-15=-705/2 93/398, 6-14=-36/3 840/256, 7-15=-838	27, 9) Ceiling 3, 13-15	and any other members dead load (5.0 psf) on Wall dead load (5.0ps	member	(s). 12-14, 14	-15,			ØĊ	SEA	senter	
NOTES				n chord live load (40.0 p					=			• • •	
 Unbalance this design 	ed roof live loads have n.	been considered for	11) This tr Intern R802. 12) Graph or the bottom	dead load (5.0 psf) app uss is designed in acco ational Residential Cod 10.2 and referenced sta- ical purlin representatio orientation of the purlin n chord. boom checked for L/360	ordance w e sections andard Al on does n along the	ith the 2015 R502.11.1 a NSI/TPI 1. ot depict the s top and/or	ind		The second s		M.M.	EER. HALL	

- or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C03	Attic	1	1	Job Reference (optional)	146245820

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:48 ID:UNibHE3xgs06PfNDTwHLkDzH5np-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:78.2

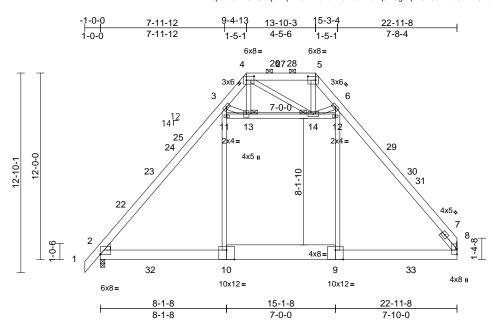
Plate Offsets (2	X, Y): [2:Edge,0-0-2]	, [4:0-10-4,0-3-4], [5:0)-10-4,0-3	-4], [7:0-8-0,0-	0-2], [8:0-6-0,Edge	9], [9:0-6	-0,Edge]					-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.26 0.14 0.53	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.11 -0.14 -0.02 -0.04	(loc) 8-16 8-16 2 8-9	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20HS MT20 Weight: 220 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2400F 2.0E	*Except* 9-8:2x12 SF ot* 3-9,6-8:2x4 SP 24(No.2	,	Vasd=103m Cat. II; Exp E zone and C- 2-0-0 to 5-1- 18-1-2 to 20- cantilever lef	7-10; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) -1-0- 14, Exterior (2) 5-1 -3-0, Exterior (2) 2/ t and right expose d;C-C for members	BCDL=6 RS (env -0 to 2-0 I-14 to 1 0-3-0 to d ; end v	6.0psf; h=25ft elope) exterio -0, Interior (1 8-1-2, Interio 23-3-0 zone; vertical left an	or) (r (1)	LOAD	CASE(S)) Stai	ndard		
BRACING TOP CHORD BOT CHORD	Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0		3)	for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P	shown; Lumber D 7-10; Pr=20.0 psf late DOL=1.15); P .=1.15 Plate DOL=	OL=1.60 f (roof liv f=20.0 p) plate grip re load: Lumb sf (flat roof sr	oer now:						
	1 Brace at Jt(s): 12, 13 (size) 2=0-3-8, Max Horiz 2=306 (L0 Max Grav 2=1516 (I	C 11)	5)	design. This truss ha load of 12.0 overhangs n	snow loads have t as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p	or great at roof le other li	er of min roof bad of 20.0 p ve loads.	f live sf on						
FORCES	(lb) - Maximum Com Tension 1-2=0/46, 2-3=-1667	pression/Maximum	7) 8)	All plates are This truss ha	MT20 plates unle s been designed f ad nonconcurrent v	ess other or a 10.	wise indicate 0 psf bottom	ed.					11111	
BOT CHORD WEBS	4-5=-527/66, 5-6=-5 2-7=-411/1024	70/92, 6-7=-1665/687 =0/659, 8-11=-21/731 -497/157,	,	* This truss h on the bottor 3-06-00 tall h chord and ar	nas been designed n chord in all area by 2-00-00 wide wi ny other members, load (5.0 psf) on r	I for a liv s where II fit betw with BC	e load of 20.0 a rectangle veen the botto CDL = 10.0pst	0psf om f.		X	Ø.	ORTHESS	Servie	A.
NOTES 1) Unbalance this design	ed roof live loads have	=-73/70, 5-13=-7/125 been considered for	11	11-13; Wall 1) Bottom chore chord dead I 2) This truss is	dead load (5.0psf) d live load (40.0 ps oad (5.0 psf) appli designed in accord Residential Code	on men af) and a ed only f dance w	nber(s).9-10, dditional botto to room. 8-9 ith the 2015	8-11 om		ti nave		SEA 0449	L 25	www.un

R802.10.2 and referenced standard ANSI/TPI 1.

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

818 Soundside Road Edenton, NC 27932

mm


May 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C04	Attic	1	1	Job Reference (optional)	146245821

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:50 ID:aprYd5wN3BUbhjVFxp?Y9?zH3zo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.1

Plate Offsets (X, Y): [2:Edge,0-0-2], [4:0-5-14,0-3-0], [5:0-5-14,0-3-0], [9:0-6-0,Edge], [10:0-6-0,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	;/TPI2014	CSI TC BC WB Matrix-MSH	0.16 0.13 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.09 -0.11 0.03 -0.04	(loc) 10-21 10-21 8 9-10	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 224 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD	2x6 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x6 SP No.2 Right 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 11-12:2x4 SP No. 1-6-0 athing directly applie ept -0 max.): 4-5.	2 ed or 3)	Vasd=103mp Cat. II; Exp E zone and C-(2-0-0 to 5-1- 18-1-2 to 19- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P	7-10; Vult=130m; bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) -1-0 14, Exterior (2) 5- 11-8, Exterior (2) t and right expose d;C-C for member shown; Lumber D 7-10; Pr=20.0 ps late DOL=1.15; P =1.15 Plate DOL=	BCDL=6 RS (env. -0 to 2-0 1-14 to 1 19-11-8 d ; end v s and foi OL=1.60 f (roof liv f=20.0 p	.0psf; h=25ft elope) exterior -0, Interior (1 8-1-2, Interior to 22-11-8 zc vertical left ar cces & MWFF) plate grip e load: Lumb sf (flat roof si	or) or (1) one; nd RS oer now:	dia	gonal or c room c	vertica checke	le of top chord be I web shall not ex d for L/360 deflec ndard	ceed 0.500in.

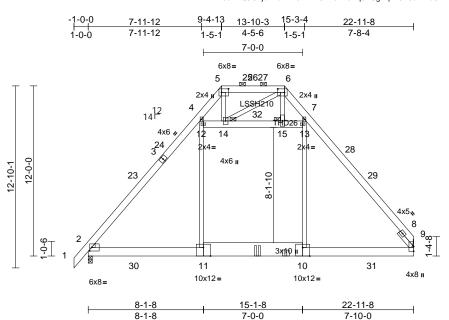
JOINTS	1 Brace at Jt(s): 13, 14
REACTIONS	(size) 2=0-3-8, 8= Mechanical Max Horiz 2=304 (LC 11)
	Max Grav 2=1498 (LC 44), 8=1462 (LC 44)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/46, 2-3=-1660/60, 3-4=-603/118,
	4-5=-369/0, 5-6=-595/115, 6-8=-1644/126
BOT CHORD	2-8=-391/1018
WEBS	10-11=-28/695, 3-11=0/692, 9-12=-26/707,
	6-12=0/707, 11-13=-50/52, 13-14=-707/237,
	12-14=-62/48, 4-13=-98/412, 3-13=-841/267,
	5-14=-93/394, 4-14=-29/21, 6-14=-822/266

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Ceiling dead load (5.0 psf) on member(s). 11-13, 13-14, 12-14; Wall dead load (5.0psf) on member(s).10-11, 9-12
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 9-10
- 11) Refer to girder(s) for truss to truss connections.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	C05	Attic Girder	1	2	Job Reference (optional)	146245822

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:52 ID:421Z7Nhn0oAvQCG2jbRvbEzH0tH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:81.3

Plate Offsets (X, Y): [2:0-1-9,0-3-0], [5:0-5-14,0-3-0], [6:0-5-14,0-3-0], [10:0-6-0,Edge], [11:0-6-0,Edge]

												-		
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.16	Vert(LL)		10-18	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.18	Vert(CT)		10-18	>999	180	-		
TCDL	10.0	Rep Stress Incr	NO		WB	0.93	Horz(CT)	0.02	9	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		Attic	-0.04	10-11	>999	360			
BCDL	10.0								-			Weight: 449 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD JOINTS	2x6 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2400F 2.0E 2x4 SP No.3 *Excep 14-6:2x4 SP 2400F 2 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 14,	t* 12-13:2x6 SP No.: 2.0E • 1-6-0 athing directly applie :ept -0 max.): 5-6.	2 SP 2, d or 2)	(0.131"x3") r Top chords of staggered at oc. Web connec Except mem oc. All loads are except if not CASE(S) see provided to of unless other	ds connected as fo 0-9-0 oc, 2x12 - 2 ted as follows: 2x4 ber 6-15 2x4 - 2 ro considered equal ed as front (F) or b ction. Ply to ply co distribute only load wise indicated.	ws: 2x6 - pllows: 2 rows str 4 - 1 row pws stag ly applied pack (B) f nnection s noted a	2 rows x8 - 2 rows aggered at 0- at 0-9-0 oc, gered at 0-7- d to all plies, face in the LC s have been as (F) or (B),	0 DAD	on 1 3-0 cho 12) Cei 13- 10- 13) Bot cho 14) Ref 15) Pro bes 9. 16) One trus	the bottc 6-00 tall ord and a ling dea 15; Wal 13 tom cho ord dead fer to girr vide me uring pla e RT7A as to bea	om cho by 2-0 any oth d load II dead rd live load (der(s) 1 chanic te capa MiTek aring wa	een designed for rd in all areas wh 0-00 wide will fit er members, with (5.0 psf) on mem load (5.0psf) on load (40.0 psf) an 5.0 psf) applied o for truss to truss al connection (by able of withstandi connectors recor alls due to UPLIF	ere a rectang between the I BCDL = 10. ber(s). 12-14 member(s).1 and additional nly to room. connections. others) of tru- ng 55 lb uplif nmended to o T at jt(s) 2. T	gle bottom Opsf. i, 14-15, 1-12, bottom 10-11 uss to t at joint connect his
301113	15		3)	Unbalanced this design.	roof live loads hav	ve been o	considered fo	r	con forc		is for u	plift only and doe	s not conside	er lateral
	Max Horiz 2=304 (LC Max Uplift 2=-57 (LC Max Grav 2=2346 (L (Ib) - Maximum Com	2 12), 9=-55 (LC 12) LC 42), 9=2543 (LC 4	4) 42)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp	17) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.					I.1 and				
TOP CHORD	Tension 1-2=0/46, 2-4=-2776 5-6=-1285/155, 6-7= 7-9=-2846/183		3, 5)	DOL=1.15 P	: 7-10; Pr=20.0 ps late DOL=1.15); P .=1.15 Plate DOL=	f=20.0 p	sf (flat roof sr	now:			R	OR HESS	ROUN	win 7
BOT CHORD WEBS	2-9=-258/1749 11-12=-44/893, 4-12 10-13=-242/557, 7-1 12-14=-488/135, 14- 13-15=-219/198, 5-1 6-14=-650/130, 6-15	3=-139/454, -15=-157/221, 4=-120/1100,	6) 7)	design. This truss ha load of 12.0 overhangs n	snow loads have as been designed t psf or 1.00 times f on-concurrent with	for greate lat roof lo n other liv	er of min roof bad of 20.0 p ve loads.	live sf on		2 00000000	Ś	SEA 0449		·········
NOTES				The Fabricat) This truss ha	quate drainage to ion Tolerance at just is been designed f ad nonconcurrent	oint 2 = 1 for a 10.0	2%) psf bottom	-			In States	M.M.	SEVIE 21,2021	Server .

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ		
21070157-B	C05	Attic Girder	1	2	Job Reference (optional)	146245822	
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.5 S 0 May 17	Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:52				

ID:421Z7Nhn0oAvQCG2jbRvbEzH0tH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 20) Use MiTek LSSH210 (With 10-10d nails into Girder & 7-10d x 1-1/2 nails into Truss) or equivalent at 11-11-4 from the left end to connect truss(es) to back face of top chord.
- 21) Use MiTek THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent at 13-11-4 from the left end to connect truss(es) to back face of top chord.
- 22) Fill all nail holes where hanger is in contact with lumber.
- 23) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 24) Attic room checked for L/360 deflection.

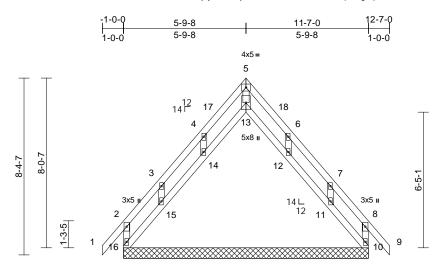
LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-5=-60, 5-6=-60, 6-9=-60, 11-20=-20, 10-11=-30, 10-16=-20, 12-14=-10, 14-15=-10,
- 13-15=-10 Drag: 11-12=-10, 10-13=-10
- Concentrated Loads (lb) Vert: 15=-1178 (B), 32=-1064 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	D01	Roof Special Supported Gable	1	1	Job Reference (optional)	146245823

Scale = 1:54.5

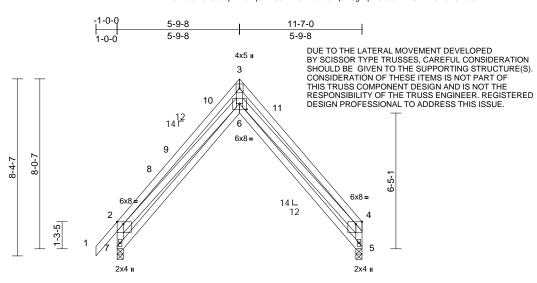
Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:53 ID:xfQRj?yhKimi_Vj0ITxsUWzH3tJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-3-8	5-9-8	11-3-8	11-7-0
0-3-8	5-6-0	5-6-0	0-3-8

Plate Offsets (X, Y): [6:0-0-0,Edge], [7:0-0-0,Edge], [8:0-0-0,Edge], [11:0-0-0,Edge], [12:0-0-0,Edge]

	., .,	[7.0 0 0,Edge], [0.0 0	o,∟ago],	[11.0 0 0,Eug	, [12.0 0 0,Euge	21						-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	;/TPI2014	CSI TC BC WB Matrix-MR	0.25 0.13 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 69 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, exo Rigid ceiling directly bracing. (size) 10=11-7-0 13=11-7-0	applied or 6-0-0 oc), 11=11-7-0, 12=11-7), 14=11-7-0, 15=11-7	-0, 3)	Vasd=103mp Cat. II; Exp E zone and C-0 1-9-8 to 9-7-0 cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu	7-10; Vult=130mp bh; TCDL=6.0psf; b; Enclosed; MWF C Corner (3) -1-0-0 7, Corner (3) 2-9-8 7, Corner (3) 9-7-0 t and right expose 4;C-C for member: shown; Lumber D ned for wind loads dds exposed to wir 1 Industry Gable E	BCDL=6 RS (env. 0 to 1-9- 3 to 8-9-8 0 to 12-7 d ; end v s and foi OL=1.60 in the p nd (norm	.0psf; h=25ft; elope) exteric 8, Exterior (2) 3, Exterior (2) -0 zone; vertical left an cces & MWFF) plate grip lane of the tru al to the face	or) dd RS uss),	trus 14, doe 15) Bev suri 16) This R80	ss to bea 15, 12, 1 es not co veled pla face with s truss is ernationa	and 11 nsider ite or s truss desig and ref	alls due to UPLIF . This connection lateral forces. him required to p chord at joint(s) ned in accordand dential Code sect erenced standard	ions R502.11.1 and
	12=-133 (14=-131 (16=-319 (Max Grav 10=143 (L 12=199 (L	LC 12) LC 14), 11=-177 (LC 1 LC 15), 13=-255 (LC 1 LC 14), 15=-187 (LC 1 LC 10) .C 33), 11=239 (LC 29 .C 29), 13=569 (LC 15 .C 24), 15=257 (LC 24	(3), (4), (5) (), (), (6)	or consult qu TCLL: ASCE DOL=1.15 Pl Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 p	alified building de 7-10; Pr=20.0 ps ate DOL=1.15); P =1.15 Plate DOL=	signer as f (roof liv f=20.0 p =1.15); C been cor for great lat roof lo	s per ANSI/TF e load: Lumb sf (flat roof sr ategory II; Ex nsidered for th er of min roof pad of 20.0 ps	PI 1. ier now: kp B; nis					111111.
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	All plates are	2x4 MT20 unless	otherwi	se indicated.				1.5	"ATH CA	ROLIN
TOP CHORD	2-16=-194/186, 1-2=	283/433, 5-6=-283/432	10)	Truss to be for braced again Gable studs	es continuous bott ully sheathed from st lateral moveme spaced at 2-0-0 or	n one fac ent (i.e. d c.	e or securely iagonal web)				e	O RESS	Stanten
BOT CHORD	15-16=-224/212, 14- 13-14=-198/182, 12- 11-12=-200/188, 10-	13=-195/179,	,	chord live loa * This truss h	s been designed f ad nonconcurrent as been designed n chord in all area	with any I for a liv	other live loa e load of 20.0					SEA 0449	• •
WEBS NOTES 1) Unbalance this design	5-13=-588/306, 4-14 3-15=-207/176, 6-12 7-11=-207/171 d roof live loads have	=-201/184, =-201/184,	13)	3-06-00 tall b chord and an Bearing at jo parallel to gra	y 2-00-00 wide wi y other members. int(s) 16, 13, 10, 1 ain value using AN lding designer sho	ill fit betv 4, 15, 12 NSI/TPI 1	veen the botto 2, 11 conside I angle to gra	rs in		THURS	in S	Minun	SEVIER INTERNING


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	D02	Roof Special	6	1	Job Reference (optional)	146245824

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:53 ID:xCTHsdM0K82u3jKYkcYqshzH3sn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.5

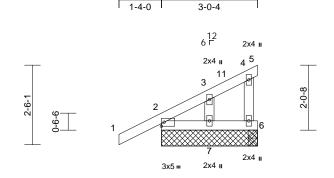
Plate Offsets (X, Y):	[2:Edge.0-1-4].	[4:Edae.0-1-5].	[6:0-4-0.0-3-4]

Plate Offsets (X, Y): [2:Edge,0-1-4],	[4:Edge,0-1-5], [6:0-4	4-0,0-3-4]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TF	의2014	CSI TC BC WB Matrix-MSH	0.85 0.33 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.19 -0.32 0.77	(loc) 6 5	l/defl >732 >418 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exy zone and 0 2-0-0 to 2- cantilever right expos for reaction DOL=1.60 3) TCLL: ASC DOL=1.15	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 7=234 (LC Max Grav 5=448 (LC (lb) - Maximum Com Tension 2-7=-833/348, 1-2=0 3-4=-2216/417, 4-5= 6-7=-472/636, 5-6=- 2-6=-2/1399, 3-6=-5 ed roof live loads have h. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B4 p B; Enclosed; MWFR: C-C Exterior (2) 2-9-8 left and right exposed sed;C-C for members a: ns shown; Lumber DO	applied or 8-6-10 oc 7=0-3-8 C 11) 14), 7=-58 (LC 15) C 1), 7=524 (LC 1) pression/Maximum y/52, 2-3=-2143/307, -558/196 143/266 42/2877, 4-6=-451/17 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-0-0, Interior (1) to 11-5-4 zone; end vertical left and forces & MWFRS L=1.60 plate grip roof live load: Lumbe 20.0 psf (flat roof sno	r for for for for for for for fo	ad of 12.0 p verhangs no nis truss ha nord live loa This truss ha n the botton 06-00 tall b ord and an earing at jo sing ANSI/T ssigner sho ne RT7A M uss to bear nis connect teral forces nis fruss is ternational	designed in accord Residential Code s nd referenced stand	at roof k other liv or a 10.0 vith any for a liv where if the tw s paralle formula of bear comme culfT at and do ance w sections	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20.1 a rectangle veen the bott el to grain va a. Building ing surface. ended to comr i jt(s) 7 and 5 ies not consid ith the 2015 5 R502.11.1 a	ads. Opsf om lue nect c. der				OR OFESS OFESS SEA 0449	ROL NL 25
Fully Exp.; 4) Unbalance design.	; Ct=1.10 ed snow loads have be	en considered for this	S									ма Ма	SEVIE 111 SEVIE 111 v 21 2021

May 21,2021

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	E01	Monopitch Structural Gable	1	1	Job Reference (optional)	146245825

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:54 ID:a32KylijdPIEWZWrlZkEC8zH0cT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

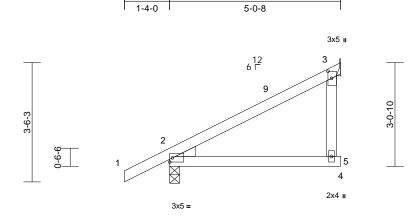
3-0-4

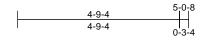
Scale = 1:36.2

00010 - 1.00.2														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 3-0-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=3-0-4, 7=3-0-4, Max Horiz 2=74 (LC Max Uplift 2=-31 (LC Max Uplift 2=-31 (LC 14), 14) Max Grav 2=173 (LC	v applied or 10-0-0 oc 5=3-0-4, 6=3-0-4, 8=3-0-4 13), 8=74 (LC 13) C 14), 5=-4 (LC 29), 6 7=-27 (LC 14), 8=-31 C 1), 5=4 (LC 10), 6= 7=84 (LC 7), 8=173 (C 6) 7) 8) 6=-19 (LC =71 ⁹⁾	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect	snow loads have as been designed psf or 1.00 times on-concurrent wi spaced at 2-0-0 is been designed n chord in all are by 2-00-00 wide y other member diTek connectors ing walls due to l tion is for uplift or	Pf=20.0 p =1.15); C been cor l for great flat roof lit th other lit oc. I for a 10.1 t with any ed for a liv as where will fit betv s. recomme UPLIFT ai	sf (flat roof sr ategory II; Ex asidered for the er of min roof bad of 20.0 ps ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ended to connr ; jt(s) 2, 6, and	now:						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=103 Cat. II; Ex zone and 1-6-2 to 3 end vertice forces & N DOL=1.6(2) Truss det only. For see Stance	Tension 1-2=0/36, 2-3=-106/ 4-6=-58/25	 1/92, 3-4=-37/22, 4-5= 1/32 n (3-second gust) CDL=6.0psf; h=25ft; S (betwelope) exterio o) to 1-6-2, Interior (1) aft and right exposed ed;C-C for members shown; Lumber n the plane of the true d (normal to the face) d Details as application 	9/3, 11 LC r ; and ss , ble,	 truss to bear connection is forces. This truss is International 	MiTek connector ing walls due to l s for uplift only ar designed in acco Residential Cod nd referenced sta	UPLIFT ai nd does no ordance w e sections	t jt(s) 5. This ot consider la ith the 2015 § R502.11.1 a	teral		Contraction of the second seco		SEA 0449	•	and annumber

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932


mm May 21,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	E02	Monopitch	5	1	Job Reference (optional)	146245826

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:54 ID:2_4HbqWhOUkVb6InpCSUYmzH0cj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-0-8

Scale = 1:34

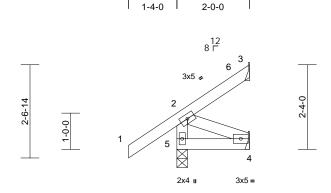
Plate Offsets (X, Y): [3:0-2-8,0-1-4]

				-	-		-			-
Loading (psf) Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0 Plate Grip DOL	1.15	TC	0.35	Vert(LL)	0.02	5-8	>999	240	MT20	244/190
Snow (Pf) 20.0 Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.05	5-8	>999	180		
TCDL 10.0 Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL 0.0* Code	IRC2015/TPI2014	Matrix-MP								
BCDL 10.0									Weight: 23 lb	FT = 20%
LUMBER	5) This truss	has been designed f	for a 10.0) psf bottom						
TOP CHORD 2x4 SP No.2		oad nonconcurrent			ads.					
BOT CHORD 2x4 SP No.2	6) * This trus	s has been designed	d for a liv	e load of 20.	0psf					
WEBS 2x4 SP No.3	on the bott	om chord in all area	s where	a rectangle						
WEDGE Left: 2x4 SP No.3		I by 2-00-00 wide wi		veen the bott	om					
BRACING		any other members.								
TOP CHORD Structural wood sheathing directly applie		rder(s) for truss to tru								
5-0-8 oc purlins, except end verticals.		echanical connectior ate capable of withst								
BOT CHORD Rigid ceiling directly applied or 10-0-0 or	c bearing pro		anuing 4	i ib upilit at	joint					
bracing.		MiTek connectors r	ecomme	nded to conr	hect					
REACTIONS (size) 2=0-3-8, 3= Mechanical	-,	aring walls due to UI			1001					
Max Horiz 2=112 (LC 13)		is for uplift only and			teral					
Max Uplift 2=-54 (LC 14), 3=-41 (LC 14)	forces.	, ,								
Max Grav 2=286 (LC 21), 3=202 (LC 21) 10) This truss	is designed in accord	dance w	ith the 2015						
FORCES (lb) - Maximum Compression/Maximum Tension		al Residential Code and referenced star			and					
TOP CHORD 1-2=0/36, 2-3=-235/150, 3-5=0/99		en inside of top cho								
BOT CHORD 2-5=-115/52, 4-5=0/0	, ,	r vertical web shall n		0						
NOTES	LOAD CASE(S	 Standard 								
1) Wind: ASCE 7-10; Vult=130mph (3-second gust)	- (•
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;									WH CA	in the second se
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterio	r								N'AH CA	Roll

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 044925 May 21,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	EJ01	Jack-Open	1	1	Job Reference (optional)	146245827

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:54 ID:B9fOmD9FMjBx6WVgRrkKK5zH1YZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

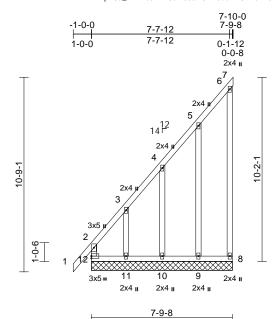
2-0-0 1-9-2

2-0-0

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood sh 2-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 3= Mect 5=0-3-8 Max Horiz 5=70 (Lt Max Uplift 3=-19 (L 5=-19 (L	C 14), 4=-20 (LC 14),	6) ed or 7) 5 8) I, 9)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4 and 19 lb u One RT7A M truss to bear connection is forces.) This truss is International	s been designed for ad nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will yo other members. er(s) for truss to tru- hanical connection capable of withsta- plift at joint 3. IiTek connectors re- ing walls due to UF for uplift only and designed in accord Residential Code s of referenced stam	vith any for a live where I fit betw ss conr (by oth anding 2 ecomme PLIFT at does no lance w sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss to lb uplift at ended to com- jt(s) 5. This ot consider la ith the 2015 c R502.11.1 a	Opsf com to joint nect ateral					
FORCES	()	mpression/Maximum	LC	DAD CASE(S)		uaru Ar	151/1911.						
TOP CHORD BOT CHORD WEBS	1-2=0/49, 2-3=-50/	39, 2-5=-180/77											
NOTES												mun	un.
Vasd=103 Cat. II; Exp zone and (exposed ; members ;	p B; Enclosed; MWF C-C Exterior (2) zone end vertical left and	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ight exposed;C-C for for reactions shown;	ght							٦.	g	OR CESS SEA	ROLINE
DOL=1.15	Plate DOL=1.15); P OL=1.15 Plate DOL=	(roof live load: Lumbe =20.0 psf (flat roof sn 1.15); Category II; Ex	ow:							THUR.		0449	• -
3) Unbalance		een considered for th	is									S.SNGIN	ERIAS
load of 12.		or greater of min roof at roof load of 20.0 ps other live loads.									and a	MILLIN M.	SEVIE-11 21,2021

TRENCO A MITEK Affiliate


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	G01	Jack-Open Supported Gable	1	1	Job Reference (optional)	146245828

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:55 ID:pK8a_?DhVc97AAJ6m50JRCzH0bo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

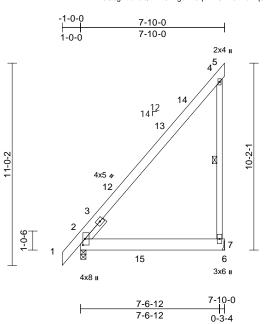
Page: 1

Scale = 1:63.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.60	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 70 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.3 2x4 SP No.3 Structural wood sł	ept* 8-6:2x4 SP No.3	,	only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL	ned for wind loads lds exposed to wind d Industry Gable E lalified building de : 7-10; Pr=20.0 ps late DOL=1.15); F =1.15 Plate DOL= :t=1.10	nd (norm and Deta signer a f (roof liv f=20.0 p	al to the face ils as applica s per ANSI/TI e load: Lumb sf (flat roof sr), ble, PI 1. er now:					
BOT CHORD	Rigid ceiling direct bracing, Except:	xcept end verticals. ly applied or 10-0-0 oc i-8.	 Fully Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live 										
REACTIONS	6-0-0 oc bracing: 6-8. EACTIONS (size) 8=7-9-8, 9=7-9-8, 10=7-9-8, 11=7-9-8, 11=7-9-8, 12=7-9-8 Max Horiz 12=378 (LC 14) Max Uplift 8=-67 (LC 14), 9=-132 (LC 14), 10=-87 (LC 14), 11=-373 (LC 14) 12=-141 (LC 12) Max Grav 8=100 (LC 21), 9=190 (LC 28), 10=184 (LC 28), 11=249 (LC 28), 12=522 (LC 14)				 a) a bit of the formation of th								
FORCES	(lb) - Maximum Co Tension	mpression/Maximum		on the bottor	m chord in all area	s where	a rectangle	•					117.
TOP CHORD					ny other members IiTek connectors r ing walls due to U	ecomme				6	AN A	"HTH CA	ROLI
BOT CHORD	11-12=-2/2, 10-11 6-8=-86/73	=-2/2, 9-10=-2/2, 8-9=-2	/2,	11, and 9. Th consider late	nis connection is for real forces.	or uplift o	only and does	not			23	A PESS	Seinthe
Vasd=103 Cat. II; Ex zone and 1-11-0 to 4 cantilever	CE 7-10; Vult=130mp mph; TCDL=6.0psf; p B; Enclosed; MWF C-C Corner (3) -1-0- 4-10-0, Corner (3) 4- left and right expose	BCDL=6.0psf; h=25ft; RS (envelope) exterior) to 1-11-0, Exterior (2)		International	designed in accor Residential Code nd referenced star Standard	sections	R502.11.1 a	Ind		Contraction of the second s		SEA 0449	• • •

10-0, Corner (3) 4-10-0 to cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



M. SE W. SEmin

May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	G02	Monopitch	12	1	I4 Job Reference (optional)	6245829

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:55 ID:hv5GcgVtiu4cQFktV574gszH0qx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

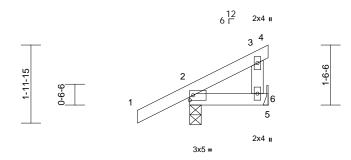
Scale = 1:62.7

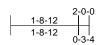
Plate Offsets (X, Y): [2:0-4-0,0-1-5]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	0.04	7-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	-0.05	7-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 72 lb	FT = 20%
FORCES TOP CHORD BOT CHORD		athing directly applie cept end verticals. applied or 10-0-0 or 4-7 7= Mechanical C 13) C 10), 7=-209 (LC 11 C 29), 7=517 (LC 24 pression/Maximum 1000, 4-5=-18/0,	c 7) 8) 1) 9) 4) 10	load of 12.0 overhangs n This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mec bearing plat joint 7. One RT7A M truss to beal connection i forces.) This truss is International	as been designed i psf or 1.00 times f ion-concurrent with as been designed an anoconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr chanical connection e capable of withst MiTek connectors r ring walls due to U s for uplift only and designed in accor I Residential Code and referenced star Standard	lat roof I n other Ii for a 10. with any d for a Iiv s where ill fit betv, with BC uss com n (by oth anding 2 ecomme PLIFT a d does n dance w sections	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss 209 lb uplift a ended to com t jt(s) 2. This of consider la ith the 2015 \$ R502.11.1 a	ads. Opsf com f. to t t t t t t t t t t					
NOTES		(a										TH CA	2111
	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B											TH UA	ROUL
	p B; Enclosed; MWFR									/	and a	ONFESS	in Mile
										- L	17 >		WALL ST

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 4-10-0, Exterior (2) 4-10-0 to 7-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	H01	Monopitch	2	1	Job Reference (optional)	146245830

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:56 ID:hdWz1VC30icS8kzLXhPTHazH0Wf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

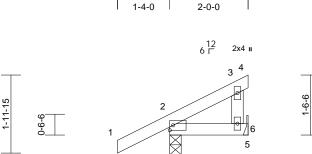
-1-4-0 2-0-0 1-4-0 2-0-0

Scale = 1:29.4

/

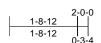
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=55 (LC Max Uplift 2=-45 (LC Max Grav 2=186 (LC (lb) - Maximum Com Tension 1-2=0/36, 2-3=-194/	applied or 10-0-0 oc 5= Mechanical 13) C 14), 5=-11 (LC 14) C 21), 5=54 (LC 21) opression/Maximum 91, 3-4=-8/0, 3-6=-52	 7) This truss I chord live I 8) * This truss I 8) * This truss I 3-06-00 tall chord and a 9) Refer to gir 10) Provide me bearing pla 5. 11) One RT7A truss to bea connection forces. 12) This truss i International 	s spaced at 2-0-0 oc as been designed fo bad nonconcurrent v has been designed om chord in all areas by 2-00-00 wide wil any other members. der(s) for truss to tru chanical connection te capable of withsta MiTek connectors re ring walls due to UF is for uplift only and s designed in accord al Residential Code s and referenced stan Standard	or a 10.0 vith any for a liv s where Il fit betw uss conn (by oth anding 1 ecomme PLIFT at does n dance w sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 1 lb uplift at j ended to comr jt(s) 2. This ot consider la ith the 2015 i R502.11.1 a	Opsf om to joint nect uteral					
 Wind: ASC Vasd=103 Cat. II; Ex zone and exposed; members Lumber D Truss des only. For see Stand or consult TCLL: ASC DOL=1.15 Lumber D Fully Exp. Unbalance design. This truss load of 12 	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Corner (3) zone; c end vertical left and rij and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 ; Ct=1.10 ed snow loads have be has been designed fo .0 psf or 1.00 times fla s non-concurrent with o	CDL=6.0psf; h=25ft; S (envelope) exterior antilever left and rigt ght exposed;C-C for for reactions shown; DL=1.60 n the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumber 20.0 psf (flat roof smo .15); Category II; Exp even considered for thi r greater of min roof I t roof load of 20.0 psi	nt ss le, l 1. r pw: b B; s ive	, Standard						S.C.	SEA 0449	25 EER. HALL

May 21,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	H02	Monopitch	5	1	Job Reference (optional)	146245831


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:56 ID:WnuEHYHqcYNbsfQVuyWtWrzH0WZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x5 =

2x4 🛛

2-0-0

Scale = 1:29.4

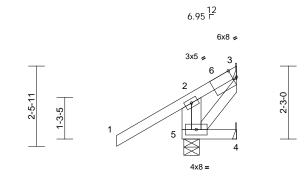
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15 ES C2015/TPI2014	CSI TC 0.12 BC 0.05 WB 0.00 Matrix-MP	DEFL in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	`6-9 >	l/defl L/d >999 240 >999 180 n/a n/a	MT20	GRIP 244/190 FT = 20%
BOT CHORD 2-0-0 oc purlins, ex Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, Max Horiz 2=55 (LC Max Uplift 2=-45 (LC Max Grav 2=186 (LI FORCES (lb) - Maximum Con Tension	A applied or 10-0-0 oc 5= Mechanical (13) C 14), 5=-11 (LC 14) C 21), 5=54 (LC 21) npression/Maximum (91, 3-4=-8/0, 3-6=-52/25) (91, 3-	 on the botton 3-06-00 tall l chord and ar 7) Refer to gird 8) Provide mec bearing plate 5. 9) One RT7A M truss to bear connection is forces. 10) This truss is International 	m chord in all areas where by 2-00-00 wide will fit bet ny other members. ter(s) for truss to truss con chanical connection (by oth e capable of withstanding MiTek connectors recomm- ring walls due to UPLIFT a s for uplift only and does n designed in accordance w I Residential Code section and referenced standard Al	a rectangle ween the bottom nections. hers) of truss to 11 lb uplift at joint ended to connect t jt(s) 2. This ot consider lateral vith the 2015 s R502.11.1 and			SEA 0449 0449	• • •

//////// WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	HJ01	Jack-Open Girder	1	1	Job Reference (optional)	146245832

-2-0-3

2-0-3


1-8-2

1-8-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:57 ID:B9fOmD9FMjBx6WVgRrkKK5zH1YZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.5

Plate Offsets (X, Y): [3:0-1-7,Edge]

.oading (psf)	Spacing 2-	-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) 20.0		.15	TC	0.45		0.00	4-5	>999	240	MT20	244/190
Snow (Pf) 20.0		.15	BC	0.02	()	0.00	4-5	>999	180		
CDL 10.0	1 '		WB	0.02	Horz(CT)	0.00	3	n/a	n/a		
3CLL 0.0* 3CDL 10.0	Code IF	RC2015/TPI2014	Matrix-MP							Woight: 15 lb	FT = 20%
10.0										Weight: 15 lb	FT = 20%
UMBER OP CHORD 2x4 SP No.2 OT CHORD 2x4 SP No.2 VEBS 2x4 SP No.3 BRACING OP CHORD Structural wood she 1-8-2 oc purlins, ex	athing directly applied or cept end verticals.	load of 12.0 overhangs n 6) This truss ha chord live loa r 7) * This truss h on the bottor	is been designed f psf or 1.00 times fl on-concurrent with is been designed f ad nonconcurrent v nas been designed n chord in all areas	at roof lo other liv or a 10.0 with any for a liv s where	oad of 20.0 psf o /e loads.) psf bottom other live loads e load of 20.0ps a rectangle	on .f					
•	applied or 10-0-0 oc	chord and ar	by 2-00-00 wide wi by other members. er(s) for truss to tru								
5=0-5-12 Max Horiz 5=61 (LC Max Uplift 3=-101 (L Max Grav 3=14 (LC (LC 19)	C 18), 5=-59 (LC 12) 8), 4=27 (LC 7), 5=309	bearing plate joint 3. 10) One RT7A M truss to bear	hanical connection capable of withsta liTek connectors re ing walls due to UI s for uplift only and	anding 1 ecomme PLIFT at	01 lb uplift at nded to connec jt(s) 5. This						
ORCES (Ib) - Maximum Com Tension	pression/Maximum	forces.	designed in accord								
OP CHORD 2-5=-296/157, 1-2=0 OT CHORD 4-5=0/0)/69, 2-3=-93/91	International	Residential Code	sections	R502.11.1 and						
VEBS 3-5=-111/47			nd referenced stan								
IOTES			n inside of top choi vertical web shall n								1111.
 Unbalanced roof live loads have this design. 	been considered for	LOAD CASE(S)			0.00011.				- 0	"TH CA	RO
Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; B Cat. II; Exp B; Enclosed; MWFR zone; cantilever left and right exp and right exposed; Lumber DOL DOL=1.60	CDL=6.0psf; h=25ft; S (envelope) exterior bosed ; end vertical left							111111	K	D FESS	• •
 TCLL: ASCE 7-10; Pr=20.0 psf (DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1 Fully Exp.; Ct=1.10 	20.0 psf (flat roof snow:							111111		0449	EP. R.
) Unbalanced snow loads have be design.	en considered for this								111	MILLIN M.	SEVIE 11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITER connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	HJ02	Jack-Open	1	1	Job Reference (optional)	146245833

-2-0-3

2-0-3

2-5-6

1-3-5

1-7-9

1-7-9 6.95 F

3x5 🍬

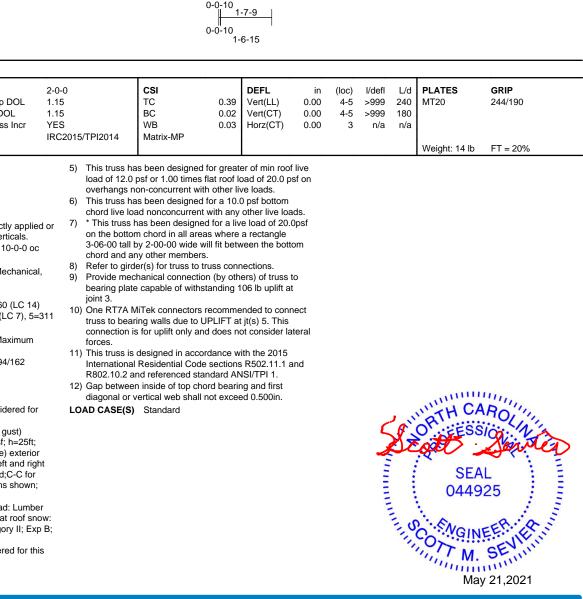
2

5

6x8 =

8x10 🞜

3 6


4

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:57 ID:1SIsKyPGgJpmxX2zehiC8TzH2pb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-2-11

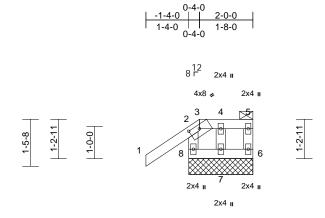
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:35.5

Plate Offsets (X, Y): [3:0-2-10,Edge]

	, , , E,														
Loading TCLL (roof)	u u	sf) 0.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.39	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf)		0.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	0.00	4-5	>999	180	101120	244/130	
TCDL		0.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	- 3	 n/a	n/a			
BCLL		0.0*	Code		15/TPI2014	Matrix-MP	0.00	11012(01)	0.00	0	n/a	n/a			
BCDL		0.0 0.0	Obde	11(02)	10/11/2014								Weight: 14 lb	FT = 20%	
LUMBER					5) This truss ha	as been designed	for great	er of min roof	live						
TOP CHORD	2x4 SP No.2					psf or 1.00 times			sf on						
BOT CHORD	2x4 SP No.2					on-concurrent wit									
WEBS	2x4 SP No.3					is been designed									
BRACING						ad nonconcurrent									
TOP CHORD			thing directly applied ept end verticals.	d or	on the bottor	nas been designe m chord in all area	as where	a rectangle	•						
BOT CHORD	Rigid ceiling dir bracing.	rectly a	applied or 10-0-0 oc		chord and a	by 2-00-00 wide w ny other members	i.		om						
REACTIONS	0		nical, 4= Mechanical		, 0	er(s) for truss to tr hanical connectio			to						
	Max Horiz 5=61		2)		bearing plate	e capable of withs	tanding 1	06 lb uplift at	t						
			20), 5=-60 (LC 14)		joint 3.										
		4 (LC 1	10), 4=27 (LC 7), 5=3		truss to bear	IiTek connectors ing walls due to U	JPLIFT at	jt(s) 5. This							
FORCES		'	pression/Maximum			s for uplift only an	d does no	ot consider la	teral						
FORCES	Tension	Com			forces.	designed in seco		the the 2015							
TOP CHORD		1-2=0/	69, 2-3=-94/162			designed in accor Residential Code			nd						
BOT CHORD	4-5=0/0	0,	00,20 002			nd referenced sta			inu						
WEBS	3-5=-162/47					n inside of top cho									
NOTES						vertical web shall i							MUL CA	1111	
 Unbalance this design 		have t	been considered for		LOAD CASE(S)	Standard					_	1	"ATH CA	RO	
Vasd=103 Cat. II; Ex	p B; Enclosed; M	osf; BC WFRS	DL=6.0psf; h=25ft; (envelope) exterior								2	Se	o jess	Sande	ł
			antilever left and righ ht exposed;C-C for	11									SEA	1 1	=
			or reactions shown;								=			•	-
			4.00									6 E	0449	25	12


- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: 3) Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J01	Half Hip Supported Gable	1	1	Job Reference (optional)	46245834

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:57 ID:eYiaapeeXI8LTGjGeF3vkAzH0W5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

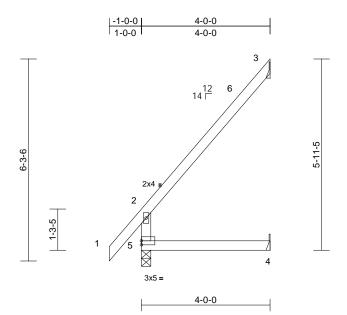
2-0-0

Scale	1.25 0	

Plate Offsets (X, Y): [2:0-3-13,0-1-7]

Plate Offsets	(X, Y): [2:0-3-13,0-1-7]			-									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.23 0.03 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 2-0-0 oc purlins, ex 2-0-0 oc purlins: 3-5 Rigid ceiling directly bracing. (size) 6=2-0-0, 7 Max Horiz 8=49 (LC Max Uplift 6=-16 (LC 8=-56 (LC Max Grav 6=35 (LC (LC 34) (ib) - Maximum Com 	applied or 6-0-0 oc 7=2-0-0, 8=2-0-0 13) 2 11), 7=-31 (LC 38), 2 14) 33), 7=80 (LC 41), 8: apression/Maximum	d or 5) id 6) 7) 8) 9) 10 =254 11	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec Gable requir. Truss to be f braced agair Gable studs) This truss ha chord live loa) * This truss ha on the bottor 3-06-00 tall b chord and ar	snow loads have s been designed osf or 1.00 times on-concurrent wit quate drainage to es continuous bot ully sheathed fror ist lateral movem spaced at 2-0-0 c s been designed ad nonconcurrent nas been designe n chord in all agent y 2-00-00 wide w y other members	Pf=20.0 p =1.15); C been cou for great flat roof I h other li prevent ttom choi m one fac ent (i.e. c oc. for a 10. with any d for a liv as where vill fit betw s.	sf (flat roof si ategory II; E2 hsidered for the er of min roof bad of 20.0 p ve loads. water ponding d bearing. te or securely liagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle ween the bottom	now: kp B; f live sf on g. , hds. Opsf om						
BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and cantilever right expo for reactio DOL=1.6 2) Truss de only. For see Stand	3-4=-15/29, 4-5=-15 7-8=-37/23, 6-7=-37, 4-7=-63/64 3mph; TCDL=6.0psf; Br xp B; Enclosed; MWFR I C-C Corner (3) -1-4-0 r left and right exposed ossed;C-C for members. ons shown; Lumber DO	/29, 5-6=-34/41 /23 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 1-10-4 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip h the plane of the trus I (normal to the face), d Details as applicabl	13 - 14 I S LC Ss	truss to bear This connect lateral forces This truss is International R802.10.2 at	designed in acco Residential Code nd referenced sta rlin representation ation of the purlin I.	JPLIFT a ly and do rdance w sections indard AN n does n	: jt(s) 8, 6, an es not consid ith the 2015 s R502.11.1 a ISI/TPI 1. ot depict the s	d 7. der and				M.M.	EER RATION	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



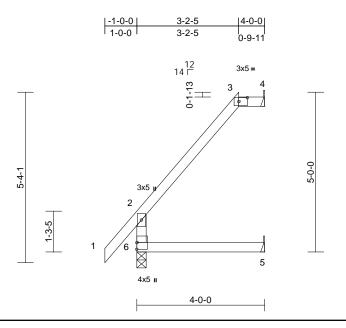
May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J03	Jack-Open	5	1	Job Reference (optional)	146245835

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:58 ID:B9fOmD9FMjBx6WVgRrkKK5zH1YZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:35.8


Scale = 1:35.8												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	0.66 0.47 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.04 -0.07	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD 5 BOT CHORD 6 REACTIONS (si	4-0-0 oc purlins, ex Rigid ceiling directly pracing. ize) 3= Mecha 5=0-3-8 ax Horiz 5=201 (L ax Uplift 3=-151 (L	applied or 10-0-0 o anical, 4= Mechanica	on the b 3-06-00 chord ar 7) Refer to 8) Provide bearing c 9) This trus al, 91 This trus Internati R802.10 LOAD CASE	uss has been design- ottom chord in all are tall by 2-00-00 wide d any other member girder(s) for truss to mechanical connecti plate capable of with nd 25 lb uplift at joint is is designed in accc onal Residential Cod .2 and referenced st E(S) Standard	eas where will fit betw rs. truss conr ion (by oth standing 1 4. ordance w le sections	a rectangle veen the bott nections. ers) of truss 51 lb uplift a ith the 2015 \$ R502.11.1 a	to t					
TOP CHORD 2 BOT CHORD 2 NOTES 1) Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-C exposed ; en members ann Lumber DOL 2) TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C 3) Unbalanced design. 4) This truss ha	Ib) - Maximum Con Fension 2-5=-199/1, 1-2=0/5 1-5=0/0 7-10; Vult=130mph bh; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior (2) zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-10; Pr=20.0 psf ate DOL=1.15); Pf= =1.15 Plate DOL=1 t=1.10 snow loads have be s been designed for	a (3-second gust) CDL=6.0psf; h=25ft S (envelope) exterior cantilever left and r ght exposed;C-C for for reactions showr DL=1.60 (roof live load: Lumb =20.0 psf (flat roof sr .15); Category II; Ex- een considered for th r greater of min roof	; or ight ; er now: κρ Β; his						N HILLING		SEA 0449	• •
overhangs no 5) This truss ha	on-concurrent with s been designed fo	t roof load of 20.0 p other live loads. r a 10.0 psf bottom ith any other live loa								in .	Min M.	SEVIE:

- overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J04	Jack-Open	1	1	Job Reference (optional)	146245836

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:58 ID:B9fOmD9FMjBx6WVgRrkKK5zH1YZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

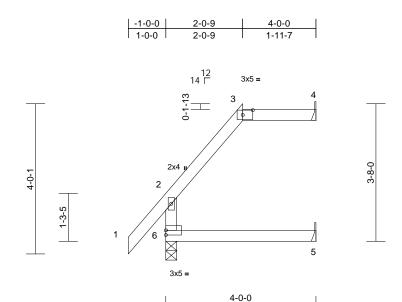
Scale = 1:36.1

Plate Offsets (X, Y): [3:0-3-4,0-1-8]

	(X, 1): [3:0 3 4;0 1 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TI	PI2014	CSI TC BC WB Matrix-MR	0.58 0.40 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.11	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	applied or 10-0-0 oc anical, 5= Mechanical C 14) C 14), 5=-17 (LC 14)	(0 6) P 7) T d or d d d d d d d d d d d d d d d d d d d	and of 12.0 p verhangs no rovide adeq his truss ha hord live loa This truss h n the botton -06-00 tall b hord and an tefer to girde rovide meck earing plate and 17 lb u his truss is o nternational	s been designed st or 1.00 times f on-concurrent with uate drainage to s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members er(s) for truss to tr nanical connection capable of withst plift at joint 5. designed in accorr Residential Code d referenced stat	ilat roof k n other lir prevent for a 10. with any d for a liv is where ill fit betw. uss conr n (by oth tanding S rdance w sections	bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 19 lb uplift at ith the 2015 c R502.11.1 a	psf on g. ads. Opsf rom to joint					
FORCES TOP CHORD BOT CHORD		npression/Maximum 90, 2-3=-172/89, 3-4	=0/0 b					size					
 this designed to the set of the set	ced roof live loads have gn. SCE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi xp B; Enclosed; MWFR I C-C Exterior (2) zone; ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= DOL=1.15 Plate DOL=1 .; Ct=1.10 ced snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; λ =1.60 (roof live load: Lumbe =20.0 psf (flat roof sno .15); Category II; Exp	, ht ow: ⊳B;									SEA 0449	25 EER. R. I.

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



(IIIIIII) May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J05	Jack-Open	1	1	Job Reference (optional)	146245837

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:59 ID:fLDmzZAu70Jojg4t?YFZsIzH1YY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

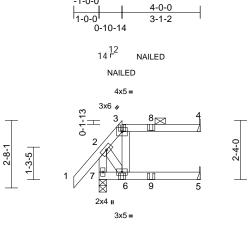
Scale = 1:30.7

Plate Offsets (X, Y): [3:0-3-4,0-1-8]

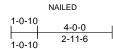
	(, .), [
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MR	0.43 0.29 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.09	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	cept end verticals, ar applied or 10-0-0 oc nnical, 5= Mechanica C 14) C 11), 5=-2 (LC 14)	ed or nd	 design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss la on the botton 3-06-00 tall 1 chord and an Refer to gird Provide mee bearing plate 	snow loads have as been designed psf or 1.00 times i on-concurrent witi quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to to chanical connectio e capable of withs olift at joint 5.	for great flat roof I h other li prevent for a 10. with any d for a liv as where ill fit betv russ coni n (by oth	er of min roo oad of 20.0 p ve loads. water pondiri 0 psf bottom other live loa re load of 20. a rectangle veen the bot nections. ers) of truss	f live osf on ig. ads. .0psf tom to					
FORCES	(lb) - Maximum Com Tension 2-6=-302/107, 1-2=0			International R802.10.2 a	designed in accord Residential Code nd referenced sta urlin representation	sections	s R502.11.1 ; NSI/TPI 1.						
BOT CHORD	3-4=0/0 5-6=0/0				ation of the purlin	along the	e top and/or						ш.,
NOTES	2 9 0.0			bottom chore LOAD CASE(S)								WHY CA	Pall
 Unbalanc this desig Wind: AS Vasd=103 	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B	(3-second gust) CDL=6.0psf; h=25ft;									Ž	ORTESS	Santa
zone and exposed ; members Lumber D 3) TCLL: AS DOL=1.15 Lumber D	cp B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and ri; and forces & MWFRS DOL=1.60 plate grip DC SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= DOL=1.15 Plate DOL=1 .; Ct=1.10	cantilever left and rig ght exposed;C-C for for reactions shown; DL=1.60 roof live load: Lumbe :20.0 psf (flat roof sno	ght er ow:									SEA 0449 COT M	• •

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SF М. mm May 21,2021


Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J06	Jack-Open Girder	1	1	Job Reference (optional)	146245838

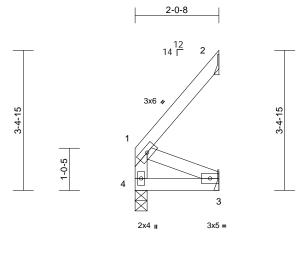
0-10-14 -1-0-0


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:54:59 ID:fLDmzZAu70Jojg4t?YFZsIzH1YY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED


												-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	0.03	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.03	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.06	Horz(CT)	0.04	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0						-				Weight: 21 lb	FT = 20%
LUMBER				s has been designed								
TOP CHORD	2x4 SP No.2			2.0 psf or 1.00 times			sf on					
BOT CHORD	2x4 SP No.2			gs non-concurrent wit								
WEBS	2x4 SP No.3			adequate drainage to			g.					
BRACING	.		, obord li	s has been designed e load nonconcurrent			ade					
TOP CHORD		eathing directly applie		uss has been designe								
	2-0-0 oc purlins, e:	cept end verticals, a		ottom chord in all area			opsi					
BOT CHORD		+. y applied or 10-0-0 or	0.00.00	tall by 2-00-00 wide w			om					
BOTCHORD	bracing.		ć chord a	nd any other members	5.							
REACTIONS	0	anical, 5= Mechanica		girder(s) for truss to t								
	7=0-3-8		10) Provide	mechanical connectio								
	Max Horiz 7=61 (LC	C 9)		plate capable of withs I lb uplift at joint 5.	tanding 4	Fi id uplift at	joint					
	Max Uplift 4=-41 (L	C 8), 5=-21 (LC 9), 7	h/	7A MiTek connectors	rocommo	andod to conr	aact					
	(LC 12)		, truss to	bearing walls due to L			lect					
	Max Grav 4=157 (L	.C 31), 5=72 (LC 7), 7		ion is for uplift only an			ateral					
	(LC 32)		forces.									
FORCES		npression/Maximum		s is designed in acco								
	Tension		a /a	onal Residential Code			and					
TOP CHORD BOT CHORD	2-7=-239/10, 1-2=0 6-7=-68/40, 5-6=0/0	/90, 2-3=-89/24, 3-4=		.2 and referenced sta								
WEBS	3-6=-131/142, 2-6=			al purlin representatio			size					
NOTES	5-0=-151/142, 2-0=	-02/113	bottom	ientation of the purlin	along the	e top and/or					minin	11111
	ed roof live loads have	haan aanaidarad fa)" indicates 3-10d (0.1	18"v3")	or 2-12d					"TH CA	Rolly
this design				3.25") toe-nails per N						1 AN	R	in class
	CE 7-10; Vult=130mp	h (3-second aust)		DAD CASE(S) section			face			5		ON: Ko
	mph; TCDL=6.0psf; E		of the tr	uss are noted as front	(F) or ba	ick (B).			-	SC		Sauce
	b B; Enclosed; MWFF			E(S) Standard						÷ (. ~	111 1
	ilever left and right ex		1) Doud	- Snow (balanced): Lu	mber Inc	rease=1.15,	Plate		=		SEA	\L : =
	exposed; Lumber DOI	_=1.60 plate grip		se=1.15					=	:	0449	• •
DOL=1.60	CE 7-10; Pr=20.0 psf	(reaf live leads Lumb		n Loads (lb/ft)					=		0445	20
	Plate DOL=1.15); Pf		*01	: 1-2=-60, 2-3=-60, 3-4	4=-60, 5-	7=-20			-			1 E
	OL=1.15 Plate DOL=		5 001100	ntrated Loads (lb)	4 (F)					- 15	· . E.	Rias
Fully Exp.;			r-, Ver	: 3=48 (F), 6=-3 (F), 9	=-1(F)						C GIN	EFICES
4) Unbalance	ed snow loads have b	een considered for th	is							1	1	CEVIN
design.										0	111. M.	Sum
											2000	TUN
											Ma	y 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J07	Jack-Open	10	1	Job Reference (optional)	146245839

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:00 ID:_zP3r2FaAeMoJ5U5NiQSrFzH12A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

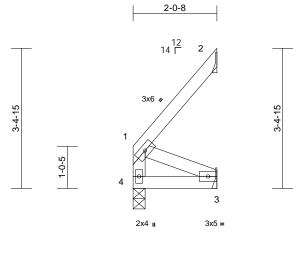
Page: 1

Scale = 1:28

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	4 CSI TC BC WB Matrix-MP	0.14 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-11-1 oc purlins, e Rigid ceiling directly bracing. (size) 2= Mecha 4=0-3-8 Max Horiz 4=72 (LC Max Uplift 2=-73 (LC Max Grav 2=70 (LC (LC 25)	xcept end verticals. applied or 10-0-0 oc anical, 3= Mechanica 14) 2 14), 3=-22 (LC 14)	on the 3-06-0 chord a 6) Refer t bed or 7) Provid bearing 2 and 2 8) This tru Interna II, R802.1 LOAD CAS	uss has been design oottom chord in all are tall by 2-00-00 wide nd any other member o girder(s) for truss to mechanical connecti plate capable of with 2 lb uplift at joint 3. ss is designed in acco ional Residential Cod 0.2 and referenced st E(S) Standard	eas where will fit betw 's. truss coni on (by oth standing 7 ordance w le sections	a rectangle ween the botto nections. ers) of truss to 73 lb uplift at jo rith the 2015 5 R502.11.1 a	om o pint					
FORCES	(lb) - Maximum Com Tension 1-2=-87/71, 1-4=-80											
BOT CHORD WEBS	3-4=-121/93 1-3=-102/132											
NOTES	101/102											
Vasd=103 Cat. II; Exp zone and exposed ; members ;	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	ght						S	So.	OF TH CA	ROLING
DOL=1.15	CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1	20.0 psf (flat roof sn	ow:								SEA 0449	• •
	ed snow loads have be	en considered for th	is									alai
4) This truss	has been designed for load nonconcurrent wi		ds.								CONGIN	SEVIETU

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

mmm May 21,2021


818 Soundside Road Edenton, NC 27932

S Μ.

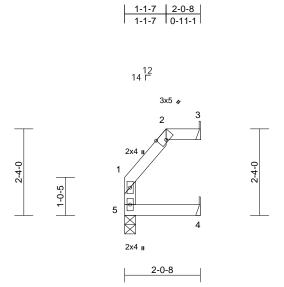
Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J08	Jack-Open	1	1	Job Reference (optional)	146245840

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:00 ID:_zP3r2FaAeMoJ5U5NiQSrFzH12A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-MP	0.14 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-11-1 oc purlins, e Rigid ceiling directly bracing. (size) 2= Mecha 4=0-3-8 Max Horiz 4=72 (LC Max Uplift 2=-73 (LC Max Grav 2=70 (LC (LC 25)	xcept end verticals. applied or 10-0-0 oc inical, 3= Mechanica 14) : 14), 3=-22 (LC 14)	on 3-0 chc 6) Rei d or 7) Pro bez 2 a 8) Thi Inte R80 LOAD	the botton 06-00 tall b ord and an fer to girde ovide mech aring plate and 22 lb u is truss is ernational 02.10.2 ar	has been designed in chord in all areas by 2-00-00 wide win by other members. er(s) for truss to tri hanical connectior e capable of withste plift at joint 3. designed in accord Residential Code and referenced star Standard	s where II fit betv uss conr (by oth anding 7 dance w sections	a rectangle veen the botto nections. ers) of truss to '3 lb uplift at jo ith the 2015 5 R502.11.1 ar	m) vint					
 Vasd=103 Cat. II; Ex zone and 1 exposed ; members Lumber D 2) TCLL: AS DOL=1.15 Lumber D Fully Exp. Fully Exp. 3) Unbalance design. 4) This truss 	(lb) - Maximum Com Tension 1-2=-87/71, 1-4=-80 3-4=-121/93 1-3=-102/132 CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf c Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig pht exposed;C-C for for reactions shown; L=1.60 20.0 psf (flat roof sm. .15); Category II; Exp ten considered for th r a 10.0 psf bottom	er ov: ob; ss							A DITUTURA		SEA 0449	• •


818 Soundside Road Edenton, NC 27932

S Μ. mmm May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	J09	Jack-Open	1	1	I46 Job Reference (optional)	6245841

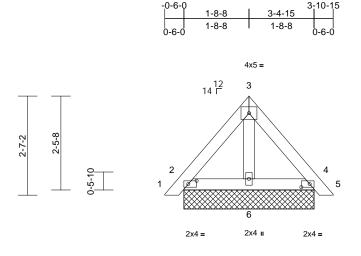
Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:00 ID:_zP3r2FaAeMoJ5U5NiQSrFzH12A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Plate Offsets (X, Y): [2:0-2-5,Edge]

- 100010	(,,, ,). [<u>2:0 2 0</u> ,2090]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/7	TPI2014	CSI TC BC WB Matrix-MR	0.14 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	$\begin{array}{c} \begin{array}{c} 2x4 \ {\rm SP}\ {\rm No.2}\\ 2x4 \ {\rm SP}\ {\rm No.3} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	cept end verticals, a applied or 10-0-0 or inical, 4= Mechanica 11) 14), 4=-5 (LC 14) 32), 4=36 (LC 7), 5= pression/Maximum	6) 7 7) 7 nd 8) 7 c 9) 1 1, 10) 7 =99 11) 0	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3 and 5 lb up This truss is International R802.10.2 ar Graphical pu	designed in accor Residential Code nd referenced star rlin representation ation of the purlin a l.	or a 10. with any s where ill fit betw uss conr h (by oth anding 3 dance w sections ndard AN h does no	D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 12 lb uplift at j ith the 2015 5 R502.11.1 a NSI/TPI 1.	ads. Opsf om to joint					
BOT CHORE		/20, 2-3=0/0											
this desig 2) Wind: AS Vasd=10 Cat. II; E zone and exposed members Lumber I 3) TCLL: AS DOL=1.1 Lumber I Fully Exp	ced roof live loads have gn. SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; Bf ixp B; Enclosed; MWFR3 d C-C Exterior (2) zone; l; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DO SCE 7-10; Pr=20.0 psf (15 Plate DOL=1.15; Pf= DOL=1.15 Plate DOL=1 o.; Ct=1.10 ced snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri- ight exposed;C-C for for reactions shown L=1.60 roof live load: Lumbi- 20.0 psf (flat roof sn. .15); Category II; Ex	r ght ; er jow: p B;									SEA 0449	• •


4) Unbalanced snow loads have been considered for this design.

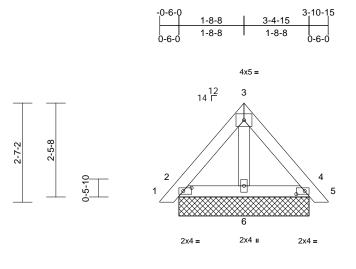
Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	PB01	Piggyback	1	1	Job Reference (optional)	146245842

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:00 ID:ux_HvU9Zmonll8e7ajMC8zzH17S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-15 Scale = 1:30.2 Plate Offsets (X, Y): [2:0-2-10.0-1-0]. [4:0-2-10.0-1-0]

Plate Offsets ((X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 ES RC2015/T	PI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-5-6 oc purlins. Rigid ceiling directly bracing. (size) 2=3-4-15, 7=3-4-15, Max Horiz 2=61 (LC Max Uplift 2=-19 (LC (LC 14), 7 15) Max Grav 2=105 (LC (LC 1), 7= 1) (lb) - Maximum Corr Tension 1-2=0/14, 2-3=-74/4 2-6=-24/55, 4-6=-19 3-6=-35/0	2 15), 4=-18 (LC 15), 6= '=-19 (LC 15), 10=-18 (L C 1), 4=105 (LC 1), 6=1(-105 (LC 1), 10=105 (LC -105 (LC 1), 10=105 (LC 	4) T 4) T 5) U 6) T 6) T 6) T 6) T 6) T 10) * 11) C 11) C 11 11 12 12 12 12 12 12 12 12	only. For stu see Standarc or consult qu CCLL: ASCE DOL=1.15 Pl Jumber DOL Juhbalanced design. This truss ha bad of 12.0 µ worthangs nu Gable require Gable require Gable studs : This truss ha shord live loa This truss ha shord live loa This truss ha shord live loa This truss to beari This connect ateral forces	snow loads have b s been designed for on-concurrent with es continuous bott spaced at 4-0-0 oc s been designed fad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide wi by other members. IITek connectors re ing walls due to UI ion is for uplift only	Id (norm nd Deta signer as (roof liv =20.0 p 1.15); C obeen cor or great at roof k other liv om chor c. or a 10.4 with any l for a liv s where Il fit betw ecomme PLIFT at y and do	al to the face Is as applical s per ANSI/TK e load: Lumb of (flat roof sr ategory II; Ex- isidered for the er of min roof bad of 20.0 ps- re loads. d bearing.) psf bottom other live load e load of 20.0, psf bottom other live load e load of 20.0, a rectangle veen the bottor nded to conn jt(s) 2, 4, and es not consid), ble, er now: cp B; his live sf on ds. Dpsf om ect d 6.				TH CA	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; members	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B p B; Enclosed; MWFR;	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right ght exposed;C-C for for reactions shown;	lr R 13) S D c	nternational R802.10.2 ar See Standar Detail for Co	Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design	sections Idard AN Ick Trus russ as a	R502.11.1 a ISI/TPI 1. S Connection			A THURSDAY		SEA 0449	25

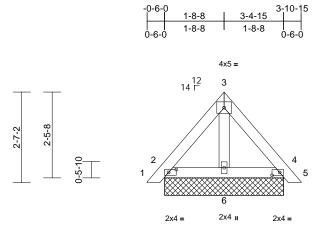

W. SEVIN May 21,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	PB02	Piggyback	4	1	Job Reference (optional)	146245843

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:01 ID:bcS4Rt0QcdVhw13SE5DPaNzH5nt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	3-4-15
Scale = 1:30.2	
Plate Offsets (X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]	


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-5-6 oc purlins. Rigid ceiling directly bracing. (size) 2=3-4-15 7=3-4-15 Max Horiz 2=61 (LC Max Uplift 2=-19 (LI (LC 14), 15) Max Grav 2=105 (L (LC 1), 7 1) 	eathing directly applied y applied or 10-0-0 oc y 4=3-4-15, 6=3-4-15, y 10=3-4-15 y 13), 7=61 (LC 13) C 15), 4=-18 (LC 15), 6 7=-19 (LC 15), 10=-18 C 1), 4=105 (LC 1), 6= =105 (LC 1), 10=105 (npression/Maximum	5) 6) 6(LC 8) =101 9)	only. For stu see Standarr, or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requiri Gable studs This truss ha chord live loa chord live botor 3-06-00 tall b	hed for wind loads ids exposed to wild al Industry Gable E alified building de 7-10; Pr=20.0 ps late DOL=1.15); F =1.15 Plate DOL= t=1.10 snow loads have is been designed psf or 1.00 times i con-concurrent wild es continuous bot spaced at 4-0-0 c s been designed ad nonconcurrent nas been designed ad nonconcurrent in chord in all area by 2-00-00 wide wild of the state is other members	nd (norm End Deta esigner a signer a for forof lix Pf=20.0 p =1.15); C been cou for great flat roof I h other li tom chor oc. for a 10. with any d for a liv as where rill fit betv	al to the face ils as applica s per ANSI/TI e load: Lumb sf (flat roof sr fategory II; E> nsidered for th er of min roof pad of 20.0 p; ve loads. d bearing. D psf bottom other live loa e load of 20.0), ble, Pl 1. er now: cp B; his live sf on ds. Dpsf					
this desig 2) Wind: AS Vasd=10 Cat. II; E zone and exposed members	2-6=-24/55, 4-6=-19 3-6=-35/0	e been considered for n (3-second gust) SCDL=6.0psf; h=25ft; SS (envelope) exterior ; cantilever left and rigil ight exposed;C-C for if or reactions shown;	12 13 ht	truss to bear This connect lateral forces This truss is International R802.10.2 ar See Standar Detail for Co	designed in accor Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig	IPLIFT a ly and do rdance w sections ndard AN ack Trus truss as	i jt(s) 2, 4, an es not consid ith the 2015 5 R502.11.1 a ISI/TPI 1. s Connection	d 6. Jer Ind		Contraction		MILLIN M.	25 EER. R. L.

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	PB03	Piggyback	1	2	Job Reference (optional)	146245844

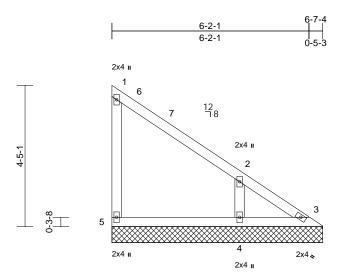
Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:01 ID:ni6vf_bOgeIu47EiodpGpIzH0tO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Special

3-4-15

Scal	e = 1:3	33										


TCLL (roof) 20.0 Plate Grip DOL 1 Snow (Pf) 20.0 Lumber DOL 1 TCDL 10.0 Rep Stress Incr Y	0-0 15 15 ES 8C2015/TPI2014	CSI TC 0.02 BC 0.02 WB 0.00 Matrix-MP	Vert(LL) n	in (loc) /a - /a - 00 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
BCDL10.0LUMBER TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2BOT CHORD2x4 SP No.3BRACINGTOP CHORDTOP CHORDStructural wood sheathing directly applied or $4-5-6$ oc purlins.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.REACTIONS(size)2=3-4-15, 4=3-4-15, 6=3-4-15, $7=3-4-15, 10=3-4-15$ Max Horiz2=61 (LC 13), 7=61 (LC 13) Max Uplift 2=-693 (LC 15), 4=-19 (LC 15), $6=-2$ (LC 14), 7=-693 (LC 15), $10=-19$ (LC 15)Max Grav2=1374 (LC 25), 4=105 (LC 1), $6=102$ (LC 1), 7=1374 (LC 25), $10=105$ (LC 1)FORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD1-2=0/14, 2-3=-74/49, 3-4=-67/49, 4-5=0/14 BOT CHORDBOT CHORD2-6=-29/54, 4-6=-20/54WEBS3-6=-36/0NOTES1)2-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.3) Unbalanced roof live loads have been considered for	 Vasd=103m Cat. II; Exp I zone and C- exposed; en members ar Lumber DOI Truss desig only. For str see Standar or consult qi TCLL: ASCE DOI=1.15 F Lumber DOI Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs r Gable requii Gable studs This truss ha load of 12.0 overhangs r Gable requii Gable studs This truss ha load of 12.0 overhangs r Gable studs This truss ha load of 12.0 overhangs r Gable requii Gable studs This truss ha chord live lo This truss ha chord live lo This truss ha chord live lo This truss ha chord and a One RT8A M truss to beal connection i forces. One RT7A M truss to beal 	I snow loads have been cor as been designed for great psf or 1.00 times flat roof la non-concurrent with other li res continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10.1 ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betv ny other members. WiTek connectors recomme ring walls due to UPLIFT at is for uplift only and does no WiTek connectors recomme ring walls due to UPLIFT at tho is for uplift only and does	6.0psf; h=25ft; elope) exterior ver left and right posed;C-C for icitions shown; D lane of the truss ial to the face), ils as applicable, s per ANSI/TPI 1. ve load: Lumber sf (flat roof snow: category II; Exp B; nsidered for this er of min roof live pad of 20.0 psf on ve loads. d bearing. 0 psf bottom other live loads. re load of 20.0psf a rectangle veen the bottom ended to connect t jt(s) 2. This ot consider lateral ended to connect t jt(s) 4 and 6.	Inte R8 16) Sec Dei cor 17) Hai pro lb c des res LOAD 1) Di In	ernationa 02.10.2 e Standa tail for C sult qua nger(s) o vided su down an sign/sele ponsibili CASE(S crease= niform L Vert: 1-	al Resi and ref ard Indi connect: onnect: onnect: fficienn d 673 I scton c ity of of) Sta now (b: 1.15 oads (I) 3=-60, ated Lo =-1265	gned in accordar dential Code sea ferenced standa ustry Piggyback tion to base trus- poulding designer to support cond b up at 0-6-3 or of such connection thers. indard alanced): Lumbe (b/ft) 3-5=-60, 7-10=- vads (lb) (B)	ace with the 2015 ctions R502.11.1 and rd ANSI/TPI 1. Truss Connection s as applicable, or trice(s) shall be centrated load(s) 1280 n bottom chord. The on device(s) is the er Increase=1.15, Plate 20

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL01	Valley	1	1	I46245845 Job Reference (optional)	

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:01 ID:ILQSK9VGukuz7_SzDKtM16zH1h9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7-4

Scale = 1:36.1

Scale = 1.50.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.27 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		_			_						Weight: 28 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3=6-7-4, 4 Max Horiz 5=-151 (L Max Uplift 3=-24 (LC 5=-33 (LC	cept end verticals. applied or 10-0-0 oc 4=6-7-4, 5=6-7-4 C 10) C 13), 4=-126 (LC 15 C 10)	; 9)),	design. Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces	snow loads have es continuous be spaced at 4-0-0 s been designer ad nonconcurrer has been design n chord in all are y 2-00-00 wide y other member liTek connectors ing walls due to ion is for uplift o	ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw rs. s recomme UPLIFT at nly and do	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ended to conr i jt(s) 5 and 4 es not consid	nds. Opsf om nect der					
FORCES TOP CHORD BOT CHORD	Max Grav 3=76 (LC 5=143 (LC (lb) - Maximum Com Tension 1-5=-111/52, 1-2=-1 4-5=-74/122, 3-4=-7	C 24) pression/Maximum 22/63, 2-3=-137/111		connection is forces. I) This truss is International	ing walls due to s for uplift only a designed in acco Residential Coo nd referenced st	nd does n ordance w le sections	ith the 2015 R502.11.1 a						
WEBS	2-4=-270/193	7/122	1.0	DAD CASE(S)			NOI/1111.						
NOTES			-		Clandara								111.
Vasd=103 Cat. II; Exp zone and (exposed ; members a Lumber De	CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in	CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig ght exposed;C-C for for reactions shown; IL=1.60	ght							5	So	OP JESS	• • •
only. For see Stand or consult 3) TCLL: ASO DOL=1.15	studs exposed to wind ard Industry Gable En qualified building desi CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1	(normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbe 20.0 psf (flat roof sn	, ble, rl 1. er ow:							1145.			EER. R.

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

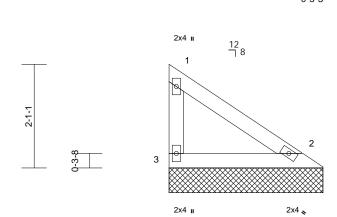
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Ma

May 21,2021

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL02	Valley	1	1	Job Reference (optional)	146245846

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:01 ID:ILQSK9VGukuz7_SzDKtM16zH1h9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


> 2-8-1 2-8-1

> > 3-1-4

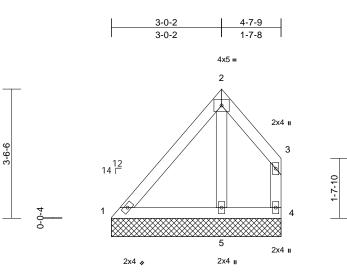
3-1-4

Page: 1

Scale = 1:23.2

Scale = 1:23.2												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB 14 Matrix-P	0.11 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 12 lb	FT = 20%
	· · · ·	xcept end verticals. applied or 10-0-0 or 3=3-1-4	ed or conner con	uss has been designe live load nonconcurrer truss has been design bottom chord in all ar 00 tall by 2-00-00 wide and any other membe CT7A MiTek connector o bearing walls due to ction is for uplift only a T16A MiTek connector	nt with any ned for a liv eas where will fit betw ers. s recomme UPLIFT at and does no	other live load e load of 20.0 a rectangle veen the botto nded to conn jt(s) 3. This ot consider lat	Opsf om lect teral					
	Max Horiz 3=-63 (LC Max Uplift 2=-7 (LC Max Grav 2=100 (LC (lb) - Maximum Com	15), 3=-29 (LC 15) C 1), 3=111 (LC 24)	truss conne forces	o bearing walls due to ction is for uplift only a	UPLIFT at and does no	jt(s) 2. This ot consider lat						
TOP CHORD	(ib) - Maximum Com Tension 1-3=-85/44, 1-2=-56		Íntern	ational Residential Co 10.2 and referenced s	de sections	R502.11.1 a	nd					
BOT CHORD	2-3=-31/50		LOAD CA	SE(S) Standard								
Vasd=103 Cat. II; Exp zone and (exposed ; members a	CE 7-10; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and ri; and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and ri ght exposed;C-C for for reactions shown	r ght							25	WITH CA	NROLA
 Truss des only. For s see Standa 	signed for wind loads ir studs exposed to wind ard Industry Gable En qualified building desig	n the plane of the tru l (normal to the face) d Details as applicat), ble,							Z	teatter -	Erries
3) TCLL: AS(DOL=1.15 Lumber D(Fully Exp.;	CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 ; Ct=1.10	roof live load: Lumb 20.0 psf (flat roof sn .15); Category II; Ex	er iow: p B;								SEA 0449	• •
design.	ed snow loads have be uires continuous botto		iis							in d	07	EERIER
6) Gable stud	ds spaced at 4-0-0 oc	•									1. M.	SE

- design. 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.


818 Soundside Road Edenton, NC 27932

May 21,2021

M. S W. Schur

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL03	Valley	1	1	Job Reference (optional)	46245847

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:02 ID:x1sYMXp7wiZSAXsUxUdOu4zH1SZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

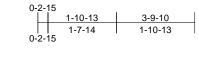
4-7-9

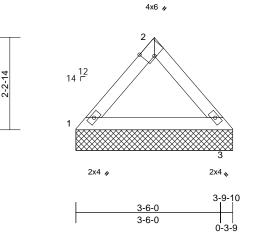
Scale = 1:31.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.15 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.3 Structural wood she 4-7-9 oc purlins, ex Rigid ceiling directly bracing.	v applied or 10-0-0 oc 4=4-7-9, 5=4-7-9 11) C 10), 4=-45 (LC 10), C 11) C 24), 4=68 (LC 28),	5) d or 6) ; 8) 9)	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottoo 3-06-00 tall t chord and ar) Provide mec	57-10; Pr=20.0 ps late DOL=1.15); F L=1.15 Plate DOL= 2t=1.10 snow loads have es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent nas been designed m chord in all area by 2-00-00 wide w hy other members chanical connection e capable of withst	<pre>>f=20.0 p =1.15); C been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv - n (by oth</pre>	sf (flat roof sn category II; Ex nsidered for th rd bearing. 0 psf bottom other live load re load of 20.0 a rectangle veen the botto ers) of truss to	now: p B; his ds. Dpsf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Tension 1-2=-139/94, 2-3=-9		12	truss to bear This connect lateral forces This truss is International	AiTek connectors r ing walls due to U tion is for uplift onl s. designed in accor Residential Code nd referenced star	PLIFT at y and do dance w sections	t jt(s) 4 and 5. bes not consid ith the 2015 5 R502.11.1 a	ler					11111

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard


Page: 1



Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL04	Valley	1	1	Job Reference (optional)	146245848

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:02 ID:cyleHVBe4jxGr2aOcQg6V6zH1Qn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.9

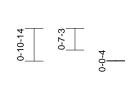
Plate Offsets (X, Y): [2:0-2-9,Edge]

	(, T). [2.0-2-9,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T		CSI TC BC WB Matrix-MP	0.09 0.09 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; e members a Lumber DC 2) Truss desi or consult c 3) TCLL: ASC DOL=1.15 Lumber DC Fully Exp.;	Max Horiz 1=78 (LC Max Uplift 3=-15 (LC Max Grav 1=118 (LC (Ib) - Maximum Com Tension 1-2=-132/8 1-3=-80/122 2-3=-65/45 E 7-10; Vult=130mph mph; TCDL=6.0psf; Bf B; Enclosed; MWFRS DL=1.60 plate grip DO gned for wind loads ir ituds exposed to wind ard Industry Gable En- qualified building desig E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pf= DL=1.15 Plate DOL=1	applied or 10-0-0 oc 3=3-9-10 14) 14) 14) 14) 21), 3=80 (LC 7) pression/Maximum (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig pht exposed;C-C for for reactions shown; L=1.60 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe 20.0 psf (flat roof sn .15); Category II; Exp	6) G 7) T 8) * dor 3 (; 9) C 10) T 10) T 10) T 10) T 10) T 10) T 10) T 10, T 10) T 10, T 1	Gable studs This truss ha chord live load This truss ha this truss ha bottom 3-06-00 tall b chord and an Dne RT16A truss to bear connection is corres. This truss is nternational	es continuous boti spaced at 4-0-0 o is been designed i ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w yo other members. MiTek connectors ing walls due to U is for uplift only and designed in accor Residential Code nd referenced star Standard	c. for a 10. with any d for a liv s where ill fit betv c recomm PLIFT at d does n d does n dance w sections	D psf bottom other live load e load of 20.0 a rectangle ween the botto ended to con ift(s) 3. This ot consider lat ith the 2015 s R502.11.1 a	ipsf om nect reral		Gunner		MILLIN M.	25 EER. HALL

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL05	Valley	1	1	Job Reference (optional)	146245849

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:02 ID:cyleHVBe4jxGr2aOcQg6V6zH1Qn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-6-3


0-2-15

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							1-6-3	-					
Scale = 1:31.7 Plate Offsets (X,	Y): [2:Edge,0-2-7]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.01 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 BRACING TOP CHORD 3 BOT CHORD 3 BOT CHORD 3 REACTIONS (S MM FORCES 1 TOP CHORD 3 BOT CHORD 3 BOT CHORD 3 DOP CHORD 3 BOT CHORD 3 DOP CHORD 3 DO	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-6-3 oc purlins. Rigid ceiling directly bracing. ize) 1=1-6-3, 3 ax Horiz 1=-17 (LC ax Opift 1=-5 (LC ax Grav 1=59 (LC (b) - Maximum Com Tension 1-2=-59/18, 2-3=-59 1-3=-5/43 roof live loads have 7-10; Vult=130mph oh; TCDL=6.0psf; B 3; Enclosed; MWFRS =1.60 plate grip DC ned for wind loads in dd sexposed to wind dd lndustry Gable En ialified building desig : 7-10; PT=20.0 psf (late DOL=1.15); Pf= =1.15 Plate DOL=1 :t=1.10	 2 10) 14), 3=-5 (LC 15) 1), 3=59 (LC 1) 1), 3=59 (LC 1) 1), apression/Maximum /18 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig pht exposed;C-C for for reactions shown; 	8 9 9 10 1 1 1 1 1 L L L L L L L L L L L L L	 This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat and 5 lb upl This truss is International 	s designed in acco Il Residential Code and referenced sta	I for a 10. t with any ed for a liv as where will fit betv s. on (by oth standing f ordance w e sections	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at jo ith the 2015 \$ R502.11.1 a	Opsf om to int 1				SEA 0449	AROUTING AL
design. 6) Gable requir	es continuous botto	m chord bearing.										Ma	y 21,2021

3x5 = 2

0-9-2

12 14 Г

2x4 💊

Job	Truss	Truss Type	Qty	Ply	Lot 97 Canterbury-Roof-62979DJJ	
21070157-B	VL06	Valley	1	1	Job Reference (optional)	146245850

2-5-10

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Fri May 21 13:55:02 ID:bcS4Rt0QcdVhw13SE5DPaNzH5nt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1

Page: 1

3x5 ዾ

1

4-10-12	

			4-10-12						
Scale = 1:23.8									
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	-11-4 .15 .15 ES RC2015/TPI2014	CSI TC 0.29 BC 0.31 WB 0.00 Matrix-MP	DEFL ir Vert(LL) n/a Vert(TL) n/a Horiz(TL) 0.07	a - a -	l/defl n/a n/a n/a	999 N 999 n/a	P LATES 1T20 Veight: 17 lb	GRIP 244/190 FT = 20%
4-11-4 oc purlins, e BOT CHORD Rigid ceiling directly bracing.	A applied or 10-0-0 oc 2, 3=4-10-12 11) C 14), 3=-44 (LC 14) C 20), 3=192 (LC 20) hpression/Maximum 123/81 A (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right ght exposed;C-C for for reactions shown; DL=1.60 In the plane of the truss d (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. (roof live load: Lumber =20.0 psf (flat roof snow: 1.5); Category II; Exp B; een considered for this m chord bearing.	 chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar 9) Provide mech bearing plate 1. 10) One RT7A M truss to beari connection is forces. 11) This truss is International R802.10.2 ar LOAD CASE(S) 	is been designed for a 10.0 ad nonconcurrent with any has been designed for a liv in chord in all areas where by 2-00-00 wide will fit betw y other members. hanical connection (by oth e capable of withstanding 2 hiTek connectors recomme ing walls due to UPLIFT at s for uplift only and does no designed in accordance w Residential Code sections and referenced standard AN Standard	other live loads. e load of 20.0psf a rectangle veen the bottom ers) of truss to 24 lb uplift at joint ended to connect t jt(s) 3. This ot consider lateral ith the 2015 s R502.11.1 and			11.	SEA 0449	25 EERIA

